Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Model for predicting mountain wave field uncertainties
Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal
2017-04-01
Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of
Model Predictive Control of a Wave Energy Converter
DEFF Research Database (Denmark)
Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard
2015-01-01
In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...
Model Predictive Control of Buoy Type Wave Energy Converter
DEFF Research Database (Denmark)
Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood
2014-01-01
The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible...
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Model Predictive Control of Buoy Type Wave Energy Converter
DEFF Research Database (Denmark)
Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood
2014-01-01
The paper introduces the Wavestar wave energy converter and presents the implementation of model predictive controller that maximizes the power generation. The ocean wave power is extracted using a hydraulic electric generator which is connected to an oscillating buoy. The power generator...... is an additive device attached to the buoy which may include damping, stiffness or similar terms hence will affect the dynamic motion of the buoy. Therefore such a device can be seen as a closed-loop controller. The objective of the wave energy converter is to harvest as much energy from sea as possible....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....
DEFF Research Database (Denmark)
Victor, L.; Troch, P.; Kofoed, Jens Peter
2009-01-01
For overtopping wave energy converters (WECs) a more efficient energy conversion can be achieved when the volumes of water, wave by wave, that enter their reservoir are known and can be predicted. A numerical tool is being developed using a commercial CFD-solver to study and optimize...... nearshore 2Dstructure. First numerical model results are given for a specific test with regular waves, and are compared with the corresponding experimental results in this paper....
Wave Prediction Model To Study On The Wave Height Variation In Terengganu Coast Of Malaysia
Directory of Open Access Journals (Sweden)
Nur Amalina Abdul Latif
2015-08-01
Full Text Available Abstract In this study the significant wave height at the Terengganu and the change of wave height at Kuala Terengganu to Merang shoreline were simulated by using the 2D Near-Shore Wave 2D NSW model. The significant wave height by the 2D NSW model at Kuala Terengganu to Merang shoreline from 2008-2012 were simulated. The model was forced by ECMWF European Centre for Medium Range Weather Forecast data. The simulated significant wave height by the 2D NSW model at Airport Kuala Terengganu AWAC station was compared with the observed significant wave height. The mean annual significant wave height indicate the higher wave height with average mean value in a range of 1.08-1.10 m in Kuala Terengganu to Batu Rakit area and lower in Merang area with average mean value in a range of 0.74 m. The detailed 5 years simulation period demonstrates that the strong variability of wave height exists during North-East monsoon. The findings of this study could be useful for the erosive calculation shoreline protection and coastal zone management activities.
Prediction dynamic model of shock train with complex background waves
Li, Nan; Chang, Jun-Tao; Xu, Ke-Jing; Yu, Da-Ren; Bao, Wen; Song, Yan-Ping
2017-11-01
Oblique shock waves are unavoidable in a rectangular hypersonic inlet, leading to a non-uniform flow field. While a significant body of the literature exists regarding the shock train modeling in a uniform incoming flow condition, few efforts have focused on the shock train behavior considering the influence of the shock wave boundary layer interactions. A low-order dynamic model of the shock train has been constructed with the help of the free interaction theory and a 1-D analysis approach. Experimental and numerical investigations have been carried out to evaluate the low-order model. The results show that the model has the capability of qualitatively analyzing the shock train behavior. In the cases with incident shocks, the rapid forward movement of the shock train has been observed by experiment. Besides this phenomenon was also modeled using the low-order model. Schlieren images show that when the shock train approaches the interaction zone, its behavior is characterized by oscillation and then follows a rapid forward movement with a linear increasing backpressure at 2.7 Ma. This phenomenon is analyzed theoretically based on the free interaction theory. Meanwhile with the help of the direct numerical simulation results from some existing studies, the flow structures in the interaction region and the following boundary layer also provide the evidence.
Chen, Shuyi S.; Curcic, Milan
2016-07-01
Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.
Trend modelling of wave parameters and application in onboard prediction of ship responses
DEFF Research Database (Denmark)
Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, J. Juncher
2015-01-01
This paper presents a trend analysis for prediction of sea state parameters onboard shipsduring voyages. Given those parameters, a JONSWAP model and also the transfer functions, prediction of wave induced ship responses are thus made. The procedure is tested with full-scale data of an in-service ......This paper presents a trend analysis for prediction of sea state parameters onboard shipsduring voyages. Given those parameters, a JONSWAP model and also the transfer functions, prediction of wave induced ship responses are thus made. The procedure is tested with full-scale data of an in...
Coupling of Wave and Circulation Models in the Atlantic European North-West Shelf Predicting System
Staneva, Joanna; Krüger, Oliver; Behrens, Arno; Lewis, Huw; Castillo, Juan M.
2017-04-01
This study addresses the coupling between wind wave and circulation models on the example of the Atlantic - European North-West Shelf (NWS). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on thermohaline distribution and ocean circulation at the NWS. Four scenarios - including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination of the three wave-induced forcing were performed to study the role of the wave-induced processes on model simulations. The individual and collective role of those processes is quantified and the results are compared with the NWS circulation model results without wave effects as well as against various in-situ measurements. The performance of the forecasting system is illustrated for the cases of several extreme events. The improved skills resulting from the new developments in the forecasting system, in particular during extreme events, justify further enhancements of the coastal operational systems. The study is performed in the frame of the COPERNICUS CMEMS Service Evolution Projects Wave2NEMO and OWAIRS.
DEFF Research Database (Denmark)
Christiansen, Søren; Tabatabaeipour, Seyed Mojtaba; Bak, Thomas
2013-01-01
a controller designed for an onshore wind turbine yields instability in the fore-aft rotation. In this paper, we propose a general framework, where a reference model models the desired closed-loop behavior of the system. Model predictive control combined with a state estimator finds the optimal rotor blade...... pitch such that the state trajectories of the controlled system tracks the reference trajectories. The framework is demonstrated with a reference model of the desired closed-loop system undisturbed by the incident waves. This allows the wave-induced motion of the platform to be damped significantly...
Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran
Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa
2017-02-01
The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.
Directory of Open Access Journals (Sweden)
Gimara Rajapakse
2017-10-01
Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.
Predicting freakish sea state with an operational third-generation wave model
Waseda, T.; In, K.; Kiyomatsu, K.; Tamura, H.; Miyazawa, Y.; Iyama, K.
2014-04-01
The understanding of freak wave generation mechanisms has advanced and the community has reached a consensus that spectral geometry plays an important role. Numerous marine accident cases were studied and revealed that the narrowing of the directional spectrum is a good indicator of dangerous sea. However, the estimation of the directional spectrum depends on the performance of the third-generation wave model. In this work, a well-studied marine accident case in Japan in 1980 (Onomichi-Maru incident) is revisited and the sea states are hindcasted using both the DIA (discrete interaction approximation) and SRIAM (Simplified Research Institute of Applied Mechanics) nonlinear source terms. The result indicates that the temporal evolution of the basic parameters (directional spreading and frequency bandwidth) agree reasonably well between the two schemes and therefore the most commonly used DIA method is qualitatively sufficient to predict freakish sea state. The analyses revealed that in the case of Onomichi-Maru, a moving gale system caused the spectrum to grow in energy with limited downshifting at the accident's site. This conclusion contradicts the marine inquiry report speculating that the two swell systems crossed at the accident's site. The unimodal wave system grew under strong influence of local wind with a peculiar energy transfer.
Yoo, J.; Shin, S.; Jun, K.; Shim, J.
2011-12-01
Surf-zone wave dynamics are one of important driving forces in coastal morphology by inducing beach erosions and sediment transports in inter-tidal shallow water areas, due to active wave breaking, energetic turbulence and violent near-bed velocities. Morphological beach changes are also considerably associated with other surf-zone hydro-dynamics such as nearshore wave transformation, water levels, wave run-up, set-up and coastal currents. In earlier studies, the COBRAS model (a RANS model, developed by Lin and Liu of Cornell University) has been used to investigate such beach processes with reasonable success, mostly, in wave dominant micro-tidal environments. The model solves the RANS equations using VOF method and k-epsilon closure scheme. Recently, intensive field experiments were carried out at a macro-tide environment (i.e. the Mallipo sand beach located in the west coast of Korea, having a large inter-tidal range of 7 m to investigate the complicated surf zone hydro-dynamics under interactions of coastal waves, strong tidal currents, and nearshore bathymetries. The field observation data are used to evaluate the capability of the RANS model to predict the cross-shore variations of free surface, wave set-up, wave run-up, and velocities on the Mallipo Beach. Since the dataset of water surface elevations includes both waves and tides, the COBRAS model was tried to simulate waves accompanied with tidal currents. The measured water surface elevation data were divided into wave and tidal components, in order to be used as inputs of the model. Comparisons of the measurements and the predictions show (1) performance of the model for the wave transformation, wave set-up, and wave run-up on the macro-tidal beach, (2) predictive capability for the turbulence closure scheme in the surf and swash zones, and (3) overall skills to predict under-tows and tidal currents. Acknowledgement This work was supported by the KORDI (Grant PE98572, PE98573 and PM56300). This work was
Hansen, J. E.; Barnard, P. L.
2006-12-01
Predicting beach response on an event scale is extremely difficult due to highly variable spatial and temporal conditions, lack of data on antecedent beach morphology, generic model shortcomings, and uncertainty of local forcing parameters. Each beach system is unique and classical beach erosion models may not be applicable to many high-energy beaches, especially those receiving large long-period waves. Therefore, developing an empirical model is the best way to predict future beach response at a given site. Based on 12 closely spaced (temporally) GPS topographic surveys during the winter of 2005-2006 at Ocean Beach, in San Francisco, California, we have developed a predictive empirical model that relates sub-aerial beach response to observed wave height, period, and direction. The model will provide important information to coastal managers, who will be able to better predict and mitigate possible loss from a forecasted wave event. Ocean Beach, located immediately south of the Golden Gate in San Francisco, is a high-energy, intermediate- slope beach that is exposed to waves generated in both the North and South Pacific. Winter breaking wave heights frequently reach 4 m and can exceed 7 m, with periods sometimes greater than 20 s. Our observations demonstrate that large seasonal variations in the sub-aerial beach profile are likely forced by several single large wave events. These events have led to the partial destruction of a recreational parking lot at the south end of the beach where an erosion hot spot is currently located, and continued erosion will threaten other parts of public infrastructure. This study, in combination with other ongoing research at Ocean Beach, will provide valuable insight that will not only aid local personnel in their management decisions but also contribute to a better understanding of sediment transport at high-energy beaches.
A RANS modelling approach for predicting powering performance of ships in waves
Directory of Open Access Journals (Sweden)
Björn Windén
2014-06-01
Full Text Available In this paper, a modelling technique for simulating self-propelled ships in waves is presented. The flow is modelled using a RANS solver coupled with an actuator disk model for the propeller. The motion of the ship is taken into consideration in the definition of the actuator disk region as well as the advance ratio of the propeller. The RPM of the propeller is controlled using a PID-controller with constraints added on the maximum permissible RPM increase rate. Results are presented for a freely surging model in regular waves with different constraints put on the PID-controller. The described method shows promising results and allows for the studying of several factors relating to self-propulsion. However, more validation data is needed to judge the accuracy of the model.
Jackson, Kate; Correia, Carlos; Lardière, Olivier; Andersen, Dave; Bradley, Colin
2015-01-15
We use a theoretical framework to analytically assess temporal prediction error functions on von-Kármán turbulence when a zonal representation of wavefronts is assumed. The linear prediction models analyzed include auto-regressive of an order up to three, bilinear interpolation functions, and a minimum mean square error predictor. This is an extension of the authors' previously published work Correia et al. [J. Opt. Soc. Am. A31, 101 (2014)JOAOD61084-752910.1364/JOSAA.31.000101], in which the efficacy of various temporal prediction models was established. Here we examine the tolerance of these algorithms to specific forms of model errors, thus defining the expected change in behavior of the previous results under less ideal conditions. Results show that ±100% wind speed error and ±50 deg are tolerable before the best linear predictor delivers poorer performance than the no-prediction case.
Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.
2017-07-01
Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.
Predictive model for wave-induced currents and 3D beach evolution based on FAVOR Method
Directory of Open Access Journals (Sweden)
Masamitsu Kuroiwa
2010-06-01
Full Text Available The development of a numerical model using the fractional area/volume obstacle representation (FAVOR method for predicting a nearshore current field bounded by complicated geometric shapes, and a three-dimensional (3D beach evolution was described in this article. The 3D model was first tested against three cases to simulate the nearshore current fields around coastal structures, a river mouth, and a large scale cusp bathymetry. Then, the morphodynamic model tests, which are adopting the nearshore current model, were applied for the computations of beach evolution around a detached breakwater and two groins. It was confirmed that the presented model associated with the FAVOR method was useful to predict the nearshore current field in the vicinity of the complicated geometric shapes. Finally, the model was applied to a tombolo formation in a field site of Kunnui fishery port, which is located in Hokkaido, Japan.
Ultrasonic wave propagation in trabecular bone predicted by the stratified model
Lin, W.; Qin, Y. X.; Rubin, C.
2001-01-01
The objective of this study was to investigate ultrasound propagation in trabecular bone by considering the wave reflection and transmission in a multilayered medium. The use of ultrasound to identify those at risk of osteoporosis is a promising diagnostic method providing a measure of bone mineral density (BMD). A stratified model was proposed to study the effect of transmission and reflection of ultrasound wave within the trabecular architecture on the relationship between ultrasound and BMD. The results demonstrated that ultrasound velocity in trabecular bone was highly correlated with the bone apparent density (r=0.97). Moreover, a consistent pattern of the frequency dependence of ultrasound attenuation coefficient has been observed between simulation using this model and experimental measurement of trabecular bone. The normalized broadband ultrasound attenuation (nBUA) derived from the simulation results revealed that nBUA was nonlinear with respect to trabecular porosity and BMD. The curve of the relationship between nBUA and BMD was parabolic in shape, and the peak magnitude of nBUA was observed at approximately 60% of bone porosity. These results agreed with the published experimental data and demonstrated that according to the stratified model, reflection and transmission were important factors in the ultrasonic propagation through the trabecular bone.
Directory of Open Access Journals (Sweden)
Daniel Geberth
2009-07-01
Full Text Available The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers. This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.
Directory of Open Access Journals (Sweden)
A. Dörnbrack
2012-04-01
Full Text Available The relatively warm 2009–2010 Arctic winter was an exceptional one as the North Atlantic Oscillation index attained persistent extreme negative values. Here, selected aspects of the Arctic stratosphere during this winter inspired by the analysis of the international field experiment RECONCILE are presented. First of all, and as a kind of reference, the evolution of the polar vortex in its different phases is documented. Special emphasis is put on explaining the formation of the exceptionally cold vortex in mid winter after a sequence of stratospheric disturbances which were caused by upward propagating planetary waves. A major sudden stratospheric warming (SSW occurring near the end of January 2010 concluded the anomalous cold vortex period. Wave ice polar stratospheric clouds were frequently observed by spaceborne remote-sensing instruments over the Arctic during the cold period in January 2010. Here, one such case observed over Greenland is analysed in more detail and an attempt is made to correlate flow information of an operational numerical weather prediction model to the magnitude of the mountain-wave induced temperature fluctuations. Finally, it is shown that the forecasts of the ECMWF ensemble prediction system for the onset of the major SSW were very skilful and the ensemble spread was very small. However, the ensemble spread increased dramatically after the major SSW, displaying the strong non-linearity and internal variability involved in the SSW event.
Wave groups in unidirectional surface wave models
van Groesen, Embrecht W.C.
1998-01-01
Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS)
Sixty gigahertz indoor radio wave propagation prediction method based on full scattering model
Järveläinen, J.; Haneda, K.
2014-04-01
In radio system deployment, the main focus is on assuring sufficient coverage, which can be estimated with path loss models for specific scenarios. When more detailed performance metrics such as peak throughput are studied, the environment has to be modeled accurately in order to estimate multipath behavior. By means of laser scanning we can acquire very accurate data of indoor environments, but the format of the scanning data, a point cloud, cannot be used directly in available deterministic propagation prediction tools. Therefore, we propose to use a single-lobe directive model, which calculates the electromagnetic field scattering from a small surface and is applicable to the point cloud, and describe the overall field as fully diffuse backscattering from the point cloud. The focus of this paper is to validate the point cloud-based full diffuse propagation prediction method at 60 GHz. The performance is evaluated by comparing characteristics of measured and predicted power delay profiles in a small office room and an ultrasonic inspection room in a hospital. Also directional characteristics are investigated. It is shown that by considering single-bounce scattering only, the mean delay can be estimated with an average error of 2.6% and the RMS delay spread with an average error of 8.2%. The errors when calculating the azimuth and elevation spreads are 2.6° and 0.6°, respectively. Furthermore, the results demonstrate the applicability of a single parameter set to characterize the propagation channel in all transmit and receive antenna locations in the tested scenarios.
Model Based Predictive Control of AUVs for Station Keeping in a Shallow Water Wave Environment
National Research Council Canada - National Science Library
Riedel, Jeffery s; Healey, Anthony J
2005-01-01
.... In shallow water AUV operations, where large hydrodynamic forces are developed due to waves, knowledge of the sea is critical to allow for the design of a control system that will enable the vehicle...
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...... wave overtopping was studied as well....
Yin, Mengchen; Chen, Ni; Huang, Quan; Marla, Anastasia Sulindro; Ma, Junming; Ye, Jie; Mo, Wen
2017-12-01
To identify factors for the outcome of a minimum clinically successful therapy and to establish a predictive model of extracorporeal shock wave therapy (ESWT) in managing patients with chronic plantar fasciitis. Randomized, controlled, prospective study. Outpatient of local medical center settings. Patients treated for symptomatic chronic plantar fasciitis between 2014 and 2016 (N=278). ESWT was performed by the principal authors to treat chronic plantar fasciitis. ESWT was administered in 3 sessions, with an interval of 2 weeks (±4d). In the low-, moderate-, and high-intensity groups, 2400 impulses total of ESWT with an energy flux density of 0.2, 0.4, and 0.6mJ/mm2, respectively (a rate of 8 impulses per second), were applied. The independent variables were patient age, sex, body mass index, affected side, duration of symptoms, Roles and Maudsley score, visual analog scale (VAS) score when taking first steps in the morning, edema, bone spurs, and intensity grade of ESWT. A minimal reduction of 50% in the VAS score was considered as minimum clinically successful therapy. The correlations between the achievement of minimum clinically successful therapy and independent variables were analyzed. The statistically significant factors identified were further analyzed by multivariate logistic regression, and the predictive model was established. The success rate of ESWT was 66.9%. Univariate analysis found that VAS score when taking first steps in the morning, edema, and the presence of heel spur in radiograph significantly affected the outcome of the treatment. Logistic regression drew the equation: minimum clinically successful therapy=(1+e[.011+42.807×heel spur+.109×edema+5.395×VASscore])-1.The sensitivity of the predictive factors was 96.77%, 87.63%, and 86.02%, respectively. The specificity of the predictive factors was 45.65%, 42.39%, and 85.87%, respectively. The area under the curve of the predictive factors was .751, .650, and .859, respectively. The Youden
Paul, Suman; Ali, Muhammad; Chatterjee, Rima
2017-09-01
Velocity of compressional wave (V P) of coal and non-coal lithology is predicted from five wells from the Bokaro coalfield (CF), India. Shear sonic travel time logs are not recorded for all wells under the study area. Shear wave velocity (Vs) is available only for two wells: one from east and other from west Bokaro CF. The major lithologies of this CF are dominated by coal, shaly coal of Barakar formation. This paper focuses on the (a) relationship between Vp and Vs, (b) prediction of Vp using regression and neural network modeling and (c) estimation of maximum horizontal stress from image log. Coal characterizes with low acoustic impedance (AI) as compared to the overlying and underlying strata. The cross-plot between AI and Vp/Vs is able to identify coal, shaly coal, shale and sandstone from wells in Bokaro CF. The relationship between Vp and Vs is obtained with excellent goodness of fit (R 2) ranging from 0.90 to 0.93. Linear multiple regression and multi-layered feed-forward neural network (MLFN) models are developed for prediction Vp from two wells using four input log parameters: gamma ray, resistivity, bulk density and neutron porosity. Regression model predicted Vp shows poor fit (from R 2 = 0.28) to good fit (R 2 = 0.79) with the observed velocity. MLFN model predicted Vp indicates satisfactory to good R2 values varying from 0.62 to 0.92 with the observed velocity. Maximum horizontal stress orientation from a well at west Bokaro CF is studied from Formation Micro-Imager (FMI) log. Breakouts and drilling-induced fractures (DIFs) are identified from the FMI log. Breakout length of 4.5 m is oriented towards N60°W whereas the orientation of DIFs for a cumulative length of 26.5 m is varying from N15°E to N35°E. The mean maximum horizontal stress in this CF is towards N28°E.
Paul, Suman; Ali, Muhammad; Chatterjee, Rima
2018-01-01
Velocity of compressional wave ( V P) of coal and non-coal lithology is predicted from five wells from the Bokaro coalfield (CF), India. Shear sonic travel time logs are not recorded for all wells under the study area. Shear wave velocity ( Vs) is available only for two wells: one from east and other from west Bokaro CF. The major lithologies of this CF are dominated by coal, shaly coal of Barakar formation. This paper focuses on the (a) relationship between Vp and Vs, (b) prediction of Vp using regression and neural network modeling and (c) estimation of maximum horizontal stress from image log. Coal characterizes with low acoustic impedance (AI) as compared to the overlying and underlying strata. The cross-plot between AI and Vp/ Vs is able to identify coal, shaly coal, shale and sandstone from wells in Bokaro CF. The relationship between Vp and Vs is obtained with excellent goodness of fit ( R 2) ranging from 0.90 to 0.93. Linear multiple regression and multi-layered feed-forward neural network (MLFN) models are developed for prediction Vp from two wells using four input log parameters: gamma ray, resistivity, bulk density and neutron porosity. Regression model predicted Vp shows poor fit (from R 2 = 0.28) to good fit ( R 2 = 0.79) with the observed velocity. MLFN model predicted Vp indicates satisfactory to good R2 values varying from 0.62 to 0.92 with the observed velocity. Maximum horizontal stress orientation from a well at west Bokaro CF is studied from Formation Micro-Imager (FMI) log. Breakouts and drilling-induced fractures (DIFs) are identified from the FMI log. Breakout length of 4.5 m is oriented towards N60°W whereas the orientation of DIFs for a cumulative length of 26.5 m is varying from N15°E to N35°E. The mean maximum horizontal stress in this CF is towards N28°E.
Tango waves in a bidomain model of fertilization calcium waves
Li, Yue-Xian
2003-12-01
Fertilization of an egg cell is marked by one or several Ca 2+ waves that travel across the intra-cellular space, called fertilization Ca 2+ waves. Patterns of Ca 2+ waves observed in mature or immature oocytes include traveling fronts and pulses as well as concentric and spiral waves. These patterns have been studied in other excitable media in physical, chemical, and biological systems. Here, we report the discovery of a new wave phenomenon in the numerical study of a bidomain model of fertilization Ca 2+ waves. This wave is a front that propagates in a back-and-forth manner that resembles the movement of tango dancers, thus is called a tango wave. When the medium is excitable, a forward-moving tango wave can generate traveling pulses that propagate down the space without reversal. The study shows that the occurrence of tango waves is related to spatial inhomogeneity in the local dynamics. This is tested and confirmed by simulating similar waves in a medium with stationary spatial inhomogeneity. Similar waves are also obtained in a FitzHugh-Nagumo system with a linear spatial ramp. In both the bidomain model of Ca 2+ waves and the FitzHugh-Nagumo system, the front is stable when the slope of a linear ramp is large. As the slope decreases beyond a critical value, front oscillations occur. The study shows that tango waves facilitate the dispersion of localized Ca 2+. Key features of the bidomain model underlying the occurrence of tango waves are revealed. These features are commonly found in egg cells of a variety of species. Thus, we predict that tango waves can occur in real egg cells provided that a slowly varying inhomogeneity does occur following the sperm entry. The observation of tango wave-like waves in nemertean worm and ascidian eggs seems to support such a prediction.
Electromagnetic waves, gravitational waves and the prophets who predicted them
Papachristou, Costas J.
2016-01-01
Using non-excessively-technical language and written in informal style, this article introduces the reader to the concepts of electromagnetic and gravitational waves and recounts the prediction of existence of these waves by Maxwell and Einstein, respectively. The issue of gravitational radiation is timely in view of the recent announcement of the detection of gravitational waves by the LIGO scientific team.
Uncertainty analysis of wind-wave predictions in Lake Michigan
Nekouee, Navid; Ataie-Ashtiani, Behzad; Hamidi, Sajad Ahmad
2016-10-01
With all the improvement in wave and hydrodynamics numerical models, the question rises in our mind that how the accuracy of the forcing functions and their input can affect the results. In this paper, a commonly used numerical third-generation wave model, SWAN is applied to predict waves in Lake Michigan. Wind data are analyzed to determine wind variation frequency over Lake Michigan. Wave predictions uncertainty due to wind local effects are compared during a period where wind has a fairly constant speed and direction over the northern and southern basins. The study shows that despite model calibration in Lake Michigan area, the model deficiency arises from ignoring wind effects in small scales. Wave prediction also emphasizes that small scale turbulence in meteorological forces can increase prediction errors by 38%. Wave frequency and coherence analysis show that both models can predict the wave variation time scale with the same accuracy. Insufficient number of meteorological stations can result in neglecting local wind effects and discrepancies in current predictions. The uncertainty of wave numerical models due to input uncertainties and model principals should be taken into account for design risk factors.
An overview of the numerical and neural network accosts of ocean wave prediction
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Cavaglieri, Daniele; Bewley, Thomas; Previsic, Mirko
2014-11-01
In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the difficulty to increase the power take-off through the implementation of an active controller without a precise knowledge of the oncoming wavefield. This work represents the first attempt at defining a realistic control framework for optimal power take-off of a wave energy converter where the ocean wavefield is predicted through a nonlinear Ensemble Kalman filter which assimilates data from a wave measurement device, such as a Doppler radar or a measurement buoy. Knowledge of the future wave profile is then leveraged in a nonlinear direct multiple shooting model predictive control framework allowing the online optimization of the energy absorption under motion and machinery constraints of the device.
1990-01-01
ELF Communcations ," NRL Rept. 7269, 1974 Ferguson, J.A., "Ionospheric Profiles for Predicting Nighttime VLF/LF Propagation," Naval Ocean Systems...waves in wireless telegraphy," Ann. Physik, Vol. 28, pp 665-736, 1909 Stewart, F.G., L.A. Berry, C.M. Rush and V. Agy, "An air-to-ground HY...How Many MU.F~s?" Wireless World. Vol. 65, pp 537-538. Dec. 1959 Bradley, P.A., *Propagation at medium and high frequencies,2: Long and short term
Predictability and Variability of Wave and Wind
DEFF Research Database (Denmark)
Chozas, Julia Fernandez; Kofoed, Jens Peter; Sørensen, Hans Christian
This project covers two fields of study: a) Wave energy predictability and electricity markets. b) Variability of the power output of WECs in diversified systems : diversified renewable systems with wave and offshore wind production. See page 2-4 in the report for a executive summery....
Predictability of Wave Energy and Electricity Markets
DEFF Research Database (Denmark)
Chozas, Julia Fernandez
2012-01-01
The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...
Osman, Marisol; Alvarez, Mariano S.
2017-03-01
The prediction skill of subseasonal forecast models is evaluated for a strong and long-lasting heat wave occurred in December 2013 over Southern South America. Reforecasts from two models participating in the WCRP/WWRP Subseasonal to Seasonal project, the Bureau of Meteorology POAMA and Beijing Climate Center model BCC-CPS were considered to evaluate their skill in forecasting temperature and circulation anomalies during that event. The POAMA reforecast of 32-member ensemble size, initialized every five days, and BCC-CPS reforecast of 4-member ensemble size for the same date of POAMA plus the previous 4 days were considered. Weekly ensemble-mean forecasts were computed with leadtimes from 2 days up to 24 days every 5 days. Weekly anomalies were calculated for observations from 13th of December to 31st of December 2013. Anomalies for both observations and reforecast were calculated with respect to their own climatology. Results show that the ensemble mean warm anomalies forecasted for week 1 and 2 of the heat wave resulted more similar to the observations for the POAMA model, especially for longer leads. The BCC-CPS performed better for leads shorter than 7 (14) for week 1 (2). For week 3 the BCC-CPS outperformed the POAMA model, particularly at shorter leads, locating more accurately the maxima of the anomalies. In a probabilistic approach, POAMA predicted with a higher chance than BCC-CPS the excess of the upper tercile of temperature anomalies for almost every week and lead time. The forecast of the circulation anomalies over South America could be used to explain the location of the highest temperature anomalies. In summary, for this case, models skill in forecasting surface temperature in a context of a heat wave resulted moderate at lead times longer than the fortnight. However, this study is limited to model-to-model analysis and a multi-model ensemble strategy might increase the skill.
Kashchenko, Serguey
2015-01-01
This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.
Predicting bone strength with ultrasonic guided waves
Bochud, Nicolas; Vallet, Quentin; Minonzio, Jean-Gabriel; Laugier, Pascal
2017-03-01
Recent bone quantitative ultrasound approaches exploit the multimode waveguide response of long bones for assessing properties such as cortical thickness and stiffness. Clinical applications remain, however, challenging, as the impact of soft tissue on guided waves characteristics is not fully understood yet. In particular, it must be clarified whether soft tissue must be incorporated in waveguide models needed to infer reliable cortical bone properties. We hypothesize that an inverse procedure using a free plate model can be applied to retrieve the thickness and stiffness of cortical bone from experimental data. This approach is first validated on a series of laboratory-controlled measurements performed on assemblies of bone- and soft tissue mimicking phantoms and then on in vivo measurements. The accuracy of the estimates is evaluated by comparison with reference values. To further support our hypothesis, these estimates are subsequently inserted into a bilayer model to test its accuracy. Our results show that the free plate model allows retrieving reliable waveguide properties, despite the presence of soft tissue. They also suggest that the more sophisticated bilayer model, although it is more precise to predict experimental data in the forward problem, could turn out to be hardly manageable for solving the inverse problem.
Tom, Nathan
2015-01-01
To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
Extreme wave and wind response predictions
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Olsen, Anders S.; Mansour, Alaa E.
2011-01-01
The aim of the paper is to advocate effective stochastic procedures, based on the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), for extreme value predictions related to wave and wind-induced loads.Due to the efficient optimization procedures implemented in standard FORM...
Wave Load Prediction - a Design Tool
DEFF Research Database (Denmark)
Pedersen, Tommy
of available theoretical methods for determining wave loads on a ship, three have been selected. The criteria areRobustness of the method in as wide a range of applications as possible.Reasonable computational time on a state-of-the art PC.Accuracy within engineering practive.Linear as well as non-linear...... predictions should be available....
Directional Validation of Wave Predictions
2007-03-01
likelihood estimator [referred to as MLE or sented to others’? How far can one go in condensing MLM : Capon et al. (1967) and Oltman-Shav and Guza these...of energy above the peak, or those of Rogers et al. (2003). both. Even with excellent agreement in the three nondi- "* Season hindcast covers 0000 UTC...C. Ris, A. J. van der Westhuysen, and M. Zijlema, cast at all frequency bands, model-data agreement is 2t05: SWAN Cycle Ill, version 40.41. User
Sterlini-Van der Meer, Fenneke
2009-01-01
The sea floor of shallow seas is rarely flat and often dynamic. A widely occurring bedform type is the sand wave. Sand waves form more or less regular wavelike patterns on the seabed with crests up to one third of the water depth, wave lengths of hundreds of metres and a migration rate of metres up
Modeling Regional Seismic Waves
1991-03-25
Shear waves are almost always observed from underground explosions. One can visualize many ways to convert explosion P waves into SV waves. An ob- vious...of the observed moment to the input source moment, Moba /Mo, as a function of the compressional velocities a, of the embedded sphere for different whole
Nearshore Wave Predictions along the Oregon and Southwest Washington Coasts
García-Medina, G.; Özkan-Haller, H. T.; Ruggiero, P.
