Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab.
Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong
2017-04-20
We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.
Institute of Scientific and Technical Information of China (English)
WU; Shaoping(吴少平); YI; Fan(易帆)
2002-01-01
By using FICE scheme, a numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere is presented. The whole nonlinear propagation process of the gravity wave packet is shown; the basic characteristics of nonlinear propagation and the influence of the ambient winds on the propagation are analyzed. The results show that FICE scheme can be extended in three-dimension by which the calculation is steady and kept for a long time; the increase of wave amplitude is faster than the exponential increase according to the linear gravity theory; nonlinear propagation makes the horizontal perturbation velocity increase greatly which can lead to enhancement of the local ambient winds; the propagation path and the propagation velocity of energy are different from the results expected by the linear gravity waves theory, the nonlinearity causes the change in propagation characteristics of gravity wave; the ambient winds alter the propagation path and group velocity of gravity wave.
Robinett, R W
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (`minipackets' or `clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum w...
Abdilghanie, Ammar M.; Diamessis, Peter J.
2012-01-01
Numerical simulations of internal gravity wave (IGW) dynamics typically rely on wave velocity and density fields which are either generated through forcing terms in the governing equations or are explicitly introduced as initial conditions. Both approaches are based on the associated solution to the inviscid linear internal wave equations and, thus, assume weak-amplitude, space-filling waves. Using spectral multidomain-based numerical simulations of the two-dimensional Navier-Stokes equations and focusing on the forcing-driven approach, this study examines the generation and subsequent evolution of large-amplitude IGW packets which are strongly localized in the vertical in a linearly stratified fluid. When the vertical envelope of the forcing terms varies relatively rapid when compared to the vertical wavelength, the associated large vertical gradients in the Reynolds stress field drive a nonpropagating negative horizontal mean flow component in the source region. The highly nonlinear interaction of this mean current with the propagating IGW packet leads to amplification of the wave, a significant distortion of its rear flank, and a substantial decay of its amplitude. Scaling arguments show that the mean flow is enhanced with a stronger degree of localization of the forcing, larger degree of hydrostaticity, and increasing wave packet steepness. Horizontal localization results in a pronounced reduction in mean flow strength mainly on account of the reduced vertical gradient of the wave Reynolds stress. Finally, two techniques are proposed toward the efficient containment of the mean flow at minimal computational cost. The findings of this study are of particular value in overcoming challenges in the design of robust computational process studies of IGW packet (or continuously forced wave train) interactions with a sloping boundary, critical layer, or caustic, where large wave amplitudes are required for any instabilities to develop. In addition, the detailed
Energy Technology Data Exchange (ETDEWEB)
Robinett, R.W
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Robinett, R. W.
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Packet Tracer network simulator
Jesin, A
2014-01-01
A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.
Aharonovich, Igal
2016-01-01
We present a simple method to expedite simulation of quantum wave-packet dynamics by more than a factor of $2$ with the Strang split-operator propagation. Dynamics of quantum wave-packets are often evaluated using the the \\emph{Strang} split-step propagation, where the kinetic part of the Hamiltonian $\\hat{T}$ and the potential part $\\hat{V}$ are piecewise integrated according to $e^{- i \\hat{H} \\delta t} \\approx e^{- i \\hat{V} \\delta t/2} e^{- i \\hat{T}\\delta t} e^{- i \\hat{V} \\delta t/2}$, which is accurate to second order in the propagation time $\\delta t$. In molecular quantum dynamics, the potential propagation occurs over multiple coupled potential surfaces and requires matrix exponentiation for each position in space and time which is computationally demanding. Our method employs further splitting of the potential matrix $\\hat{V}$ into a diagonal space dependent part $\\hat{V}_{D}(R)$ and an off-diagonal time-dependent coupling-field $\\hat{V}_{OD}(t)$, which then requires only a single matrix exponentia...
Energy Technology Data Exchange (ETDEWEB)
Sacks, R.A.; Robinson, J.E.
1980-02-15
The time-dependent Schroedinger equation is integrated numerically to obtain the time evolution of an initially Gaussian packet in the presence of Eckart, truncated quadratic, and untruncated quadratic potentials. Potential and packet parameters are chosen with hydrogen interstitials in transition metals in mind and are varied over significant ranges. Use of the smooth, bounded Eckart potential eliminates the pronounced structure and the anomalous spreading reported previously for other potentials. An interesting transient feature of the scattered packet is found and discussed in terms of the Wigner time delay. Packet transmission coefficients are discussed, and a quasiclassical approximation is found to agree closely with the exact results.
Segregation of helicity in inertial wave packets
Ranjan, A.
2017-03-01
Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.
Dynamics of quantum wave packets
Energy Technology Data Exchange (ETDEWEB)
Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.
Kreisbeck, C.; Kramer, T.; Molina, R. A.
2017-04-01
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin–Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Heisenberg's wave packet reconsidered
Grabbe, J. Orlin
2005-01-01
This note shows that Heisenberg's choice for a wave function in his original paper on the uncertainty principle is simply a renormalized characteristic function of a stable distribution with certain restrictions on the parameters. Relaxing Heisenberg's restrictions leads to a more general formulation of the uncertainty principle. This reformulation shows quantum uncertainty can exist at a macroscopic level. These modifications also give rise to a new form of Schrodinger's wave equation as the...
Causal evolution of wave packets
Eckstein, Michał
2016-01-01
Drawing from the optimal transport theory adapted to the relativistic setting we formulate the principle of a causal flow of probability and apply it in the wave packet formalism. We demonstrate that whereas the Dirac system is causal, the relativistic-Schr\\"odinger Hamiltonian impels a superluminal evolution of probabilities. We quantify the causality breakdown in the latter system and argue that, in contrast to the popular viewpoint, it is not related to the localisation properties of the states.
Energy Technology Data Exchange (ETDEWEB)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H. [School of Physics, University of Sydney, New South Wales 2006 (Australia); Skjaeraasen, O. [ProsTek, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway)
2011-07-15
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed {nu}{sub e}/c increases and as the temperature ratio T{sub i}/T{sub e} of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on {nu}{sub e}/c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T{sub i}/T{sub e}. The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of {nu}{sub e}/c. For {nu}{sub e}/c < or approx. 0.17, strong turbulence is approximately electrostatic and wave packets have very similar structure to purely electrostatic wave packets. For {nu}{sub e}/c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all {nu}{sub e}/c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as {nu}{sub e}/c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
Ono, Junichi; Ando, Koji
2012-11-01
A semiquantal (SQ) molecular dynamics (MD) simulation method based on an extended Hamiltonian formulation has been developed using multi-dimensional thawed gaussian wave packets (WPs), and applied to an analysis of hydrogen-bond (H-bond) dynamics in liquid water. A set of Hamilton's equations of motion in an extended phase space, which includes variance-covariance matrix elements as auxiliary coordinates representing anisotropic delocalization of the WPs, is derived from the time-dependent variational principle. The present theory allows us to perform real-time and real-space SQMD simulations and analyze nuclear quantum effects on dynamics in large molecular systems in terms of anisotropic fluctuations of the WPs. Introducing the Liouville operator formalism in the extended phase space, we have also developed an explicit symplectic algorithm for the numerical integration, which can provide greater stability in the long-time SQMD simulations. The application of the present theory to H-bond dynamics in liquid water is carried out under a single-particle approximation in which the variance-covariance matrix and the corresponding canonically conjugate matrix are reduced to block-diagonal structures by neglecting the interparticle correlations. As a result, it is found that the anisotropy of the WPs is indispensable for reproducing the disordered H-bond network compared to the classical counterpart with the use of the potential model providing competing quantum effects between intra- and intermolecular zero-point fluctuations. In addition, the significant WP delocalization along the out-of-plane direction of the jumping hydrogen atom associated with the concerted breaking and forming of H-bonds has been detected in the H-bond exchange mechanism. The relevance of the dynamical WP broadening to the relaxation of H-bond number fluctuations has also been discussed. The present SQ method provides the novel framework for investigating nuclear quantum dynamics in the many
Fictitious time wave packet dynamics: I. Nondispersive wave packets in the quantum Coulomb problem
Fabčič, T; Wunner, G
2009-01-01
Nondispersive wave packets in a fictitious time variable are calculated analytically for the field-free hydrogen atom. As is well known by means of the Kustaanheimo-Stiefel transformation the Coulomb problem can be converted into that of a four-dimensional harmonic oscillator, subject to a constraint. This regularization makes use of a fictitious time variable, but arbitrary Gaussian wave packets in that time variable in general violate that constraint. The set of "restricted Gaussian wave packets" consistent with the constraint is constructed and shown to provide a complete basis for the expansion of states in the original three-dimensional coordinate space. Using that expansion arbitrary localized Gaussian wave packets of the hydrogen atom can be propagated analytically, and exhibit a nondispersive periodic behavior as functions of the fictitious time. Restricted wave packets with and without well defined angular momentum quantum n umbers are constructed. They will be used as trial functions in time-depende...
Energy Technology Data Exchange (ETDEWEB)
Jakob, B.
2006-10-10
In this work the wave packet molecular dynamics (WPMD) is presented and applied to dense hydrogen. In the WPMD method the electrons are described by a slater determinant of periodic Gaussian wave packets. Each single particle wave function can parametrised through 8 coordinates which can be interpreted as the position and momentum, the width and its conjugate momentum. The equation of motion for these coordinates can be derived from a time depended variational principle. Properties of the equilibrium can be ascertained by a Monte Carlo simulation. With the now completely implemented antisymmetrisation the simulation yields a fundamental different behavior for dense hydrogen compare to earlier simplified models. The results show a phase transition to metallic hydrogen with a higher density than in the molecular phase. This behavior has e.g. a large implication to the physics of giant planets. This work describes the used model and explains in particular the calculation of the energy and forces. The periodicity of the wave function leads to a description in the Fourier space. The antisymmetrisation is done by Matrix operations. Moreover the numerical implementation is described in detail to allow the further development of the code. The results provided in this work show the equation of state in the temperature range 300K - 50000K an density 10{sup 23}-10{sup 24} cm{sup -3}, according a pressure 1 GPa-1000 GPa. In a phase diagram the phase transition to metallic hydrogen can be red off. The electrical conductivity of both phases is destined. (orig.)
Squeezed Wave Packets in Quantum Cosmology
Pedram, Pouria
2010-11-01
We use an appropriate initial condition for constructing squeezed wave packets in the context of Wheeler-DeWitt equation with complete classical description. This choice of initial condition does not alter the classical paths and only affect the quantum mechanical picture. To demonstrate the method, we consider an empty 4+1-dimensional Kaluza-Klein quantum cosmology in the presence of a negative cosmological constant. We show that these wave packets do not disperse and sharply peak on the classical trajectories in the whole configuration space. So, the probability of finding the corresponding physical quantities approaches zero everywhere except on the classical paths.
Short-time Chebyshev wave packet method for molecular photoionization
Sun, Zhaopeng; Zheng, Yujun
2016-08-01
In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Wave packet dynamics and factorization of numbers
Mack, H; Haug, F; Straub, F S; Freyberger, M; Schleich, W P; Mack, Holger; Bienert, Marc; Haug, Florian; Straub, Frank S.; Freyberger, Matthias; Schleich, Wolfgang P.
2002-01-01
We connect three phenomena of wave packet dynamics: Talbot images, revivals of a particle in a box and fractional revivals. The physical origin of these effects is deeply rooted in phase factors which are quadratic in the quantum number. We show that the characteristic structures in the time evolution of these systems allow us to factorize large integers.
Relativistic suppression of wave packet spreading.
Su, Q; Smetanko, B; Grobe, R
1998-03-30
We investigate numerically the solution of Dirac equation and analytically the Klein-Gordon equation and discuss the relativistic motion of an electron wave packet in the presence of an intense static electric field. In contrast to the predictions of the (non-relativistic) Schroedinger theory, the spreading rate in the field's polarization direction as well as in the transverse directions is reduced.
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Teleportation of Nonclassical Wave Packets of light
Lee, Noriyuki; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira
2012-01-01
We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.
Spectral Modulation by Rotational Wave Packets
Baertschy, Mark; Hartinger, Klaus
2005-05-01
Periodic rephasing of molecular rotational wave packets can create rapid fluctuations in the optical properties of a molecular gas which can be used to manipulate the temporal phase and spectral content of ultrashort light pulses. We have demonstrated spectral control of a time-delayed ultrafast probe pulse propagating through the rotational wave packet prepared by a pump laser pulse. The spectrum of the probe pulse can be either broadened or compressed, depending on the relative sign of the temporal phase modulation and the initial chirp of the probe pulse. Adjustment of the spectral phase at the output of the interaction region allows controlled temporal pulse streching^1 and compression^2. The degree to which the spectrum of an ultrafast pulse can be modified depends on the strength and shape of the rotational wavepacket. We are studying the optimization of the rotational wave packet excitation with complex, shaped pump laser pulses for the purpose of optimizing probe pulse spectra modulation. ^1 Klaus Hartinger and Randy A. Bartels, Opt. Lett., submitted (2005). ^2 R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, Chris H. Greene, M.M. Murnane, and H.C. Kapteyn , Phys. Rev. Lett., 88, 013903 (2002). This work was supported by the NSF.
Massachusetts Bay - Internal wave packets digitized from SAR imagery
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...
Scattering of wave packets with phases
Karlovets, Dmitry
2016-01-01
A general problem of $2\\rightarrow N_f$ scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in $(3+1)$ D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet $\\sigma_p/\\langle p\\rangle$ as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the...
Scattering of wave packets with phases
Karlovets, Dmitry V.
2017-03-01
A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /p> as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.
Spreading of Ultrarelativistic Wave Packet and Redshift
Lev, Felix M
2012-01-01
The red shift of light coming to the Earth from distant objects is usually explained as a consequence of the fact that the Universe is expanding. Such an explanation implies that photons emitted by distant objects travel in the interstellar medium practically without interaction with interstellar matter and hence they can survive their long journey to the Earth. We analyze this assumption by considering wave-packet spreading for an ultrarelativistic particle. We derive a formula which shows that spreading in the direction perpendicular to the particle momentum is very important and cannot be neglected. The implications of the results are discussed.
Square-integrability of multivariate metaplectic wave-packet representations
Ghaani Farashahi, Arash
2017-03-01
This paper presents a systematic study for harmonic analysis of metaplectic wave-packet representations on the Hilbert function space {{L}2}≤ft({{{R}}d}\\right) . The abstract notions of symplectic wave-packet groups and metaplectic wave-packet representations will be introduced. We then present an admissibility condition on closed subgroups of the real symplectic group \\text{Sp}≤ft({{{R}}d}\\right) , which guarantees the square-integrability of the associated metaplectic wave-packet representation on {{L}2}≤ft({{{R}}d}\\right) .
Henri, Pierre; Briand, Carine; Mangeney, André; 10.1029/2009JA014969
2013-01-01
Recent observation of large amplitude Langmuir waveforms during a Type III event in the solar wind have been interpreted as the signature of the electrostatic decay of beam-driven Langmuir waves. This mechanism is thought to be a first step to explain the generation of solar Type III radio emission. The threshold for this parametric instability in typical solar wind condition is investigated here by means of 1D-1V Vlasov-Poisson simulations. We show that the amplitude of the observed Langmuir beat-like waveforms is of the order of the effective threshold computed from the full kinetic simulations. The expected level of associated ion acoustic density fluctuations have also been computed for comparison with observations.
Controlling the spreading of wave packets of a dissociating molecule
DEFF Research Database (Denmark)
Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm
2007-01-01
in the Franck-Condon region whereas, as well known, the positively chirped pulses focus the wave packet in the asymptotic region. For the negatively chirped pulses, we show that the time corresponding to the minimum in the width of the wave packet can be predicted by an analytical formula. (C) 2007 Elsevier B.V...
Equations of motion for a relativistic wave packet
Indian Academy of Sciences (India)
L Kocis
2012-05-01
The time derivative of the position of a relativistic wave packet is evaluated. It is found that it is equal to the mean value of the momentum of the wave packet divided by the mass of the particle. The equation derived represents a relativistic version of the second Ehrenfest theorem.
Rotating Gaussian wave packets in weak external potentials
Goussev, Arseni
2017-07-01
We address the time evolution of two- and three-dimensional nonrelativistic Gaussian wave packets in the presence of a weak external potential of arbitrary functional form. The focus of our study is the phenomenon of rotation of a Gaussian wave packet around its center of mass, as quantified by mean angular momentum computed relative to the wave-packet center. Using a semiclassical approximation of the eikonal type, we derive an explicit formula for a time-dependent change of mean angular momentum of a wave packet induced by its interaction with a weak external potential. As an example, we apply our analytical approach to the scenario of a two-dimensional quantum particle crossing a tilted ridge potential barrier. In particular, we demonstrate that the initial orientation of the particle wave packet determines the sense of its rotation, and report a good agreement between analytical and numerical results.
Analysis of circular wave packets generated by pulsed electric fields
Energy Technology Data Exchange (ETDEWEB)
Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)
2012-05-15
We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.
Neutrino Oscillations in Intermediate States.II -- Wave Packets
Asahara, A; Shimomura, T; Yabuki, T
2004-01-01
We analyze oscillations of intermediate neutrinos in terms of scattering of particles described by Gaussian wave packets. We study a scalar model as in the previous paper (I) but in realistic situations, where two particles of the initial state and final state are wave packets and neutrinos are in the intermediate state. The oscillation of the intermediate neutrino is found from the time evolution of the total transition probability between the initial state and final state. The effect of a finite lifetime and a finite relaxation time $\\tau$ are also studied. We find that the oscillation pattern depends on the magnitude of wave packet sizes of particles in the initial state and final state and the lifetime of the initial particle. For $\\Delta m^2=10^{-2}$ eV$^2$, the oscillation probability deviates from the standard formula, if the wave packet sizes are around $10^{-13}$ m for 0.4 MeV neutrino.
Resonance-Assisted Decay of Nondispersive Wave Packets
Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.
2006-01-01
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
Wave packet dynamics of potassium dimers attached to helium nanodroplets
Claas, P.; Droppelmann, G.; Schulz, C. P.; Mudrich, M.; Stienkemeier, F.
2006-01-01
The dynamics of vibrational wave packets excited in K$_2$ dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump-probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K$^+_2$-formation are identified. While the wave packet dynamics of the electronic ground state is not influenced by the helium environment, perturbations of the electronically excited states are obs...
Electronic Wave Packet in a Quantized Electromagnetic Field
Institute of Scientific and Technical Information of China (English)
程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭
2002-01-01
We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.
On wave-packet dynamics in a decaying quadratic potential
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1997-01-01
We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....
Wave analysis of the evolution of a single wave packet in supersonic boundary layer
Yermolaev, Yury G.; Yatskikh, Aleksey A.; Kosinov, Alexander D.; Semionov, Nickolay V.
2016-10-01
The evolution of the artificial wave packet in laminar flat-plate boundary layer was experimentally studied by hot-wire measurements at M=2. The localized disturbances were generated by pulse glow discharge. The wave analysis of evolution of wave packet was provided. It was found, that the most unstable waves are oblique, that consistent with results of linear theory.
Climatology of extratropical atmospheric wave packets in the northern hemisphere
Grazzini, Federico
2010-01-01
Planetary and synoptic scale wave-packets represents one important component of the atmospheric large-scale circulation. These dissipative structures are able to rapidly transport eddy kinetic energy, generated locally (e.g. by baroclinic conversion), downstream along the upper tropospheric flow. The transported energy, moving faster than individual weather systems, will affect the development of the next meteorological system on the leading edge of the wave packet, creating a chain of connections between systems that can be far apart in time and space, with important implications on predictability. In this work we present a different and novel approach to investigate atmospheric variability, based on the objective recognition of planetary and synoptic wave packets. We have developed an objective tracking algorithm which allows to extract relevant statistical properties of the wave trains as a function of their dominant wavelength. We have applied the algorithm to the daily analysis (every 12h) from 1958-2009...
Electron acceleration by Landau resonance with whistler mode wave packets
Gurnett, D. A.; Reinleitner, L. A.
1983-01-01
Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.
Particle-like wave packets in complex scattering systems
Gérardin, Benoît; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre
2016-01-01
A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. We demonstrate how the direct experimental access to the information stored in the scattering matrix of these systems allows us to selectively excite scattering states and wave packets that travel along individual classical trajectories. Due to their limited dispersion, these particle-like scattering states will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.
The Spatiotemporal Evolution of Wave Packets under Chaotic Condition
Institute of Scientific and Technical Information of China (English)
LIU Fang; LI Jun-Qing; LUO Yi-Xiao; XU Gong-Ou; ZUO Wei
2001-01-01
Using the minimum uncertainty state of quantum integrable system H0 as initial state,the spatiotemporal evolution of the wave packet under the action of perturbed Hamiltonian is studied causally as in classical mechanics. Due to the existence of the avoided energy level crossing in the spectrum there exist nonlinear resonances between somepairs of neighboring components of the wave packet,the deterministic dynamical evolution becomes very complicated and appears to be chaotic.It is proposed to use expectation values for the whole set of basic dynamical variables and the corresponding spreading widths to describe the topological features concisely such that the quantum chaotic motion can be studied in contrast with the quantum regular motion and well characterized with the asymptotic behaviors.It has been demonstrated with numerical results that such a wave packet has indeed quantum behaviors of ergodicity asin corresponding classical case.
