WorldWideScience

Sample records for wave scattering due

  1. Velocity-space diffusion due to resonant wave-wave scattering of electromagnetic and electrostatic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, Reija

    1991-01-01

    The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)

  2. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to

  3. Induced scattering due to nonlinear Landau and cyclotron damping of electromagnetic and electrostatic waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Sugaya, Reiji

    1989-01-01

    General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)

  4. Numerical characterisation of guided wave scattering due to welds in rails

    CSIR Research Space (South Africa)

    Long, CS

    2012-04-01

    Full Text Available The analysis of travelling waves in elastic waveguides with complex cross-sections, such as train rails, can only conveniently be performed numerically. The semi-analytical finite element (SAFE) method has become a popular tool for performing...

  5. Superconducting quasiparticle lifetimes due to spin-fluctuation scattering

    International Nuclear Information System (INIS)

    Quinlan, S.M.; Scalapino, D.J.; Bulut, N.

    1994-01-01

    Superconducting quasiparticle lifetimes associated with spin-fluctuation scattering are calculated. A Berk-Schrieffer interaction with an irreducible susceptibility given by a BCS form is used to model the quasiparticle damping due to spin fluctuations. Results are presented for both s-wave and d-wave gaps. Also, quasiparticle lifetimes due to impurity scattering are calculated for a d-wave superconductor

  6. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Bao Xiaoyi; Zhang Chunshu; Li Wenhai; Eisa, M; El-Gamal, S; Benmokrane, B

    2008-01-01

    For the first time to our knowledge, distributed impact waves due to the highway traffic on concrete slabs reinforced with FRP bars are monitored in real time using stimulated Brillouin scattering. The impact wave is caused by the traffic passing on the highway pavement at high speed (>100 km h −1 ), which induced pressure on the concrete slabs, and in turn created a local birefringence change, leading to variation of the local state of polarization change (SOP). The pump and probe waves of the stimulated Brillouin scattering 'see' the SOP change and react with a decrease of the Brillouin gain or loss signal, when the pump and probe waves have the same input polarization state. The frequency difference between the pump and probe waves are locked at the static-strain-related Brillouin frequency. Optical fiber was embedded throughout the concrete pavement continuously reinforced with FRP bars in Highway 40 East, Montréal, Quebec to detect impact waves caused by cars and trucks passing on these pavements at a sampling rate of 10 kHz. A spatial resolution of 2 m was used over a sensing length of 300 m

  7. Study of probing beam enlargement due to forward-scattering under low wavenumber turbulence using a FDTD full-wave code

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F. da [Associao EURATOM/IST, IPFN-LA, Instituto Superor Tecnico, Lisbon (Portugal); Heuraux, S. [Institut Jean Lamour, CNRS-Nancy-Universite, BP70239, Vandoeuvre-les-Nancy (France); Gusakov, E.; Popov, A. [Ioffe Institute, Polytekhnicheskaya, St Petersburg (Russian Federation)

    2011-07-01

    Forward-scattering under high level of turbulence or long propagation paths can induce significant effects, as predicted by theory, and impose a signature on the Doppler reflectometry response. Simulations using a FDTD (finite-difference time-domain) full-wave code have confirmed the main dependencies and general behavior described by theory but display a returned RMS power, at moderate amplitudes, half of the one predicted by theory due to the impossibility to reach the numerical requirements needed to describe the small wavenumber spectrum with the wanted accuracy.One justifying factor may be due to the splitting and enlargement of the probing beam. At high turbulence levels, the scattered power returning to the antenna is higher than the predicted by the theory probably due to the scattered zone being closer than the oblique cutoff. This loss of coherence of the wavefront induces a beam spreading, which is also responsible for a diminution of the wavenumber resolution. With a FDTD full-wave code we study the behavior of the probing beam under several amplitude levels of low wavenumber plasma turbulence, using long temporal simulations series to ensure statistical accuracy. (authors)

  8. Scattering Of Nonplanar Acoustic Waves

    Science.gov (United States)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  9. Scattering of accelerated wave packets

    Science.gov (United States)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  10. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  11. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath

    2015-01-01

    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  12. Scattering of elastic waves by thin inclusions

    International Nuclear Information System (INIS)

    Simons, D.A.

    1980-01-01

    A solution is derived for the elastic waves scattered by a thin inclusion. The solution is asymptotically valid as inclusion thickness tends to zero with the other dimensions and the frequency fixed. The method entails first approximating the total field in the inclusion in terms of the incident wave by enforcing the appropriate continuity conditions on traction and displacement across the interface, then using these displacements and strains in the volume integral that gives the scattered field. Expressions are derived for the far-field angular distributions of P and S waves due to an incident plane P wave, and plots are given for normalized differential cross sections of an oblate spheroidal tungsten carbide inclusion in a titanium matrix

  13. Scattering of electromagnetic waves by obstacles

    CERN Document Server

    Kristensson, Gerhard

    2016-01-01

    The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.

  14. Lattice Waves, Spin Waves, and Neutron Scattering

    Science.gov (United States)

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  15. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  16. Millimeter wave scattering off a whistler wave in a tokamak

    International Nuclear Information System (INIS)

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  17. Scattering theory of stochastic electromagnetic light waves.

    Science.gov (United States)

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  18. SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, Joseph

    1962-12-15

    The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)

  19. Stimulated Raman scattering of sub-millimeter waves in bismuth

    Science.gov (United States)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  20. Nonlinear diffuse scattering of the random-phased wave

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.

    1983-01-01

    First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)

  1. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  2. Scattering of internal gravity waves

    OpenAIRE

    Leaman Nye, Abigail

    2011-01-01

    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  3. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  4. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  5. Springing response due to bidirectional wave excitation

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2005-01-01

    theories deal with the unidirectional wave excitation. This is quite standard. The problem is how to include more than one directional wave systems described by a wave spectrum with arbitrary heading. The main objective of the present work has been to account for the additional second-order springing......-linear (second order) high frequency springing analyses with unidirectional wave excitation are much more scattered. Some of the reasons are different level of wave excitation accounted in the different Executive Summary ivtheories, inclusion of additional hydrodynamic phenomena e.g. slamming in the time...... because, to the author's knowledge, this is the first time that the wave data were collected simultaneously with stress records on the deck of the ship. This is highly appreciated because one can use the precise input and not only the most probable sea state statistics. The actual picture of the sea waves...

  6. Migration of scattered teleseismic body waves

    Science.gov (United States)

    Bostock, M. G.; Rondenay, S.

    1999-06-01

    The retrieval of near-receiver mantle structure from scattered waves associated with teleseismic P and S and recorded on three-component, linear seismic arrays is considered in the context of inverse scattering theory. A Ray + Born formulation is proposed which admits linearization of the forward problem and economy in the computation of the elastic wave Green's function. The high-frequency approximation further simplifies the problem by enabling (1) the use of an earth-flattened, 1-D reference model, (2) a reduction in computations to 2-D through the assumption of 2.5-D experimental geometry, and (3) band-diagonalization of the Hessian matrix in the inverse formulation. The final expressions are in a form reminiscent of the classical diffraction stack of seismic migration. Implementation of this procedure demands an accurate estimate of the scattered wave contribution to the impulse response, and thus requires the removal of both the reference wavefield and the source time signature from the raw record sections. An approximate separation of direct and scattered waves is achieved through application of the inverse free-surface transfer operator to individual station records and a Karhunen-Loeve transform to the resulting record sections. This procedure takes the full displacement field to a wave vector space wherein the first principal component of the incident wave-type section is identified with the direct wave and is used as an estimate of the source time function. The scattered displacement field is reconstituted from the remaining principal components using the forward free-surface transfer operator, and may be reduced to a scattering impulse response upon deconvolution of the source estimate. An example employing pseudo-spectral synthetic seismograms demonstrates an application of the methodology.

  7. Influence of interface scattering on shock waves in heterogeneous solids

    International Nuclear Information System (INIS)

    Zhuang Shiming; Ravichandran, Guruswami; Grady, Dennis E.

    2002-01-01

    In heterogeneous media, the scattering due to interfaces between dissimilar materials play an important role in shock wave dissipation and dispersion. In this work the influence of interface scattering effect on shock waves was studied by impacting flyer plates onto periodically layered polycarbonate/6061 aluminum, polycarbonate/304 stainless steel and polycarbonate/glass composites. The experimental results (using VISAR and stress gauges) indicate that the rise time of the shock front decreases with increasing shock strength, and increases with increasing mechanical impedance mismatch between layers; the strain rate at the shock front increases by about the square of the shock stress. Experimental and numerical results also show that due to interface scattering effect the shock wave velocity in periodically layered composites decreases. In some cases the shock velocity of a layered heterogeneous composite can be lower than that of either of its components

  8. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  9. S-wave scattering of fermion revisited

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2011-01-01

    A model where a Dirac fermion is coupled to background dilaton field is considered to study s-wave scattering of fermion by a back ground dilaton black hole. It is found that an uncomfortable situation towards information loss scenario arises when one loop correction gets involved during bosonization.

  10. Cloaking through cancellation of diffusive wave scattering

    KAUST Repository

    Farhat, Mohamed

    2016-08-10

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. © 2016 The Author(s) Published by the Royal Society. All rights reserved.

  11. Spin wave scattering and interference in ferromagnetic cross

    Energy Technology Data Exchange (ETDEWEB)

    Nanayakkara, Kasuni; Kozhanov, Alexander [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303 (United States); Jacob, Ajey P. [Exploratory Research Device and Integration, GLOBALFOUNDRIES, Albany, New York 12203 (United States)

    2015-10-28

    Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.

  12. Calculating scattering matrices by wave function matching

    International Nuclear Information System (INIS)

    Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.

    2008-01-01

    The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Relativistic wave equations and compton scattering

    International Nuclear Information System (INIS)

    Sutanto, S.H.; Robson, B.A.

    1998-01-01

    Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula

  14. Scattering of wave packets with phases

    Energy Technology Data Exchange (ETDEWEB)

    Karlovets, Dmitry V. [Department of Physics, Tomsk State University, Lenina Ave. 36, 634050 Tomsk (Russian Federation)

    2017-03-09

    A general problem of 2→N{sub f} scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3+1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ{sub p}/〈p〉 as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.

  15. Electromagnetic wave scattering by many small particles

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2007-01-01

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated

  16. Elastic wave scattering methods: assessments and suggestions

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed

  17. Electromagnetic wave scattering by aerial and ground radar objects

    CERN Document Server

    Sukharevsky, Oleg I

    2014-01-01

    Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur

  18. MIGRATION RATES OF PLANETS DUE TO SCATTERING OF PLANETESIMALS

    International Nuclear Information System (INIS)

    Ormel, C. W.; Ida, S.; Tanaka, H.

    2012-01-01

    Planets migrate due to the recoil they experience from scattering solid (planetesimal) bodies. To first order, the torques exerted by the interior and exterior disks will cancel, analogous to the cancellation of the torques from the gravitational interaction with the gas (Type-I migration). Assuming the dispersion-dominated regime and power laws characterized by indices α and β for the surface density and eccentricity profiles, we calculate the net torque on the planet. We consider both distant encounters and close (orbit-crossing) encounters. We find that the close and distant encounter torques have opposite signs with respect to α and β; and that the torque is especially sensitive to the eccentricity gradient β. Compared to Type-I migration due to excitation of density waves, the planetesimal-driven migration rate is generally lower due to the lower surface density of solids in gas-rich disk, although this may be partially or fully offset when their eccentricity and inclinaton are small. Allowing for the feedback of the planet on the planetesimal disk through viscous stirring, we find that under certain conditions a self-regulated migration scenario emerges, in which the planet migrates at a steady pace that approaches the rate corresponding to the one-sided torque. If the ratio of the local disk mass in planetesimals to planet mass is low, however, migration will stall. We quantify the boundaries separating the three accretion regimes.

  19. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    Science.gov (United States)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  20. Scattering of Rossby and Poincare waves off rough lateral boundaries

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Prahalad, Y.S.; Sengupta, D.

    Unified treatment of wave scattering from a rough boundary, which was originally developed by Nakayama et al. is presented. The stationary nature of the boundary process is used to show that the wave field is also stationary, and therefore can...

  1. Scattered P'P' waves observed at short distances

    Science.gov (United States)

    Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine

    2011-01-01

    We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.

  2. Scattering of guided waves at delaminations in composite plates.

    Science.gov (United States)

    Murat, Bibi I S; Khalili, Pouyan; Fromme, Paul

    2016-06-01

    Carbon fiber laminate composites are increasingly employed for aerospace structures as they offer advantages, such as a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber and matrix breakage or delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing and structural health monitoring of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The scattering of the A0 Lamb wave mode at delaminations was investigated using a full three-dimensional (3D) finite element (FE) analysis. The influence of the delamination geometry (size and depth) was systematically evaluated. In addition to the depth dependency, a significant influence of the delamination width due to sideways reflection of the guided waves within the delamination area was found. Mixed-mode defects were simulated using a combined model of delamination with localized material degradation. The guided wave scattering at cross-ply composite plates with impact damage was measured experimentally using a non-contact laser interferometer. Good agreement between experiments and FE predictions using the mixed-mode model for an approximation of the impact damage was found.

  3. Scattering of ECRF waves by edge density fluctuations and blobs

    Directory of Open Access Journals (Sweden)

    Ram Abhay K.

    2015-01-01

    Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.

  4. On scattering of electromagnetic waves by a wormhole

    International Nuclear Information System (INIS)

    Kirillov, A.A.; Savelova, E.P.

    2012-01-01

    We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.

  5. On scattering of electromagnetic waves by a wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, A.A., E-mail: ka98@mail.ru [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation); Savelova, E.P. [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation)

    2012-04-20

    We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.

  6. Support minimized inversion of acoustic and elastic wave scattering

    International Nuclear Information System (INIS)

    Safaeinili, A.

    1994-01-01

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion

  7. Rays, waves, and scattering topics in classical mathematical physics

    CERN Document Server

    Adam, John A

    2017-01-01

    This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technica...

  8. Scattering of electromagnetic waves by a traversable wormhole

    Directory of Open Access Journals (Sweden)

    B. Nasr Esfahani

    2005-09-01

    Full Text Available   Replacing the wormhole geometry with an equivalent medium using the perturbation theory of scattering and the Born approximation, we have calculated the differential scattering cross section of electromagnetic waves by a traversable wormhole. It is shown that scattering at long wavelenghts can essentially distinguish wormhole from ordinary scattering object. Some of the zeros of the scattering cross section are determined which can be used for estimating the radius of the throat of wormholes. The known result that in this kind of scattering the linear polarization remains unchanged is verified here.

  9. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  10. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  11. Propagation and scattering of electromagnetic waves by the ionospheric irregularities

    International Nuclear Information System (INIS)

    Ho, A.Y.; Kuo, S.P.; Lee, M.C.

    1993-01-01

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, remote-sensing and detection. The ionosphere is often perturbed with coherently structured (quasiperiodic) density irregularities. Experimental observations suggest that these irregularities could give rise to significant ionospheric effect on wave propagation such as causing spread-F of the probing HF sounding signals and scintillation of beacon satellite signals. It was show by the latter that scintillation index S 4 ∼ 0.5 and may be as high as 0.8. In this work a quasi-particle theory is developed to study the scintillation phenomenon. A Wigner distribution function for the wave intensity in the (k,r) space is introduced and its governing equation is derived with an effective collision term giving rise to the attenuation and scattering of the wave. This kinetic equation leads to a hierarchy of moment equations in r space. This systems of equations is then truncated to the second moment which is equivalent to assuming a cold quasi-particle distribution In this analysis, the irregularities are modeled as a two dimensional density modulation on an uniform background plasma. The analysis shows that this two dimensional density grating, effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then contributes to the scintillation of the beacon satellite signals. Using the proper plasma parameters and equatorial measured data of irregularities, it is shown that the scintillation index defined by S4=( 2 >- 2 )/ 2 where stands for spatial average over an irregularity wavelength is in the range of the experimentally detected values

  12. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J

    2017-08-01

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.

  13. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    International Nuclear Information System (INIS)

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs

  14. Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept

    Directory of Open Access Journals (Sweden)

    M. Y. Barabanenkov

    2012-07-01

    Full Text Available If a scatterer and an observation point (receive both approach the so-called near field zone of a source of electromagnetic waves, the scattering process becomes singular one which is mathematically attributed to the spatial singularity of the free space Green function at the origin. Starting from less well known property of left-handed material slab to transfer the singularity of the free space Green function by implementing coordinate transformation, we present a phenomenon of virtual singular scattering of electromagnetic wave on an inhomogeneity located in the volume of left – handed material slab. Virtual singular scattering means that a scatterer is situated only virtually in the near field zone of a source, being, in fact, positioned in the far field zone. Such a situation is realized if a scatterer is embedded into a flat Veselago’s lens and approaches the lens’s inner focus because a slab of Veselago medium produces virtual sources inside and behind the slab and virtual scatterer (as a source of secondary waves from both slab sides. Considering a line-like dielectric scatterer we demonstrate that the scattering efficiency is proportional to product of singular quasistatic parts of two empty space Green functions that means a multiplicative quasistatic singularity of the Green function for a slab of inhomogeneous Veselago medium. We calculate a resonance value of the scattering amplitude in the regime similar to the known Mie resonance scattering.

  15. On lower hybrid wave scattering by plasma density fluctuations

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1988-01-01

    The scattering of lower hybrid waves on plasma density fluctuations in a thin turbulent layer at the plasma periphery is studied numerically. The lower hybrid waves are supposed to be radiated by a four-waveguide grill used on the CASTOR tokamak. A great number of calculated scattered wave spectra show that the scattered spectrum shifts to larger values of the parallel-to-magnetic-field component of the wave vector (to slower waves) with increasing central plasma density and with the decreasing safety factor at the boundary. As known, this shift of the wave spectra results in a decrease in current drive efficiency. The current drive efficiency will hence decrease with growing plasma density and with decreasing safety factor. (J.U.). 2 figs., 4 refs

  16. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  17. Spectral distortion due to scattered cold neutrons in beryllium filter

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Inoue, Kazuhiko

    1980-01-01

    Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)

  18. Scattering of radio frequency waves by blob-filaments

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2010-01-01

    Radio frequency waves used for heating and current drive in magnetic confinement experiments must traverse the scrape-off-layer (SOL) and edge plasma before reaching the core. The edge and SOL plasmas are strongly turbulent and intermittent in both space and time. As a first approximation, the SOL can be treated as a tenuous background plasma upon which denser filamentary field-aligned blobs of plasma are superimposed. The blobs are approximately stationary on the rf time scale. The scattering of plane waves in the ion-cyclotron to lower-hybrid frequency range from a cylindrical blob is treated here in the cold plasma fluid model. Scattering widths are derived for incident fast and slow waves, and the scattered power fraction is estimated. Processes such as scattering-induced mode conversion, scattering resonances, and shadowing are investigated.

  19. Numerical simulation of scattering wave imaging in a goaf

    Institute of Scientific and Technical Information of China (English)

    Li Juanjuan; Pan Dongming; Liao Taiping; Hu Mingshun; Wang Linlin

    2011-01-01

    Goafs are threats to safe mining. Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images. Hence, accurate detection of goals has become an important problem, to be solved with a sense of urgency. Based on scattering theory, we used an equivalent offset method to extract Common Scattering Point gathers, in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects. Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goats and other complex geological bodies. It has important implications for safe mining procedures and infrastructures.

  20. Propagation and scattering of waves in dusty plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.

    1994-01-01

    Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs

  1. Scattering of acoustic waves by small crustaceans

    Science.gov (United States)

    Andreeva, I. B.; Tarasov, L. L.

    2003-03-01

    Features of underwater sound scattering by small crustaceans are considered. The scattering data are obtained with the use of unique instrumentation that allows one to measure quantitative scattering characteristics (backscattering cross sections and angular scattering patterns) for crustaceans of different sizes, at different frequencies (20 200 kHz) and different insonification aspects. A computational model of crustaceans is considered with allowance for both the soft tissues of the main massive part of the animal's body and the stiff armour. The model proves to be advantageous for explaining some scattering features observed in the experiments. The scattering cross sections of crustaceans measured by other researchers are presented in a unified form appropriate for comparison. Based on such a quantitative comparison, relatively simple approximate empirical formulas are proposed for estimating the backscattering cross sections of small (within several centimeters) marine crustaceans in a broad frequency range.

  2. Prospects for ion temperature measurements in JET by Thomson scattering of submillimetre waves

    International Nuclear Information System (INIS)

    Whitbourn, L.B.

    1975-03-01

    The Thomson scattering of submillimeter waves is envisaged as a possible means for measuring the ion temperature of the JET plasma. The present discussion is principally concerned with the practical limitations imposed to the method by the availability of high power pulsed sources and sensitive detectors and noise due to plasma emission at submillimeter wavelengths (bremsstrahlung and electron cyclotron emission). Coherent scattering from plasma wave (e.g. ion acoustic waves and electron drift waves) with millimeter and submillimeter waves are considered briefly. Further suitable development of lasers and heterodyne detectors would make such measurements possible. A pulsed HCN laser associated with a detectors with a lower heterodyne noise equivalent power could then be used to advantage. For scattering with CH 3 F laser the NEP of a Josephson junction would be adequate because a relatively high level of plasma emission is expected at 496 μm [fr

  3. Scattering of Electromagnetic Waves by Drift Vortex in Plasma

    International Nuclear Information System (INIS)

    Wang Dong; Chen Yinhua; Wang Ge

    2008-01-01

    In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (k i a || 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then k i a || 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

  4. THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.

    Directory of Open Access Journals (Sweden)

    P. A. Preobrazhensky

    2017-02-01

    Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.

  5. Scattering of Lamb waves in a composite plate

    Science.gov (United States)

    Bratton, Robert; Datta, Subhendu; Shah, Arvind

    1991-01-01

    A combined analytical and finite element technique is developed to gain a better understanding of the scattering of elastic waves by defects. This hybrid method is capable of predicting scattered displacements from arbitrary shaped defects as well as inclusions of different material. The continuity of traction and displacements at the boundaries of the two areas provided the necessary equations to find the nodal displacements and expansion coefficients. Results clearly illustrate the influence of increasing crack depth on the scattered signal.

  6. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    International Nuclear Information System (INIS)

    Erofeev, V. I.

    2015-01-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena

  7. Scattering amplitude of ultracold atoms near the p-wave magnetic Feshbach resonance

    International Nuclear Information System (INIS)

    Zhang Peng; Naidon, Pascal; Ueda, Masahito

    2010-01-01

    Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f 1 (k) is given by f 1 (k)=-1/[ik+1/(Vk 2 )+1/R]. Here k is the incident momentum, V and R are the k-independent scattering volume and effective range, respectively. However, due to the long-range nature of the van der Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)]. In this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude f 1 (k)=-1/[ik+1/(V eff k 2 )+1/(S eff k)+1/R eff ] where V eff , S eff , and R eff are k-dependent parameters. Based on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation for the p-wave scattering in the ultracold gases of 6 Li and 40 K when the scattering volume is enhanced by the resonance.

  8. Resonance scattering of Rayleigh waves by a mass defect

    International Nuclear Information System (INIS)

    Croitoru, M.; Grecu, D.

    1978-06-01

    The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)

  9. Scattering for wave equations with dissipative terms in layered media

    Directory of Open Access Journals (Sweden)

    Mitsuteru Kadowaki

    2011-05-01

    Full Text Available In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators.

  10. Parametrization of the scattering wave functions of the Paris potential

    International Nuclear Information System (INIS)

    Loiseau, B.; Mathelitsch, L.

    1996-10-01

    The neutron-proton scattering wave functions of the Paris nucleon-nucleon potential are parametrized for partial waves of total angular momenta less than 5. The inner parts of the wave functions are approximated by polynomials with a continuous transition to the outer parts, which are given by the asymptotic regime and determined by the respective phase shifts. The scattering wave functions can then be calculated at any given energy below 400 MeV. Special attention is devoted to the zero-energy limit of the low partial waves. An easy-to-use FORTRAN program, which allows the user to calculate these parametrized wave functions, is available via electronic mail. (author)

  11. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed

    2014-04-10

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  12. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed; Chen, P.-Y.; Bagci, Hakan; Enoch, S.; Guenneau, S.; Alù , A.

    2014-01-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  13. Matter-wave scattering and guiding by atomic arrays

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Walls, J. D.; Apratim, M.; Heller, E. J.

    2007-01-01

    We investigate the possibility that linear arrays of atoms can guide matter waves, much as fiber optics guide light. We model the atomic line as a quasi-one-dimensional array of s-wave point scatterers embedded in two-dimensions. Our theoretical study reveals how matter-wave guiding arises from the interplay of scattering phenomena with bands and conduction along the array. We discuss the conditions under which a straight or curved array of atoms can guide a beam focused at one end of the array

  14. Approximate scattering wave functions for few-particle continua

    International Nuclear Information System (INIS)

    Briggs, J.S.

    1990-01-01

    An operator identity which allows the wave operator for N particles interacting pairwise to be expanded as products of operators in which fewer than N particles interact is given. This identity is used to derive appproximate scattering wave functions for N-particle continua that avoid certain difficulties associated with Faddeev-type expansions. For example, a derivation is given of a scattering wave function used successfully recently to describe the three-particle continuum occurring in the electron impact ionization of the hydrogen atom

  15. The scattering properties of anisotropic dielectric spheres on electromagnetic waves

    International Nuclear Information System (INIS)

    Chen Hui; Zhang Weiyi; Wang Zhenlin; Ming Naiben

    2004-01-01

    The scattering coefficients of spheres with dielectric anisotropy are calculated analytically in this paper using the perturbation method. It is found that the different modes of vector spherical harmonics and polarizations are coupled together in the scattering coefficients (c-matrix) in contrast to the isotropic case where all modes are decoupled from each other. The generalized c-matrix is then incorporated into our codes for a vector wave multiple scattering program; the preliminary results on face centred cubic structure show that dielectric anisotropy reduces the symmetry of the scattering c-matrix and removes the degeneracy in photonic band structures composed of isotropic dielectric spheres

  16. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2018-01-01

    of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...

  17. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-01-10

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.

  18. Study of Compton broadening due to electron-photon scattering

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao M.

    2010-01-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radia­tion field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation. The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons. It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle. We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  19. Study of Compton Broadening Due to Electron-Photon Scattering

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao, M.