2012-12-01
The Pacific Northwest region of the United States of America is characterized as having one of the most severe wave climates in the northern hemisphere. In addition, an observed multi-decadal increase in wave heights and the potential of harvesting wave energy in the region is attracting local governments, the private sector and scientific communities to understand wave transformation across the shelf and expand the predictive capabilities. To satisfy these and other needs, a high-resolution wave forecasting model was recently implemented for the Oregon and Southwest Washington coasts. The modeling domain extends from Klamath, California (41.50o) to the south to Taholah, Washington (47.35o) to the north and to the shelf break at the offshore boundary. This implementation has been proven accurate with linear correlation coefficients in the excess of 0.83 and percent errors of ˜ 20% when comparing results from multiple hindcasts to ground truth data even at water depths as shallow as 13 m. This implementation is able to capture the alongshore variations in the wave field caused by the major bathymetric features in the region. The forecasting model is run daily producing 84 hour forecasts. The results are disseminated via the Northwest Association of Networked Ocean Observing System webpage (http://www.nanoos.org). Spectral and bulk parameter forecasts are being made available at 233 locations along the 25 meter contour. In addition spatial plots of swell wave height, peak wave period and direction are made available for each forecast hour.
Acoustic field distribution of sawtooth wave with nonlinear SBE model
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Zhang, Lue; Wang, Xiangda; Gong, Xiufen [Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)
2015-10-28
For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.
Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.
The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...
Augmented chaos-multiple linear regression approach for prediction of wave parameters
Directory of Open Access Journals (Sweden)
M.A. Ghorbani
2017-06-01
The inter-comparisons demonstrated that the Chaos-MLR and pure MLR models yield almost the same accuracy in predicting the significant wave heights and the zero-up-crossing wave periods. Whereas, the augmented Chaos-MLR model is performed better results in term of the prediction accuracy vis-a-vis the previous prediction applications of the same case study.
Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures
Zou, Tao; Kaminski, Miroslaw Lech
2016-09-01
In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated for Bluewaters' FPSO (Floating Production, Storage and Offloading) which had been turret moored at Sable field for half a decade. The waves were predicted as sea-state time series consisting of one wind sea and one swell. The predicted waves were compared with wave data obtained from ERA-interim and buoy measurements. Furthermore, the fatigue calculations were also carried out for main deck and side shell locations. It has been concluded that predicted fatigue damages of main deck using WaveWatch-III are in a very good agreement regardless of differences in predicted wind waves and swells caused by differences in wave system partitioning. When compared to buoy measurements, the model underestimates fatigue damages of side shell by approximately 30 %. The reason for that has been found in wider directional spreading of actual waves. The WaveWatch-III wave model has been found suitable for the fatigue assessment. However, more attention should be paid on relative wave directionality, wave system partitioning and uncertainty analysis in further development.
Harfi, Thura T; Seo, Jung-Hee; Yasir, Hayder S; Welsh, Nathaniel; Mayer, Susan A; Abraham, Theodore P; George, Richard T; Mittal, Rajat
2017-01-15
To describe the derivation and validation of a novel echocardiographic metric for prediction of left ventricle thrombus (LVT). Computational fluid dynamic modeling using cardiac CT images was used to derive a novel echocardiography-based metric to predict the presence of LVT. We retrospectively reviewed 25 transthoracic echocardiograms showing definite LVT (LVT group). We then randomly selected 25 patients with LVEF ≥55% (Normal EF group) and 25 patients with severe cardiomyopathy (CMP) with LVEF ≤40% without evidence of LVT (CMP group). The E-wave Propagation Index (EPI) was measured as the E-wave velocity time-integral divided by the LV length. An EPI>1 indicates penetration of the mitral jet into the apex whereas an EPIEPI was compared between the three groups. Crude and adjusted odd ratios of EPI and LVT association were also measured. Mean EPI was highest for the normal EF group and lowest in the LVT group (1.7 vs. 0.8; pEPI also differed significantly between LVT and CMP groups (0.8 vs. 1.2; pEPI EPI EPI of less than 1 is an independent predictor of LVT formation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
in unison to solve a specific problem. The network learns through examples, so it requires good examples to train properly and further a trained network model can be used for prediction purpose. Proceedings of ICOE 2009 Wave transmission... prediction of multilayer floating breakwater using neural network 577 In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer neural networks are often used...
Deterministic and Stochastic Modelling of Ocean Surface Waves
Smit, P.B.
2014-01-01
Predicting the mean wave statistics in the nearshore, for instance the significant wave height, has predominantly been the domain of operational stochastic wave models based on the radiative transport (or energy balance) equation. Although reasonably successful in the nearshore, these models were
Horizontal circulation and jumps in Hamiltonian wave models
Gagarina, Elena; van der Vegt, Jacobus J.W.; Bokhove, Onno
We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian
Horizontal circulation and jumps in Hamiltonian wave models
Gagarina, Elena; van der Vegt, Jacobus J.W.; Bokhove, Onno
2013-01-01
We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian
Inner harbour wave agitation using boussinesq wave model
Directory of Open Access Journals (Sweden)
Panigrahi Jitendra K.
2015-01-01
Full Text Available Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity- to harbour site is established using Wave Model (WAM hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW. A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW. Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.
Inner harbour wave agitation using boussinesq wave model
Directory of Open Access Journals (Sweden)
Jitendra K. Panigrahi
2015-01-01
Full Text Available Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity to harbour site is established using Wave Model (WAM hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW. A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20 m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW. Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.
Wave Generation in Physical Models
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
Energy Technology Data Exchange (ETDEWEB)
Goldstein, P; Ryall, F D; Pasyanos, M E; Schultz, C A; Walter, W R
2000-07-18
An important challenge for seismic monitoring of nuclear explosions at low magnitude to verify a nuclear-test-ban treaty is the development of techniques that use regional phases for detection, location, and identification. In order to use such phases, region-specific earth models and tools are needed that accurately predict features such as travel times, amplitudes, and spectral characteristics. In this paper, we present our efforts to use two-dimensional finite-difference modeling to help develop and validate regional earth models for the Middle East and North Africa and to develop predictive algorithms for identifying anomalous regional phases. To help develop and validate a model for the Middle East and North Africa, we compare data and finite-difference simulations for selected regions. We show that the proposed three-dimensional regional model is a significant improvement over standard one-dimensional models by comparing features of broadband data and simulations and differences between observed and predicted features such as narrow-band group velocities. We show how a potential trade-off between source and structure can be avoided by constraining source parameters such as depth, mechanism, and moment/source-time function with independent data. We also present numerous observations of anomalous timing and amplitude of regional phases and show how incorporation of two-dimensional structure can explain many of these observations. Based on these observations, and the predictive capability of our simulations, we develop a simple model that can accurately predict the timing of such phases.
Rixen, M.; Ferreira-Coelho, E.; Signell, R.
2008-01-01
Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...
An improved numerical model for wave rotor design and analysis
Paxson, Daniel E.; Wilson, Jack
1993-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
Source Modeling Sleep Slow Waves
National Research Council Canada - National Science Library
Michael Murphy; Brady A. Riedner; Reto Huber; Marcello Massimini; Fabio Ferrarelli; Giulio Tononi; Marcus E. Raichle
2009-01-01
.... Here we use high-density EEG (hd-EEG) source modeling to show that individual spontaneous slow waves have distinct cortical origins, propagate uniquely across the cortex, and involve unique subsets of cortical structures...
Improved Wave-vessel Transfer Functions by Uncertainty Modelling
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio
2016-01-01
This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in input...
A wave model test bed study for wave energy resource characterization
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng
2017-12-01
This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.
A test-bed modeling study for wave resource assessment
Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.
2016-02-01
Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.
Energy Technology Data Exchange (ETDEWEB)
Simmons, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Myers, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johannesson, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-10-06
[1] We develop a global-scale P wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ∼2.8 millionP and Pnarrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multiscale inversion technique, regional trends as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0–97° distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed.
Electromagnetic Wave Propagation Models for Multiple-Diffraction Scenarios
Directory of Open Access Journals (Sweden)
Mehmet Barış TABAKCIOĞLU
2014-04-01
Full Text Available Electromagnetic wave propagation models have been used for coverage estimation and field prediction at the receiver to make more reliable and efficient digital broadcasting systems. Propagation models can be classified into two groups as numerical and ray tracing based models. There is a tradeoff between computation time and accuracy of field prediction among electromagnetic wave propagation models. Although numerical models predict accurately, it requires more computation times. Ray tracing based models predicts the field strength less accurately with lower computation time. Many propagation models have been developed to provide optimum solution for accuracy and computation time
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2011-01-01
The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....
Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter
2010-01-01
The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... Discussions on some of the design techniques based on. MPC and their .... is then calculated using the receding horizon concept, since the prediction ...... of interior point methods to model predictive control,. Journal of ...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1985-01-01
A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...
Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction
Directory of Open Access Journals (Sweden)
Wei Li
2016-05-01
Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.
Predicting the distribution of Montastraea reefs using wave exposure
Chollett, I.; Mumby, P. J.
2012-06-01
In the Caribbean region, forereef habitats dominated by Montastraea spp. have the highest biodiversity and support the largest number of ecosystem processes and services. Here we show that the distribution of this species-rich habitat can be explained by one environmental predictor: wave exposure. The relationship between wave exposure and the occurrence of Montastraea reefs was modelled using logistic regression for reefs throughout the Belize Barrier Reef, one of the largest and most topographically complex systems in the region. The model was able to predict correctly the occurrence of Montastraea reefs with an accuracy of 81%. Consistent with historical qualitative patterns, the distribution of Montastraea reefs is constrained in environments of high exposure. This pattern is likely to be driven by high rates of chronic sediment scour that constrain recruitment. The wide range of wave exposure conditions used to parameterize the model in Belize suggest that it should be transferable throughout much of the Caribbean region, constituting a fast and inexpensive alternative to traditional habitat mapping and complementing global efforts to map reef extent.
A generalized multivariate regression model for modelling ocean wave heights
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
Directory of Open Access Journals (Sweden)
Malcolm L. Spaulding
2017-03-01
Full Text Available Flood Insurance Rate Maps (FIRMs are developed by the Federal Emergency Management Agency (FEMA to provide guidance in establishing the risk to structures and infrastructure from storm surge sand associated waves in the coastal zone. The maps are used by state agencies and municipalities to help guide coastal planning and establish the minimum elevation and construction standards for new or substantially improved structures. A summary of the methods used and a comparison with the results of 2013 FIRM mapping are presented for Warwick, Rhode Island (RI, a coastal community located within Narragansett Bay. Because of its location, Warwick is protected from significant coastal erosion and wave attacks, but is subject to surge amplification. Concerns surrounding the FEMA methods used in the 2013 FIRM analysis are put in context with the National Research Council’s (NRC 2009 review of the FEMA coastal mapping program. New mapping is then performed using state of the art, fully coupled surge and wave modeling, and data analysis methods, to address the NRC concerns. The new maps and methodologies are in compliance with FEMA regulations and guidelines. This new approach makes extensive use of the numerical modeling results from the recent US Army Corp of Engineers, North Atlantic Coast Comprehensive Study (NACCS, 2015. Revised flooding maps are presented and compared to the 2013 FIRM maps, to provide insight into the differences. The new maps highlight the importance of developing better estimates of surge dynamics and the advancement in nearshore mapping of waves in flood inundated areas by the use of state of the art, two-dimensional, wave transformation models.
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... written to simulate an example of a randomly generated system. This paper can serve as tutorial to anyone interested in this area of research. Keywords: model predictive control, linear systems, discrete-time systems, constraints, quadratic programming. 1. Introduction. Model Predictive Control (MPC), also ...
Archaeological predictive model set.
2015-03-01
This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...
A Continuum Model of Actin Waves in Dictyostelium discoideum
Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.
2013-01-01
Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312
Predicting wave-induced ripple equilibrium geometry
Robert Nelson, Timothy; Voulgaris, George; Traykovski, Peter
2013-06-01
A comprehensive database of existing (since 1954) field and laboratory measurements of ripple geometry is compiled and combined with newly collected field data to examine the performance of ripple equilibrium predictors. Reanalysis of this enlarged ripple geometry data set reveals that ripples formed from monochromatic waves scale differently than ripples formed from random waves for many existing ripple predictors. Our analysis indicates that ripple wavelengths from the two data sets collapse into a single scaling when the semiorbital excursion and sediment grain diameter are used as normalizing factors. Ripple steepness remains relatively constant for both regular and irregular wave conditions, and it only slightly increases for shorter ripple wavelengths. These findings allowed for the development of a new equilibrium ripple predictor suitable for application in a wide range of wave and sediment conditions.
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave-Ice interaction in the Marginal Ice Zone: Toward a...scattering of waves by interaction with ice in the Marginal Ice Zone (MIZ). The wave model physics developed here will later be part of an operational...10.5670/oceanog.2014.73. Liu, A.K., B. Holt, and P.W. Vachon, 1991: Wave propagation in the Marginal Ice Zone: Model predictions and comparisons
DEFF Research Database (Denmark)
Benzon, Hans-Henrik; Bovith, Thomas
2008-01-01
Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...... for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used...
Overview of Wave to Wire Models
DEFF Research Database (Denmark)
Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco
A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge...... of the WEC behavior – such as motions and forces – in its operating wave conditions....
The US Navy Coupled Ocean-Wave Prediction System
2014-09-01
wave model to the ocean model (i.e., SWAN to NCOM) includes the Stokes drift current ( SDC ) from the waves due to the wave motion, the wave radiation...wave-radiation stress gradients from SWAN are applied in NCOM as a surface stress. The SDC from SWAN is included within the Coriolis term in...continuity equation (these SDC terms are imple- mented as in Bennis et al., 2011). The SDC is also used in the param- eterization of the enhancement of
Comprehensive Prediction of Large-height Swell-like Waves in East Coast of Korea
Kwon, S. J.; Lee, C.; Ahn, S. J.; Kim, H. K.
2014-12-01
There have been growing interests in the large-height swell-like wave (LSW) in the east coast of Korea because such big waves have caused human victims as well as damages to facilities such as breakwaters in the coast. The LSW was found to be generated due to an atmospherically great valley in the north area of the East Sea and then propagate long distance to the east coast of Korea in prominently southwest direction (Oh et al., 2010).In this study, we will perform two methods, real-time data based and numerical-model based predictions in order to predict the LSW in the east coast of Korea. First, the real-time data based prediction method uses information which is collected by the directional wave gauge installed near Sokcho. Using the wave model SWAN (Booij et al., 1999) and the wave ray method (Munk and Arthur, 1952), we will estimate wave data in open sea from the real-time data and predict the travel time of LSW from the measurement site (near Sokcho) to several target points in the east coast of Korea. Second, the numerical-model based method uses three different numerical models; WW3 in deep water, SWAN in shallow water, and CADMAS-SURF for wave run-up (CDIT). The surface winds from the 72 hours prediction system of NCEP (National Centers for Environmental Prediction) GFS (Global Forecast System) will be inputted in finer grids after interpolating these in certain domains of WW3 and SWAN models. The significant wave heights and peak wave directions predicted by the two methods will be compared to the measured data of LSW at several target points near the coasts. Further, the prediction method will be improved using more measurement sites which will be installed in the future. ReferencesBooij, N., Ris, R.C., and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. J. of Geophysical Research, 103(C4), 7649-7666.Munk, W.H. and Arthur, R.S. (1952). Gravity Waves. 13. Wave Intensity along a Refracted Ray
Design Wave Load Prediction by Non-Linear Strip Theories
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
1998-01-01
Some methods for predicting global stochastic wave load responses in ships are presented. The methods take into account the elastic behaviour of the ship and at least some of the non-linearities in the wave-induced loadings.Numerical rsults obtained for actual ships are reviewed with special...
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...... surface. NS3 is used to simulate the wave run-up due to a regular wave to calculate the maximum wave run-up around a cylinder. The aim of this paper is shown the calculations of NS3 code and compared with the data obtained from the large scale test performed in Grossen Wellenkanal (GWK...
On modeling internal gravity wave dynamics from infrasound propagation
Ribstein, Bruno; Millet, Christophe; Lott, Francois
2017-04-01
Low frequency acoustic waves (infrasounds) are generally used to remotely detect strong explosions, using their possibility of long-distance and coherent propagation. Numerical prediction of infrasounds is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although it is well-known that part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect both the temperature and the wind, yet the process by which the gravity wave field changes some infrasound arrivals remains not well understood. In the present work, we use a stochastic parameterization to model the subgrid scale gravity wave field from atmospheric states provided by ECMWF. Numerical evidence are presented showing that regardless of whether the superimposed gravity wave field possesses relatively small or large features the sensitivity of ground-based infrasound signals can be significantly different. A version of the gravity wave parameterization previously tuned by co-authors for climate modeling purpose is shown to not retrieve the duration of recorded acoustic signals. A new version of the wave-parameterization is here proposed which more accurately predict the small scale content of gravity wave fields, especially in the middle atmosphere. Compare to other semi-empirical approaches one value of this new parameterization is that the gravity wave drag obtained is in agreement with observations.
Evaluation of an energy-propagation wave refraction model
Vincent, C. E.; Carrie, A.
1988-03-01
A simple wave refraction model, based on the conservation of wave energy entering and leaving grid squares defined by an areal array of equally spaced depth points, has been tested on a number of idealized bathymetries and against two field data sets. The model allows waves to cross by treating the directionality of the wave field in terms of discrete energy bins 10° apart. Algorithms for predicting the extent of partial breaking ( DALLY, DEAN and DALRYMPLE, 1985 ; Journal of Geophysical Research, 90, 11917-11927) and for bottom friction over a movable bed ( GRANT and MADSEN, 1982 ; Journal of Geophysical Research, 87, 469-481) were initially incorporated in the model but, for operational reasons, were replaced by a fixed 'wave height to water depth' limit of 0.5 and by a single friction factor specified by the user. For a simple linear shoreline, close correspondence was found between the model and Snell's law for offshore directions up to 45° wave height differences are <5% while for direction the differences rise to <10% in 2 m water depth. Over a linear bank differences in wave angle between opposite sides can exceed 20% when uni-directional waves are used, due to the algorithm being irreversible; when waves with a directional spread are used the differences drop to <10%. The model is able to predict well the wave heights measured at a number of locations in Haringvliet Estuary, Holland after the friction factor was tuned to 0.04, although the higher-than-predicted wave heights further into the estuary suggests that energy input from the wind is significant and so the friction factor of 0.04 is probably an underestimate. The model also shows reasonable directional predictive ability when tested against data from Pt Sapin, Canada. Wave heights at this location are also in good agreement but suggest a friction factor nearer 0.1. The model performed well when compared with field data from Holland and Canada but was found to have a number of limitations when run
Prediction of propagated wave profiles based on point measurement
Directory of Open Access Journals (Sweden)
Sang-Beom Lee
2014-03-01
Full Text Available This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the experimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.
Inverse and Predictive Modeling
Energy Technology Data Exchange (ETDEWEB)
Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.
Detailed modeling of mountain wave PSCs
Directory of Open Access Journals (Sweden)
S. Fueglistaler
2003-01-01
Full Text Available Polar stratospheric clouds (PSCs play a key role in polar ozone depletion. In the Arctic, PSCs can occur on the mesoscale due to orographically induced gravity waves. Here we present a detailed study of a mountain wave PSC event on 25-27 January 2000 over Scandinavia. The mountain wave PSCs were intensively observed by in-situ and remote-sensing techniques during the second phase of the SOLVE/THESEO-2000 Arctic campaign. We use these excellent data of PSC observations on 3 successive days to analyze the PSCs and to perform a detailed comparison with modeled clouds. We simulated the 3-dimensional PSC structure on all 3 days with a mesoscale numerical weather prediction (NWP model and a microphysical box model (using best available nucleation rates for ice and nitric acid trihydrate particles. We show that the combined mesoscale/microphysical model is capable of reproducing the PSC measurements within the uncertainty of data interpretation with respect to spatial dimensions, temporal development and microphysical properties, without manipulating temperatures or using other tuning parameters. In contrast, microphysical modeling based upon coarser scale global NWP data, e.g. current ECMWF analysis data, cannot reproduce observations, in particular the occurrence of ice and nitric acid trihydrate clouds. Combined mesoscale/microphysical modeling may be used for detailed a posteriori PSC analysis and for future Arctic campaign flight and mission planning. The fact that remote sensing alone cannot further constrain model results due to uncertainities in the interpretation of measurements, underlines the need for synchronous in-situ PSC observations in campaigns.
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...
Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures
Marshall, T.; Challis, R. E.; Tebbutt, J. S.
2002-05-01
The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.
Directory of Open Access Journals (Sweden)
Ahmed Elhanafi
2016-12-01
Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.
Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment
DEFF Research Database (Denmark)
Parmeggiani, Stefano
This doctoral thesis is framed into the development process of the Wave Dragon wave energy converter (WEC). Wave energy is a vast and untapped resource with the potential of becoming an important contributor to the World energy mix, although presently its commercial exploitation has been hindered....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance...... by the difficulties of developers to demonstrate the technology feasibility at full-scale, first of all caused by lack of finance of full-scale demonstration units. Although having a large potential for the cost-effective generation of clean and renewable electricity, Wave Dragon is currently in a pre...
Faria, Luiz; Kasimov, Aslan; Rosales, Rodolfo
2012-11-01
We propose the following simple model equation that describes chaotic shock waves: ut +1/2 (u2 -uus)x = f (x ,us) . It is given on the half-line x = 0 . Here us(t) is the shock state and f is a given source term [1]. The equation is a modification of the Burgers equation that includes non-locality via the presence of the shock-state value of the solution in the equation itself. The model predicts steady-state solutions, their instability through a Hopf bifurcation, and a sequence of period-doubling bifurcations leading to chaos. This dynamics is similar to that observed in the one-dimensional reactive Euler equations that describe detonations. We present nonlinear numerical simulations as well as a complete linear stability theory for the equation. Supported by DMS-0907955 and KAUST Office of Competitive Research Grants.
Travelling waves in hybrid chemotaxis models
Franz, Benjamin; Painter, Kevin J; Erban, Radek
2013-01-01
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant) which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybr...
Energy based prediction models for building acoustics
DEFF Research Database (Denmark)
Brunskog, Jonas
2012-01-01
In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...
Modeling storm waves; Modeliser les houles de tempete
Energy Technology Data Exchange (ETDEWEB)
Benoit, M.; Marcos, F.; Teisson, Ch
1999-07-01
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...
Directional wave measurements and modelling
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.
-dimensional spectra and sech@u2@@ (beta theta) spreading function seem to provide a better estimate of the directional energy distribution for the monsoon conditions. While non-linear wave-wave interaction seems to be the major governing factor in the directional...
Morrow, C. T. (Principal Investigator)
1981-01-01
Measurements of wind speed, net irradiation, and of air, soil, and dew point temperatures in an orchard at the Rock Springs Agricultural Research Center, as well as topographical and climatological data and a description of the major apple growing regions of Pennsylvania were supplied to the University of Florida for use in running the P-model, freeze prediction program. Results show that the P-model appears to have considerable applicability to conditions in Pennsylvania. Even though modifications may have to be made for use in the fruit growing regions, there are advantages for fruit growers with the model in its present form.
Hoeke, R.; Storlazzi, C.; Ridd, P.
2011-01-01
This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.
Lafuente, Victoria; Herrera, Luis J; Pérez, María del Mar; Val, Jesús; Negueruela, Ignacio
2015-08-15
In this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit 'Calrico' (n = 260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using partial least squares (PLS) and least squares support vector machine (LS-SVM) regression methods. Also, a mutual-information-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R(2)) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R(2) values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed mutual-information-based variable selection algorithm was a powerful tool for the selection of the most relevant variables. © 2014 Society of Chemical Industry.
Coupling model for waves propagating over a porous seabed
Directory of Open Access Journals (Sweden)
C.C. Liao
2015-03-01
Full Text Available The wave–seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one-way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave–seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
Directory of Open Access Journals (Sweden)
Erik Friis-Madsen
2013-04-01
Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.
Prediction of propagated wave profiles based on point measurement
Directory of Open Access Journals (Sweden)
Lee Sang-Beom
2014-03-01
Full Text Available This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the expe¬rimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.
Real-time Ocean Wave Prediction for Optimal Performance of a Wave Energy Converter
Cavaglieri, Daniele; Bewley, Thomas
2013-11-01
In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the inability to accurately predict the profile of oncoming waves approaching the wave energy converter. For this reason, we developed a new hybrid method for state estimation of nonlinear systems, which is based on a variational formulation of an ensemble smoother, combined with the formulation of the ensemble Kalman smoother. This method has been employed for the optimal forecasting of ocean waves via sensors placed on an array of wave energy converters. The coupled simulation of ocean waves and energy devices has been carried out leveraging a nonlinear High Order Spectral code.
GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL
Energy Technology Data Exchange (ETDEWEB)
KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY N. [Los Alamos National Laboratory; BURIAN, STEVEN J. [NON LANL
2007-01-17
This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.
Travelling waves in the lattice epidemic model
Directory of Open Access Journals (Sweden)
Zhixian Yu
2010-07-01
Full Text Available In this article, we establish the existence and nonexistence of travelling waves for a lattice non-monotone integral equation which is an epidemic model. Moreover, the wave is either convergent to the positive equilibrium or oscillating on the positive equilibrium at positive infinity, and has the exponential asymptotic behavior at negative infinity. For the non-monotone case, the asymptotic speed of propagation also coincides with the minimal wave speed.
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
An improved wave-vector frequency-domain method for nonlinear wave modeling.
Jing, Yun; Tao, Molei; Cannata, Jonathan
2014-03-01
In this paper, a recently developed wave-vector frequency-domain method for nonlinear wave modeling is improved and verified by numerical simulations and underwater experiments. Higher order numeric schemes are proposed that significantly increase the modeling accuracy, thereby allowing for a larger step size and shorter computation time. The improved algorithms replace the left-point Riemann sum in the original algorithm by the trapezoidal or Simpson's integration. Plane waves and a phased array were first studied to numerically validate the model. It is shown that the left-point Riemann sum, trapezoidal, and Simpson's integration have first-, second-, and third-order global accuracy, respectively. A highly focused therapeutic transducer was then used for experimental verifications. Short high-intensity pulses were generated. 2-D scans were conducted at a prefocal plane, which were later used as the input to the numerical model to predict the acoustic field at other planes. Good agreement is observed between simulations and experiments.
Application of neural networks and support vector machine for significant wave height prediction
Directory of Open Access Journals (Sweden)
Jadran Berbić
2017-07-01
Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.
Testing the Predictions of Random Matrix Theory in Low Loss Wave Chaotic Scattering Systems
Yeh, Jen-Hao; Antonsen, Thomas; Ott, Edward; Anlage, Steven
2013-03-01
Wave chaos is a field where researchers apply random matrix theory (RMT) to predict the statistics of wave properties in complicated wave scattering systems. The RMT predictions have successfully demonstrated universality of the distributions of these wave properties, which only depend on the loss parameter of the system and the physical symmetry. Examination of these predictions in very low loss systems is interesting because extreme limits for the distribution functions and other predictions are encountered. Therefore, we use a wave-chaotic superconducting cavity to establish a low loss environment and test RMT predictions, including the statistics of the scattering (S) matrix and the impedance (Z) matrix, the universality (or lack thereof) of the Z- and S-variance ratios, and the statistics of the proper delay times of the Wigner-Smith time-delay matrix. We have applied an in-situ microwave calibration method (Thru-Reflection-Line method) to calibrate the cryostat system, and we also applied the random coupling model to remove the system-specific features. Our experimental results of different properties agree with the RMT predictions. This work is funded by the ONR/Maryland AppEl Center Task A2 (contract No. N000140911190), the AFOSR under grant FA95500710049, and Center for Nanophysics and Advanced Materials.
Traveling waves in an optimal velocity model of freeway traffic
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Modelling wave-boundary layer interaction for wind power applications
Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.
2012-04-01
Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.
Solitary waves in dimer binary collision model
Ahsan, Zaid; Jayaprakash, K. R.
2017-01-01
Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Boussinesq modeling of wave-induced hydrodynamics in coastal wetlands
Chakrabarti, Agnimitro; Brandt, Steven R.; Chen, Qin; Shi, Fengyan
2017-05-01
In this paper, an improved formulation of the vegetation drag force, applicable for the fully nonlinear Boussinesq equations and based on the use of the depth-varying, higher-order expansion of the horizontal velocity, in the quadratic vegetation drag law has been presented. The model uses the same numerical schemes as FUNWAVE TVD but is based on the CACTUS framework. The model is validated for wave height and setup, against laboratory experiments with and without vegetation cover. The wave attenuation results using the improved formulation were compared with those using the first-order reference velocity as well as with analytical solutions using linear wave theory. The analytical solution using the depth-varying velocity, predicted by the linear wave theory, was shown to match the model results with the fully expanded velocity approach very well for all wave cases, except under near-emergent and emergent conditions (when the ratio of stem height to water depth is greater than 0.75) and when the Ursell (Ur) number is less than 5. Simulations during peak storm waves, during Hurricane Isaac, showed that vegetation is very effective in reducing setup on platforms and in reducing the wave energy within the first few hundred meters.
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
TE Wave Measurement and Modeling
Sikora, John P; Sonnad, Kiran G; Alesini, David; De Santis, Stefano
2013-01-01
In the TE wave method, microwaves are coupled into the beam-pipe and the effect of the electron cloud on these microwaves is measured. An electron cloud (EC) density can then be calculated from this measurement. There are two analysis methods currently in use. The first treats the microwaves as being transmitted from one point to another in the accelerator. The second more recent method, treats the beam-pipe as a resonant cavity. This paper will summarize the reasons for adopting the resonant TE wave analysis as well as give examples from CESRTA and DA{\\Phi}NE of resonant beam-pipe. The results of bead-pull bench measurements will show some possible standing wave patterns, including a cutoff mode (evanescent) where the field decreases exponentially with distance from the drive point. We will outline other recent developments in the TE wave method including VORPAL simulations of microwave resonances, as well as the simulation of transmission in the presence of both an electron cloud and magnetic fields.
Source modelling at the dawn of gravitational-wave astronomy
Gerosa, Davide
2016-09-01
The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
Davies, A.G; Ribberink, Jan S.; Temperville, A.; Zyserman, J.A.
1997-01-01
As a part of the MAST2 G8-M Coastal Morphodynamics project, the predictions of four sediment transport models have been compared with detailed laboratory data sets obtained in the bottom boundary layer beneath regular waves, asymmetrical waves, and regular waves superimposed co-linearly on a
A Critical Analysis and Validation of the Accuracy of Wave Overtopping Prediction Formulae for OWECs
Directory of Open Access Journals (Sweden)
David Gallach-Sánchez
2018-01-01
Full Text Available The development of wave energy devices is growing in recent years. One type of device is the overtopping wave energy converter (OWEC, for which the knowledge of the wave overtopping rates is a basic and crucial aspect in their design. In particular, the most interesting range to study is for OWECs with steep slopes to vertical walls, and with very small freeboards and zero freeboards where the overtopping rate is maximized, and which can be generalized as steep low-crested structures. Recently, wave overtopping prediction formulae have been published for this type of structures, although their accuracy has not been fully assessed, as the overtopping data available in this range is scarce. We performed a critical analysis of the overtopping prediction formulae for steep low-crested structures and the validation of the accuracy of these formulae, based on new overtopping data for steep low-crested structures obtained at Ghent University. This paper summarizes the existing knowledge about average wave overtopping, describes the physical model tests performed, analyses the results and compares them to existing prediction formulae. The new dataset extends the wave overtopping data towards vertical walls and zero freeboard structures. In general, the new dataset validated the more recent overtopping formulae focused on steep slopes with small freeboards, although the formulae are underpredicting the average overtopping rates for very small and zero relative crest freeboards.
-Advanced Models for Tsunami and Rogue Waves
Directory of Open Access Journals (Sweden)
D. W. Pravica
2012-01-01
Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.
Surface acoustic wave probe implant for predicting epileptic seizures
Energy Technology Data Exchange (ETDEWEB)
Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL
2012-04-24
A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.
Pediatric extracorporeal shock wave lithotripsy: Predicting successful outcomes.
McAdams, Sean; Shukla, Aseem R
2010-10-01
Extracorporeal shock wave lithotripsy (ESWL) is currently a first-line procedure of most upper urinary tract stones ionizing radiation, perhaps utilizing advancements in ultrasound and magnetic resonance imaging. This report provides a review of the current literature evaluating the patient attributes and stone factors that may be predictive of successful ESWL outcomes along with reviewing the role of pre-operative imaging and considerations for patient safety.