Wave packet propagation across barriers by semiclassical initial value methods
Petersen, Jakob; Kay, Kenneth G.
2015-07-01
Semiclassical initial value representation (IVR) formulas for the propagator have difficulty describing tunneling through barriers. A key reason is that these formulas do not automatically reduce, in the classical limit, to the version of the Van Vleck-Gutzwiller (VVG) propagator required to treat barrier tunneling, which involves trajectories that have complex initial conditions and that follow paths in complex time. In this work, a simple IVR expression, that has the correct tunneling form in the classical limit, is derived for the propagator in the case of one-dimensional barrier transmission. Similarly, an IVR formula, that reduces to the Generalized Gaussian Wave Packet Dynamics (GGWPD) expression [D. Huber, E. J. Heller, and R. Littlejohn, J. Chem. Phys. 89, 2003 (1988)] in the classical limit, is derived for the transmitted wave packet. Uniform semiclassical versions of the IVR formulas are presented and simplified expressions in terms of real trajectories and WKB penetration factors are described. Numerical tests show that the uniform IVR treatment gives good results for wave packet transmission through the Eckart and Gaussian barriers in all cases examined. In contrast, even when applied with the proper complex trajectories, the VVG and GGWPD treatments are inaccurate when the mean energy of the wave packet is near the classical transmission threshold. The IVR expressions for the propagator and wave packet are cast as contour integrals in the complex space of initial conditions and these are generalized to potentially allow treatment of a larger variety of systems. A steepest descent analysis of the contour integral formula for the wave packet in the present cases confirms its relationship to the GGWPD method, verifies its semiclassical validity, and explains results of numerical calculations.
Analysis of Circular Wave Packets Generated by Pulsed Electric Fields
Energy Technology Data Exchange (ETDEWEB)
Yoshida, S. [Vienna University of Technology, Austria; Reinhold, Carlos O [ORNL; Burgdorfer, J. [Vienna University of Technology, Austria; Wyker, B. [Rice University; Ye, S. [Rice University; Dunning, F. B. [Rice University
2011-01-01
We demonstrate that circular wave packets in high Rydberg states generated using a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wavepackets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficient.
Wave packet dynamics under effect of a pulsed electric field
da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.
2016-06-01
We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.
Wave packets and initial conditions in quantum cosmology
Gousheh, S S
2000-01-01
We discuss the construction of wave packets resulting from the solutions of a class of Wheeler-DeWitt equations in Robertson-Walker type cosmologies. We present an ansatz for the initial conditions which leads to a unique determination of the expansion coefficients in the construction of the wave packets with probability distributions which, in an interesting contrast to some of the earlier works, agree well with all possible classical paths. The possible relationship between these initial conditions and signature transition in the context of classical cosmology is also discussed.
Symmetry and conservation laws in semiclassical wave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu [Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080-3021 (United States)
2015-03-15
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.
Propagation of gravity wave packet near critical level
Institute of Scientific and Technical Information of China (English)
YUE Xianchang; YI Fan
2005-01-01
A couple of two-dimensional linear and fully nonlinear numerical models for compressible atmosphere are used to numerically study the propagation of the gravity wave packet into a mean wind shear. For a linear propagation wave packet, the critical level interactions are in good agreement with the linear critical level theory. The dynamically and convectively unstable regions are formed due to the critical level interaction of a finite-amplitude wave packet, but they would not break. The free exchange of potential energy with kinetic energy in the background atmosphere at rest ceases after entering the mean wind shear. However, it still goes on in the nonlinear propagation. It is shown that the nonlinear effects modify the mean flow markedly, reduce the momentum and energy propagation velocity and drop the elevation of the critical level.The gravity wave packet becomes unstable and breaks down into smaller scales in some regions. It expends much more kinetic energy than potential energy in the early phase of the breakdown. This means that the wave breakdown sets up due to the action of the shear instability rather than a convective one.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Program for quantum wave-packet dynamics with time-dependent potentials
Dion, C M; Rahali, G
2014-01-01
We present a program to simulate the dynamics of a wave packet interacting with a time-dependent potential. The time-dependent Schr\\"odinger equation is solved on a one-, two-, or three-dimensional spatial grid using the split operator method. The program can be compiled for execution either on a single processor or on a distributed-memory parallel computer.
Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Bathymetry
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with bathymetry for Massachusetts Bay. The internal wave packets were...
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with tidal zones for Massachusetts Bay. The internal wave packets were...
Weisskopf-Wigner model for wave packet excitation
Paloviita, A; Stenholm, S; Paloviita, Asta; Suominen, Kalle-Antti; Stenholm, Stig
1997-01-01
We consider a laser induced molecular excitation process as a decay of a single energy state into a continuum. The analytic results based on Weisskopf-Wigner approach and perturbation calculations are compared with numerical wave packet results. We find that the decay model describes the excitation process well within the expected parameter region.
Chirp dependence of wave packet motion in oxazine 1.
Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus
2005-11-24
The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves
Driben, Rodislav
2014-01-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.
Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.
Driben, Rodislav; Meier, Torsten
2014-10-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.
Inversion of an Atomic Wave Packet in a Circularly Polarized Electromagnetic Wave
Institute of Scientific and Technical Information of China (English)
ZENG Gao-Jian
2001-01-01
We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.``
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Semiclassical wave-packets emerging from interaction with an environment
Energy Technology Data Exchange (ETDEWEB)
Recchia, Carla, E-mail: carla.recchia@libero.it [D.I.S.I.M., Università di L’Aquila, Via Vetoio - Loc. Coppito - 67010 L’Aquila (Italy); Teta, Alessandro, E-mail: teta@mat.uniroma1.it [Dipartimento di Matematica, “Sapienza” Università di Roma, P.le A. Moro 5, 00185 Roma (Italy)
2014-01-15
We study the quantum evolution in dimension three of a system composed by a test particle interacting with an environment made of N harmonic oscillators. At time zero the test particle is described by a spherical wave, i.e., a highly correlated continuous superposition of states with well localized position and momentum, and the oscillators are in the ground state. Furthermore, we assume that the positions of the oscillators are not collinear with the center of the spherical wave. Under suitable assumptions on the physical parameters characterizing the model, we give an asymptotic expression of the solution of the Schrödinger equation of the system with an explicit control of the error. The result shows that the approximate expression of the wave function is the sum of two terms, orthogonal in L{sup 2}(R{sup 3(N+1)}) and describing rather different situations. In the first one, all the oscillators remain in their ground state and the test particle is described by the free evolution of a slightly deformed spherical wave. The second one consists of a sum of N terms where in each term there is only one excited oscillator and the test particle is correspondingly described by the free evolution of a wave packet, well concentrated in position and momentum. Moreover, the wave packet emerges from the excited oscillator with an average momentum parallel to the line joining the oscillator with the center of the initial spherical wave. Such wave packet represents a semiclassical state for the test particle, propagating along the corresponding classical trajectory. The main result of our analysis is to show how such a semiclassical state can be produced, starting from the original spherical wave, as a result of the interaction with the environment.
Energy and Information Transfer Via Coherent Exciton Wave Packets
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The
Wave packet dynamics in the optimal superadiabatic approximation
Betz, Volker; Manthe, Uwe
2016-01-01
We explain the concept of superadiabatic approximations and show how in the context of the Born- Oppenheimer approximation they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic electronic energy levels near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic energy levels can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations.
Inclusion of quantum fluctuations in wave packet dynamics
Ohnishi, A
1996-01-01
We discuss a method by which quantum fluctuations can be included in microscopic transport models based on wave packets that are not energy eigenstates. By including the next-to-leading order term in the cumulant expansion of the statistical weight, which corresponds to the wave packets having Poisson energy distributions, we obtain a much improved global description of the quantum statistical properties of the many-body system. In the case of atomic nuclei, exemplified by 12C and 40Ca, the standard liquid-drop results are reproduced at low temperatures and a phase transformation to a fragment gas occurs as the temperature is raised. The treatment can be extended to dynamical scenarios by means of a Langevin force emulating the transitions between the wave packets. The general form of the associated transport coefficients is derived and it is shown that the appropriate microcanonical equilibrium distribution is achieved in the course of the time evolution. Finally, invoking Fermi's golden rule, we derive spec...
Electron Rydberg wave packets in one-dimensional atoms
Indian Academy of Sciences (India)
Supriya Chatterjee; Amitava Choudhuri; Aparna Saha; B Talukdar
2010-09-01
An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the motion of a localized quantum wave packet was studied with particular emphasis on its revival and super-revival properties. Closed form analytical expressions were derived for expectation values of the position and momentum operators that characterized the widths of the position and momentum distributions. Transient phase-space localization of the wave packet produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of the uncertainty product as a function of time was studied in order to visualize how the motion of the wave packet in its classical trajectory spreads throughout the orbit and the system becomes nonclassical. The process, however, repeats itself such that the atom undergoes a free evolution from a classical, to a nonclassical, and back to a classical state.
Rydberg Wave Packets and Half-Cycle Electromagnetic Pulses
Raman, Chandra S.
1998-05-01
This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work ( R. Jones, D. You, and P. Bucksbaum, ``Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 70, 1993. had shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work I investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques I am able to extract the dynamics of the wave packet from the ionization rate, and to observe wave packet motion in both the electronic radial ( C. Raman, C. Conover, C. Sukenik, and P. Bucksbaum, ``Ionization of Rydberg wavepackets by sub-picosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 76, 1996.and angular ( C. Raman, T. Weinacht, and P. Bucksbaum, ``Stark wavepackets viewed with half cycle pulses.'' Phys. Rev. A), vol. 55, No. 6, 1997. coordinates. This is the first time a wavepacket technique has been used to view electron motion everywhere on its trajectory, and not just at the nucleus. This is the principal feature of half-cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in the data, and in the absence of a rigorous model I rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between
Maamache, Mustapha; Bouguerra, Yacine; Choi, Jeong Ryeol
2016-06-01
A Gaussian wave packet of the inverted oscillator is investigated using the invariant operator method together with the unitary transformation method. A simple wave packet directly derived from the eigenstates of the invariant operator of the system corresponds to a plane wave that is fully delocalized. However, we can construct a weighted wave packet in terms of such plane waves, which corresponds to a Gaussian wave. This wave packet is associated with the generalized coherent state, which can be crucially utilized for investigating the classical limit of quantum wave mechanics. Various quantum properties of the system, such as fluctuations of the canonical variables, the uncertainty product, and the motion of the wave packet or quantum particle, are analyzed by means of this wave packet. We have confirmed that the time behavior of such a wave packet is very similar to the counterpart classical state. The wave packet runs away from the origin in the positive or negative direction in the 1D coordinate depending on the condition of the initial state. We have confirmed that this wave packet not only moves acceleratively but also spreads out during its propagation.
Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.
Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B
2011-02-10
The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.
Riemann zeta function from wave-packet dynamics
DEFF Research Database (Denmark)
Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.
2010-01-01
is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...
Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved....... The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined....
Wave packet dynamics of the matter wave field of a Bose-Einstein condensate
Sudheesh, C; Lakshmibala, S
2004-01-01
We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of the matter wave field in a Bose-Einstein condensate, or of a suitably chosen initial state of the radiation field propagating in a Kerr-like medium.
Cho, Jungyeon
2011-01-01
Electron magnetohydrodynamics (EMHD) provides a fluid-like description of small-scale magnetized plasmas. An EMHD wave (also known as whistler wave) propagates along magnetic field lines. The direction of propagation can be either parallel or anti-parallel to the magnetic field lines. We numerically study propagation of 3-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results: 1. Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite traveling wave packets via self-interaction and cascade energy to smaller scales. 2. EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and 2-dimensional (2D) hydrodynamic turbulence.
Qualitative dynamics of wave packets in turbulent jets
Semeraro, Onofrio; Lusseyran, François; Pastur, Luc; Jordan, Peter
2017-09-01
We analyze the temporal dynamics associated with axisymmetric coherent structures in a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wave packets" [Jordan and Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013), 10.1146/annurev-fluid-011212-140756]. These structures exhibit a marked spatiotemporal organization, despite turbulence, and we aim to characterize their temporal dynamics by means of nonlinear statistical tools. The analysis is based on data presented Breakey et al., in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083 (AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted at different streamwise locations. The experiment runs at Ma=0.6 and Re=5.7 ×105 . A thorough analysis is performed. Statistical tools are used to estimate the embedding and correlation dimensions that characterize the dynamical system. Input-output transfer functions are designed as control-oriented models; and for this special case, consistent with other recent studies, we find that linear models can reproduce much of the convective input-ouput behavior. Finally, we show how surrogate models can partially reproduce the nonlinear dynamics.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Information Geometry of Quantum Entangled Gaussian Wave-Packets
Kim, D -H; Cafaro, C; Mancini, S
2011-01-01
Describing and understanding the essence of quantum entanglement and its connection to dynamical chaos is of great scientific interest. In this work, using information geometric (IG) techniques, we investigate the effects of micro-correlations on the evolution of maximal probability paths on statistical manifolds induced by systems whose microscopic degrees of freedom are Gaussian distributed. We use the statistical manifolds associated with correlated and non-correlated Gaussians to model the scattering induced quantum entanglement of two spinless, structureless, non-relativistic particles, the latter represented by minimum uncertainty Gaussian wave-packets. Knowing that the degree of entanglement is quantified by the purity P of the system, we express the purity for s-wave scattering in terms of the micro-correlation coefficient r - a quantity that parameterizes the correlated microscopic degrees of freedom of the system; thus establishing a connection between entanglement and micro-correlations. Moreover, ...
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
The pump-probe coupling of matter wave packets to remote lattice states
DEFF Research Database (Denmark)
Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm;
2012-01-01
containing a Bose–Einstein condensate. The evolution of these wave packets is monitored in situ and their six-photon reflection at a band gap is observed. In direct analogy with pump–probe spectroscopy, a probe pulse allows for the resonant de-excitation of the wave packet into states localized around...
Tsurutani, Bruce T.; Smith, Edward J.; Brinca, Armando L.; Thorne, Richard M.; Matsumoto, Hiroshi
1989-01-01
The physical characteristics of high-frequency wave packets detected at the steepened edge of magnetosonic waves near Comet Giacobini-Zinner are explored, based on an examination of over 45 well-defined events. The results suggest that the wave packets play an important role in the reorientation and reduction in field magnitude from the steepened magnetosonic waves to the upstream ambient field. The observed properties of the wave packets are shown to be consistent with anomalously Doppler-shifted right-hand polarized waves.
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point
Nixon, Sean; Yang, Jianke
2012-01-01
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.
Flavor entanglement in neutrino oscillations in the wave packet description
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2015-10-01
The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.
Discrete Wave-Packet Representation in Nuclear Matter Calculations
Müther, H; Kukulin, V I; Pomerantsev, V N
2016-01-01
The Lippmann-Schwinger equation for the nucleon-nucleon $t$-matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for coupled-channel $t$-matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices f...
Recovery time in quantum dynamics of wave packets
Energy Technology Data Exchange (ETDEWEB)
Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru [Russian Academy of Sciences, Voevodskii Institute of Chemical Kinetics and Combustion, Siberian Branch (Russian Federation)
2017-01-15
A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of the system is established. The recovery time is the longest for the maximal excitation level.
Time delay of wave packets during their tunnelling through a quantum diode
Energy Technology Data Exchange (ETDEWEB)
Ivanov, N A; Skalozub, V V [Dnipropetrovsk National University Oles Honchar (Ukraine)
2014-04-28
A modified saddle-point method is used to investigate the process of propagation of a wave packet through a quantum diode. A scattering matrix is constructed for the structure in question. The case of tunnelling of a packet with a Gaussian envelope through the diode is considered in detail. The time delay and the shape of the wave packet transmitted are calculated. The dependence of the delay time on the characteristics of the input packet and the internal characteristics of the quantum diode is studied. Possible applications of the results obtained are discussed. (laser applications and other topics in quantum electronics)
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
Statistical behavior of Langmuir wave packets observed inside the electron foreshock of Saturn
Pisa, David; Hospodarsky, George B.; Kurth, Willam S.; Gurnett, Donald A.; Santolik, Ondrej; Soucek, Jan
2014-05-01
We present a statistical study of Langmuir wave packets in the Saturnian foreshock using Cassini Wideband Receiver electric field waveforms. We analyzed all foreshock crossings from 2004 to 2012 using an automatic method for the identification of Langmuir wave signatures. Observed waveforms exhibit a shape similar to Langmuir solitons or monochromatic wave packets with a slowly varying envelope. This is in agreement with a variety of previous observations of Langmuir waves in the terrestrial foreshock and associated with Type III radio bursts. We determined the peak amplitude for all wave packets, and found the distributions of amplitude appeared to follow a power law with P(E) ≈ E-2. We confirm that the most intense electron plasma waves are observed near the foreshock boundary. We estimated the energy density ratio to be about one order below previously reported values at Saturn. Finally, we discuss the properties of the Langmuir wave packets at different locations in the foreshock.
Coriolis-coupled wave packet dynamics of H + HLi reaction.
Padmanaban, R; Mahapatra, S
2006-05-11
We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
Chan, Yat-Long; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi
2015-01-01
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 $\\sigma$ confidence level.
Wave packet approach to the Jayne-Cummings and Rabi models
Larson, J
2006-01-01
This paper numerically studies the Jaynes-Cummings model with and without the rotating wave approximation in a non-standard way. Expressing the models with field quadrature operators, instead of the typically used boson ladder operators, a wave packet propagation approach is applied. The obtained evolved wave packets are then used to calculate various quantities, such as, Rabi oscillations, squeezing and entanglement. Many of the phenomenon can be explained from the wave packet evolution, either in the adiabatic or diabatic frames. Different behaviours of the two models are discussed.
Propagation of General Wave Packets in Some Classical and Quantum Systems
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2006-01-01
In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no precise counterpart to the center-of-probability velocity of quantum mechanics, in spite of the fact that there exist in the literature at least eight different velocities for the electromagnetic wave. We propose a center-of-energy velocity to describe the entire motion of general wave packets in classical physical systems. It is a measurable quantity, and is well defined for both continuous and discrete systems. For electromagnetic wave packets it is a generalization of the velocity of energy transport. General wave packets in several classical systems are studied and the center-of-energy velocity is calculated and expressed in terms of the dispersion relation and the Fourier coefficients. These systems include string subject to an external force, monatomic chain and diatomic chain in one dimension, and classical Heisenberg model in one dimension. In most cases the center-of-energy velocity reduces to the group velocity for quasi-monochromatic wave packets. Thus it also appears to be the generalization of the group velocity. Wave packets of the relativistic Dirac equation are discussed briefly.
Stability and evolution of wave packets in strongly coupled degenerate plasmas
Misra, A P
2011-01-01
We study the nonlinear propagation of electrostatic wave packets in a collisional plasma composed of strongly coupled ions and relativistically degenerate electrons. The equilibrium of ions is maintained by an effective temperature associated with their strong coupling, whereas that of electrons is provided by the relativistic degeneracy pressure. Using a multiple scale technique, a (3+1)-dimensional coupled set of nonlinear Schr\\"{o}dinger-like equations with nonlocal nonlinearity is derived from a generalized viscoelastic hydrodynamic model. These coupled equations, which govern the dynamics of wave packets, are used to study the oblique modulational instability of a Stoke's wave train to a small plane wave perturbation. We show that the wave packets, though stable to the parallel modulation, becomes unstable against oblique modulations. In contrast to the long-wavelength carrier modes, the wave packets with short-wavelengths are shown to be stable in the weakly relativistic case, whereas they can be stable...
Spreading of wave packets, Uncertainty Relations and the de Broglie Frequency
Caldas, H C G
1998-01-01
The spreading of quantum mechanical wave packets are studied in two cases. Firstly we look at the time behavior of the packet width of a free particle confined in the observable Universe. Secondly, by imposing the conservation of the time average of the packet width of a particle driven by a harmonic oscillator potential, we find a zero-point energy which frequency is the de Broglie frequency.
Einstein-de Broglie relations for wave packet: the acoustic world
Simaciu, Ion; Dumitrescu, Gheorghe; Georgeta, Nan
2015-01-01
In this paper we study the relations of Einstein-de Broglie type for the wave packets. We assume that the wave packet is a possible model of particle . When studying the behaviour of the wave packet for standing waves, in relation to an accelerated observer (i.e. Rindler observer), there can be demonstrated that the equivalent mass of the packet is the inertial mass. In our scenario, the waves and of the wave packets are depicted by the strain induced/produced in the medium. The properties of the waves, of the wave packet and, generally, of the perturbations in a material medium suggest the existence of an acoustic world. The acoustic world has mechanical and thermodynamical properties. The perturbations that are generated and propagated in the medium are correlated by means of acoustic waves with maximum speed. The observers of this world of disturbances (namely the acoustic world) have senses that are based on the perception of mechanical waves (disturbance of any kind) and apparatus for detecting and acqui...