    2010-06-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radiation field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation.The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons.It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle.We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  20. Spin wave vortex from the scattering on Bloch point solitons

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2015-12-15

    The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.

  1. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference.

    Science.gov (United States)

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-09

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.

  2. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference

    Science.gov (United States)

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-01

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n -band material.

  3. Comparison of matrix methods for elastic wave scattering problems

    International Nuclear Information System (INIS)

    Tsao, S.J.; Varadan, V.K.; Varadan, V.V.

    1983-01-01

    This article briefly describes the T-matrix method and the MOOT (method of optimal truncation) of elastic wave scattering as they apply to A-D, SH- wave problems as well as 3-D elastic wave problems. Two methods are compared for scattering by elliptical cylinders as well as oblate spheroids of various eccentricity as a function of frequency. Convergence, and symmetry of the scattering cross section are also compared for ellipses and spheroidal cavities of different aspect ratios. Both the T-matrix approach and the MOOT were programmed on an AMDHL 470 computer using double precision arithmetic. Although the T-matrix method and MOOT are not always in agreement, it is in no way implied that any of the published results using MOOT are in error

  4. Quantum scattering beyond the plane-wave approximation

    Science.gov (United States)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  5. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  6. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  7. Scattering of Acoustic Waves from Ocean Boundaries

    Science.gov (United States)

    2015-09-30

    at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de Janeiro , Brazil...a Sandy Seabed at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de ... Janeiro , Brazil, July 2015. PRESENTATIONS Presenter: Isakson, M.J., Chotiros, N.P., Piper, J.N. and McNeese, A. “Acoustic Scattering from a Sandy Seabed

  8. Modeling traveling-wave Thomson scattering using PIConGPU

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander; Schramm, Ulrich; Cowan, Thomas; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Steiniger, Klaus; Pausch, Richard; Huebl, Axel [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden (Germany)

    2016-07-01

    Traveling-wave Thomson scattering (TWTS) laser pulses are pulse-front tilted and dispersion corrected beams that enable all-optical free-electron lasers (OFELs) up to the hard X-ray range. Electrons in such a side-scattering geometry experience the TWTS laser field as a continuous plane wave over centimeter to meter interaction lengths. After briefly discussing which OFEL scenarios are currently numerically accessible, we detail implementation and tests of TWTS beams within PIConGPU (3D-PIC code) and show how numerical dispersion and boundary effects are kept under control.

  9. Neutron diffuse scattering in magnetite due to molecular polarons

    International Nuclear Information System (INIS)

    Yamada, Y.; Wakabayashi, N.; Nicklow, R.M.

    1980-01-01

    A detailed neutron diffuse scattering study has been carried out in order to verify a model which describes the property of valence fluctuations in magnetite above T/sub V/. This model assumes the existence of a complex which is composed of two excess electrons and a local displacement mode of oxygens within the fcc primitive cell. The complex is called a molecular polaron. It is assumed that at sufficiently high temperatures there is a random distribution of molecular polarons, which are fluctuating independently by making hopping motions through the crystal or by dissociating into smaller polarons. The lifetime of each molecular polaron is assumed to be long enough to induce an instantaneous strain field around it. Based on this model, the neutron diffuse scattering cross section due to randomly distributed dressed molecular polarons has been calculated. A precise measurement of the quasielastic scattering of neutrons has been carried out at 150 K. The observed results definitely show the characteristics which are predicted by the model calculation and, thus, give evidence for the existence of the proposed molecular polarons. From this standpoint, the Verwey transition of magnetite may be viewed as the cooperative ordering process of dressed molecular polarons. Possible extensions of the model to describe the ordering and the dynamical behavior of the molecular polarons are discussed

  10. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  11. Effects of wave function correlations on scaling violation in quasi-free electron scattering

    International Nuclear Information System (INIS)

    Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.

    1981-01-01

    The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)

  12. Scattering on plane waves and the double copy

    Science.gov (United States)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  13. On analyticity of linear waves scattered by a layered medium

    Science.gov (United States)

    Nicholls, David P.

    2017-10-01

    The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.

  14. Introduction to wave scattering, localization, and mesoscopic phenomena

    CERN Document Server

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  15. s -wave scattering length of a Gaussian potential

    Science.gov (United States)

    Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim

    2018-04-01

    We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.

  16. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general...

  17. Uniqueness in inverse elastic scattering with finitely many incident waves

    International Nuclear Information System (INIS)

    Elschner, Johannes; Yamamoto, Masahiro

    2009-01-01

    We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)

  18. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  19. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering

    Science.gov (United States)

    Zhao, Yao; Yu, Lu-Le; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming

    2017-09-01

    The nonlinear coupling between stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) of intense laser in underdense plasma is studied theoretically and numerically. Based upon the fluid model, their coupling equations are derived, and a threshold condition of plasma density perturbations due to SBS for the inhibition of SRS is given. Particle-in-cell simulations show that this condition can be achieved easily by SBS in the so-called fluid regime with kLλDDebye length [Kline et al., Phys. Plasmas 13, 055906 (2006)]. SBS can reduce the saturation level of SRS and the temperature of electrons in both homogeneous and inhomogeneous plasma. Numerical simulations also show that this reduced SRS saturation is retained even if the fluid regime condition mentioned above is violated at a later time due to plasma heating.

  20. Scattering of waves by impurities in precompressed granular chains.

    Science.gov (United States)

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  1. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  2. Scattering of lower-hybrid waves by density fluctuations

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1981-07-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. Assuming the fluctuations to be of long wavelength compared to the incident wave the similarity of the wave equation to the Schroedinger equation for a particle in a random magnetic field is used to derive a two-way diffusion equation for the wave energy density. The diffusion constant found disagrees with earlier findings and the source of the discrepancy is pointed out. When the correct boundary conditions are imposed this equation can be solved by separation of variables. However most of the important features of the solution are apparent without detailed algebra

  3. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  4. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  5. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  6. Springing Response Due to Directional Wave Field Excitation

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2004-01-01

    This paper analyses the wave-induced high-frequency bending moment response of ships, denoted springing. The aim is to predict measured severe springing responses in a large bulk carrier. It is shown that the most important springing contribution is due to the resultant second order excitation...... in multidirectional sea. The incident pressure field from the second order bidirectional wave field is derived, including the non-linear cross-coupling terms between the two wave systems (e.g. wind driven waves and swell). The resulting effect of the super-harmonic cross-coupling interaction terms on the springing...... response is discussed. An example with opposing waves is given, representing probably the 'worst' case for energy exchange between the wave systems. Theoretical predictions of standard deviation of wave- and springing-induced stress amidships are compared with full-scale measurements for a bulk carrier....

  7. Density fluctuations due to Raman forward scattering in quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Punit, E-mail: punitkumar@hotmail.com; Singh, Shiv; Rathore, Nisha Singh, E-mail: nishasingh-rathore@yahoo.com [Department of Physics, University of Lucknow, Lucknow-226007 (India)

    2016-05-06

    Density fluctuations due Raman forward scattering (RFS) is analysed in the interaction of a high intensity laser pulse with high density quantum plasma. The interaction model is developed using the quantum hydrodynamic (QHD) model which consist of a set of equations describing the transport of charge, density, momentum and energy of a charged particle system interacting through a self-consistent electrostatic potential. The nonlinear source current has been obtained incorporating the effects of quantum Bohm potential, Fermi pressure and electron spin. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam is quit large, various quantum effects are observed which can be attributed to the variation of electron mass with laser intensity.

  8. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    International Nuclear Information System (INIS)

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-01-01

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth (Δk/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals

  9. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  10. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    International Nuclear Information System (INIS)

    Hizanidis, Kyriakos; Kominis, Yannis; Tsironis, Christos; Ram, Abhay K.

    2010-01-01

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence--in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects--one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is

  11. Scattering of matter waves in spatially inhomogeneous environments

    International Nuclear Information System (INIS)

    Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2015-01-01

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numerically and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed

  12. Run-up on a structure due to second-order waves and current in a numerical wave tank

    DEFF Research Database (Denmark)

    Buchmann, Bjarne; Skourup, Jesper; Cheung, Kwok Fai

    1998-01-01

    order in current speed. The boundary-value problem is separated into a known incident wave field and an unknown scattered wave field, the latter being absorbed at the radiation boundaries using active wave absorption. The present paper focuses on the wave run-up on a structure in waves and current...

  13. The Damage To The Armour Layer Due To Extreme Waves

    Science.gov (United States)

    Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka

    2010-05-01

    computation of wave time series, Deterministic Spectral Amplitude (DSA) model with FFT algorithm was used. It is possible to get thousands of time series which have different wave statistics in DSA model by setting up the target spectrum and using random numbers for phase angles (Tuah et.al. 1982). Multi-reflection in the wave channel was minimized by the absorption mode of wave generator. Incident wave energy spectrum was obtained by using the separation method introduced by Goda and Suzuki (1976). Three wave gauges in front of the model were used for the separation. Individual wave heights were determined by zero-up crossing method after obtaining incident wave train. After each test, damage of the breakwater was calculated. Van der Meer's (1988) definition of damage level, S, was used in the calculations as: S= Ae/Dn502 (1) where; Ae= Eroded area, Dn50: nominal diameter of armour stone In order to get eroded area, the profile of armour layer was measured by laser equipment through nine lines along the section. Results of the experiments indicate that the higher the extreme waves are, the more destructive the wave train is, even the data is scattered. The damage was also calculated by using Van der Meer's formulae (1988) and compared with the experimental results. The comparison shows that the damages are more than the expected results in the cases where at least one wave height in the train is higher than the twice of H1-3. In fact, the damage results calculated by Van der Meer's formulae form the lower boundary for the higher extreme wave cases. It is also found that the damage is highly correlated to the ratios of characteristic waves like H1-10/H1-3 or H1-20/H1-3. Therefore, the parameter αextreme covering the effect of all extreme waves is proposed. References Goda, Y. and Suzuki, Y. (1976) .' Estimation of Incident and Reflected Waves in Random wave experiments.' Proc. 15th. Int. Conf. Coastal Engg., Hawai,1976, pp.828-845. Goda Y. (1998), 'An Overview of Coastal

  14. Ion temperature via laser scattering on ion Bernstein waves

    International Nuclear Information System (INIS)

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement

  15. Wave optics simulation of statistically rough surface scatter

    Science.gov (United States)

    Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.

    2017-09-01

    The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.

  16. Inelastic scattering of neutrons by spin waves in terbium

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Houmann, Jens Christian Gylden

    1966-01-01

    Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals which...... does not have very high thermal-neutron capture cross section, so that inelastic neutron scattering experiments can give satisfactory information on magnon dispersion relations....

  17. Reciprocity in quantum, electromagnetic and other wave scattering

    International Nuclear Information System (INIS)

    Deák, L.; Fülöp, T.

    2012-01-01

    The reciprocity principle is that, when an emitted wave gets scattered on an object, the scattering transition amplitude does not change if we interchange the source and the detector—in other words, if incoming waves are interchanged with appropriate outgoing ones. Reciprocity is sometimes confused with time reversal invariance, or with invariance under the rotation that interchanges the location of the source and the location of the detector. Actually, reciprocity covers the former as a special case, and is fundamentally different from–but can be usefully combined with–the latter. Reciprocity can be proved as a theorem in many situations and is found violated in other cases. The paper presents a general treatment of reciprocity, discusses important examples, shows applications in the field of photon (Mössbauer) scattering, and establishes a fruitful connection with a recently developing area of mathematics. - Highlights: ► A frame independent generalized reciprocity theorem of scattering theory is given. ► Reciprocity for two spin/polarization degrees of freedom is detailed. ► Relationship of reciprocity to time reversal and to 180 degree rotation is discussed. ► Reciprocal and nonreciprocal settings in Mossbauer spectroscopy are studied. ► The symmetry of diffuse omega-scans is explained with the aid of reciprocity.

  18. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.

    Science.gov (United States)

    Frisvad, Jeppe Revall

    2018-04-01

    In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

  19. Emittance growth due to beam-gas scattering

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1992-06-01

    The effect of beam-gas scattering on beam emittance is examined by deriving the beam distribution function. The distribution function is found by treating the beam-gas scattering as a filtered Poisson process and calculating the cumulants of the distribution. (author)

  20. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  1. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  2. Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering

    Science.gov (United States)

    Ablowitz, Mark J.

    1994-12-01

    Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.

  3. Evanescent wave scattering at off-axis incidence on multiple cylinders located near a surface

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2015-01-01

    The scattering characteristics of an infinite cylinder are strongly influenced by the incidence angle relative to its axis. If the incident wave propagates in the plane normal to the axis of the cylinder, the polarization of the scattered wave remains unchanged and the scattered wave propagates in the same plan as the incident wave. At off-axis incidence such that the incident direction makes an oblique angle with the cylinder axis, the scattered wave is depolarized, and its spatial distribution becomes three-dimensional. This paper presents the scattering solution for oblique incidence on multiple parallel cylinders located near a planar interface by an evanescent wave that is generated by total internal reflection of the source wave propagating in the higher refractive index substrate. Hertz potentials are utilized to formulate the interaction of inhomogeneous waves with the cylinders, scattering at the substrate interface, and near field scattering between the cylinders. Analytic formulas are derived for the electromagnetic fields and Poynting vector of scattered radiation in the near-field and their asymptotic forms in the far-field. Numerical examples are shown to illustrate scattering of evanescent wave by multiple cylinders at off-axis incidence. - Highlights: • Developed an exact solution for off-axis incidence on multiple cylinders. • Included depolarization, near-field scattering, and Fresnel effect in theory. • Derived analytic formulas for scattered radiation in the far field. • Illustrated evanescent scattering at off-axis incidence by numerical data

  4. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  5. Sensing small changes in a wave chaotic scattering system

    International Nuclear Information System (INIS)

    Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward; Anlage, Steven M.

    2010-01-01

    Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acoustic resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.

  6. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  7. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    Science.gov (United States)

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  8. An analytic distorted wave approximation for intermediate energy proton scattering

    International Nuclear Information System (INIS)

    Di Marzio, F.; Amos, K.

    1982-01-01

    An analytic Distorted Wave approximation has been developed for use in analyses of intermediate energy proton inelastic scattering from nuclei. Applications are made to analyse 402 and 800 MeV data from the isoscalar and isovector 1 + and 2 + states in 12 C and to the 800 MeV data from the excitation of the 2 - (8.88MeV) state in 16 O. Comparisons of predictions made using different model two-nucleon t-matrices and different models of nuclear structure are given

  9. Effect of energy emission from evanescent electromagnetic wave at scattering by a dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu.V. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation); Barabanenkov, Yu.N. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)]. E-mail: yu.barab@mail.ip.sitek.net; Barabanenkov, M.Yu. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Nikitov, S.A. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)

    2005-02-21

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes. The optical theorem shows that an energy flux at scattering is emitted in the direction of incident evanescent wave decay.

  10. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen; Hanafy, Sherif; Schuster, Gerard T.

    2015-01-01

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult

  11. Wave scattering by an axisymmetric ice floe of varying thickness

    Science.gov (United States)

    Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David

    2009-04-01

    The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

  12. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  13. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  14. Secondary Flows and Sediment Transport due to Wave - Current Interaction

    Science.gov (United States)

    Ismail, Nabil; Wiegel, Robert

    2015-04-01

    expression, ρs is the seawater mass density, ρ is the river current mass density, a0 is the deep water wave amplitude, g is the acceleration of gravity, Cg is the wave group velocity, L is the deep water wave length, h is the average water depth near the river mouth, C0 is the deep water wave phase velocity, U is the average jet exit velocity and w is the river or the tidal inlet effective width. The values of the above number were found to be in the range between 1.0 and 6.0-8.0 for the examined laboratory and field case studies for non-buoyant jets. Upper bound corresponds to cases of higher wave activity on the coast while the lower bound corresponds to cases of tidal currents with minimum wave activity, Coastal Processes Modifications due to River and Ebb Current Interaction with Opposing Waves: Confirmation of the obtained theoretical expression was obtained by comparison against field data for shoreline variability at river mouths and the formation of accretion shoals and erosion spots at tidal inlets and ocean outfalls in the USA and the Nile delta coastline. The predicted extent of the coast reshaping process, due to shoreline erosion and subsequent accretion, due to the absence of the river Nile current after 1965, east of the Rosetta headland, was determined. The obtained shoreline erosion spatial extent using the above correlation showed that the long term length of coastline recession would be in the neighborhood of 16-20 km east of Rosetta headland (1990-2014). Such results were further confirmed by the recent satellite data (Ghoneim, et al, 2015). The results of the present work were well compared to the data on Fort Pierce Inlet, Florida, where severe erosion is known to exist on both sides of the inlet (Joshi, 1983). The current results are qualitatively in parallel to that obtained recently by the numerical model Delft3D coupled with the wave model SWAN ( Nardin, et al, 2013) on wave- current interaction at river mouths and the formation of mouth bars

  15. Scattering of electromagnetic waves by anomalous fluctuations of a magnetized plasma

    Science.gov (United States)

    Pavlenko, V. N.; Panchenko, V. G.

    1990-04-01

    Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.

  16. Propagation and attenuation of sound waves as well as spectrally resolved Rayleigh scattering in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Kopainsky, J.

    1975-01-01

    In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)

  17. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  18. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  19. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han; Guo, Bowen; Hanafy, Sherif; Lin, Fan-Chi; Schuster, Gerard T.

    2014-01-01

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps

  20. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  1. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  2. Scattering of quantized solitary waves in the cubic Schrodinger equation

    International Nuclear Information System (INIS)

    Dolan, L.

    1976-01-01

    The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states

  3. Quasi-wavelet formulations of turbulence and wave scattering

    DEFF Research Database (Denmark)

    Wilson, D. Keith; Ott, Søren; Goedecke, George H.

    2009-01-01

    Quasi-wavelets (QWs) are eddy-like entities similar to customary wavelets in the sense that they are based on translations and dilations of a spatially localized parent function. The positions and orientations are, however, normally taken to be random. Random fields such as turbulence may...... types of QWs and couplings, suitable for various applicatons, can be constructed through differentiation of spherically symmetric parent functions. For velocity fluctuations, QWs with toroidal and poloidal circulations can be derived. (2) Self-similar ensembles of QWs with rotation rates scaling...... to Fourier modes, QWs can be naturally arranged in a spatially intermittent manner. Models for both local (intrinsic) and global intermittency are discussed. (5) The spatially localized nature of QWs can be advantageous in wave-scattering calculations and other applications....

  4. Analyses and Simulation of 3D Scattering Due to Heterogeneous Crustal Structure and Surface Topography on Regional Phases, Magnitude Discrimination

    National Research Council Canada - National Science Library

    Pitarka, Arban; Helmberger, Don V; Ni, Sidao

    2008-01-01

    ... into ongoing research for the development of simple empirical models of scattering that can be used in reducing the scatter in measures of Lg and coda wave magnitude and for discrimination purposes as well...

  5. Scattering of electromagnetic plane waves by a buried vertical dike

    Directory of Open Access Journals (Sweden)

    Batista Lurimar S.

    2003-01-01

    Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.

  6. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Xu Jian; Ma Shi-Wei

    2015-01-01

    We present a theoretical investigation of the scattering of high frequency S0 Lamb mode from a circular blind hole defect in a plate based on the 3D theory. The S0 wave is incident at the frequency above the A1 mode cut-off frequency, in which the popular approximate plate theories are inapplicable. Due to the non-symmetric blind hole defect, the scattered fields will contain higher order converted modes in addition to the fundamental S0 and A0 modes. The far-field scattering amplitudes of various propagating Lamb modes for different hole sizes are inspected. The results are compared with those of lower frequencies and some different phenomena are found. Two-dimensional Fourier transform (2DFT) results of transient scattered Lamb and SH wave signals agree well with the analytical dispersion curves, which check the validity of the solutions from another point of view. (paper)

  7. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  8. THE DECISION OF FORM FOR DIFFRACTIVE STRUCTURES IN THE PROBLEM OF SCATTERING OF RADIO WAVES.

    Directory of Open Access Journals (Sweden)

    A. P. Preobrazhensky

    2017-02-01

    Full Text Available This paper considers the problem of scattering of electromagnetic waves in different diffraction structures. The solution of the scattering problem is based on the method of integral equations. On diagrams of backscattering at various frequencies of the incident wave, the decision about the form of the object is carried out.

  9. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  10. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography.

    Science.gov (United States)

    Bernard, Simon; Cloutier, Guy

    2017-10-01

    Inversion methods in shear wave elastography use simplifying assumptions to recover the mechanical properties of soft tissues. Consequently, these methods suffer from artifacts when applied to media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work, the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic properties of the inclusion and surrounding medium, based on an inverse problem approach assuming local homogeneity of both media. An efficient semi-analytical method was developed to model the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was validated against finite element modeling. Shear waves were experimentally induced by acoustic radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algorithm compared the model to the experimental data and adjusted the geometrical and mechanical parameters. The estimated shear storage and loss moduli were in good agreement with reference measurements, as well as the estimated inclusion shape. This approach provides an accurate estimation of geometry and viscoelastic properties for a single inclusion in a homogeneous background in the context of radiation force elastography.

  11. Magnetic fluctuations due to thermally excited Alfven waves

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Prager, S.C.

    1990-01-01

    Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10 . Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-β regimes. 21 refs., 6 figs

  12. Wave scattering theory and the absorption problem for a black hole

    International Nuclear Information System (INIS)

    Sanchez, N.

    1977-01-01

    The general problem of scattering and absorption of waves from a Schwarzschild black hole is investigated. A scattering absorption amplitude is introduced. The unitarity theorem for this problem is derived from the wave equation and its boundary conditions. The formulation of the problem, within the formal scattering theory approach, is also given. The existence of a singularity in space-time is related explicitly to the presence of a nonzero absorption cross section. Another derivation of the unitarity theorem for our problem is given by operator methods. The reciprocity relation is also proved; that is, for the scattering of waves the black hole is a reciprocal system. Finally, the elastic scattering problem is considered, and the elastic scattering amplitude is calculated for high frequencies and small scattering angles

  13. Localization of fluctuation measurement by wave scattering close to a cut off layer

    International Nuclear Information System (INIS)

    Zou, X.L.; Laurent, L.; Rax, J.M.; Lehner, T.

    1990-01-01

    The diagnostic of plasma fluctuations in tokamaks based on the scattering of an electromagnetic wave close to a cut off layer is investigated. A linear density profile is considered. An one-dimensional exact analysis is performed. Spatial and spectral localization of scattering process close to the cut off layer is studied and a modified Bragg rule is derived. The structure of pump and of scattered waves is analyzed. The diagnostic seems to be local and sensitive for low R fluctuations

  14. The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.; Panchenko, V.G.

    1993-01-01

    Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section

  15. Impurity scattering in unconventional density waves: non-crossing approximation for arbitrary scattering rate

    International Nuclear Information System (INIS)

    Vanyolos, Andras; Dora, Balazs; Maki, Kazumi; Virosztek, Attila

    2007-01-01

    We present a detailed theoretical study on the thermodynamic properties of impure quasi-one-dimensional unconventional charge and spin density waves in the framework of mean-field theory. The impurities are of the ordinary non-magnetic type. Making use of the full self-energy that takes into account all ladder- and rainbow-type diagrams, we are able to calculate the relevant low temperature quantities for arbitrary scattering rates. These are the density of states, specific heat and the shift in the chemical potential. Our results therefore cover the whole parameter space: they include both the self-consistent Born and the resonant unitary limits, and most importantly give exact results in between

  16. Variability in millimeter wave scattering properties of dendritic ice crystals

    International Nuclear Information System (INIS)

    Botta, Giovanni; Aydin, Kültegin; Verlinde, Johannes

    2013-01-01

    A detailed electromagnetic scattering model for ice crystals is necessary for calculating radar reflectivity from cloud resolving model output in any radar simulator. The radar reflectivity depends on the backscattering cross sections and size distributions of particles in the radar resolution volume. The backscattering cross section depends on the size, mass and distribution of mass within the crystal. Most of the available electromagnetic scattering data for ice hydrometeors rely on simple ice crystal types and a single mass–dimensional relationship for a given type. However, a literature survey reveals that the mass–dimensional relationships for dendrites cover a relatively broad region in the mass–dimensional plane. This variability of mass and mass distribution of dendritic ice crystals cause significant variability in their backscattering cross sections, more than 10 dB for all sizes (0.5–5 mm maximum dimension) and exceeding 20 dB for the larger ones at X-, Ka-, and W-band frequencies. Realistic particle size distributions are used to calculate radar reflectivity and ice water content (IWC) for three mass–dimensional relationships. The uncertainty in the IWC for a given reflectivity spans an order of magnitude in value at all three frequencies because of variations in the unknown mass–dimensional relationship and particle size distribution. The sensitivity to the particle size distribution is reduced through the use of dual frequency reflectivity ratios, e.g., Ka- and W-band frequencies, together with the reflectivity at one of the frequencies for estimating IWC. -- Highlights: • Millimeter wave backscattering characteristics of dendritic crystals are modeled. • Natural variability of dendrite shapes leads to large variability in their mass. • Dendrite mass variability causes large backscattering cross section variability. • Reflectivity–ice water content relation is sensitive to mass and size distribution. • Dual frequency

  17. Are snakes particles or waves? Scattering of a limbless locomotor through a single slit

    Science.gov (United States)

    Qian, Feifei; Dai, Jin; Gong, Chaohui; Choset, Howie; Goldman, Daniel

    Droplets on vertically vibrated fluid surfaces can walk and diffract through a single slit by a pilot wave hydrodynamic interaction [Couder, 2006; Bush, 2015]. Inspired by the correspondence between emergent macroscale dynamics and phenomena in quantum systems, we tested if robotic snakes, which resemble wave packets, behave emergently like particles or waves when interacting with an obstacle. In lab experiments and numerical simulations we measured how a multi-module snake-like robot swam through a single slit. We controlled the snake undulation gait as a fixed serpenoid traveling wave pattern with varying amplitude and initial phase, and we examined the snake trajectory as it swam through a slit with width d. Robot trajectories were straight before interaction with the slit, then exited at different scattering angle θ after the interaction due to a complex interaction of the body wave with the slit. For fixed amplitude and large d, the snake passed through the slit with minimal interaction and theta was ~ 0 . For sufficiently small d, θ was finite and bimodally distributed, depending on the initial phase. For intermediate d, θ was sensitive to initial phase, and the width of the distribution of θ increased with decreasing d.