Melanoma risk prediction models
Directory of Open Access Journals (Sweden)
Nikolić Jelena
2014-01-01
Full Text Available Background/Aim. The lack of effective therapy for advanced stages of melanoma emphasizes the importance of preventive measures and screenings of population at risk. Identifying individuals at high risk should allow targeted screenings and follow-up involving those who would benefit most. The aim of this study was to identify most significant factors for melanoma prediction in our population and to create prognostic models for identification and differentiation of individuals at risk. Methods. This case-control study included 697 participants (341 patients and 356 controls that underwent extensive interview and skin examination in order to check risk factors for melanoma. Pairwise univariate statistical comparison was used for the coarse selection of the most significant risk factors. These factors were fed into logistic regression (LR and alternating decision trees (ADT prognostic models that were assessed for their usefulness in identification of patients at risk to develop melanoma. Validation of the LR model was done by Hosmer and Lemeshow test, whereas the ADT was validated by 10-fold cross-validation. The achieved sensitivity, specificity, accuracy and AUC for both models were calculated. The melanoma risk score (MRS based on the outcome of the LR model was presented. Results. The LR model showed that the following risk factors were associated with melanoma: sunbeds (OR = 4.018; 95% CI 1.724- 9.366 for those that sometimes used sunbeds, solar damage of the skin (OR = 8.274; 95% CI 2.661-25.730 for those with severe solar damage, hair color (OR = 3.222; 95% CI 1.984-5.231 for light brown/blond hair, the number of common naevi (over 100 naevi had OR = 3.57; 95% CI 1.427-8.931, the number of dysplastic naevi (from 1 to 10 dysplastic naevi OR was 2.672; 95% CI 1.572-4.540; for more than 10 naevi OR was 6.487; 95%; CI 1.993-21.119, Fitzpatricks phototype and the presence of congenital naevi. Red hair, phototype I and large congenital naevi were
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Can we predict the growth of sand waves? Hindcast of a field experiment in the Bisanseto Sea, Japane
Knaapen, Michiel; Hulscher, Suzanne J.M.H.; Scholl, O.; Scholl, Olaf; Edge, Billy L.
2001-01-01
To optimise the dredging of sand waves in navigation channels, it is important to predict the regeneration of the sand waves. For this purpose, the authors combine a morphodynamic evolution model, based on the Landau equation, with data measured in a field experiment in the Bisanseto sea in Japan. A
A Coupled Atmosphere-Ocean-Wave Modeling System
Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.
2012-12-01
A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.
Wave Modeling of the Solar Wind
Directory of Open Access Journals (Sweden)
Leon Ofman
2010-10-01
Full Text Available The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD, and high-frequency (ion-cyclotron range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.
Hydraulic Model Tests on Modified Wave Dragon
DEFF Research Database (Denmark)
Hald, Tue; Lynggaard, Jakob
are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: ”Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequentiel tests of changes to the model geometry and mass distribution parameters” sponsored by the Danish Energy Agency...... (DEA) wave energy programme. The tests will establish a well documented basis for the development of a 1:4.5 scale prototype planned for testing Nissum Bredning, a sea inlet on the Danish West Coast....
Between tide and wave marks: a unifying model of physical zonation on littoral shores
Bird, Christopher E.; Franklin, Erik C.; Smith, Celia M.
2013-01-01
The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic. PMID:24109544
Between tide and wave marks: a unifying model of physical zonation on littoral shores.
Bird, Christopher E; Franklin, Erik C; Smith, Celia M; Toonen, Robert J
2013-01-01
The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as 'intertidal', whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional "intertidal zone". We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic.
Modeling and Inversion of Scattered Surface waves
Riyanti, C.D.
2005-01-01
In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimate
Simple opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Wave Star modellen er udarbejdet i programmeringssproget Delphi. Modellerne er en videre udarbejdelse af tidligere anvendte Excel-modeller. I forhold til Excelmodellerne udmærker de nye Dephi-modeller sig ved at beregningerne udføres mange gange hurtigere og modellerne kan håndtere lange tidsserier...
Weak versus strong wave turbulence in the MMT model
Chibbaro, Sergio; Onorato, Miguel
2016-01-01
Within the spirit of fluid turbulence, we consider the one-dimensional Majda-McLaughlin-Tabak (MMT) model that describes the interactions of nonlinear dispersive waves. We perform a detailed numerical study of the direct energy cascade in the defocusing regime. In particular, we consider a configuration with large-scale forcing and small scale dissipation, and we introduce three non- dimensional parameters: the ratio between nonlinearity and dispersion, {\\epsilon}, and the analogues of the Reynolds number, Re, i.e. the ratio between the nonlinear and dissipative time-scales, both at large and small scales. Our numerical experiments show that (i) in the limit of small {\\epsilon} the spectral slope observed in the statistical steady regime corresponds to the one predicted by the Weak Wave Turbulence (WWT) theory. (ii) As the nonlinearity is increased, the WWT theory breaks down and deviations from its predictions are observed. (iii) It is shown that such departures from the WWT theoretical predictions are accom...
FREAK WAVE: prediction and its generation from phase coherence
Latifah, A.L.
2016-01-01
The processes that lead to the appearance of an extreme wave are not unique: one extreme wave may occur due to different mechanisms than another extreme wave. This gives challenges in the study of extreme waves, which are also called ’freak’ waves, or ’rogue’ waves when they satisfy certain
Numerical Modelling and Statistical Analysis of Ocean Wave Energy Converters and Wave Climates
Li, Wei
2016-01-01
Ocean wave energy is considered to be one of the important potential renewable energy resources for sustainable development. Various wave energy converter technologies have been proposed to harvest the energy from ocean waves. This thesis is based on the linear generator wave energy converter developed at Uppsala University. The research in this thesis focuses on the foundation optimization and the power absorption optimization of the wave energy converters and on the wave climate modelling a...
A wave-resolving model for nearshore suspended sediment transport
Ma, Gangfeng; Chou, Yi-Ju; Shi, Fengyan
2014-05-01
This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.
Toward Improving Prediction of Sediment Transport over Wave-Induced Ripples
Absi, Rafik
2011-01-01
Sediment transport over wave-induced ripples is a very complex phenomenon where available models fail to provide accurate predictions. For coastal engineering applications, the 1-DV advection-diffusion equation could be used with an additional parameter {\\alpha} related to the process of vortex shedding above ripples (Absi, 2010). The aim of this study is to provide simple practical analytical tools. An analytical eddy viscosity profile was validated by DNS data of turbulent channel flows (Absi et al., 2011). In this study, we will show that: (1) the period-averaged eddy viscosity in oscillatory boundary layers could be described by this simple analytical formulation; (2) The shape of the vertical profile is validated by period-averaged eddy viscosity of baseline (BSL) k-{\\omega} model (Suntoyo and Tanaka, 2009) for sinusoidal and asymmetric waves; (3) The vertical eddy viscosity profile depends on the wave non-linearity parameter and requires therefore a specific calibration.
Surface Acoustic Wave Strain Sensor Model
Wilson, William; Gary ATKINSON
2011-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasi...
Monthly and seasonal predictability of heat waves in West Africa with CNRM-CM
Batté, Lauriane; Ardilouze, Constantin; Déqué, Michel
2017-04-01
West Africa, and in particular Sahel, are vulnerable to spring heat waves during which maximum daily temperatures reach over 40°C for several consecutive days. These heat waves have severe consequences on the health and activities of local populations. Moreover, several studies suggest that their frequency and intensity may increase in future decades. The French National Research Agency (ANR) project ACASIS brings together researchers from different backgrounds (geography, climate, meteorology, epidemiology, demography) to improve the understanding of the causes and consequences of these heat waves, as well as their variability and predictability at different time and spatial scales. In this presentation we wish to assess the predictability of Sahelian heat waves in the sub-seasonal and seasonal forecasts with Météo-France system 5, based on the CNRM-CM coupled model updated from its CMIP5 version. The seasonal forecasts are issued each month as part of the Copernicus C3S initiative ; sub-seasonal runs are released for research purposes in the framework of the WWRP/WCRP S2S project. Both forecasts are calibrated with corresponding hindcasts over the 1993-2014 period. Despite surface temperature biases, and trouble in properly representing the persistence of heat spells over the region, some evidence of predictive skill is found for duration and frequency of heat waves defined as a threshold of consecutive days of daily minimum or maximum temperatures reaching over the 90th percentile. A more detailed assessment of the spring 2016 real-time forecasts will also be presented, using a weather regime approach to illustrate how the seasonal prediction system managed to capture the large-scale signal for above-normal occurrences and duration of heat waves last year, but failed to correctly pinpoint the geographical location of these anomalies.
Aijaz, S.; Ghantous, M.; Babanin, A. V.; Ginis, I.; Thomas, B.; Wake, G.
2017-05-01
The effects of turbulence generated by nonbreaking waves have been investigated by testing and evaluating a new nonbreaking wave parameterization in a coupled hurricane-ocean-wave model. The MPI version of the Princeton Ocean Model (POM) with hurricane forcing is coupled with the WAVEWATCH-III (WW3) surface wave model. Hurricane Ivan is chosen as the test case due to its extreme intensity and availability of field data during its passage. The model results are validated against field observations of wave heights and sea surface temperatures (SSTs) from the National Data Buoy Centre (NDBC) during Hurricane Ivan and against limited in situ current and bottom temperature data. A series of numerical experiments is set up to examine the influence of the nonbreaking wave parameterization on the mixing of upper ocean. The SST response from the modeling experiments indicates that the nonbreaking wave-induced mixing leads to significant cooling of the SST and deepening of the mixed layer. It was found that the nondimensional constant b1 in the nonbreaking wave parameterization has different impacts on the weak and the strong sides of the storm track. A constant value of b1 leads to improved predictions on the strong side of the storm while a steepness-dependent b1 provides a better agreement with in situ observations on the weak side. A separate simulation of the intense tropical cyclone Olwyn in north-west Australia revealed the same trend for b1 on the strong side of the tropical cyclone.
Predictive simulation of guide-wave structural health monitoring
Giurgiutiu, Victor
2017-04-01
This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Directory of Open Access Journals (Sweden)
Mohan Raghavan
Full Text Available Synfire waves are propagating spike packets in synfire chains, which are feedforward chains embedded in random networks. Although synfire waves have proved to be effective quantification for network activity with clear relations to network structure, their utilities are largely limited to feedforward networks with low background activity. To overcome these shortcomings, we describe a novel generalisation of synfire waves, and define 'synconset wave' as a cascade of first spikes within a synchronisation event. Synconset waves would occur in 'synconset chains', which are feedforward chains embedded in possibly heavily recurrent networks with heavy background activity. We probed the utility of synconset waves using simulation of single compartment neuron network models with biophysically realistic conductances, and demonstrated that the spread of synconset waves directly follows from the network connectivity matrix and is modulated by top-down inputs and the resultant oscillations. Such synconset profiles lend intuitive insights into network organisation in terms of connection probabilities between various network regions rather than an adjacency matrix. To test this intuition, we develop a Bayesian likelihood function that quantifies the probability that an observed synfire wave was caused by a given network. Further, we demonstrate it's utility in the inverse problem of identifying the network that caused a given synfire wave. This method was effective even in highly subsampled networks where only a small subset of neurons were accessible, thus showing it's utility in experimental estimation of connectomes in real neuronal-networks. Together, we propose synconset chains/waves as an effective framework for understanding the impact of network structure on function, and as a step towards developing physiology-driven network identification methods. Finally, as synconset chains extend the utilities of synfire chains to arbitrary networks, we suggest
Prediction of height and period joint distributions for stochastic ocean waves
Wang, Ying-guang
2017-06-01
This article proposes a new methodology to predict the wave height and period joint distributions by utilizing a transformed linear simulation method. The proposed transformed linear simulation method is based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the first four moments of the transformed model match the moments of the true process. The proposed new approach is applied for calculating the wave height and period joint distributions of a sea state with the surface elevation data measured at an offshore site, and its accuracy and efficiency are favorably validated by using comparisons with the results from an empirical joint distribution model, from a linear simulation model and from a second-order nonlinear simulation model.
A numerical model for dynamic wave rotor analysis
Paxson, D. E.
1995-01-01
A numerical model has been developed which can predict the dynamic (and steady state) performance of a wave rotor, given the geometry and time dependent boundary conditions. The one-dimensional, perfect gas, CFD based code tracks the gasdynamics in each of the wave rotor passages as they rotate past the various ducts. The model can operate both on and off-design, allowing dynamic behavior to be studied throughout the operating range of the wave rotor. The model accounts for several major loss mechanisms including finite passage opening time, fluid friction, heat transfer to and from the passage walls, and leakage to and from the passage ends. In addition, it can calculate the amount of work transferred to and from the fluid when the flow in the ducts is not aligned with the passages such as occurs in off-design operation. Since it is one-dimensional, the model runs reasonably fast on a typical workstation. This paper will describe the model and present the results of some transient calculations for a conceptual four port wave rotor designed as a topping cycle for a small gas turbine engine.
The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin.
Fedele, Francesco; Lugni, Claudio; Chawla, Arun
2017-09-11
We present a study on the prediction of rogue waves during the 1-hour sea state of Hurricane Joaquin when the Merchant Vessel El Faro sank east of the Bahamas on October 1, 2015. High-resolution hindcast of hurricane-generated sea states and wave simulations are combined with novel probabilistic models to quantify the likelihood of rogue wave conditions. The data suggests that the El Faro vessel was drifting at an average speed of approximately 2.5 m/s prior to its sinking. As a result, we estimated that the probability that El Faro encounters a rogue wave whose crest height exceeds 14 meters while drifting over a time interval of 10 (50) minutes is ~1/400 (1/130). The largest simulated wave is generated by the constructive interference of elementary spectral components (linear dispersive focusing) enhanced by bound nonlinearities. Not surprisingly then, its characteristics are quite similar to those displayed by the Andrea, Draupner and Killard rogue waves.
Satellite data for systematic validation of wave model results in the Black Sea
Behrens, Arno; Staneva, Joanna
2017-04-01
The Black Sea is with regard to the availability of traditional in situ wave measurements recorded by usual waverider buoys a data sparse semi-enclosed sea. The only possibility for systematic validations of wave model results in such a regional area is the use of satellite data. In the frame of the COPERNICUS Marine Evolution System for the Black Sea that requires wave predictions, the third-generation spectral wave model WAM is used. The operational system is demonstrated based on four years' systematic comparisons with satellite data. The aim of this investigation was to answer two questions. Is the wave model able to provide a reliable description of the wave conditions in the Black Sea and are the satellite measurements suitable for validation purposes on such a regional scale ? Detailed comparisons between measured data and computed model results for the Black Sea including yearly statistics have been done for about 300 satellite overflights per year. The results discussed the different verification schemes needed to review the forecasting skills of the operational system. The good agreement between measured and modeled data supports the expectation that the wave model provides reasonable results and that the satellite data is of good quality and offer an appropriate validation alternative to buoy measurements. This is the required step towards further use of those satellite data for assimilation into the wave fields to improve the wave predictions. Additional support for the good quality of the wave predictions is provided by comparisons between ADCP measurements that are available for a short time period in February 2012 and the corresponding model results at a location near the Bulgarian coast in the western Black Sea. Sensitivity tests with different wave model options and different driving wind fields have been done which identify the appropriate model configuration that provides the best wave predictions. In addition to the comparisons between measured
Directory of Open Access Journals (Sweden)
Feng Liu
2015-01-01
Full Text Available The signal fading in wireless underground sensor networks (WUSNs, which is caused by lossy media such as soil and sand, can be reduced by applying technology of magnetoinductive (MI propagation. This technology can effectively establish a communication at very low frequency (VLF. In contrast to the previous studies in the literature, which mostly focus on the propagation of plane waves, we propose a new approach based on the plane wave expansion (PWE to model the near field MI waves. The proposed approach is based on excitation of a point source, which is a common case in a practical WUSN. The frequent usage of square lattice MI structure is investigated. To verify the mathematical derivation, the simulation of time domain based on the fourth-order Runge-Kutta (RK method is carried out. Simulation results show that the new model can provide a precise prediction to the MI wave’s propagation, with the computation load being one-tenth of that of the time domain simulation. The characteristics of the propagation of the MI waves are presented and discussed. Finally, the reflection on the edge of the MI structure is reduced by analysing the terminal matching conditions and calculating a method for matching impedances.
Prediction and near-field observation of skull-guided acoustic waves
Estrada, Héctor; Razansky, Daniel
2016-01-01
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Confidence scores for prediction models
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; van de Wiel, MA
2011-01-01
modelling strategy is applied to different training sets. For each modelling strategy we estimate a confidence score based on the same repeated bootstraps. A new decomposition of the expected Brier score is obtained, as well as the estimates of population average confidence scores. The latter can be used......In medical statistics, many alternative strategies are available for building a prediction model based on training data. Prediction models are routinely compared by means of their prediction performance in independent validation data. If only one data set is available for training and validation......, then rival strategies can still be compared based on repeated bootstraps of the same data. Often, however, the overall performance of rival strategies is similar and it is thus difficult to decide for one model. Here, we investigate the variability of the prediction models that results when the same...
Prediction models in complex terrain
DEFF Research Database (Denmark)
Marti, I.; Nielsen, Torben Skov; Madsen, Henrik
2001-01-01
The objective of the work is to investigatethe performance of HIRLAM in complex terrain when used as input to energy production forecasting models, and to develop a statistical model to adapt HIRLAM prediction to the wind farm. The features of the terrain, specially the topography, influence...... are calculated using on-line measurements of power production as well as HIRLAM predictions as input thus taking advantage of the auto-correlation, which is present in the power production for shorter pediction horizons. Statistical models are used to discribe the relationship between observed energy production...... the performance of HIRLAM in particular with respect to wind predictions. To estimate the performance of the model two spatial resolutions (0,5 Deg. and 0.2 Deg.) and different sets of HIRLAM variables were used to predict wind speed and energy production. The predictions of energy production for the wind farms...
Surface Acoustic Wave Strain Sensor Model
Directory of Open Access Journals (Sweden)
William WILSON
2011-04-01
Full Text Available NASA Langley Research Center is investigating Surface Acoustic Wave (SAW sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented.
Boussinesq modeling of surface waves due to underwater landslides
Directory of Open Access Journals (Sweden)
D. Dutykh
2013-05-01
Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.
Wave-to-wire Modelling of Wave Energy Converters
DEFF Research Database (Denmark)
Ferri, Francesco
and non-technical issues. These can be efficiently summarised in the cost of the energy produced by the various wave energy converters: If compared with other renewable energy technologies the cost of energy from the ocean waves is still significantly higher. Holding the comparison it also important...... to noticed that there is not a clear front runner in the wave energy sector, which fades effort and funding over a too broad frame. In order to assist efficient development and analysis of wave energy converters and therefore to accelerate the sector progression towards commercialisation, a generally......, but talking about renewable energy partially ravels the problem out. Wave energy is a large, mostly untapped, renewable energy resource. It has the potential to contribute significantly to the future energy mix, but the sector has not yet rolled off into the market in consequence of a number of technical...
Modelling, controlling, predicting blackouts
Wang, Chengwei; Baptista, Murilo S
2016-01-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids, and another one for smart grids. The control strategie...
A heuristic model of stone comminution in shock wave lithotripsy.
Smith, Nathan B; Zhong, Pei
2013-08-01
A heuristic model is presented to describe the overall progression of stone comminution in shock wave lithotripsy (SWL), accounting for the effects of shock wave dose and the average peak pressure, P+(avg), incident on the stone during the treatment. The model is developed through adaptation of the Weibull theory for brittle fracture, incorporating threshold values in dose and P+(avg) that are required to initiate fragmentation. The model is validated against experimental data of stone comminution from two stone types (hard and soft BegoStone) obtained at various positions in lithotripter fields produced by two shock wave sources of different beam width and pulse profile both in water and in 1,3-butanediol (which suppresses cavitation). Subsequently, the model is used to assess the performance of a newly developed acoustic lens for electromagnetic lithotripters in comparison with its original counterpart both under static and simulated respiratory motion. The results have demonstrated the predictive value of this heuristic model in elucidating the physical basis for improved performance of the new lens. The model also provides a rationale for the selection of SWL treatment protocols to achieve effective stone comminution without elevating the risk of tissue injury.
Coupled wave model for large magnet coils
Gabriel, G. J.
1980-01-01
A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.
Wave-current interactions: model development and preliminary results
Mayet, Clement; Lyard, Florent; Ardhuin, Fabrice
2013-04-01
The coastal area concentrates many uses that require integrated management based on diagnostic and predictive tools to understand and anticipate the future of pollution from land or sea, and learn more about natural hazards at sea or activity on the coast. The realistic modelling of coastal hydrodynamics needs to take into account various processes which interact, including tides, surges, and sea state (Wolf [2008]). These processes act at different spatial scales. Unstructured-grid models have shown the ability to satisfy these needs, given that a good mesh resolution criterion is used. We worked on adding a sea state forcing in a hydrodynamic circulation model. The sea state model is the unstructured version of WAVEWATCH III c (Tolman [2008]) (which version is developed at IFREMER, Brest (Ardhuin et al. [2010]) ), and the hydrodynamic model is the 2D barotropic module of the unstructured-grid finite element model T-UGOm (Le Bars et al. [2010]). We chose to use the radiation stress approach (Longuet-Higgins and Stewart [1964]) to represent the effect of surface waves (wind waves and swell) in the barotropic model, as previously done by Mastenbroek et al. [1993]and others. We present here some validation of the model against academic cases : a 2D plane beach (Haas and Warner [2009]) and a simple bathymetric step with analytic solution for waves (Ardhuin et al. [2008]). In a second part we present realistic application in the Ushant Sea during extreme event. References Ardhuin, F., N. Rascle, and K. Belibassakis, Explicit wave-averaged primitive equations using a generalized Lagrangian mean, Ocean Modelling, 20 (1), 35-60, doi:10.1016/j.ocemod.2007.07.001, 2008. Ardhuin, F., et al., Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr., 40 (9), 1917-1941, doi:10.1175/2010JPO4324.1, 2010. Haas, K. A., and J. C. Warner, Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Generative Modeling for Machine Learning on the D-Wave
Energy Technology Data Exchange (ETDEWEB)
Thulasidasan, Sunil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Sciences Group
2016-11-15
These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.
Deterministic combination of numerical and physical coastal wave models
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas; Jakobsen, K.P.
2007-01-01
A deterministic combination of numerical and physical models for coastal waves is developed. In the combined model, a Boussinesq model MIKE 21 BW is applied for the numerical wave computations. A piston-type 2D or 3D wavemaker and the associated control system with active wave absorption provides...... modes) near the wavemaker are taken into account. With this approach, the data transfer between the two models is thus on a deterministic level with detailed wave information transmitted along the wavemaker....
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Cultural Resource Predictive Modeling
2017-10-01
restrictive layer, CaCO3 content, organic matter content/ A Horizon thickness, erosion potential (k factor, Erosion/Deposition Model), available water ...ruins. The layers are interpreted along with other topographical features, such as distance to water , to make determinations on potential for CRs. This...huge areas of the Chesapeake Bay or Atlantic Ranges, which are water ranges with the potential for historic and prehistoric sites. 2.2.9 Edwards
Astrophysical Model Selection in Gravitational Wave Astronomy
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
Krishnamurti, T. N.; Kumar, Vinay
2017-04-01
This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.
Pediatric extracorporeal shock wave lithotripsy: Predicting successful outcomes
Directory of Open Access Journals (Sweden)
Sean McAdams
2010-01-01
Full Text Available Extracorporeal shock wave lithotripsy (ESWL is currently a first-line procedure of most upper urinary tract stones <2 cm of size because of established success rates, its minimal invasiveness and long-term safety with minimal complications. Given that alternative surgical and endourological options exist for the management of stone disease and that ESWL failure often results in the need for repeat ESWL or secondary procedures, it is highly desirable to identify variables predicting successful outcomes of ESWL in the pediatric population. Despite numerous reports and growing experience, few prospective studies and guidelines for pediatric ESWL have been completed. Variation in the methods by which study parameters are measured and reported can make it difficult to compare individual studies or make definitive recommendations. There is ongoing work and a need for continuing improvement of imaging protocols in children with renal colic, with a current focus on minimizing exposure to ionizing radiation, perhaps utilizing advancements in ultrasound and magnetic resonance imaging. This report provides a review of the current literature evaluating the patient attributes and stone factors that may be predictive of successful ESWL outcomes along with reviewing the role of pre-operative imaging and considerations for patient safety.
A 3D fully coupled wave-current-sediment model
Liu, L.; Shen, L.; Feddy, A.; Bennis, A. C.; Mouazé, D.; Chareyre, B.
2016-02-01
In the framework of new energy sources, marine energy can contribute to diversification of energy mix. The study site is the Alderney Race where tidal velocities can exceed 4 meters per second. With this high current speeds, this site represents one of the best opportunities for exploitation of the tidal stream. Our aim is to investigate the influence of this high current speeds on the sediment transport. Modeling the sediment transport in the coastal environment requires an accurate prediction of current velocity and bottom shear stress. For that, the numerical wave-current model MARS-WW3 will be used to analyze the wave-current interaction and comparisons with experimental ADCP data will be presented. To simulate the non-cohesive sediment transport (such as sand, gravel or pebbles), this numerical model will be coupled with a discrete element model like YADE. In first time, the discrete model used will be validated with different tests cases. After, we will present the coupling MARS-WW3-YADE, in particular the expression and exchange of different forces exerted by the fluid flow on the sediments and by sediments on the fluid. Finally, simulations of the sediment transport will be shown and we will interest in particular to the influence of size and density of sediments. We also investigate the effects of tide and wave currents on the sediment displacement.
Characteristic model of travelling wave ultrasonic motor.
Jingzhuo, Shi; Dongmei, You
2014-02-01
In general, the design and analysis of ultrasonic motor and motor's control strategy are based on mathematical model. The academic model is widely used in the analysis of traveling wave ultrasonic motor (TWUSM). But the dispersive characteristic of piezoelectric ceramics and other complicated process, such as the friction, make the model's precision not so accurate. On the other hand, identification modeling method, which is built based on the tested data, has obtained increasing application in the study of ultrasonic motor's control technology. Based on the identification model, many control strategies can be designed easily. But the identification model is an approximate model, so if a more accurate model of ultrasonic motor can be obtained, the analysis and design of motor control system will be more effective. Characteristic model is a kind of identification model which can accurately describe the characteristics of TWUSM. Based on the tested data, this paper proposes the modeling method of ultrasonic motor's characteristic model. The paper also makes a comparison of the effectiveness of different identification algorithms. Aiming at the speed control of ultrasonic motor, the influence of the parameter's initial values on the precision of model is discussed. The calculating results indicate the availability of this characteristic model. Copyright © 2013 Elsevier B.V. All rights reserved.
Underwater Noise Modelling of Wave Energy Devices
Energy Technology Data Exchange (ETDEWEB)
NONE
2009-07-01
Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.
Modeling Pancake Formation with a Coupled Wave-Ice Model
Veeramony, J.; Orzech, M.; Shi, F.; Bateman, S. P.; Calantoni, J.
2016-12-01
Recent results from the ONR-sponsored Arctic Sea State DRI cruise (Thomson et al., 2016, EOS, in press) suggest that small-scale pancake ice formation is an important process in the initial recovery and refreezing of the Arctic pack ice each autumn. Ocean surface waves and ambient temperature play significant roles in shaping and/or limiting the pancake growth patterns, which may either facilitate or delay the recovery of the ice pack. Here we apply a phase-resolving, coupled wave-ice system, consisting of a CFD wave model (NHWAVE) and a discrete-element ice model (LIGGGHTS), to investigate the formation processes of pancake ice under different conditions. A series of simulations is run, each beginning with a layer of disconnected ice particles floating on the ocean surface. Wave conditions and ice bonding properties are varied to examine the effects of mild versus stormy conditions, wind waves versus swell, and warmer versus colder temperatures. Model runs are limited to domains of O(1 sq km). Initial tests have shown some success in replicating qualitative results from the Sea State cruise, including the formation of irregularly shaped pancakes from the "frazil" ice layer, changes in formation processes caused by varying ambient temperature (represented through variations in ice bonding strength), occasional rafting of one pancake on top of another, and increased wave attenuation as pancakes grow larger.
Predictability of the Power Output of Three Wave Energy Technologies in the Danish North Sea
DEFF Research Database (Denmark)
Chozas, Julia Fernandez; Jensen, N. E. Helstrup; Sørensen, H. C.
2013-01-01
show that the errors in day-ahead predictions (in terms of scatter index) of the significant wave height, zero crossing period and wave power are 22%, 11% and 74%, respectively; and of the normalised theoretical power outputs of Pelamis, Wave Dragon and Wavestar are 37%, 39% and 54%, respectively...
Frequency and wavelength prediction of ultrasonic induced liquid surface waves.
Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim
2016-12-01
A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. Copyright © 2016 Elsevier B.V. All rights reserved.
Inflationary gravitational waves in collapse scheme models
Directory of Open Access Journals (Sweden)
Mauro Mariani
2016-01-01
Full Text Available The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Inflationary gravitational waves in collapse scheme models
Energy Technology Data Exchange (ETDEWEB)
Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)
2016-01-10
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Going Wave as a Model of Particle
Goryunov, A V
2010-01-01
The concept of going wave is introduced from classical positions (including the special relativity theory). One- and three-dimensional going waves considered with their wave equations and dispersion equations. It is shown that wave characteristics (de Broglie's and Compton's wavelengths) and corpuscular characteristics (energy-momentum vector and the rest mass) of particle may be expressed through parameters of going wave. By that the new view on a number concepts of physic related with particle-wave dualism is suggested.
DIOPS: A PC-Based Wave, Tide and Surf Prediction System
National Research Council Canada - National Science Library
Allard, Richard; Dykes, James; Kaihatu, James; Wakeham, Dean
2005-01-01
The Distributed Integrated Ocean Prediciton System (DIOPS) is a PC-based wave tide and surf prediction system designed to provide DoD accurate and timely surf predictions for essentially any world-wide location...
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2011-01-01
the Hamiltonian structure, in contrast to the Kuznetsov equation, a model often used in nonlinear acoustics. An exact traveling wave front solution is derived from a generalized traveling wave assumption for the velocity potential. Numerical studies of the evolution of a number of arbitrary initial conditions...... as well as head-on colliding and confluent wave fronts exhibit several nonlinear interaction phenomena. These include wave fronts of changed velocity and amplitude along with the emergence of rarefaction waves. An analysis using the continuity of the solutions as well as the boundary conditions...
Surface-wave mode coupling : modelling and inverting waveforms including body-wave phases
Marquering, H.A.
1996-01-01
This thesis is concerned with a similar problem as addressed by Li & Tanimoto (1993) in the surfacewave mode approach. In this thesis it is shown that surface-wave mode coupling is required when body-wave phases in laterally heterogeneous media are modelled by surface-wave mode summation. An
Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures
Zou, T.; Kaminski, M.L.
2016-01-01
In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated
An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Integrative Wave model for the Marginal Ice Zone...people.clarkson.edu/~hhshen LONG-TERM GOALS To enhance wave forecasting models such as WAVEWATCH III (WW3) so that they can predict the marginal ice zone (MIZ...Antarctic marginal ice zone were used to evaluate the viscoelastic ice damping models. The 2012 data came from two buoys separated by over 100km
Derakhti, Morteza; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng
2016-11-01
We examine wave-breaking predictions ranging from shallow- to deep-water conditions using a non-hydrostatic σ-coordinate RANS model NHWAVE as described in Derakhti et al. (2016a), comparing results both with corresponding experiments and with the results of a volume-of-fluid (VOF)/Navier-Stokes solver (Ma et al., 2011; Derakhti and Kirby, 2014a,b). Our study includes regular and irregular depth-limited breaking waves on planar and barred beaches as well as steepness-limited unsteady breaking focused wave packets in intermediate and deep water. In Part 1 of this paper, it is shown that the model resolves organized wave motions in terms of free-surface evolution, spectral evolution, organized wave velocity evolution and wave statistics, using a few vertical σ-levels. In addition, the relative contribution of modeled physical dissipation and numerical dissipation to the integral breaking-induced wave energy loss is discussed. In steepness-limited unsteady breaking focused wave packets, the turbulence model has not been triggered, and all the dissipation is imposed indirectly by the numerical scheme. Although the total wave-breaking-induced energy dissipation is underestimated in the unsteady wave packets, the model is capable of predicting the dispersive and nonlinear properties of different wave packet components before and after the break point, as well as the overall wave height decay and the evolution of organized wave velocity field and power spectrum density over the breaking region. In Part 2 (Derakhti et al., 2016b), model reproduction of wave-breaking-induced turbulence and mean circulation is examined in detail. The same equations and numerical methods are used for the various depth regimes, and no ad-hoc treatment, such as imposing hydrostatic conditions, is involved in triggering breaking. Vertical grid resolution in all simulated cases is at least an order of magnitude coarser than that of typical VOF-based simulations.
Optimization of multi-model ensemble forecasting of typhoon waves
Directory of Open Access Journals (Sweden)
Shun-qi Pan
2016-01-01
Full Text Available Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles. The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the Optimization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.