Slow-light Airy wave packets and their active control via electromagnetically induced transparency
Hang, Chao
2014-01-01
We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant $\\Lambda$-type three-level atomic gas via electromagnetically induced transparency. We show that in the absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to $10^{-5}\\,c$ ($c$ is the light speed in vacuum). We also show that in the presence of dispersion it is possible to generate another type of slow-light Airy wave packets consisting of two Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation. Additionally, we further show that the transverse accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively manipulated ...
Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode
Li, Yunyun; Marchesoni, Fabio; Li, Baowen
2014-01-01
Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schr\\"odinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.
Quantum wave packet dynamics with trajectories: reflections on a downhill ramp potential
Lopreore, Courtney L.; Wyatt, Robert E.
2000-07-01
The quantum trajectory method (QTM) for wave packet dynamics involves solving discretized hydrodynamic equations-of-motion in the Lagrangian picture (C. Lopreore, R.E. Wyatt, Phys. Rev. Lett. 82 (1999) 5190). In this Letter, results are presented which illustrate the dynamics of an initial Gaussian wave packet on a downhill ramp potential. Plots are shown for the time evolving probability density, as well as phase space plots and force diagrams. The mechanism, deduced from these plots, surprisingly shows some of the transmitted fluid elements of the wave packet making a U-turn before they head downhill on the ramp potential.
Annular wave packets at Dirac points and probability oscillation in graphene
Luo, Ji; Valencia, Daniel
2011-01-01
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that respectively belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly fro...
Simulation of the Physical Performance of Optical Packet Switching Nodes
Institute of Scientific and Technical Information of China (English)
王春华; 李力; 等
2002-01-01
A graphical and visual simulation system for the study of optical packet switching(OPS)nodes is accomplished.With the simulation system,the effect on physical performance-bit error rate(BER)due to a variety of factors such as the crosstalk parameters of OPS nodes,number of cascaded OPS nodes,length of optical output buffer,traffic load and fluctuation of amplitude of optical signals are evaluated.Reliability of the simulation system is proved by the analytical results obtained in all the above cases.
Discrete wave-packet representation in nuclear matter calculations
Müther, H.; Rubtsova, O. A.; Kukulin, V. I.; Pomerantsev, V. N.
2016-08-01
The Lippmann-Schwinger equation for the nucleon-nucleon t matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows one to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave-packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for the coupled-channel t matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows one to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices found via the numerical solution of the Bethe-Goldstone integral equation and the straightforward Hamiltonian diagonalization shows a high accuracy of the method suggested. The proposed fully discrete approach opens a new way to an accurate treatment of two- and three-particle correlations in nuclear matter on the basis of the three-particle Bethe-Faddeev equation by an effective Hamiltonian diagonalization procedure.
Pulse-induced focusing of Rydberg wave packets
Arbó, D. G.; Reinhold, C. O.; Burgdörfer, J.; Pattanayak, A. K.; Stokely, C. L.; Zhao, W.; Lancaster, J. C.; Dunning, F. B.
2003-06-01
We demonstrate that strong transient phase-space localization can be achieved by the application of a single impulsive “kick” in the form of a short (600 ps) unidirectional electric-field pulse to a strongly polarized, quasi-one-dimensional Rydberg atom. The underlying classical dynamics is analyzed and it is shown that phase-space localization results from a focusing effect analogous to rainbow scattering. Moreover, it is shown that the essential features of the classical analysis remain valid in a quantum-mechanical treatment of the system in terms of its phase-space Husimi distribution. The degree of phase-space localization is characterized by the coarse-grained Renyi entropy. Transient phase-space localization is demonstrated experimentally using extreme redshifted m=0 potassium Stark states in the n=351 manifold and a short probe pulse. The experimental data are in good agreement with theoretical predictions. The localized state provides an excellent starting point for further control and manipulation of the electron wave packet.
Trajectory description of the quantum–classical transition for wave packet interference
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.
Signatures of wave packet revival phenomena in the expectation values of observables
Sudheesh, C; Balakrishnan, V
2004-01-01
Wave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectationWave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectation values of physical observables and their powers, i.e., by experimentally measurable quantities. Moreover, different fractional revivals can be selectively identified by examining appr...
On the classical limit of Bohmian mechanics for Hagedorn wave packets
Dürr, Detlef
2010-01-01
We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.
Goos-Haenchen and Imbert-Fedorov shifts for bounded wave packets of light
Ornigotti, Marco
2012-01-01
We present precise expressions of the spatial and angular Goos-Haenchen and Imbert-Fedorov shifts experienced by a longitudinally and transversally limited beam of light (wave packet) upon reflection from a dielectric interface, as opposed to the well-known case of a monochromatic beam which is bounded in transverse directions but infinitely extended along the direction of propagation. This is done under the assumption that the detector time is longer than the temporal length of the wave packet (wave packet regime). Our results will be applied to the case of a Gaussian wave packet and show that, at the leading order in the Taylor expansion of reflected-field amplitudes, the results are the same of the monochromatic case.
Kelvin wave packets and flow acceleration - A comparison of modeling and observations
Coy, L.; Hitchman, M.
1984-01-01
Atmospheric Kelvin waves, as revealed by temperatures obtained from the recent Limb Infrared Monitor of the Stratosphere (LIMS) experiment, commonly occur in packets. A simple two-dimensional gravity-wave model is used to study the upward propagation of these packets through different zonal mean wind profiles derived from the LIMS data. The observed prevalence of high frequency waves in the lower mesosphere and low frequency waves in the lower stratosphere can be exlained by dispersion of energy associated with the range of frequencies comprising a packet. Dominant wave frequencies at upper and lower levels are more distinctly separated if the packet propagates through a layer of westerly winds. Due to dispersion and shear effects, a packet of short temporal length at low levels will have a considerably extended impact on a layer of westerly winds at higher levels. Observed and modeled westerly accelerations resulting from packet absorption occur in the same layer, and are similar in magnitude and duration. These results support the theory that Kelvin waves are responsible for the westerly phase of the semiannual oscillation.
Energy Technology Data Exchange (ETDEWEB)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)
2017-01-15
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
Karlovets, D V; Serbo, V G
2015-01-01
Laser photons carrying non-zero orbital angular momentum are known and exploited during the last twenty years. Recently it has been demonstrated experimentally that such (twisted) electrons can be produced and even focused to a subnanometer scale. Thus, twisted electrons emerge as a new tool in atomic physics. The state of a twisted electron can be considered as a specific wave packet of plane waves. In the present paper-I we consider elastic scattering of the wave packets of fast non-relativistic particles on a potential field. We obtain simple and convenient formulae for a number of events in such a scattering. The equations derived represent, in fact, generalization of the well-known Born approximation for the case when finite sizes and inhomogeneity of the initial packet should be taken into account. To illustrate the obtained results, we consider two simple models corresponding to scattering of a Gaussian wave packet on the Gaussian potential and on the hydrogen atom. The scattering of twisted electrons ...
Modulated Wave Packets in DNA and Impact of Viscosity
Institute of Scientific and Technical Information of China (English)
Conrad Bertrand Tabi; Alidou Mohamadou; Timoleon Crepin Kofan(e)
2009-01-01
We study the nonlinear dynamics of a DNA molecular system at physiological temperature in a viscous media by using the Peyrard-Bishop model.The nonlinear dynamics of the above system is shown to be governed by the discrete complex Ginzburg-Landau equation.In the non-viscous limit,the equation reduces to the nonlinear Schrodinger equation.Modulational instability criteria are derived for both the cases.On the basis of these criteria,numerical simulations are made,which confirm the analytical predictions.The planar wave solution used as the initial condition makes localized oscillations of base pairs and causes energy localization.The results also show that the viscosity of the solvent in the surrounding damps out the amplitude of wave patterns.
Gaussian and Airy wave-packets of massive particles with orbital angular momentum
Karlovets, Dmitry V
2014-01-01
While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate that there is a family of such solutions, which are exact, by employing a null-plane (light-cone) variables formalism. A scalar Gaussian wave-packet in transverse plane is generalized so that it acquires a well-defined z-component of the orbital angular momentum (OAM), while may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel ones, may have an azimuthal-angle-dependent probability density and finite quantum uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave-packet, which can be interpreted as a one-particle state for relativistic massive boson, show that its center moves along the same quasi-classical straight path and, what is more important, spreads with time and distance exactly as a Gaussian wave-packet does, in accordance with the uncertainty principle. It is expla...
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-01
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N2 reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Principle of stationary phase for propagating wave packets in the unidimensional scattering problem
Energy Technology Data Exchange (ETDEWEB)
Bernardini, A.E. [Universidade Federal de Sao Carlos, Departamento de Fisica, PO Box 676, Sao Carlos, SP (Brazil)
2008-08-15
We point out some incompatibilities which appear when one applies the stationary phase method for deriving phase times to obtain the spatial localization of wave packets scattered by a unidimensional potential barrier. We concentrate on the above barrier diffusion problem where the wave packet collision implies the possibility of multiple reflected and transmitted wave packets, which, depending on the boundary conditions, can overlap or stand in relative separation in space. We demonstrate that the indiscriminate use of the method for such a particular configuration leads to paradoxical results for which the correct interpretation, confirmed by analytical/numerical calculations, imposes the necessity of the appearance of multiple peaks as a consequence of multiple reflections by the barrier steps. (orig.)
Analysis of wave packet motion in frequency and time domain: oxazine 1.
Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan
2006-08-17
Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion.
Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet
Institute of Scientific and Technical Information of China (English)
YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui
2006-01-01
We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance condition. A general method of the calculation is presented and the result is interesting. For example, under the condition that the wave packet is very narrow or/and the interaction is very strong, no matter whether the atom is initially in its ground state or excited state, as time approaches to infinity, the resonance-radiation force exerted by the light on the atom approaches to zero. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is a even function, then the resonance-radiation force exerted by the light on the atom is equal to zero.
Propagation of Gaussian wave packets in complex media and application to fracture characterization
Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu
2017-08-01
Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model
Efremov, MA; Petropavlovsky, SV; Fedorov, MV; Schleich, WP; Yakovlev, VP
2005-01-01
The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid deca
Indian Academy of Sciences (India)
Maninder Kaur; Bindiya Arora; Mahmood Mian
2016-01-01
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers (, , ) determine its energy spectrum and consequently its dynamical behaviour. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits. The closed orbits are possible for certain specific values of quantum numbers (, , ) and initial momenta (, , ). We observe that a cubical billiard exhibits degenerate energy levels and the path lengths of the closed orbits for these degenerate energy levels are identical. In spite of the identical path lengths, the shapes of the closed orbits for degenerate levels are different and depend upon angles and which we term as the sweep and the elevation angles, respectively. These degenerate levels owe their origin to the symmetries prevailing in the cubical billiard and these levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks due to commensurate or incommensurate ratio of sides.
Strong field dissociative ionization of the D2+: Nuclear wave packet analysis
Tóth, A.; Borbély, S.; Halász, G. J.; Vibók, Á.
2017-09-01
Theoretical ab initio investigation of strong field dissociative ionization of the D2+ molecule in the multiphoton regime is reported. The dynamics is initiated by ultrashort laser pulses for fixed molecular axis orientations. Nuclear wave packet calculations are performed to provide the joint energy spectra (JES): ionization-dissociation probability density via electron (Ee) and nuclear (En) kinetic energy. Analyzing the time-dependent nuclear wave packet densities we have successfully identified the exact path followed by the D2+ target for each multiphoton peak.
Initial Dynamics of The Norrish Type I Reaction in Acetone: Probing Wave Packet Motion
DEFF Research Database (Denmark)
Brogaard, Rasmus Y.; Sølling, Theis I.; Møller, Klaus Braagaard
2011-01-01
agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival...... of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S1 minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics...
Time-dependent wave packet approach to the pulse delay effect upon RbI photoelectron spectrum
Institute of Scientific and Technical Information of China (English)
LIU Chunhua; MENG Qingtian; ZHANG Qinggang
2006-01-01
The time-resolved photoelectron spectrum (TRPES) of Rbl molecule is simulated using the time-dependent wave-packet method. Both the normal three-photon ionization process and auto-ionization process are involved in the simulation. The calculated results show that the change of delay time will influence the shape of the photoelectron spectrum (PES), and the influence is substantially due to the existence of the crossing between excited states and the strong laser field which will change the position of relevant curves.
Bai, Xiao-Dong; Malomed, Boris A.; Deng, Fu-Guo
2016-09-01
We consider the transfer of lattice wave packets through a tilted discrete breather (TDB) in opposite directions in the discrete nonlinear Schrödinger model with asymmetric defects, which may be realized as a Bose-Einstein condensate trapped in a deep optical lattice, or as optical beams in a waveguide array. A unidirectional transport mode is found, in which the incident wave packets, whose energy belongs to a certain interval between full reflection and full passage regions, pass the TDB only in one direction, while in the absence of the TDB, the same lattice admits bidirectional propagation. The operation of this mode is accurately explained by an analytical consideration of the respective energy barriers. The results suggest that the TDB may emulate the unidirectional propagation of atomic and optical beams in various settings. In the case of the passage of the incident wave packet, the scattering TDB typically shifts by one lattice unit in the direction from which the wave packet arrives, which is an example of the tractor-beam effect, provided by the same system, in addition to the rectification of incident waves.
Frame properties of wave packet systes in L^2 (R^d)
DEFF Research Database (Denmark)
Christensen, Ole; Rahimi, Asghar
2008-01-01
Extending work by Hernandez, Labate and Weiss, we present a sufficent condition for a generalized shift-invariant system to be a Bessel sequence or even a frame forL(2)(R-d). In particular, this leads to a sufficient condition for a wave packet system to form a frame. On the other hand, we show...
Monte Carlo Wave Packet Theory of Dissociative Double Ionization
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2009-01-01
Nuclear dynamics in strong-field double ionization processes is predicted using a stochastic Monte Carlo wave packet technique. Using input from electronic structure calculations and strong-field electron dynamics the description allows for field-dressed dynamics within a given molecule as well...
Quantum Chaos and Exponential Growth of Spreading Width of a Wave Packet in Chaotic Systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The quantum correspondence of one particular signature of classical chaos———the exponential instability f motion can be characterized by the initial exponential growth rate of the spreading width of the propagating quantum wave packet.In a former study~[1] a one to one correspondence has been found between the initial
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)
2013-07-15
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.
Recollision dynamics of electron wave packets in high-order harmonic generation
Yuan, Kai-Jun; Bandrauk, André D.
2009-11-01
We numerically investigate the dynamics of recollision of an electron in high-order harmonic generation (HHG) for an H atom and a molecular ion H2+ using a short (ten optical cycles), and intense (I0≥1014W/cm2) , z -polarized linear laser pulse with wavelength 800 nm by accurately solving the three-dimensional time-dependent Schrödinger equation. A time-frequency analysis obtained via Gabor transforms is employed to identify electron recollision and recombination times responsible for the generation of harmonics. We find that the HHG spectra are mainly attributed to the recollision of an inner electron wave packet with the parent ion in agreement with the classical recollision model. A time delay of the electron recollision occurs between wave packets in inner and outer regions, near to and far from the parent ion, due to different phase of the acceleration (as well as dipole velocity) of the electron. Inner wave packets at recollision contain mainly short and long trajectories whereas outer wave packets contain only single trajectories. Lower-order harmonics are generated mainly by single recollisions near field extrema, i.e., in strong electric fields whereas higher-order harmonics are generated by double trajectories with different intensities. In the case of H2+ at a critical nuclear distance for charge resonance enhanced ionization, we also find that HHG mainly comes from contributions of the inner electron wave packet, but with more complex recollision trajectories due to the presence of more than one Coulomb center. Triple recollision trajectories are shown to occur generally for the latter.
Energy Technology Data Exchange (ETDEWEB)
Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)
2016-06-15
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)
A preliminary study on sea wave packet equations on slowly varying topography
Institute of Scientific and Technical Information of China (English)
朱首贤; 丁平兴; 孔亚珍; 沙文钰
2001-01-01
There is a common hypothesis for the presently popular mild-slope equations that wave particle motion is irrotational. In this paper, an attempt is made to abandon the irrotational assumption and to set up new sea wave packet equations on slowly varying topography by use of the WKBJ method. To simplify the deduction, the two-dimensional shallow water equations are used to describe the sea wave particle motion in the very shallow nearshore area. The established equations can give some characteristics of wave propagation near shore.
Frequencies of wave packets of whistler-mode chorus inside its source region: a case study
Directory of Open Access Journals (Sweden)
O. Santolik
2008-06-01
Full Text Available Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory.
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
Kaur, Maninder; Main, M
2015-01-01
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers ($n_x,n_y,n_z$) determine its energy spectrum and consequently its dynamical behavior. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits. The closed orbits are possible for certain specific values of quantum numbers ($n_x,n_y,n_z$) and initial momenta ($k_x,k_y,k_z$). We observe that a cubical billiard exhibits degenerate energy levels and the path lengths of the closed orbits for these degenerate energy levels are identical. In spite of the identical path lengths, the shapes of the closed orbits for degenerate levels are different and depend upon angles $\\theta$ and $\\phi$ which we term as the sweep and the elevation angle respectively. These degenerate levels owe their origin to the symmetries prevailing in the cubical billiard and degenerate levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks d...
Energy Technology Data Exchange (ETDEWEB)
Mahapatra, Susanta; Ritschel, Thomas
2003-04-15
We report theoretical investigations on the second photoelectron band of chlorine dioxide molecule by ab initio quantum dynamical methods. This band exhibits a highly complex structure and represents a composite portrait of five excited energetically close-lying electronic states of ClO{sub 2}{sup +}. Much of this complexity is likely to be arising due to strong vibronic interactions among these electronic states - which we address and examine herein. The near equilibrium MRCI potential energy surfaces (PESs) of these five cationic states reported by Peterson and Werner [J. Chem. Phys. 99 (1993) 302] for the C{sub 2v} configuration, are extended for the C{sub s} geometry assuming a harmonic vibration along the asymmetric stretching mode. The strength of the vibronic coupling parameters of the Hamiltonian are calculated by ab initio CASSCF-MRCI method and conical intersections of the PESs are established. The diabatic Hamiltonian matrix is constructed within a linear vibronic coupling scheme and the resulting PESs are employed in the nuclear dynamical simulations, carried out with the aid of a time-dependent wave packet approach. Companion calculations are performed for transitions to the uncoupled electronic states in order to reveal explicitly the impact of the nonadiabatic coupling on the photoelectron dynamics. The theoretical findings are in good accord with the experimental observations. The femtosecond nonradiative decay dynamics of ClO{sub 2}{sup +} excited electronic states mediated by conical intersections is also examined and discussed.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation......, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Abdel-Latif, Mahmoud K
2011-01-01
The excitation of the degenerate $E_1$ carbonyl stretching vibrations in dimanganese decacarbonyl is shown to trigger wave packet circulation in the subspace of these two modes. On the time scale of about 5 picoseconds intramolecular anharmonic couplings do not cause appreciable disturbance, even under conditions where the two $E_1$ modes are excited by up to about two vibrational quanta each. The compactness of the circulating wave packet is shown to depend strongly on the excitation conditions such as pulse duration and field strength. Numerical results for the solution of the seven-dimensional vibrational Schr\\"odinger equation are obtained for a density functional theory based potential energy surface and using the multi-configuration time-dependent Hartree method.
Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers
Energy Technology Data Exchange (ETDEWEB)
Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)
2009-05-01
We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.
High frequency wave packets for the Schr\\"odinger equation and its numerical approximations
Marica, Aurora-Mihaela
2010-01-01
We build Gaussian wave packets for the linear Schr\\"odinger equation and its finite difference space semi-discretization and illustrate the lack of uniform dispersive properties of the numerical solutions as established in Ignat, Zuazua, Numerical dispersive schemes for the nonlinear Schr\\"odinger equation, SIAM. J. Numer. Anal., 47(2) (2009), 1366-1390. It is by now well known that bigrid algorithms provide filtering mechanisms allowing to recover the uniformity of the dispersive properties as the mesh size goes to zero. We analyze and illustrate numerically how these high frequency wave packets split and propagate under these bigrid filtering mechanisms, depending on how the fine grid/coarse grid filtering is implemented.
System-level physics of autonomous nanorobots for hard chemistry and wave packet engineering
Santoli, Salvatore
1994-08-01
The operation of the prospective autonomous molecular robots that would represent the most advanced achievement of the molecular manufacturing conception is examined at various levels of physical description: the thermodynamic, the hydrodynamic, and the kinetic (Boltzmann) level down to local nonequilibrium thermodynamical and/or mechanical conditions possibly arising in work in some circumstances. The concept of wave packet engineering is suggested as a special technique in the exploitation of molecular robots possibilities, which are generally characterized as 'hard chemistry'.