  18. Scattering and absorption of electromagnetic waves by a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Fabbri, R.

    1975-01-01

    The scattering and absorption of electromagnetic waves by a spherically symmetric nonrotating black hole is studied in the Schwarzschild background, by means of the known expansion of the modified Debye potentials in partial waves. The power reflection coefficients and the phase shifts of the partial waves are evaluated at both high and low frequencies. Then the scattering and absorption cross sections of the black hole are determined. It is shown that the black hole is almost unable to absorb electromagnetic waves when the wave length of the radiation is greater than the Schwarzschild radius

  19. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  20. Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator

    Science.gov (United States)

    Englert, Gerald W.

    1992-01-01

    The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.

  1. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  2. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  3. Scattering of Electromagnetic Waves by Many Nano-Wires

    Directory of Open Access Journals (Sweden)

    Alexander G. Ramm

    2013-07-01

    Full Text Available Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance, parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section of the m−th cylinder, a be its radius and xˆm = (xm1, xm2 be its center, 1 ≤ m ≤ M , M =   M (a. It is assumed that the points, xˆm, are distributed, so that N (∆  = (1 / 2πa * ∫∆ N (xˆdxˆ[1 + o(1], where N (∆ is the number of points, xˆm, in an arbitrary open subset, ∆, of the plane, xoy. The function, N (xˆ ≥ 0, is a continuous function, which an experimentalist can choose. An equation for the self-consistent (effective field is derived as a → 0. A formula is derived for the refraction coefficient in the medium in which many thin impedance cylinders are distributed. These cylinders may model nano-wires embedded in the medium. One can produce a desired refraction coefficient of the new medium by choosing a suitable boundary impedance of the thin cylinders and their distribution law.

  4. Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)

    2010-04-15

    A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.

  5. Physics of the ion acoustic wave driven by the stimulated Brillouin scattering instability

    International Nuclear Information System (INIS)

    Clayton, C.E.

    1984-01-01

    The ion acoustic wave excited in the stimulated Brillouin scattering (SBS) instability is probed via collective ruby-laser Thomson scattering in order to understand the low saturation level observed in the instability. Many of the features observed in the Brillouin backscattered CO 2 laser light from the underdense gas-target plasma are also observed in the Thomson scattered ruby light - from which it is learned that the ion acoustic wave grows exponentially and then saturates as the CO 2 pump power is increased. The primary advantage of the ruby Thomson scattering diagnostic is in its capability of providing simultaneous space and time resolved measurements of the ion wave amplitude. From these first such detailed measurements, it was found that the ion wave grows exponentially in space at a rate that agrees with the linear convective SBS theory. However, at higher pump powers, the ion wave saturates at an inferred amplitude of anti-n/n 0 approx. = 5 to 10%. Further increases in the pump power appear to result in an increase in the length over which the ion wave is saturated. A nearly constant SBS reflectivity in this saturated regime, however, suggests that the saturated ion wave does not contribute as much to the scattered power as would be expected from Bragg scattering theory. This apparent contradiction can be resolved if ion trapping is responsible for the saturation of the ion wave

  6. Plane wave scattering by bow-tie posts

    Science.gov (United States)

    Lech, Rafal; Mazur, Jerzy

    2004-04-01

    The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.

  7. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  8. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  9. Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.

    1988-02-01

    The non-linear evolution of stimulated Raman scattering by coupling of the SRS-driven Langmuir waves to ion acoustic waves is studied numerically, in a homogeneous density laser-irradiated plasma. The coupled wave amplitude behaviour is represented either by envelope equations or by complete wave-like equations. The various physical phenomena which are involved are described. This preliminary work has been presented at the 17th Anomalous Absorption Conference, held in last May, in Lake Tahoe City (USA) [fr

  10. Wave packet formulation of the boomerang model for resonant electron--molecule scattering

    International Nuclear Information System (INIS)

    McCurdy, C.W.; Turner, J.L.

    1983-01-01

    A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra

  11. Coherent scattering of three-level atoms in the field of a bichromatic standing light wave

    International Nuclear Information System (INIS)

    Pazgalev, A.S.; Rozhdestvenskii, Yu.V.

    1996-01-01

    We discuss the coherent scattering of three-level atoms in the field of two standing light waves for two values of the spatial shift. In the case of a zero spatial shift and equal frequency detunings of the standing waves, the problem of scattering of a three-level atoms is reduced to scattering of an effectively two-level atom. For the case of an exact resonance between the waves and transitions we give expressions for the population probability of the states of the three-level atom obtained in the short-interaction-time approximation. Depending on the initial population distribution over the states, different scattering modes are realized. In particular, we show that there can be initial conditions for which the three-level system does not interact with the field of the standing waves, with the result that there is no coherent scattering of atoms. In the case of standing waves shifted by π/2, there are two types of solution, depending on the values of the frequency detuning. For instance, when the light waves are detuned equally we give the exact solution for arbitrary relationships between the detuning and the standing wave intensities valid for any atom-field interaction times. The case of 'mirror' detunings and shifted standing waves is studied only numerically

  12. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    Science.gov (United States)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of kFeng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  13. Lamb wave scattering by a surface-breaking crack in a plate

    Science.gov (United States)

    Datta, S. K.; Al-Nassar, Y.; Shah, A. H.

    1991-01-01

    An NDE method based on finite-element representation and modal expansion has been developed for solving the scattering of Lamb waves in an elastic plate waveguide. This method is very powerful for handling discontinuities of arbitrary shape, weldments of different orientations, canted cracks, etc. The advantage of the method is that it can be used to study the scattering of Lamb waves in anisotropic elastic plates and in multilayered plates as well.

  14. Support Minimized Inversion of Acoustic and Elastic Wave Scattering

    Science.gov (United States)

    Safaeinili, Ali

    Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work

  15. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  16. Modal Ring Method for the Scattering of Electromagnetic Waves

    Science.gov (United States)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.

  17. Collective scattering of electromagnetic waves from a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Lu Quankang

    1998-01-01

    Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)

  18. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion

    Science.gov (United States)

    Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-01

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  19. Experimental measurements of lower-hybrid wave propagation in the Versator II tokamak using microwave scattering

    International Nuclear Information System (INIS)

    Rohatgi, R.; Chen, K.; Bekefi, G.; Bonoli, P.; Luckhardt, S.C.; Mayberry, M.; Porkolab, M.; Villasenor, J.

    1991-01-01

    A series of 139 GHz microwave scattering experiments has been performed on the Versator II tokamak (B. Richards, Ph.D. thesis, Massachusetts Institute of Technology, 1981) to study the propagation of externally launched 0.8 GHz lower-hybrid waves. During lower-hybrid current drive, the launched waves are found to follow a highly directional resonance cone in the outer portion of the plasma. Wave power is also detected near the center of the plasma, and evidence of wave absorption is seen. Scattering of lower-hybrid waves in k space by density fluctuations appears to be a weak effect, although measurable frequency broadening by density fluctuations is found, Δω/ω=3x10 -4 . In the detectable range (2.5 parallel parallel spectra inferred from the scattering measurements are quite similar above and below the current drive density limit. Numerical modeling of these experiments using ray tracing is also presented

  20. The scattering of E. M. waves from density fluctuations in a plasma

    International Nuclear Information System (INIS)

    Hagfors, T.

    1977-01-01

    The scattering of electromagnetic (EM) waves by a single electron is developed from first principles. The result is used to derive the relationship of the scattered power spectrum to the spacetime Fourier transform of the electron density fluctuations in a plasma. (Auth.)

  1. Asymptotically simple spacetimes and mass loss due to gravitational waves

    Science.gov (United States)

    Saw, Vee-Liem

    The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.

  2. Scattering of electromagnetic waves from a half-space of randomly distributed discrete scatterers and polarized backscattering ratio law

    Science.gov (United States)

    Zhu, P. Y.

    1991-01-01

    The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.

  3. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    International Nuclear Information System (INIS)

    Aggarwal, Poornima; Taylor, David K.; Smith, Charles W.; Joyce, Colin J.; Fisher, Meghan K.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A.; Cannon, Bradford E.; Richardson, John D.

    2016-01-01

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H + and He + during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H + is right-hand polarized in the spacecraft frame, but similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.

  4. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Poornima [Electrical Engineering Department, Cooper Union, New York, NY 10003 (United States); Taylor, David K. [Rensselaer Polytechnic Institute, Troy, NH 12180 (United States); Smith, Charles W.; Joyce, Colin J.; Fisher, Meghan K.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Richardson, John D., E-mail: neema2000@gmail.com, E-mail: daves@orol.org, E-mail: Charles.Smith@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: mkl54@wildcats.unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: N.Schwadron@unh.edu, E-mail: bc13h@my.fsu.edu, E-mail: jdr@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 37-655, Cambridge, MA 02139 (United States)

    2016-05-10

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H{sup +} and He{sup +} during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H{sup +} is right-hand polarized in the spacecraft frame, but similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.

  5. Plasma particle drifts due to traveling waves with cyclotron frequencies

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Sato, Naoyuki; Sato, Noriyoshi

    1991-01-01

    A particle orbit theory yields that traveling waves with cyclotron frequencies give rise to charged particle drifts perpendicular both to the wave propagation and external magnetic field lines. The result is applicable to particle-flux control of magnetized plasmas. (author)

  6. SIMULATION OF ANALYTICAL TRANSIENT WAVE DUE TO DOWNWARD BOTTOM THRUST

    Directory of Open Access Journals (Sweden)

    Sugih Sudharma Tjandra

    2015-11-01

    Full Text Available Generation process is an important part of understanding waves, especially tsunami. Large earthquake under the sea is one major cause of tsunamis. The sea surface deforms as a response from the sea bottom motion caused by the earthquake. Analytical description of surface wave generated by bottom motion can be obtained from the linearized dispersive model. For a bottom motion in the form of a downward motion, the result is expressed in terms of improper integral. Here, we focus on analyzing the convergence of this integral, and then the improper integral is approximated into a finite integral so that the integral can be evaluated numerically. Further, we simulate free surface elevation for three different type of bottom motions, classified as impulsive, intermediate, and slow  movements. We demonstrate that the wave propagating to the right, with a depression as the leading wave, followed with subsequent wave crests. This phenomena is often observed in most tsunami events.

  7. How a change in the interaction potential affects the p-wave scattering volume

    International Nuclear Information System (INIS)

    Jamieson, M J; Dalgarno, A

    2012-01-01

    We derive a simple expression for the change in the s-wave scattering length in terms of zero-energy wavefunctions, we generalize it to obtain an expression for the change in the p-wave scattering volume and we use both expressions to derive the first order differential equations of variable phase theory that are satisfied by the closely related accumulated scattering length and volume. We provide numerical demonstrations for the example of a pair of hydrogen atoms interacting via the X 1 Σ + g molecular state. (fast track communication)

  8. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Science.gov (United States)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  9. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, Vadim, E-mail: tsytov@lpi.ru [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Gusein-zade, Namik; Ignatov, Alexander [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Medicobiologic Faculty, Pirogov Russian National Research Medical University, Moscow (Russian Federation)

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  10. Variational divergence in wave scattering theory with Kirchhoffean trial functions

    Science.gov (United States)

    Bird, J. F.

    1986-01-01

    In a recent study of variational improvement of the Kirchhoff approximation for electromagnetic scattering by rough surfaces, a key ingredient in the variational principle was found to diverge for important configurations (e.g., backscatter) if the polarization had any vertical component. The cause and a cure of this divergence are discussed here. The divergence is demonstrated to occur for arbitrary perfectly conducting scatterers and its universal characterstics are determined, by means of a general divergence criterion that is derived. A variational cure for the divergence is prescribed, and it is tested successfully on a standard scattering model.

  11. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    International Nuclear Information System (INIS)

    Ono, K.; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-01-01

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D sw (100.0 ± 4.9 meV.Å 2 ) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  12. Extracting scattering phase shifts in higher partial waves from lattice QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Thomas; Savage, Martin J.

    2011-06-01

    Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.

  13. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    Science.gov (United States)

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...high sound velocity — makes guiding acoustic waves difficult, motivating the use of soft chalcogenide glasses and partial or complete releases (removal

  14. Eigenvalues and eigenvectors of the translation matrices of spherical waves of multiple-scattering theory

    International Nuclear Information System (INIS)

    Torrini, M.

    1983-01-01

    The exponential nature of the translation matrix G of spherical free waves has been set forth in a previous paper.The explicit expression of the exponential form of the translation matrix is given here, once the eigenvectros and the eigenvalues of G have been found. In addition, the eigenproblem relative to the matrix which transforms outgoing waves scattered by a centre in a set of spherical free waves centered at a different point is solved

  15. Deep inelastic scattering and light-cone wave functions

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Johnson, M.B.

    1996-01-01

    In the framework of light-cone QCD rules, we study the valence quark distribution function q(x B ) of a pion for moderate x B . The sum rule with the leading twist-2 wave function gives q(x B ) = φ π (x B ). Twist-4 wave functions give about 30% for x B ∼0.5. It is shown that QCD sum rule predictions, with the asymptotic pion wave function, are in good agreement with experimental data. We found that a two-hump profile for the twist-2 wave function leads to a valence quark distribution function that contradicts experimental data

  16. RADAR upper hybrid resonance scattering diagnostics of small-scale fluctuations and waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Bulyiginskiy, D.G.; Gurchenko, A.D.; Gusakov, E.Z.; Korkin, V.V.; Larionov, M.M.; Novik, K.M.; Petrov, Yu.V.; Popov, A.Yu.; Saveliev, A.N.; Selenin, V.L.; Stepanov, A.Yu.

    2001-01-01

    The upper hybrid resonance (UHR) scattering technique possessing such merits as one-dimensional probing geometry, enhancement of cross section, and fine localization of scattering region is modified in the new diagnostics under development to achieve wave number resolution. The fluctuation wave number is estimated in the new technique from the scattering signal time delay measurements. The feasibility of the scheme is checked in the proof of principal experiment in a tokamak. The time delay of the UHR scattering signal exceeding 10 ns is observed. The small scale low frequency density fluctuations are investigated in the UHR RADAR backscattering experiment. The UHR cross-polarization scattering signal related to small scale magnetic fluctuations is observed. The lower hybrid (LH) wave propagation and both linear and nonlinear wave conversion are investigated. The small wavelength (λ≤0.02 cm) high number ion Bernstein harmonics, resulting from the linear wave conversion of the LH wave are observed in a tokamak plasma for the first time

  17. Elastic meson-nucleon partial wave scattering analyses

    International Nuclear Information System (INIS)

    Arndt, R.A.

    1986-01-01

    Comprehensive analyses of π-n elastic scattering data below 1100 MeV(Tlab), and K+p scattering below 3 GeV/c(Plab) are discussed. Also discussed is a package of computer programs and data bases (scattering data, and solution files) through which users can ''explore'' these interactions in great detail; this package is known by the acronym SAID (for Scattering Analysis Interactive Dialin) and is accessible on VAX backup tapes, or by dialin to the VPI computers. The π-n, and k+p interactions will be described as seen through the SAID programs. A procedure will be described for generating an interpolating array from any of the solutions encoded in SAID; this array can then be used through a fortran callable subroutine (supplied as part of SAID) to give excellent amplitude reconstructions over a broad kinematic range

  18. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    A M Ekanem

    2018-04-05

    Apr 5, 2018 ... scattering characteristics in fractured media and thus, validate the practical utility of using anisotropic .... to fluid flow. ... account the porosity of the host rock and assumes .... The free surface boundary conditions generally.

  19. Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures

    Science.gov (United States)

    2018-03-21

    slides) versus scattering from discrete particles (e.g., rocks, shells, or bubbles). Measurements are needed to 1) exploit the volume scattering theory...Developed theory and methodology to distinguish between the two major classes of volume heterogeneities, discrete particles or a fluctuation...reflection to obtain a quasi -three-dimensional map of sediment sound speed. The sound speed is obtained over a 2 km x 2 km area of high variability

  20. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    Science.gov (United States)

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  1. Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1983-01-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field

  2. Electrical resistivity due to electron-phonon scattering in thin gadolinium films

    International Nuclear Information System (INIS)

    Urbaniak-Kucharczyk, A.

    1988-01-01

    The contribution to the electrical resistivity due to the electron-phonon scattering for the special case of h.c.p. structure is derived. The numerical results obtained for the case of polycrystalline gadolinum films show the resistivity dependence on the film thickness and the surface properties. (author)

  3. Deep inelastic scattering in formalism with wave functions of rest compound system

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Kvinikhidze, A.N.; Khvedelidze, A.M.

    1987-01-01

    One of the most simple examples of interaction of compound systems: deep inelastic scattering of the point particle on hadron is considered. By choosing the compound particle (hadron) rest system the corresponding cross section is expressed in terms of more usual from the view point of nonrelativistic quantum mechanics wave functions of the rest bound state. A new variant of structure functions expansion into a series in terms of the coupling constant is suggested. Each therm of a series due to correct account of the energy conservation law in any order of the perturbation theory possess spectral property. Analysis in QCD shows that in the bound state rest system (P-vector=0) the pulse approximation though satisfies the requirements of scale invariance is insufficient for correct description of elastic limit x Bj →1 by contrast to P Z →∞ system. It means that parton model is equivalent to pulse approximation only in P Z →∞ system. To obtain the leading in asymptotic region x Bj →1 terms account of component interaction in the finite state is necessary. The simplicity and physical evidence of the wave functions are attained due to the seeming complication of calculations according to the perturbation theory

  4. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    Science.gov (United States)

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  5. Partial wave analyses of scattering below 2 GeV. Progress report, May 1, 1984-April 30, 1985

    International Nuclear Information System (INIS)

    Arndt, R.A.; Roper, L.D.

    1985-08-01

    Progress is reported in the partial wave analysis of nucleon-nucleon elastic scattering, pion-nucleon elastic scattering, and kaon plus-nucleon elastic scattering. Activities are also reported with respect to the Scattering Analysis Interactive Dial-in (SAID) facility

  6. Stress Wave Scattering: Friend or Enemy of Non Destructive Testing of Concrete?

    Science.gov (United States)

    Aggelis, Dimitrios G.; Shiotani, Tomoki; Philippidis, Theodore P.; Polyzos, Demosthenes

    Cementitious materials are by definition inhomogeneous containing cement paste, sand, aggregates as well as air voids. Wave propagation in such a material is characterized by scattering phenomena. Damage in the form of micro or macro cracks certainly enhances scattering influence. Its most obvious manifestation is the velocity variation with frequency and excessive attenuation. The influence becomes stronger with increased mis-match of elastic properties of constituent materials and higher crack content. Therefore, in many cases of large concrete structures, field application of stress waves is hindered since attenuation makes the acquisition of reliable signals troublesome. However, measured wave parameters, combined with investigation with scattering theory can reveal much about the internal condition and supply information that cannot be obtained in any other way. The size and properties of the scatterers leave their signature on the dispersion and attenuation curves making thus the characterization more accurate in case of damage assessment, repair evaluation as well as composition inspection. In this paper, three indicative cases of scattering influence are presented. Namely, the interaction of actual distributed damage, as well as the repair material injected in an old concrete structure with the wave parameters. Other cases are the influence of light plastic inclusions in hardened mortar and the influence of sand and water content in the examination of fresh concrete. In all the above cases, scattering seems to complicate the propagation behavior but also offers the way for a more accurate characterization of the quality of the material.

  7. Generalized theory of resonance scattering (GTRS) using the translational addition theorem for spherical wave functions.

    Science.gov (United States)

    Mitri, Farid

    2014-11-01

    The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.

  8. Pitch angle scattering of an energetic magnetized particle by a circularly polarized electromagnetic wave

    International Nuclear Information System (INIS)

    Bellan, P. M.

    2013-01-01

    The interaction between a circularly polarized wave and an energetic gyrating particle is described using a relativistic pseudo-potential that is a function of the frequency mismatch. Analysis of the pseudo-potential provides a means for interpreting numerical results. The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves show that the energetic electron pitch angle can be deflected 5°towards the loss cone when transiting a 10 ms long coherent wave packet having realistic parameters.

  9. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    International Nuclear Information System (INIS)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    Highlights: • Paraxial beams are represented in a series expansion in terms of Bessel wave functions. • The coefficients of the series expansion can be analytically determined by using the pattern in the focal plane. • In particular, Gaussian beams and apertured wave fields have been critically examined. • This representation of the wave field is adequate for scattering problems with shaped beams. - Abstract: The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  10. Stochastic motion due to a single wave in a magnetoplasma

    International Nuclear Information System (INIS)

    Smith, G.R.

    1979-01-01

    A single electrostatic wave in a magnetoplasma causes stochastic ion motion in several physically different situations. Various magnetic fields (uniform, tokamak, and mirror) and various propagation angles with respect to the field have been studied. A brief review of this work shows that all situations can be understood using the concept of overlapping resonances. Analytical calculations of the wave amplitude necessary for stochasticity have been carried out in some cases and compared with computer and laboratory experiments. In the case of an axisymmetric mirror field the calculations predict stochastic motion of ions with energy below a threshold that depends weakly on the wave amplitude and on the scale lengths of the magnetic field. Studies with an azimuthally asymmetric field show that the asymmetry causes substantial changes in the motion of some ions

  11. Mass loss due to gravitational waves with Λ > 0

    Science.gov (United States)

    Saw, Vee-Liem

    2017-07-01

    The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the ’60s. Recent findings from the observation of distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well explained by sticking a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Einstein field equations), we generalize this notion of Bondi mass-energy and thereby provide a firm theoretical description of how an isolated gravitating system loses energy as it radiates gravitational waves, in a universe that expands at an accelerated rate. This is in line with the observational front of LIGO’s first announcement in February 2016 that gravitational waves from the merger of a binary black hole system have been detected.

  12. Distorted-wave Born approximation in the case of an optical scattering potential

    International Nuclear Information System (INIS)

    Mytnichenko, Sergey V.

    2005-01-01

    Application of the distorted-wave Born approximation in the conventional form developed for the case of a real scattering potential is shown to cause significant errors in calculating X-ray diffuse scattering from non-ideal crystals, superlattices, multilayers and other objects if energy dissipation (photoabsorption, inelastic scattering, and so on) is not negligible, or in other words, in the case of an optical (complex) scattering potential. We show how a correct expression for the X-ray diffuse-scattering cross-section can be obtained in this case. Generally, the diffuse-scattering cross-section from an optical potential is not T-invariant, i.e. the reciprocity principle is violated. Violations of T-invariance are more evident when the dynamical nature of the diffraction is more critical

  13. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  14. Scattering of electromagnetic waves into plasma oscillations via plasma particles

    International Nuclear Information System (INIS)

    Lin, A.T.; Dawson, J.M.

    1975-01-01

    A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations

  15. Introduction to wave scattering, localization, and mesoscopic phenomena

    National Research Council Canada - National Science Library

    Sheng, Ping

    1995-01-01

    ... Extension of the CPA to the Intermediate Frequency Regime Problems and Solutions References 73 77 82 84 85 87 113 4. Diffusive Waves 115 4.1 Beyond the Effective Medium 4.2 Pulse Intensity Evolution...

  16. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    International Nuclear Information System (INIS)

    Saikia, P.

    1981-01-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic

  17. Determination of the S-wave scattering shape parameter P from the zero-energy wave function

    International Nuclear Information System (INIS)

    Kermode, M.W.; van Dijk, W.

    1990-01-01

    We show that for S-wave scattering at an energy k 2 by a local potential which supports no more than one bound state, the shape parameter P and coefficients of higher powers of k 2 in the effective range expansion function cotδ=-1/a+1/2 r 0 k 2 -Pr 0 3 k 3 +Qr 0 5 k 6 +..., where δ is the phase shift, may be obtained from the zero-energy wave function, u 0 (r). Thus δ itself may be determined from u 0 . We show that Pr 0 3 =∫ 0 R [β(r)u 0 2 (r)-bar β(r)bar u 0 2 (r)]dr, where r 0 is the effective range, β(r) is determined from an integral involving the wave function, and bar β(r) is a simple function of r which involves the scattering length and effective range

  18. Photon distribution function for stocks wave for stimulated Raman scattering

    International Nuclear Information System (INIS)

    Man'ko, O.V.; Tcherniega, N.V.

    1997-04-01

    New time-dependent integrals of motion are found for stimulated Raman scattering. Explicit formula for the photon-number probability distribution as a function of the laser-field intensity and the medium parameters is obtained in terms of Hermite polynomials of two variables. (author). 29 refs

  19. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  20. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    2

    cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our. 16 results show ...... frequency regression predicted by equation (21) can be distorted by the effects of multiple scattering. 337 ..... other seismic attributes, at least for the relatively simple geometries of subsurface structure. 449.

  1. Probing thermal evanescent waves with a scattering-type near-field microscope

    International Nuclear Information System (INIS)

    Kajihara, Y; Kosaka, K; Komiyama, S

    2011-01-01

    Long wavelength infrared (LWIR) waves contain many important spectra of matters like molecular motions. Thus, probing spontaneous LWIR radiation without external illumination would reveal detailed mesoscopic phenomena that cannot be probed by any other measurement methods. Here we developed a scattering-type scanning near-field optical microscope (s-SNOM) and demonstrated passive near-field microscopy at 14.5 µm wavelength. Our s-SNOM consists of an atomic force microscope and a confocal microscope equipped with a highly sensitive LWIR detector, called a charge-sensitive infrared phototransistor (CSIP). In our s-SNOM, photons scattered by a tungsten probe are collected by an objective of the confocal LWIR microscope and are finally detected by the CSIP. To suppress the far-field background, we vertically modulated the probe and demodulated the signal with a lock-in amplifier. With the s-SNOM, a clear passive image of 3 µm pitch Au/SiC gratings was successfully obtained and the spatial resolution was estimated to be 60 nm (λ/240). The radiation from Au and GaAs was suggested to be due to thermally excited charge/current fluctuations and surface phonons, respectively. This s-SNOM has the potential to observe mesoscopic phenomena such as molecular motions, biomolecular protein interactions and semiconductor conditions in the future

  2. Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics

    Science.gov (United States)

    Selmke, Markus; Cichos, Frank

    2013-06-01

    Using Fermat's least-optical-path principle, the family of ray trajectories through a special (but common) type of a gradient refractive index lens n(r)=n0+ΔnR /r is solved analytically. The solution gives a ray equation r(ϕ) that is closely related to Rutherford scattering trajectories; we therefore refer to this refraction process as "photonic Rutherford scattering." It is shown that not only do the classical limits correspond but also the wave-mechanical pictures coincide—the time-independent Schrödingier equation and the Helmholtz equation permit the same mapping between the scattering of massive particles and optical scalar waves. Scattering of narrow beams of light finally recovers the classical trajectories. The analysis suggests that photothermal single-particle microscopy measures photonic Rutherford scattering in specific limits and allows for an individual single-scatterer probing. A macroscopic experiment is demonstrated to directly measure the scattering angle to impact parameter relation, which is otherwise accessible only indirectly in Rutherford-scattering experiments.