Predictive modelling of football injuries
Kampakis, S.
2016-01-01
The goal of this thesis is to investigate the potential of predictive modelling for football injuries. This work was conducted in close collaboration with Tottenham Hotspurs FC (THFC), the PGA European tour and the participation of Wolverhampton Wanderers (WW). Three investigations were conducted: 1. Predicting the recovery time of football injuries using the UEFA injury recordings: The UEFA recordings is a common standard for recording injuries in professional football. For...
Predictive modelling of football injuries
Kampakis, Stylianos
2016-01-01
The goal of this thesis is to investigate the potential of predictive modelling for football injuries. This work was conducted in close collaboration with Tottenham Hotspurs FC (THFC), the PGA European tour and the participation of Wolverhampton Wanderers (WW). Three investigations were conducted: 1. Predicting the recovery time of football injuries using the UEFA injury recordings: The UEFA recordings is a common standard for recording injuries in professional football. For this investigatio...
Predictability of the Power Output of Three Wave Energy Technologies in the Danish North Sea
DEFF Research Database (Denmark)
Chozas, Julia Fernandez; Jensen, N. E. Helstrup; Sørensen, H. C.
2011-01-01
, during a very energetic time period. Results show that for the 12 to 36 hours time horizon forecast, the accuracy in the predictions (in terms of scatter index) of the significant wave height, zero crossing period and wave power are 22%, 11% and 68%, respectively; and the accuracy in the predictions...
Large Scale Model Test Investigation on Wave Run-Up in Irregular Waves at Slender Piles
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke
2013-01-01
from high speed video recordings. Based on the measured run-up heights different types of prediction formulae for run-up in irregular waves were evaluated. In conclusion scale effects on run-up levels seems small except for differences in spray. However, run-up of individual waves is difficult...
A contrail cirrus prediction model
Directory of Open Access Journals (Sweden)
U. Schumann
2012-05-01
Full Text Available A new model to simulate and predict the properties of a large ensemble of contrails as a function of given air traffic and meteorology is described. The model is designed for approximate prediction of contrail cirrus cover and analysis of contrail climate impact, e.g. within aviation system optimization processes. The model simulates the full contrail life-cycle. Contrail segments form between waypoints of individual aircraft tracks in sufficiently cold and humid air masses. The initial contrail properties depend on the aircraft. The advection and evolution of the contrails is followed with a Lagrangian Gaussian plume model. Mixing and bulk cloud processes are treated quasi analytically or with an effective numerical scheme. Contrails disappear when the bulk ice content is sublimating or precipitating. The model has been implemented in a "Contrail Cirrus Prediction Tool" (CoCiP. This paper describes the model assumptions, the equations for individual contrails, and the analysis-method for contrail-cirrus cover derived from the optical depth of the ensemble of contrails and background cirrus. The model has been applied for a case study and compared to the results of other models and in-situ contrail measurements. The simple model reproduces a considerable part of observed contrail properties. Mid-aged contrails provide the largest contributions to the product of optical depth and contrail width, important for climate impact.
Improving coastal wave hindcasts by combining offshore buoy observations with global wave models.
Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.
2014-12-01
Waves conditions in southern California are sensitive to offshore wave directions. Due to blocking by coastal islands and refraction across complex bathymetry, a transform incident offshore swell-spectra to shallow water buoy locations. A nearly continuous 10 yr data set of approximately 14 buoys is used. Comparisons include standard bulk parameters (e.g. significant wave height, peak period), the frequency-dependent energy spectrum (needed for run-up estimation) and radiation stress component Sxy (needed for alongshore current and sediment transport estimation). Global wave model uncertainties are unknown, complicating the formulation of optimum assimilation constraints. Several plausible models for estimating offshore waves are tested. Future work includes assimilating nearshore buoy observations, with the long-term objective of accurate regional wave hindcasts using an efficient mix of global wave models and buoys. This work is supported by the California Department of Parks and Recreation, Division of Boating and Waterways Oceanography Program.
Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.
2010-01-01
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
3D mmWave Channel Model Proposal
DEFF Research Database (Denmark)
Thomas, Timothy; Nguyen, Huan Cong; R. MacCartney Jr., George
2014-01-01
There is growing interest in using millimeter wave (mmWave) frequencies for future access communications based on the enormous amount of available spectrum. To characterize the mmWave channel in urban areas, wideband propagation measurements at 73 GHz have recently been made in New York City. Using...... mmWave channel model is developed with special emphasis on using the ray tracer to determine elevation model parameters. The channel model includes distance-dependent elevation modeling which is critical for the expected 2D arrays which will be employed at mmWave....
Artificial Neuron Modelling Based on Wave Shape
Directory of Open Access Journals (Sweden)
Kieran Greer
2013-10-01
Full Text Available This paper describes a new model for an artificial neural network processing unit or neuron. It is slightly different to a traditional feedforward network by the fact that it favours a mechanism of trying to match the wave-like ‘shape’ of the input with the shape of the output against specific value error corrections. The expectation is then that a best fit shape can be transposed into the desired output values more easily. This allows for notions of reinforcement through resonance and also the construction of synapses.
Non-Hydrostatic Modelling of Waves and Currents over Subtle Bathymetric Features
Gomes, E.; Mulligan, R. P.; McNinch, J.
2014-12-01
Localized areas with high rates of shoreline erosion on beaches, referred to as erosional hotspots, can occur near clusters of relict shore-oblique sandbars. Wave transformation and wave-driven currents over these morphological features could provide an understanding of the hydrodynamic-morphologic coupling mechanism that connects them to the occurrence of erosional hotspots. To investigate this, we use the non-hydrostatic SWASH model that phase-resolves the free surface and fluid motions throughout the water column, allowing for high resolution of wave propagation and breaking processes. In this study we apply a coupled system of nested models including SWAN over a large domain of the North Carolina shelf with smaller nested SWASH domains in areas of interest to determine the hydrodynamic processes occurring over shore oblique bars. In this presentation we focus on a high resolution grid (10 vertical layers, 10 m horizontal resolution) applied to the Duck region with model validation from acoustic wave and current data, and observations from the Coastal Lidar And Radar Imaging System (CLARIS). By altering the bathymetry input for each model run based on bathymetric surveys and comparing the predicted and observed wave heights and current profiles, the effects of subtle bathymetric perturbations have on wave refraction, wave breaking, surf zone currents and vorticity are investigated. The ability to predict wave breaking and hydrodynamics with a non-hydrostatic model may improve our understanding of surf zone dynamics in relation to morphologic conditions.
A Reaction-Diffusion Model of Cholinergic Retinal Waves
Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan
2014-01-01
Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327
Stochastic Procedures for Extreme Wave Load Predictions- Wave Bending Moment in Ships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2009-01-01
A discussion of useful stochastic procedures for stochastic wave load problems is given, covering the range from slightly linear to strongly non-linear (bifurcation) problems. The methods are: Hermite transformation, Critical wave episodes and the First Order Reliability Method (FORM). The proced......). The procedures will be illustrated by results for the extreme vertical wave bending moment in ships....
Prediction and near-field observation of skull-guided acoustic waves
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-01
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Prediction of Vertical-Plane Wave Loading and Ship Responses in High Seas
DEFF Research Database (Denmark)
Wang, Zhaohui; Xia, Jinzhu; Jensen, Jørgen Juncher
2000-01-01
The non-linearities in wave- and slamming-induced rigid-body motions and structural responses of ships such as heave, pitch and vertical bending moments are consistently investigated based on a rational time-domain strip method. A hydrodynamic model for predicting sectional green water force is a...... for a VLCC. The non-linearities in motions and structural loads of conventional monohull ships seem well predicted by the present non-linear strip theory.......The non-linearities in wave- and slamming-induced rigid-body motions and structural responses of ships such as heave, pitch and vertical bending moments are consistently investigated based on a rational time-domain strip method. A hydrodynamic model for predicting sectional green water force...... is also outlined for the investigation of the effect of green watrer oads on the globalhull girder bending moment. The computational results based on the non-linear time-domain strip theory are compared with those based on the fully non-linear 3-D panel method SWAN-DNW and other published results...
Towards nonlinear wave reconstruction and prediction from synthetic radar images
Wijaya, Andreas Parama
2016-01-01
The use of remotely wave sensing by a marine radar is increasingly needed to provide wave information for the sake of safety and operational effectiveness in many offshore activities. Reconstruction of radar images needs to be carried out since radar images are a poor representation of the sea
Wave model for longitudinal dispersion: application to the laminar-flow tubular reactor
Kronberg, Alexandre E.; Benneker, A.H.; Benneker, A.H.; Westerterp, K.R.
1996-01-01
The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model
Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information.
Xiao, Shengping; Tong, Cheesan; Yang, Yang; Wu, Min
2017-11-20
Dynamic spatial patterns such as traveling waves could theoretically encode spatial information, but little is known about whether or how they are employed by biological systems, especially higher eukaryotes. Here, we show that concentric target or spiral waves of active Cdc42 and the F-BAR protein FBP17 are invoked in adherent cells at the onset of mitosis. These waves predict the future sites of cell divisions and represent the earliest known spatial cues for furrow assembly. Unlike interphase waves, the frequencies and wavelengths of the mitotic waves display size-dependent scaling properties. While the positioning role of the metaphase waves requires microtubule dynamics, spindle and microtubule-independent inhibitory signals are propagated by the mitotic waves to ensure the singularity of furrow formation. Taken together, we propose that metaphase cortical waves integrate positional and cell size information for division-plane specification in adhesion-dependent cytokinesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Ahrends, Antje; Burgess, Neil D; Milledge, Simon A H; Bulling, Mark T; Fisher, Brendan; Smart, James C R; Clarke, G Philip; Mhoro, Boniface E; Lewis, Simon L
2010-08-17
Tropical forest degradation emits carbon at a rate of approximately 0.5 Pgxy(-1), reduces biodiversity, and facilitates forest clearance. Understanding degradation drivers and patterns is therefore crucial to managing forests to mitigate climate change and reduce biodiversity loss. Putative patterns of degradation affecting forest stocks, carbon, and biodiversity have variously been described previously, but these have not been quantitatively assessed together or tested systematically. Economic theory predicts a systematic allocation of land to its highest use value in response to distance from centers of demand. We tested this theory to see if forest exploitation would expand through time and space as concentric waves, with each wave targeting lower value products. We used forest data along a transect from 10 to 220 km from Dar es Salaam (DES), Tanzania, collected at two points in time (1991 and 2005). Our predictions were confirmed: high-value logging expanded 9 kmxy(-1), and an inner wave of lower value charcoal production 2 kmxy(-1). This resource utilization is shown to reduce the public goods of carbon storage and species richness, which significantly increased with each kilometer from DES [carbon, 0.2 Mgxha(-1); 0.1 species per sample area (0.4 ha)]. Our study suggests that tropical forest degradation can be modeled and predicted, with its attendant loss of some public goods. In sub-Saharan Africa, an area experiencing the highest rate of urban migration worldwide, coupled with a high dependence on forest-based resources, predicting the spatiotemporal patterns of degradation can inform policies designed to extract resources without unsustainably reducing carbon storage and biodiversity.
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... and coastal conditions, z0 parameterization method often fails in reproducing z0 because the complexity of the sea state cannot be represented by a few selected wave parameters. Different from the parameterization method, physics-based methods take the idea that the loss of momentum and kinetic energy from...... the above mentioned challenges, a wave boundary layer model (WBLM) is implemented in the wave model SWAN as a new Sin. The WBLM Sin is based on the momentum and kinetic energy conservation. The wave-induced mean wind profile changes at all vertical levels within the wave boundary layer, and the spectral...
Hydrodynamic Modelling and Layout Optimisation of Wave Energy Converter Arrays
DEFF Research Database (Denmark)
Ruiz, Pau Mercadé
2017-01-01
This PhD thesis explores mathematical models for recreation of small-amplitude ocean waves and their interaction with assemblies of oscillating wave energy converters. Underpinned by the simulation capabilities associated with these models, algorithms seeking optimal arrangements between devices...... in various positions and orientations are finally investigated. This thesis intends in this way to offer a practical approach to the analysis of wave energy converters when they operate together as an array and the optimal design of array layouts. The topics covered by the text include propagation of waves...... around solid bodies, generation of waves by oscillating bodies, wave transformation due to slowly-varying water depth conditions, basic principles of wave power extraction by oscillating bodies, and optimal formation of arrays of wave energy converters....
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
ULF Wave Modeling Challenge -Modeling Results and Application to Observations
Rastaetter, L.; Kuznetsova, M. M.; Claudepierre, S. G.; Guild, T. B.; Hartinger, M.; Welling, D. T.; Glocer, A.; Honkonen, I. J.; Raeder, J.
2015-12-01
The GEM Metrics and Validation Focus Group has been conducting an Ultra-Low-Frequency (ULF) wave modeling challenge using monochromatic and white-noise solar wind pressure drivers. Using methodology similar to Claudepierre et al. (2010), MHD simulations performed by the SWMF, OpenGGCM and GUMICS models at the Community Coordinated Modeling Center (CCMC) are presented in comparison to LFM model outputs used in the publication and performed at the CCMC. We discuss the effect of inner (near-Earth) boundary conditions on the model results. Event simulations compared to ground-based and in-situ observations will eventually decide which boundary conditions are most realistic.
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G
2007-01-01
..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...
Modeling of aqueous foam blast wave attenuation
Directory of Open Access Journals (Sweden)
Domergue L.
2011-01-01
Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].
Frequency modulated continuous wave lidar performance model for target detection
Du Bosq, Todd W.; Preece, Bradley L.
2017-05-01
The desire to provide the warfighter both ranging and reflected intensity information is increasing to meet expanding operational needs. LIDAR imaging systems can provide the user with intensity, range, and even velocity information of a scene. The ability to predict the performance of LIDAR systems is critical for the development of future designs without the need to conduct time consuming and costly field studies. Performance modeling of a frequency modulated continuous wave (FMCW) LIDAR system is challenging due to the addition of the chirped laser source and waveform mixing. The FMCW LIDAR model is implemented in the NV-IPM framework using the custom component generation tool. This paper presents an overview of the FMCW Lidar, the customized LIDAR components, and a series of trade studies using the LIDAR model.
Modeling acoustic wave propagation in isotropic medium
Krasnoveikin, V. A.; Druzhinin, N. V.; Derusova, D. A.; Tarasov, S. Yu.
2017-12-01
The paper carries out the graphical analysis of acoustic wave propagation in plates of different thickness to reveal the surface wave patterns formed on the plate surfaces. The results of the analysis allowed explaining the non-uniform distribution of the surface wave pattern nodes formed on the PMMA plate by a point oscillator. The wave pattern reconstruction made it possible to reveal fundamental and reflected waves as well as their interference patterns with node distributions on the surfaces of the plate. These results may be useful for defect detection in composite materials such as delamination, impact damage, gaps, etc.
A coupled DEM-CFD method for impulse wave modelling
Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista
2015-04-01
Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been
Stochastic volatility models and Kelvin waves
Lipton, Alex; Sepp, Artur
2008-08-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.
Seismic prediction ahead of tunnel construction using Rayleigh-waves
Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas
2008-01-01
To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...
DeRisk - Accurate prediction of ULS wave loads. Outlook and first results
DEFF Research Database (Denmark)
Bredmose, Henrik; Dixen, Martin; Ghadirian, Amin
2016-01-01
Loads from extreme waves can be dimensioning for the substructures of offshore wind turbines. The DeRisk project (2015-2019) aims at an improved load evaluation procedure for extreme waves through application of advanced wave models, laboratory tests of load effects, development of hydrodynamic l...
DEFF Research Database (Denmark)
Tedd, James; Knapp, Wilfried; Frigaard, Peter
2005-01-01
This paper presents the control strategy used on Wave Dragon overtopping wave energy converter. The nature of overtopping requires that for optimum performance the water level in the reservoir must be controlled by controlling the turbine outflows. A history of the simulations performed is included...
Kadlecová, Hedvika; Weber, Stefan; Korn, Georg
2016-01-01
We analyze theoretical models of gravitational wave generation in the interaction of high power lasers with matter in linear approximation of gravitational theory. We derive the analytical formulas and estimates for the metric perturbations and the radiated power of the generated gravitational waves. Furthermore we investigate the characteristics of polarization and the behavior of test particles in the presence of gravitational wave which will be important for the detection.
Elless, Travis; Torn, Ryan
2017-04-01
During the boreal summer, African Easterly Waves (AEWs) are the primary synoptic-scale feature that influences North African weather, and are associated with the majority of summer rainfall found in this region. Although numerous studies have investigated the composite mean structure and evolution of these waves through observational case studies and idealized modeling, few studies have explored the skill and predictability of these systems in operational deterministic or ensemble forecasts. Furthermore, it is unclear whether the predictability of these features depends on the large-scale environmental factors, such as equatorial waves, mid-level moisture, etc. This study investigates the predictability of AEW forecasts, defined here as the ensemble standard deviation, using European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasts, which are available through the THORPEX Interactive Grand Global Ensemble (TIGGE) dataset, during the periods of July-August-September 2007—2009 and 2011—2013. Whereas the ensemble standard deviation in AEW position forecasts increase at a relatively constant rate with time, the ensemble standard deviation in AEW intensity forecasts often exhibit rapid non-linear growth. Therefore, this study explores forecasts exhibiting the largest standard deviation in intensity at 72h (top 10% of forecasts) and compares them against forecasts with the smallest standard deviation in intensity (bottom 10%). Preliminary results from 2007—2009 suggest the growth of variability is strongly associated to large-scale factors that would promote convection near the AEW, after the first diurnal cycle. Whereas variability in forecasts from 2011—2013 are more associated with the initial AEW structure instead of the large-scale environment.
O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn
2017-04-01
During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution
A hydrodynamic model of nearshore waves and wave-induced currents
Directory of Open Access Journals (Sweden)
Ahmed Khaled Seif
2011-09-01
Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.
Parameterizing the Effects of Finite Crested Wave Breaking in Wave-Averaged Models
Kumar, N.; Suanda, S. H.; Feddersen, F.
2016-02-01
Finite crested breaking waves generate a rotational body force that creates two-dimensional turbulent eddies with strong rotational velocities, capable of tracer exchange (sediment, pathogens, contaminants) between the surfzone and the inner shelf. This eddy generation mechanism is strongly tied to the wave directional spread. Wave-resolving Boussinesq models like funwaveC include finite crest length breaking and accurately simulate surfzone eddy generation. However, this surfzone eddy generation mechanism is not included in existing wave-averaged models (e.g., Coupled Ocean Atmosphere Wave Sediment Transport Modeling System, COAWST), leading to an incomplete representation of exchange between the surf zone and the inner shelf. In this study 250 funwaveC simulations with random, directionally spread waves spanning a range of beach slopes and wave conditions are used to simulate surfzone eddies. With these simulations, the stream function associated with breaking wave eddy forcing is isolated and quantified in the form of intensity, cross- and alongshore widths and propagation rates, followed by parameterization as a function of wave parameters and the beach slope. Parameterized stream function is implemented into COAWST as a stochastic surf zone eddy module which is used to study vorticity evolution from the surfzone to the inner-shelf, interaction between stratified water column and surfzone eddies, and overall provides a more complete representation of surfzone eddy induced cross-shore exchange. Funded by the Office of Naval Research.
Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.
2014-01-01
A time domain model is applied to a three-dimensional point absorber wave energy converter. The dynamical properties of a semi-submerged hemisphere oscillating around a pivot point where the vertical height of this point is above the mean water level are investigated. The numerical model includes.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping......-linear effect is investigated by a simplified formulation proportional to the quadratic velocity. Results from experiments are shown in order to validate the numerical calculations. All the experimental results are in good agreement with the linear potential theory as long as the waves are sufficiently mild i...
Seismic prediction and imaging of geological structures ahead of a tunnel using surface waves
Jetschny, Stefan
2010-01-01
To improve the performance and safety of tunnel constructions, we introduce a new seismic prediction method utilizing tunnel surface waves to detect relevant geological structures ahead of the tunnel face. On the basis of both synthetic and field data, we investigate the propagation characteristics of such surface waves propagating along the tunnel wall. We further introduce a simple but robust automatic prediction scheme that can estimate the distance to a reflector ahead of the tunnel.
Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter
Directory of Open Access Journals (Sweden)
Bret Bosma
2015-08-01
Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.
The use of a wave boundary layer model in SWAN
DEFF Research Database (Denmark)
Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo
2017-01-01
A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...
Development of a coupled wave-flow-vegetation interaction model
Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.
2017-01-01
Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
Swift GRBs and the blast wave model
Curran, P.A.; van der Horst, A.J.; Starling, R.L.C.; Wijers, R.A.M.J.
2009-01-01
The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium,
Macro-mechanical modeling of blast-wave mitigation in foams. Part III: verification of the models
Britan, A.; Shapiro, H.; Liverts, M.; Ben-Dor, G.
2014-05-01
Three different approaches to macro-mechanical modeling of blast-wave mitigation in foam namely: the single-phase effective gas flow model, the two-phase mixture model and the single bubble/shock wave interaction model are critically reviewed. The nature and extent of the approximations inherent in the formulation of the first two models were examined in Part I of this study. In this part, the applicability of the aforementioned approaches is verified based on a comparison of experimental pressure records obtained in shock tube tests with the results of numerical predictions that used the models under consideration. Deficiencies and inconsistencies that are found during this comparison are clarified and possible improvements are suggested. It is emphasized that both the single-phase and the two-phase approaches predict well the refraction of the incident shock at the air/foam interface while they do not uniquely determine the relaxation process and the shape of the transmitted shock wave front. Various flexibilities that are exploited to better describe the inter-phase interactions do not improve the results significantly. The single bubble model is examined with particular attention paid to the manner in which it predicts the shape of the shock wave front. Connections between the flow viscosity and the transient dynamics of the bubble compression that occur at scales of the shock wave front thickness are explored.
A review of wave climate and prediction along the Spanish Mediterranean coast
Directory of Open Access Journals (Sweden)
A. Sánchez-Arcilla
2008-11-01
Full Text Available This paper reviews the characterization of wave storms along the Spanish/Catalan Mediterranean coast. It considers the "physical" and "statistical" description of wave parameters and how they are affected by the prevailing meteo patterns and the sharp gradients in orography and bathymetry. The available field data and numerically simulated wave fields are discussed from this perspective. The resulting limits in accuracy and predictability are illustrated with specific examples. This allows deriving some conclusions for both short-term operational predictions and a long-term climatic assessment.
Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics
Directory of Open Access Journals (Sweden)
M. H. Dao
2011-02-01
Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.
Diffraction model of peristrophic multiplexing with spherical reference wave.
Yoshida, Shuhei; Takahata, Yosuke; Horiuchi, Shuma; Yamamoto, Manabu
2015-02-01
Multiplexing recording is a primary contributor to determining the recording density in holographic data storage. Therefore, many different kinds of recording methods have been proposed. Among them, the method that utilizes spherical waves as reference waves is characterized by the ability to enable multiplexing recording only by moving (shifting or rotating) the recording medium. In our research, we propose a theoretical diffraction model of peristrophic multiplexing with a spherical reference wave and evaluate the diffraction efficiency; this multiplexing recording method has incorporated spherical reference waves in rotation of the media. Additionally, we verify the effectiveness of the model by comparing it with experimental results.
Modeling and Simulation of Ultrasound Wave Propagation
Isler, Sylvia Kay
The specific aim of this work is to model diagnostic ultrasound under strong acoustic scattering conditions. This work is divided into three main sub-topics. The first concerns the solution of the Helmholtz integral equation in three-dimensions. The Pade approximant method for accelerating the convergence of the Neumann series, first proposed by Chandra and Thompson for two-dimensional acoustic scattering problems, is extended to three-dimensions. Secondly, the propagation of acoustic pulses through a medium that is characterized by spatial variations in compressibility is considered. The medium is excited using an ideal, bandlimited acoustic transducer having a Gaussian radiation profile. The time response is determined by using a spatial Fourier wavenumber decomposition of the incident and scattered pressure fields. Using the Pade approximant method, the pressure is evaluated for each wavenumber at each spatial grid location. By taking the inverse Fourier transform of the result, the temporal and spatial evolution of the pressure field is obtained. The third part examines acoustic wave propagation in simulated soft tissue. Methods for generating spatially correlated random media are discussed and applied to simulating the structure of soft tissue. Simulated sonograms are constructed and the effects of strong scattering are considered.
Enhanced micropolar model for wave propagation in granular materials
Merkel, Aurélien; Luding, Stefan
2016-04-01
well as a Cosserat model. The Cosserat model is derived from the discrete model through an expansion of the discrete displacement and particle rotation to continuum field variables. The long wavelength approximation of these two models are compared and, considering the discrete model as the reference, the Cosserat model shows inconsistent predictions of the bulk wave dispersion relations. The discrepancies between the two models are explained by an insufficient modeling of one of the particle interactions in the Cosserat model. A enhanced micropolar model is proposed to correctly describe all the particle interactions by including a new elastic tensor from the second order gradient micropolar theory. The enhanced micropolar model involve the minimum number of elastic constant to consistently predicts the bulk mode dispersion relations in the long wavelength limit.
Observations and Modeling of Plasma Waves in the Solar Atmosphere
Liu, W.; Ofman, L.; Downs, C.
2016-12-01
The solar atmosphere, especially the extended corona, provides rich observations of magnetohydrodynamic (MHD) waves and plasma waves in general. Such waves can be used as seismological tools to probe the physical conditions of the medium in which they travel, such as the coronal magnetic field and plasma parameters. Recent high-resolution imaging and spectroscopic observations in extreme ultraviolet (EUV) by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and in UV by the Interface Region Imaging Spectrograph (IRIS) have opened a new chapter in understanding these waves and in utilizing them for coronal seismology. We will review such new observations of two intimately related phenomena - global EUV waves (so-called "EIT waves") associated with coronal mass ejections (CMEs) and quasi-periodic, fast-mode magnetosonic wave trains associated with flares. We will focus on the generation and propagation of global EUV waves and their interaction with coronal structures, as well as the correlation of AIA-detected fast-mode wave trains with flare pulsations seen from radio to hard X-ray wavelengths. We will also present recent MHD modeling efforts in reproducing these waves using realistic, observationally-driven simulations. We will discuss the roles of such waves in energy transport within the solar atmosphere and in their associated CME/flare eruptions.
Towards Predicting the Added Resistance of Slow Ships in Waves
DEFF Research Database (Denmark)
Amini Afshar, Mostafa
The objective of this project was to develop a calculation tool for the added resistance of ships in ocean waves. To this end a linear potential flow time-domain numerical seakeeping solver has been developed. The solver is based on highorder finite-difference schemes on overlapping grids and has...... been implemented using the Overture framework for solving partial differential equations on overset, boundary-fitted grids. This library includes support for parallel processing and a variety of direct and iterative system solvers. The non-linear water water wave problem is linearised about two base......-surface boundary conditions. The field continuity equation has been discretised by a centered fourth-order finite difference scheme which also includes ghost layers at the boundaries. For the zero-speed hydrodynamic problem, the same centered scheme can be utilised to calculate the free-surface derivatives...
Wind-wave modelling aspects within complicate topography
Directory of Open Access Journals (Sweden)
S. Christopoulos
Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.
Surf Wave Hydrodynamics in the Coastal Environment
Salmon, J.E.
2016-01-01
Stochastic wave models play a central role in our present-day wave modelling capabilities. They are frequently used to compute wave statistics, to generate boundary conditions and to include wave effects in coupled model systems. Historically, such models were developed to predict the wave field
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-01-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.
Numerical Modeling of Fluid Structure Interactions of a Floating Wave Energy Extraction Device
Lee, J.; Kang, S.
2014-12-01
In recent years there has been increased attention towards developing the strategies for harnessing hydrokinetic and wave energy from the ocean. There exists several hydrokinetic energy devices designed to extract energy from the ocean current but few wave energy devices are available. The moored floating cylinder-like structure that has been recently developed in South Korea is one of such devices. We carry out numerical simulation of the three-dimensional interactions of a floating cylinder and incoming waves using the level-set curvilinear immersed boundary method of Kang and Sotiropoulos (2012) to improve the understanding the wave energy extraction mechanisms of that device. The results demonstrate the potential of our numerical model as a powerful engineering tool for predicting complex wave-structure interaction phenomena associated with energy extraction devices.
Wave Modelling - The State of the Art
2007-09-27
Heverlee, Belgium q Universitt) di Torino, Dipartimento di Fisica Generale, Via P. Giuria 1, 10125 Torino, Italy A. M. Obukhov Institute for Physics of...and experimental research of physics of the spectral dissipation .................... 623 4.1.1. Spectral dissipation due to wave breaking...wave spectrum to a power law of the form of w-4 in agreement with experimental observations starting from Toba (1972). In paper (Lavrenov et al., 2002
Prediction of LVH from average of R wave amplitude in leads I and ...
African Journals Online (AJOL)
Aim: The aim of this study was to determine the sensitivity, specificity, accuracy, positive and negative predictive values of average of R wave amplitude in leads I and V5 in predicting LVH Methodology: This is a cross-sectional descriptive study of adult hypertensive subjects. Participants were assessed for LVH using the ...
Naaijen, P.
2017-01-01
With many operations at sea carried out by ships or or other
floating vessels, risks are involved because of the waves and
resulting motions of the ships. Examples are the landing of helicopters on ships, transferring crew from a ship to a wind turbine, or working on the deck of an anchor
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2013-01-01
An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all...
Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter
The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...... at different scales and locations. A flexible and comprehensive modelling tool is therefore highly required. Wave Dragon produces power through different steps of energy conversion: 1. Primary energy conversion: overtopping – The energy content of the wave (partly in the kinetic and partly in the potential...... into mechanical energy as the water flows back to the sea, activating the lowhead hydro-turbines. 3. Tertiary energy conversion step: generators – The turbines shaft rotation activates the permanent magnet generators, converting mechanical energy into electrical energy. 4. Grid connection and delivery...
Particle transport model sensitivity on wave-induced processes
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
Models for seismic wave propagation in periodically layered porous media
Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.
2014-01-01
Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation
Variational Boussinesq model for strongly nonlinear dispersive waves
Lawrence, C.; Adytia, D.; van Groesen, E.
2018-01-01
For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be
The second-order decomposition model of nonlinear irregular waves
DEFF Research Database (Denmark)
Yang, Zhi Wen; Bingham, Harry B.; Li, Jin Xuan
2013-01-01
into the first- and the second-order super-harmonic as well as the second-order sub-harmonic components by transferring them into an identical Fourier frequency-space and using a Newton-Raphson iteration method. In order to evaluate the present model, a variety of monochromatic waves and the second......A new method to decompose the nonlinear irregular waves is proposed. The second-order potential flow theory is employed to construct the relation of the second-order items solution by deriving the transfer function between the first- and the second-order components. Target waves are decomposed......-order nonlinear irregular waves over a broad range of frequencies have been analyzed, and the effects on wave nonlinearity are analyzed. The experimental results show that the present method is reasonably effective for the wave decomposition....
Mathematical models for dispersive electromagnetic waves: an overview
Cassier, Maxence; Joly, Patrick; Kachanovska, Maryna
2017-01-01
In this work, we investigate mathematical models for electromagnetic wave propagation in dispersive isotropic media. We emphasize the link between physical requirements and mathematical properties of the models. A particular attention is devoted to the notion of non-dissipativity and passivity. We consider successively the case of so-called local media and general passive media. The models are studied through energy techniques, spectral theory and dispersion analysis of plane waves. For makin...
Wave-function model for the CP violation in mesons.
Saberi Fathi, S M; Courbage, M; Durt, T
2017-10-01
In this paper, we propose a simple quantum model of the kaons decay providing an estimate of the CP symmetry violation parameter. We use the two-level Friedrich's Hamiltonian model to obtain a good quantitative agreement with the experimental estimate of the violation parameter for neutral kaons. A temporal wave-function approach, based on an analogy with spatial wave-functions, plays a crucial role in our model.
Wave-function model for the CP violation in mesons
Saberi Fathi, S. M.; Courbage, M.; Durt, T.
2017-10-01
In this paper, we propose a simple quantum model of the kaons decay providing an estimate of the CP symmetry violation parameter. We use the two-level Friedrich's Hamiltonian model to obtain a good quantitative agreement with the experimental estimate of the violation parameter for neutral kaons. A temporal wave-function approach, based on an analogy with spatial wave-functions, plays a crucial role in our model.