Expansion of a wave-packet in lattices with disorder and nonlinearity
Naether, Uta; Martinez, Alejandro J; Sützer, Simon; Tünnermann, Andreas; Nolte, Stefan; Molina, Mario I; Vicencio, Rodrigo A; Szameit, Alexander
2012-01-01
We show, theoretically and experimentally, the counterintuitive result that an increase of disorder can result in an enhanced spreading of an initially localized excitation. Moreover, we find that adding a focusing nonlinearity facilitates the expansion of the wave-packet even further by increasing its effective size. We find a clear transition between between the regions of enhanced spreading (weak disorder) and localization (strong localization) described by a "diffusion peak".
Quantum control of electron wave packets in bound molecules by trains of half-cycle pulses
Energy Technology Data Exchange (ETDEWEB)
Persson, Emil; Pichler, Markus; Wachter, Georg; Hisch, Thomas; Burgdoerfer, Joachim; Graefe, Stefanie [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Jakubetz, Werner [Institute for Theoretical Chemistry, University of Vienna, Waehringerstr. 38, A-1090 Vienna (Austria)
2011-10-15
We investigate protocols for transient localization of electrons in homodiatomic molecules, as well as permanent localization via population inversion in polar molecules. By examining three different model systems with one electronic and one nuclear degree of freedom, we identify mechanisms leading to control over the localization of the electronic wave packets. We show that electronic states dressed by the quasi-dc component of the train of half-cycle pulses steer the combined electronic and nuclear motion toward the targeted state.
Massachusetts Bay - Internal Wave Packets Extracted from SAR Imagery Binned in 1x1 minute grid cells
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 1x1 minute latitude/longitude polygon grid cells. Statistics were...
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...
Wave packet dynamics in one-dimensional linear and nonlinear generalized Fibonacci lattices.
Zhang, Zhenjun; Tong, Peiqing; Gong, Jiangbin; Li, Baowen
2011-05-01
The spreading of an initially localized wave packet in one-dimensional linear and nonlinear generalized Fibonacci (GF) lattices is studied numerically. The GF lattices can be classified into two classes depending on whether or not the lattice possesses the Pisot-Vijayaraghavan property. For linear GF lattices of the first class, both the second moment and the participation number grow with time. For linear GF lattices of the second class, in the regime of a weak on-site potential, wave packet spreading is close to ballistic diffusion, whereas in the regime of a strong on-site potential, it displays stairlike growth in both the second moment and the participation number. Nonlinear GF lattices are then investigated in parallel. For the first class of nonlinear GF lattices, the second moment of the wave packet still grows with time, but the corresponding participation number does not grow simultaneously. For the second class of nonlinear GF lattices, an analogous phenomenon is observed for the weak on-site potential only. For a strong on-site potential that leads to an enhanced nonlinear self-trapping effect, neither the second moment nor the participation number grows with time. The results can be useful in guiding experiments on the expansion of noninteracting or interacting cold atoms in quasiperiodic optical lattices.
Multi-resolution schemes for time scaled propagation of wave packets
Frapiccini, Ana Laura; Mota-Furtado, Francisca; O'Mahony, Patrick F; Piraux, Bernard
2014-01-01
We present a detailed analysis of the time scaled coordinate approach and its implementation for solving the time-dependent Schr\\"odinger equation describing the interaction of atoms or molecules with radiation pulses. We investigate and discuss the performance of multi-resolution schemes for the treatment of the squeezing around the origin of the bound part of the scaled wave packet. When the wave packet is expressed in terms of B-splines, we consider two different types of breakpoint sequences: an exponential sequence with a constant density and an initially uniform sequence with a density of points around the origin that increases with time. These two multi-resolution schemes are tested in the case of a one-dimensional gaussian potential and for atomic hydrogen. In the latter case, we also use Sturmian functions to describe the scaled wave packet and discuss a multi-resolution scheme which consists in working in a sturmian basis characterized by a set of non-linear parameters. Regarding the continuum part ...
Wave Packet Dynamics in the Infinite Square Well with the Wigner Quasi-probability Distribution
Belloni, Mario; Doncheski, Michael; Robinett, Richard
2004-05-01
Over the past few years a number of authors have been interested in the time evolution and revivals of Gaussian wave packets in one-dimensional infinite wells and in two-dimensional infinite wells of various geometries. In all of these circumstances, the wave function is guaranteed to revive at a time related to the inverse of the system's ground state energy, if not sooner. To better visualize these revivals we have calculated the time-dependent Wigner quasi-probability distribution for position and momentum, P_W(x; p), for Gaussian wave packet solutions of this system. The Wigner quasi-probability distribution clearly demonstrates the short-term semi-classical time dependence, as well as longer-term revival behavior and the structure during the collapsed state. This tool also provides an excellent way of demonstrating the patterns of highly-correlated Schrödinger-cat-like `mini-packets' which appear at fractional multiples of the exact revival time. This research is supported in part by a Research Corporation Cottrell College Science Award (CC5470) and the National Science Foundation under contracts DUE-0126439 and DUE-9950702.
Quantum Interferometry and Correlated Two-Electron Wave-Packet Observation in Helium
Ott, Christian; Raith, Philipp; Meyer, Kristina; Laux, Martin; Zhang, Yizhu; Hagstotz, Steffen; Ding, Thomas; Heck, Robert; Pfeifer, Thomas
2012-01-01
The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum regime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. However, at least two active electrons and a nucleus are required to address the quantum three-body problem. This situation is realized in the helium atom, but direct time-resolved observation of two-electron wave-packet motion remained an unaccomplished challenge. Here, we measure a 1.2-femtosecond quantum beating among low-lying doubly-excited states in helium to evidence a correlated two-electron wave packet. Our experimental method combines attosecond transient-absorption spectroscopy at unprecedented high spectral resolution (20 meV near 60 eV) with an intensity-tuneable visible laser field to couple the quantum states from the perturbative ...
Asymmetric acoustic propagation of wave packets via the self-demodulation effect
Devaux, Thibaut; Richoux, Olivier; Pagneux, Vincent
2015-01-01
This article presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to $10^6$, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.
Energy Technology Data Exchange (ETDEWEB)
Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)
2014-08-15
Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.
Quantum optimal control of wave packet dynamics under the influence of dissipation
Energy Technology Data Exchange (ETDEWEB)
Ohtsuki, Yukiyoshi; Nakagami, Kazuyuki; Zhu, Wusheng; Rabitz, Herschel
2003-02-01
Optimal control within the density matrix formalism is applied to the production of desired non-equilibrium distributions in condensed phases. The time evolution of a molecular system modeled by a displaced harmonic oscillator is assumed to be described by the Markoffian master equation with phenomenological relaxation parameters. The physical objectives of concern are the creation of a specified vibronic state, population inversion and wave packet shaping. The effects of an initial thermal distribution and dissipation on these targets are examined. In order to transfer a large amount of population (i.e., the strong-field regime) to a target wave packet in an electronic excited state, it is shown that creating a shaped packet in the ground state is often required to achieve high yield. This control pathway cannot be taken into account within the weak-field approximation, and is especially important when the target state includes vibrational states that are weakly accessible from the initial state or that have preferential indirect excitation paths from the initial state. Although relaxation effects usually reduce the control efficiency, under certain conditions, the bath-induced dynamics can help to create an objective state.
Momentum mapping of continuum electron wave packet interference
Yang, Weifeng; Lin, Cheng; Xu, Jingwen; Sheng, Zhihao; Song, Xiaohong; Hu, Shilin; Chen, Jing
2016-01-01
We analyze the two-dimensional photoelectrons momentum distribution of Ar atom ionized by midinfrared laser pulses and mainly concentrate on the energy range below 2Up. By using a generalized quantum trajectory Monte Carlo (GQTMC) simulation and comparing with the numerical solution of time-dependent Schrodinger equation (TDSE), we show that in the deep tunneling regime, the rescattered electron trajectories plays unimportant role and the interplay between the intracycle and inter-cycle results in a ring-like interference pattern. The ring-like interference pattern will mask the holographic interference structure in the low longitudinal momentum region. When the nonadiabatic tunneling contributes significantly to ionization, i.e., the Keldysh parameter 1, the contribution of the rescattered electron trajectories become large, thus holographic interference pattern can be clearly observed. Our results help paving the way for gaining physical insight into ultrafast electron dynamic process with attosecond tempor...
Determining the wavelength of Langmuir wave packets at the Earth's bow shock
Krasnoselskikh, V V; Bale, S D; 10.5194/angeo-29-613-2011
2011-01-01
The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high frequency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earth's electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.
Transport of time-varying plasma currents by whistler wave packets
Stenzel, R. L.; Urrutia, J. M.; Rousculp, C.
1992-01-01
The relationship between pulsed currents and electromagnetic waves is examined in a regime characterized by electron MHD. Pulsed currents are generated by (1) collection/emission of charged particles by/from biased electrodes and (2) induction of currents by time-varying and moving magnetic fields. Pulsed currents are observed to propagate at the speed of whistler wave packets. Their field structure forms ropelike configurations which are electromagnetically force-free. Moving sources induce 'eddy' currents which excite waves and form Cerenkov-like whistler 'wings'. The radiation patterns of moving magnetic antennas and electrodynamic tethers are investigated. Nonlinear effects of large-amplitude, antenna-launched whistler pulses are observed. These involve a new modulational instability in which a channel of high conductivity which permits the wave/currents to penetrate deeply into a collisional plasma is formed.
Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.
2016-02-01
Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational frequency up-shift time constants for the C12-H wagging mode at 216 fs and for the C10-H wagging mode at 161 fs which are larger than for the C11-H wagging mode at 127 fs, i.e., the C11-H wagging mode arrives at its final frequency while the C12-H and C10-H wagging modes are still up-shifting to their final values, agreeing with the findings of Yan et al. [Biochemistry 43, 10867 (2004)].
Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.
Borrelli, Raffaele; Peluso, Andrea
2016-03-21
A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems.
The phase delay and its complex time: From stationary states up to wave packets
Energy Technology Data Exchange (ETDEWEB)
Grossel, Ph., E-mail: philippe.grossel@univ-reims.fr
2013-03-15
Complex time is often invoked about tunneling effect where the classical phase delay is completed with a crucial filter effect. Usually the complex times are obtained by considering the flux-flux correlation function, but this can be obtained by a very simple approach using the search of the maximum of the generalized complex phase function, including the amplitude of the wave function. Various aspects of the phase delay are presented in the case of wave packets impinging on simple or resonant quantum barriers. Formal links with the classical mechanics give birth to quasi-trajectories of the quantum particle, totally compatible with the quantum mechanics. - Highlights: Black-Right-Pointing-Pointer The stationary phase method is extended in including the variations of the spectra. Black-Right-Pointing-Pointer The complex phase delay leads to a complex trajectory inside and out-side the barrier. Black-Right-Pointing-Pointer Examples of quasi-trajectories are given in case of different quantum barriers. Black-Right-Pointing-Pointer Phase delays are specified for resonant tunneling or above-barrier wave-packets. Black-Right-Pointing-Pointer The coherence between the quasi-trajectories and quantum mechanics is shown.
Wave-Packet Collapse Based on Weak Repeatability or Covariant Condition
Wu, Zhao-Qi; Zhu, Chuan-Xi; Wang, Jian-Hui
2016-02-01
The conflict between the dynamics postulate (unitary evolution) and the measurement postulate (wave-packet collapse) of quantum mechanics has been reconciled by Zurek from an information transfer perspective [Phys. Rev. A 76 (2007) 052110], and has further been extended to a more general scenario [Phys. Rev. A 87 (2013) 052111]. In this paper, we reconsider Zurek's new derivation by using weak repeatability postulate or covariant condition instead of repeatability postulate. Supported by National Natural Science Foundation of China under Grant Nos. 11461045, 11326099, 11361042, 11265010, and Natural Science Foundation of Jiangxi Province of China under Grant Nos. 20142BAB211016, 20132BAB201001, 20132BAB212009
Evolution of spin-dependent atomic wave packets in a harmonic potential
Institute of Scientific and Technical Information of China (English)
Wen Ling-Hua; Liu Min; Kong Ling-Bo; Chen Ai-Xi; Zhan Ming-Sheng
2005-01-01
We have investigated theoretically the evolution of spin-dependent atomic wave packets in a harmonic magnetic trapping potential. For a Bose-condensed gas, which undergoes a Mott insulator transition and a spin-dependent transport, the atomic wavefunction can be described by an entangled single-atom state. Due to the confinement of the -harmonic potential, the density distributions exhibit periodic decay and revival, which is different from the case of free expansion after switching off the combined harmonic and optical lattice potential.
Irreversible Behaviour and Collapse of Wave Packets in a Quantum System with Point Interactions
Guarneri, Italo
2011-01-01
A system of a particle and a harmonic oscillator, which have pure point spectrum if uncoupled, is known to acquire absolutely continuous spectrum when the particle and the oscillator are coupled by a sufficiently strong point interaction. Here the simple dynamical mechanism underlying this phenomenon is exposed. The energy of the oscillator is proven to exponentially diverge in time, while the spatial probability distribution of the particle collapses into a delta function in the interaction point. On account of this result, a generalized model with many oscillators which interact with the particle at different points is argued to provide a formal model for approximate measurement of position, and collapse of wave packets.
Irreversible behaviour and collapse of wave packets in a quantum system with point interactions
Energy Technology Data Exchange (ETDEWEB)
Guarneri, Italo [Center for Nonlinear and Complex Systems, Universita dell' Insubria, via Valleggio 11, I-22100 Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia (Italy)
2011-12-02
A system of a particle and a harmonic oscillator, which have pure point spectra if uncoupled, is known to acquire an absolutely continuous spectrum when they are coupled by a sufficiently strong point interaction. Here, the dynamical mechanism underlying this spectral phenomenon is exposed. The energy of the oscillator is proven to exponentially diverge in time, while the spatial probability distribution of the particle collapses into a {delta}-function at the interaction point. On account of this result, a generalized model with many oscillators which interact with the particle at different points is argued to provide a formal model for the approximate measurement of position and collapse of wave packets. (paper)
Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons
Serov, V V; Joulakian, B B; Vinitsky, S I; Serov, Vladislav V.; Derbov, Vladimir L.; Joulakian, Boghos B.; Vinitsky, Sergue I.
2000-01-01
The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.
Wave packet dynamics in energy space, random matrix theory, and the quantum-classical correspondence
Cohen; Izrailev; Kottos
2000-03-06
We apply random-matrix-theory (RMT) to the analysis of evolution of wave packets in energy space. We study the crossover from ballistic behavior to saturation, the possibility of having an intermediate diffusive behavior, and the feasibility of strong localization effect. Both theoretical considerations and numerical results are presented. Using quantal-classical correspondence considerations we question the validity of the emerging dynamical picture. In particular, we claim that the appearance of the intermediate diffusive behavior is possibly an artifact of the RMT strategy.
Application of Wavelet Packet De-noising in Time-Frequency Analysis of the Local Wave Method
Institute of Scientific and Technical Information of China (English)
LI Hong-kun; MA Xiao-jiang; WANG Zhen; ZHU Hong
2003-01-01
The local wave method is a very good time-frequency method for nonstationary vibration signal analysis. But the interfering noise has a big influence on the accuracy of time-frequency analysis. The wavelet packet de-noising method can eliminate the interference of noise and improve the signal-noise-ratio. This paper uses the local wave method to decompose the de-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally, an example of wavelet packet de-noising and a local wave time-frequency spectrum application of diesel engine surface vibration signal is put forward.
Modeling Delay and Packet Drop in Networked Control Systems Using Network Simulator NS2
Institute of Scientific and Technical Information of China (English)
Mohammad Shahidul Hasan; Christopher Harding; Hongnian Yu; Alison Griffiths
2005-01-01
Wireless Networked Control Systems (WNCS) are used to implement a control mechanism over a wireless network that is capable of carrying real-time traffic. This field has drawn enormous attention from current researchers because of its flexibility and robustness. However, designing efficient WNCS over Mobile Ad Hoc Networks (MANET)is still a challenging topic because of its less-predictable aspects, such as inconsistent delay, packet drop probability, and dynamic topology. This paper presents design guidelines for WNCS over MANET using the Network Simulator version 2,NS2 software. It investigates the impact of packet delay and packet drop under the AODV and DSR routing protocols. The simulation results have been compared to MATLAB results for validation.
Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions
Zhang, Song Bin; Wu, Yong; Wang, Jian Guo
2016-12-01
The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2012-02-01
Organic materials form crystals by relatively weak Van der Waals attraction between molecules, and thus differ fundamentally from covalently bonded semiconductors. Carriers in the organic semiconductors induce the drastic lattice deformation, which is called as polaron state. The polaron effect on the transport is a serious problem. Exactly what conduction mechanism applies to organic semiconductors has not been established. Therefore, we have investigated the transport properties using the Time-Dependent Wave-Packet Diffusion (TD-WPD) method [1]. To consider the polaron effect on the transport, in the methodology, we combine the wave-packet dynamics based on the quantum mechanics theory with the molecular dynamics. As the results, we can describe the electron motion modified by (electron-phonon mediated) time-dependent structural change. We investigate the transport property from an atomistic viewpoint and evaluate the mobility of organic semiconductors. We clarify the temperature dependence of mobility from the thermal activated behavior to the power law behavior. I will talk about these results in my presentation. [1] H. Ishii, N. Kobayashi, K. Hirose, Phys. Rev. B, 82 085435 (2010).
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
Zagoya, C; Ronto, M; Shalashilin, D V; Faria, C Figueira de Morisson
2014-01-01
We assess the suitability of quantum and semiclassical initial value representations, exemplified by the coupled coherent states (CCS) method and the Herman Kluk (HK) propagator, respectively, for modeling the dynamics of an electronic wave packet in a strong laser field, if this wave packet is initially bound. Using Wigner quasiprobability distributions and ensembles of classical trajectories, we identify signatures of over-the-barrier and tunnel ionization in phase space for static and time-dependent fields and the relevant sets of phase-space trajectories in order to model such features. Overall, we find good agreement with the full solution of the time-dependent Schr\\"odinger equation (TDSE) for Wigner distributions constructed with both initial-value representations. Our results indicate that the HK propagator does not fully account for tunneling and over-the-barrier reflections. However, it is able to partly reproduce features associated with the wave packet crossing classically forbidden regions, altho...
Quantum black hole wave packet: Average area entropy and temperature dependent width
Directory of Open Access Journals (Sweden)
Aharon Davidson
2014-09-01
Full Text Available A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekenstein's area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉 average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.
Yuan, T.; Heale, C. J.; Snively, J. B.; Cai, X.; Pautet, P.-D.; Fish, C.; Zhao, Y.; Taylor, M. J.; Pendleton, W. R.; Wickwar, V.; Mitchell, N. J.
2016-01-01
Gravity wave packets excited by a source of finite duration and size possess a broad frequency and wave number spectrum and thus span a range of temporal and spatial scales. Observing at a single location relatively close to the source, the wave components with higher frequency and larger vertical wavelength dominate at earlier times and at higher altitudes, while the lower frequency components, with shorter vertical wavelength, dominate during the latter part of the propagation. Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper at Bear Lake Observatory (41.9°N, 111.4°W), we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W), that occurred on 2 September 2011, to study the waves' evolution as it propagates upward. The lidar-observed temperature perturbation was dominated by close to a 1 h modulation at 100 km during the early hours but gradually evolved into a 1.5 h modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is used to simulate the observed gravity wave processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets
Pullen, M G; Le, A -T; Baudisch, M; Sclafani, M; Pires, H; Schröter, C D; Ullrich, J; Moshammer, R; Pfeifer, T; Lin, C D; Biegert, J
2016-01-01
The ability to directly follow and time resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as {\\pi}g) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with {\\pi}g and {\\pi}u symmetries, respectively, and where their ionisation probabilities do not maximise along their molecular axes. While this removes a serious bottleneck for laser induced diffraction imaging, we find unexpec...
Tunneling wave packets of atoms from intense elliptically polarized fields in natural geometry
Han, Meng; Li, Min; Liu, Ming-Ming; Liu, Yunquan
2017-02-01
We study strong-field tunneling of atoms in intense elliptically polarized laser fields in natural tunneling geometry. We obtain the temporal- and spatial-dependent tunneling ionization rates, the transverse and longitudinal momentum distributions, and the position distributions of the tunnel exit in parabolic coordinates. The tunneling electron wave packets at the tunnel exit are three dimensionally characterized for both momentum and spatial distributions. The conjunction between the tunneling point and the classical propagation of the widely used semiclassical model are naturally connected. We further calculate the ellipticity-dependent photoelectron momentum distributions on the detector, which are validated by comparison with the exact results through numerically solving the time-dependent Schrödinger equation. The theory clarifies crucial questions about strong-field tunneling ionization, which has important implications for the attoclock with elliptical or circular fields, photoelectron holography, molecular orbital imaging, etc.