  3. Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

    International Nuclear Information System (INIS)

    Zhang Liping

    2015-01-01

    We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. (paper)

  4. A multiple scattering theory for EM wave propagation in a dense random medium

    Science.gov (United States)

    Karam, M. A.; Fung, A. K.; Wong, K. W.

    1985-01-01

    For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.

  5. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  6. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    Science.gov (United States)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  7. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II

    Science.gov (United States)

    Shertzer, J.; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.

  8. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    Science.gov (United States)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  9. P-wave scattering and the distribution of heterogeneity around Etna volcano

    Directory of Open Access Journals (Sweden)

    Toni Zieger

    2016-09-01

    Full Text Available Volcanoes and fault zones are areas of increased heterogeneity in the Earth crust that leads to strong scattering of seismic waves. For the understanding of the volcanic structure and the role of attenuation and scattering processes it is important to investigate the distribution of heterogeneity. We used the signals of air-gun shots to investigate the distribution of heterogeneity around Mount Etna. We devise a new methodology that is based on the coda energy ratio which we define as the ratio between the energy of the direct P-wave and the energy in a later coda window. This is based on the basic assumption that scattering caused by heterogeneity removes energy from the direct P-waves. We show that measurements of the energy ratio are stable with respect to changes of the details of the time windows definitions. As an independent proxy of the scattering strength along the ray path we measure the peak delay time of the direct P-wave. The peak delay time is well correlated with the coda energy ratio. We project the observation in the directions of the incident rays at the stations. Most notably is an area with increased wave scattering in the volcano and east of it. The strong heterogeneity found supports earlier observations and confirms the possibility to use P-wave sources for the determination of scattering properties. We interpret the extension of the highly heterogeneous zone towards the east as a potential signature of inelastic deformation processes induced by the eastward sliding of flank of the volcano.

  10. Mass loss due to gravitational waves with $\\Lambda>0$

    OpenAIRE

    Saw, Vee-Liem

    2017-01-01

    The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the 1960s. Recent findings from looking at distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well-explained by sticking in a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Ein...

  11. Ordinary mode reflectometry. Modification of the scattering and cut-off responses due to the shape of localized density fluctuations

    International Nuclear Information System (INIS)

    Fanack, C.; Boucher, I.; Heuraux, S.; Leclert, G.; Clairet, F.; Zou, X.L.

    1996-01-01

    Ordinary wave reflectometry in a plasma containing a localized density perturbation is studied with a 1-D model. The phase response is studied as a function of the wavenumber and position of the perturbation. It is shown that it strongly depends upon the perturbation shape and size. For a small perturbation wavenumber, the response is due to the oscillation of the cut-off layer. For larger wavenumbers, two regimes are found: for a broad perturbation, the phase response is an image of the perturbation itself; for a narrow perturbation, it is rather an image of the Fourier transform. For tokamak plasmas it turns out that, for the fluctuation spectra usually observed, the phase response comes primarily from those fluctuations that are localized at the cut-off. Results of a 2-D numerical model show that geometry effects are negligible for the scattering by radial fluctuations. (author)

  12. Bound-state wave functions at rest in describing deep inelastic scattering

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Kvinikhidze, A.N.

    1991-01-01

    The deep inelastic process of the lepton-hadron scattering is studied in the bound-state rest frame. A new version of expanding structure functions in interaction constant powers is proposed, each term in it having spectral properties. This expansion makes it possible to consider contributions of composites in the final state to the cross section. It is shown that, as compared with the system P z →∞, the impulse approximation is insufficient for describing correctly the elastic limit in the composite particle rest frame. The leading asymptotics of structure functions as χ Bj →1 can be obtained by taking into account the interaction of contituents in the final state. It is shown that in contrast to the 'light-cone' formalism the ratio F 2 en (χ)/F 2 ep (χ) as χ Bj →1 depends on the explicit form of the spatial part of the nucleon wave function and, in particular, assuming the relativistic character of internal motion, it may be lower than the well-known prediction (i.e. 3/7). This is due to the correct consideration of spin degrees of freedom of the wave function of the nucleon at rest. (orig.)

  13. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  14. A new type of surface acoustic waves in solids due to nonlinear elasticity

    International Nuclear Information System (INIS)

    Mozhaev, V.G.

    1988-12-01

    It is shown that in nonlinear elastic semi-infinite medium possessing a property of self focusing of shear waves, besides bulk non-linear shear waves, new surface acoustic waves exist, localization of which near the boundary is entirely due to nonlinear effects. (author). 8 refs

  15. RESONANCES IN THE ISOVECTOR P WAVE OF pi pi SCATTERING

    Czech Academy of Sciences Publication Activity Database

    Bydžovský, Petr; Surovtsev, Yu .S.; Kaminski, R.; Nagy, M.

    2011-01-01

    Roč. 26, 3-4 (2011), s. 634-635 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Pion-pion scattering * mesonic resonances * multichannel analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  16. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    International Nuclear Information System (INIS)

    Lemons, Don S.

    2012-01-01

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.

  17. Wave scattering theory a series approach based on the Fourier transformation

    CERN Document Server

    Eom, Hyo J

    2001-01-01

    The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.

  18. Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial

    Science.gov (United States)

    Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-04-01

    In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.

  19. Bound and scattering wave functions for a velocity-dependent Kisslinger potential for l>0

    International Nuclear Information System (INIS)

    Jaghoub, M.I.

    2002-01-01

    Using formal scattering theory, the scattering wave functions are extrapolated to negative energies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the corresponding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum number l>0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is tested analytically by solving the Schroedinger equation in the p-wave case exactly for the scattering and the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well. A numerical resolution of the Schroedinger equation in the p-wave case and of a square-well Kisslinger potential is carried out to investigate the range of validity of the extrapolated connection. It is found that the derived relation is satisfied best at low energies and short distances. (orig.)

  20. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  1. Invertible propagator for plane wave illumination of forward-scattering structures.

    Science.gov (United States)

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  2. Resonances and analyticity of scattering wave function for square-well-type potentials

    International Nuclear Information System (INIS)

    Weber, T.A.; Hammer, C.L.; Zidell, V.S.

    1982-01-01

    In this paper we extend our previous analysis of the scattering of wave packets in one dimension to the case of the square-well potential. The analytic properties of the general scattering solution are emphasized thereby making the analysis useful as introductory material for a more sophisticated S-matrix treatment. The square-well model is particularly interesting because of its application to the deuteron problem. Resonance scattering, barrier penetration, time delay, and line shape are discussed at the level of the first-year graduate student

  3. Multiple scattering of electromagnetic waves by a collection of plasma drift turbulent vortices

    International Nuclear Information System (INIS)

    Resendes, D.

    1995-01-01

    An application of the self-consistent multiple-scattering theory of electro-magnetic waves to drift turbulent vortices is presented. Using the known single-vortex solution, the integral equation describing the scattering from a finite density of drift turbulent vortices is obtained. Rather than solving this equation and then averaging, the averaging operation is taken first to obtain statistical moment equations, from which the coherent and incoherent scattering follow. These results are expressed in a Fourier basis, and the cross-section is evaluated. Limiting forms of the theory and straightforward generalizations are discussed. (Author)

  4. Destabilization of drift waves due to nonuniform density gradient

    International Nuclear Information System (INIS)

    Hirose, A.; Ishihara, O.

    1985-01-01

    It is shown that the conventional mode differential equation for low frequency electrostatic waves in a tokamak does not contain full ion dynamics. Both electrons and ions contribute to the ballooning term, which is subject to finite ion Larmor radius effects. Also, both fluid ion approximation and kinetic ion model yield the same correction. Reexamined are the density gradient universal mode and ion temperature gradient instability employing the lowest order Pearlstein-Berk type radial eigenfunctions. No unstable, bounded, energy outgoing eigenfunctions have been found. In particular, a large ion temperature gradient (eta/sub i/) tends to further stabilize the temperature gradient driven mode

  5. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  6. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Science.gov (United States)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  7. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  8. Multiple scattering and stop band characteristics of flexural waves on a thin plate with circular holes

    Science.gov (United States)

    Wang, Zuowei; Biwa, Shiro

    2018-03-01

    A numerical procedure is proposed for the multiple scattering analysis of flexural waves on a thin plate with circular holes based on the Kirchhoff plate theory. The numerical procedure utilizes the wave function expansion of the exciting as well as scattered fields, and the boundary conditions at the periphery of holes are incorporated as the relations between the expansion coefficients of exciting and scattered fields. A set of linear algebraic equations with respect to the wave expansion coefficients of the exciting field alone is established by the numerical collocation method. To demonstrate the applicability of the procedure, the stop band characteristics of flexural waves are analyzed for different arrangements and concentrations of circular holes on a steel plate. The energy transmission spectra of flexural waves are shown to capture the detailed features of the stop band formation of regular and random arrangements of holes. The increase of the concentration of holes is found to shift the dips of the energy transmission spectra toward higher frequencies as well as deepen them. The hexagonal hole arrangement can form a much broader stop band than the square hole arrangement for flexural wave transmission. It is also demonstrated that random arrangements of holes make the transmission spectrum more complicated.

  9. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2014-05-01

    Full Text Available Modulated high-frequency (HF heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF/very low-frequency (VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of −7 s−1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10−4 s−1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  10. Competition Between Radial Loss and EMIC Wave Scattering of MeV Electrons During Strong CME-shock Driven Storms

    Science.gov (United States)

    Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.

    2017-12-01

    The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.

  11. Ions cross-B collisional diffusion and electromagnetic wave scattering

    International Nuclear Information System (INIS)

    Tomchuk, B.P.; Gresillon, D.

    2000-01-01

    The calculation is presented of the averaged quadratic displacement of a collisional charged particle in a magnetic field. This calculation is used to obtain the statistical presentation of the electromagnetic field scattered by these particles. These results extend the previous calculations that were restricted to non-magnetized particles (Ornstein equation, Einstein diffusion, etc.). In addition this calculation foresees effects that are absent of the Ornstein equation: a modulation of the averaged quadratic displacement function at the cyclotron frequency and a maximum of the Cross-B diffusion coefficient when the cyclotron frequency is equal to the collision frequency (Bohm diffusion)

  12. Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation

    Directory of Open Access Journals (Sweden)

    Huan-Feng Duan

    2017-10-01

    Full Text Available This paper investigates the impacts of non-uniformities of pipe diameter (i.e., an inhomogeneous cross-sectional area along pipelines on transient wave behavior and propagation in water supply pipelines. The multi-scale wave perturbation method is firstly used to derive analytical solutions for the amplitude evolution of transient pressure wave propagation in pipelines, considering regular and random variations of cross-sectional area, respectively. The analytical analysis is based on the one-dimensional (1D transient wave equation for pipe flow. Both derived results show that transient waves can be attenuated and scattered significantly along the longitudinal direction of the pipeline due to the regular and random non-uniformities of pipe diameter. The obtained analytical results are then validated by extensive 1D numerical simulations under different incident wave and non-uniform pipe conditions. The comparative results indicate that the derived analytical solutions are applicable and useful to describe the wave scattering effect in complex pipeline systems. Finally, the practical implications and influence of wave scattering effects on transient flow analysis and transient-based leak detection in urban water supply systems are discussed in the paper.

  13. Wave drag reduction due to a self-aligning aerodisk

    Science.gov (United States)

    Schnepf, Ch.; Wysocki, O.; Schülein, E.

    2015-06-01

    The effect of a self-aligning aerodisk on the wave drag of a blunt slender body in a pitching maneuver has been numerically investigated. The self-alignment was realized by a coupling of the flow solver and a flight mechanics tool. The slender body was pitched with high repetition rate between α = 0° and 20° at M = 1.41. Even at high α, the concept could align the aerodisk to the oncoming flow. In comparison to the reference body without a self-aligning aerodisk, a distinct drag reduction is achieved. A comparison with existing experimental data shows a qualitatively good agreement considering the shock and separation structure and the kinematics of the aerodisk.

  14. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Energy Technology Data Exchange (ETDEWEB)

    Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  15. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.

    Science.gov (United States)

    Baynes, Alexander B; Godin, Oleg A

    2017-12-01

    Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.

  16. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  17. Time-dependent approach to electron scattering and ionization in the s-wave model

    International Nuclear Information System (INIS)

    Ihra, W.; Draeger, M.; Handke, G.; Friedrich, H.

    1995-01-01

    The time-dependent Schroedinger equation is integrated for continuum states of two-electron atoms in the framework of the s-wave model, in which both electrons are restricted to having vanishing individual orbital angular momenta. The method is suitable for studying the time evolution of correlations in the two-electron wave functions and yields probabilities for elastic and inelastic electron scattering and for electron-impact ionization. The spin-averaged probabilities for electron-impact ionization of hydrogen in the s-wave model reproduce the shape of the experimentally observed integrated ionization cross section remarkably well for energies near and above the maximum

  18. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    Science.gov (United States)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  19. Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2001-01-01

    It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered

  20. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  1. Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges

    Science.gov (United States)

    Vinogradova, Elena D.

    2017-11-01

    The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.

  2. On scattering of scalar waves in static space-times, particularly Schwarzschild

    International Nuclear Information System (INIS)

    Beig, R.

    1982-01-01

    This paper aims at laying foundations of a rigorous scattering theory for scalar waves in a static space-time. The treatment includes geometries which can be thought of as representing the exterior of a black hole. Schwarzschild space-time, as a particular example, is studied in more detail. (Auth.)

  3. Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide

    Science.gov (United States)

    Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.

    2018-04-01

    We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.

  4. Inverse problems and inverse scattering of plane waves

    CERN Document Server

    Ghosh Roy, Dilip N

    2001-01-01

    The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.

  5. A New Method to Extract CSP Gather of Topography for Scattered Wave Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Pan

    2017-01-01

    Full Text Available The seismic method is one of the major geophysical tools to study the structure of the earth. The extraction of the common scatter point (CSP gather is a critical step to accomplish the seismic imaging with a scattered wave. Conventionally, the CSP gather is obtained with the assumption that the earth surface is horizontal. However, errors are introduced to the final imaging result if the seismic traces obtained at the rugged surface are processed using the conventional method. Hence, we propose the method of the extraction of the CSP gather for the seismic data collected at the rugged surface. The proposed method is validated by two numerical examples and expected to reduce the effect of the topography on the scattered wave imaging.

  6. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    International Nuclear Information System (INIS)

    Lee, Jaesun; Cho, Younho; Achenbach, Jan D.

    2016-01-01

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation

  7. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesun; Cho, Younho [Pusan National Univ., Pusan (Korea, Republic of); Achenbach, Jan D. [Northwestern Univ., Everston (United States)

    2016-07-15

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation.

  8. Guided wave propagation and scattering in pipeworks comprising elbows: Theoretical and experimental results

    International Nuclear Information System (INIS)

    Bakkali, M El; Lhémery, A; Baronian, V; Chapuis, B

    2015-01-01

    Elastic guided waves (GW) are used to inspect pipeworks in various industries. Modelling tools for simulating GW inspection are necessary to understand complex scattering phenomena occurring at specific features (welds, elbows, junctions...). In pipeworks, straight pipes coexist with elbows. GW propagation in the former cases is well-known, but is less documented in the latter. Their scattering at junction of straight and curved pipes constitutes a complex phenomenon. When a curved part is joined to two straight parts, these phenomena couple and give rise to even more complex wave structures. In a previous work, the SemiAnalytic Finite Element method extended to curvilinear coordinates was used to handle GW propagation in elbows, combined with a mode matching method to predict their scattering at the junction with a straight pipe. Here, a pipework comprising an arbitrary number of elbows of finite length and of different curvature linking straight pipes is considered. A modal scattering matrix is built by cascading local scattering and propagation matrices. The overall formulation only requires meshing the pipe section to compute both the modal solutions and the integrals resulting from the mode-matching method for computing local scattering matrices. Numerical predictions using this approach are studied and compared to experiments

  9. Phononic thermal resistance due to a finite periodic array of nano-scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier [Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne (France)

    2016-07-28

    The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.

  10. Electromagnetic wave scattering from a forest or vegetation canopy - Ongoing research at the University of Texas at Arlington

    Science.gov (United States)

    Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.

    1993-01-01

    The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.

  11. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.; Pellat, R.

    1990-01-01

    By means of wave-coupling simulations, the typical nonlinear evolution of stimulated Raman scattering (SRS) is investigated in a homogeneous sub-quarter-critical plasma for present-day low laser irradiances and kilo-electron-volt electron temperatures. The decrease of the Langmuir energy observed after the SRS growth is found to be basically the result of the electrostatic decay instability (EDI) onset, which generates a high-amplitude ion-acoustic wave. The resulting strong modulation of the plasma density causes a conversion process that transforms the initial one-wave-vector Langmuir wave driven by SRS into a Bloch wave and induces SRS detuning and larger damping. The conditions involved herein have allowed isolation of these processes from the modulational instability; in addition, the Langmuir collapse is found not to occur owing to the high electron temperature

  12. Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed

  13. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  14. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems

    International Nuclear Information System (INIS)

    Hemmady, Sameer; Zheng, Xing; Hart, James; Antonsen, Thomas M. Jr.; Ott, Edward; Anlage, Steven M.

    2006-01-01

    Statistical fluctuations in the eigenvalues of the scattering, impedance, and admittance matrices of two-port wave-chaotic systems are studied experimentally using a chaotic microwave cavity. These fluctuations are universal in that their properties are dependent only upon the degree of loss in the cavity. We remove the direct processes introduced by the nonideally coupled driving ports through a matrix normalization process that involves the radiation-impedance matrix of the two driving ports. We find good agreement between the experimentally obtained marginal probability density functions (PDFs) of the eigenvalues of the normalized impedance, admittance, and scattering matrix and those from random matrix theory (RMT). We also experimentally study the evolution of the joint PDF of the eigenphases of the normalized scattering matrix as a function of loss. Experimental agreement with the theory by Brouwer and Beenakker for the joint PDF of the magnitude of the eigenvalues of the normalized scattering matrix is also shown

  15. ASYMPTOTICAL CALCULATION OF ELECTROMAGNETIC WAVES SCATTERED FROM A DIELECTRIC COATED CYLINDRICAL SURFACE WITH PHYSICAL OPTICS APPROACH

    Directory of Open Access Journals (Sweden)

    Uğur YALÇIN

    2004-02-01

    Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.

  16. Imaging Internal Structure of Long Bones Using Wave Scattering Theory.

    Science.gov (United States)

    Zheng, Rui; Le, Lawrence H; Sacchi, Mauricio D; Lou, Edmond

    2015-11-01

    An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Evolution of a wave packet scattered by a one-dimensional potential

    Energy Technology Data Exchange (ETDEWEB)

    Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A

    2013-06-30

    We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)

  18. Evolution of a wave packet scattered by a one-dimensional potential

    International Nuclear Information System (INIS)

    Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A

    2013-01-01

    We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)

  19. Scattering factor evaluation for internal dose assessment due to 60Co

    International Nuclear Information System (INIS)

    Gautam, Y.P.; Kumar, A.; Sharma, S.; Sharma, A.K.; Dube, B.; Hegde, A.G.

    2008-01-01

    Guidelines for the assessment of internal doses from monitoring suggest default measurement of uncertainties (i.e. lognormal scattering factor, SF) to be used for different types of monitoring data. In this paper, SF values have been evaluated for internal contamination due to 60 Co in two cases using whole body counting data. SF values of 1.04 and 1.03 were obtained for case I and II respectively while SF value of 1.03 was obtained using bioassay data for case I. SF evaluated is in good agreement with the default values given by IDEAS guidelines. (author)

  20. Collective scattering of electromagnetic waves and cross-B plasma diffusion

    International Nuclear Information System (INIS)

    Gresillon, D.; Cabrit, B.; Truc, A.

    1992-01-01

    Magnetized plasmas occuring in nature as well as in fusion laboratories are oftenly irregularly shaked by magnetic field fluctuations. The so-called ''coherent scattering'' of electromagnetic wave from nonuniform, irregularly moving plasmas is investigated in the case where the scattering wavelength is large compared to the Debye length, but of the order of the irregularities correlation length. The scattered signal frequency spectrum is shown to be a transform of the plasma motion statistical characteristics. When the scattering wavelength is larger than the plasma motion correlation length, the frequency spectrum is shown to be of a lorentzian shape, with a frequency width that provides a direct measurement of the cross-B particle diffusion coefficient. This is illustrated by two series of recently obtained experimental results: radar coherent backscattering observations of the auroral plasma, and far infrared scattering from tokamak fusion plasma. Radar coherent backscattering shows the transition from Gauss to Lorentz scattered frequency spectra. In infrared Laser coherent scattering experiments from the Tore-Supra tokamak, a particular frequency line is observed to present a Lorentzian shape, that directly provides an electron cross-field diffusion coefficient. This diffusion coefficient agrees with the electron heat conductivity coefficient that is obtained from the observation of temperature profiles and energy balance. (Author)

  1. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  2. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    Science.gov (United States)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the

  3. Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves

    International Nuclear Information System (INIS)

    Voelk, H.J.; Morfill, G.E.; Forman, M.A.

    1981-01-01

    The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency

  4. Influence of fast waves on the collective scattering of microwaves in fusion plasmas

    International Nuclear Information System (INIS)

    Chiu, S.C.

    1992-01-01

    Microwave scattering by the fluctuations of fusion plasmas is one of the most promising α-diagnostic techniques. Previous investigations have concentrated on the fluctuations near the slow wave branch in the lower hybrid range of frequencies. The small signal and the lack of sensitivity to the contribution of α-particles to the total cross-section near the slow branch severely limits the effectiveness of this technique. In this paper, we report results of investigations of scattering by fluctuations in the lower hybrid range of frequencies near the fast branch. Surprisingly, when both fast and slow branches exist, the scattering amplitudes are comparable. More important, the α-contribution is larger for the fast branch and the fast branch has a larger parameter space where it exists. Specifically, the slow branch exists only above the lower hybrid frequency, while the fast branch can exist at all frequencies up to the electron cyclotron range of frequencies. We find numerically that the scattering amplitudes near the fast branch below the lower hybrid frequency are several orders of magnitude larger than those near the slow branch above that frequency where it can exist. This may make microwave scattering by fast waves a more attractive α-diagnostic technique. (orig.)

  5. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  6. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.

    1995-01-01

    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  7. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    Science.gov (United States)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  8. The coupled three-dimensional wave packet approach to reactive scattering

    Science.gov (United States)

    Marković, Nikola; Billing, Gert D.

    1994-01-01

    A recently developed scheme for time-dependent reactive scattering calculations using three-dimensional wave packets is applied to the D+H2 system. The present method is an extension of a previously published semiclassical formulation of the scattering problem and is based on the use of hyperspherical coordinates. The convergence requirements are investigated by detailed calculations for total angular momentum J equal to zero and the general applicability of the method is demonstrated by solving the J=1 problem. The inclusion of the geometric phase is also discussed and its effect on the reaction probability is demonstrated.

  9. Elastic pion-nucleon P-wave scattering in soliton models

    International Nuclear Information System (INIS)

    Holzwarth, G.

    1990-01-01

    The equivalence of low-energy P-wave πN scattering in soliton models with the well-established Δ-isobar model is shown to hold even if all constraints on redundant collective variables are ignored. This provides strong support for the unusual (time-derivative) form of meson-baryon coupling in such models, and for the expectation that the soliton description of πN-scattering can be reliably extended down to pion threshold energies in a technically simple way. (orig.)

  10. H(10) due to radiation scattered in a 6 MV Linac for tomotherapy

    International Nuclear Information System (INIS)

    Vega C, H. R.; Esparza H, A.; Garcia R, M. G.; Reyes R, E.; Hernandez A, L.; Rivera, T.

    2017-10-01

    In order to determine the environmental equivalent dose (H(10)), due to the radiation that is dispersed over the body of a patient, 100 thermoluminescent dosimeters (TLD) around 6 MV TomoLINAC were used. The characteristics of the tomotherapy have the disadvantage that the shielding of the bunker increases considerably and for its design validated parameters are used for the conventional Linacs. In order to determine H(10) due to scattered radiation, measurements were made in the vicinity of the isocenter, while the 6 MeV photon beam was applied on a phantom. Also, TLDs were placed on the walls of the bunker that remained for 7 days, where approximately 50 patients were treated per day. At points close to the isocenter, the H(10) has an angular distribution caused by the phantom shape. In the bunker walls the highest H(10) was observed in the primary barriers. In the labyrinth, the impact of the scattered radiation was observed when measuring a greater value of the environmental equivalent dose in the wall furthest from the isocenter compared to the point located closest to it. (Author)

  11. Experimental observation of strong mixing due to internal wave focusing over sloping terrain

    NARCIS (Netherlands)

    Swart, A.; Manders, A.; Harlander, U.; Maas, L.R.M.

    2010-01-01

    This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were

  12. Performance Investigation of Millimeter Wave Generation Reliant on Stimulated Brillouin Scattering

    Science.gov (United States)

    Tickoo, Sheetal; Gupta, Amit

    2018-04-01

    In this work, photonic method of generating the millimeter waves has been done based on Brillouin scattering effect in optical fiber. Here different approaches are proposed to get maximum frequency shift in mm-wave region using only pumps, radio signals with Mach-Zehnder modulator. Moreover for generated signal validation, signals modulated and send to both wired and wireless medium in optical domain. It is observed that maximum shift of 300 GHz is realized using 60 GHz input sine wave. Basically a frequency doubler is proposed which double shift of input frequency and provide better SNR. For the future generation network system, the generation of millimeter waves makes them well reliable for the transmission of the data.