Energy Technology Data Exchange (ETDEWEB)
Takashima, Keisuke; Adamovich, Igor V. [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Xiong Zhongmin; Kushner, Mark J. [Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Starikovskaia, Svetlana [Ecole Polytechnique, Paris (France); Czarnetzki, Uwe; Luggenhoelscher, Dirk [Department of Physics and Astronomy, Ruhr University Bochum, Bochum (Germany)
2011-08-15
Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time {approx}1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport
2007-11-01
seabed. This can be a fairly rapid process (i.e. of the order of tens of seconds, up to a few minutes at most, e.g. Foda and Zhang (1994); Lindenberg...response of cohesive sediments to water waves, PhD-dissertation, University of California, Berkeley, USA. Chou, H.-T., M.A. Foda and J.R. Hunt, 1993...Dingemans, M.W., 1997, Water wave propagation over uneven bottoms; Part I & II, World Scientific, Singapore. Foda , M.A. and S.-Y. Tzang, 1994
Engels, Elien B; Végh, Eszter M; Van Deursen, Caroline J M; Vernooy, Kevin; Singh, Jagmeet P; Prinzen, Frits W
2015-02-01
Chronic heart failure patients with a left ventricular (LV) conduction delay, mostly due to left bundle branch block (LBBB), generally derive benefit from cardiac resynchronization therapy (CRT). However, 30-50% of patients do not show a clear response to CRT. We investigated whether T-wave analysis of the ECG can improve patient selection. The study population comprised 244 CRT recipients with baseline 12-lead electrocardiogram recordings. Echocardiographic response after 6-month CRT was defined as a ≥5% increase in LV ejection fraction (LVEF). Vectorcardiograms (VCGs) were constructed from the measured 12-lead ECGs using an adapted Kors algorithm on digitized ECGs. Logistic regression models indicated repolarization variables as good predictors of CRT response. The VCG-derived T-wave area predicted CRT response (odds ratio [OR] per 10 μVs increase 1.172 [P < 0.001]) even better than QRS-wave area (OR = 1.116 [P = 0.001]). T-wave area had especially predictive value in the LBBB patient group (OR = 2.77 in LBBB vs. 1.09 in non-LBBB). This predictive value persisted after adjustment of multiple covariates, such as gender, ischemia, age, hypertension, coronary artery bypass graft, and the usage of diuretics and β-blockers. In LBBB patients, the increase in LVEF was 6.1 ± 9.7% and 11.3 ± 9.1% in patients with T-wave area below and above the median value, respectively (P < 0.01). In patients with LBBB morphology of the QRS complex, a larger baseline T-wave area is an important independent predictor of LVEF increase following CRT. © 2014 Wiley Periodicals, Inc.
Asoodeh, Mojtaba; Bagheripour, Parisa
2012-01-01
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.
A Review of Wave-to-Wire Models for Wave Energy Converters
Directory of Open Access Journals (Sweden)
Markel Penalba
2016-06-01
Full Text Available Control of wave energy converters (WECs has been very often limited to hydrodynamic control to absorb the maximum energy possible from ocean waves. This generally ignores or significantly simplifies the performance of real power take-off (PTO systems. However, including all the required dynamics and constraints in the control problem may considerably vary the control strategy and the power output. Therefore, this paper considers the incorporation into the model of all the conversion stages from ocean waves to the electricity network, referred to as wave-to-wire (W2W models, and identifies the necessary components and their dynamics and constraints, including grid constraints. In addition, the paper identifies different control inputs for the different components of the PTO system and how these inputs are articulated to the dynamics of the system. Examples of pneumatic, hydraulic, mechanical or magnetic transmission systems driving a rotary electrical generator, and linear electric generators are provided.
New Gravity Wave Treatments for GISS Climate Models
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2011-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.
Importance of Antecedent Beach and Surf-Zone Morphology to Wave Runup Predictions
2016-10-01
ERDC/CHL CHETN-I-92 October 2016 Approved for public release; distribution is unlimited. Importance of Antecedent Beach and Surf- Zone Morphology...highlight the advances of the methodology used in this study. Runup Data Collection. Previous studies aimed at measuring wave runup and swash zone... transport in the swash zone. Continental Shelf Research 18(10): 1179–1199. Melby, J. A. 2012. Wave runup prediction for flood hazard assessment. ERDC/CHL TR
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2013-09-30
lifetime of whitecap foaming depends on the water temperature (Miyake and Abe, 1948). As temperature drops, the lifetime increases. Such trends were...P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature 417, 58-63 Miyake, Y. and T. Abe, 1948: A study on the foaming ofthe...Lett., 6 (1), 77–81 Wang, R. and H.H. Shen, 2010. Gravity waves propagating into an ice-covered ocean: A viscoelastic model. J. Geophys. Res., 115
Avalanches and waves in the Abelian sandpile model
Energy Technology Data Exchange (ETDEWEB)
Paczuski, M. [Department of Physics, University of Houston, Houston, Texas 77204-5506 (United States); Boettcher, S. [Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1997-10-01
We numerically study avalanches in the two-dimensional Abelian sandpile model in terms of a sequence of waves of toppling events. Priezzhev {ital et al.} [Phys. Rev. Lett. {bold 76}, 2093 (1996)] have recently proposed exact results for the critical exponents in this model based on the existence of a proposed scaling relation for the difference in sizes of subsequent waves, {Delta}s=s{sub k}{minus}s{sub k+1}, where the size of the previous wave s{sub k} was considered to be almost always an upper bound for the size of the next wave s{sub k+1}. Here we show that the significant contribution to {Delta}s comes from waves that violate the bound; the average {l_angle}{Delta}s(s{sub k}){r_angle} is actually negative and diverges with the system size, contradicting the proposed solution. {copyright} {ital 1997} {ital The American Physical Society}
A Boussinesq-type model simulating wave and wave-induced current fields
Klonaris, Georgios; Memos, Constantine
2015-04-01
A two-dimensional high order Boussinesq-type model is developed able to simulate wave propagation in the coastal zone. The model reproduces very accurately the linear dispersion up to the traditional limit of deep water, kd ≈ 3, and it is derived to embed enhanced nonlinear characteristics compared to its weakly nonlinear counterparts. In particular the description of the nonlinear amplitude dispersion is improved over the entire depth range. In order to form an integrated tool the model was extended to the surf and swash zones. The model is also capable of estimating satisfactorily the wave-induced depth-averaged current field. Due to its nonlinear character, this estimation is possible without the need to decouple the wave and current motion as imposed by the traditional spitting method. This capability is of great importance, not only because of the saving of computational time, but also because the wave-current interaction can be also taken into account. In addition, the undertow effect is included in the cross-shore current computations. The model's response to the wave-current interaction is checked through the simulation of a demanding test including a rip channel. In addition, both 1DH and 2DH model's versions were validated against a variety of experimental tests including plane beaches and submerged bars. The agreement, in general, is found fairly good and most of the nearshore phenomena are adequately described.
A new AVA attribute based on P-wave and S-wave reflectivities for overpressure prediction
Aleardi, Mattia; Mapelli, Luca; Mazzotti, Alfredo
2017-05-01
Pore pressure prediction is a key step for safe well drilling operations and is usually performed by deriving a velocity-pressure relationship calibrated to a reference well. However, in the last few decades, other seismic-based methods, such as the Amplitude versus Angle (AVA) technique, have been extended to predict anomalous pressure values. Concerning AVA analysis, in this work, we show that the expected pressure effect on the elastic rock properties is very different from the fluid effect, thus making the classical AVA attributes used for fluid prediction ineffective at highlighting pressure anomalies. Therefore, we propose a new AVA attribute to evidence the decrease in P-wave and S-wave reflectivity that usually occurs when passing from an overlying formation to an underlying overpressured one. This attribute can be easily derived from the intercept and gradient values extracted from the recorded seismic pre-stack data by means of the Shuey equation. To demonstrate the applicability of this new attribute for pore pressure prediction we show examples on synthetic seismic data and three applications to different field datasets over already drilled prospects. In the case of overpressured layers, this attribute shows anomalous responses, thus demonstrating its effectiveness in highlighting anomalous pore pressure regimes. In contrast, no anomalous attribute values are observed in cases characterized by a hydrostatic pore pressure regime.
Numerical Modelling of Solitary Wave Experiments on Rubble Mound Breakwaters
Guler, H. G.; Arikawa, T.; Baykal, C.; Yalciner, A. C.
2016-12-01
Performance of a rubble mound breakwater protecting Haydarpasa Port, Turkey, has been tested under tsunami attack by physical model tests conducted at Port and Airport Research Institute (Guler et al, 2015). It is aimed to understand dynamic force of the tsunami by conducting solitary wave tests (Arikawa, 2015). In this study, the main objective is to perform numerical modelling of solitary wave tests in order to verify accuracy of the CFD model IHFOAM, developed in OpenFOAM environment (Higuera et al, 2013), by comparing results of the numerical computations with the experimental results. IHFOAM is the numerical modelling tool which is based on VARANS equations with a k-ω SST turbulence model including realistic wave generation, and active wave absorption. Experiments are performed using a Froude scale of 1/30, measuring surface elevation and flow velocity at several locations in the wave channel, and wave pressure around the crown wall of the breakwater. Solitary wave tests with wave heights of H=7.5 cm and H=10 cm are selected which represent the results of the experiments. The first test (H=7.5 cm) is the case that resulted in no damage whereas the second case (H=10 cm) resulted in total damage due to the sliding of the crown wall. After comparison of the preliminary results of numerical simulations with experimental data for both cases, it is observed that solitary wave experiments could be accurately modeled using IHFOAM focusing water surface elevations, flow velocities, and wave pressures on the crown wall of the breakwater (Figure, result of sim. at t=29.6 sec). ACKNOWLEDGEMENTSThe authors acknowledge developers of IHFOAM, further extend their acknowledgements for the partial supports from the research projects MarDiM, ASTARTE, RAPSODI, and TUBITAK 213M534. REFERENCESArikawa (2015) "Consideration of Characteristics of Pressure on Seawall by Solitary Waves Based on Hydraulic Experiments", Jour. of Japan. Soc. of Civ. Eng. Ser. B2 (Coast. Eng.), Vol 71, p I
Stem breakage of salt marsh vegetation under wave forcing: A field and model study
Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.
2018-01-01
One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a
Identification and modeling of internal waves
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.
,21pp823834. [6]MurthyP.G.KandG.R.KMurthy,1986:,?Acasestudyontheinfluenceof internal waves on sound propagation in the sea ?, Journal of Sound and Vibration,108(3),447 [7] Robinson. Allan.R. and Lee D., 1994 : ?Oceanography and Acoustics? AIP press...
Testing predictive performance of binary choice models
A.C.D. Donkers (Bas); B. Melenberg (Bertrand)
2002-01-01
textabstractBinary choice models occur frequently in economic modeling. A measure of the predictive performance of binary choice models that is often reported is the hit rate of a model. This paper develops a test for the outperformance of a predictor for binary outcomes over a naive prediction
Energy Technology Data Exchange (ETDEWEB)
Murawski, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung
2007-07-01
The present thesis deals with the mutual influences of surface waves and currents, which are discussed theoretically and studied on the basis of numerical simulations. Interactively coupled models covering the area of the North and Baltic Seas are used to simulate the large-scale circulation and wind generated waves. Complex interactions between these scale-different processes are not limited to the surf zone, where waves break, but are also taking place in the open ocean. Nonlinear wave theory predicts a non-vanishing momentum contribution to the mean flow. Conversely, wave propagation and refraction depend nonlinearly on water depth and current velocity. Waves are considered to be a periodic perturbation of the fluid's basic state, which is identified with Eularian flow. Wave evolution is influenced by environmental effects such as changing winds, water depths, and currents. The mean flow, which is equal to the Eularian flow in the absence of waves, slowly adjust itself to a changing wave field. The coupled wave-current model describes this adjustment process. The final set of hydrodynamic equations for larger-scale circulation is the results of a nonlinear perturbation analysis using the WKB approximation. The wave-current model was applied to several storm periods in the North Sea. Simulations run on the coupled model system are compared to runs using separate models for mean circulation and wind waves, and to measurements. In accordance with observations, the numerical simulations show wave setup in the surf zone and balancing alongshore currents due to the decay of the wave field. The wave-current interaction effects may be relevant to coastal protection measures and nearshore applications. (orig.)
Navier-Stokes wave models for investigations of breakwater characteristics
CSIR Research Space (South Africa)
Cannoo, BR
2008-03-01
Full Text Available observations, including turbulence in surging and plunging waves, is encouraging, but quantitative comparisons are still to be made. Loads on a semi-submerged beam are modelled in preparation for studies of the dolos geometry...
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
A Coupled Atmospheric and Wave Modeling System for Storm Simulations
DEFF Research Database (Denmark)
Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.
2015-01-01
to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... for the coastal condition. With the current model setup, using high spatial resolution gives better results for strong winds both for the open ocean and coastal sites. The signicant wave height (Hm0) is very sensitive to the model resolution and bathymetry data for the coastal zone. In addition, using Janssen...
Model Prediction Control For Water Management Using Adaptive Prediction Accuracy
Tian, X.; Negenborn, R.R.; Van Overloop, P.J.A.T.M.; Mostert, E.
2014-01-01
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for
Modeling Wave-Ice Interactions in the Marginal Ice Zone
Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe
2015-04-01
The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G
DEFF Research Database (Denmark)
Bjelland, C; Bjarnø, Leif
1992-01-01
A model for wave propagation in a liquid-filled viscoelastic tube with arrays of receivers inside, is being used to analyze the influence of noise generated by in-line vibrational noise sources. In this model, distensibility is of greater importance than compressibility of the liquid...... accelerometers and arrays of hydrophones inside are compared to the theoretical model for wave propagation. A good agreement between experimental data and theoretical predictions is found........ The dispersion and attenuation is shown to be strongly dependent on the viscoelastic properties of the tube wall. The complex, frequency-dependent moduli of relevant tube materials have been measured in stress wave transfer function experiments. The moduli are used in the model to produce realistic dispersion...
Combining modeling and gaming for predictive analytics
National Research Council Canada - National Science Library
Riensche, Roderick M; Whitney, Paul D
2012-01-01
.... In this paper we describe our approach of combining modeling and gaming disciplines to develop predictive capabilities, using formal models to inform game development, and using games to provide data for modeling...
Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
Hybrid Modelling of a Traveling Wave Piezoelectric Motor
DEFF Research Database (Denmark)
El, Ghouti N.
This thesis considers the modeling of the traveling wave piezoelectric motor (PEM). The rotary traveling wave ultrasonic motor "Shinsei type USR60" is the case study considered in this work. The traveling wave PEM has excellent performance and many useful features such as high holding torque, high...... of an ultrasonic traveling wave rotary piezoelectric motor. This approach is carried out on the basis of the experimental investigation combined with the electrical network method. Consequently, an insight in the analysis of the electromechanical coupling force factor, which is responsible for the electrical...... for control purposes. Consequently, a general state space model is derived on the basis of the special design of the motor of interest, which is a two phase symmetrical system. Furthermore, a simplified model is derived within the framework of various assumptions on the behavior of the stator, which makes...
Modeling the Buoyancy System of a Wave Energy Power Plant
DEFF Research Database (Denmark)
Pedersen, Tom S.; Nielsen, Kirsten M.
2009-01-01
A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting....... The pressures in the air chambers may be individually controlled by an air fan through an array of valves. The paper presents a model describing the dynamics from the air inlet to the level. Results from validation of the model against plant data are presented....
Holographic p-wave superconductor models with Weyl corrections
Directory of Open Access Journals (Sweden)
Lu Zhang
2015-04-01
Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.
Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements
Energy Technology Data Exchange (ETDEWEB)
Fouques, Sebastien
2005-07-01
The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Staying Power of Churn Prediction Models
Risselada, Hans; Verhoef, Peter C.; Bijmolt, Tammo H. A.
In this paper, we study the staying power of various churn prediction models. Staying power is defined as the predictive performance of a model in a number of periods after the estimation period. We examine two methods, logit models and classification trees, both with and without applying a bagging
Berg, Ward; Smit, Han
2007-01-01
textabstractThis paper explains why consolidation acquisitions occur in waves and it predicts the differing role each firm is likely to play in the consolidation game. We propose that whether a firm assumes the role of rival consolidator, target, or passive observer depends on the position of the firm relative to the entity that merges first. Our model predicts that an initial acquisition triggers a wave of follow-on acquisitions, where the process of asset accumulation by the consolidator is...
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo
2009-06-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
QUASI-2D TRANSPORT MODEL OF SUSPENDED SEDIMENT IN A WAVE FLUME
Rahman, Sabaruddin; Mano, Akira; Udo, Keiko
A quasi-2D model of hydrodynamics and sediment transport has been developed in this study. An eddy viscosity model with a function of artificial viscosity has been applied to the Boussinesq-type equations to produce wave decay as well as sediment transport due to breaking. Numerical results are then compared with laboratory experimental data in order to verify the applicability of the numerical model. The results demonstrate that the proposed eddy viscosity model can be used to simulate wave propagation in the surf zone as well as suspended concentration distribution. Erosion before the breaking point can be predicted fairly well. However, the bar crest and erosion in the surf zone can not be predicted accurately.
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation......We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998...
Experimental bounds on collapse models from gravitational wave detectors
Carlesso, Matteo; Bassi, Angelo; Falferi, Paolo; Vinante, Andrea
2016-12-01
Wave function collapse models postulate a fundamental breakdown of the quantum superposition principle at the macroscale. Therefore, experimental tests of collapse models are also fundamental tests of quantum mechanics. Here, we compute the upper bounds on the collapse parameters, which can be inferred by the gravitational wave detectors LIGO, LISA Pathfinder, and AURIGA. We consider the most widely used collapse model, the continuous spontaneous localization (CSL) model. We show that these experiments exclude a huge portion of the CSL parameter space, the strongest bound being set by the recently launched space mission LISA Pathfinder. We also rule out a proposal for quantum-gravity-induced decoherence.
Stochastic predictive control with adaptive model maintenance
Bavdekar, VA; Ehlinger, V; Gidon, D; Mesbah, A.
2016-01-01
© 2016 IEEE. The closed-loop performance of model-based controllers often degrades over time due to increased model uncertainty. Some form of model maintenance must be performed to regularly adapt the system model using closed-loop data. This paper addresses the problem of control-oriented model adaptation in the context of predictive control of stochastic linear systems. A stochastic predictive control approach is presented that integrates stochastic optimal control with control-oriented inp...
Modeling and design for electromagnetic surface wave devices
La Spada, Luigi; Haq, Sajad; Hao, Yang
2017-09-01
A great deal of interest has reemerged recently in the study of surface waves. The possibility to control and manipulate electromagnetic wave propagations at will opens many new research areas and leads to lots of novel applications in engineering. In this paper, we will present a comprehensive modeling and design approach for surface wave cloaks, based on graded-refractive-index materials and the theory of transformation optics. It can be also applied to any other forms of surface wave manipulation, in terms of amplitude and phase. In this paper, we will present a general method to illustrate how this can be achieved from modeling to the final design. The proposed approach is validated to be versatile and allows ease in manufacturing, thereby demonstrating great potential for practical applications.
Scattering of surface waves modelled by the integral equation method
Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng
2008-09-01
The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.
1982-07-01
Through the Sea Surface, Wave Dynamics and Prediction, Plenum Press, 677 pp. (1978) 8. Barnhart, C.L. (Editor), " Thorndike -Barnlart Comprehensive Desk...1 522.1 Unclassified Library (C) 12 DTIC 1 522.2 Unclassified Library (A) 1 Scott E. Dillion 9009 Linton St. Silver Spring, MD 20901 1 Edward V
Modeling anomalous surface - wave propagation across the Southern Caspian basin
Energy Technology Data Exchange (ETDEWEB)
Priestly, K.F.; Patton, H.J.; Schultz, C.A.
1998-01-09
The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.
Numerical Modeling of a Wave Energy Point Absorber
DEFF Research Database (Denmark)
Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning
2009-01-01
The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....
Sensitivity of storm wave modeling to wind stress evaluation methods
Chen, Yingjian; Yu, Xiping
2017-06-01
The application of the wave boundary layer model (WBLM) for wind stress evaluation to storm wave modeling is studied using Hurricane Katrina (2005) as an example, which is chosen due to its great intensity and good availability of field data. The WBLM is based on the momentum and energy conservation equations and takes into account the physical details of air-sea interaction processes as well as energy dissipation due to the presence of sea spray. Four widely-used bulk-type formulas are also used for comparison. Simulated significant wave heights with WBLM are shown to agree well with the observed data over deep water. The WBLM yields a smaller wind stress coefficient on the left hand side of the hurricane track, which is reasonable considering the effect of the sea state on momentum transfer. Quantitative results show that large differences of the significant wave height are observed in the hurricane core among five wind stress evaluation methods and the differences are up to 12 m, which is in agreement with the general knowlege that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. However, it is the depth-induced energy dissipation, rather than the wind energy input, that dominates the wave height in the shallow water region. A larger value of depth-induced breaking parameter in the wave model results in better agreement with the measurements over shallow water.
Deckers, Elke; Jonckheere, Stijn; Van Belle, Lucas; Claeys, Claus; Desmet, Wim
2018-03-01
This paper presents a hybrid Wave Based Method - Finite Element unit cell method to predict the absorption, reflection and transmission properties of arbitrary, two-dimensional periodic structures. The planar periodic structure, represented by its unit cell combined with Bloch-Floquet periodicity boundary conditions, is modelled within the Finite Element Method, allowing to represent complex geometries and to include any type of physics. The planar periodic structure is coupled to semi-infinite acoustic domains above and/or below, in which the dynamic pressure field is modelled with the Wave Based Method, applying a wave function set that fulfills the Helmholtz equation and satisfies the Sommerfeld radiation condition and the Bloch-Floquet periodicity conditions inherently. The dynamic fields described within both frameworks are coupled using a direct coupling strategy, accounting for the mutual dynamic interactions via a weighted residual formulation. The method explicitly accounts for the interaction between the unit cell and the surrounding acoustic domain, also accounting for higher order periodic waves. The convergence of the method is analysed and its applicability is shown for a variety of problems, proving it to be a useful tool combining the strengths of two methods.
Packet loss rate prediction using the sparse basis prediction model.
Atiya, Amir E; Yoo, Sung Goo; Chong, Kil To; Kim, Hyongsuk
2007-05-01
The quality of multimedia communicated through the Internet is highly sensitive to packet loss. In this letter, we develop a time-series prediction model for the end-to-end packet loss rate (PLR). The estimate of the PLR is needed in several transmission control mechanisms such as the TCP-friendly congestion control mechanism for UDP traffic. In addition, it is needed to estimate the amount of redundancy for the forward error correction (FEC) mechanism. An accurate prediction would therefore be very valuable. We used a relatively novel prediction model called sparse basis prediction model. It is an adaptive nonlinear prediction approach, whereby a very large dictionary of possible inputs are extracted from the time series (for example, through moving averages, some nonlinear transformations, etc.). Only few of the very best inputs among the dictionary are selected and are combined linearly. An algorithm adaptively updates the input selection (as well as updates the weights) each time a new time sample arrives in a computationally efficient way. Simulation experiments indicate significantly better prediction performance for the sparse basis approach, as compared to other traditional nonlinear approaches.
Travelling waves in models of neural tissue: from localised structures to periodic waves
Meijer, Hil Gaétan Ellart; Coombes, Stephen
2014-01-01
We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength
Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing
2017-10-01
Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.
2013-09-30
disk the following wave input fields: Stokes drift current ( SDC ), wave-to-ocean momentum flux (WOMF), bottom orbital wave current (OWC). (b) Add SDC ...Earth System Modeling Framework) layer in HYCOM to import SDC , WOMF and OWC fields and export SSC (surface current) and SSH (surface height) fields
Case studies in archaeological predictive modelling
Verhagen, Jacobus Wilhelmus Hermanus Philippus
2007-01-01
In this thesis, a collection of papers is put together dealing with various quantitative aspects of predictive modelling and archaeological prospection. Among the issues covered are the effects of survey bias on the archaeological data used for predictive modelling, and the complexities of testing
Polyspike and waves do not predict generalized tonic-clonic seizures in childhood absence epilepsy.
Vierck, Esther; Cauley, Ryan; Kugler, Steven L; Mandelbaum, David E; Pal, Deb K; Durner, Martina
2010-04-01
About 40% of children with childhood absence epilepsy develop generalized tonic-clonic seizures. It is commonly held that polyspike-wave pattern on the electroencephalogram (EEG) can predict this development of generalized tonic-clonic seizures. However, there is no firm evidence in support of this proposition. To test this assumption, we used survival analysis and compared the incidence of generalized tonic-clonic seizures in 115 patients with childhood absence epilepsy having either isolated 3-Hz spike-wave or coexisting 3 Hz and polyspike-waves and other variables. There was no evidence that polyspike-waves predicted development of generalized tonic-clonic seizures in patients with childhood absence epilepsy. Later age of onset (> or =8 years) and family histories of generalized tonic-clonic seizures were the only independent predictors. These results have implications for counseling and in the choice of first-line antiepileptic drugs used for childhood absence epilepsy, especially if valproate is chosen based on the observation of polyspike-waves.
Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source
Ahn, Jae-Kwang; Park, Duhee
2017-11-01
Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.
Polyspike and Waves Do Not Predict Generalized Tonic-Clonic Seizures in Childhood Absence Epilepsy
Vierck, Esther; Cauley, Ryan; Kugler, Steven L.; Mandelbaum, David E.; Pal, Deb K.; Durner, Martina
2012-01-01
About 40% of children with childhood absence epilepsy develop generalized tonic-clonic seizures. It is commonly held that polyspike–wave pattern on the electroencephalogram (EEG) can predict this development of generalized tonic-clonic seizures. However, there is no firm evidence in support of this proposition. To test this assumption, we used survival analysis and compared the incidence of generalized tonic-clonic seizures in 115 patients with childhood absence epilepsy having either isolated 3-Hz spike–wave or coexisting 3 Hz and polyspike–waves and other variables. There was no evidence that polyspike–waves predicted development of generalized tonic-clonic seizures in patients with childhood absence epilepsy. Later age of onset (≥8 years) and family histories of generalized tonic-clonic seizures were the only independent predictors. These results have implications for counseling and in the choice of first-line antiepileptic drugs used for childhood absence epilepsy, especially if valproate is chosen based on the observation of polyspike–waves. PMID:20382952
Recent improvements to and validation of the one dimensional NASA wave rotor model
Paxson, Daniel E.; Wilson, Jack
1995-01-01
A numerical model has been developed at the NASA Lewis Research Center which can predict both the unsteady flow quantities within a wave rotor passage and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, perfect gas flow. The model assesses not only the dominant wave behavior, but the loss effects of finite passage opening time, leakage from the passage ends, viscosity, and heat transfer to and from the passages. The model operates in the rotor reference frame; however, until recently no account was made for the often significant effect of the rotor circumferential velocity component. The present model accounts for this by modifying the passage boundary conditions, allowing the internal computational scheme to remain the rotor reference frame, while quantities such as inlet duct stagnation properties may be specified in the fixed or absolute reference frame. Accurate modeling of this effect is critical to successful wave rotor analysis and design, particularly in off-design predictions where the flows in the inlet ducts are mismatched with the rotor passages and significant turning may take place (i.e., work is done on the gas). The relative simplicity of the model makes it useful for design and optimization, as well as analysis, of wave rotor cycles for many applications. This report, building on several earlier papers, describes the most recent modifications to the model. These include accounting for the relative/absolute transition at the passage boundaries and refinements to the viscous source term correlation which resulted from this accounting. Comparison of model predictions with measured data is then presented and discussed.
Nonlinear whistler wave model for lion roars in the Earth’s magnetosheath
DEFF Research Database (Denmark)
Dwivedi, N. K.; Singh, S.
2017-01-01
In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth’s magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient...... spectrum with a spectral slope of −4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted...
Modelling of bulk acoustic wave resonators for microwave filters
Jose, Sumy; Hueting, Raymond Josephus Engelbart; Jansman, Andreas
2008-01-01
Modelling and development of high Q thin-film bulk acoustic wave (BAW) devices is a topic of research gaining attention due to good selectivity and steep transition band offered by these devices used for cellular applications. A preliminary survey of various modeling approaches of these devices and
Numerical modeling of shoreline undulations part 1: Constant wave climate
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg; Fredsøe, Jørgen
2013-01-01
This paper presents a numerical study of the non-linear development of alongshore undulations up to fully developed quasi-steady equilibrium. A numerical model which describes the longshore sediment transport along arbitrarily shaped shorelines is applied, based on a spectral wave model, a depth...
Energy Technology Data Exchange (ETDEWEB)
Puckett, Anthony D. [Colorado State Univ., Fort Collins, CO (United States)
2000-09-01
The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Directory of Open Access Journals (Sweden)
Lorand Catalin STOENESCU
2011-05-01
Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.
Numerical modelling of wave current interactions at a local scale
Teles, Maria João; Pires-Silva, António A.; Benoit, Michel
2013-08-01
The present work is focused on the evaluation of wave-current interactions through numerical simulations of combined wave and current flows with the Code_Saturne (Archambeau et al., 2004), an advanced CFD solver based on the RANS (Reynolds Averaged Navier-Stokes) equations. The objectives of this paper are twofold. Firstly, changes in the mean horizontal velocity and the horizontal-velocity amplitude profiles are studied when waves are superposed on currents. The influence of various first and second order turbulence closure models is addressed. The results of the numerical simulations are compared to the experimental data of Klopman (1994) and Umeyama (2005). Secondly, a more detailed study of the shear stresses and the turbulence viscosity vertical profile changes is also pursued when waves and currents interact. This analysis is completed using the data from Umeyama (2005). A relationship between a non-dimensional parameter involving the turbulence viscosity and the Ursell number is subsequently proposed.
Hybrid approaches to physiologic modeling and prediction
Olengü, Nicholas O.; Reifman, Jaques
2005-05-01
This paper explores how the accuracy of a first-principles physiological model can be enhanced by integrating data-driven, "black-box" models with the original model to form a "hybrid" model system. Both linear (autoregressive) and nonlinear (neural network) data-driven techniques are separately combined with a first-principles model to predict human body core temperature. Rectal core temperature data from nine volunteers, subject to four 30/10-minute cycles of moderate exercise/rest regimen in both CONTROL and HUMID environmental conditions, are used to develop and test the approach. The results show significant improvements in prediction accuracy, with average improvements of up to 30% for prediction horizons of 20 minutes. The models developed from one subject's data are also used in the prediction of another subject's core temperature. Initial results for this approach for a 20-minute horizon show no significant improvement over the first-principles model by itself.
Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models
DEFF Research Database (Denmark)
Christensen, Morten
by different directional wave spectra. The wave generator displacement signals applied in the tests are generated by means of linear digital filtering of Gaussian white noise in the time domain. An absorbing wave generator for 2-D wave facilities (wave channels) is developed. The absorbing wave generator...... in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...
Wave model for longitudinal dispersion: Development of the model
Energy Technology Data Exchange (ETDEWEB)
Westerterp, K.R.; Dil`man, V.V.; Kronberg, A.E. [Twente Univ. of Technology, Enschede (Netherlands)
1995-09-01
A new 1-D model for longitudinal dispersion is proposed as an alternative to the Fickian-type dispersed plug-flow model. Accounting for significant features of longitudinal mixing gives rise to a quasilinear hyperbolic system of two first-order equations for the average concentration and the dispersion flux instead of one second-order parabolic equation for the average concentration. The model equations are obtained based on minor extensions of the heuristic equilibrium analysis of Taylor. A qualitative, more general derivation of the equations is given on the basis of a simple generalization of Fick`s law, taking into account the finite velocity of fluid elements. For linear problems the mean concentration and the dispersion flux obey a hyperbolic equation of the second order. The proposed hyperbolic model contains three parameters that depend only on the flow conditions, the physical properties of the fluid, and the geometry of the system. It effectively resolves the well-known problem of boundary conditions that, for unidirectional flow, are formulated now only at the reactor inlet. The new model eliminates the conceptual shortcoming inherent to the Fickian dispersed plug-flow model: it predicts a finite velocity of signal propagation and does not involve backmixing in the case of unidirectional flow.
Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants
Directory of Open Access Journals (Sweden)
Aitor J. Garrido
2015-01-01
Full Text Available Oscillating Water Column (OWC-based power take-off systems are one of the potential solutions to the current energy problems arising from the use of nuclear fission and the consumption of fossil fuels. This kind of energy converter turns wave energy into electric power by means of three different stages: firstly wave energy is transformed into pneumatic energy in the OWC chamber, and then a turbine turns it into mechanical energy and finally the turbogenerator module attached to the turbine creates electric power from the rotational mechanical energy. To date, capture chambers have been the least studied part. In this context, this paper presents an analytical model describing the dynamic behavior of the capture chamber, encompassing the wave motion and its interaction with the OWC structure and turbogenerator module. The model is tested for the case of the Mutriku wave power plant by means of experimental results. For this purpose, representative case studies are selected from wave and pressure drop input-output data. The results show an excellent matching rate between the values predicted by the model and the experimental measured data with a small bounded error in all cases, so that the validity of the proposed model is proven.