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-10-01
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments
Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...
Electronic excitation by short x-ray pulses: from quantum beats to wave packet revivals
Rivière, P.; Iqbal, S.; Rost, J. M.
2014-06-01
We propose a simple way to determine the periodicities of wave packets (WPs) in quantum systems directly from the energy differences of the states involved. The resulting classical periods and revival times are more accurate than those obtained with the traditional expansion of the energies about the central quantum number \\overline{n}, especially when \\overline{n} is low. The latter type of WP motion occurs upon excitation of highly charged ions with short XUV or x-ray pulses. Moreover, we formulate the WP dynamics in such a form that it directly reveals the origin of phase shifts in the maxima of the autocorrelation function, a phenomenon most prominent in the low \\overline{n} WP dynamics.
Rapid propagation of a Bloch wave packet excited by a femtosecond ultraviolet pulse
Krasovskii, E. E.; Friedrich, C.; Schattke, W.; Echenique, P. M.
2016-11-01
Attosecond streaking spectroscopy of solids provides direct observation of the dynamics of electron excitation and transport through the surface. We demonstrate the crucial role of the exciting field in electron propagation and establish that the lattice scattering of the outgoing electron during the optical pumping leads to the wave packet moving faster than with the group velocity and faster than the free electron. We solve the time-dependent Schrödinger equation for a model of laser-assisted photoemission, with inelastic scattering treated as electron absorption and alternatively by means of random collisions. For a weak lattice scattering, the phenomenological result that the photoelectron moves with the group velocity d E /d ℏ k and traverses on average the distance equal to the mean-free path is proved to hold even at very short traveling times. This offers a novel interpretation of the delay time in streaking experiment and sheds new light on tunneling in optoelectronic devices.
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-10-26
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.
The Liouville equation for flavour evolution of neutrinos and neutrino wave packets
Hansen, Rasmus Sloth Lundkvist
2016-01-01
We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of inelastic collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spacial dependence may steam from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.
Stienkemeier, Frank
2017-06-01
Time-resolved coherent spectroscopy has opened many new directions to study ultrafast dynamics in complex quantum systems. While most applications have been achieved in the condensed phase, we are focusing on dilute gas phase samples, in particular, on doped helium droplet beams. Isolation in such droplets at millikelvin temperatures provides unique opportunities to synthesize well-defined complexes, to prepare specific ro-vibronic states, and study their dynamics. To account for the small densities in our samples, we apply a phase modulation technique in order to reach enough sensitivity and a high spectral resolution in electronic wave packet interferometry experiments. The combination with mass-resolved ion detection enabled us e.g. to characterize vibrational structures of excimer molecules. By extending this technique we have observed collective resonances in samples of very low density (10^8 cm^{-3}). With a variant of this method, we are currently elaborating the implementation of nonlinear all-XUV spectroscopy.
Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime*
Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.
2016-05-01
Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Energy Technology Data Exchange (ETDEWEB)
Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)
2015-12-15
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Institute of Scientific and Technical Information of China (English)
LI JunQing; LIU Fang; XING YongZhong; ZUO Wei
2002-01-01
The quantum correspondence of the very peculiar phenomenon of classical chaos-the exponential instability of motion can be characterized by the initially exponential growth rate of the total uncertainty measurement of the propagating quantum wave packet. Our calculation indicates that quantitatively the growth rate is approximately twice the classical maximum Lyapunov exponent of the system.
Dynamical properties of a particle in a wave packet: Scaling invariance and boundary crisis
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Robnik, Marko, E-mail: robnik@uni-mb.si [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatistica, Matematica Aplicada e Computacao, UNESP, Univ Estadual Paulista, Av. 24A, 1515-Bela Vista, 13506-900 Rio Claro, SP (Brazil)
2011-10-15
Highlights: > Acceleration of particles in a wave packet. > The location of the first invariant spanning curve which borders the chaotic sea. > Scaling to characterise the transition from integrability to non-integrability. > The property of area preservation is broken and attractors emerge. > After a tiny increase of the dissipation the system experience a boundary crisis. - Abstract: Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2.
Study on the time-dependent wave packet of IBr molecule%IBr分子含时波包的理论探究
Institute of Scientific and Technical Information of China (English)
赵起; 刘瑞琼; 刘玉芳
2011-01-01
The simulation of time-resolved photoelectron spectra for Ibr molecule is studied mainly. The time-dependent quantum wave packet method is employed to calculate and analyze the photoelectron spectra of different delay times. The common characteristic of bimodal system and the phenomenon of more peaks are interpreted in reason using the theory of wave-packet and light-induced potentials. The reason why the peak decreases monotonically as the increases of delay-time is that the wave packet on the potential energy surface of A3 Ⅱ1 for dissociation make the oscillating of wave packet on the A3 Ⅱ1 curve to decrease. By analyzing the results further, we can conclude that the propagation of wave-packet is a decreasing process of energy. In addition, the competition between different ionization channels in the process of transition also have a certain impact on the energy spectrum.%本文主要对IBr分子的飞秒含时光电子能谱进行了模拟计算.运用含时量子波包方法,对不同延迟时间的光电子能谱进行模拟计算与理论分析.应用波包和光诱导势理论,对光电子能谱共同的两峰系特征及多峰现象给予合理解释.光电子能谱的峰值随延迟时间的增加而递减现象,是由于波包在A3Ⅱ1势能面上因分子解离发散,使整个波包在势能曲线上的振荡递减造成的.研究表明:波包的传播是一个能量减弱的过程；跃迁过程中不同电离通道之间的竞争,也对能谱存在一定的影响.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
CCNA Experimental Environment Simulation with Cisco Packet Tracer%使用Cisco Packet Tracer模拟CCNA实验环境
Institute of Scientific and Technical Information of China (English)
王金恒; 王煜林
2010-01-01
Cisco Packet Tracer是一款由Cisco公司发布的网络辅助学习工具,它能够给思科课程爱好者提供一个设计、配置网络及排除网络故障的网络模拟环境.根据的实验需求,在Cisco Packet Tracer模拟器上设计了两个实用的CCNA实验拓朴,让思科学习者能够更好地学习网络.
Semiclassical wave packet study of anomalous isotope effect in ozone formation.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-10-21
We applied the semiclassical initial value representation method to calculate energies, lifetimes, and wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such scattering states represent the metastable O3* species and play a central role in the process of ozone formation. Autocorrelation functions for scattering states were computed and then analyzed using the Prony method, which permits one to extract accurate energies and widths of the resonances. We found that the results of the semiclassical wave packet propagation agree well with fully quantum results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated with formation of this molecule, either through the 16O16O+18O or the 16O+16O18O channels. An interesting correlation between the local vibration mode character of the metastable states and their lifetimes was observed and explained. New insight is obtained into the mechanism by which the long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large isotope effect.
Afraimovich, E. L.; Edemsky, I. K.; Voeykov, S. V.; Yasukevich, Y. V.; Zhivetiev, I. V.
2009-04-01
The great variety of solar terminator (ST) -linked phenomena in the atmosphere gave rise to a num¬ber of studies on the analysis of ionosphere parameter variations obtained by different ionosphere sounding methods. Main part of experimental data was obtained using methods for analyzing the spectrum of ionosphere parameter variations in separate local points. To identify ST-generated wave disturbances it is necessary to measure the dynamic and spectral characteristics of the wave disturbances and to compare it with spatial-temporal characteristics of ST. Using TEC measurements from the dense network of GPS sites GEONET (Japan), we have obtained the first GPS-TEC image of the space structure of medium-scale traveling wave packets (MS TWP) excited by the solar terminator. We use two known forms of the 2D GPS-TEC image for our presentation of the space structure of ST-generated MS TWP: 1) - the diagram "distance-time"; 2) - the 2D-space distribution of the values of filtered TEC series dI (λ, φ, t) on the latitude φ and longitude λ for each 30-sec TEC counts. We found that the time period and wave-length of ST-generated wave packets are about 10-20 min and 200-300 km, respectively. Dynamic images analysis of dI (λ, φ, t) gives precise estimation of velocity and azimuth of TWP wave front propagation. We use the method of determining velocity of traveling ionosphere disturbances (SADM-GPS), which take into account the relative moving of subionosphere points. We found that the velocity of the TWP phase front, traveling along GEONET sites, varies in accordance with the velocity of the ST line displacement. The space image of MS TWP manifests itself in pronounced anisotropy and high coherence over a long distance of about 2000 km. The TWP wave front extends along the ST line with the angular shift of about 20°. The hypothesis on the connection between the TWP generation and the solar terminator can be tested in the terminator local time (TLT) system: d
Ruban, V P
2015-01-01
The nonlinear dynamics of an obliquely oriented wave packet at sea surface is studied both analytically and numerically for various initial parameters of the packet, in connection with the problem of oceanic rogue waves. In the framework of Gaussian variational ansatz applied to the corresponding (1+2D) hyperbolic nonlinear Schr\\"odinger equation, a simplified Lagrangian system of differential equations is derived, which determines the evolution of coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description for the process of nonlinear spatio-temporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system is integrated in quadratures, which fact allows us to understand qualitative differences between the linear and nonlinear regimes of the focusing of wave packet. Comparison of the Gaussian model predictions with results of direct numerical simulation of fully nonlinear long-cres...
Afraimovich, E.; Lesyuta, O.; Lipko, Yu.; Perevalova, N.; Voyeikov, S.; Vodyannikov, V.; Yakovets, A.; Jacobi, Ch.
This report discusses the experimental research results on the morphology and physi- cal origin of total electron content (TEC) pulsations as measured using the data from the global GPS network. Periodic electron density oscillations of the type of wave packets were investigated previously in terms of the hypothesis of their association with geomagnetic field (GP) pulsations. The greater part of evidence of the association between GP ad periodic electron density oscillations in the ionosphere was obtained by recording the frequency Doppler shift if the ionosphere-reflected radio signal and TEC variations measured using signals from geostationary satellites. However, many years of investigations have not yet provided thorough insight into the mechanisms ac- counting for the linkage between GP and ionospheric variations. One reason for that is the difficulty associated with obtaining statistically significant sets of experimental data. The use of the international ground-based network of two-frequency receivers of the navigation GPS system which comprised no less than 900 site as of August 2001 and is currently placing the data on the Internet, opens up a new era of a global, con- tinuous and fully computerized monitoring of ionospheric disturbances of a different class. This report presents a global morphology of TEC pulsations for 50 days with a different level of geomagnetic activity and the number of stations of the global GPS network from 100 to 300. A total number of the "receiver - GPS satellites" radio paths used in the analysis is about 500,000. Quasi-periodic TEC variations in the range of periods from 10 to 20 min are investigated, which is dictated by the fact that the data from the global GPS network are placed on the Internet with a standard temporal res- olution of 30 s. Most often, the observed TEC pulsations represent wave packets with a duration on the order of 1 hour. It was found that such TEC pulsations are a rela- tively rare event and are
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
Theoretical calculations on dissociative double ionization of H2 and D2 in short intense laser pulses using the Monte Carlo wave packet technique are presented for several different field intensities, wavelengths, and pulse durations. We find convincing agreement between theory and experimental...... results for the kinetic energy release spectra of the nuclei. Besides the correctly predicted spectra the Monte Carlo wave packet method offers insight into the nuclear dynamics during the pulse and makes it possible to address the origin of different structures observed in the spectra. Three......-photon resonances in the singly ionized molecule and charge-resonance-enhanced ionization are shown to be the main processes responsible for the observed nuclear energy distributions....
Xie, Xinhua; Kartashov, Daniil; Zhang, Li; Baltuška, Andrius; Kitzler, Markus
2016-01-01
We report on the observation of subcycle interferences of electron wave packets released during the strong field ionization of H$_2$ with cycle-shaped two-color laser fields. With a reaction microscope, channel-resolved photoelectron momentum distribution are obtained for different final products originating from single ionization of H$_2$. Our results show that the subcycle interference structures of electron wave packet are very sensitive to the cycle-shape of the two-color laser field. The reason is that the ionization time within an optical cycle is determined by the cycle-shape of the laser field. The subcycle interference structures can be further used to get the subcycle dynamics of molecules during strong field interaction.
Trojan Wave Packets in the Quantum Cavity within the Extended Jaynes-Cummings Model
Kalinski, Matt
2016-05-01
Some time ago we have developed the theory of the Trojan Wave Packets (TWP) in the classical strong Circularly Polarized electromagnetic field in terms of the Mathieu generating functions. We have discovered that by the proper partitioning of the Coulomb spectrum i.e. by considering the deviation from the circularity and the vertical tilt of the undressed states as the new quantum numbers we can reduce the problem to the problem of several non-interacting quantum pendula for the Stark-Zeeman field dressed states. The TWP in the infinite physical space however turned out to be weakly unstable due to the spontaneous emission. Here we develop the theory in which the TWP is truly eternal when the electromagnetic interactions are considered quantum and the field is confined by the perfect quantum cavity boundary conditions. First we extend the Jaynes-Cummings (JC) model from the two to the infinite number of levels interacting with the one or two perfectly resonant quantum modes of the electromagnetic field. Similarly the model of JC and our previous pendular model the dressed electron-field eigenstates are constructed within the weakly interacting manifolds. Superpositions of those states are possible with the quantum electron density moving on the circular trajectories.
Wächtler, Maria; Guthmuller, Julien; Kupfer, Stephan; Maiuri, Margherita; Brida, Daniele; Popp, Jürgen; Rau, Sven; Cerullo, Giulio; Dietzek, Benjamin
2015-05-18
The hydrogen-evolving photocatalyst [(tbbpy)2 Ru(tpphz)Pd(Cl)2 ](2+) (tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) shows excitation-wavelength-dependent catalytic activity, which has been correlated to the localization of the initial excitation within the coordination sphere. In this contribution the excitation-wavelength dependence of the early excited-state relaxation and the occurrence of vibrational coherences are investigated by sub-20 fs transient absorption spectroscopy and DFT/TDDFT calculations. The comparison with the mononuclear precursor [(tbbpy)2 Ru(tpphz)](2+) highlights the influence of the catalytic center on these ultrafast processes. Only in the presence of the second metal center, does the excitation of a (1) MLCT state localized on the central part of the tpphz bridge lead to coherent wave-packet motion in the excited state. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver
2017-09-01
Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.
Zauleck, Julius P P; Thallmair, Sebastian; Loipersberger, Matthias; de Vivie-Riedle, Regina
2016-12-13
The curse of dimensionality still remains as the central challenge of molecular quantum dynamical calculations. Either compromises on the accuracy of the potential landscape have to be made or methods must be used that reduce the dimensionality of the configuration space of molecular systems to a low dimensional one. For dynamic approaches such as grid-based wave packet dynamics that are confined to a small number of degrees of freedom this dimensionality reduction can become a major part of the overall problem. A common strategy to reduce the configuration space is by selection of a set of internal coordinates using chemical intuition. We devised two methods that increase the degree of automation of the dimensionality reduction as well as replace chemical intuition by more quantifiable criteria. Both methods reduce the dimensionality linearly and use the intrinsic reaction coordinate as guidance. The first one solely relies on the intrinsic reaction coordinate (IRC), whereas the second one uses semiclassical trajectories to identify the important degrees of freedom.
Energy Technology Data Exchange (ETDEWEB)
Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)
2007-05-15
Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.
Characterization of a quantum phase transition in Dirac systems by means of the wave-packet dynamics
Directory of Open Access Journals (Sweden)
E. Romera
2012-12-01
Full Text Available We study the signatures of phase transitions in the time evolution of wave-packets by analyzing two simple model systems: a graphene quantum dot model in a magnetic field and a Dirac oscillator in a magnetic field. We have characterized the phase transitions using the autocorrelation function. Our work also reveals that the description in terms of Shannon entropy of the autocorrelation function is a clear phase transition indicator.
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 30x30 second latitude/longitude polygon grid cells. Statistics were...
Prodhan, Suryoday
2016-01-01
Singlet fission is a potential pathway for significant enhancement of efficiency in organic solar cells. In this article, we have studied singlet fission in a pair of polyene molecules employing exact many-body wave packet dynamics. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions and site charge-bond charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schr\\"{o}dinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, $2{}^1A$ excited singlet state leads to significant fission yield while the $1{}^1B$ state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, singlet state derived from $1{}^1B$ state also gives si...
Prodhan, Suryoday; Ramasesha, S.
2017-08-01
Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.
Wasilewski, W; Wasilewski, Wojciech
2005-01-01
We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems (S. L. Braunstein, Phys. Rev. A, vol. 71, 055801 (2005)). We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored at...
Description and Simulation of a Fast Packet Switch Architecture for Communication Satellites
Quintana, Jorge A.; Lizanich, Paul J.
1995-01-01
The NASA Lewis Research Center has been developing the architecture for a multichannel communications signal processing satellite (MCSPS) as part of a flexible, low-cost meshed-VSAT (very small aperture terminal) network. The MCSPS architecture is based on a multifrequency, time-division-multiple-access (MF-TDMA) uplink and a time-division multiplex (TDM) downlink. There are eight uplink MF-TDMA beams, and eight downlink TDM beams, with eight downlink dwells per beam. The information-switching processor, which decodes, stores, and transmits each packet of user data to the appropriate downlink dwell onboard the satellite, has been fully described by using VHSIC (Very High Speed Integrated-Circuit) Hardware Description Language (VHDL). This VHDL code, which was developed in-house to simulate the information switching processor, showed that the architecture is both feasible and viable. This paper describes a shared-memory-per-beam architecture, its VHDL implementation, and the simulation efforts.
Misra, A P
2010-01-01
We consider the nonlinear propagation of electrostatic wave packets in an ultra-relativistic (UR) degenerate dense electron-ion plasma, whose dynamics is governed by the nonlocal two-dimensional nonlinear Schroedinger-like equations. The coupled set of equations are then used to study the modulational instability (MI) of a uniform wave train to an infinitesimal perturbation of multi-dimensional form. The condition for the MI is obtained, and it is shown that the nondimensional parameter, $\\beta\\propto\\lambda_C n_0^{1/3}$ (where $\\lambda_C$ is the reduced Compton wavelength and $n_0$ is the particle number density), associated with the UR pressure of degenerate electrons, shifts the stable (unstable) regions at $n_{0}\\sim10^{30}$ cm$^{-3}$ to unstable (stable) ones at higher densities, i.e. $n_{0}\\gtrsim7\\times10^{33}$. It is also found that higher the values of $n_{0}$, the lower is the growth rate of MI with cut-offs at lower wave numbers of modulation. Furthermore, the dynamical evolution of the wave packet...
Energy Technology Data Exchange (ETDEWEB)
Zhao, Bin [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Guo, Hua, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2014-06-21
A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D{sub 2} reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.
Zhao, Bin; Sun, Zhigang; Guo, Hua
2014-06-01
A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D2 reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.
Iihama, S.; Sasaki, Y.; Sugihara, A.; Kamimaki, A.; Ando, Y.; Mizukami, S.
2016-07-01
Coherent spin-wave generation by focused ultrashort laser pulse irradiation was investigated for a permalloy thin film at micrometer scale using an all-optical space- and time-resolved magneto-optical Kerr effect microscope. The spin-wave packet propagating perpendicular to the magnetization direction was clearly observed; however, that propagating parallel to the magnetization direction was not observed. The propagation length, group velocity, center frequency, and packet width of the observed spin-wave packet were evaluated and quantitatively explained in terms of the propagation of a magnetostatic spin wave driven by the ultrafast change of an out-of-plane demagnetization field induced by the focused-pulse laser.
Energy Technology Data Exchange (ETDEWEB)
Gray, S.K.
1994-03-01
Vibrational predissociation of XI{sub 2} and X{sub 2}I{sub 2} van der Waals complexes, with X = He and Ne, is studied with wave packets. Three-dimensional calculations are carried out on the three-atom systems. Suitable X{center_dot}{center_dot}I potential interactions are determined, and product distributions are predicted. Reduced dimension models of X{sub 2}I{sub 2}(v{prime}) {yields} 2X + I{sub 2}(v < v{prime}) are investigated. Comparison is made with available experimental results. Mechanistic issues, including the role of intramolecular vibrational relaxation resonances, are addressed.
Goussev, Arseni; Dorfman, J. Robert
2006-01-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wave length, while being small compared to the size of the ...
Simulations in quantum tunneling
Smith, Kevin; Blaylock, Guy
2017-10-01
We study the timing effects of nonrelativistic wave packet tunneling through a barrier using a numerical simulation readily accessible to an undergraduate audience. We demonstrate that the peak of the transmitted packet can sometimes emerge from the barrier ahead of the peak of an undisturbed wave packet that does not encounter a barrier. Under the right circumstances, this effect can give the appearance that transmission through the barrier occurs at superluminal speeds. We demonstrate that this seemingly paradoxical effect is not all that puzzling. Rather, components from the front of the incoming wave packet are preferentially transmitted, forming a transmitted packet ahead of the average of the incoming wave packet but not ahead of the leading edge of that packet. Our studies also show how the timing depends on barrier height and width, consistent with expectations based on the different energy components of the wave packet.