  13. Scattering of Lamb waves by cracks in a composite graphite fiber-reinforced epoxy plate

    Science.gov (United States)

    Bratton, Robert; Datta, Subhendu K.; Shah, Arvind

    1990-01-01

    Recent investigations of space construction techniques have explored the used of composite materials in the construction of space stations and platforms. These composites offer superior strength to weight ratio and are thermally stable. For example, a composite material being considered is laminates of graphite fibers in an epoxy matrix. The overall effective elastic constants of such a medium can be calculated from fiber and matrix properties by using an effective modulus theory as shown in Datta, el. al. The investigation of propagation and scattering of elastic waves in composite materials is necessary in order to develop an ability to characterize cracks and predict the reliability of composite structures. The objective of this investigation is the characterization of a surface breaking crack by ultrasonic techniques. In particular, the use of Lamb waves for this purpose is studied here. The Lamb waves travel through the plate, encountering a crack, and scatter. Of interest is the modeling of the scattered wave in terms of the Lamb wave modes. The direct problem of propagation and scattering of Lamb waves by a surface breaking crack has been analyzed. This would permit an experimentalist to characterize the crack by comparing the measured response to the analytical model. The plate is assumed to be infinite in the x and y directions with a constant thickness in the z direction. The top and bottom surfaces are traction free. Solving the governing wave equations and using the stress-free boundary conditions results in the dispersion equation. This equation yields the guided modes in the homogeneous plate. The theoretical model is a hybrid method that combines analytical and finite elements techniques to describe the scattered displacements. A finite region containing the defects is discretized by finite elements. Outside the local region, the far field solution is expressed as a Fourier summation of the guided modes obtained from the dispersion equation

  14. Theoretical comparison of light scattering and guided wave coupling in multilayer coated optical components with random interface roughness

    International Nuclear Information System (INIS)

    Elson, J.M.

    1995-01-01

    In this work, we use first-order perturbation theory to calculate and then compare the (1) angular distribution of incident light scattered from a multilayer-coated optical component and (2) the angular distribution of incident light coupled into guided waves supported by the multilayer component. The incident beam is assumed to be a monochromatic plane wave and the scattering/coupling is assumed to be caused by roughness at the interfaces of the optical component. Numerical results show that for high quality (low root mean square roughness) optical components, comparison of the relative amounts of incident energy (1) scattered out of the specular beam and (2) coupled into guided waves are comparable. It follows that the guided wave energy will further contribute to the scattered field via radiative decay or be converted to heat. Thus, this work can help provide an estimation of when guided wave coupling can occur along with the expected magnitude. (orig.)

  15. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  16. A time-domain finite element boundary integral approach for elastic wave scattering

    Science.gov (United States)

    Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.

    2018-04-01

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  17. Accurate expansion of cylindrical paraxial waves for its straightforward implementation in electromagnetic scattering

    Science.gov (United States)

    Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2018-01-01

    The evaluation of vector wave fields can be accurately performed by means of diffraction integrals, differential equations and also series expansions. In this paper, a Bessel series expansion which basis relies on the exact solution of the Helmholtz equation in cylindrical coordinates is theoretically developed for the straightforward yet accurate description of low-numerical-aperture focal waves. The validity of this approach is confirmed by explicit application to Gaussian beams and apertured focused fields in the paraxial regime. Finally we discuss how our procedure can be favorably implemented in scattering problems.

  18. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    Science.gov (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  19. High-energy effective action from scattering of QCD shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  20. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    Science.gov (United States)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  1. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  2. The effects of scattering on the relative LPI performance of optical and mm-wave systems

    Science.gov (United States)

    Oetting, John; Hampton, Jerry

    1988-01-01

    Previous results comparing the LPI performance of optical and millimeter-wave satellite systems is extended to include the effects of scattering on optical LPI performance. The LPI figure of merit used to compare the two media is the circular equivalent vulnerability radius (CEVR). The CEVR is calculated for typical optical and spread spectrum millimeter-wave systems, and the LPI performance tradeoffs available with each medium are compared. Attention is given to the possibility that light will be scattered into the interceptor's FOV and thereby enable detection in geometries in which interception of the main beam is impossible. The effects of daytime vs. nighttime operation of the optical LPI system are also considered. Some illustrative results for the case of a ground-to-space uplink to a low earth orbit satellite are presented, along with some conclusions and unresolved issues for further study.

  3. Electron-He+ P-wave elastic scattering and photoabsorption in two-electron systems

    International Nuclear Information System (INIS)

    Bhatia, A. K.

    2006-01-01

    In a previous paper [A. K. Bhatia, Phys. Rev. A 69, 032714 (2004)], electron-hydrogen P-wave scattering phase shifts were calculated using the optical potential approach based on the Feshbach projection operator formalism. This method is now extended to the singlet and triplet electron-He + P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts, and they are compared to phase shifts obtained from the method of polarized orbitals and close-coupling calculations. The continuum functions calculated here are used to calculate photoabsorption cross sections. Photoionization cross sections of He and photodetachment cross sections of H - are calculated in the elastic region--i.e., leaving He + and H in their respective ground states--and compared with previous calculations. Radiative attachment rates are also calculated

  4. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  5. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    Science.gov (United States)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  6. Two-magnon Raman scattering in a spin density wave antiferromagnet

    OpenAIRE

    Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin

    1996-01-01

    We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...

  7. Studies on eletron scattering by hydrogen atoms through of a correlationed wave function

    International Nuclear Information System (INIS)

    Jacchieri, S.G.

    1982-01-01

    A correlationed wave function dependent of two adjustable parameters ( α e β), aiming describe a system formed by an electron and a hydrogen atom is studied. Some elastic differential cross-sections for several values of α and β parameters, scattering angle of 2 0 to 140 0 and energies of 50 eV and 680 eV are presented. (M.J.C.) [pt

  8. Quasiparticles in Raman scattering of an electromagnetic wave by an atomic condensate

    International Nuclear Information System (INIS)

    Il’ichev, L. V.

    2011-01-01

    Raman scattering of an intense electromagnetic wave by a free atomic Bose condensate is considered. In a system of atoms and photons, a subsystem is separated whose dynamics can be naturally described in terms of quasiparticles: quasi-atoms and quasi-photons. The dispersion laws of quasiparticles are interrupted by the instability interval. The introduction of quasiparticles within this interval is impossible, while dispersion laws that are continued formally acquire imaginary components. The dynamic scattering model is generalized by including dissipative annihilation processes of scattered photons and uncondensed atoms. A stationary solution of the corresponding quantum control equation is found, allowing the calculation of momentum distributions of real particles and quasiparticles. The outlook for the experimental detection of quasiparticles is discussed.

  9. Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory.

    Science.gov (United States)

    Wu, Xiaoyu; Hu, Chenggang; Wang, Min; Pu, Mingbo; Luo, Xiangang

    2015-04-20

    In this paper, we demonstrate the design of a low-scattering metamaterial shell with strong backward scattering reduction and a wide bandwidth at microwave frequencies. Low echo is achieved through cylindrical wave expanding theory, and such shell only contains one metamaterial layer with simultaneous low permittivity and permeability. Cut-wire structure is selected to realize the low electromagnetic (EM) parameters and low loss on the resonance brim region. The full-model simulations show good agreement with theoretical calculations, and illustrate that near -20dB reduction is achieved and the -10 dB bandwidth can reach up to 0.6 GHz. Compared with the cloak based on transformation electromagnetics, the design possesses advantage of simpler requirement of EM parameters and is much easier to be implemented when only backward scattering field is cared.

  10. Correlations and fluctuations in reflection coefficients for coherent wave propagation in disordered scattering media

    International Nuclear Information System (INIS)

    Wang, L.; Feng, S.

    1989-01-01

    The relation between the reflection coefficients and the Green's function for a coherent wave propagation in a disordered elastic-scattering medium is derived. The sum rule of the reflection and transmission coefficients corresponding to probability conservation is shown rigorously for an arbitrary scattering potential. The correlation function of the reflection coefficients is then calculated by using a Feynman-diagrammatic approach in the weak-localized multiple-scattering regime (L much-gt l much-gt λ). The result is in agreement with recent experiments on the so-called ''memory effect'' in reflection coefficients. A more general condition under which the memory effect can occur is derived. Differences between the the correlation functions for reflection and that for transmission are discussed

  11. Polarization due to dust scattering in the planetary nebula Cn1-1

    International Nuclear Information System (INIS)

    Bhatt, H.C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula

  12. On geometric optics and surface waves for light scattering by spheres

    International Nuclear Information System (INIS)

    Liou, K.N.; Takano, Y.; Yang, P.

    2010-01-01

    A geometric optics approach including surface wave contributions has been developed for homogeneous and concentrically coated spheres. In this approach, a ray-by-ray tracing program was used for efficient computation of the extinction and absorption cross sections. The present geometric-optics surface-wave (GOS) theory for light scattering by spheres considers the surface wave contribution along the edge of a particle as a perturbation term to the geometric-optics core that includes Fresnel reflection-refraction and Fraunhofer diffraction. Accuracies of the GOS approach for spheres have been assessed through comparison with the results determined from the exact Lorenz-Mie (LM) theory in terms of the extinction efficiency, single-scattering albedo, and asymmetry factor in the size-wavelength ratio domain. In this quest, we have selected a range of real and imaginary refractive indices representative of water/ice and aerosol species and demonstrated close agreement between the results computed by GOS and LM. This provides the foundation to conduct physically reliable light absorption and scattering computations based on the GOS approach for aerosol aggregates associated with internal and external mixing states employing spheres as building blocks.

  13. Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal

    International Nuclear Information System (INIS)

    Smetanin, Sergei N; Fedin, Aleksandr V; Shurygin, Anton S

    2013-01-01

    The possibilities of implementing four-wave mixing (FWM) phase matching at stimulated Raman scattering (SRS) in a birefringent SRS-active crystal placed in a cavity with highly reflecting mirrors have been theoretically and experimentally investigated. Phase-matching angles providing conditions for five types of phase matching are determined for a calcite crystal. These types are characterised by different combinations of polarisation directions for the interacting waves and ensure FWM generation of either an anti-Stokes wave or the second Stokes SRS component. In agreement with the calculation results, low-threshold generation of the second Stokes SRS component with a wavelength 0.602 μm was observed at angles of incidence on a calcite crystal of 4.8° and 18.2°, under SRS pumping at a wavelength of 0.532 μm. This generation is due to the FWM coupling of the first and second Stokes SRS components with the SRS-pump wave. (nonlinear optical phenomena)

  14. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  15. Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom

    DEFF Research Database (Denmark)

    Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2017-01-01

    Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed...... description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...

  16. Comparison in electron density distribution of tokamak plasma between ruby-laser scattering and milli-meter wave interferometric measurements

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa; Itagaki, Tokiyoshi; Takahashi, Koki; Kumagai, Katsuaki

    1976-08-01

    The electron density in JFT-2 tokamak has been measured by two methods, i.e. Thomson scattering of ruby-laser light and interferometry of millimeter wave. Two-dimensional distribution of the scattered light intensities were obtained by scattering measurement; absolute calibration was made by normalizing the scattered intensities with the averaged density determined from interferometric measurement. The horizontal density distributions in laser scattering were compared with those in from the averaged densities measured with a 4-mm interferometer through inverse-transformation. Agreement is good between the two measurements, except where they give erroneous data because of irreproducibility of the discharge. (auth.)

  17. Glucose detection in a highly scattering medium with diffuse photon-pair density wave

    Directory of Open Access Journals (Sweden)

    Li-Ping Yu

    2017-01-01

    Full Text Available We propose a novel optical method for glucose measurement based on diffuse photon-pair density wave (DPPDW in a multiple scattering medium (MSM where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution. Experimentally, the DPPDW propagates in MSM via a two-frequency laser (TFL beam wherein highly correlated pairs of linear polarized photons are generated. The reduced scattering coefficient μ2s′ and absorption coefficient μ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different distances between the source and detection fibers in MSM. The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient (δμ2s′ is 0.049%mM−1 in a 1% intralipid solution. In addition, the linear range of δμ2s′ vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.

  18. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    Science.gov (United States)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  19. Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.

    1987-01-01

    The saturation of the Stimulated Raman Scattering (SRS) is studied by means of wave-coupling numerical simulations. A new code (CHEOPS) has been designed in order to model these couplings, in real 1-D space, with aperiodic boundary conditions. Each wave can be represented either by a complete amplitude or by an envelope amplitude only. The choice of the wave set to be coupled allows to investigate separately some mechanisms relevant in long time SRS evolution. The various mechanisms which may inhibit SRS growth are reviewed and the SRS saturation scenarios are exhibited in an homogeneous density plasma slab. The ion dependent mechanisms appear to be the most efficient ones to saturate SRS. Their importance is strongly bound to the electron temperature and to the ion fluctuation level at time when SRS has already grown many e-foldings

  20. Deuteron polarizability and S-wave π+d scattering at energies below 1 keV

    International Nuclear Information System (INIS)

    Pupyshev, V.V.

    1987-01-01

    The influence of deuteron polarizability on the S-wave π + d-scattering in a low-energy limit is explored in the framework of the variable phase method. It is shown that the nonoscillating part of the S-wave cross section of π + d-scattering has a deep and sharp minimum in the energy region ∼ 0.4 keV

  1. Transmission characteristics of the kinematics of the laser-plasma shock wave in air in compton scattering

    International Nuclear Information System (INIS)

    Hao Dongshan; Xie Hongjun

    2006-01-01

    By comparing the kinematical equation of a shock wave in free air, the study of transmission characteristics of the laser plasma shock wave in Compton scattering is presented. The results show that the attenuation course of the kinematics of he laser plasma shock wave is related not only with the explosion fountainhead and the characteristics of the explosion course, total energy release, air elastic, but also with multi-photon nonlinear Compton scattering. Because of the scattering the initial radius of the shock wave increases, the attenuation course shortens, the energy metastasis efficiency rises. The results of the numerical analysis and the actual values of the shock waves in air by a way intense explosion are very tallying. (authors)

  2. Application of the Method of Auxiliary Sources for the Analysis of Plane-Wave Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  3. Test of s-wave pairing in heavy-fermion systems due to Kondo volume collapse

    International Nuclear Information System (INIS)

    Svozil, K.

    1987-01-01

    It is proposed to utilize resonant Raman scattering on heavy-fermion superconductors as a test for Cooper pairing via an effective phonon-mediated attraction due to the Kondo volume collapse. The suggested experiment might help to discriminate between singlet and triplet pairing

  4. An adaptive Bayesian inversion for upper mantle structure using surface waves and scattered body waves

    Science.gov (United States)

    Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.

    2018-04-01

    We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.

  5. Identification of delamination interface in composite laminates using scattering characteristics of lamb wave: numerical and experimental studies

    Science.gov (United States)

    Singh, Rakesh Kumar; Ramadas, C.; Balachandra Shetty, P.; Satyanarayana, K. G.

    2017-04-01

    Considering the superior strength properties of polymer based composites over metallic materials, they are being used in primary structures of aircrafts. However, these polymeric materials are much more complex in behaviour due to their structural anisotropy along with existence of different materials unlike in metallic alloys. These pose challenge in flaw detection, residual strength determination and life of a structure with their high susceptibility to impact damage in the form of delaminations/disbonds or cracks. This reduces load-bearing capability and potentially leads to structural failure. With this background, this study presents a method to identify location of delamination interface along thickness of a laminate. Both numerical and experimental studies have been carried out with a view to identify the defect, on propagation, mode conversion and scattering characteristics of fundamental anti-symmetric Lamb mode (Ao) when it passed through a semi-infinite delamination. Further, the reflection and transmission scattering coefficients based on power and amplitude ratios of the scattered waves have been computed. The methodology was applied on numerically simulated delaminations to illustrate the efficacy of the method. Results showed that it could successfully identify delamination interface.

  6. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.; Prater, R.; Wong, S.K.

    1984-01-01

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed

  7. Effects of admittance and gyrotropy on the scattering due to chiro-ferrite medium coated microstructured PMC cylinder

    Science.gov (United States)

    Iqbal, N.; Choudhury, P. K.

    2017-12-01

    The paper deals with scattering of electromagnetic (EM) waves by perfectly magnetic conducting (PMC) cylinder coated with chiro-ferrite medium under the assumption of oblique angle of incidence wave with perpendicular polarization (transverse electric; TE). An on-demand (in respect of orientation) kind of conducting sheath helix structure is assumed to exist at the outer surface of cylinder. The effects of sheath helix orientation, along with the material parameters, such as chirality admittance and gyrotropy, on the echo width as well as the magnitude and phase of the electric and magnetic fields are investigated. Control on the anisotropic property remains greatly useful in obtaining the required optical response from the scatterer - the feature which would find fabulous sensing related applications.

  8. General Properties of Scattering Matrix for Mode Conversion Process between B Waves and External EM Waves and Their Consequence to Experiments

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, H.; Uchida, M.; Igami, H.

    2003-01-01

    General properties of scattering matrix, which governs the mode conversion process between electron Bernstein (B) waves and external electromagnetic (EM) waves in the presence of steep density gradient, are theoretically analyzed. Based on the analysis, polarization adjustment of incident EM waves for optimal mode conversion to B waves is possible and effective for a range of density gradient near the upper hybrid resonance, which are not covered by the previously proposed schemes of perpendicular injection of X mode and oblique injection of O mode. Furthermore, the analysis shows that the polarization of the externally emitted EM waves from B waves is uniquely related to the optimized polarization of incident EM waves for B wave heating and that the mode conversion rate is the same for the both processes of emission and the injection with the optimized polarization

  9. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  10. THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal.

    Science.gov (United States)

    Wang, Weitao; Cong, Zhenhua; Liu, Zhaojun; Zhang, Xingyu; Qin, Zengguang; Tang, Guanqi; Li, Ning; Zhang, Yuangeng; Lu, Qingming

    2014-07-14

    A terahertz parametric oscillator based on KTiOAsO(4) crystal is demonstrated for the first time. With the near-forward scattering configuration X(ZZ)X + Δφ, the polarizations of the pump, the Stokes and the generated THz waves are parallel to the z-axis of the crystal KTA. When the incident angle θext of the pump wave is changed from 1.875° to 6.500°, the THz wave is intermittently tuned from 3.59 to 3.96 THz, from 4.21 to 4.50 THz, from 4.90 to 5.16 THz, from 5.62 to 5.66 THz and from 5.92 to 6.43 THz. The obtained maximum THz wave energy is 627 nJ at 4.30 THz with a pump energy of 100 mJ. It is believed that the terahertz wave generation is caused by the stimulated scattering of the polaritons associated with the most intensive transverse A(1) mode of 233.8 cm(-1). Four much weaker transverse A(1) modes of 132.9 cm(-1), 156.3 cm(-1),175.1 cm(-1), and 188.4 cm(-1) cause four frequency gaps, from 3.97 THz to 4.20 THz, from 4.51 to 4.89 THz, from 5.17 to 5.61 THz and from 5.67 to 5.91 THz, respectively.

  11. Study on crack scattering in aluminum plates with Lamb wave frequency–wavenumber analysis

    International Nuclear Information System (INIS)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A C

    2013-01-01

    The multimodal characteristic of Lamb waves makes the interpretation of Lamb wave signals difficult in either the time or frequency domain. In this work, we present our study of Lamb wave propagation characterization and crack scattering using frequency–wavenumber analysis. The aim is to investigate three dimensional (3D) Lamb wave behavior in the presence of crack damage via the application of frequency–wavenumber analysis. The analysis techniques are demonstrated using simulation examples of an aluminum plate with a through-thickness crack. Both in-plane and out-of-plane components are acquired through a 3D elastodynamic finite integration technique (EFIT), while the out-of-plane component is also experimentally obtained using a scanning laser Doppler vibrometer for verification purposes. The time–space wavefield is then transformed to the frequency–wavenumber domain by a two dimensional (2D) Fourier transform and the out-of-plane EFIT results are compared to experimental measurements. The experimental and simulated results are found to be in close agreement. The frequency–wavenumber representation of in-plane and out-of-plane components shows clear distinction among various Lamb wave modes that are present. However, spatial information is lost during this 2D transformation. A short space 2D Fourier transform is therefore adopted to obtain the frequency–wavenumber spectra at various spatial locations, resulting in a space–frequency–wavenumber representation of the signal. The space–frequency–wavenumber analysis has shown its potential for indicating crack presence. (paper)

  12. Scattering of elastic waves on fractures randomly distributed in a three-dimensional medium

    Science.gov (United States)

    Strizhkov, S. A.; Ponyatovskaya, V. I.

    1985-02-01

    The purpose of this work is to determine the variation in basic characteristics of the wave field formed in a jointed medium, such as the intensity of fluctuations of amplitude, correlation radius, scattering coefficient and frequency composition of waves, as functions of jointing parameters. Fractures are simulated by flat plates randomly distributed and chaotically oriented in a three-dimensional medium. Experiments were performed using an alabaster model, a rectangular block measuring 50 x 50 x 120 mm. The plates were introduced into liquid alabaster which was then agitated. Models made in this way contain randomly distributed and chaotically oriented fractures. The influence of these fractures appears as fluctuations in the wave field formed in the medium. The data obtained in experimental studies showed that the dimensions of heterogeneities determined by waves in the jointed medium and the dimensions of the fractures themselves coincide only if the distance between fractures is rather great. If the distance between fractures is less than the wavelength, the dimensions of the heterogeneities located by the wave depend on wavelength.

  13. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  14. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    Science.gov (United States)

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  15. Coulomb singularities in scattering wave functions of spin-orbit-coupled states

    International Nuclear Information System (INIS)

    Bogdanski, P.; Ouerdane, H.

    2011-01-01

    We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.

  16. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    Science.gov (United States)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  17. Maxima of the scattering cross section, the wave vector being quasi orthogonal to the confining magnetic field

    International Nuclear Information System (INIS)

    Meyer, R.-L.

    1975-01-01

    The evolution of the scattering cross section maximas of an electromagnetic wave by a magnetoplasma, the angle between the wave vector and the confining magnetic field approaching π/2 were computed. It is shown that the maximas are shifted toward the roots of the electrostatic dispersion relation in perpendicular propagation. These roots are not exactly the electron cyclotron harmonics [fr

  18. Generation of type III solar radio bursts: the role of induced scattering of plasma waves by ions

    International Nuclear Information System (INIS)

    Levin, B.N.; Lerner, A.M.; Rapoport, V.O.

    1984-01-01

    The plasma waves in type III solar radio-burst sources might have a spectrum which can explain why, in the quasilinear burst generation model, nonlinear scattering of the waves by ions is so weak. The agent exciting a burst would travel through the corona at velocities limited to a definite range

  19. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  20. Multiple scattering of electromagnetic waves in disordered magnetic media localization parameter, energy transport velocity and diffusion constant

    CERN Document Server

    Pinheiro, F A; Martínez, A S

    2001-01-01

    We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...

  1. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  2. A semiclassical distorted wave theory of inclusive nucleon inelastic scattering to continuum

    International Nuclear Information System (INIS)

    Kawai, M.; Luo, Y.L.

    1989-01-01

    A semiclassical model is presented for the one step process of the inclusive nucleon inelastic scattering to the continuum. In the model, we use distorted waves for describing the motion of the incident and the exit nucleon, and the Thomas-Fermi model for the initial and the final states of the target nucleus. The averaged two-body cross section inside the nucleus is given by Kikuchi-Kawai expression. The model gives a closed form formula for the double differential cross section. No free parameter is included. We apply the model to the inclusive nucleon inelastic scattering from Al, Sn and Bi at 62 MeV, and Ni at 164 MeV. The angular distribution experimental data are reproduced very well except for small and large angle regions. The calculated energy spectra agree with the experimental data very well in the middle angle region and at high exit energies. (author)

  3. Nonlinear Hydroelastic Waves Generated due to a Floating Elastic Plate in a Current

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2017-01-01

    Full Text Available Effects of underlying uniform current on the nonlinear hydroelastic waves generated due to an infinite floating plate are studied analytically, under the hypotheses that the fluid is homogeneous, incompressible, and inviscid. For the case of irrotational motion, the Laplace equation is the governing equation, with the boundary conditions expressing a balance among the hydrodynamics, the uniform current, and elastic force. It is found that the convergent series solutions, obtained by the homotopy analysis method (HAM, consist of the nonlinear hydroelastic wave profile and the velocity potential. The impacts of important physical parameters are discussed in detail. With the increment of the following current intensity, we find that the amplitudes of the hydroelastic waves decrease very slightly, while the opposing current produces the opposite effect on the hydroelastic waves. Furthermore, the amplitudes of waves increase very obviously for higher opposing current speed but reduce very slightly for higher following current speed. A larger amplitude of the incident wave increases the hydroelastic wave deflections for both opposing and following current, while for Young’s modulus of the plate there is the opposite effect.

  4. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  5. Point spread function due to multiple scattering of light in the atmosphere

    International Nuclear Information System (INIS)

    Pękala, J.; Wilczyński, H.

    2013-01-01

    The atmospheric scattering of light has a significant influence on the results of optical observations of air showers. It causes attenuation of direct light from the shower, but also contributes a delayed signal to the observed light. The scattering of light therefore should be accounted for, both in simulations of air shower detection and reconstruction of observed events. In this work a Monte Carlo simulation of multiple scattering of light has been used to determine the contribution of the scattered light in observations of a point source of light. Results of the simulations and a parameterization of the angular distribution of the scattered light contribution to the observed signal (the point spread function) are presented. -- Author-Highlights: •Analysis of atmospheric scattering of light from an isotropic point source. •Different geometries and atmospheric conditions were investigated. •A parameterization of scattered light distribution has been developed. •The parameterization allows one to easily account for the light scattering in air. •The results will be useful in analyses of observations of extensive air shower

  6. Backward elastic p3He-scattering and high momentum components of 3He wave function

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1998-01-01

    It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c

  7. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    International Nuclear Information System (INIS)

    Sinha, Prabal K.; Ghosh, A. S.

    2006-01-01

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10 -16 -10 -4 a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature

  8. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    Directory of Open Access Journals (Sweden)

    Christopher J. Sarabalis

    2016-10-01

    Full Text Available We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W−1m−1 for backward and forward Brillouin scattering, respectively.