Extreme value predictions and critical wave episodes for marine structures by FORM
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2007-01-01
The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predictions related to wave induced loads. Three different applications will be illustrated. The first deals with a jack-up rig where second...... order stochastic waves are included in the analysis. The second application is parametric roll motions of ships. Finally, the motion of a TLP floating foundation for an offshore wind turbine is analysed taking into account large motions....
Extreme value predictions and critical wave episodes for marine structures by FORM
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2008-01-01
The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predictions related to wave induced loads. Three different applications will be illustrated. The first deals with a jack-up rig where second...... order stochastic waves are included in the analysis. The second application is parametric roll motions of ships. Finally, the motion of a TLP floating foundation for an offshore wind turbine is analysed taking into account large motions....
Improvements on Semi-Classical Distorted-Wave model
Energy Technology Data Exchange (ETDEWEB)
Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.
1998-03-01
A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)
Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling
Wilson, William; Atkinson, Gary
2009-01-01
Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
Predicting observational signatures of coronal heating by Alfvén waves and Nanoflares
Antolin, Patrick
2009-09-01
The subject of this thesis is the coronal heating problem, a long standing problem not only in solar physics but in astrophysics, since it is addressed to all stars that possess a corona. The Sun, a middle aged main sequence star of class G2V, has been unveiling many mysteries to us in the last century, especially since the advent of the space era. More than 70 years ago a very hot temperature component in the corona was discovered, reaching temperatures as high as a few million degrees. Such a hot corona came as a surprise to astrophysicists, since it seemed to contradict the second law of thermodynamics being 200 times hotter than the underlying photosphere, the source of its energy. Since then the coronal heating problem has spawned an active research community in solar physics that aims to unveil yet another mystery. This thesis has as purpose to shed some light into the fascinating subject of coronal heating. In the first chapter we give an introduction to the field, in which we discuss the main heating candidate mechanisms: Alfvén wave heating and nanoflare-reconnection heating. Predicting unique observational signatures of each heating mechanism which would allow their distinction during observations is the main purpose of this thesis and the subject of the second chapter. In this chapter we investigate the thermodynamic properties of a corona in a magnetic flux tube obtained, separately, with the two heating mechanisms. We derive a series of observational features which may allow the clear distinction between the two heating mechanisms during observations. In chapter 3 we further investigate the role of Alfvén wave heating in the solar atmosphere. We concentrate our study on magnetic flux tubes (loops), which are closed magnetic structures which populate the solar atmosphere. In the considered model Alfvén waves are generated at the footpoints of a loop and can dissipate their energy mainly through the mode conversion mechanism. A parameter survey is
Evaluating the Predictive Value of Growth Prediction Models
Murphy, Daniel L.; Gaertner, Matthew N.
2014-01-01
This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model
Perkins, R. J.; Hosea, J. C.; Bertelli, N.; Taylor, G.; Wilson, J. R.
2017-11-01
Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrape-off layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understand scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.
Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.
Du, Peng; Calder, Stefan; Angeli, Timothy R; Sathar, Shameer; Paskaranandavadivel, Niranchan; O'Grady, Gregory; Cheng, Leo K
2017-01-01
Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of "entrainment," which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.
Comparative Study of Bancruptcy Prediction Models
Isye Arieshanti; Yudhi Purwananto; Ariestia Ramadhani; Mohamat Ulin Nuha; Nurissaidah Ulinnuha
2013-01-01
Early indication of bancruptcy is important for a company. If companies aware of potency of their bancruptcy, they can take a preventive action to anticipate the bancruptcy. In order to detect the potency of a bancruptcy, a company can utilize a a model of bancruptcy prediction. The prediction model can be built using a machine learning methods. However, the choice of machine learning methods should be performed carefully. Because the suitability of a model depends on the problem specificall...
Effective Orthorhombic Anisotropic Models for Wave field Extrapolation
Ibanez Jacome, Wilson
2013-05-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the
Wave intensity analysis of a computational model of the pulmonary circulation
Hill, Nicholas A.; Qureshi, Muhammad Umar
2015-11-01
A multiscale computational model has been developed to predict flow and pressure in the pulmonary circulation, in which the flow and pressure in the smaller blood vessels are described using linearised equations in pairs of asymmetric structured trees joined at the roots. The geometric and elastic properties of all the blood vessels are described by physiological parameters. Magnetic resonance imaging (MRI) is used to determine the geometry of the large pulmonary arteries and veins, and to measure the cardiac output from the right ventricle. The flow in the large blood vessels is solved using a Lax-Wendroff scheme, and the admittances of the structured trees provide the boundary conditions linking each large artery to its respective large vein. The results of simulating various pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment of circulatory diseases within the lung. We use wave intensity analysis to study the propagation of forward and backward, compression and decompression waves in our model. The approximations for the pulse wave velocity used in experiments on wave intensity analysis are assessed, and reflected waves lower the peak pressure in the right ventricle.
Zambon, Joseph B.; He, Ruoying; Warner, John C.
2014-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).
d -wave superconductivity in boson+fermion dimer models
Goldstein, Garry; Chamon, Claudio; Castelnovo, Claudio
2017-05-01
We present a slave-particle mean-field study of the mixed boson+fermion quantum dimer model introduced by Punk et al. [Proc. Natl. Acad. Sci. USA 112, 9552 (2015), 10.1073/pnas.1512206112] to describe the physics of the pseudogap phase in cuprate superconductors. Our analysis naturally leads to four charge e fermion pockets whose total area is equal to the hole doping p for a range of parameters consistent with the t -J model for high-temperature superconductivity. Here we find that the dimers are unstable to d -wave superconductivity at low temperatures. The region of the phase diagram with d -wave rather than s -wave superconductivity matches well with the appearance of the four fermion pockets. In the superconducting regime, the dispersion contains eight Dirac cones along the diagonals of the Brillouin zone.
Optimal parametric modelling of measured short waves
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
the importance of selecting a suitable sampling interval for better estimates of parametric modelling and also for better statistical representation. Implementation of the above algorithms in a structural monitoring system has the potential advantage of storing...
Energy Technology Data Exchange (ETDEWEB)
Abbas, Nikhar; Tom, Nathan
2017-09-01
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
Energy Technology Data Exchange (ETDEWEB)
Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.
Mathematical models for dispersive electromagnetic waves: An overview
Cassier, Maxence; Joly, Patrick; Kachanovska, Maryna
2017-01-01
International audience; In this work, we investigate mathematical models for electromagnetic wave propagation in dispersive isotropic media. We emphasize the link between physical requirements and mathematical properties of the models. A particular attention is devoted to the notion of non-dissipativity and passivity. We consider successively the case of so-called local media and general passive media. The models are studied through energy techniques, spectral theory and dispersion analysis o...
A Global Model for Bankruptcy Prediction.
Directory of Open Access Journals (Sweden)
David Alaminos
Full Text Available The recent world financial crisis has increased the number of bankruptcies in numerous countries and has resulted in a new area of research which responds to the need to predict this phenomenon, not only at the level of individual countries, but also at a global level, offering explanations of the common characteristics shared by the affected companies. Nevertheless, few studies focus on the prediction of bankruptcies globally. In order to compensate for this lack of empirical literature, this study has used a methodological framework of logistic regression to construct predictive bankruptcy models for Asia, Europe and America, and other global models for the whole world. The objective is to construct a global model with a high capacity for predicting bankruptcy in any region of the world. The results obtained have allowed us to confirm the superiority of the global model in comparison to regional models over periods of up to three years prior to bankruptcy.
Comparison of Prediction-Error-Modelling Criteria
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which...... is a realization of a continuous-discrete multivariate stochastic transfer function model. The proposed prediction error-methods are demonstrated for a SISO system parameterized by the transfer functions with time delays of a continuous-discrete-time linear stochastic system. The simulations for this case suggest...... to use the one-step-ahead prediction-error maximum-likelihood (or maximum a posteriori) estimator. It gives consistent estimates of all parameters and the parameter estimates are almost identical to the estimates obtained for long prediction horizons but with consumption of significantly less...
Unreachable Setpoints in Model Predictive Control
DEFF Research Database (Denmark)
Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp
2008-01-01
In this work, a new model predictive controller is developed that handles unreachable setpoints better than traditional model predictive control methods. The new controller induces an interesting fast/slow asymmetry in the tracking response of the system. Nominal asymptotic stability of the optimal...... steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...
Robustness aspects of Model Predictive Control
Megías Jiménez, David
2011-01-01
Model, Model-based or Receding-horizon Predictive Control (MPC or RHPC) is a successful and mature control strategy which has gained the widespread acceptance of both academia and industry. The basis of these control laws, which have been reported to handle quite complex dynamics, is to perform predictions of the system to be controlled by means of a model. A control profile is then computed to minimise some cost function defined in terms of the predictions and the hypothesised controls. It w...
Finite element modeling of guided wave scattering at delaminations in composite panels
Murat, B. I. S.; Fromme, P.
2016-04-01
Carbon fiber laminate composites, consisting of layers of polymer matrix reinforced with high strength carbon fibers, are increasingly employed for aerospace structures. They offer advantages for aerospace applications, e.g., good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, delaminations can occur, reducing the load carrying capacity of the structure. Efficient structural health monitoring of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The guided ultrasonic wave (A0 Lamb wave mode) scattering at delaminations was modelled using full three-dimensional Finite Element (FE) simulations. The influence of the delamination size was systematically investigated from a parameter study. The angular dependency of the scattered guided wave amplitude was calculated using a baseline subtraction method. A significant influence of the delamination width on the guided wave scattering was found. The sensitivity of guided waves for the detection of barely visible impact damage in composite panels has been predicted.
Herman, Agnieszka
2017-11-01
In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.
Comparison of artificial absorbing boundaries for acoustic wave equation modelling
Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing
2017-12-01
Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.
Parisi, Laura
2016-02-10
The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ∼ 45–150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ∼ 45–150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ∼ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ∼20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ∼ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT\\'s phase errors are smaller, notably for the shortest wave periods considered (T
Model Predictive Control for Smart Energy Systems
DEFF Research Database (Denmark)
Halvgaard, Rasmus
pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms...... 2 provides linear dynamical models of Smart Grid units: Electric Vehicles, buildings with heat pumps, refrigeration systems, solar collectors, heat storage tanks, power plants, and wind farms. The models can be realized as discrete time state space models that fit into a predictive control system...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...
Massive Predictive Modeling using Oracle R Enterprise
CERN. Geneva
2014-01-01
R is fast becoming the lingua franca for analyzing data via statistics, visualization, and predictive analytics. For enterprise-scale data, R users have three main concerns: scalability, performance, and production deployment. Oracle's R-based technologies - Oracle R Distribution, Oracle R Enterprise, Oracle R Connector for Hadoop, and the R package ROracle - address these concerns. In this talk, we introduce Oracle's R technologies, highlighting how each enables R users to achieve scalability and performance while making production deployment of R results a natural outcome of the data analyst/scientist efforts. The focus then turns to Oracle R Enterprise with code examples using the transparency layer and embedded R execution, targeting massive predictive modeling. One goal behind massive predictive modeling is to build models per entity, such as customers, zip codes, simulations, in an effort to understand behavior and tailor predictions at the entity level. Predictions...
Demanuele, Charmaine; Bartsch, Ullrich; Baran, Bengi; Khan, Sheraz; Vangel, Mark G; Cox, Roy; Hämäläinen, Matti; Jones, Matthew W; Stickgold, Robert; Manoach, Dara S
2017-01-01
Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation. Twenty-one chronic medicated schizophrenia patients and 17 demographically matched healthy controls underwent two nights of polysomnography, with training on the finger tapping motor sequence task (MST) on the second night and testing the following morning. We detected SWs (0.5-4 Hz) and spindles during non-rapid eye movement (NREM) sleep. We measured SW-spindle phase-amplitude coupling and its relation with overnight improvement in MST performance. Patients did not differ from controls in the timing of SW-spindle coupling. In both the groups, spindles peaked during the SW upstate. For patients alone, the later in the SW upstate that spindles peaked and the more reliable this phase relationship, the greater the overnight MST improvement. Regression models that included both spindle density and SW-spindle coordination predicted overnight improvement significantly better than either parameter alone, suggesting that both contribute to memory consolidation. Schizophrenia patients show intact spindle-SW temporal coordination, and these timing relationships, together with spindle density, predict sleep-dependent memory consolidation. These relations were seen only in patients suggesting that their memory is more dependent on optimal spindle-SW timing, possibly due to reduced spindle density. Interventions to improve memory may need to increase spindle density while preserving or enhancing the coordination of NREM oscillations.
Barlett, Christopher; Chamberlin, Kristina; Witkower, Zachary
2017-04-01
The Barlett and Gentile Cyberbullying Model (BGCM) is a learning-based theory that posits the importance of positive cyberbullying attitudes predicting subsequent cyberbullying perpetration. Furthermore, the tenants of the BGCM state that cyberbullying attitude are likely to form when the online aggressor believes that the online environment allows individuals of all physical sizes to harm others and they are perceived as anonymous. Past work has tested parts of the BGCM; no study has used longitudinal methods to examine this model fully. The current study (N = 161) employed a three-wave longitudinal design to test the BGCM. Participants (age range: 18-24) completed measures of the belief that physical strength is irrelevant online and anonymity perceptions at Wave 1, cyberbullying attitudes at Wave 2, and cyberbullying perpetration at Wave 3. Results showed strong support for the BGCM: anonymity perceptions and the belief that physical attributes are irrelevant online at Wave 1 predicted Wave 2 cyberbullying attitudes, which predicted subsequent Wave 3 cyberbullying perpetration. These results support the BGCM and are the first to show empirical support for this model. Aggr. Behav. 43:147-154, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wave measurements and models in the Tyrrhenian Sea
Saviano, Simona; Besio, Giovanni; Uttieri, Marco; Zambianchi, Enrico
2017-04-01
A qualitative and quantitative comparisons of the wave measurements obtained from HF radars (25 MHz SeaSonde manufactured by CODAR Ocean Sensors Ltd.) and wave model output (Wavewatch III) is presented. A network of HF radars has been operating in the Gulf of Naples (GoN) (Southeastern Tyrrhenian Sea) since 2004. HF radars use first-order echoes to determine surface currents, while second-order ones can be exploited to estimate the main parameters characterizing the wave field: wave direction, significant height (Hs) and period (p). The WavewatchIII model is operational at University of Genoa (DICCA), with a 10 km grid resolution over the Mediterranean basin. A nested grid of 2 km resolution covers the Northern Thyrrhenian Sea and the Ligurian Sea. Wind forcing is obtained by means of WRF runs with 10 km grid resolution for the Mediterranean basin and with 3.3 km grid resolution for the Thyrrhenian Sea. The analysis aims at investigating the agreement of wave measurements from the two platforms in normal condition and critical environmental conditions (e.g. coastal storm). The results show good consistency, and open the way to future integrations of the two systems.
Modelling the electrical properties of concrete for shielding effectiveness prediction
Sandrolini, L.; Reggiani, U.; Ogunsola, A.
2007-09-01
Concrete is a porous, heterogeneous material whose abundant use in numerous applications demands a detailed understanding of its electrical properties. Besides experimental measurements, material theoretical models can be useful to investigate its behaviour with respect to frequency, moisture content or other factors. These models can be used in electromagnetic compatibility (EMC) to predict the shielding effectiveness of a concrete structure against external electromagnetic waves. This paper presents the development of a dispersive material model for concrete out of experimental measurement data to take account of the frequency dependence of concrete's electrical properties. The model is implemented into a numerical simulator and compared with the classical transmission-line approach in shielding effectiveness calculations of simple concrete walls of different moisture content. The comparative results show good agreement in all cases; a possible relation between shielding effectiveness and the electrical properties of concrete and the limits of the proposed model are discussed.
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
Moll, Jochen; Wandowski, Tomasz; Malinowski, Pawel; Radzienski, Maciej; Opoka, Szymon; Ostachowicz, Wieslaw
2015-07-01
This paper presents experimental results for wave propagation in an anisotropic multilayered structure with linearly varying cross section. Knowing the dispersion and wave propagation properties in such a structure is of great importance for non-destructive material testing and structural health monitoring applications for accurate damage detection and localization. In the proposed study, the wavefield is generated by a circular piezoelectric wafer active sensor and measured by a scanning laser-Doppler-vibrometer. The measurements are compared with a theoretical group delay estimation and a signal prediction for the antisymmetric wave motion along the non-uniform propagation path. The required dispersion curves are derived from the well-known global matrix method for segments of constant thickness. A multidimensional frequency-wavenumber analysis of linescan data and the full wavefield provides further insight of the adiabatic wave motion because the wavenumber changes along the tapered geometry of the waveguide. In addition, it is demonstrated that a terahertz time-domain system can be used in glass-fiber reinforced plastic structures as a tool to estimate the thickness profile of thin structures by means of time-of-flight measurements. This information is particularly important for guided wave-based diagnostics of structures with unknown thickness.
Jittering wave-packet models for subsonic jet noise
Cavalieri, André V. G.; Jordan, Peter; Agarwal, Anurag; Gervais, Yves
2011-08-01
Three simplified wave-packet models of the coherent structures in subsonic jets are presented. The models comprise convected wave-packets with time-dependent amplitudes and spatial extents. The dependence of the radiated sound on the temporal variations of the amplitude and spatial extent of the modulations are studied separately in the first two model problems, being considered together in the third. Analytical expressions for the radiated sound pressure are obtained for the first and third models. Results show that temporally localised changes in the wave-packet can lead to radiation patterns which are directional and which comprise high-amplitude bursts; such intermittency is observed in subsonic jets at the end of the potential core, and so the models may help explain the higher noise levels and intermittent character of the sound radiated to low emission angles for subsonic jets. By means of an efficiency metric, relating the radiated acoustic power to the fluctuation energy of the source, we show that the source becomes more powerful as its temporal localisation is increased. This result extends that of Sandham et al. (Journal of Sound and Vibration 294(1) (2006) 355-361) who found similar behaviour for an infinitely extended wavy-wall. The pertinence of the model is assessed using two sets of data for a Mach 0.9 jet. One corresponds to a direct numerical simulation (DNS) of a Reynolds number 3600 turbulent jet and the other to a large eddy simulation (LES) of a Reynolds number 4×10 5 jet. Both time-averaged and time-dependent amplitudes and spatial extents are extracted from the velocity field of the numerical data. Computing the sound field generated by the wave-packet models we find for both simulations that while the wave-packet with a time-averaged envelope shows discrepancies of more than an order of magnitude with the sound field, when the wave-packet 'jitters' in a way similar to the intermittency displayed by the simulations, we obtain agreement to
Predictive Model of Systemic Toxicity (SOT)
In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Cervical Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Liver Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Ovarian Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Bladder Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Millimeter Wave Radio Frequency Propagation Model Development
2014-08-28
Anechoic Chamber .................................. 47 3.4.1 10 GHz Transmitting System...Propagation Losses ............................................................. 67 4.2 Experiment 2 - Quantifying Model Accuracy in an Anechoic Chamber ...44 Figure 20. Actual Footage of the Experiment at 10, 20, 30, and 40 GHz within the Anechoic Chamber
Gravity wave and model-independent axion
Kim, Jihn E.
2017-08-01
In this short comment, we notice that the model-independent axion contribution to the graviton mass at just outside the Schwarzschild radius is completely negligible in GW150914. The modelindependent axion contribution to the graviton mass at the order 10-22 eV might be possible for merger of black holes of mass of order 2 × 1014 kg.
Modeling of ICRF wave propagation and heating in EAST with the full-wave code TORIC
Edlund, E. M.; Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.
2015-11-01
Access to advanced tokamak (AT) scenarios in EAST depends on efficient coupling of the launched ion-cyclotron range of frequency (ICRF) power for heating and lower-hybrid waves to the plasma for steady-state current drive. This work builds on recent predictions from the full-wave code TORIC that have shown significant reductions in loading, resulting in improved heating efficiency, by operating with smaller phasing between antenna straps. The density regime of typical EAST experiments produces perpendicular wavelengths of the fast-wave that are comparable to the minor radius of the plasma, resulting in cavity-resonance effects and requiring full-spectrum analysis for accurate calculations of the antenna coupling. This study examines the effects of antenna phasing, as well as plasma density, temperature and current as control parameters for achieving good coupling of the ICRF power in the pursuit of the optimal conditions for AT plasmas. This work is funded by the US DOE under contract DoE Grant DE-SC0010492.
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Full-wave modeling of ICRF waves: global and quasi-local descriptions
Dumont, R. J.
2007-09-01
Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a "quasi-local" derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles… Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes.
Prediction of bending properties for beech lumber using stress wave method
Guntekin,Ergun; Ozkan, Serhat; Yilmaz,Tugba
2014-01-01
In this study; bending properties of beech wood (Fagus orientalis) were predicted using stress - wave method and compared with static bending tests. First, lumbers which were different in length and cross section were weighed and dimensions were measured. Then, moisture contents were obtained via moisture meter. By using the density, moisture, and dimensions of the samples in MTG Timber Grader device, dynamic modulus of elasticity values were determined. And then, samples were subjected to 3 ...
Variational Boussinesq model for simulation of coastal waves and tsunamis
Adytia, D.; Adytia, Didit; van Groesen, Embrecht W.C.; Tan, Soon Keat; Huang, Zhenhua
2009-01-01
In this paper we describe the basic ideas of a so-called Variational Boussinesq Model which is based on the Hamiltonian structure of gravity surface waves. By using a rather simple approach to prescribe the profile of vertical fluid potential in the expression for the kinetic energy, we obtain a set
Mathematical modeling of converging detonation waves at multipoint initiation
Shutov, A. V.; Sultanov, V. G.; Dudin, S. V.
2016-11-01
The methods of mathematical modeling based on the latest experimental data are proposed to conduct a study of the cylindrical detonation process and gas dynamics of the explosion products. The numerical simulation of converging cylindrical detonation waves at multipoint initiation for the recent experiments in IPCP RAS was conducted. The results of the numerical simulation and the experiment are compared.
Gravitational Jaynes–Cummings model beyond the rotating wave ...
Indian Academy of Sciences (India)
In this paper, the quantum properties of a two-level atom and the cavity-ﬁeld in the Jaynes–Cummings model with the gravity beyond the rotating wave approximation are investigated. For this purpose, by solving the Schrödinger equation in the interaction picture, the evolving state of the system is found by which the ...
FDTD Modelling of Electromagnetic waves in Stratified Medium ...
African Journals Online (AJOL)
The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm in mathematica environment is presented. Source implementation and the effect of conductivity on the incident field ...
Growth of sinuous waves on thin liquid sheets: Comparison of predictions with experiments
Majumdar, Nayanika; Tirumkudulu, Mahesh S.
2016-05-01
A recent theory [M. S. Tirumkudulu and M. Paramati, "Stability of a moving radial liquid sheet: Time dependent equations," Phys. Fluids 25(10), 102-107 (2013)] has shown that a radially expanding liquid sheet is unstable to sinuous wave disturbances due to the thinning of the liquid sheet while ignoring the presence of a surrounding gas phase. In this work, we compare the predictions of the aforementioned theory with the measurements of Crapper et al. ["Large amplitude Kelvin-Helmholtz waves on thin liquid sheets," Proc. R. Soc. London, Ser. A 342(1629), 209-224 (1975)] who measured the amplitude and spatial growth rates of sinuous waves induced in radially expanding liquid sheets produced by fan spray nozzles. The predicted growth rates are remarkably close to the measurements over a range of forcing frequencies and amplitudes even though the experiments were performed in the presence of a surrounding gas phase. This is in contrast to large discrepancies observed by Crapper et al. when the same measurements were compared with the predictions of a spatial stability analysis for a moving liquid sheet that accounts for the inertia of the surrounding gas phase but ignores the thickness variation of the sheet.
Predicting and Modeling RNA Architecture
Westhof, Eric; Masquida, Benoît; Jossinet, Fabrice
2011-01-01
SUMMARY A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. PMID:20504963
Predictability of extreme values in geophysical models
Directory of Open Access Journals (Sweden)
A. E. Sterk
2012-09-01
Full Text Available Extreme value theory in deterministic systems is concerned with unlikely large (or small values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical models. We study whether finite-time Lyapunov exponents are larger or smaller for initial conditions leading to extremes. General statements on whether extreme values are better or less predictable are not possible: the predictability of extreme values depends on the observable, the attractor of the system, and the prediction lead time.
A Predictive Model of Plasma Lamotrigine Levels.
Kamei, K; Terao, T; Katayama, Y; Hatano, K; Kodama, K; Shirahama, M; Sakai, A; Hirakawa, H; Mizokami, Y; Shiotsuki, I; Ishii, N; Inoue, Y
2016-09-01
Introduction: Lamotrigine is one of several mood stabilizers and its effects for the treatment and prevention of depressive episodes, particularly in bipolar disorder, are generally accepted. Although the findings about a therapeutic window of lamotrigine are yet to be determined, it seems important to obtain information on individual pharmacokinetic peculiarities. This study was conducted to formulate the predictive model of plasma lamotrigine levels. Methods: Using the data of 47 patients whose lamotrigine levels, liver function, and renal function were measured, predictive models of lamotrigine levels were formulated by stepwise multiple regression analyses. The predictive power of the models was compared using another dataset of 25 patients. Results: Two models were created using stepwise multiple regression. The first model was: plasma lamotrigine level (μg/mL)=2.308+0.019×lamotrigine dose (mg/day). The second model was: plasma lamotrigine level (μg/mL)=0.08+0.024×lamotrigine dose (mg/day)+4.088×valproate combination (no=0, yes=1). The predictive power of the second model was better than that of the first model. Discussion: The present study proposes a prompt and relatively accurate equation to predict lamotrigine levels. © Georg Thieme Verlag KG Stuttgart · New York.
Modelling of wave propagation over a submerged sand bar using SWASH
Digital Repository Service at National Institute of Oceanography (India)
Jishad, M.; Vu, T.T.T.; JayaKumar, S.
A non-hydrostatic numerical model "SWASH" (Simulating WAves till SHore) is used to study the wave propagation over a submerged sand bar in a wave flume The SWASH model is calibrated and further used to validate the wave propagation for two different...
Ground Motion Prediction Model Using Artificial Neural Network
Dhanya, J.; Raghukanth, S. T. G.
2017-12-01
This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (M w), closest distance to rupture plane (R rup), shear wave velocity in the region (V s30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.
Model predictive Controller for Mobile Robot
Alireza Rezaee
2017-01-01
This paper proposes a Model Predictive Controller (MPC) for control of a P2AT mobile robot. MPC refers to a group of controllers that employ a distinctly identical model of process to predict its future behavior over an extended prediction horizon. The design of a MPC is formulated as an optimal control problem. Then this problem is considered as linear quadratic equation (LQR) and is solved by making use of Ricatti equation. To show the effectiveness of the proposed method this controller is...
Return Predictability, Model Uncertainty, and Robust Investment
DEFF Research Database (Denmark)
Lukas, Manuel
Stock return predictability is subject to great uncertainty. In this paper we use the model confidence set approach to quantify uncertainty about expected utility from investment, accounting for potential return predictability. For monthly US data and six representative return prediction models, we...... find that confidence sets are very wide, change significantly with the predictor variables, and frequently include expected utilities for which the investor prefers not to invest. The latter motivates a robust investment strategy maximizing the minimal element of the confidence set. The robust investor...
Measurement and Modeling of Steep Ocean Wave Slopes
Chapron, B.; Vandemark, D.; Elfouhaily, T.
2000-01-01
Our study emphasizes the importance of identifying and quantifying the distribution variance, skewness and kurtosis from optical and microwave scattering observations. Recent field measurements of the sea slope distribution for intermediate-to-long scale gravity waves will be presented. These data were collected using an airborne laser range system designed to estimate the surface slope vector at horizontal scales of 1-2 m. The observed slope distribution tail indicates that the occurrence of steep waves substantially exceeds a Gaussian prediction. This measured peakedness is present over the wide range of sea state and wind speed conditions encountered. Data are further evaluated within the context of Cox and Munk's well-known sea slope investigations. Based on a re-evaluation of the Cox and Munk's reported parameters, we find a consistent picture develops wherein data are shown to consistently indicate non-Gaussian statistics. One fundamental application of such a non-Gaussian slope observation is its place in modifying predicted wave breaking probability to help to better quantify gas transfer processes at the sea surface.
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Wave attenuation over seabed mud modeled by a two-layered viscoelastic model
Xia, Y.Z.
2013-01-01
In coastal areas, wave-mud interaction is an important mechanism of wave attenuation. The present study on mud-induced wave attenuation is settled in a system composed of an inviscid water layer and a mud layer, in which the mud layer is modeled by a two-layered viscoelastic model. In the two-layered model, the upper layer is described by a Maxwell model, which is fluid-like; the lower layer is described by a Kelvin-Voigt model, which is heavier, and solid-like. Including the influence of the...
An Arctic Ice/Ocean Coupled Model with Wave Interactions
2015-09-30
New Zealand phone: +64 (3) 479-8303 email: vernon.squire@otago.ac.nz Award Number: N00014-131-0279 http://www.maths.otago.ac.nz/∼vsquire LONG...Symposium on Ice, Singapore, August 2014. Squire, V. A. Perspectives of ocean wave / sea ice connectivity relating to climate change and modelling...contemporary Arctic climate models. OBJECTIVES To make progress with our long-term goals, over the lifetime of the project we will – further our
Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior
Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco
2015-02-01
We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.
Predictability and Spatial Characteristics of New-York-City-Area Heat Waves
Raymond, C.; Horton, R. M.
2016-12-01
The origins, characteristics, and predictability of extreme heat waves in the Northeast U.S. are simultaneously examined at multiple scales, using hourly observational data from 1948-2014 and focusing in particular on the region surrounding New York City. A novel definition of heat waves - incorporating both temperature and moisture at hourly resolution - is used to identify 3-to-5-day heat waves whose dynamics are then analyzed from 3 weeks prior to 3 weeks subsequent to the event. Inter-event differences in dynamics such as the strength and position of geopotential-height anomalies; the strength, persistence, and orientation of sea breezes; and the dominant 850-hPa wind azimuth, all of which are filtered via local terrain and land-use to create differences in conditions between events at specific locations. In particular, using composite maps and back trajectories, they are found to play an important role in creating mesoscale differences in low-level moisture content, from one side of the metropolitan area to the other. Evidence is presented supporting the influence of coastline orientation in explaining the differences in the relationships between wind azimuth and temperature & moisture advection between New York City proper and northern New Jersey. Self-organizing maps are employed to classify heat waves based on the small-scale differences in temperature and moisture between events, and the results of this classification are then used in correlations with synoptic- and hemispheric-scale geopotential-height anomalies. Considerable predictability of event type on the small-scale (as well as occurrence of a heat wave of any kind) is found, originating primarily from central Pacific and western Atlantic SSTs.
Flexible recalibration of binary clinical prediction models.
Dalton, Jarrod E
2013-01-30
Calibration in binary prediction models, that is, the agreement between model predictions and observed outcomes, is an important aspect of assessing the models' utility for characterizing risk in future data. A popular technique for assessing model calibration first proposed by D. R. Cox in 1958 involves fitting a logistic model incorporating an intercept and a slope coefficient for the logit of the estimated probability of the outcome; good calibration is evident if these parameters do not appreciably differ from 0 and 1, respectively. However, in practice, the form of miscalibration may sometimes be more complicated. In this article, we expand the Cox calibration model to allow for more general parameterizations and derive a relative measure of miscalibration between two competing models from this more flexible model. We present an example implementation using data from the US Agency for Healthcare Research and Quality. Copyright © 2012 John Wiley & Sons, Ltd.
Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei
2013-08-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.
DEFF Research Database (Denmark)
Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe
2017-01-01
design wave height. As these wave theories super from limitations such as symmetry around the crest, other methods to estimate the wave loads are needed. In the present paper, the First Order Reliability Method, FORM, is used systematically to estimate the most likely extreme wave shapes. Two parameters...... of maximum crest height and maximum inline force are used to define the extreme events. FORM is applied to first and second-order irregular waves in both 2D and 3D. The application is validated against the NewWave model and also the NewForce model, which is introduced as the force equivalent of New......Wave theory, that is, the most likely time history of inline force around a force peak of given value. The results of FORM and NewForce are linearly identical and show only minor deviations at second order. The FORM results are then compared to wave averaged measurements of the same criteria for crest height...