Malakar, Y.; Kaderiya, B.; Zohrabi, M.; Pearson, W. L.; Ziaee, F.; Kananka Raju, P.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.
2016-05-01
Light-driven vibrational wave packets play an important role in molecular imaging and coherent control applications. Here we present the results of a pump-probe experiment characterizing laser-induced vibrational wave packets in both, neutral and ionic states of CH3 I (iodomethane), one of the prototypical polyatomic systems. Measuring yields and kinetic energies of all ionic fragments as a function of the time delay between two 25 fs, 800 nm pump and probe pulses, we map vibrational motion of the molecule, and identify the states involved by channel-resolved Fourier spectroscopy. In the Coulomb explosion channels we observe features with ~ 130 fs periodicity resulting from C-I symmetric stretch (ν3 mode) of the electronically excited cationic state. However the Fourier transform of the low-energy I+ ion yield produced by the dissociative ionization of CH3 I reveals the signatures of the same vibrational mode in the ground electronic states of both, neutral and cation, reflected in 65-70 fs oscillations. We observe the degeneration of the oscillatory structures from the cationic states within ~ 2 ps and discuss most likely reasons for this behavior. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049.
Directory of Open Access Journals (Sweden)
C. L. Fern
2007-02-01
Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.
Chen, Cao; Chu, Xinzhao
2017-09-01
Waves in the atmosphere and ocean are inherently intermittent, with amplitudes, frequencies, or wavelengths varying in time and space. Most waves exhibit wave packet-like properties, propagate at oblique angles, and are often observed in two-dimensional (2-D) datasets. These features make the wavelet transforms, especially the 2-D wavelet approach, more appealing than the traditional windowed Fourier analysis, because the former allows adaptive time-frequency window width (i.e., automatically narrowing window size at high frequencies and widening at low frequencies), while the latter uses a fixed envelope function. This study establishes the mathematical formalism of modified 1-D and 2-D Morlet wavelet transforms, ensuring that the power of the wavelet transform in the frequency/wavenumber domain is equivalent to the mean power of its counterpart in the time/space domain. Consequently, the modified wavelet transforms eliminate the bias against high-frequency/small-scale waves in the conventional wavelet methods and many existing codes. Based on the modified 2-D Morlet wavelet transform, we put forward a wave recognition methodology that automatically identifies and extracts 2-D quasi-monochromatic wave packets and then derives their wave properties including wave periods, wavelengths, phase speeds, and time/space spans. A step-by-step demonstration of this methodology is given on analyzing the lidar data taken during 28-30 June 2014 at McMurdo, Antarctica. The newly developed wave recognition methodology is then applied to two more lidar observations in May and July 2014, to analyze the recently discovered persistent gravity waves in Antarctica. The decomposed inertia-gravity wave characteristics are consistent with the conclusion in Chen et al. (2016a) that the 3-10 h waves are persistent and dominant, and exhibit lifetimes of multiple days. They have vertical wavelengths of 20-30 km, vertical phase speeds of 0.5-2 m/s, and horizontal wavelengths up to several
Konkin, D. A.; Litvinov, R. V.; Parfenova, E. S.; Rakhim, R. A. A.; Stukach, O. V.
2016-11-01
We consider the frequency dependence of propagation constants (phase dispersion) and of the spatial distribution of the electromagnetic field (shape dispersion) of guided optical TE modes in a thin left-handed film. It is shown that the spatiotemporal transformation of narrow-band intramode wave packets with the spectrum adjacent to the frequency of the zero group velocity is caused by the dispersion of both types. The propagation velocity of the power carried by such wave packets is significantly lower than the group velocity of light in a bulk left-handed metamaterial.
DEFF Research Database (Denmark)
Marquetand, P.; Materny, A.; Henriksen, Niels Engholm
2004-01-01
We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when...... the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational...
Directory of Open Access Journals (Sweden)
Bin Guo
2016-10-01
Full Text Available X90 pipeline steel was processed with the simulated coarse grain heat affect zone (CGHAZ thermal cycle with heat input varying from 30 kJ/cm to 60 kJ/cm, the microstructures were investigated by means of optical microscope (OM, scanning electron microscope (SEM, electron backscattering diffraction (EBSD, and transmission electron microscope (TEM, and the impact properties were evaluated from the welding thermal cycle treated samples. The results indicate that the microstructure is primarily composed of lath bainite. When decreasing the heat input, both bainite packet and block are significantly refined, and the toughness has an increased tendency due to the grain refinement. The fracture surfaces all present cleavage fracture for the samples with different heat inputs. Moreover, the average cleavage facet size for the CGHAZ is nearly equal to the average bainite packet size, and the bainitic packet boundary can strongly impede the crack propagation, indicating that the bainitic packet is the most effective unit in control of impact toughness in the simulated CGHAZ of X90 pipeline steel.
Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun
2016-04-01
Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.
Schlesinger, Martin; Stienkemeier, Frank; Strunz, Walter T
2009-01-01
Femtosecond pump-probe spectroscopy has been used to study vibrational dynamics of potassium dimers attached to superfluid helium nanodroplets. Comparing the measured data with theoretical results based on dissipative quantum dynamics we propose that the most important effect of the helium environment is a general damping of the vibrational dynamics as a result of the interaction between dimer and collective degrees of freedom of the helium droplet. The calculations allow us to explain crucial experimental findings that are unobserved in gas-phase measurements. Remarkably, best agreement with experiment is found for a model where we neglect damping once a wave packet moves below a critical velocity. In this way the results provide first direct evidence for the Landau critical velocity in superfluid nanodroplets.
Singh, D; Papini, G; Mobed, Nader; Papini, Giorgio; Singh, Dinesh
2006-01-01
We present the possibility that Dirac and Majorana neutrino wave packets can be distinguished when subject to spin-gravity interaction while propagating through vacuum described by the Lense-Thirring metric. By adopting the techniques of gravitational phase and time-independent perturbation theory following the Brillouin-Wigner method, we generate spin-gravity matrix elements from a perturbation Hamiltonian and show that this distinction is easily reflected in well-defined gravitational corrections to the neutrino oscillation length for a two-flavour system. Explicit examples are presented using the Sun and SN1987A as the gravitational sources for the Lense-Thirring metric. This approach offers the possibility to determine the absolute neutrino masses by this method and identify a theoretical upper bound for the absolute neutrino mass difference, where the distinctions between the Dirac and Majorana cases are evident. We discuss the relevance of this analysis to the upcoming attempts to measure the properties...
Institute of Scientific and Technical Information of China (English)
CHEN Shao-Hao; WANG Feng; LI Jia-Ming
2004-01-01
Introducing a theoretical method to treat time-dependent wave-packet dynamics for atom collisions, we calculate the cross sections of proton impact excitation (2s - 2p) with a Li atom by directly numerically integrating the time-dependent Schrodinger equation on a three-dimensional Cartesian mesh. Our calculated results are in good agreement with the available experimental measurements.
Energy Technology Data Exchange (ETDEWEB)
Segura, J.; Fernandez de Cordoba, P.
1993-01-01
We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)
Energy Technology Data Exchange (ETDEWEB)
Ruban, V. P., E-mail: ruban@itp.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.
Nonlinear propagation of a wave packet in a hard-walled circular duct
Nayfeh, A. H.
1975-01-01
The method of multiple scales is used to derive a nonlinear Schroedinger equation for the temporal and spatial modulation of the amplitudes and the phases of waves propagating in a hard-walled circular duct. This equation is used to show that monochromatic waves are stable and to determine the amplitude dependance of the cutoff frequencies.
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1985-01-01
A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...
Kukulin, V I
2002-01-01
The construction of the basic operators of the theory of scattering on the mass surface and beyond in the terms of the stationary wave packages, limited in the space or Eigen differentials, is described. The finite-dimensional approximations for the Green function and T-matrix are obtained for the first time on the basis of the simple single diagonalization of the Hamiltonian. It is shown that the developed approach leads to the convenient finite-dimensional presentation of the scattering operators in the basis of the wave functions of the harmonic oscillators
Directory of Open Access Journals (Sweden)
Diaz-Torres Alexis
2015-01-01
Full Text Available Recent progress in a quantitative study of the 12C+12C sub-Coulomb fusion is reported. It is carried out using full-dimensional, time-dependent wave-packet dynamics, a quantum reaction model that has not been much exploited in nuclear physics, unlike in chemical physics. The low-energy collision is described in the rotating center-of-mass frame within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave-packet through the collective potential-energy landscape that is calculated with a realistic two-center shell model. Among other preliminary results, the theoretical sub-Coulomb fusion resonances for 12C+12C seem to correspond well with observations. The method appears to be useful for expanding the cross-section predictions towards stellar energies.
Bruder, Lukas; Stienkemeier, Frank
2015-01-01
Phase-modulated wave-packet interferometry is combined with mass-resolved photoion detection to investigate rubidium atoms attached to helium nanodroplets in a molecular beam experiment. The spectra of atomic Rb electronic states show a vastly enhanced sensitivity and spectral resolution when compared to conventional pump-probe wave-packet interferometry. Furthermore, the formation of Rb*He exciplex molecules is probed and for the first time a fully resolved vibrational spectrum for transitions between the lowest excited $5\\Pi_{3/2}$ and the high-lying electronic states $2^2\\Pi$, $4^2\\Delta$, $6^2\\Sigma$ is obtained and compared to theory. The feasibility of applying coherent multidimensional spectroscopy to dilute cold gas phase samples is demonstrated in these experiments.
ACCURATE TIME-DEPENDENT WAVE PACKET STUDY OF THE H{sup +}+LiH REACTION AT EARLY UNIVERSE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Aslan, E.; Bulut, N. [Department of Physics, Firat University, 23169 Elazig (Turkey); Castillo, J. F.; Banares, L.; Aoiz, F. J. [Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas (Unidad Asociada CSIC), Universidad Complutense de Madrid, 28040 Madrid (Spain); Roncero, O., E-mail: jfernand@quim.ucm.es [Instituto de Fisica Fundamental, CSIC, C/Serrano 123, E-28006 Madrid (Spain)
2012-11-01
The dynamics and kinetics of the H{sup +} + LiH reaction have been studied using a quantum reactive time-dependent wave packet (TDWP) coupled-channel quantum mechanical method on an ab initio potential energy surface at conditions of the early universe. The total reaction probabilities for the H{sup +} + LiH(v = 0, j = 0) {yields} H{sup +} {sub 2} + Li process have been calculated from 5 Multiplication-Sign 10{sup -3} eV up to 1 eV for total angular momenta J from 0 to 110. Using a Langevin model, integral cross sections have been calculated in that range of collision energies and extrapolated for energies below 5 Multiplication-Sign 10{sup -3} eV. The calculated rate constants are found to be nearly independent of temperature in the 10-1000 K interval with a value of Almost-Equal-To 10{sup -9} cm{sup 3} s{sup -1}, which is in good agreement with estimates used in evolutionary models of the early universe lithium chemistry.
Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems
Flambaum, V V
2001-01-01
Highly excited many-particle states in quantum systems such as nuclei, atoms, quantum dots, spin systems, quantum computers etc., can be considered as ``chaotic'' superpositions of mean-field basis states (Slater determinants, products of spin or qubit states). This is due to a very high level density of many-body states that are easily mixed by a residual interaction between particles (quasi-particles). For such systems, we have derived simple analytical expressions for the time dependence of energy width of wave packets, as well as for the entropy, number of principal basis components and inverse participation ratio, and tested them in numerical experiments. It is shown that the energy width $\\Delta (t)$ increases linearly and very quickly saturates. The entropy of a system increases quadratically, $S(t) \\sim t^2$ at small times, and after, can grow linearly, $S(t) \\sim t$, before the saturation. Correspondingly, the number of principal components determined by the entropy, $N_{pc} \\sim exp{(S(t))}$, or by ...
Toyota, Koudai
2016-10-01
The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.
Goussev, Arseni; Dorfman, J R
2006-07-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.
Numerical Simulation of Nonlinear Lamb Waves Used in a Thin Plate for Detecting Buried Micro-Cracks
Directory of Open Access Journals (Sweden)
Xiang Wan
2014-05-01
Full Text Available Compared with conventional linear ultrasonic inspection methods, which are sensitive only to severe defects, nonlinear ultrasonic inspection methods are better for revealing micro-cracks in thin plates. However, most nonlinear ultrasonic inspection methods have only been experimentally investigated using bulk or Rayleigh waves. Numerical studies, especially numerical simulations of Lamb ultrasonic waves, have seldom been reported. In this paper, the interaction between nonlinear S0 mode Lamb waves and micro-cracks of various lengths and widths buried in a thin metallic plate was simulated using the finite element method (FEM. The numerical results indicate that after interacting with a micro-crack, a new wave-packet was generated in addition to the S0 mode wave-packet. The second harmonics of the S0 mode Lamb waves and the new wave-packet were caused by nonlinear acoustic effects at the micro-crack. An amplitude ratio indicator is thus proposed for the early detection of buried micro-cracks.
The pump-probe coupling of matter wave packets to remote lattice states
DEFF Research Database (Denmark)
Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm
2012-01-01
selected lattice sites at a long, controllable distance of more than 100 lattice sites from the main component. This precise control mechanism for ultra-cold atoms thus enables controlled quantum state preparation and splitting for quantum dynamics, metrology and simulation....
Optical packet switched networks
DEFF Research Database (Denmark)
Hansen, Peter Bukhave
1999-01-01
Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... between the electrical switched layer and the WDM transport layer. Analytical models are implemented to determine the signal quality ghrough the switch blocks in terms of power penalty and to assess the traffic performance of different switch block architectures. Further, a computer simulation model...... is used to investigate the influence on the traffic performance of asynchronous operation of the switch blocks. The signal quality investigation illustrates some of the component requirements in respect to gain saturation in SOA gates and crosstalk in order to obtain high cascadability of the switch...
Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias
2014-06-01
Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm-1 and 360 cm-1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].
Large eddy simulation of breaking waves
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Deigaard, Rolf
2001-01-01
is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations......A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence....... The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes...
LARGE EDDY SIMULATION FOR PLUNGING BREAKER WAVE
Institute of Scientific and Technical Information of China (English)
Bai Yu-chuan; Wang Zhao-yin
2003-01-01
As wave propagates into shallow water, the shoaling effect leads to increase of wave height, and at a certain position, the wave will be breaking. The breaking wave is powerful agents for generating turbulence, which plays an important role in most of the fluid dynamical processes in the surf zone, so a proper numerical model for describing the turbulent effect is needed urgently. A numerical model is set up to simulate the wave breaking process, which consists of a free surface model using the surface marker method and the vertical two-dimensional model that solves the flow equations. The turbulence is described by Large Eddy Simulation (LES) method where the larger turbulent features are simulated by solving the flow equations, and the small-scale turbulence that is represented by a sub-grid model. A dynamic eddy viscosity sub-grid scale stress model has been used for the present simulation. The large eddy simulation model, which we presented in this paper, can be used to study the propagation of a solitary wave in constant water depth and the shoaling of a non-breaking solitary wave on a beach. To track free-surface movements, The TUMMAC method is employed. By applying the model to wave breaking problem in the surf zone, we found that these model results compared very well with experimental data. In addition, this model is able to reproduce the complicated flow phenomena, especially the plunging breaker.
Nemeth, A.A.; Hulscher, S.J.M.H.; Damme, van R.M.J.
2003-01-01
Sand waves form a prominent regular pattern in the offshore seabeds of sandy shallow seas. A two dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of these sand waves has been developed. The model contains the 2DV shallow water equations, with a free water su
Bohmian trajectories of Airy packets
Energy Technology Data Exchange (ETDEWEB)
Nassar, Antonio B., E-mail: anassar@hw.com [Science Department, Harvard-Westlake School, 3700 Coldwater Canyon, Studio City, 91604 (United States); Department of Sciences, University of California, Los Angeles, Extension Program, 10995 Le Conte Avenue, Los Angeles, CA 90024 (United States); Miret-Artés, Salvador [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)
2014-09-15
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.
Simulation of the Physical Performance of Optical Packet Switching Nodes%光分组交换节点物理性能仿真
Institute of Scientific and Technical Information of China (English)
王春华; 李力; 朱炳春; 贾潞华
2002-01-01
A graphical and visual simulation system for the study of optical packet switching (OPS) nodes is accomplished. With the simulation system, the effect on physical performance- bit error rate (BER) due to a variety of factors such as the crosstalk parameters of OPS nodes, number of cascaded OPS nodes, length of optical output buffer, traffic load and fluctuation of amplitude of optical signals are evaluated. Reliability of the simulation system is proved by the analytical results obtained in all the above cases.
Estimating TCP Packet Loss Ratio from Sampled ACK Packets
Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu
The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.
Tan, Rui Shan; Yan, Wei; Lin, Shi Ying
2017-01-01
A computational study for the title reaction is carried out employing recent ab initio potential energy surface. J = 0 reaction probability is obtained using both quasiclassical trajectory (QCT) and wave packet methods. The total and state resolved integral as well as differential cross sections are also obtained by means of QCT method. Dynamics of the title reaction shows qualitative similarity with its isotopic counterpart, the H + CaCl reaction, but quantitatively, reactivity is significantly enhanced in the title reaction. In addition, the effect of initial rotational state excitation on H + CaCl reaction is investigated.
Doncheski, M. A.; Robinett, R. W.
2001-10-01
We discuss the time development of Gaussian wave packet solutions of the "quantum bouncer" (a quantum mechanical particle subject to a uniform downward force, above an impermeable flat surface). We focus on the evaluation and visualization of the expectation values and uncertainties of position and momentum variables during a single quasi-classical period as well as during the long-term collapsed phase and several revivals. This approach complements existing analytic and numerical analyses of this system, as well as being useful for comparison with similar results for the harmonic oscillator and infinite well cases.
Doncheski, M A
2001-01-01
We discuss the time development of Gaussian wave packet solutions of the quantum bouncer' (a quantum mechanical particle subject to a uniform downward force, above an impermeable flat surface). We focus on the evaluation and visualization of the expectation values and uncertainties of position and momentum variables during a single quasi-classical period as well as during the long term collapsed phase and several revivals. This approach complements existing analytic and numerical analyses of this system, as well as being useful for comparison with similar results for the harmonic oscillator and infinite well cases.
Destructive tests with the wave overtopping simulator
Trung, L.H.
2011-01-01
Report on destructive overtopping tests executed with the wave overtopping simulator along the coast of Vietnam to investigate the strength of the inner slopes of grass dikes. This report presents measurement and observation results obtained during destructive tests with the simulator in Do Son, Thi
Effect of Coulomb interaction on multi-electronwave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Shiokawa, T. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 (Japan); Takada, Y. [Faculty of Engineering, Tokyo University of Science, Chiyoda, Tokyo, 102-0073, Japan and CREST, Japan Science and Technology Agency (Japan); Konabe, S.; Hatsugai, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and CREST, Japan Science and Technology Agency (Japan); Muraguchi, M. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and CREST, Japan Science and Technology Agency (Japan); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and Center for Spintronics Integrated Systems, Tohoku University, Sendai, 980-8577, Japan and CREST, Japan Science and Technology Agency (Japan); Shiraishi, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and Center for Computational Science, University of Tsukuba, Tsukuba, 305-8577, Japan and CREST, Japan Science and Technology Agency (Japan)
2013-12-04
We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.
Energy Technology Data Exchange (ETDEWEB)
Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Barrios, Lizandra; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es [Instituto de Física Fundamental, C.S.I.C., Serrano 123, Madrid 28006 (Spain)
2014-09-21
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Elias, Mohd Syahrizad; Mohamad Ali, Ahmad Zamzuri
2016-01-01
Simulation-aided learning has capability in improving student's learning performance. However, the positive effect of simulation-aided learning still being discussed, which at times has not played the purported role expected. To address these problems, Multimedia Instructional Message (MIM) appeared to be an essential supporting tool in ensuring…
Institute of Scientific and Technical Information of China (English)
陈召杭; 王德华; 程绍昊
2015-01-01
Using the combination of the time-dependent perturbation theory and the closed-orbit theory, we put forward a calculation formula for the autocorrelation function of H ion in a gradient electric field, and then calculate and analyze the autocorrelation function of the system. Especially, we discuss the effect of laser pulse width, electric field strength and the electric field gradient on the autocorrelation function of H ion in a gradient electric field. It is demonstrated that when the laser pulse width is very narrow, far less than the period of the detached electron, the quantum wave packet revival phenomenon is significant. A series of sharp reviving peaks appear in the autocorrelation function, which are caused by the interference between the returning electron wave packets travelling along the closed orbit and the outgoing electron wave packets. However, with the increase of laser pulse width, the quantum wave packet revival phenomenon becomes weakened. When the difference between the pulse width and the period of the closed orbit is not very large, the reviving peaks in the autocorrelation function become widely spread gradually and the oscillatory structures get flattened. This correspondence will vanish finally due to the interference between the adjacent peaks. In addition, our study also suggests that the background electric field strength and the electric field gradient in the gradient electric field can also have significant effects on the autocorrelation function. With the increase of background electric field strength and electric field gradient, the period of the detached electron’s closed orbit gets shorter, the number of the revival peaks in the autocorrelation function is increased gradually, and the quantum wave packet revival phenomenon will be enhanced. Therefore, we can control the autocorrelation function of the hydrogen negative ion by changing the laser pulse width and the external electric field strength. Our results will provide some
Simulation of wave interactions with MHD
Energy Technology Data Exchange (ETDEWEB)
Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)
2008-07-15
The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Simulation of wave interactions with MHD
Energy Technology Data Exchange (ETDEWEB)
Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2008-07-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
The physical simulation of wave groups and their variations in a wave flume
Institute of Scientific and Technical Information of China (English)
LIU Si; ZHANG Yongliang; LIU Shuxue; LI Jinxuan; XIA Zhisheng
2013-01-01
The physical simulation method of wave groups in a wave flume is proposed and verified by the exper-iments. The experimental results demonstrate that random waves with desired wave groupiness, which simultaneously includes the wave group height and length, can be generated satisfactorily at the specified position in a wave flume using the proposed method. Furthermore, the transformation properties of the wave groupiness along the flat-bottomed wave flume are investigated based on the physically simulated waves. Associated proposals with the physical simulation of wave groups are given.