  9. The S-wave model for electron-hydrogen scattering revisited

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-03-01

    The R-matrix with pseudo-states (RMPS) and convergent close-coupling (CCC) methods are applied to the calculation of elastic, excitation, and total as well as single-differential ionization cross sections for the simplified S-wave model of electron-hydrogen scattering. Excellent agreement is obtained for the total cross section results obtained at electron energies between 0 and 100 eV. The two calculations also agree on the single-differential ionization cross section at 54.4 eV for the triplet spin channel, while discrepancies are evident in the singlet channel which shows remarkable structure. 18 refs., 3 figs

  10. S-wavescattering in chiral perturbation theory with resonances

    International Nuclear Information System (INIS)

    Jamin, Matthias; Oller, Jose Antonio; Pich, Antonio

    2000-01-01

    We present a detailed analysis of S-wavescattering up to 2 GeV, making use of the resonance chiral Lagrangian predictions together with a suitable unitarisation method. Our approach incorporates known theoretical constraints at low and high energies. The present experimental status, with partly conflicting data from different experiments, is discussed. Our analysis allows to resolve some experimental ambiguities, but better data are needed in order to determine the cross-section in the higher-energy range. Our best fits are used to determine the masses and widths of the relevant scalar resonances in this energy region

  11. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  12. Surface acoustic waves and elastic constants of InN epilayers determined by Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid (Spain); Cusco, R.; Domenech-Amador, N.; Artus, L. [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Lluis Sole i Sabaris s.n., Barcelona, Catalonia (Spain); Yamaguchi, T.; Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga (Japan)

    2012-06-15

    The surface acoustic wave velocity in InN has been experimentally determined by means of Brillouin scattering experiments on c - and m -face epilayers. From simulations based on the Green's function formalism we determine the shear elastic constants c{sub 66} and c{sub 44} and propose a complete set of elastic constants for wurtzite InN. The analysis of the sagittal and azimuthal dependence of the surface acoustic wave velocity indicates a slightly different elastic behavior of the m -face sample that basically affects the c{sub 44} elastic constant. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    International Nuclear Information System (INIS)

    Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow

    2007-11-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  14. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics

    2007-11-15

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  15. Accurate source location from waves scattered by surface topography: Applications to the Nevada and North Korean test sites

    Science.gov (United States)

    Shen, Y.; Wang, N.; Bao, X.; Flinders, A. F.

    2016-12-01

    Scattered waves generated near the source contains energy converted from the near-field waves to the far-field propagating waves, which can be used to achieve location accuracy beyond the diffraction limit. In this work, we apply a novel full-wave location method that combines a grid-search algorithm with the 3D Green's tensor database to locate the Non-Proliferation Experiment (NPE) at the Nevada test site and the North Korean nuclear tests. We use the first arrivals (Pn/Pg) and their immediate codas, which are likely dominated by waves scattered at the surface topography near the source, to determine the source location. We investigate seismograms in the frequency of [1.0 2.0] Hz to reduce noises in the data and highlight topography scattered waves. High resolution topographic models constructed from 10 and 90 m grids are used for Nevada and North Korea, respectively. The reference velocity model is based on CRUST 1.0. We use the collocated-grid finite difference method on curvilinear grids to calculate the strain Green's tensor and obtain synthetic waveforms using source-receiver reciprocity. The `best' solution is found based on the least-square misfit between the observed and synthetic waveforms. To suppress random noises, an optimal weighting method for three-component seismograms is applied in misfit calculation. Our results show that the scattered waves are crucial in improving resolution and allow us to obtain accurate solutions with a small number of stations. Since the scattered waves depends on topography, which is known at the wavelengths of regional seismic waves, our approach yields absolute, instead of relative, source locations. We compare our solutions with those of USGS and other studies. Moreover, we use differential waveforms to locate pairs of the North Korea tests from years 2006, 2009, 2013 and 2016 to further reduce the effects of unmodeled heterogeneities and errors in the reference velocity model.

  16. The exact theory for scattering of waves by thick holes in a slab and other objects with non-separable geometries

    NARCIS (Netherlands)

    Hoenders, B. J.

    2011-01-01

    The theory for scattering of electromagnetic waves is developed for scattering objects for which the natural modes of the field inside the object do not couple one-to-one with those outside the scatterer. Key feature of the calculation of the scattered fields is the introduction of a new set of

  17. Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes applications to creating new engineered materials

    CERN Document Server

    Ramm, Alexander G

    2013-01-01

    The behavior of acoustic or electromagnetic waves reflecting off, and scattering from, intercepted bodies of any size and kind can make determinations about the materials of those bodies and help in better understanding how to manipulate such materials for desired characteristics. This book offers analytical formulas which allow you to calculate acoustic and electromagnetic waves, scattered by one and many small bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small bodies are derived. These results and formulas are new and not available in the works of other authors. In particular, the theory developed in this book is different from the classical work of Rayleigh on scattering by small bodies: not only analytical formulas are derived for the waves scattered by small bodies of an arbitrary shape, but the amplitude of the scattered waves is much larger, of the order O(a 2-k), than in Rayleigh scattering, where the or...

  18. Beam loss due to the aperture limitation resulting from intrabeam scattering

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1984-01-01

    Diffusion equation is used to evaluate the beam loss in the presence of aperture limitation resulting from the intrabeam scattering. We discuss the effect of different boundary conditions. Satisfactory beam intensity can be maintained within the proposed RHIC operation time

  19. Exact scattering and diffraction of antiplane shear waves by a vertical edge crack

    Science.gov (United States)

    Tsaur, Deng-How

    2010-06-01

    Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.

  20. S-wave elastic scattering of ${\\it o} $-Ps from $\\text {H} _2 $ at low energy

    KAUST Repository

    Zhang, J. -Y.

    2018-03-08

    The confined variational method is applied to investigate the low-energy elastic scattering of ortho-positronium from $\\\\text{H}_2$ by first-principles quantum mechanics. Describing the correlation effect with explicitly correlated Gaussians, we obtain accurate $S$-wave phase shifts and pick-off annihilation parameters for different incident momenta. By a least-squares fit of the data to the effective-range theory, we determine the $S$-wave scattering length, $A_s=2.06a_0$, and the zero-energy value of the pick-off annihilation parameter, $^1\\\\!\\\\text{Z}_\\\\text{eff}=0.1858$. The obtained $^1\\\\!\\\\text{Z}_\\\\text{eff}$ agrees well with the precise experimental value of $0.186(1)$ (J.\\\\ Phys.\\\\ B \\\\textbf{16}, 4065 (1983)) and the obtained $A_s$ agrees well with the value of $2.1(2)a_0$ estimated from the average experimental momentum-transfer cross section for Ps energy below 0.3 eV (J.\\\\ Phys.\\\\ B \\\\textbf{36}, 4191 (2003)).

  1. The exact calculation of the e. m. field arising from the scattering of twodimensional electromagnetic waves at a perfectly conducting cylindrical surface of arbitrary shape

    NARCIS (Netherlands)

    Hoenders, B.J.

    1982-01-01

    The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.

  2. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  3. Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem

    KAUST Repository

    Bramble, James H.

    2010-01-01

    We consider the application of a perfectly matched layer (PML) technique to approximate solutions to the elastic wave scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift in spherical coordinates which leads to a variable complex coefficient equation for the displacement vector posed on an infinite domain (the complement of the scatterer). The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). We prove existence and uniqueness of the solutions to the infinite domain and truncated domain PML equations (provided that the truncated domain is sufficiently large). We also show exponential convergence of the solution of the truncated PML problem to the solution of the original scattering problem in the region of interest. We then analyze a Galerkin numerical approximation to the truncated PML problem and prove that it is well posed provided that the PML damping parameter and mesh size are small enough. Finally, computational results illustrating the efficiency of the finite element PML approximation are presented. © 2010 American Mathematical Society.

  4. Pulsar timing residuals due to individual non-evolving gravitational wave sources

    International Nuclear Information System (INIS)

    Tong Ming-Lei; Zhao Cheng-Shi; Yan Bao-Rong; Yang Ting-Gao; Gao Yu-Ping

    2014-01-01

    The pulsar timing residuals induced by gravitational waves from non-evolving single binary sources are affected by many parameters related to the relative positions of the pulsar and the gravitational wave sources. We will analyze the various effects due to different parameters. The standard deviations of the timing residuals will be calculated with a variable parameter fixing a set of other parameters. The orbits of the binary sources will be generally assumed to be elliptical. The influences of different eccentricities on the pulsar timing residuals will also be studied in detail. We find that the effects of the related parameters are quite different, and some of them display certain regularities

  5. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  6. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    Science.gov (United States)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  7. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.

    Science.gov (United States)

    Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos

    2017-11-01

    Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  9. Diffusing-wave spectroscopy in a standard dynamic light scattering setup

    Science.gov (United States)

    Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.

    2017-12-01

    Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology

  10. Size validity of plasma-metamaterial cloaking monitored by scattering wave in finite-difference time-domain method

    Directory of Open Access Journals (Sweden)

    Alexandre Bambina

    2018-01-01

    Full Text Available Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.

  11. Deuteron D-wave and the non-eikonal effects in tensor asymmetries in elastic proton-deuteron scattering

    International Nuclear Information System (INIS)

    Alberi, G.; Bleszynski, M.; California Univ., Los Angeles; Santos, S.; Jaroszewicz, T.

    1980-01-01

    It is shown that the tensor asymmetries in the elastic proton-deuteron scattering at medium energies are very sensitive to the non-eikonal corrections to the Glauber model. This sensitivity originates from the fact that, in double scattering, the non-eikonal corrections affect in a different way the contributions coming from the S- and D-wave parts of the deuteron wave function. This leads to considerable change of the tensor asymmetries not only in the region of the interference between single and double scatterings, but also in the region of dominance of the double scattering. It is suggested that these effects should be taken into account in any careful analysis of the proton-deuteron polarization data, which has as a goal the extraction of the NN amplitudes. (author)

  12. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  13. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    International Nuclear Information System (INIS)

    Bugay, A. N.; Sazonov, S. V.

    2008-01-01

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible

  14. Simulation study of generalized electron cyclotron harmonic waves and nonlinear scattering in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinez, R.M.

    1983-01-01

    Part One examines the properties of electron cyclotron harmonic waves by means of computer simulation. The electromagnetic cyclotron harmonic modes not previously observed in simulation are emphasized and compared with the better known electrostatic (Bernstein) modes for perpendicular propagation. The investigation is performed by a spectrum analysis (both wavelength and frequency) of the thermal equilibrium electromagnetic fluctuation fields present in the simulation. A numerical solution of the fully electromagnetic dispersion relation shows that extreme frequency resolution is necessary to discern shifts of the electromagnetic mode frequencies from the cyclotron harmonics except at high plasma density or temperature. The simulation results show that at high plasma pressure the amplitude of the electromagnetic modes can become greater than that of the electrostatic modes. Part Two examines the interaction of an external electromagnetic wave with the electrostatic cylotron harmonic modes. The stimulated Raman scattering with an extraordinary wave as the pump is observed to occur in a wavelength regime where it would be prevented by Landau damping in an unmagnetized plasma

  15. Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.

  16. The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane.

    Science.gov (United States)

    Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine

    2015-11-01

    Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.

  17. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  18. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    Science.gov (United States)

    Liu, Zhongxian; Liu, Lei

    2015-02-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  19. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    International Nuclear Information System (INIS)

    Zhao, Hui; Chou, Dean-Yi

    2016-01-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc , the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.

  20. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 200012 (China); Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2016-05-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.

  1. QED polarization asymmetries for e+e- scattering due to helicity flips

    International Nuclear Information System (INIS)

    Anders, T.B.; Sell, E.W.

    1992-01-01

    The polarization asymmetries for the e + e - scattering with polarized incoming of outgoing beams, which are proportional to the amplitudes φ 5 describing one helicity flip and φ 2 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies. (orig.)

  2. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement

  3. Scattering of a light wave by a thin fiber on or near a prism: experiment and analytical theory.

    Science.gov (United States)

    Tajima, Fumiaki; Nishiyama, Yoshio

    2012-06-01

    We have performed an experiment of the scattering of the near field on a prism created by a laser wave, evanescent wave (EW), or plane wave (PW) of an incident angle slightly larger than or smaller than the critical angle, by a thin fiber of subwavelength diameter set above the prism, and we made an analytical theory of an adapted model for the experiment. We have been able to analyze the experimental data exactly by the model theory better than any other theory we have ever known. The importance of the multiple interaction of the wave between the fiber and the surface and also the close similarity of the scattering characteristics between the EW and the PW mentioned above have been acknowledged by the analysis of the data obtained.

  4. Punctual Pade approximants as a regularization procedure for divergent and oscillatory partial wave expansions of the scattering amplitude

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Grinstein, F.F.

    1978-01-01

    Previous theorems on the convergence of the [n,n+m] punctual Pade approximants to the scattering amplitude are extended. The new proofs include the cases of nonforward and backward scattering corresponding to potentials having 1/r and 1/r 2 long-range behaviors, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long-range potentials of interest in potential scattering

  5. Punctual Pade Approximants as a regularization procedure for divergent and oscillatory partial wave expansions of the scattering amplitude

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Grinstein, F.F.

    1978-01-01

    Previous theorems on the convergence of the [n, n+m] Punctual Pade Approximants to the scattering amplitude are extended. The new proofs include the cases of non-forward and backward scattering corresponding to potentials having 1/r and 1/r 2 long range behaviours, for which the partial wave expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation scheme as a summation method is established for all of the long range potentials of interest in potential scattering [pt

  6. Density fluctuations measured by ISEE 1-2 in the Earth's magnetosheath and the resultant scattering of radio waves

    Directory of Open Access Journals (Sweden)

    C. Lacombe

    1997-04-01

    Full Text Available Radio waves undergo angular scattering when they propagate through a plasma with fluctuating density. We show how the angular scattering coefficient can be calculated as a function of the frequency spectrum of the local density fluctuations. In the Earth's magnetosheath, the ISEE 1-2 propagation experiment measured the spectral power of the density fluctuations for periods in the range 300 to 1 s, which produce most of the scattering. The resultant local angular scattering coefficient can then be calculated for the first time with realistic density fluctuation spectra, which are neither Gaussian nor power laws. We present results on the variation of the local angular scattering coefficient during two crossings of the dayside magnetosheath, from the quasi-perpendicular bow shock to the magnetopause. For a radio wave at twice the local electron plasma frequency, the scattering coefficient in the major part of the magnetosheath is b(2fp ≃ 0.5 – 4 × 10–9 rad2/m. The scattering coefficient is about ten times stronger in a thin sheet (0.1 to1RE just downstream of the shock ramp, and close to the magnetopause.

  7. Polarization study of non-resonant X-ray magnetic scattering from spin-density-wave modulation in chromium

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Takata, Masaki

    2007-01-01

    We present a polarization study of non-resonant X-ray magnetic scattering in pure chromium. Satellite reflections are observed at +/-Q and +/-2Q, where Q is the modulation wave vector of an itinerant spin-density-wave. The first and second harmonics are confirmed to have magnetic and charge origin, respectively, by means of polarimetry without using an analyzer crystal. This alternative technique eliminates intolerable intensity loss at an analyzer by utilizing the sample crystal also as an analyzer crystal

  8. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  9. Role of peripheral partial waves in the angle scattering of nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, A N.F.; Canto, L F; Carrilho, P; Hussein, M S

    1984-12-01

    Properties of the elastic excitation function at 180 produced by deviations from the usual strong absorption S-matrix are studied. Deviations S-tilde are considered, with the shape of windows in l-space centered around a value l-tilde corresponding to a peripheral collision, and our analysis is concentrated on the interference of the partial waves neighbouring l-tilde. The conditions for constructive and destructive interference and the effect of odd-even staggering factors are investigated, in the presence and in the absence of Coulomb and nuclear refraction. The consequences of such interference on the anomalous behaviour of the 180 excitation functions for the elastic scattering of some n- nuclei are discussed, in connection with results of other works.

  10. Neutron-Scattering Study of Spin Waves in the Ferrimagnet RbNiF3

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1972-01-01

    -wave theory with JAB=(93.2±2)°K, JBB=-(21.1±2)°K (H=Σi>jJijS⃗i·S⃗j, S=1), and with all other exchange constants set to zero. Using these exchange constants we can satisfactorily account for other magnetic properties such as the high-temperature susceptibility, the sublattice magnetizations in a field, and two-magnon...... Raman scattering. At higher temperatures it is found that the c-axis acoustic magnons renormalize like the magnetization, whereas the high-lying optic modes are nearly temperature independent. This leads one to the physical picture in which RbNiF3 at high temperatures is viewed as a set of strongly...

  11. Useful variational principle for the scattering length for the target ground-state wave function imprecisely known

    International Nuclear Information System (INIS)

    Blau, R.; Rosenberg, L.; Spruch, L.

    1977-01-01

    A minimum principle for the calculation of the scattering length, applicable when the ground-state wave function of the target system is known precisely, has been available for some time. When, as is almost always the case, the target wave function is imprecisely known, a minimum principle is available but the simple minimum principle noted above is not applicable. Further, as recent calculations show, numerical instabilities usually arise which severely limit the utility of even an ordinary variational approach. The difficulty, which can be traced to the appearance of singularities in the variational construction, is here removed through the introduction of a minimum principle, not for the true scattering length, but for one associated with a closely connected problem. This guarantees that no instability difficulties can arise as the trial scattering wave function and the trial target wave function are improved. The calculations are little different from those required when the target ground-state wave function is known, and, in fact, the original version of the minimum principle is recovered as the trial target wave function becomes exact. A careful discussion is given of the types of problems to which the method can be applied. In particular, the effects of the Pauli principle, and the existence of a finite number of composite bound states, can be accounted for

  12. Initiation of breakout of half-buried submarine pipe from sea bed due to wave action

    Energy Technology Data Exchange (ETDEWEB)

    Law, A.W.K. [Nanyang Technological Univ. (Singapore). School of Civil and Structural Engineering; Foda, M.A. [California Univ., Berkeley, CA (United States). Dept. of Civil Engineering

    1996-12-31

    A formulation is presented for the analysis of the breakout of a half-buried submarine pipe due to wave action. The formulation accounts for the contact between the pipe and the soil due to the oscillating horizontal hydrodynamic force. Results demonstrate the existence of an initial gap in the breakout experiments. With this initial gap the gap flux dominated the influx of water into the gap throughout the breakout process. The linear pipe rise persisted although the second-order expansion of the gap should have grown to the same order of magnitude as the initial gap with the poro-rigid soil assumption. It is postulated that the persistence of the linear rise was due to the localized passive failure around the ends of the soil trench which inhibited the growth of the opening due to the pipe`s rise. (Author)

  13. Medium energy nucleon-nucleus scattering theory by semi-classical distorted wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Kazuyuki [Kyushu Univ., Fukuoka (Japan)

    1998-07-01

    The semiclassical distorted wave model (SCDW) is one of the quantum mechanical models for nucleon inelastic and charge exchange scattering at intermediate energies. SCDW can reproduce the double differential inclusive cross sections for multi-step direct processes quite well in the angular and outgoing energy regions where the model is expected to work. But the model hitherto assumed on-the-energy-shell (on-shell) nucleon-nucleon scattering in the nucleus, neglecting the difference in the distorting potentials for the incoming and the outgoing particles and also the Q-value in the case of (p,n) reactions. There had also been a problem in the treatment of the exchange of colliding nucleons. Now we modify the model to overcome those problems and put SCDW on sounder theoretical foundations. The modification results in slight reduction (increase) of double differential cross sections at forward (backward) angles. We also examine the effect of the in-medium modification of N-N cross sections in SCDW and find it small. A remedy of the disagreement at very small and large angles in terms of the Wigner transform of the single particle density matrix is also discussed. This improvement gives very promising results. (author)

  14. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  15. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  16. Enhancement of the incoherent scattering plasma lines due to precipitating protons and secondary electrons

    International Nuclear Information System (INIS)

    Bjoernaa, N.; Havnes, O.; Jensen, J.O.; Trulsen, J.

    1982-01-01

    Precipitating protons in the energy range 1-100 keV are regularly present in the auroral ionosphere. These protons will produce enhancements in the intensity of the upshifted plasma line of the incoherently scattered spectrum. Similarly, secondary electrons produced by the precipitating protons give rise to enhanced plasma line intensities. For a quantitative discussion of these effects an experimentally measured proton flux is adapted and the corresponding secondary electron flux calculated. These particle fluxes are then applied in connection with the EISCAT radar facility. Both fluxes give rise to enhancements of the order of 20. It is possible to separate between proton and electron contributions to the enhanced plasma lines for scattering heights above the source region of secondary electrons. (Auth.)

  17. Resistivity scaling due to electron surface scattering in thin metal layers

    Science.gov (United States)

    Zhou, Tianji; Gall, Daniel

    2018-04-01

    The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .

  18. Fatigue loading on a 5MW offshore wind turbine due to the combined action of waves and current

    International Nuclear Information System (INIS)

    Peeringa, Johan M

    2014-01-01

    In the design of an offshore wind turbine the natural frequencies of the structure are of importance. In the design of fixed offshore wind turbine support structures it cannot be avoided that the first eigenmode of the structure lies in the frequency band of wave excitation. This study indicates that wave-current interaction should be taken into account for support structure design load calculations. Wave-current interaction changes the shape of the wave spectrum and the energy content in the wave frequency range of 0.2 – 0.35Hz. This is in the range of natural frequencies fixed offshore wind turbine structures are designed for. The waves are affected by the current in two ways. First there is a frequency shift, Doppler effect, for the fixed observer when the wave travels on a current. Second the shape of the wave is modified in case the wave travels from an area without current into an area with current. Due to wave-current interaction the wave height and wave length change. For waves on an opposing current the wave energy content increases, while for wave on a following current the wave energy content slightly reduces. Simulations of normal production cases between cut-in and cut-out wind speed are performed for a 5MW wind turbine in 20m water depth including waves with 1) a following current, 2) an opposing current and 3) no current present. In case of waves having an opposing current, the 1Hz equivalent fore-aft tower bending moment at the seabed is about 10% higher compared to load cases with waves only

  19. Two-nucleon higher partial-wave scattering from lattice QCD

    Directory of Open Access Journals (Sweden)

    Evan Berkowitz

    2017-02-01

    Full Text Available We present a determination of nucleon-nucleon scattering phase shifts for ℓ≥0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ>0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU(3-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ=mK≈800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V≈(3.5 fm3 and V≈(4.6 fm3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.

  20. Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.

    Science.gov (United States)

    Le Bihan, Nicolas; Margerin, Ludovic

    2009-07-01

    In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.

  1. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using

  2. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  3. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    Science.gov (United States)

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  4. Evaluating temperature changes of brain tissue due to induced heating of cell phone waves

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2018-01-01

    Full Text Available Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones. This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917 with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.

  5. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  6. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    International Nuclear Information System (INIS)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.

    2017-01-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  7. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, Florida (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, California (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: Colin.Joyce@unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: rgnuno@ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA (United States)

    2017-05-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  8. Theoretical evaluation of self-shielding factors due to scattering resonances in foils

    International Nuclear Information System (INIS)

    Selander, W.N.

    1960-06-01

    A semi-analytical method is given for evaluating self-shielding factors for activation measurements which use thin foils having neutron scattering resonances. The energy loss by scattering in the foil is taken into account. The energy-dependent neutron angular distribution is expanded as a double series, the coefficients of which are (energy dependent) solutions of an infinite set of coupled integral equations. These are truncated in some suitable manner and solved numerically. The leading term of the series is proportional to the average, or effective flux in the activation sample. The product of this terra and the neutron capture cross-section is integrated numerically over the resonance to give the resonance self-shielding correction. Figure 4 shows resonance self-shielding factors derived in this mariner for the 132ev resonance in Co-59 and figure 5 shows similar results for the two Mn-55 resonances at 337ev and 1080ev. Self-shielding factors for 1/v capture are not significantly different from unity. (author)

  9. Characterizing Lithospheric Thickness in Australia using Ps and Sp Scattered Waves

    Science.gov (United States)

    Ford, H. A.; Fischer, K. M.; Rychert, C. A.

    2008-12-01

    The purpose of this study is to constrain the morphology of the lithosphere-asthenosphere boundary throughout Australia using scattered waves. Prior surface wave studies have shown a correlation between lithospheric thickness and the three primary geologic provinces of Australia, with the shallowest lithosphere located beneath the Phanerozoic province to the east, and the thicker lithosphere located beneath the Proterozoic and Archean regions. To determine lithospheric thickness, waveform data from twenty permanent broadband stations spanning mainland Australia and the island of Tasmania were analyzed using Ps and Sp migration techniques. Waveform selection for each station was based on epicentral distance (35° to 80° for Ps and 55° to 80° for Sp), and event depth (no greater than 300 km for Sp). For both Ps and Sp a simultaneous deconvolution was performed on the data for each of the twenty stations, and the resulting receiver function for each station was migrated to depth. Data were binned with epicentral distance to differentiate direct discontinuity phases from crustal reverberations (for Ps) and other teleseismic arrivals (for Sp). Early results in both Ps and Sp show a clear Moho discontinuity at most stations in addition to sharp, strong crustal reverberations seen in many of the Ps images. In the eastern Phanerozoic province, a strong negative phase at 100-105 km is evident in Ps for stations CAN and EIDS. The negative phase lies within a depth range that corresponds to the negative velocity gradient between fast lithosphere and slow asthenosphere imaged by surface waves. We therefore think that it is the lithosphere- asthenosphere boundary. On the island of Tasmania, a negative phase at 70-75 km in Ps images at stations TAU and MOO also appears to be the lithosphere-asthenosphere boundary. In the Proterozoic and Archean regions of the Australian continent, initial results for both Ps and Sp migration indicate clear crustal phases, but significantly

  10. Errors due to random noise in velocity measurement using incoherent-scatter radar

    Directory of Open Access Journals (Sweden)

    P. J. S. Williams

    1996-12-01

    Full Text Available The random-noise errors involved in measuring the Doppler shift of an 'incoherent-scatter' spectrum are predicted theoretically for all values of Te/Ti from 1.0 to 3.0. After correction has been made for the effects of convolution during transmission and reception and the additional errors introduced by subtracting the average of the background gates, the rms errors can be expressed by a simple semi-empirical formula. The observed errors are determined from a comparison of simultaneous EISCAT measurements using an identical pulse code on several adjacent frequencies. The plot of observed versus predicted error has a slope of 0.991 and a correlation coefficient of 99.3%. The prediction also agrees well with the mean of the error distribution reported by the standard EISCAT analysis programme.

  11. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    International Nuclear Information System (INIS)

    Beaty, J.S.; Rolfe, J.L.; Vandersande, J.; Fleurial. J.P.