Nottingham knee osteoarthritis risk prediction models.
Zhang, Weiya; McWilliams, Daniel F; Ingham, Sarah L; Doherty, Sally A; Muthuri, Stella; Muir, Kenneth R; Doherty, Michael
2011-09-01
(1) To develop risk prediction models for knee osteoarthritis (OA) and (2) to estimate the risk reduction that results from modification of potential risk factors. This was a 12-year retrospective cohort study undertaken in the general population in Nottingham, UK. Baseline risk factors were collected by questionnaire. Incident radiographic knee OA was defined by Kellgren and Lawrence (KL) score ≥2. Incident symptomatic knee OA was defined by KL ≥2 plus knee pain. Progression of knee OA was defined by KL ≥1 grade increase from baseline. A logistic regression model was used for prediction. Calibration and discrimination of the models were tested in the Osteoarthritis Initiative (OAI) population and Genetics of Osteoarthritis and Lifestyle (GOAL) population. ORs of the models were compared with those obtained from meta-analysis of existing literature. From a community sample of 424 people aged over 40, 3 risk prediction models were developed. These included incidence of radiographic knee OA, incidence of symptomatic knee OA and progression of knee OA. All models had good calibration and moderate discrimination power in OAI and GOAL. The ORs lied within the 95% CIs of the published studies. The risk reduction due to modifying obesity at the individual and the population levels were demonstrated. Risk prediction of knee OA based on the well established, common modifiable risk factors has been established. The models may be used to predict the risk of knee OA, and risk reduction due to preventing a specific risk factor.
Predictive Validation of an Influenza Spread Model
Hyder, Ayaz; Buckeridge, David L.; Leung, Brian
2013-01-01
Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive
Directory of Open Access Journals (Sweden)
Pengzhen Chen
2017-05-01
Full Text Available Modulation model of radar backscatters is an important topic in the remote sensing of oceanic internal wave by synthetic aperture radar (SAR. Previous studies related with the modulation models were analyzed mainly based on the hypothesis that ocean surface waves are Gaussian distributed. However, this is not always true for the complicated ocean environment. Research has showed that the measurements are usually larger than the values predicted by modulation models for the high frequency radars (X-band and above. In this paper, a new modulation model was proposed which takes the third-order statistics of the ocean surface into account. It takes the situation into consideration that the surface waves are Non-Gaussian distributed under some conditions. The model can explain the discrepancy between the measurements and the values calculated by the traditional models in theory. Furthermore, it can accurately predict the modulation for the higher frequency band. The model was verified by the experimental measurements recorded in a wind wave tank. Further discussion was made about applicability of this model that it performs better in the prediction of radar backscatter modulation compared with the traditional modulation model for the high frequency band radar or under lager wind speeds.
Predicting phase shift of elastic waves in pipes due to fluid flow and imperfections
DEFF Research Database (Denmark)
Thomsen, Jon Juel; Dahl, Jonas; Fuglede, Niels
2009-01-01
. This is relevant for understanding wave propagation in elastic media in general, and for the design and trouble-shooting of phase-shift measuring devices such as Coriolis mass flowmeters in particular. A multiple time scaling perturbation analysis is employed for a simple model of a fluid-conveying pipe...
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes
2016-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... by the variability in the model input. Finally, we present a synthetic experiment studying the variance-based sensitivity of the wave load on an offshore structure to a number of input uncertainties. In the numerical examples presented the PC methods exhibit fast convergence, suggesting that the problem is amenable...
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan); Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.
Sexual Recruitment in Zostera marina: Progress toward a Predictive Model.
Furman, Bradley T; Peterson, Bradley J
2015-01-01
Ecophysiological stress and physical disturbance are capable of structuring meadows through a combination of direct biomass removal and recruitment limitation; however, predicting these effects at landscape scales has rarely been successful. To model environmental influence on sexual recruitment in perennial Zostera marina, we selected a sub-tidal, light-replete study site with seasonal extremes in temperature and wave energy. During an 8-year observation period, areal coverage increased from 4.8 to 42.7%. Gains were stepwise in pattern, attributable to annual recruitment of patches followed by centrifugal growth and coalescence. Recruitment varied from 13 to 4,894 patches per year. Using a multiple linear regression approach, we examined the association between patch appearance and relative wave energy, atmospheric condition and water temperature. Two models were developed, one appropriate for the dispersal of naked seeds, and another for rafted flowers. Results indicated that both modes of sexual recruitment varied as functions of wind, temperature, rainfall and wave energy, with a regime shift in wind-wave energy corresponding to periods of rapid colonization within our site. Temporal correlations between sexual recruitment and time-lagged climatic summaries highlighted floral induction, seed bank and small patch development as periods of vulnerability. Given global losses in seagrass coverage, regions of recovery and re-colonization will become increasingly important. Lacking landscape-scale process models for seagrass recruitment, temporally explicit statistical approaches presented here could be used to forecast colonization trajectories and to provide managers with real-time estimates of future meadow performance; i.e., when to expect a good year in terms of seagrass expansion. To facilitate use as forecasting tools, we did not use statistical composites or normalized variables as our predictors. This study, therefore, represents a first step toward linking
Sexual Recruitment in Zostera marina: Progress toward a Predictive Model.
Directory of Open Access Journals (Sweden)
Bradley T Furman
Full Text Available Ecophysiological stress and physical disturbance are capable of structuring meadows through a combination of direct biomass removal and recruitment limitation; however, predicting these effects at landscape scales has rarely been successful. To model environmental influence on sexual recruitment in perennial Zostera marina, we selected a sub-tidal, light-replete study site with seasonal extremes in temperature and wave energy. During an 8-year observation period, areal coverage increased from 4.8 to 42.7%. Gains were stepwise in pattern, attributable to annual recruitment of patches followed by centrifugal growth and coalescence. Recruitment varied from 13 to 4,894 patches per year. Using a multiple linear regression approach, we examined the association between patch appearance and relative wave energy, atmospheric condition and water temperature. Two models were developed, one appropriate for the dispersal of naked seeds, and another for rafted flowers. Results indicated that both modes of sexual recruitment varied as functions of wind, temperature, rainfall and wave energy, with a regime shift in wind-wave energy corresponding to periods of rapid colonization within our site. Temporal correlations between sexual recruitment and time-lagged climatic summaries highlighted floral induction, seed bank and small patch development as periods of vulnerability. Given global losses in seagrass coverage, regions of recovery and re-colonization will become increasingly important. Lacking landscape-scale process models for seagrass recruitment, temporally explicit statistical approaches presented here could be used to forecast colonization trajectories and to provide managers with real-time estimates of future meadow performance; i.e., when to expect a good year in terms of seagrass expansion. To facilitate use as forecasting tools, we did not use statistical composites or normalized variables as our predictors. This study, therefore, represents a first
Sexual Recruitment in Zostera marina: Progress toward a Predictive Model
2015-01-01
Ecophysiological stress and physical disturbance are capable of structuring meadows through a combination of direct biomass removal and recruitment limitation; however, predicting these effects at landscape scales has rarely been successful. To model environmental influence on sexual recruitment in perennial Zostera marina, we selected a sub-tidal, light-replete study site with seasonal extremes in temperature and wave energy. During an 8-year observation period, areal coverage increased from 4.8 to 42.7%. Gains were stepwise in pattern, attributable to annual recruitment of patches followed by centrifugal growth and coalescence. Recruitment varied from 13 to 4,894 patches per year. Using a multiple linear regression approach, we examined the association between patch appearance and relative wave energy, atmospheric condition and water temperature. Two models were developed, one appropriate for the dispersal of naked seeds, and another for rafted flowers. Results indicated that both modes of sexual recruitment varied as functions of wind, temperature, rainfall and wave energy, with a regime shift in wind-wave energy corresponding to periods of rapid colonization within our site. Temporal correlations between sexual recruitment and time-lagged climatic summaries highlighted floral induction, seed bank and small patch development as periods of vulnerability. Given global losses in seagrass coverage, regions of recovery and re-colonization will become increasingly important. Lacking landscape-scale process models for seagrass recruitment, temporally explicit statistical approaches presented here could be used to forecast colonization trajectories and to provide managers with real-time estimates of future meadow performance; i.e., when to expect a good year in terms of seagrass expansion. To facilitate use as forecasting tools, we did not use statistical composites or normalized variables as our predictors. This study, therefore, represents a first step toward linking
Modeling of a Surface Acoustic Wave Strain Sensor
Wilson, W. C.; Atkinson, Gary M.
2010-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented
A particle model of rolling grain ripples under waves
DEFF Research Database (Denmark)
Andersen, Ken Haste
2001-01-01
A simple model for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave is presented. An equation of motion is derived for the individual ripples, seen as "particles," on the otherwise flat bed. The model accounts for the initial appearance...... with the square-root of the nondimensional shear stress (the Shields parameter) on a flat bed. The results of the model are compared with measurements, and reasonable agreement between the model and the measurements is demonstrated. ©2001 American Institute of Physics....
Directory of Open Access Journals (Sweden)
Shuo Chen
2016-04-01
Full Text Available The strain sensitivity of the Aluminum Nitride (AlN/Silicon (Si surface acoustic wave resonator (SAWR is predicted based on a modeling method introduced in this work, and further compared with experimental results. The strain influence on both the period of the inter-digital transducer (IDT and the sound velocity is taken into consideration when modeling the strain response. From the modeling results, AlN and Si have opposite responses to strain; hence, for the AlN/Si-based SAWR, both a positive and a negative strain coefficient factor can be achieved by changing the thickness of the AlN layer, which is confirmed by strain response testing based on a silicon cantilever structure with two AlN configurations (1 μm and 3 μm in thickness, respectively.
Chen, Shuo; You, Zheng
2016-04-27
The strain sensitivity of the Aluminum Nitride (AlN)/Silicon (Si) surface acoustic wave resonator (SAWR) is predicted based on a modeling method introduced in this work, and further compared with experimental results. The strain influence on both the period of the inter-digital transducer (IDT) and the sound velocity is taken into consideration when modeling the strain response. From the modeling results, AlN and Si have opposite responses to strain; hence, for the AlN/Si-based SAWR, both a positive and a negative strain coefficient factor can be achieved by changing the thickness of the AlN layer, which is confirmed by strain response testing based on a silicon cantilever structure with two AlN configurations (1 μm and 3 μm in thickness, respectively).
Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media
Energy Technology Data Exchange (ETDEWEB)
Vorobiev, O; Antoun, T
2009-12-11
This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.
Energy Technology Data Exchange (ETDEWEB)
Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips
2012-03-13
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
Regression models for predicting anthropometric measurements of ...
African Journals Online (AJOL)
... System (ANFIS) was employed to select the two most influential of the five input measurements. This search was separately conducted for each of the output measurements. Regression models were developed from the collected anthropometric data. Also, the predictive performance of these models was examined using ...
Comparative Study of Bancruptcy Prediction Models
Directory of Open Access Journals (Sweden)
Isye Arieshanti
2013-09-01
Full Text Available Early indication of bancruptcy is important for a company. If companies aware of potency of their bancruptcy, they can take a preventive action to anticipate the bancruptcy. In order to detect the potency of a bancruptcy, a company can utilize a a model of bancruptcy prediction. The prediction model can be built using a machine learning methods. However, the choice of machine learning methods should be performed carefully. Because the suitability of a model depends on the problem specifically. Therefore, in this paper we perform a comparative study of several machine leaning methods for bancruptcy prediction. According to the comparative study, the performance of several models that based on machine learning methods (k-NN, fuzzy k-NN, SVM, Bagging Nearest Neighbour SVM, Multilayer Perceptron(MLP, Hybrid of MLP + Multiple Linear Regression, it can be showed that fuzzy k-NN method achieve the best performance with accuracy 77.5%
Shariati Najafabadi, M.; Najafabadi, M.S.; Darvishzadeh, R.; Skidmore, A.K.; Kölzsch, A.; Vrieling, A.; Nolet, B.A.; Exo, K.; Meratnia, Nirvana; Havinga, Paul J.M.; Stahl, J.; Toxopeus, A.G.
2015-01-01
According to the green wave hypothesis, herbivores follow the flush of spring growth of forage plants during their spring migration to northern breeding grounds. In this study we compared two green wave indices for predicting the timing of the spring migration of avian herbivores: the
Prediction Models for Dynamic Demand Response
Energy Technology Data Exchange (ETDEWEB)
Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.
2015-11-02
As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D^{2}R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D^{2}R, which we address in this paper. Our first contribution is the formal definition of D^{2}R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D^{2}R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D^{2}R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D^{2}R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D^{2}R. Also, prediction models require just few days’ worth of data indicating that small amounts of
Directory of Open Access Journals (Sweden)
S. Popinet
2012-04-01
Full Text Available The 11 March 2011 Tohoku tsunami is simulated using the quadtree-adaptive Saint-Venant solver implemented within the Gerris Flow Solver. The spatial resolution is adapted dynamically from 250 m in flooded areas up to 250 km for the areas at rest. Wave fronts are tracked at a resolution of 1.8 km in deep water. The simulation domain extends over 73° of both latitude and longitude and covers a significant part of the north-west Pacific. The initial wave elevation is obtained from a source model derived using seismic data only. Accurate long-distance wave prediction is demonstrated through comparison with DART buoys timeseries and GLOSS tide gauges records. The model also accurately predicts fine-scale flooding compared to both satellite and survey data. Adaptive mesh refinement leads to orders-of-magnitude gains in computational efficiency compared to non-adaptive methods. The study confirms that consistent source models for tsunami initiation can be obtained from seismic data only. However, while the observed extreme wave elevations are reproduced by the model, they are located further south than in the surveyed data. Comparisons with inshore wave buoys data indicate that this may be due to an incomplete understanding of the local wave generation mechanisms.
Development and application of an oil spill model with wave-current interactions in coastal areas.
Guo, WeiJun; Hao, Yanni; Zhang, Li; Xu, Tiaojian; Ren, Xiaozhong; Cao, Feng; Wang, Shoudong
2014-07-15
The present paper focuses on developing a numerical oil spill model that incorporates the full three-dimensional wave-current interactions for a better representation of the spilled oil transport mechanics in complicated coastal environments. The incorporation of surface wave effects is not only imposing a traditional drag coefficient formulation at the free surface, but also the 3D momentum equations are adjusted to include the impact of the vertically dependent radiation stresses on the currents. Based on the current data from SELFE and wave data from SWAN, the oil spill model utilizes oil particle method to predict the trajectory of individual droplets and the oil concentration. Compared with the observations in Dalian New Port oil spill event, the developed model taking into account wave-current coupling administers to giving better conformity than the one without. The comparisons demonstrates that 3D radiation stress impacts the spill dynamics drastically near the sea surface and along the coastline, while having less impact in deeper water. Copyright © 2014 Elsevier Ltd. All rights reserved.
Popova, E.; Zharkova, V. V.; Shepherd, S. J.; Zharkov, S.
2016-12-01
Using the principal components of solar magnetic field variations derived from the synoptic maps for solar cycles 21-24 with Principal Components Analysis (PCA) (Zharkova et al, 2015) we confirm our previous prediction of the upcoming Maunder minimum to occur in cycles 25-27, or in 2020-2055. We also use a summary curve of the two eigen vectors of solar magnetic field oscillations (or two dynamo waves) to extrapolate solar activity backwards to the three millennia and to compare it with relevant historic and Holocene data. Extrapolation of the summary curve confirms the eight grand cycles of 350-400-years superimposed on 22 year-cycles caused by beating effect of the two dynamo waves generated in the two (deep and shallow) layers of the solar interior. The grand cycles in different periods comprise a different number of individual 22-year cycles; the longer the grand cycles the larger number of 22 year cycles and the smaller their amplitudes. We also report the super-grand cycle of about 2000 years often found in solas activity with spectral analysis. Furthermore, the summary curve reproduces a remarkable resemblance to the sunspot and terrestrial activity reported in the past: the recent Maunder Minimum (1645-1715), Dalton minimum (1790-1815), Wolf minimum (1200), Homeric minimum (800-900 BC), the Medieval Warmth Period (900-1200), the Roman Warmth Period (400-10BC) and so on. Temporal variations of these dynamo waves are modelled with the two layer mean dynamo model with meridional circulation revealing a remarkable resemblance of the butterfly diagram to the one derived for the last Maunder minimum in 17 century and predicting the one for the upcoming Maunder minimum in 2020-2055.
Predictive modeling of a radiative shock system
Energy Technology Data Exchange (ETDEWEB)
Holloway, James Paul, E-mail: hagar@umich.edu [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Bingham, Derek [Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada); Chou, Chuan-Chih; Doss, Forrest; Paul Drake, R.; Fryxell, Bruce; Grosskopf, Michael; Holst, Bart van der [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Mallick, Bani K. [Department of Statistics, Texas A and M University, College Station, TX 77843-3143 (United States); McClarren, Ryan [Institute for Applied Mathematics and Computational Science, Texas A and M University, College Station, TX 77843-3133 (United States); Mukherjee, Ashin; Nair, Vijay [Department of Statistics, University of Michigan, Ann Arbor, MI 48109 (United States); Powell, Kenneth G. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Ryu, D. [Department of Statistics, Texas A and M University, College Station, TX 77843-3143 (United States); Sokolov, Igor; Toth, Gabor [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Zhang Zhanyang [Department of Statistics, University of Michigan, Ann Arbor, MI 48109 (United States)
2011-09-15
A predictive model is constructed for a radiative shock experiment, using a combination of a physics code and experimental measurements. The CRASH code can model the radiation hydrodynamics of the radiative shock launched by the ablation of a Be drive disk and driven down a tube filled with Xe. The code is initialized by a preprocessor that uses data from the Hyades code to model the initial 1.3 ns of the system evolution, with this data fit over seven input parameters by a Gaussian process model. The CRASH code output for shock location from 320 simulations is modeled by another Gaussian process model that combines the simulation data with eight field measurements of a CRASH experiment, and uses this joint model to construct a posterior distribution for the physical parameters of the simulation (model calibration). This model can then be used to explore sensitivity of the system to the input parameters. Comparison of the predicted shock locations in a set of leave-one-out exercises shows that the calibrated model can predict the shock location within experimental uncertainty.
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico
2009-01-01
The model quality assessment problem consists in the a priori estimation of the overall and per-residue accuracy of protein structure predictions. Over the past years, a number of methods have been developed to address this issue and CASP established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic servers. Estimates could apply to both whole models and individual amino acids. Groups involved in the tertiary structure prediction categories were also asked to assign local error estimates to each predicted residue in their own models and their results are also discussed here. The correlation between the predicted and observed correctness measures was the basis of the assessment of the results. We observe that consensus-based methods still perform significantly better than those accepting single models, similarly to what was concluded in the previous edition of the experiment. © 2009 WILEY-LISS, INC.
Modeling oscillations and spiral waves in Dictyostelium populations
Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj
2015-06-01
Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.
A local-ether model of propagation of electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Su, C.C. [Dept. of Electrical Engineering, National Tsinghua University, Hsinchu (Taiwan)
2001-07-01
It is pointed out that the classical propagation model can be in accord with the Sagnac effect due to earth's rotational and orbital motions in the high-precision GPS (global positioning system) and interplanetary radar, if the reference frame of the classical propagation medium is endowed with a switchability according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electromagnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed with respect to the associated local ether, independent of the motions of source and receiver. Based on this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent account of the Sagnac effect due to earth's motions among GPS, the intercontinental microwave link, and the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord with the Michelson-Morley experiment. To test the local-ether propagation model, a one-way-link rotor experiment is proposed. (orig.)
Suzuki, T; Gruwez, V.; A. Bolle; Verwaest, T.; Mostaert, F
2012-01-01
The design of water and wave retaining walls and flood risk analyses need hydrodynamic boundary conditions. These boundary conditions are needed during a storm with return period 1000yrs and during the super storms which were defined in the risk analysis study. The modelling of the extreme wave climate is decoupled to the wave penetration and the lacal generation of waves by the extreme wind speed. The wave penetration is modelled with Mike 21 BW as was done for Oostende and Zeebrugge. MILDwa...
Wind Wave Numerical Modeling in the Caspian Sea
Mahmoodi, R.; Ardalan, A. A.; Hasanlou, M.
2017-09-01
Numerical simulation results of wind wave in the Caspian Sea by using wind forcing data are presented. The numerical modeling which is applied in this study is based on numerical spectral wave model which is based on Navier-Stokes equations. It solves these equations through each of mesh elements. Moreover, in this model high-resolution unstructured grid for the Caspian Sea has been used in order to reach finer accuracy. The wind forcing data are given from European Centre for Medium-Range Weather Forecasts (ECMWF). The measurement data, which are gained from Ports and Marine Organisation (PMO) of Iran, are used in order to estimate the accuracy of the model. The results have shown better accuracy in comparison with PMO simulation. Mean of the coefficient of determination (R-squared) for significant wave height in this simulation is 0.8059, though, in PMO simulation this coefficient is reported 0.7056. Better accuracy requires more measurement data and also finer resolution of bathymetry data.
WIND WAVE NUMERICAL MODELING IN THE CASPIAN SEA
Directory of Open Access Journals (Sweden)
R. Mahmoodi
2017-09-01
Full Text Available Numerical simulation results of wind wave in the Caspian Sea by using wind forcing data are presented. The numerical modeling which is applied in this study is based on numerical spectral wave model which is based on Navier-Stokes equations. It solves these equations through each of mesh elements. Moreover, in this model high-resolution unstructured grid for the Caspian Sea has been used in order to reach finer accuracy. The wind forcing data are given from European Centre for Medium-Range Weather Forecasts (ECMWF. The measurement data, which are gained from Ports and Marine Organisation (PMO of Iran, are used in order to estimate the accuracy of the model. The results have shown better accuracy in comparison with PMO simulation. Mean of the coefficient of determination (R-squared for significant wave height in this simulation is 0.8059, though, in PMO simulation this coefficient is reported 0.7056. Better accuracy requires more measurement data and also finer resolution of bathymetry data.
Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion
Energy Technology Data Exchange (ETDEWEB)
Pasyanos, M E
2008-05-15
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.
Yousefzadeh, Behrooz; Hodgson, Murray
2012-09-01
A beam-tracing model was used to study the acoustical responses of three empty, rectangular rooms with different boundary conditions. The model is wave-based (accounting for sound phase) and can be applied to rooms with extended-reaction surfaces that are made of multiple layers of solid, fluid, or poroelastic materials-the acoustical properties of these surfaces are calculated using Biot theory. Three room-acoustical parameters were studied in various room configurations: sound strength, reverberation time, and RApid Speech Transmission Index. The main objective was to investigate the effects of modeling surfaces as either local or extended reaction on predicted values of these three parameters. Moreover, the significance of modeling interference effects was investigated, including the study of sound phase-change on surface reflection. Modeling surfaces as of local or extended reaction was found to be significant for surfaces consisting of multiple layers, specifically when one of the layers is air. For multilayers of solid materials with an air-cavity, this was most significant around their mass-air-mass resonance frequencies. Accounting for interference effects made significant changes in the predicted values of all parameters. Modeling phase change on reflection, on the other hand, was found to be relatively much less significant.
Zarzoso, Vicente; Latcu, Decebal G; Hidalgo-Muñoz, Antonio R; Meo, Marianna; Meste, Olivier; Popescu, Irina; Saoudi, Nadir
2016-12-01
Catheter ablation (CA) of persistent atrial fibrillation (AF) is challenging, and reported results are capable of improvement. A better patient selection for the procedure could enhance its success rate while avoiding the risks associated with ablation, especially for patients with low odds of favorable outcome. CA outcome can be predicted non-invasively by atrial fibrillatory wave (f-wave) amplitude, but previous works focused mostly on manual measures in single electrocardiogram (ECG) leads only. To assess the long-term prediction ability of f-wave amplitude when computed in multiple ECG leads. Sixty-two patients with persistent AF (52 men; mean age 61.5±10.4years) referred for CA were enrolled. A standard 1-minute 12-lead ECG was acquired before the ablation procedure for each patient. F-wave amplitudes in different ECG leads were computed by a non-invasive signal processing algorithm, and combined into a mutivariate prediction model based on logistic regression. During an average follow-up of 13.9±8.3months, 47 patients had no AF recurrence after ablation. A lead selection approach relying on the Wald index pointed to I, V1, V2 and V5 as the most relevant ECG leads to predict jointly CA outcome using f-wave amplitudes, reaching an area under the curve of 0.854, and improving on single-lead amplitude-based predictors. Analysing the f-wave amplitude in several ECG leads simultaneously can significantly improve CA long-term outcome prediction in persistent AF compared with predictors based on single-lead measures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Silva, R.G.; W. H. KWONG
1999-01-01
A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP) problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in...
Wave refraction and prediction of breaker parameters along the Kerala Coast, India
Digital Repository Service at National Institute of Oceanography (India)
Sajeev, R.; Chandramohan, P.; SanilKumar, V.
significantly from place to place due to wave refraction and shoaling. The covergence and divergence of wave energy induce non-uniform distribution of wave heights during the monsoon period. Ezhimala promontory causes waves to refract considerably along...
Multi-year predictability in a coupled general circulation model
Energy Technology Data Exchange (ETDEWEB)
Power, Scott; Colman, Rob [Bureau of Meteorology Research Centre, Melbourne, VIC (Australia)
2006-02-01
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial ''wings'' in the subtropical eastern Pacific. The model and observations exhibit ''ENSO-like'' decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency of variability off the equator relative to its equatorial counterpart. Both the eastern boundary interactions and the accumulation of
Modeling and Simulation of a Wave Energy Converter INWAVE
Directory of Open Access Journals (Sweden)
Seung Kwan Song
2017-01-01
Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.
Energy Technology Data Exchange (ETDEWEB)
Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E
2009-07-06
In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Ma, Shutian; Motazedian, Dariush; Corchete, Victor
2013-04-01
Many crucial tasks in seismology, such as locating seismic events and estimating focal mechanisms, need crustal velocity models. The velocity models of shallow structures are particularly important in the simulation of ground motions. In southern Ontario, Canada, many small shallow earthquakes occur, generating high-frequency Rayleigh ( Rg) waves that are sensitive to shallow structures. In this research, the dispersion of Rg waves was used to obtain shear-wave velocities in the top few kilometers of the crust in the Georgian Bay, Sudbury, and Thunder Bay areas of southern Ontario. Several shallow velocity models were obtained based on the dispersion of recorded Rg waves. The Rg waves generated by an m N 3.0 natural earthquake on the northern shore of Georgian Bay were used to obtain velocity models for the area of an earthquake swarm in 2007. The Rg waves generated by a mining induced event in the Sudbury area in 2005 were used to retrieve velocity models between Georgian Bay and the Ottawa River. The Rg waves generated by the largest event in a natural earthquake swarm near Thunder Bay in 2008 were used to obtain a velocity model in that swarm area. The basic feature of all the investigated models is that there is a top low-velocity layer with a thickness of about 0.5 km. The seismic velocities changed mainly within the top 2 km, where small earthquakes often occur.
Developing a Short-Period, Fundamental-Mode Rayleigh-Wave Attenuation Model for Asia
Yang, X.; Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.
2008-12-01
We are developing a 2D, short-period (12 - 22 s), fundamental-mode Rayleigh-wave attenuation model for Asia. This model can be used to invert for a 3D attenuation model of the Earth's crust and upper mantle as well as to implement more accurate path corrections in regional surface-wave magnitude calculations. The prerequisite for developing a reliable Rayleigh-wave attenuation model is the availability of accurate fundamental-mode Rayleigh-wave amplitude measurements. Fundamental-mode Rayleigh-wave amplitudes could be contaminated by a variety of sources such as multipathing, focusing and defocusing, body wave, higher-mode surface wave, and other noise sources. These contaminations must be reduced to the largest extent possible. To achieve this, we designed a procedure by taking advantage of certain Rayleigh-wave characteristics, such as dispersion and elliptical particle motion, for accurate amplitude measurements. We first analyze the dispersion of the surface-wave data using a spectrogram. Based on the characteristics of the data dispersion, we design a phase-matched filter by using either a manually picked dispersion curve, or a group-velocity-model predicted dispersion curve, or the dispersion of the data, and apply the filter to the seismogram. Intelligent filtering of the seismogram and windowing of the resulting cross-correlation based on the spectrogram analysis and the comparison between the phase-match filtered data spectrum, the raw-data spectrum and the theoretical source spectrum effectively reduces amplitude contaminations and results in reliable amplitude measurements in many cases. We implemented these measuring techniques in a graphic-user-interface tool called Surface Wave Amplitude Measurement Tool (SWAMTOOL). Using the tool, we collected and processed waveform data for 200 earthquakes occurring throughout 2003-2006 inside and around Eurasia. The records from 135 broadband stations were used. After obtaining the Rayleigh-wave amplitude
Predictability of the individual clinical outcome of extracorporeal shock wave therapy for cellulite
Directory of Open Access Journals (Sweden)
Schlaudraff KU
2014-05-01
Full Text Available Kai-Uwe Schlaudraff,1 Maren C Kiessling,2 Nikolaus BM Császár,2 Christoph Schmitz21Concept Clinic, Geneva, Switzerland; 2Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, GermanyBackground: Extracorporeal shock wave therapy has been successfully introduced for the treatment of cellulite in recent years. However, it is still unknown whether the individual clinical outcome of cellulite treatment with extracorporeal shock wave therapy can be predicted by the patient's individual cellulite grade at baseline, individual patient age, body mass index (BMI, weight, and/or height.Methods: Fourteen Caucasian females with cellulite were enrolled in a prospective, single-center, randomized, open-label Phase II study. The mean (± standard error of the mean cellulite grade at baseline was 2.5±0.09 and mean BMI was 22.8±1.17. All patients were treated with radial extracorporeal shock waves using the Swiss DolorClast® device (Electro Medical Systems, S.A., Nyon, Switzerland. Patients were treated unilaterally with 2 weekly treatments for 4 weeks on a randomly selected side (left or right, totaling eight treatments on the selected side. Treatment was performed at 3.5–4.0 bar, with 15,000 impulses per session applied at 15 Hz. Impulses were homogeneously distributed over the posterior thigh and buttock area (resulting in 7,500 impulses per area. Treatment success was evaluated after the last treatment and 4 weeks later by clinical examination, photographic documentation, contact thermography, and patient satisfaction questionnaires.Results: The mean cellulite grade improved from 2.5±0.09 at baseline to 1.57±0.18 after the last treatment (ie, mean δ-1 was 0.93 cellulite grades and 1.68±0.16 at follow-up (ie, mean δ-2 was 0.82 cellulite grades. Compared with baseline, no patient's condition worsened, the treatment was well tolerated, and no unwanted side effects were observed. No statistically significant (ie, P<0
An interoceptive predictive coding model of conscious presence
National Research Council Canada - National Science Library
Seth, Anil K; Suzuki, Keisuke; Critchley, Hugo D
2011-01-01
.... The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role...
An Interoceptive Predictive Coding Model of Conscious Presence
National Research Council Canada - National Science Library
Seth, Anil K; Suzuki, Keisuke; Critchley, Hugo D
2012-01-01
.... The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signalling in cortex, the role...
Multi-Model Ensemble Wake Vortex Prediction
Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.
2015-01-01
Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.
Electromagnetic waves in a model with Chern-Simons potential.
Pis'mak, D Yu; Pis'mak, Yu M; Wegner, F J
2015-07-01
We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.
Jung, Minseok; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke
2018-01-01
A numerical simulation model of plasma flows and electromagnetic waves around a vehicle was developed to predict a radio frequency blackout. Plasma flows in the shock layer and the wake region were calculated using a computational fluid dynamics technique with a three-dimensional model. A finite-catalytic wall condition known to affect plasma properties, such as the number density of electrons, was considered for accurate prediction. A parametric study was performed to investigate the effect of uncertainty in the chemical reaction rate model on evaluating a radio frequency blackout. The behavior of electromagnetic waves in plasma was investigated using a frequency-dependent finite-difference time-domain method. Numerical simulations of reentry blackout were performed for the Atmospheric Reentry Demonstrator mission at various altitudes. The plasma flows and the complex movement of electromagnetic waves around the Atmospheric Reentry Demonstrator vehicle were clarified. The predicted signal loss profile was then directly compared with the experimental flight data to validate the present models. The numerical results generally reproduced the trends over altitudes of the measured data. It is suggested that the present simulation model can be used to investigate the radio frequency blackout and signal loss of electromagnetic waves in the communication of a reentry vehicle. It was confirmed that high associative ionization reaction rates contribute to reducing the electron density in the wake region and radio frequency blackout. It is suggested that the accuracy of predicting the signal loss improved when considering the uncertainty in the chemical reaction model for associative ionizations.