    1992-01-01

    This paper reports that a theoretical model has been developed that predicts that the addition of ultra-fine, inert, phonon-scattering centers to SiGe thermoelectric material will reduce its thermal conductivity and improve its figure-of-merit. To investigate this prediction, ultra-fine particulates (20 Angstrom to 200 Angstrom) of boron nitride have been added to boron doped, p-type, 80/20 SiGe. All previous SiGe samples produced from ultra-fine SiGe powder without additions had lower thermal conductivities than standard SiGe, but high temperature (1525 K) heat treatment increased their thermal conductivity back to the value for standard SiGe. Transmission Electron Microscopy has been used to confirm the presence of occluded particulates and X-ray diffraction has been used to determine the composition to be BN

  12. Comparison of collective Thomson scattering signals due to fast ions in ITER scenarios with fusion and auxiliary heating

    DEFF Research Database (Denmark)

    Salewski, Mirko; Asunta, O.; Eriksson, L.-G.

    2009-01-01

    Auxiliary heating such as neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) will accelerate ions in ITER up to energies in the MeV range, i.e. energies which are also typical for alpha particles. Fast ions of any of these populations will elevate the collective Thomson...... functions of fast ions generated by NBI and ICRH are calculated for a steady-state ITER burning plasma equilibrium with the ASCOT and PION codes, respectively. The parameters for the auxiliary heating systems correspond to the design currently foreseen for ITER. The geometry of the CTS system for ITER...... is chosen such that near perpendicular and near parallel velocity components are resolved. In the investigated ICRH scenario, waves at 50MHz resonate with tritium at the second harmonic off-axis on the low field side. Effects of a minority heating scheme with He-3 are also considered. CTS scattering...

  13. Reflectivity of stimulated back scattering in a homogeneous-slab medium in the case of negligible pump-wave damping

    International Nuclear Information System (INIS)

    Cho, G.S.; Cho, B.H.

    1981-01-01

    As to the backscatter instability which is one of nonlinear three-wave resonant interactions, the reflectivity(r) in the case of homogeneous-slab medium is calculated, assuming all the three wavepackets negligible damping caused by medium. The expression has turned out such that r = tanh 2 KAsub(p)L, where K, Asub(p), and L are the constant coupling coefficient, the constant pump-wave amplitude, and the thickness of the medium engaged in the interaction each. When this result is interpreted in terms of the stimulated Brillouin back-scattering in a so-called underdense plasma in controlled fusion, we find the reflectivity twice as large as that by others in the limit of large pump-wave damping, and unfitting to former experiments in the independence on the incident laser-light intensity. We see the incompatibility rise chiefly from neglecting the damping of pump-wave in the plasma. In contrast to the former results by others in the limit of large pump-wave damping, our result might be regarded as that for cases of negligible pump-wave damping, in general stimulated back-scattering phenomena. (author)

  14. Classical scattering theory of waves from the view point of an eigenvalue problem and application to target identification

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.; Werby, M.F.

    1993-01-01

    The Helmholtz-Poincare Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWE's. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can by obtained in matrix form be expanding all relevant terms in partial wave expansions, including a biorthogonal expansion of the Green function. However some freedom of choice in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways to long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermition operator. The methodology will be explained in detail and examples will be presented

  15. Lattice models for large-scale simulations of coherent wave scattering

    Science.gov (United States)

    Wang, Shumin; Teixeira, Fernando L.

    2004-01-01

    Lattice approximations for partial differential equations describing physical phenomena are commonly used for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of Maxwell’s equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost because of the so-called grid dispersion. Since it is a cumulative effect, grid dispersion is particularly harmful for the accuracy of results of large-scale simulations of scattering problems. Grid dispersion is usually combated by either increasing the lattice resolution or by employing higher-order schemes with larger stencils for the space and time derivatives. Both alternatives lead to increased computational cost to simulate a problem of a given physical size. Here, we introduce a general approach to develop lattice approximations with reduced grid dispersion error for a given stencil (and hence at no additional computational cost). The present approach is based on first obtaining stencil coefficients in the Fourier domain that minimize the maximum grid dispersion error for wave propagation at all directions (minimax sense). The resulting coefficients are then expanded into a Taylor series in terms of the frequency variable and incorporated into time-domain (update) equations after an inverse Fourier transformation. Maximally flat (Butterworth) or Chebyshev filters are subsequently used to minimize the wave speed variations for a given frequency range of interest. The use of such filters also allows for the adjustment of the grid dispersion characteristics so as to minimize not only the local dispersion error but also the accumulated phase error in a frequency range of interest.

  16. Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Science.gov (United States)

    Tan, Shurun

    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell's equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell's equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5˜2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green's function, we have developed the method of broadband Green's function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We've applied the technique to simulate band diagrams and modal solutions of periodic structures, and to

  17. Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy

    International Nuclear Information System (INIS)

    Jankowska-Kisielinska, J.; Mikke, K.

    1999-01-01

    The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)

  18. S wavescattering and effects of κ in J/ψ->K-bar *0(892)K+π-

    International Nuclear Information System (INIS)

    Guo, F.-K.; Ping, R.-G.; Shen, P.-N.; Chiang, H.-C.; Zou, B.-S.

    2006-01-01

    Kπ S wave scattering is studied using a chiral unitary approach (ChUT) taking into account coupled channels. With the amplitudes derived from the lowest order chiral Lagrangian as the kernel of a set of coupled channel Bathe-Salpeter equations, the I=1/2S wavescattering phase shifts below 1.2 GeV can be fitted by one parameter, a subtraction constant, and a scalar resonance corresponding to the controversial κ (K 0 *(800)) can be generated dynamically. A good description of the I=3/2S wavescattering phase shifts below 1.2 GeV can also be obtained. An artificial singularity in the cut-off method of the 2-meson loop integral of the ChUT is found. The formalism is applied to deal with the S wave Kπ final state interaction (FSI) in the decay J/ψ->K-bar * 0 (892)K + π - , and a qualitatively good fit to the data is achieved. The role of κ in the decay is discussed

  19. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Smith, Andrew J.A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  20. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  1. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    International Nuclear Information System (INIS)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection

  2. Sele coastal plain flood risk due to wave storm and river flow interaction

    Science.gov (United States)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    -critical simulation, the boundary condition is a known downstream WSE, in this case the elevated water level due to wave setup, wind setup and inverted barometer, while the upstream boundary condition consisted in WSE corresponding to river discharges associated to different return periods. The results of the simulations evidence, for the last 10 kilometers of the river, the burst of critical inundation scenarios even with moderate flow discharge, if associated with concurrent storm surge which increase the water level at the river mouth, obstructing normal flow discharge.

  3. Application of P-wave Hybrid Theory to the Scattering of Electrons from He+ and Resonances in He and H ion

    Science.gov (United States)

    Bhatia, A. K.

    2012-01-01

    The P-wave hybrid theory of electron-hydrogen elastic scattering [Phys. Rev. A 85, 052708 (2012)] is applied to the P-wave scattering from He ion. In this method, both short-range and long-range correlations are included in the Schroedinger equation at the same time, by using a combination of a modified method of polarized orbitals and the optical potential formalism. The short-correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia [Phys. Rev. A 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 20-term correlation function is needed in the wave function compared to the 220- term wave function required in the above-mentioned calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. The lowest P-wave resonances in He atom and hydrogen ion have been calculated and compared with the results obtained using the Feshbach projection operator formalism [Phys. Rev. A, 11, 2018 (1975)]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances, bound states and the continuum in which these resonance are embedded.

  4. All-optical switching via four-wave mixing Bragg scattering in a silicon platform

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2017-02-01

    Full Text Available We employ the process of non-degenerate four-wave mixing Bragg scattering to demonstrate all-optical control in a silicon platform. In our configuration, a strong, non-information-carrying pump is mixed with a weak control pump and an input signal in a silicon-on-insulator waveguide. Through the optical nonlinearity of this highly confining waveguide, the weak pump controls the wavelength conversion process from the signal to an idler, leading to a controlled depletion of the signal. The strong pump, on the other hand, plays the role of a constant bias. In this work, we show experimentally that it is possible to implement this low-power switching technique as a first step towards universal optical logic gates, and test the performance with random binary data. Even at very low powers, where the signal and control pump levels are almost equal, the eye-diagrams remain open, indicating a successful operation of the logic gates.

  5. A tunable dual-wavelength pump source based on simulated polariton scattering for terahertz-wave generation

    International Nuclear Information System (INIS)

    Sun, Bo; Liu, Jinsong; Yao, Jianquan; Li, Enbang

    2013-01-01

    We propose a dual-wavelength pump source by utilizing stimulated polariton scattering in a LiNbO 3 crystal. The residual pump and the generated tunable Stokes waves can be combined to generate THz-wave generation via difference frequency generation (DFG). With a pump energy of 49 mJ, Stokes waves with a tuning range from 1067.8 to 1074 nm have been generated, and an output energy of up to 14.9 mJ at 1070 nm has been achieved with a conversion efficiency of 21.7%. A sum frequency generation experiment was carried out to demonstrate the feasibility of the proposed scheme for THz-wave DFG. (paper)

  6. Influence of the impurity-scattering on zero-bias conductance peak in ferromagnet/insulator/d-wave superconductor junctions

    CERN Document Server

    Yoshida, N; Itoh, H; Tanaka, Y; Inoue, J I; Kashiwaya, S

    2003-01-01

    Effects of impurity-scattering on a zero-bias conductance peak in ferromagnet/insulator/d-wave superconductor junctions are theoretically studied. The impurities are introduced through the random potential in ferromagnets near the junction interface. As in the case of normal-metal/insulator/d-wave superconductor junctions, the magnitude of zero-bias conductance peak decreases with increasing the degree of disorder. However, when the magnitude of the exchange potential in ferromagnet is sufficiently large, the random potential can enhance the zero-bias conductance peak in ferromagnetic junctions. (author)

  7. Development of high-efficiency laser Thomson scattering measurement system for the investigation of EEDF in surface wave plasma

    International Nuclear Information System (INIS)

    Aramaki, M.; Kobayashi, J.; Kono, A.; Stamate, E.; Sugai, H.

    2006-01-01

    A high-efficiency multichannel Thomson scattering measurement system was developed as a tool for studying the electron heating mechanisms in a surface wave plasma. By improving the output power and repetition rate of the Nd:YAG laser, an F-number of spectrograph, and a quantum efficiency of ICCD camera, the overall Thomson signal collection efficiency per unit measurement time has been improved by a factor larger than 40 in comparison with the previous measurement system developed by the authors. The one-dimensional electron velocity distribution functions were measured in the vicinity of the dielectric window of a surface wave plasma

  8. Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet's principle

    Science.gov (United States)

    Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao

    2013-11-01

    We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences.

  9. Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Daughton, W.; Rose, H. A.

    2008-01-01

    Backward stimulated Raman and Brillouin scattering (SRS and SBS) of laser are examined in the kinetic regime using particle-in-cell simulations. The SRS reflectivity measured as a function of the laser intensity in a single hot spot from two-dimensional (2D) simulations shows a sharp onset at a threshold laser intensity and a saturated level at higher intensities, as obtained previously in Trident experiments [D. S. Montgomery et al., Phys. Plasmas 9, 2311 (2002)]. In these simulations, wavefront bowing of electron plasma waves (ion acoustic waves) due to the trapped particle nonlinear frequency shift, which increases with laser intensity, is observed in the SRS (SBS) regime for the first time. Self-focusing from trapped particle modulational instability (TPMI) [H. A. Rose, Phys. Plasmas 12, 12318 (2005)] is shown to occur in both two- and three-dimensional SRS simulations. The key physics underlying nonlinear saturation of SRS is identified as a combination of wavefront bowing, TPMI, and self-focusing of electron plasma waves. The wavefront bowing marks the beginning of SRS saturation and self-focusing alone is sufficient to terminate the SRS reflectivity, both effects resulting from cancellation of the source term for SRS and from greatly increased dissipation rate of the electron plasm waves. Ion acoustic wave bowing also contributes to the SBS saturation. Velocity diffusion by transverse modes and rapid loss of hot electrons in regions of small transverse extent formed from self-focusing lead to dissipation of the wave energy and an increase in the Landau damping rate in spite of strong electron trapping that reduces Landau damping initially. The ranges of wavelength and growth rate associated with transverse breakup of the electron-plasma wave are also examined in 2D speckle simulations as well as in 2D periodic systems from Bernstein-Greene-Kruskal equilibrium and are compared with theory predictions

  10. Experiments and Numerical Simulations of Dike Erosion due to a Wave Impact

    Directory of Open Access Journals (Sweden)

    Stefania Evangelista

    2015-10-01

    Full Text Available Dike erosion is a crucial issue in coastal and fluvial flood risk management. These defense structures appear vulnerable to extreme hydrological events, whose potential occurrence risk seems to be recently increased due to climate change. Their design and reinforcement is, however, a complex task, and although numerical models are very powerful nowadays, real processes cannot be accurately predicted; therefore, physical models constitute a useful tool to investigate different features under controlled conditions. This paper presents some laboratory experimental results of erosion of a sand dike produced by the impact of a dam break wave. Experiments have been conducted in the Water Engineering Laboratory at the University of Cassino and Southern Lazio, Italy, in a rectangular channel: here, the sudden opening of a gate forming the reservoir generates the wave impacting the dike, made in turn of two different, almost uniform sands. The physical evidence proves that the erosion process is strongly unsteady and significantly different from a gradual overtopping and highlights the importance of apparent cohesion for the fine sand dike. The experimental results have also been compared against the ones obtained through the numerical integration of a two-phase model, which shows the reasonable predictive capability of the temporal free surface and dike profile evolution.

  11. Application of Fourier elastodynamics to direct and inverse problems for the scattering of elastic waves from flaws near surfaces

    International Nuclear Information System (INIS)

    Richardson, J.M.; Fertig, K.W. Jr.

    1983-01-01

    In order to inspect flaws which lie too close to the surface a Fourier elastodynamic formalism is proposed which enables one to decompose the elastodynamic system into separately charterizable parts by means of planes perpendicular to the z-axis. The process can be represented by a generalized transfer function relating the near-field scattered waves to the waves incident on a slab of material containing the flaw. The Fourier elastodynamics are applied to the characterization of the total scattering process involving a flaw at various distances from a plastic-water interface. An abbreviated discussion of Fourier elastodynamics is presented, and the results specialized to the case of spherical voids and inclusions bear an interface. Finally, the computational results for several ranges of temporal frequency and for a sequence of values of the distance from the flaw center to the interface are discussed

  12. New perspectives on the damage estimation for buried pipeline systems due to seismic wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pineda Porras, Omar Andrey [Los Alamos National Laboratory

    2009-01-01

    Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.

  13. Main-ion temperature and plasma rotation measurements based on scattering of electron cyclotron heating waves in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Rasmussen, Jesper; Nielsen, Stefan Kragh

    2017-01-01

    We demonstrate measurements of spectra of O-mode electron cyclotron resonance heating (ECRH) waves scattered collectively from microscopic plasma fluctuations in ASDEX Upgrade discharges with an ITER-like ECRH scenario. The measured spectra are shown to allow determination of the main ion...... temperature and plasma rotation velocity. This demonstrates that ECRH systems can be exploited for diagnostic purposes alongside their primary heating purpose in a reactor relevant scenario....

  14. On the use of a Hamiltonian with projected potential for the calculation of scattering wave functions : Methods and general properties

    International Nuclear Information System (INIS)

    Colle, R.; Simonucci, S.

    1996-01-01

    The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed

  15. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.

  16. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Science.gov (United States)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  17. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  18. Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid

    International Nuclear Information System (INIS)

    Vashishth, Anil K; Gupta, Vishakha

    2012-01-01

    The interest in porous piezoelectric materials is due to the demand for low-frequency hydrophone/actuator devices for use in underwater acoustic systems and other oceanographic applications. Porosity decreases the acoustic impedance, thus improving the transfer of acoustic energy to water or biological tissues. The impedance mismatching problem between the dense piezoelectric materials and the surrounding medium can be solved by inclusion of porosity in dense piezoceramics. The complete description of acoustic propagation in a multilayered system is of great interest in a variety of applications, such as non-destructive evaluation and acoustic design, and there is need for a flexible model that can describe the reflection and transmission of ultrasonic waves in these media. The present paper elaborates a theoretical model, based on the transfer matrix method, for describing reflection and transmission of plane elastic waves through a porous piezoelectric laminated plate, immersed in a fluid. The analytical expressions for the reflection coefficient, transmission coefficient and acoustic impedance are derived. The effects of frequency, angle of incidence, number of layers, layer thickness and porosity are observed numerically for different configurations. The results obtained are deduced for the piezoelectric laminated structure, piezoelectric layer and poro-elastic layer immersed in a fluid, which are in agreement with earlier established results and experimental studies. (paper)

  19. Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering

    KAUST Repository

    AbdulJabbar, Mustafa Abdulmajeed

    2018-03-27

    Algorithmic and architecture-oriented optimizations are essential for achieving performance worthy of anticipated energy-austere exascale systems. In this paper, we present an extreme scale FMM-accelerated boundary integral equation solver for wave scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory, targeting emerging Intel extreme performance HPC architectures. We extract the potential thread- and data-level parallelism of the key Helmholtz kernels of FMM. Our application code is well optimized to exploit the AVX-512 SIMD units of Intel Skylake and Knights Landing architectures. We provide different performance models for tuning the task-based tree traversal implementation of FMM, and develop optimal architecture-specific and algorithm aware partitioning, load balancing, and communication reducing mechanisms to scale up to 6,144 compute nodes of a Cray XC40 with 196,608 hardware cores. With shared memory optimizations, we achieve roughly 77% of peak single precision floating point performance of a 56-core Skylake processor, and on average 60% of peak single precision floating point performance of a 72-core KNL. These numbers represent nearly 5.4x and 10x speedup on Skylake and KNL, respectively, compared to the baseline scalar code. With distributed memory optimizations, on the other hand, we report near-optimal efficiency in the weak scalability study with respect to both the logarithmic communication complexity as well as the theoretical scaling complexity of FMM. In addition, we exhibit up to 85% efficiency in strong scaling. We compute in excess of 2 billion DoF on the full-scale of the Cray XC40 supercomputer.

  20. Damage Accumulation in Vertical Breakwaters due to Combined Impact Loading and Pulsating Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, Søren R. K.

    1999-01-01

    Vertical wall breakwaters used to protect for example an harbour from large waves usually consist of large concrete caissons placed on the seabed. The wave loads can be divided in two types, pulsating and impact loads. For some types of breakwaters especially the impact wave loads can be very large...

  1. Suppression of lower hybrid wave coupling due to the ponderomotive force

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1980-04-01

    The coupling efficiency from a slow-wave structure to lower hybrid waves is investigated experimentally. At moderate electric field strengths large edge density changes are observed. Wave trajectory modifications and departure from linear coupling are observed consistent with these changes and in good agreement with a simple nonlinear theory that includes the ponderomotive force

  2. Dust acoustic shock wave generation due to dust charge variation in ...

    Indian Academy of Sciences (India)

    to generation of shock wave in the dusty plasma described as collisionless shock wave. ... Trans- forming to the frame of the wave with velocity λ ζ = x λd -λωpdt =X -λT. (2) .... Jd =0, there exists steady state (apart from the initial state) defined.

  3. Energy and momentum deposition to plasmas due to the lower hybrid wave by a finite source

    International Nuclear Information System (INIS)

    Nakajima, Noriyoshi; Abe, Hirotada; Itatani, Ryohei.

    1981-10-01

    Heating and current generation due to the lower hybrid wave are studied using the particle simulation. In contrast with previous work, where only the single mode is treated, main interests of this work are focused on the physical problems on a propagation cone consisting of many Fourier-expanded modes. It is found that the trajectory of the propagation cone is well described up to the lower hybrid resonance layer using both cold plasma approximation and the WKB method. An ion cross-field drift due to the ponderomotive force is observed. It is a main discovery that the modes in the higher side of the spectrum of the antenna play a key role for creation of the ion high energy tail. This process cannot be explained by the linear theory and is called the cascade process judging from the time variation of the damping of each mode. The particle model is significantly improved using the elongated grid and the quadric spatial interpolation. Many applications of this model to the simulations on other problems are expected to be very fruitful in the research of the plasma physics and nuclear fusion. (author)

  4. A comparison of three time-dependent wave packet methods for calculating electron--atom elastic scattering cross sections

    International Nuclear Information System (INIS)

    Judson, R.S.; McGarrah, D.B.; Sharafeddin, O.A.; Kouri, D.J.; Hoffman, D.K.

    1991-01-01

    We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, |ζ(t)right-angle=U|ψ(t)right-angle, where U is the interaction potential and |ψ(t)right-angle is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200--1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy

  5. Role of collective effects in dominance of scattering off thermal ions over Langmuir wave decay: Analysis, simulations, and space applications

    International Nuclear Information System (INIS)

    Cairns, Iver H.

    2000-01-01

    Langmuir waves driven to high levels by beam instabilities are subject to nonlinear processes, including the closely related processes of scattering off thermal ions (STI) and a decay process in which the ion response is organized into a product ion acoustic wave. Calculations of the nonlinear growth rates predict that the decay process should always dominate STI, creating two paradoxes. The first is that three independent computer simulation studies show STI proceeding, with no evidence for the decay at all. The second is that observations in space of type III solar radio bursts and Earth's foreshock, which the simulations were intended to model, show evidence for the decay proceeding but no evidence for STI. Resolutions to these paradoxes follow from the realization that a nonlinear process cannot proceed when its growth rate exceeds the minimum frequency of the participating waves, since the required collective response cannot be maintained and the waves cannot respond appropriately, and that a significant number of e-foldings and wave periods must be contained in the time available. It is shown that application of these ''collective'' and ''time scale'' constraints to the simulations explains why the decay does not proceed in them, as well as why STI proceeds in specific simulations. This appears to be the first demonstration that collective constraints are important in understanding nonlinear phenomena. Furthermore, applying these constraints to space observations, it is predicted that the decay should proceed (and dominate STI) in type III sources and the high beam speed regions of Earth's foreshock for a specific range of wave levels, with a possible role for STI alone at slightly higher wave levels. Deeper in the foreshock, for slower beams and weaker wave levels, the decay and STI are predicted to become ineffective. Suggestions are given for future testing of the collective constraint and an explanation for why waves in space are usually much weaker than

  6. Stimulated Brillouin scattering phase-locking using a transient acoustic standing wave excited through an optical interference field

    International Nuclear Information System (INIS)

    Ondrej Slezak; Milan Kalal; Hon Jin Kong

    2010-01-01

    Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.

  7. Features of the non-collinear one-phonon anomalous light scattering controlled by elastic waves with elevated linear losses: potentials for multi-frequency parallel spectrum analysis of radio-wave signals.

    Science.gov (United States)

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-12-01

    During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.

  8. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  9. Use of the reciprocity theorem for a closed form solution of scattering of the lowest axially symmetric torsional wave mode by a defect in a pipe.

    Science.gov (United States)

    Lee, Jaesun; Achenbach, Jan D; Cho, Younho

    2018-03-01

    Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Stimulated scattering of electromagnetic waves by magnetosonic modes in a plasma

    International Nuclear Information System (INIS)

    Stenflo, L.

    1985-01-01

    The dispersion relation for magnetosonic waves in a dissipative plasma, which is penetrated by a high-frequency electromagnetic wave, is derived. Previous results are generalized and discussed. (author)

  11. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  12. Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser.

    Science.gov (United States)

    Weaver, James; Lehmberg, Robert; Obenschain, Stephen; Kehne, David; Wolford, Matthew

    2017-11-01

    Stimulated rotational Raman scattering (SRRS) in the ultraviolet region (λ=248  nm) has been observed at the Nike laser over extended propagation paths in air during high power operation. Although this phenomenon is not significant for standard operating configurations at Nike, broadening of the laser spectrum and far-field focal profiles has been observed once the intensity-path length product exceeds a threshold of approximately 1  TW/cm. This paper presents experimental results and a new theoretical evaluation of these effects. The observations suggest that significantly broader spectra can be achieved with modest degradation of the final focal distribution. These results point to a possible path for enhanced laser-target coupling with the reduction of laser-plasma instabilities due to broad laser bandwidth produced by the SRRS.

  13. General method for eliminating wave reflection in 2D photonic crystal waveguides by introducing extra scatterers based on interference cancellation of waves

    Science.gov (United States)

    Huang, Hao; Ouyang, Zhengbiao

    2018-01-01

    We propose a general method for eliminating the reflection of waves in 2 dimensional photonic crystal waveguides (2D-PCWs), a kind of 2D material, by introducing extra scatterers inside the 2D-PCWs. The intrinsic reflection in 2D-PCWs is compensated by the backward-scattered waves from these scatterers, so that the overall reflection is greatly reduced and the insertion loss is improved accordingly. We first present the basic theory for the compensation method. Then, as a demonstration, we give four examples of extremely-low-reflection and high-transmission 90°bent 2D-PCWs created according to the method proposed. In the four examples, it is demonstrated by plane-wave expansion method and finite-difference time-domain method that the 90°bent 2D-PCWs can have high transmission ratio greater than 90% in a wide range of operating frequency, and the highest transmission ratio can be greater than 99.95% with a return loss higher than 43 dB, better than that in other typical 90°bent 2D-PCWs. With our method, the bent 2D-PCWs can be optimized to obtain high transmission ratio at different operating wavelengths. As a further application of this method, a waveguide-based optical bridge for light crossing is presented, showing an optimum return loss of 46.85 dB, transmission ratio of 99.95%, and isolation rates greater than 41.77 dB. The method proposed provides also a useful way for improving conventional waveguides made of cables, fibers, or metal walls in the optical, infrared, terahertz, and microwave bands.