Simulations of short-crested harbour waves with variational Boussinesq modelling
Adytia, D.
2014-01-01
Waves propagating from the deep ocean to the coast show large changes in wave height, wave length and direction. The challenge to simulate the essential wave characteristics is in particular to model the speed and nonlinear interaction correctly. All these physical phenomena are present, but hidden,
Energy Technology Data Exchange (ETDEWEB)
Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Y. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Previsic, M. [Re Vision Consulting, Sacramento, CA (United States); Epler, J. [Re Vision Consulting, Sacramento, CA (United States); Lou, J. [Oregon State Univ., Corvallis, OR (United States)
2015-01-01
The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.
Wong, Jim K; Lobato, Robert L; Pinesett, Andre; Maxwell, Bryan G; Mora-Mangano, Christina T; Perez, Marco V
2014-12-01
To test the hypothesis that including preoperative electrocardiogram (ECG) characteristics with clinical variables significantly improves the new-onset postoperative atrial fibrillation prediction model. Retrospective analysis. Single-center university hospital. Five hundred twenty-six patients, ≥ 18 years of age, who underwent coronary artery bypass grafting, aortic valve replacement, mitral valve replacement/repair, or a combination of valve surgery and coronary artery bypass grafting requiring cardiopulmonary bypass. Retrospective review of medical records. Baseline characteristics and cardiopulmonary bypass times were collected. Digitally-measured timing and voltages from preoperative electrocardiograms were extracted. Postoperative atrial fibrillation was defined as atrial fibrillation requiring therapeutic intervention. Two hundred eight (39.5%) patients developed postoperative atrial fibrillation. Clinical predictors were age, ejection fractionelectrocardiogram variables to the prediction model with only clinical predictors significantly improved the area under the receiver operating characteristic curve, from 0.71 to 0.78 (p<0.01). Overall net reclassification improvement was 0.059 (p = 0.09). Among those who developed postoperative atrial fibrillation, the net reclassification improvement was 0.063 (p = 0.03). Several p-wave characteristics are independently associated with postoperative atrial fibrillation. Addition of these parameters improves the postoperative atrial fibrillation prediction model. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Wave-Ice Interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System
2014-09-30
Wave- ice interaction...in the Marginal Ice Zone: toward a wave-ocean- ice coupled modeling system W. E. Rogers Naval Research Laboratory, Code 7322, Stennis Space Center...Mississippi, Stennis Space Center, MS Now at: COEST, Swinburne Univ. Tech., Melbourne , Australia Phone: +61 3 9214 5430 email: szieger
PREDICTIVE CAPACITY OF ARCH FAMILY MODELS
Directory of Open Access Journals (Sweden)
Raphael Silveira Amaro
2016-03-01
Full Text Available In the last decades, a remarkable number of models, variants from the Autoregressive Conditional Heteroscedastic family, have been developed and empirically tested, making extremely complex the process of choosing a particular model. This research aim to compare the predictive capacity, using the Model Confidence Set procedure, than five conditional heteroskedasticity models, considering eight different statistical probability distributions. The financial series which were used refers to the log-return series of the Bovespa index and the Dow Jones Industrial Index in the period between 27 October 2008 and 30 December 2014. The empirical evidences showed that, in general, competing models have a great homogeneity to make predictions, either for a stock market of a developed country or for a stock market of a developing country. An equivalent result can be inferred for the statistical probability distributions that were used.
Dual reciprocity boundary element method for solving thermal wave model of bioheat transfer.
Liu, J; Lu, W
1997-12-01
The newly developed dual reciprocity boundary element method (DRBEM) was extended to solve the thermal wave model of bioheat transfer (TWMBT) and a practical algorithm was established. A preliminary simulation of the temperature evolution in a two dimensional zone under certain boundary conditions and micro wave heating was conducted as a numerical illustration for the method and some meaningful conclusions were drawn. The validity of DRBEM was testified through a comparison with finite difference method (FDM) under one-dimensional calculation. Owing to its unique advantages like not confined by the complex shape of biological bodies, no need of discretization of the inner domain, save vast CPU time and easy to deal with different bioheat models, DRBEM may become an important approach for predicting and controlling the transient temperature field of biological bodies under hyperthermia or hypothermia.
Zhang, Benfeng; Han, Tao; Tang, Gongbin; Zhang, Qiaozhen; Omori, Tatsuya; Hashimoto, Ken-Ya
2017-09-01
This paper discusses lateral propagation of surface acoustic waves (SAWs) in periodic grating structures when two types of SAWs exist simultaneously and are coupled. The thin plate model proposed by the authors is extended to include the coupling between two different SAW modes. First, lateral SAW propagation in an infinitely long periodic grating is modeled and discussed. Then, the model is applied to the Al-grating/42° YX-LiTaO3 (42-LT) substrate structure, and it is shown that the slowness curve shape changes from concave to convex with the Al grating thickness. The transverse responses are also analyzed on an infinitely long interdigital transducer on the structure, and good agreement is achieved between the present and the finite-element method analyses. Finally, SAW resonators are fabricated on the Cu grating/42-LT substrate structure, and it is experimentally verified that the slowness curve shape of the shear horizontal SAW changes with the Cu thickness.
Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo
2014-12-01
With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Piecewise-homogeneous model for electron side injection into linear plasma waves
Energy Technology Data Exchange (ETDEWEB)
Golovanov, A.A., E-mail: agolovanov256@gmail.com; Kostyukov, I.Yu., E-mail: kost@appl.sci-nnov.ru
2016-09-01
An analytical piecewise-homogeneous model for electron side injection into linear plasma waves is developed. The dynamics of transverse betatron oscillations are studied. Based on the characteristics of the transversal motion the longitudinal motion of electrons is described. The electron parameters for which the electron trapping and subsequent acceleration are possible are estimated. The analytical results are verified by numerical simulations in the scope of the piecewise-homogeneous model. The results predicted by this model are also compared to the results given by a more realistic inhomogeneous model. - Highlights: • A piecewise-homogeneous model of side injection into a linear wakefield is developed. • The dynamics of betatron oscillations in the focusing phase is analytically studied. • The area of parameters for electron trapping is determined. • The model is compared to a more realistic inhomogeneous model.
Selection and formulation of a numerical shallow water wave hindcast model
Herbers, T.; Holthuijsen, L.H.; Booij, N.
1983-01-01
Formulate a numerical wave hindcast model which can be used to obtain realistic estimates of wave conditions in the Oosterschelde as input to a numerical geomorphological model. A directionally decoupled, parametric wave hindeast model is recommended that includes parameterized versions of
Multiscale Modeling of Angiogenesis and Predictive Capacity
Pillay, Samara; Byrne, Helen; Maini, Philip
Tumors induce the growth of new blood vessels from existing vasculature through angiogenesis. Using an agent-based approach, we model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death-like processes. We use the transition probabilities associated with the discrete model and a discrete conservation equation for cell occupancy to determine collective cell behavior, in terms of partial differential equations (PDEs). We derive three PDE models incorporating single, multi-species and no volume exclusion. By fitting the parameters in our PDE models and other well-established continuum models to agent-based simulations during a specific time period, and then comparing the outputs from the PDE models and agent-based model at later times, we aim to determine how well the PDE models predict the future behavior of the agent-based model. We also determine whether predictions differ across PDE models and the significance of those differences. This may impact drug development strategies based on PDE models.
Ferretti, Gabriele; Scafidi, Davide; Cutroneo, Laura; Gallino, Stefano; Capello, Marco
2016-07-01
The use of microseisms with appropriate predictive laws is a reliable method for estimating such sea-wave parameters as period and significant height. Through the use of opportune predictive laws calibrated with measurements obtained from wave buoys, it is possible to determine the significant height of the wave as a function of the spectral energy-content of the microseism. In this paper we will present a procedure that utilises microseisms recorded by a micro network of five seismic stations to predict the significant height of waves, and its uncertainty, along the western Ligurian coast (Italy). The calibration and validation of the procedure was performed using wave measurements obtained from a wave buoy off Capo Mele (Imperia, Italy) over a two and a half year period. The differences between the significant heights measured by the wave buoy and the empirical predictions were less than 10 cm (corresponding to 10% of the mean measured value) for 47% of the data and less than 20 cm (corresponding to 20% of the mean measured value) for 72%.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Modeling ultrasonic NDE and guided wave based structural health monitoring
Ravi, Nitin B.; Rathod, Vivek T.; Chakraborty, Nibir.; Mahapatra, D. R.; Sridaran, Ramanan; Boller, Christian
2015-04-01
Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.
Modelling the predictive performance of credit scoring
Directory of Open Access Journals (Sweden)
Shi-Wei Shen
2013-07-01
Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan. Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities. Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems. Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk. Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product. Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.
Modelling the predictive performance of credit scoring
Directory of Open Access Journals (Sweden)
Shi-Wei Shen
2013-02-01
Full Text Available Orientation: The article discussed the importance of rigour in credit risk assessment.Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan.Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities.Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems.Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk.Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product.Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.
Phase diagram of a generalized off-diagonal Aubry–André model with p-wave pairing
Liu, Tong; Wang, Pei; Chen, Shu; Xianlong, Gao
2018-01-01
Off-diagonal Aubry–André (AA) model has recently attracted a great deal of attention as they provide condensed matter realization of topological phases. We numerically study a generalized off-diagonal AA model with p-wave superfluid pairing in the presence of both commensurate and incommensurate hopping modulations. The phase diagram as functions of the modulation strength of incommensurate hopping and the strength of the p-wave pairing is obtained by using the multifractal analysis. We show that with the appearance of the p-wave pairing, the system exhibits mobility-edge phases and critical phases with various number of topologically-protected zero-energy modes. Predicted topological nature of these exotic phases can be realized in a cold atomic system of incommensurate bichromatic optical lattice with induced p-wave superfluid pairing by using a Raman laser in proximity to a molecular Bose–Einstein condensation.
Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays
Energy Technology Data Exchange (ETDEWEB)
Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba
2013-01-26
This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate
Energy Technology Data Exchange (ETDEWEB)
Long, M. S. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences; Keene, William C. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences; Zhang, J. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Reichl, B. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Shi, Y. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Hara, T. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Reid, J. S. [Naval Research Lab. (NRL), Monterey, CA (United States); Fox-Kemper, B. [Brown Univ., Providence, RI (United States). Earth, Environmental and Planetary Sciences; Craig, A. P. [National Center for Atmospheric Research, Boulder, CO (United States); Erickson, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Ginis, I. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Webb, A. [Univ. of Tokyo (Japan). Dept. of Ocean Technology, Policy, and Environment
2016-11-08
Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3^{rd} generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD or Na^{+}, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
Modelling viscoacoustic wave propagation with the lattice Boltzmann method.
Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen
2017-08-31
In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.
Climate Models have Accurately Predicted Global Warming
Nuccitelli, D. A.
2016-12-01
Climate model projections of global temperature changes over the past five decades have proven remarkably accurate, and yet the myth that climate models are inaccurate or unreliable has formed the basis of many arguments denying anthropogenic global warming and the risks it poses to the climate system. Here we compare average global temperature predictions made by both mainstream climate scientists using climate models, and by contrarians using less physically-based methods. We also explore the basis of the myth by examining specific arguments against climate model accuracy and their common characteristics of science denial.
Kim, Kyeong Ok; Choi, Byung Ho; Jung, Kyung Tae
2016-04-01
The performance of an integrally coupled wave-tide-surge model using the unstructured mesh system has been tested for the typhoon Bolaven which is regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade with wind gusts measured up to 50 m/s, causing serious damages with 19 victims. Use of the unstructured mesh in coastal sea regions of marginal scale allows all energy from deep to shallow waters to be seamlessly followed; the physics of wave-circulation interactions can be then correctly resolved. The model covers the whole Yellow and East China Seas with locally refined meshes near the regions of Gageo Island (offshore southwestern corner of the Korean Peninsula) and south of Jeju Island (Gangjeong and Seogwipo ports). The wind and pressure fields during the passage of typhoon Bolaven are generated by the blending method. Generally the numerical atmospheric model cannot satisfactorily reproduce the strength of typhoons due to dynamic and resolution restrictions. In this study we could achieve an improved conservation of the typhoon strength by blending the Holland typhoon model result by the empirical formula onto the ambient meteorological fields of NCEP dataset. The model results are compared with the observations and the model performance is then evaluated. The computed wave spectrums for one and two dimensions are compared with the observation in Ieodo station. Results show that the wind wave significantly enhances the current intensity and surge elevation, addressing that to incorporate the wave-current interaction effect in the wave-tide-surge coupled model is important for the accurate prediction of current and sea surface elevation as well as extreme waves in shallow coastal sea regions. The resulting modeling system can be used for hindcasting and forecasting the wave-tide-surges in marine environments with complex coastlines, shallow water depth and fine sediment.
Directory of Open Access Journals (Sweden)
G. Franz
2017-09-01
Full Text Available Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH, which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.
Franz, Guilherme; Delpey, Matthias T.; Brito, David; Pinto, Lígia; Leitão, Paulo; Neves, Ramiro
2017-09-01
Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.
Shen, Yinghao; Zhou, Chenhao; Zhu, Guodong; Shi, Guoming; Zhu, Xiaodong; Huang, Cheng; Zhou, Jian; Fan, Jia; Ding, Hong; Ren, Ning; Sun, Hui-Chuan
2017-09-01
Cirrhosis increases a patient's risk of developing postoperative liver failure (PLF). Liver stiffness (LS), assessed by two-dimensional shear wave elastography (SWE), indicates liver fibrosis with high accuracy. Whether LS is superior to portal hypertension (PHT) in predicting PLF remains to be studied. The study enrolled 280 patients who underwent hepatectomy for hepatocellular carcinoma from July 2015 to July 2016. All patients received preoperative assessments for LS, PHT, and serum markers of liver fibrosis in addition to other clinicopathological tests. Risk factors for grade A and grade B (or greater) PLF were subjected to univariate and multivariate analysis and receiver operating characteristic curve analysis. Fifty-five patients (19.6%) experienced PLF. The cutoff value of LS for predicting cirrhosis was 10.1 kPa. Multivariate analysis identified LS, hyaluronic acid, IV collagen, and the presence of splenomegaly as independent predictors of PLF. The cutoff value of LS for predicting PLF and grade B (or greater) PLF was 11.75 and 11.9 kPa, respectively. LS was superior to PHT in predicting PLF or greater than grade B PLF (0.72 vs. 0.60, 0.76 vs. 0.59, P < 0.05). LS measured by SWE can predict risk of PLF with greater accuracy than PHT.
Model Predictive Control of Sewer Networks
DEFF Research Database (Denmark)
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik
2016-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G
2007-01-01
This report describes evaluation of a two-dimensional Boussinesq-type wave model, BOUSS-2D, with data obtained from two laboratory experiments and two field studies at the islands of Guam and Hawaii...
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
This paper investigates the prediction of residual stresses developed in shielded manual metal arc welding of mild steel plates through Finite Element Model simulation and experiments. The existence of residual stresses that cause fatigue and distortion in welded structures has been responsible for failure of machine parts ...
Model Predictive Control Fundamentals | Orukpe | Nigerian Journal ...
African Journals Online (AJOL)
Model Predictive Control (MPC) has developed considerably over the last two decades, both within the research control community and in industries. ... In this paper, we will present an introduction to the theory and application of MPC with Matlab codes written to simulate an example of a randomly generated system.
Distributed Model Predictive Control via Dual Decomposition
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle
2014-01-01
This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...
Model predictive control of smart microgrids
DEFF Research Database (Denmark)
Hu, Jiefeng; Zhu, Jianguo; Guerrero, Josep M.
2014-01-01
required to realise high-performance of distributed generations and will realise innovative control techniques utilising model predictive control (MPC) to assist in coordinating the plethora of generation and load combinations, thus enable the effective exploitation of the clean renewable energy sources...
Predictive modeling in homogeneous catalysis: a tutorial
Maldonado, A.G.; Rothenberg, G.
2010-01-01
Predictive modeling has become a practical research tool in homogeneous catalysis. It can help to pinpoint ‘good regions’ in the catalyst space, narrowing the search for the optimal catalyst for a given reaction. Just like any other new idea, in silico catalyst optimization is accepted by some
Prediction modelling for population conviction data
Tollenaar, N.
2017-01-01
In this thesis, the possibilities of using prediction models for judicial penal case data are investigated. The development and refinement of a risk taxation scale based on these data is discussed. When false positives are weighted equally severe as false negatives, 70% can be classified correctly.
DEVELOPING PREDICTIVE MODELS OF INTERNET SERVICE STRATEGIES
Directory of Open Access Journals (Sweden)
Maxim Yu. Khramov
2015-01-01
Full Text Available Issues related to strategic managementof interactive online services as well as difﬁculties in predicting results of strategies’ implementation were studied in the article. As a result methodological andtechnological solutions were workedout; the solutions are based on usage ofsimulation and particularly based on thecombination of such methods as systemdynamics and agent-based modeling.
Predictive Modelling of Mycotoxins in Cereals
Fels, van der H.J.; Liu, C.
2015-01-01
In dit artikel worden de samenvattingen van de presentaties tijdens de 30e bijeenkomst van de Werkgroep Fusarium weergegeven. De onderwerpen zijn: Predictive Modelling of Mycotoxins in Cereals.; Microbial degradation of DON.; Exposure to green leaf volatiles primes wheat against FHB but boosts
Model Predictive Control based on Finite Impulse Response Models
DEFF Research Database (Denmark)
Prasath, Guru; Jørgensen, John Bagterp
2008-01-01
We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...
Modeling Gravitational Waves to Test GR Dispersion and Polarization
Tso, Rhondale; Chen, Yanbei; Isi, Maximilliano
2017-01-01
Given continued observation runs from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, further gravitational wave (GW) events will provide added constraints on beyond-general relativity (b-GR) theories. One approach, independent of the GW generation mechanism at the source, is to look at modification to the GW dispersion and propagation, which can accumulate over vast distances. Generic modification of GW propagation can also, in certain b-GR theories, impact the polarization content of GWs. To this end, a comprehensive approach to testing the dispersion and polarization content is developed by modeling anisotropic deformations to the waveforms' phase, along with birefringence effects and corollary consequences for b-GR polarizations, i.e., breathing, vector, and longitudinal modes. Such an approach can be mapped to specific theories like Lorentz violation, amplitude birefringence in Chern-Simons, and provide hints at additional theories to be included. An overview of data analysis routines to be implemented will also be discussed.
Domain walls and gravitational waves in the Standard Model
Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł
2016-12-01
We study domain walls which can be created in the Standard Model under the assumption that it is valid up to very high energy scales. We focus on domain walls interpolating between the physical electroweak vacuum and the global minimum appearing at very high field strengths. The creation of the network which ends up in the electroweak vacuum percolating through the Universe is not as difficult to obtain as one may expect, although it requires certain tuning of initial conditions. Our numerical simulations confirm that such domain walls would swiftly decay and thus cannot dominate the Universe. We discuss the possibility of detection of gravitational waves produced in this scenario. We have found that for the standard cosmology the energy density of these gravitational waves is too small to be observed in present and planned detectors.
Accelerated gravitational-wave parameter estimation with reduced order modeling
Canizares, Priscilla; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel
2014-01-01
Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current parameter estimation approaches for such scenarios can lead to computationally intractable problems in practice. Therefore there is a pressing need for new, fast and accurate Bayesian inference techniques. In this letter we demonstrate that a reduced order modeling approach enables rapid parameter estimation studies. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of non-spinning binary neutron star inspirals can be sped up by a factor of 30 for the early advanced detectors' configurations. This speed-up will increase to about $150$ as the detectors improve their low-frequency limit to 10Hz, reducing to hours analyses which would otherwise take months to complete. Although thes...
Global validation of the wave model WAM over a one-year period using geosat wave height data
Energy Technology Data Exchange (ETDEWEB)
Romeiser, R. (Universitaet Hamburg (Germany))
1993-03-15
The high quality of wave fields simulated by the third-generation wave model WAM has already been demonstrated in various validation studies using in situ measurements as well as data from satellites as reference. However, owing to limitations of the reference data sets, the previous studies concentrated on relatively small regions or short time periods only, for which adequate measurements were available. In this paper the first global verification of the WAM model over a full 1-year period is presented. The significant wave heights hindcast for 1988 by the WAM model as implemented at the European Centre for Medium Range Weather Forecasts are compared with measurements obtained by the Geosat radar altimeter. The wave heights from WAM and Geosat show good agreement in general. However, significant regional and seasonal differences are found. The hindcast wave heights are underestimated by about 20% in large parts of the southern hemisphere and the tropical region during May-September. For the rest of the time, the agreement with Geosat data is fairly good. Together with the fact that also the rms variability of wave heights in the tropical region is clearly underestimated by WAM, this can possibly be attributed to simplifications like the neglect of atmospheric stratification effects when converting wind speeds to the wind stress fields driving WAM. Furthermore, the intercomparison indicates that low wave heights below [approx]1.5 m are generally overestimated by WAM. As it is planned to use altimeter wave heights for updating wave models in future data assimilation systems, it is quite important to have efficient quality control criteria for these data. The difference between the Geosat and WAM wave heights shows a clear dependence on the additional parameters in some cases, which must be related to quality problems of the Geosat data. Some new criteria for the rejection of incorrect Geosat data points are obtained. 16 refs., 6 figs.
Review of Sand Production Prediction Models
Directory of Open Access Journals (Sweden)
Hossein Rahmati
2013-01-01
Full Text Available Sand production in oil and gas wells can occur if fluid flow exceeds a certain threshold governed by factors such as consistency of the reservoir rock, stress state and the type of completion used around the well. The amount of solids can be less than a few grams per cubic meter of reservoir fluid, posing only minor problems, or a substantial amount over a short period of time, resulting in erosion and in some cases filling and blocking of the wellbore. This paper provides a review of selected approaches and models that have been developed for sanding prediction. Most of these models are based on the continuum assumption, while a few have recently been developed based on discrete element model. Some models are only capable of assessing the conditions that lead to the onset of sanding, while others are capable of making volumetric predictions. Some models use analytical formulae, particularly those for estimating the onset of sanding while others use numerical models, particularly in calculating sanding rate. Although major improvements have been achieved in the past decade, sanding tools are still unable to predict the sand mass and the rate of sanding for all field problems in a reliable form.
Modelling rock-avalanche induced impact waves: Sensitivity of the model chains to model parameters
Schaub, Yvonne; Huggel, Christian
2014-05-01
New lakes are forming in high-mountain areas all over the world due to glacier recession. Often they will be located below steep, destabilized flanks and are therefore exposed to impacts from rock-/ice-avalanches. Several events worldwide are known, where an outburst flood has been triggered by such an impact. In regions such as in the European Alps or in the Cordillera Blanca in Peru, where valley bottoms are densely populated, these far-travelling, high-magnitude events can result in major disasters. Usually natural hazards are assessed as single hazardous processes, for the above mentioned reasons, however, development of assessment and reproduction methods of the hazardous process chain for the purpose of hazard map generation have to be brought forward. A combination of physical process models have already been suggested and illustrated by means of lake outburst in the Cordillera Blanca, Peru, where on April 11th 2010 an ice-avalanche of approx. 300'000m3 triggered an impact wave, which overtopped the 22m freeboard of the rock-dam for 5 meters and caused and outburst flood which travelled 23 km to the city of Carhuaz. We here present a study, where we assessed the sensitivity of the model chain from ice-avalanche and impact wave to single parameters considering rock-/ice-avalanche modeling by RAMMS and impact wave modeling by IBER. Assumptions on the initial rock-/ice-avalanche volume, calibration of the friction parameters in RAMMS and assumptions on erosion considered in RAMMS were parameters tested regarding their influence on overtopping parameters that are crucial for outburst flood modeling. Further the transformation of the RAMMS-output (flow height and flow velocities on the shoreline of the lake) into an inflow-hydrograph for IBER was also considered a possible source of uncertainties. Overtopping time, volume, and wave height as much as mean and maximum discharge were considered decisive parameters for the outburst flood modeling and were therewith
A staggered-grid convolutional differentiator for elastic wave modelling
Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun
2015-11-01
The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.
Multivariate Statistical Modelling of Drought and Heat Wave Events
Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele
2016-04-01
Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A
Caries risk assessment models in caries prediction
Directory of Open Access Journals (Sweden)
Amila Zukanović
2013-11-01
Full Text Available Objective. The aim of this research was to assess the efficiency of different multifactor models in caries prediction. Material and methods. Data from the questionnaire and objective examination of 109 examinees was entered into the Cariogram, Previser and Caries-Risk Assessment Tool (CAT multifactor risk assessment models. Caries risk was assessed with the help of all three models for each patient, classifying them as low, medium or high-risk patients. The development of new caries lesions over a period of three years [Decay Missing Filled Tooth (DMFT increment = difference between Decay Missing Filled Tooth Surface (DMFTS index at baseline and follow up], provided for examination of the predictive capacity concerning different multifactor models. Results. The data gathered showed that different multifactor risk assessment models give significantly different results (Friedman test: Chi square = 100.073, p=0.000. Cariogram is the model which identified the majority of examinees as medium risk patients (70%. The other two models were more radical in risk assessment, giving more unfavorable risk –profiles for patients. In only 12% of the patients did the three multifactor models assess the risk in the same way. Previser and CAT gave the same results in 63% of cases – the Wilcoxon test showed that there is no statistically significant difference in caries risk assessment between these two models (Z = -1.805, p=0.071. Conclusions. Evaluation of three different multifactor caries risk assessment models (Cariogram, PreViser and CAT showed that only the Cariogram can successfully predict new caries development in 12-year-old Bosnian children.
Disease prediction models and operational readiness.
Directory of Open Access Journals (Sweden)
Courtney D Corley
Full Text Available The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011. We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4, spatial (26, ecological niche (28, diagnostic or clinical (6, spread or response (9, and reviews (3. The model parameters (e.g., etiology, climatic, spatial, cultural and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological were recorded and reviewed. A component of this review is the identification of verification and validation (V&V methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology
Disease Prediction Models and Operational Readiness
Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey; Noonan, Christine; Rabinowitz, Peter M.; Lancaster, Mary J.
2014-01-01
The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness
T-Wave Morphology Restitution Predicts Sudden Cardiac Death in Patients With Chronic Heart Failure.
Ramírez, Julia; Orini, Michele; Mincholé, Ana; Monasterio, Violeta; Cygankiewicz, Iwona; Bayés de Luna, Antonio; Martínez, Juan Pablo; Pueyo, Esther; Laguna, Pablo
2017-05-19
Patients with chronic heart failure are at high risk of sudden cardiac death (SCD). Increased dispersion of repolarization restitution has been associated with SCD, and we hypothesize that this should be reflected in the morphology of the T-wave and its variations with heart rate. The aim of this study is to propose an electrocardiogram (ECG)-based index characterizing T-wave morphology restitution (TMR), and to assess its association with SCD risk in a population of chronic heart failure patients. Holter ECGs from 651 ambulatory patients with chronic heart failure from the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study were available for the analysis. TMR was quantified by measuring the morphological variation of the T-wave per RR increment using time-warping metrics, and its predictive power was compared to that of clinical variables such as the left ventricular ejection fraction and other ECG-derived indices, such as T-wave alternans and heart rate variability. TMR was significantly higher in SCD victims than in the rest of patients (median 0.046 versus 0.039, P<0.001). When TMR was dichotomized at TMR=0.040, the SCD rate was significantly higher in the TMR≥0.040 group (P<0.001). Cox analysis revealed that TMR≥0.040 was strongly associated with SCD, with a hazard ratio of 3.27 (P<0.001), independently of clinical and ECG-derived variables. No association was found between TMR and pump failure death. This study shows that TMR is specifically associated with SCD in a population of chronic heart failure patients, and it is a better predictor than clinical and ECG-derived variables. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Garcia, Raphael F.; Brissaud, Quentin; Rolland, Lucie; Martin, Roland; Komatitsch, Dimitri; Spiga, Aymeric; Lognonné, Philippe; Banerdt, Bruce
2017-10-01
The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.
Neutrino and gravitational wave signal of a delayed-detonation model of type Ia supernovae
Seitenzahl, Ivo R.; Herzog, Matthias; Ruiter, Ashley J.; Marquardt, Kai; Ohlmann, Sebastian T.; Röpke, Friedrich K.
2015-12-01
The progenitor system(s) and the explosion mechanism(s) of type Ia supernovae (SNe Ia) are still under debate. Nonelectromagnetic observables, in particular, gravitational waves and neutrino emission, of thermoclear supernovae are a complementary window to light curves and spectra for studying these enigmatic objects. A leading model for SNe Ia is the thermonuclear incineration of a near-Chandrasekhar mass carbon-oxygen white dwarf star in a "delayed detonation." We calculate a three-dimensional hydrodynamic explosion for the N100 delayed-detonation model extensively discussed in the literature, taking the dynamical effects of neutrino emission from all important contributing source terms into account. Although neutrinos carry away 2 ×1049 erg of energy, we confirm the common view that neutrino energy losses are dynamically not very important, resulting in only a modest reduction of final kinetic energy by 2%. We then calculate the gravitational wave signal from the time evolution of the quadrupole moment. Our model radiates 7 ×1039 erg in gravitational waves and the spectrum has a pronounced peak around 0.4 Hz. Depending on viewing angle and polarization, we find that the future space-based gravitational wave missions DECIGO and BBO would be able to detect our source to a distance of ˜1.3 Mpc . We predict a clear signature of the deflagration-to-detonation transition in the neutrino and the gravitational wave signals. If observed, such a feature would be a strong indicator of the realization of delayed detonations in near-Chandrasekhar mass white dwarfs.
Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters
Directory of Open Access Journals (Sweden)
Scott Beatty
2017-07-01
Full Text Available Small scale testing in controlled environments is a key stage in the development of potential wave energy conversion technology. Furthermore, it is well known that the physical design and operational quality of the power-take off (PTO used on the small scale model can have vast effects on the tank testing results. Passive mechanical elements such as friction brakes and air dampers or oil filled dashpots are fraught with nonlinear behaviors such as static friction, temperature dependency, and backlash, the effects of which propagate into the wave energy converter (WEC power production data, causing very high uncertainty in the extrapolation of the tank test results to the meaningful full ocean scale. The lack of quality in PTO simulators is an identified barrier to the development of WECs worldwide. A solution to this problem is to use actively controlled actuators for PTO simulation on small scale model wave energy converters. This can be done using force (or torque-controlled feedback systems with suitable instrumentation, enabling the PTO to exert any desired time and/or state dependent reaction force. In this paper, two working experimental PTO simulators on two different wave energy converters are described. The first implementation is on a 1:25 scale self-reacting point absorber wave energy converter with optimum reactive control. The real-time control system, described in detail, is implemented in LabVIEW. The second implementation is on a 1:20 scale single body point absorber under model-predictive control, implemented with a real-time controller in MATLAB/Simulink. Details on the physical hardware, software, and feedback control methods, as well as results, are described for each PTO. Lastly, both sets of real-time control code are to be web-hosted, free for download, modified and used by other researchers and WEC developers.
Attachment dismissal predicts frontal slow-wave ERPs during rejection by unfamiliar peers.
White, Lars O; Wu, Jia; Borelli, Jessica L; Rutherford, Helena J V; David, Daryn H; Kim-Cohen, Julia; Mayes, Linda C; Crowley, Michael J
2012-08-01
Attachment representations are thought to provide a cognitive-affective template, guiding the way individuals interact with unfamiliar social partners. To examine the neural correlates of this process, we sampled event-related potentials (ERPs) during exclusion by unfamiliar peers to differentiate insecure-dismissing from securely attached youth, as indexed by the child attachment interview. Thirteen secure and 10 dismissing 11- to 15-year-olds were ostensibly connected with two peers via the Internet to play a computerized ball-toss game. Actually, peers were computer generated, first distributing the ball evenly, but eventually excluding participants. Afterward children rated their distress. As in previous studies, distress was related to a negative left frontal slow wave (500-900 ms) during rejection, a waveform implicated in negative appraisals and less approach motivation. Though attachment classifications were comparable in frontal ERPs and distress, an attachment-related dismissal dimension predicted a negative left frontal slow wave during rejection, suggesting that high dismissal potentially involves elevated anticipation of rejection. As expected, dismissal and self-reported distress were uncorrelated. Yet, a new approach to quantifying the dissociation between self-reports and rejection-related ERPs revealed that dismissal predicted underreporting of distress relative to ERPs. Our findings imply that evaluations and regulatory strategies linked to attachment generalize to distressing social contexts in early adolescence.