  14. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    Science.gov (United States)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1

  15. Dosimetric perturbation due to scattered rays released by a gold marker used for tumor tracking in external radiotherapy

    International Nuclear Information System (INIS)

    Habara, Kosaku; Furukawa, Takashi; Shimozato, Tomohiro; Obata, Yasunori; Aoyama, Yuichi; Kawanami, Ryota; Hayashi, Naoki; Yasui, Keisuke; Matsuura, Kanji

    2011-01-01

    Image-guided radiation therapy using a gold marker-based tumor tracking technique provides precise patient setup and monitoring. However, the marker consists of high-Z material, and the resulting scattered rays tend to have adverse effects on the dose distribution of radiotherapy. The purpose of this study was to evaluate the dosimetric perturbation due to the use of a gold marker for radiotherapy in the lungs. The relative dose distributions were compared with film measurement, Monte Carlo simulation, and XiO calculation with the multi grid superposition algorithm using two types of virtual lung phantoms, which were composed of tough water phantoms, tough lung phantoms, cork boards, and a 2.0-mm-diameter gold ball. No dose increase and decrease in the vicinity of the gold ball was seen in the XiO calculations, although it was seen in the film measurements and the Monte Carlo simulation. The dose perturbation due to a gold marker cannot be evaluated using XiO calculation with the superposition algorithm when the tumor is near a gold marker (especially within 0.5 cm). To rule out the presence of such dose perturbations due to a gold marker, the distance between the gold marker and the tumor must therefore be greater than 0.5 cm. (author)

  16. Nodal structure and phase shifts of zero-incident-energy wave functions: Multiparticle single-channel scattering

    International Nuclear Information System (INIS)

    Iwinski, Z.R.; Rosenberg, L.; Spruch, L.

    1986-01-01

    For potential scattering, with delta/sub L/(k) the phase shift modulo π for an incident wave number k, Levinson's theorem gives delta/sub L/(0)-delta/sub L/(infinity) in terms of N/sub L/, the number of bound states of angular momentum L, for delta/sub L/(k) assumed to be a continuous function of k. N/sub L/ also determines the number of nodes of the zero-energy wave function u/sub L/(r). A knowledge of the nodal structure and of the absolute value of delta/sub L/(0) is very useful in theoretical studies of low-energy potential scattering. Two preliminary attempts, one formal and one ''physical,'' are made to extend the above results to single-channel scattering by a compound system initially in its ground state. The nodal structure will be of greater interest to us here than an extension of Levinson's theorem

  17. Confluent Heun functions and the physics of black holes: Resonant frequencies, Hawking radiation and scattering of scalar waves

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2016-10-15

    We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.

  18. Stationary striations due to interaction of two ionization waves in xenon glow discharge

    International Nuclear Information System (INIS)

    Maruyama, T.; Nishina, S.; Kitamura, H.; Itagaki, K.; Mizuochi, H.

    1990-01-01

    Experimental observations on stationary striations in the positive column of xenon discharge are reported. Stationary striations are observed when two ionization waves exist simultaneously in the positive column at low pressure and high current region. These stationary striations are caused by nonlinear interference of two backward ionization waves of which frequencies are either equal or are in the ratio 1:2. The spatial intervals for the striated pattern are equal to the reciprocal of the difference between the wave-numbers of two ionization waves. (orig.)

  19. Attenuation of an optical wave propagating in a waveguide, formed by layers of a semiconductor heterostructure, owing to scattering on inhomogeneities

    International Nuclear Information System (INIS)

    Bogatov, Alexandr P; Burmistrov, I S

    1999-01-01

    The scattering of an optical wave, propagating in a waveguide made up of layers of a semiconductor heterostructure, is analysed. The attenuation coefficient of the wave is found both for quasi-homogeneous single-crystal layers of a semiconductor solid solution and for layers containing quantum dots. (active media)

  20. The study of waves, instabilities, and turbulence using Thomson scattering in laser plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1995-01-01

    Much basic work in plasma physics has been devoted to the study of wave properties in plasmas, one of the nonlinear development of driven waves, and of the instabilities in which such waves may participate. The use of laser-plasma techniques has allowed one to extend such studies into new regimes. Such techniques and their results are the subject here. Once one chooses a physical problem within this subject area, it is now possible to design a laser-plasma experiment that is optimized for the study of that problem. The plasma can be designed to have a variety of density and flow-velocity profiles, the damping of ion acoustic waves and of electron plasma waves can be independently controlled, and the waves can be driven weakly or strongly. By using Nd-glass lasers and their harmonics one can non-invasively drive and diagnose the waves, using separate laser beams to produce the plasma, drive the waves, and diagnose their properties. The author uses as examples some recent work with his collaborators, including the first experimental detection of ion plasma waves and the first direct observation of the plasma wave driven by the acoustic decay of laser light

  1. Wave-Block Due to a Threshold Gradient Underlies Limited Coordination in Pancreatic Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Sørensen, Mads Peter

    2008-01-01

    Two models for coupled pancreatic β cells are used to investigate excited wave propagation in spatially inhomogeneous islets of Langerhans. The application concerns spatial variation of glucose concentration across the islet. A comprehensive model of coupled cells shows that wave blocking occurs ...

  2. Polarization reversal of electron cyclotron wave due to radial boundary condition

    International Nuclear Information System (INIS)

    Takahashi, K.; Kaneko, T.; Hatakeyama, R.

    2004-01-01

    The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)

  3. Finite-measuring approximation of operators of scattering theory in representation of wave packets

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Rubtsova, O.A.

    2004-01-01

    Several types of the packet quantization of the continuos spectrum in the scattering theory quantum problems are considered. Such a quantization leads to the convenient finite-measuring (i.e. matrix) approximation of the integral operators in the scattering theory and it makes it possible to reduce the solution of the singular integral equations, complying with the scattering theory, to the convenient purely algebraic equations on the analytical basis, whereby all the singularities are separated in the obvious form. The main attention is paid to the problems of the method practical realization [ru

  4. Effects of terraces, surface steps and 'over-specular' reflection due to inelastic energy losses on angular scattering spectra for glancing incidence scattering

    CERN Document Server

    Danailov, D; O'Connor, D J

    2002-01-01

    Recent experiments and our molecular-dynamics simulations indicate that the main signal of the angular scattering spectra of glancing incidence scattering are not affected by the thermal motion of surface atoms and can be explained by our row-model with averaged cylindrical potentials. At the ICACS-18 Conference [Nucl. Instr. and Meth. B 164-165 (2000) 583] we reported good agreement between experimental and calculated multimodal azimuthal angular scattering spectra for the glancing scattering of 10 and 15 keV [Nucl. Instr. and Meth. B 180 (2001) 265, Appl. Surf. Sci. 171 (2001) 113] He sup 0 beam along the [1 0 0] direction on the Fe(1 0 0) face. Our simulations also predicted that in contrast to the 2D angular scattering distribution, the 1D azimuthal angular distribution of scattered particles is very sensitive to the interaction potential used. Here, we report more detailed calculations incorporating the influence of terraces and surface steps on surface channeling, which show a reduction of the angular s...

  5. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies

    Science.gov (United States)

    Chen, Wei; Guo, Li-xin; Li, Jiang-ting

    2017-04-01

    This study analyzes the scattering characteristics of obliquely incident electromagnetic (EM) waves in a time-varying plasma sheath. The finite-difference time-domain algorithm is applied. According to the empirical formula of the collision frequency in a plasma sheath, the plasma frequency, temperature, and pressure are assumed to vary with time in the form of exponential rise. Some scattering problems of EM waves are discussed by calculating the radar cross section (RCS) of the time-varying plasma. The laws of the RCS varying with time are summarized at the L and S wave bands.

  6. A new method for detection of the electron temperature in laser-plasma short wave cut off of stimulated Raman scattering spectrum

    International Nuclear Information System (INIS)

    Zhang Jiatai

    1994-01-01

    From the theory of stimulated Raman scattering (SRS) three wave interaction, a new method of detecting the electron temperature in laser-plasma is obtained. SRS spectrum obtained from Shenguang No. 12 Nd-laser experiments are analysed. Using the wave length of short wave cut off of SRS, the electron temperature in corona plasma region is calculated consistently. These results agree reasonable with X-ray spectrum experiments

  7. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    International Nuclear Information System (INIS)

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D

    2015-01-01

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant

  8. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant.

  9. Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering

    KAUST Repository

    AbdulJabbar, Mustafa Abdulmajeed; Al Farhan, Mohammed; Al-Harthi, Noha A.; Chen, Rui; Yokota, Rio; Bagci, Hakan; Keyes, David E.

    2018-01-01

    scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory

  10. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr

    2016-01-01

    Roč. 455, č. 2 (2016), s. 2200-2206 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : scattering * radar astronomy * meteorites Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  11. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    Science.gov (United States)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  12. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    Science.gov (United States)

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  13. Electromagnetic scattering from microwave absorbers - Laboratory verification of the coupled wave theory

    Science.gov (United States)

    Gasiewski, A. J.; Jackson, D. M.

    1992-01-01

    W-band measurements of the bistatic scattering function of some common microwave absorbing structures, including periodic wedge-type and pyramid-type iron-epoxy calibration loads and flat carbon-foam 'Echosorb' samples, were made using a network analyzer interface to a focused-lens scattering range. Swept frequency measurements over the 75-100 GHz band revealed specular and Bragg reflection characteristics in the measured data.

  14. A nonlocal potential form for s-wave α-α scattering

    International Nuclear Information System (INIS)

    Amos, K.; Bennett, M.T.

    1997-01-01

    Low energy s-wave α-α phase shifts that agree well with the measured set, have been extracted using a nonlocal interaction formed by folding (local real) nucleon -α particle interactions with density matrix elements of the (projectile) α particle. The resultant nonlocal s-wave α-α interaction is energy dependent and has a nonlocality range of about 2 fm

  15. A heating mechanism of ions due to large amplitude coherent ion acoustic wave

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Kawai, Yoshinobu; Kogiso, Ken.

    1978-05-01

    Ion heating mechanism in a plasma with a coherent ion acoustic wave is studied experimentally and numerically. Ions are accelerated periodically in the electrostatic potential of the coherent wave and their oscillation energy is converted into the thermal energy of ions through the collision with the neutral atoms in plasma. The Monte Carlo calculation is applied to obtain the ion temperature. The amplitude of the electrostatic potential, the mean number of collisions and the mean life time of ions are treated as parameters in the calculation. The numerical results are compared with the experiments and both of them agree well. It is found that the ion temperature increases as the amplitude of the coherent wave increases and the high energy tail in the distribution function of ions are observed for the case of large wave-amplitude. (author)

  16. Disturbance of SH-type waves due to moving stress discontinuity in ...

    Indian Academy of Sciences (India)

    Introduction. The two main ... isolated points, while materials such as sedimentary rocks and concrete are regarded as a solid skeleton traversed by ... technique. Sengupta & Nath (2001) have investigated the surface waves in fibre-reinforced.

  17. Transport of energy and momentum due to spatial Landau damping and growth of electrostatic waves

    International Nuclear Information System (INIS)

    Lacina, J.

    1994-01-01

    It is shown that Landau damping in space (LDS), occuring for time-periodic electrostatic waves, does not lead to any deposition of energy in plasmas. A steady-state balance and a steady-state transport of energy, momentum and particles take place both for damped and growing waves. Because of the phase interference of coherent free and forced particle oscillations, the oscillatory energy of particles increases in the direction of wave propagation; the time-averaged flow of plasma kinetic energy being constant in space for these waves, the LDS must take place for a Maxwellian plasma in order to compensate for the growth of the particle oscillatory energy in space. (Author)

  18. Variation in Differential and Total Cross Sections Due to Different Radial Wave Functions

    Science.gov (United States)

    Williamson, W., Jr.; Greene, T.

    1976-01-01

    Three sets of analytical wave functions are used to calculate the Na (3s---3p) transition differential and total electron excitation cross sections by Born approximations. Results show expected large variations in values. (Author/CP)

  19. Observations of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using ACE, Ulysses, and Voyager Data

    Science.gov (United States)

    Smith, Charles W.; Aggarwal, Poornima; Argall, Matthew R.; Burlaga, Leonard F.; Bzowski, Maciej; Cannon, Bradford E.; Gary, S. Peter; Fisher, Meghan K.; Gilbert, Jason A.; Hollick, Sophia J.; Isenberg, Philip A.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.; Pine, Zackary B.; Richardson, John D.; Schwadron, Nathan A.; Skoug, Ruth M.; Sokół, Justyna M.; Taylor, David K.; Vasquez, Bernard J.

    2017-09-01

    Wave excitation by newborn interstellar pickup ions (PUIs) plays a significant role in theories that attempt to describe IBEX and Voyager observations in the solar wind and heliosheath. The same dynamic processes can be far-reaching and extend into the inner heliosphere to at least 1AU and likely to smaller heliocentric distances. While the high-resolution magnetic field measurements required to study these waves are not yet available in the heliosheath, we have studied a range of available observations and found evidence of waves due to interstellar PUIs using ACE (1998-2015 at 1 AU), Ulysses (1996-2006 at 2 to 5 AU, high and low latitudes) and Voyager (1978-1979 and 2 to 6 AU) observations. Efforts to extend the Voyager observations to 35 AU are ongoing. We have examined these data sets and report on observations of low-frequency waves that result from newborn interstellar pickup H+ and He+ ions. Although not as common as theory originally predicted, we presently have identified 524 independent occurrences. Our conclusion from studying these waves is that they are seen only when the ambient turbulence is sufficiently weak. The instability that generates these waves requires a slow accumulation of wave energy over several to tens of hours to achieve observable wave amplitudes. In regions where the turbulence is moderate to strong, the turbulence absorbs the wave energy before it can reach observable levels and transports the energy to the dissipation scales where it heats the background thermal particles. Only intervals with the weakest turbulence will permit energy accumulation over this time scale. These conditions are most often, but not exclusively, achieved in solar wind rarefaction regions.

  20. Application of the generalized multi structural (GMS) wave function to photoelectron spectra and electron scattering processes

    International Nuclear Information System (INIS)

    Nascimento, M.A.C. do

    1992-01-01

    A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)

  1. Laser-induced damage of fused silica optics at 355 nm due to backward stimulated Brillouin scattering: experimental and theoretical results.

    Science.gov (United States)

    Lamaignère, Laurent; Gaudfrin, Kévin; Donval, Thierry; Natoli, Jeanyves; Sajer, Jean-Michel; Penninckx, Denis; Courchinoux, Roger; Diaz, Romain

    2018-04-30

    Forward pump pulses with nanosecond duration are able to generate an acoustic wave via electrostriction through a few centimeters of bulk silica. Part of the incident energy is then scattered back on this sound wave, creating a backward Stokes pulse. This phenomenon known as stimulated Brillouin scattering (SBS) might induce first energy-loss, variable change of the temporal waveform depending on the location in the spatial profile making accurate metrology impossible, and moreover it might also initiate front surface damage making the optics unusable. Experiments performed on thick fused silica optics at 355 nm with single longitudinal mode pulses allowed us to detect, observe and quantify these backward pulses. Experimental results are first compared to theoretical calculations in order to strengthen our confidence in metrology. On this basis a phase-modulator has been implemented on the continuous-wave seeders of the lasers leading to pulses with a wide spectrum that suppress SBS and do not exhibit temporal overshoots that also reduce Kerr effects. The developed set-ups are used to check the reduction of the backward stimulated Brillouin scattering and they allow measuring with accuracy the rear surface damage of thick fused silica optics.

  2. Spin-wave dynamics in the helimagnet FeGe studied by small-angle neutron scattering

    Science.gov (United States)

    Siegfried, S.-A.; Sukhanov, A. S.; Altynbaev, E. V.; Honecker, D.; Heinemann, A.; Tsvyashchenko, A. V.; Grigoriev, S. V.

    2017-04-01

    We have studied the spin-wave stiffness of the Dzyaloshinskii-Moriya helimagnet FeGe in a temperature range from 225 K up to TC≈278.7 K by small-angle neutron scattering. The method we have used is based on [Grigoriev et al., Phys. Rev. B 92, 220415(R) (2015), 10.1103/PhysRevB.92.220415] and was extended here for the application in polycrystalline samples. We confirm the validity of the anisotropic spin-wave dispersion for FeGe caused by the Dzyaloshinskii-Moriya interaction. We have shown that the spin-wave stiffness A for the FeGe helimagnet decreases with a temperature as A (T ) =194 [1 -0.7 (T/TC) 4.2] meVÅ 2 . The finite value of the spin-wave stiffness A =58 meVÅ 2 at TC classifies the order-disorder phase transition in FeGe as being the first-order one.

  3. Limitations in distance and frequency due to chromatic dispersion in fibre-optic microwave and millimeter-wave links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Søren Nørskov; Nielsen, Søren Nørskov

    1996-01-01

    Chromatic dispersion significantly limits the distance and/or frequency in fibre-optic microwave and millimeter-wave links based on direct detection due to a decrease of the carrier to noise ratio. The limitations in links based on coherent remote heterodyne detection, however, are far less...

  4. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    DEFF Research Database (Denmark)

    Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko

    1997-01-01

    We present a theoretical investigation of ultrafast transient four-wave mixing (FWM) of GaAs quantum wells for coherent excitation of excitons and a large number of continuum states. It is shown that in this case the line shape of the FWM signal is drastically altered due to an interaction-induce...

  5. Role of collective effects in dominance of scattering off thermal ions over Langmuir wave decay: Analysis, simulations, and space applications

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Iver H.

    2000-12-01

    Langmuir waves driven to high levels by beam instabilities are subject to nonlinear processes, including the closely related processes of scattering off thermal ions (STI) and a decay process in which the ion response is organized into a product ion acoustic wave. Calculations of the nonlinear growth rates predict that the decay process should always dominate STI, creating two paradoxes. The first is that three independent computer simulation studies show STI proceeding, with no evidence for the decay at all. The second is that observations in space of type III solar radio bursts and Earth's foreshock, which the simulations were intended to model, show evidence for the decay proceeding but no evidence for STI. Resolutions to these paradoxes follow from the realization that a nonlinear process cannot proceed when its growth rate exceeds the minimum frequency of the participating waves, since the required collective response cannot be maintained and the waves cannot respond appropriately, and that a significant number of e-foldings and wave periods must be contained in the time available. It is shown that application of these ''collective'' and ''time scale'' constraints to the simulations explains why the decay does not proceed in them, as well as why STI proceeds in specific simulations. This appears to be the first demonstration that collective constraints are important in understanding nonlinear phenomena. Furthermore, applying these constraints to space observations, it is predicted that the decay should proceed (and dominate STI) in type III sources and the high beam speed regions of Earth's foreshock for a specific range of wave levels, with a possible role for STI alone at slightly higher wave levels. Deeper in the foreshock, for slower beams and weaker wave levels, the decay and STI are predicted to become ineffective. Suggestions are given for future testing of the collective constraint and an explanation

  6. Extended Linear Embedding via Green's Operators for Analyzing Wave Scattering from Anisotropic Bodies

    Directory of Open Access Journals (Sweden)

    V. Lancellotti

    2014-01-01

    Full Text Available Linear embedding via Green’s operators (LEGO is a domain decomposition method particularly well suited for the solution of scattering and radiation problems comprised of many objects. The latter are enclosed in simple-shaped subdomains (electromagnetic bricks which are in turn described by means of scattering operators. In this paper we outline the extension of the LEGO approach to the case of penetrable objects with dyadic permittivity or permeability. Since a volume integral equation is only required to solve the scattering problem inside a brick and the scattering operators are inherently surface operators, the LEGO procedure per se can afford a reduction of the number of unknowns in the numerical solution with the Method of Moments and subsectional basis functions. Further substantial reduction is achieved with the eigencurrents expansion method (EEM which employs the eigenvectors of the scattering operator as local entire-domain basis functions over a brick’s surface. Through a few selected numerical examples we discuss the validation and the efficiency of the LEGO-EEM technique applied to clusters of anisotropic bodies.

  7. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    Science.gov (United States)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  8. Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs

    Science.gov (United States)

    Smilansky, Uzy; Schanz, Holger

    2018-02-01

    We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.

  9. Design study of a traveling-wave Thomson-scattering experiment for the realization of optical free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Steiniger, Klaus; Loeser, Markus; Pausch, Richard; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Albach, Daniel; Debus, Alexander; Roeser, Fabian; Siebold, Matthias; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present an experimental setup strategy for the realization of an optical free-electron laser (OFEL) in the Traveling-Wave Thomson-Scattering geometry (TWTS). In TWTS, the electric field of petawatt class, pulse-front tilted laser pulses is used to provide an optical undulator field. This is passed by a relativistic electron bunch so that electron direction of motion and laser propagation direction enclose an interaction angle. The combination of side scattering and pulse-front tilt provides continuous overlap of electrons and laser pulse over meter scale distances which are achieved with centimeter wide laser pulses. An experimental challenge lies in shaping of these wide laser pulses in terms of laser dispersion compensation along the electron trajectory and focusing. In the talk we show how diffraction gratings in combination with mirrors are used to introduce and control dispersion of the laser in order to provide a plane wave laser field along the electron trajectory. Furthermore we give tolerance limits on alignment errors to operate the OFEL. Example setups illustrate functioning and demonstrate feasibility of the scheme.

  10. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    International Nuclear Information System (INIS)

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  11. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2018-02-01

    Full Text Available An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of an infinitely thin metal plate in the lower terahertz (THz frequency region. In this region, the metal plate can be viewed as a perfect electrically conductive object with a marginally rough surface. Hence, the THz scattered field from the metal plate can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are used to compute the coherent part, whereas the small perturbation method is used to compute the incoherent part. Then, the radar cross section of the rough metal plate surface is computed by the multilevel fast multipole and proposed hybrid algorithms. The numerical results show that the proposed algorithm has a good accuracy when rapidly simulating the scattering properties in the lower THz region.

  12. Scattering properties of electromagnetic waves from metal object in the lower terahertz region

    Science.gov (United States)

    Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.

    2018-01-01

    An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.

  13. SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Moon, Y.-J. [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr [Centre for Energy Studies, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016 (India)

    2015-10-10

    We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.

  14. On possible contribution of standing wave like spacer dynamics in polymer liquid crystals to quasi-elastic cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Jecl, R.; Cvikl, B.

    1998-01-01

    The quasi-elastic cold neutron incoherent scattering law, QNS, for the assumed case of transversal standing wave type of motion of the linear chain a spacer-of the polyacrylate polymer liquid crystal, based upon the random walk of the particle between two perfectly potential barriers, is derived. The spacer protons are taken to vibrate (within the stationary plane) transversely to the line joining the oxygen atoms in a way where they are all simultaneously displaced in the same direction with amplitudes of the standing wave fundamental mode of the vibration excited. The calculated relevant incoherent scattering law is found to be a non-distinct function of the scattering vector Q, in the sense that the postulated dynamical effect of the spacer protons causes the peak value of the calculated incoherent scattering law, S(Q,ω), to remain constant throughout the experimentally accessible range of the scattering vector Q. It appears that, when the experimental resolution broadening effects is taken into account, the contribution of the postulated dynamical behavior to the measured QNS spectra might be small, particularly so, if dome additional motion of the scatters is present, and consequently the standing wave like spacer dynamics in polymer liquid crystals will be very difficult to be identified uniquely in the quasielastic neutron scattering experiments.(author)

  15. Stochastic electron dynamics due to drift waves in a sheared magnetic field and other drift motion problems

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1986-12-01

    Electron motion in a single electrostatic wave in a sheared magnetic field is shown to become stochastic in the presence of a second wave at an amplitude well below that obtained from the overlapping pendulum resonance approximation. The enhanced stochasticity occurs for low parallel velocity electrons for which the parallel trapping motion from eE/sub parallel//m interacts strongly with the E x B trapping motion due to the presence of magnetic shear. The guiding-center equations for single particle electron orbits in given fields are investigated using both analytical and numerical techniques. The model assumes a slab magnetic field geometry with shear and two electrostatic plane waves propagating at an angle with respect to each other. Collisions and the self-consistent effect of the electron motion upon the fields are ignored. The guiding-center motion in an inertial reference frame moving in phase with the two waves is given by a two degree-of-freedom, autonomous Hamiltonian system. The single wave particle motion may be reduced to a two parameter family of one degree-of-freedom Hamiltonians which bifurcate from a pendulum phase space to a topology with three chains of elliptic and hyperbolic fixed points separated in radius about the mode-rational surface. In the presence of a perturbing wave with a different helicity, electrons in the small parallel velocity regime become stochastic at an amplitude scaling as the fourth root of the wave potential. The results obtained for stochastic motion apply directly to the problem of electron diffusion in drift waves occurring in toroidal fusion confinement devices. The effect of an adiabatically changing radial electric field upon guiding-center orbits in tokamaks is also investigated. This perturbation causes a radial polarization drift of trapped particle tokamak orbits

  16. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    Science.gov (United States)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    spindle-shape S waves. Such large-scale FDM simulations are conducted on the Earth Simulator at JAMSTEC. It is found that the FDM simulation of the model without strong velocity fluctuation cannot explain the characteristics of observed S waves. By introducing strong velocity fluctuation in the LV zone, strong peak delay and spindle-shape S waves observed at central and southern part of Chiba are simulated successfully. In addition, the strong amplitude decrease of S waves in the LV zone due to strong seismic scattering is good corresponding to results based on the tomographic study of Q in Kanto (e.g., Nakamura et al., 2006). Simulation results demonstrated that strong velocity fluctuation in the LV zone plays important role in the peak delay and waveform shape. The LV zone beneath northeastern Chiba is considered as a result of dehydration from oceanic crust of subducted Philippine Sea plate (e.g., Matsubara et al., 2005). Therefore strong small-scale velocity fluctuation in the LV zone may be related with dehydrated water.

  17. Partial-wave analyses of hadron scattering below 2 GeV

    International Nuclear Information System (INIS)

    Arndt, R.A.; Roper, L.D.

    1991-01-01

    The Center for Analysis of Particle Scattering (CAPS) in the Department of Physics at Virginia Polytechnic Institute and State University has analyzed basic two-body hadron reactions below 2 GeV for the last two decades. Reactions studied were nucleon-nucleon, pion-nucleon, K + -nucleon and pion photoproduction systems. In addition to analyses of these systems, a computer graphics system (SAID) has been developed and disseminated to over 250 research institutions using VAX computers. The computer-interactive system for disseminating information on basic scattering reactions is also accessible to the physics community through TELNET on the VPI ampersand SU physics department VAX. 6 refs

  18. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....

  19. Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples Graduate Traineeship Award in Ocean Acoustics

    National Research Council Canada - National Science Library

    Osterhoudt, Curtis F; Marston, Philip L

    2007-01-01

    .... The purpose of his research was to improve the understanding of the way that acoustic evanescent waves interact with targets buried in sediments in situations encountered in underwater acoustics...

  20. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    Science.gov (United States)

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.