Multipath packet switch using packet bundling
DEFF Research Database (Denmark)
Berger, Michael Stubert
2002-01-01
The basic concept of packet bundling is to group smaller packets into larger packets based on, e.g., quality of service or destination within the packet switch. This paper presents novel applications of bundling in packet switching. The larger packets created by bundling are utilized to extend...... switching capacity by use of parallel switch planes. During the bundling operation, packets will experience a delay that depends on the actual implementation of the bundling and scheduling scheme. Analytical results for delay bounds and buffer size requirements are presented for a specific scheduling...
Spatial-Spectral Hamiltonian Boussinesq Wave Simulations
Kurnia, Ruddy; van Groesen, Embrecht W.C.
2014-01-01
This contribution concerns a specific simulation method for coastal wave engineering applications. As is common to reduce computational costs the flow is assumed to be irrotational so that a Boussinesq-type of model in horizontal variables only can be used. Here we advocate the use of such a model t
Crawling and/or Squatting: A Saleable Work Skill. Occupation Simulation Packet. Grades K-2nd.
Montgomery, Margery
This teacher's guide for grades K-2 contains simulated work experiences for students using the isolated skill concept, crawling and/or squatting. Teacher instructions include objectives, evaluation, and sequence of activities. The guide contains pre-tests and post-tests with instructions and answer keys. Three pre-skill activities are suggested,…
Terahertz/mm wave imaging simulation software
Fetterman, M. R.; Dougherty, J.; Kiser, W. L., Jr.
2006-10-01
We have developed a mm wave/terahertz imaging simulation package from COTS graphic software and custom MATLAB code. In this scheme, a commercial ray-tracing package was used to simulate the emission and reflections of radiation from scenes incorporating highly realistic imagery. Accurate material properties were assigned to objects in the scenes, with values obtained from the literature, and from our own terahertz spectroscopy measurements. The images were then post-processed with custom Matlab code to include the blur introduced by the imaging system and noise levels arising from system electronics and detector noise. The Matlab code was also used to simulate the effect of fog, an important aspect for mm wave imaging systems. Several types of image scenes were evaluated, including bar targets, contrast detail targets, a person in a portal screening situation, and a sailboat on the open ocean. The images produced by this simulation are currently being used as guidance for a 94 GHz passive mm wave imaging system, but have broad applicability for frequencies extending into the terahertz region.
Mathematical simulation of steep waves at a focus point
Institute of Scientific and Technical Information of China (English)
XU Li; ZHANG Min; WANG Yan-ying
2007-01-01
Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies.
Biggs, Jason D
2009-01-01
The preceding paper describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized control pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference ...
Developing Serpent-Type Wave Generators to Create Solitary Wave Simulations with BEM
Institute of Scientific and Technical Information of China (English)
Wen-Kai WENG; Ruey-Syan SHIH; Chung-Ren CHOU
2013-01-01
Developing serpent-type wave generators to generate solitary waves in a 3D-basin was investigated in this study. Based on the Lagrangian description with time-marching procedures and finite differences of the time derivative, a 3D multiple directional wave basin with multidirectional piston wave generators was developed to simulate ocean waves by using BEM with quadrilateral elements, and to simulate wave-caused problems with fully nonlinear water surface conditions. The simulations of perpendicular solitary waves were conducted in the first instance to verify this scheme. Furthermore, the comparison of the waveform variations confirms that the estimation of 3D solitary waves is a feasible scheme.
Institute of Scientific and Technical Information of China (English)
高洁; 房丽敏; 李华刚; 麦志杰
2012-01-01
Dispersion relation of 1-D photonic crystal is deduced by the method of transfer matrix, with coordinate transformation of arbitrary Fourier exponent of electromagnetic wave packet which is obliquely incident. By analyzing the dispersion relation, it is easy to find the difference between the first band gap under obliquely incident wave packet and that of plane wave, respectively. Meanwhile, the former gap is located in the latter one, for the former one is narrower than the latter one in width. Characteristic of band gap is obtained under obliquely incident wave packet, by comparing the first band gap structure with that of plane wave considering edge position and width of the gap. The condition of approximately substituting plane wave for wave packet to calculate band gap is analyzed, according to related factors such as different incident angle of central wave vector and angle spectrum of wave packet. The results demonstrate that the first band gap structure is closely related to incident angle of central wave vector and angle spectrum of wave packet. With smaller incident angle, the first band gap structure caused by wave packet would become closer to that of plane wave; and with smaller angle spectrum of wave packet, the width and position of the first band gap is closer to those of plane wave.%对波包的任意傅里叶分量进行坐标变换后,利用转移矩阵法推导出波包斜入射情形下一维光子晶体的色散关系表达式,利用色散关系曲线分析得出波包斜入射的第一带隙结构,与以往平面波的第一带隙结构不同,波包的带隙宽度小于平面波的带隙宽度,并且在位置上前者带隙包含在后者内部.比较了一维光子晶体分别在波包入射与平面波入射情形下带隙位置和宽度,分析了波包中心入射角的变化以及波包的角分布范围的变化对带隙结构的影响,得到了一维光子晶体对波包斜入射的带隙结构的基本特征,确定了计算波包带
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Extensible packet processing architecture
Energy Technology Data Exchange (ETDEWEB)
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Optical packet switching without packet alignment
DEFF Research Database (Denmark)
Hansen, Peter Bukhave; Danielsen, Søren Lykke; Stubkjær, Kristian
1998-01-01
Operation without packet alignment of an all-optical packet switch is proposed and predicted feasible through a detailed traffic analysis. Packet alignment units are eliminated resulting in a simple switch architecture while optimal traffic performance is maintained through the flexibility provided...
Numerical Simulation of Solitary Kinetic Alfven Waves
Institute of Scientific and Technical Information of China (English)
DING Jian; LI Yi; WANG Shui
2008-01-01
Using the two-fluid model in the case of α1 (α=β/2Q, β is the ratio of thermal pressure to magnetic pressure, and Q=m,e/m,I), we numerically investigate the interactions between two solitary kinetic Alfven waves (SKAWs) and between an SKAW and a density discontinuity. The results show that the two SKAWs would remain in their original shapes and propagate at their initiating speeds, which indicates that SKAWs behave just like standard solitons. The simulation also shows that SKAWs will reflect and refract when crossing a discontinuity and propagating into a higher density region. The transmission wave is an SKAW with increasing density, and the reverberation is a disturbance with lower amplitude.
Slamming Simulations in a Conditional Wave
DEFF Research Database (Denmark)
Seng, Sopheak; Jensen, Jørgen Juncher
2012-01-01
A study of slamming events in conditional waves is presented in this paper. The ship is sailing in head sea and the motion is solved for under the assumption of rigid body motion constrained to two degree-of-freedom i.e. heave and pitch. Based on a time domain non-linear strip theory most probable...... surface NS/VOF CFD simulations under the same wave conditions. In moderate seas and no occurrence of slamming the structural responses predicted by the methods agree well. When slamming occurs the strip theory overpredicts VBM but the peak values of VBM occurs at approximately the same time as predicted...... by the CFD method implying the possibility to use the more accurate CFD results to improve the estimation of slamming loads in the strip theory through a rational correction coefficient....
van Harrevelt, Rob; van Hemert, Marc C.
2000-04-01
A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.
Juanes-Marcos, Juan Carlos; Althorpe, Stuart C
2005-05-22
We report quantum wave-packet calculations on the H+H(2) reaction, aimed at resolving the controversy over whether geometric phase (GP) effects can be observed in this reaction. Two sets of calculations are reported of the state-to-state reaction probabilities, and integral and differential cross sections (ICSs and DCSs). One set includes the GP using the vector potential approach of Mead and Truhlar; the other set neglects the phase. We obtain unequivocal agreement with recent results of Kendrick [J. Phys. Chem. A 107, 6739 (2003)], predicting GP effects in the state-to-state reaction probabilities, which cancel exactly on summing the partial waves to yield the ICS. Our results therefore contradict those of Kuppermann and Wu [Chem. Phys. Lett. 349 537 (2001)], which predicted pronounced GP effects in the cross sections. We also agree with Kendrick in predicting that there are no significant GP effects in the full DCS at energies below 1.8 eV, and in the partial (0
两种扩展Harper模型的波包动力学%Wave packet dynamics of two extended Harper models
Institute of Scientific and Technical Information of China (English)
张振俊; 于淼; 巩龙龚; 童培庆
2011-01-01
We study the wave packet dynamics of two extended Harper models by using the second moment M2（t）and probability distribution Wn（t） numerically. The dynamical behaviors of two extended Harper models in all phases, on all phase boundary lines, and at the bicritical points are studied. For the first extended Harper model, we find that the wave packet is of ballistic diffusion in two metal phases, localized in the insulator phase, and of anomalous diffusion on the phase boundary lines and at the bicritical point. We also find the dynamical behavior on the boundary line of the metal-metal phase transition is the same as that on the metal-insulator phase transition. The spreading at the bicritical point is different from that on the phase boundary lines. For the second extended Harper model, we find that the wave packet is of ballistic diffusion in the metal phase, localized in the insulator phase, and of anomalous diffusion in the critical phase, on the phase boundary lines, and at the bicritical point. We also find the dynamical behavior on the boundary line of the critical-metal phase transition is similar to that at the bicritical point and the critical-insulator phase transition, but different from that of the metal-insulator phase transition.%本文通过二次矩M2（t）和概率分布Wn（t）数值地研究了两种扩展Harper模型的波包动力学,得到了这两种模型中各个相、各条临界线以及三相点的波包扩散情况.对于第一种扩展Harper模型,发现两个金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在三相点以及各条临界线上波包是反常扩散的.同时,发现金属相—金属相转变的临界线上的波包动力学行为与金属相—绝缘体相转变的临界线上的相同,但三相点的动力学行为与各临界线上的不同;对于第二种扩展Harper模型,发现金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在临界相、三相点、
Simulating acoustic waves in spotted stars
Papini, Emanuele; Gizon, Laurent; Hanasoge, Shravan M
2015-01-01
Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the non-magnetic effects of starspots on global modes with angular degree $\\ell \\leq 2$ in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for...
Simulation of distributed network packet priority transport model%分布式网络数据包优先级传输模型研究仿真
Institute of Scientific and Technical Information of China (English)
陈明
2016-01-01
对分布式网络数据包优先级传输模型进行优化，可以提高分布式网络中资源调度和信息传输性能。传统方法采用时频耦合尺度分解算法，在大量的冗余数据干扰下，降低了数据的优先级识别精度和传输性能。建立一种基于自适应加权量化特征分解和冗余数据滤除的分布式网络数据包优先级传输模型。首先构建分布式网络数据包优先级传输的信道结构模型，采用级联滤波算法对数据包中冗余数据进行滤波预处理，对数据库中的信息传输流进行自适应加权量化特征分解后，通过特征提取实现优先级的自适应识别，实现传输模型改进。仿真实验结果表明，采用改进模型进行分布式网络数据包优先级传输，数据传输的吞吐性能较好，执行时间较短，展示了较好的应用性能。%Optimize the transmission model of distributed network packet priority, can improve the resource scheduling in distributed network and information transmission performance. The traditional method using time and frequency coupling scale decomposition algorithm, under a lot of redundant data interference, reduce the priority identification precision of the data and the transmission performance. Establish a based on adaptive weighted quantitative feature decomposition and redundant data transmission model of distributed network packet filtering priority. First build distributed network packets priority transmission channel structure model, using cascade filtering algorithm for redundant data in the packet filtering pre-processing, transmit information to the database after the flow characteristics of adaptive weighted quantitative decomposition, through feature extraction to realize adaptive priority recognition, realization of transmission model is improved. The simulation results show that the improved model for distributed network packet transmission priority, data transmission throughput
Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C
2015-12-17
We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results.
Demekhin, Philipp V; Cederbaum, Lorenz S
2013-01-01
The time-dependent Schr\\"{o}dinger equation for the hydrogen atom and its interaction with coherent intense high-frequency short laser pulses is solved numerically exactly by employing the code implemented for the multi-configurational time-dependent Hartree-Fock (MCTDHF) method. Thereby, the wavefunction is followed in space and time for times longer than the pulse duration. Results are explicitly shown for 3 and 10 fs pulses. Particular attention is paid to identifying the effect of dynamic interference of photoelectrons emitted with the same kinetic energy at different times during the rising and falling sides of the pulse predicted in [\\emph{Ph.V. Demekhin and L.S. Cederbaum}, Phys. Rev. Lett. \\textbf{108}, 253001 (2012)]. In order to be able to see the dynamic interference pattern in the computed electron spectra, the photoelectron wave packet has to be propagated over long distances. Clearly, complex absorption potentials often employed to compute spectra of emitted particles cannot be used to detect dy...
Knappenberger, Kenneth L; Lerch, Eliza-Beth W; Wen, Patrick; Leone, Stephen R
2007-09-28
A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.
Indian Academy of Sciences (India)
Farzana Sharmin; Samir Saha; S S Bhattacharyya
2013-06-01
We have theoretically investigated the high harmonic generation (HHG) spectra of H$_{2}^{+}$ and HD+ using a time-dependent wave packet approach for the nuclear motion with pulsed lasers of peak intensities (0) of 3.5 × 1014 and 4.5 × 1014 W/cm2, wavelengths (L) of 800 and 1064 nm, and pulse durations () of 40 and 50 fs, for initial vibrational levels 0 = 0 and 1. We have argued that for these conditions the harmonic generation due to the transitions in the electronic continuum by tunnelling or multiphoton ionization will not be important. Thus, the characteristic features of HHG spectra in our model arise only due to the nuclear motions on the two lowest field-coupled electronic states between which both interelectronic and intraelectronic (due to intrinsic dipole moments, for HD+) radiative transitions can take place. For HD+, the effect of nonadiabatic (NA) interaction between the two lowest Born–Oppenheimer (BO) electronic states has been taken into account and comparison has been made with the HHG spectra of HD+ obtained in the BO approximation. Even harmonics and a second plateau in the HHG spectra of HD+ with the NA interaction and hyper-Raman lines in the spectra of both H$_{2}^{+}$ and HD+ for 0 = 1 have been observed for higher value of 0 or L. Our calculations indicate reasonable efficiencies of harmonic generation even without involving the electronic continuum.
Compression Waves and Phase Plots: Simulations
Orlikowski, Daniel
2011-01-01
Compression wave analysis started nearly 50 years ago with Fowles.[1] Coperthwaite and Williams [2] gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general.[3] One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.
Indian Academy of Sciences (India)
Raman Kumar Singh; Manabendra Sarma; Ankit Jain; Satrajit Adhikari; Manoj K Mishra
2007-09-01
Results from application of a new implementation of the time-dependent wave packet (TDWP) approach to the calculation of vibrational excitation cross-sections in resonant e-CO scattering are presented to examine its applicability in the treatment of e-molecule resonances. The results show that the SCF level local complex potential (LCP) in conjunction with the TDWP approach can reproduce experimental features quite satisfactorily.
Wu, Hui; Duan, Zhi-Xin; Yin, Shu-Hui; Zhao, Guang-Jiu
2016-09-01
The quantum dynamics calculations of the H + HS (v = 0, j = 0) reaction on the 3A' and 3A″ potential energy surfaces (PESs) are performed using the reactant coordinate based time-dependent wave packet method. State-averaged and state-resolved results for both channels of the title reaction are presented in the 0.02-1.0 eV collision energy range and compared with those carried out with quasi-classical trajectory (QCT) method. Total integral cross sections (ICSs) for both channels are in excellent agreement with previous quantum mechanical (QM)-Coriolis coupling results while poorly agree with the QCT ICSs of the exchange channel, particularly near the threshold energy region. The product rotational distributions show that for the abstraction channel, the agreement between our QM and the QCT results improves with increasing collision energy. For the exchange channel, our calculations predict colder rotational distributions as compared to those obtained by QCT calculations. Although the QM total differential cross sections (DCSs) are in qualitatively good agreement with the QCT results, the two sets of the state-to-state DCSs with several peaks exhibit great divergences. The origin of the divergences are traced by analyzing the QM DCS for the H + HS (v = 0, j = 0) → H2 (v' = 0, j' = 0) + S reaction on the 3A″ PES at Ec = 1.0 eV. It is discovered that several groups of J partial waves are involved in the reaction and the shape of the DCS is greatly altered by quantum interferences between them.
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Puthumpally-joseph, Raiju; Charron, Eric
2016-01-01
We introduce an accurate non-Hermitian Schr\\"odinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Bliokh, Konstantin Yu; Bliokh, Yury P
2006-02-24
We present a solution to the problem of reflection and refraction of a polarized Gaussian beam on the interface between two transparent media. The transverse shifts of the beams' centers of gravity are calculated. They always satisfy the total angular momentum conservation law for beams, but, in general, do not satisfy the conservation laws for individual photons as a consequence of the lack of the "which path" information in a two-channel wave scattering. The field structure for the reflected and refracted beams is analyzed. In the scattering of a linearly polarized beam, photons of opposite helicities are accumulated at the opposite edges of the beam: this is the spin Hall effect for photons, which can be registered in the cross-polarized component of the scattered beam.
Numerical simulation and mechanism analysis of freak waves
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A numerical wave model based on the modified fourth-order nonlinear Schroe dinger equation (mNLSE) in deep water was developed to simulate the formation of freak waves and a standard split-step, pseudo-spectral method was used to solve the equation. The validation of the model is firstly verified, then the simulation of freak waves was performed by changing sideband conditions, and the variation of wave energy was also analyzed in the evolution. The results indicate that Benjamin-Feir instability (sideband instability) is an important mechanism for freak wave formation.
Fraternale, Federico
2013-01-01
The present thesis deals with the non-modal linear analysis of 3D perturbations in wall flows. In the first part,a solution to the Orr-Sommerfeld and Squire IVP, in the form of orthogonal functions expansion, is researched. The Galerkin method is successfully implemented to numerically compute approximate solutions for bounded flows. The Chandrasekhar functions revealed to ensure a fifth order of accuracy. The focus of the subsequent analysis is on the transient behavior of the perturbation frequency and phase velocity. The results confirm recent observations about a jump in the temporal evolution of the frequency of the wall-normal velocity signal, considered as the end of an Early Transient. After this jump, the wave frequency for Plane Couette flow experiences a periodic modulation about the asymptotic value, which is motivated and investigated in detail. A new result is the presence of a second frequency jump for the wall-normal vorticity. This fact, together with the possibility for different values of t...
Three-Dimensional Simulations of Deep-Water Breaking Waves
Brucker, Kyle A; Dommermuth, Douglas G; Adams, Paul
2014-01-01
The formulation of a canonical deep-water breaking wave problem is introduced, and the results of a set of three-dimensional numerical simulations for deep-water breaking waves are presented. In this paper fully nonlinear progressive waves are generated by applying a normal stress to the free surface. Precise control of the forcing allows for a systematic study of four types of deep-water breaking waves, characterized herein as weak plunging, plunging, strong plunging, and very strong plunging.
Computational simulation of wave propagation problems in infinite domains
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This paper deals with the computational simulation of both scalar wave and vector wave propagation problems in infinite domains. Due to its advantages in simulating complicated geometry and complex material properties, the finite element method is used to simulate the near field of a wave propagation problem involving an infinite domain. To avoid wave reflection and refraction at the common boundary between the near field and the far field of an infinite domain, we have to use some special treatments to this boundary. For a wave radiation problem, a wave absorbing boundary can be applied to the common boundary between the near field and the far field of an infinite domain, while for a wave scattering problem, the dynamic infinite element can be used to propagate the incident wave from the near field to the far field of the infinite domain. For the sake of illustrating how these two different approaches are used to simulate the effect of the far field, a mathematical expression for a wave absorbing boundary of high-order accuracy is derived from a two-dimensional scalar wave radiation problem in an infinite domain, while the detailed mathematical formulation of the dynamic infinite element is derived from a two-dimensional vector wave scattering problem in an infinite domain. Finally, the coupled method of finite elements and dynamic infinite elements is used to investigate the effects of topographical conditions on the free field motion along the surface of a canyon.
Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice
2017-02-15
The dynamics of the Si((3)P) + OH(X(2)Π) → SiO(X(1)Σ(+)) + H((2)S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X(2)A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.
Research on fast rise time EMP radiating-wave simulator
Fan, Lisi; Liu, Haitao; Wang, Yun
2013-03-01
This paper presents an antenna of High altitude electromagnetic pulse (HEMP) radiating-wave simulator which expands the testing zone larger than the traditional transmission line simulator. The numerical results show that traverse electramagnetic (TEM) antenna can be used to radiate HEMP simulation radiating wave, but in low frequency band the emissive capability is poor. The experiment proves the numerical model is valid. The results of this paper show that TEM antenna can be used to HEMP radiating-wave simulator, and can prove the low frequency radiation capability through resistance loaded method.
Global Simulation of Electromagnetic Ion Cyclotron Waves
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern
Numerical Simulation of Wave Height and Wave Set-Up in Nearshore Regions
Institute of Scientific and Technical Information of China (English)
郑永红; 沈永明; 邱大洪
2001-01-01
Based on the time dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation, and then a practical method for the simulation of wave height and wave set-up in nearshore regions is presented. The variation of the complex wave amplitude is numerically simulated by use of the parabolic mild slope equation including the effect of wave energy dissipation due to wave breaking. The components of wave radiation stress are calculated subsequently by new expressions for them according to the obtained complex wave amplitude, and then the depth-averaged equation is applied to the calculation of wave set-up due to wave breaking. Numerical results are in good agreement with experimental data,showing that the expression for the energy dissipation factor is reasonable and that the new method is effective for the simulation of wave set-up due to wave breaking in nearshore regions.
Numerical Simulation of a Negative Impulsive Wave
Institute of Scientific and Technical Information of China (English)
ToshiakiSETOGUCHI; ShenYU; 等
1996-01-01
A compression wave discharged from an open end of a tube causes positive impulsive noise,Active noise cancellation which is the cancelling of the noise by the addition of an inverse wave is a useful technique for reducing impulsive noise,The main objective of this study is to present the design for a negative impulsive wave generator utilizing unsteady mass influx.In this paper,in order to clarify the relationship between the unsteady mass influx and the negative impulsive wave,numerical and aeroacoustic analyses have been carried out using an unsteady expansion wave discharged from an open end of a shock tube.As a result,the effect of an unsteady expansion wave on a negative impulsive wave was charified.
Institute of Scientific and Technical Information of China (English)
Xin Xiang-Jun; Ma Jian-Xin; Zhang Qi; Deng Chao-Gong; Wang Kui-Ru; Yu Chong-Xiu; Liu Bo
2009-01-01
This paper introduces the mid-span spectral inversion by four-wave mixing in a commercially available semiconductor optical amplifier (SOA) with a length of about 1.5 mm to optical label switching network based on combined frequency shift keying (FSK)-intensiy modulation (IM)/optical label-packet modulation to overcome the dispersion limitation of fiber.The 155 Mb/s-10 Gb/s combined FSK/IM signal is experimentally transmitted over a 100 km standard single mode fiber.10-10 and 10-9 BER (bit error ratio),or even better,is achieved for the FSK label and IM packet,respectively.The -19 dB power conversion efficiency is obtained for -1 nm wavelength detuning.
Simulation of Wave Overtopping of Maritime Structures in a Numerical Wave Flume
Directory of Open Access Journals (Sweden)
Tiago C. A. Oliveira
2012-01-01
Full Text Available A numerical wave flume based on the particle finite element method (PFEM is applied to simulate wave overtopping for impermeable maritime structures. An assessment of the performance and robustness of the numerical wave flume is carried out for two different cases comparing numerical results with experimental data. In the first case, a well-defined benchmark test of a simple low-crested structure overtopped by regular nonbreaking waves is presented, tested in the lab, and simulated in the numerical wave flume. In the second case, state-of-the-art physical experiments of a trapezoidal structure placed on a sloping beach overtopped by regular breaking waves are simulated in the numerical wave flume. For both cases, main overtopping events are well detected by the numerical wave flume. However, nonlinear processes controlling the tests proposed, such as nonlinear wave generation, energy losses along the wave propagation track, wave reflection, and overtopping events, are reproduced with more accuracy in the first case. Results indicate that a numerical wave flume based on the PFEM can be applied as an efficient tool to supplement physical models, semiempirical formulations, and other numerical techniques to deal with overtopping of maritime structures.
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...... with time and space that challenge the current coupled modeling system. The conventional approach of estimating the momentum exchange is through parameterizing the aerodynamic roughness length (z0) with wave parameters such as wave age, steepness, significant wave height, etc. However, it is found in storm...
NUMERICAL SIMULATIONS OF NONLINEAR WAVE TRANSFORMATION AROUND WAVE-PERMEABLE STRUCTURE
Institute of Scientific and Technical Information of China (English)
Li Xi; YAN Yi-xin
2005-01-01
The problem of wave partial/full reflection and transmission by wave-permeable structure is approached by solving the shape-related function with focus on the understanding of wave attenuation.2D depth-averaged Boussinesq type wave equations are given with new damping item in simulating the nonlinear wave transmission through wave-permeable structure.1D wave equation is examined to give the analytical expression of the absorbing coefficient, and is compared with laboratory data in flume to calibrate the coefficients, and the expression is applied directly in modified Boussinesq type equations.Compared with wave basin data for various incident wave conditions,the accurate predictions of combined diffraction-refraction effects in simulating nonlinear wave going through wave-permeable breakwater in the engineering application can be obtained.It shows that wave-permeable breakwaters with proper absorbing effects can be used as an effective alternative to massive gravity breakwaters in reduction of wave transmission in shallow water.
Numerical Simulation of Waves Generated by Seafloor Movements
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that the linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations ηmax0 are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on ηmax0 are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the ηmax0 near-linearly varies with the wave amplitudes of the surface waves, and the ηmax0 has significant depndences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, and these differences are significantly affected by the wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.
Numerical simulation of converging shock waves
Yee, Seokjune; Abe, Kanji
We can achieve the high pressure and high temperature state of gas if the shock wave converges stably. In order to check the stability of the converging shock wave, we introduce two kinds of perturbed initial conditions. The Euler equations of conservation form are integrated by using explicit Non-Muscl TVD finite difference scheme.
Energy Technology Data Exchange (ETDEWEB)
Mouret, L
2002-11-01
The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)
Simulation of Typhoon-Driven Waves in the Yangtze Estuary with Multiple-Nested Wave Models
Institute of Scientific and Technical Information of China (English)
XU Fu-min; Will Perrie; ZHANG Jun-lun; SONG Zhi-yao; Bechara Toulany
2005-01-01
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.
Wave Packets can Factorize Numbers
Mack, H; Haug, F; Freyberger, M; Schleich, W P; Mack, Holger; Bienert, Marc; Haug, Florian; Freyberger, Matthias; Schleich, Wolfgang P.
2002-01-01
We draw attention to various aspects of number theory emerging in the time evolution of elementary quantum systems with quadratic phases. Such model systems can be realized in actual experiments. Our analysis paves the way to a new, promising and effective method to factorize numbers.
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Numerical simulation of the resonantly excited capillary-gravity waves
Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya
2015-11-01
Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.
Nonlinear numerical simulation on extreme-wave kinematics
Institute of Scientific and Technical Information of China (English)
NING Dezhi; TENG Bin; LIU Shuxue
2009-01-01
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is "adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.
Wave energy power take off system control and simulation
Energy Technology Data Exchange (ETDEWEB)
Zhoul, Z.; Holland, P.M.; Igic, P. [Swansea Univ., Swansea, Wales (United Kingdom). School of Engineering; Knapp, W. [Technische Univ. Muenchen, Munich (Germany); MacEnri, J. [ESB International, Dublin (Ireland); Srensen, H.Ch.; Friis-Madsen, E. [Wave Dragon APS and LTD, Copenhagen (Denmark)
2008-07-01
The generation of electric power from wave energy using an offshore wave energy take-off system has received global interest. Several different wave energy take off techniques have been suggested. Among these, the Wave Dragon is one of the most efficient wave energy conversion systems. This paper presented a wave energy power take off system control and simulation scheme. The characteristics of low pressure hydro turbine were described. A variable speed control scheme using IGBT alternating current/direct current converter for low-head hydro-turbine was described in order to achieve maximum efficiency. The electrical system configuration, operation and grid connection issues were presented. Last, in order to investigate the long electro-mechanical process, a simulation model was developed for simulating the generator-turbine starting-stop process. The simulated parameters included the effects of the water head on the torque, speed and output power. Simulation results were presented and discussed. It was concluded that the proposed model is suitable for investigating the overall performance of a wave energy power take off system. 12 refs., 14 figs.
Numerical simulation of sediment transport in coastal waves and wave-induced currents
Institute of Scientific and Technical Information of China (English)
TANG Jun; LYU Yigang; SHEN Yongming
2016-01-01
Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems. The present study provided a numerical scheme for sediment transport in coastal waves and wave-induced currents. In the scheme, the sand transport model was implemented with wave refraction-diffraction model and near-shore current model. Coastal water wave was simulated by using the parabolic mild-slope equation in which wave refraction, diffraction and breaking effects are considered. Wave-induced current was simulated by using the nonlinear shallow water equations in which wave provides radiation stresses for driving current. Then, sediment transport in waves and wave-induced currents was simulated by using the two-dimensional suspended sediment transport equations for suspended sediment and the bed-load transport equation for bed load. The numerical scheme was validated by experiment results from the Large-scale Sediment Transport Facility at the US Army Corps of Engineer Research and Development Center in Vicksburg. The numerical results showed that the present scheme is an effective tool for modeling coastal sediment transport in waves and near-shore currents.
Modeling the dynamics of intense internal waves on the shelf
Talipova, T. G.; Pelinovsky, E. N.; Kurkin, A. A.; Kurkina, O. E.
2014-11-01
The transformation of the internal wave packet during its propagation over the shelf of Portugal was studied in the international experiment EU MAST II MORENA in 1994. This paper presents the results of modeling of the dynamics of this packet under hydrological conditions along the pathway of its propagation. The modeling was performed on the basis of the generalized Gardner-Ostrovskii equation, including inhomogeneous hydrological conditions, rotation of the Earth, and dissipation in the bottom boundary layer. We also discuss the results of the comparison of the observed and simulated forms and phases of individual waves in a packet at reference points.
Continuity waves in fully resolved simulations of settling particles
Willen, Daniel; Sierakowski, Adam; Prosperetti, Andrea
2016-11-01
Fully resolved simulations of 500 to 2,000 particles settling in a fluid have been conducted with the Physalis method. A new approach to the reconstruction of pseudo-continuum fields is described and is used to examine the results with the purpose of identifying concentration waves. The velocity of concentration waves is successfully deduced from the simulations. A comparison of the results with continuity wave theory shows good agreement. Several new insights about the particle microstructure conditionally averaged on volume fraction and velocity are also described. This work is supported by NSF award CBET1335965.
Surface wave modelling and simulation for wave tanks and coastal areas
Groesen, van, E.; Bunnik, T.; Andonowati
2011-01-01
For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required wave maker motion into the downstream waves is very helpful. This paper describes an efficient hybrid spatial-spectral code that can deal with simulations above flat and varying bottom. The accurac...
3D Ultrasonic Wave Simulations for Structural Health Monitoring
Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.
2011-01-01
Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.
Laboratory simulation of magnetospheric chorus wave generation
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.
2017-01-01
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. A laboratory experiment (Van Compernolle et al 2015 Phys. Rev. Lett. 114 245002, An et al 2016 Geophys. Res. Lett.) in the large plasma device at UCLA was designed to closely mimic the scaled plasma parameters observed in the inner magnetosphere, and shed light on the excitation of discrete frequency whistler waves. It was observed that a rich variety of whistler wave emissions is excited by a gyrating electron beam. The properties of the whistler emissions depend strongly on plasma density, beam density and magnetic field profiles.
Roll waves numerical simulation in closed channels
2013-01-01
Resumo: Utilizando um método numérico especializado em problemas hiperbólicos chamado Riemann Solver, é feito um estudo para avaliar o processo de evolução de roll waves em canais fechados. Todo o estudo se baseia em fenômenos de propagação de ondas hiperbólicas do tipo ondas de gravidade. Foi utilizado um modelo unidimensional para representar a dinâmica das roll waves. Inicialmente foi feita uma análise das velocidades características envolvidas, a qual indicou, para o arranjo estratificado...
Large Eddy Simulation for Wave Breaking in the Surf Zone
Institute of Scientific and Technical Information of China (English)
白玉川; 蒋昌波; 沈焕庭
2001-01-01
In this paper, the large eddy simulation method is used combined with the marker and cell method to study the wave propagation or shoaling and breaking process. As wave propagates into shallow water, the shoaling leads to the increase of wave height, and then at a certain position, the wave will be breaking. The breaking wave is a powerful agent for generating turbulence, which plays an important role in most of the fluid dynamic processes throughout the sarf zone, such as transformation of wave energy, generation of near-shore current and diffusion of materials. So a proper numerical model for describing the turbulence effect is needed. In this paper, a revised Smagorinsky subgrid-scale model is used to describe the turbulence effect. The present study reveals that the coefficient of the Smagorinsky model for wave propagation or breaking simulation may be taken as a varying function of the water depth and distance away from the wave breaking point. The large eddy simulation model presented in this paper has been used to study the propagation of the solitary wave in constant water depth and the shoaling of the non-breaking solitary wave on a beach. The model is based on large eddy simulation, and to track free-surface movements, the Tokyo University Modified Marker and Cell (TUMMAC) method is employed. In order to ensure the accuracy of each component of this wave mathematical model,several steps have been taken to verify calculated solutions with either analytical solutions or experimental data. For non-breaking waves, very accurate results are obtained for a solitary wave propagating over a constant depth and on a beach. Application of the model to cnoidal wave breaking in the surf zone shows that the model results are in good agreement with analytical solution and experimental data. From the present model results, it can be seen that the turbulent eddy viscosity increases from the bottom to the water surface in surf zone. In the eddy viscosity curve, there is a
Simulation of the interaction of tsunami waves with underwater barriers
Boshenyatov, B. V.; Zhiltsov, K. N.
2016-10-01
This article examines the experimental and numerical simulation of the processes of distribution and interaction of tsunami-type gravitational waves with one barrier and a complex of two barriers. Experiments were conducted in a hydrodynamic channel using high-precision sensors for the measurement of the wave processes. Mathematical modelling was carried out using two-dimensional non-stationary Navier-Stokes equations for an incompressible fluid using the freely available software package OpenFOAM. It is shown that for small-amplitude waves, when their advance speed is described by the linear theory of shallow water, the interaction with the underwater barriers has important non-linear and viscous effects. Our results explain why a complex of two barriers spaced at a definite distance from each other has a significant impact on the power of the transmitted wave. The energy of the waves passing through the two barriers can be reduced to 35% of the incident wave.
Efficient Simulation of Freak Waves in Random Oceanic Sea States
Institute of Scientific and Technical Information of China (English)
ZHANG Yun-qiu; HU Jin-peng; ZHANG Ning-chuan
2009-01-01
Numerical simulations of freak wave generation are studied in random oceanic sea states described by JONSWAP spectrum.The evolution of initial random wave trains is numerically carried out within the framework of the modified fourorder nonlinear Schruedinger equation (mNLSE),and some involved influence factors are also discussed.Results show that if the sideband instability is satisfied,a random wave train may evolve into a freak wave train,and simultaneously the setting of the Phillips parameter and enhancement coefficient of JONSWAP spectrum and initial random phases is very important for the formation of freak waves.The way to increase the generation efficiency of freak waves thsough changing the involved parameters is also presented.
Design and Control of Full Scale Wave Energy Simulator System
DEFF Research Database (Denmark)
Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm
2012-01-01
For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...
Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves
Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.
2013-01-01
Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.
Wave overtopping simulator tests in Vietnam
Trung, L.H.; Van der Meer, J.M.; Schiereck, G.J.; Cat, V.M.; Van der Meer, G.
2010-01-01
Sea dikes in Viet Nam have been built up during a long history. Every year, about 4 to 6 storms attack the coast and cause severe damages of the sea dikes. Till now, little is known about strength and stability of the inner slope covered with grass under impacts of wave overtopping during storm
Wave overtopping simulator tests in Vietnam
Trung, L.H.; Van der Meer, J.M.; Schiereck, G.J.; Cat, V.M.; Van der Meer, G.
2010-01-01
Sea dikes in Viet Nam have been built up during a long history. Every year, about 4 to 6 storms attack the coast and cause severe damages of the sea dikes. Till now, little is known about strength and stability of the inner slope covered with grass under impacts of wave overtopping during storm surg
Variational approaches to water wave simulations
Gagarina, Elena Vitalyevna
2014-01-01
This thesis starts with the study the theoretical aspects of water wave modelling using a variational framework, which is directly associated with phase space and energy conservation laws. In particular, we focus on a new variational model based on the work of Cotter and Bokhove. The new model inclu
Numerical Simulation of Sediment Transport due to Plunging Breaking Waves
DEFF Research Database (Denmark)
Pedersen, Claus
A numerical model simulating the sediment transport due to plunging breaking waves has been developed. The model is two-dimensional, assuming conditions in the long-shore direction invariable. A plunging breaker is simulated by superimposing a non-breaking wave with a jet. Based on the description...... of the sediment transport rates, a simple model describing the morphological changes has been applied to simulate the evolution of a plunge point generated vorticity included, the bottom topography from the experiments by Dette & Uliczka was not in equilibrium according to the model....
Institute of Scientific and Technical Information of China (English)
关大任; 赵显; 邓从豪; John Z.H.Zhang
1997-01-01
Three-dimensional quantum mechanical calculations for vibrational predissociation of HeI2(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approxima tion.The total and partial decay widths,lifetimes,rates and their dependence on initial vibrational states were obtained for HeI2 at low initial vibrational excited levels.Our calculations show that the calculated tota decay widths,lifetimes and rates agree well with those extrapolated from experimental data available The predicted total decay widths as a function of initial vibrational states exhibit highly nonlinear behavior.The very short propagation time (less.than 1 ps) required in the golden rule wave packet calculation is determined by the duration time of the final state inter-action between the fragments on the vibrationally deexcited adiabatic potential surface.The final state interaction between the fragments is shown to play an important role in determining the final rotational distri
Producing Acoustic 'Frozen Waves': Simulated experiments
Prego, Jose' L; Recami, Erasmo; Hernandez-Figueroa, Hugo E
2012-01-01
In this paper we show how appropriate superpositions of Bessel beams can be successfully used to obtain arbitrary longitudinal intensity patterns of nondiffracting ultrasonic wavefields with very high transverse localization. More precisely, the method here described allows generating longitudinal acoustic pressure fields, whose longitudinal intensity patterns can assume, in principle, any desired shape within a freely chosen interval 0
Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator
Directory of Open Access Journals (Sweden)
Xiaoqiu Xu
2017-01-01
Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.
Performance optimization for multicast packet authentication
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In secure multicast, one of the challenging problems is the authentication of multicast packets. This paper presents a novel scheme to address this problem, which combines ideas in both the hash tree schemes and the hash chain schemes. In this scheme, a group of packets is partitioned into equal-sized subgroups. Then a Merkle hash tree is built for each subgroup of packets, and the hash value of every root is appended to preceding packets to form hash chains. Its performance is analyzed and simulated using Biased Coin Toss loss model and 2-state Markov Chain loss model, respectively. Compared with the original hash chain schemes, results show that this scheme is much more efficient in term of communication overhead.
Numerical simulation of landslide-generated impulse wave
Institute of Scientific and Technical Information of China (English)
赵兰浩; 毛佳; 刘晓青; 李同春
2014-01-01
A numerical model is proposed for the simulation of impulse waves generated by landslides. The fluid-like landslide is modeled as a generalized non-Newtonian visco-plastic fluid. The conservative level set method is extended to the n-phase flow and applied to capture the interfaces of air, water and landslide. Numerical results show an excellent performance of the current model to capture the whole process of the landslide and the impulse wave generation.
SIMULATION OF ANALYTICAL TRANSIENT WAVE DUE TO DOWNWARD BOTTOM THRUST
Directory of Open Access Journals (Sweden)
Sugih Sudharma Tjandra
2015-11-01
Full Text Available Generation process is an important part of understanding waves, especially tsunami. Large earthquake under the sea is one major cause of tsunamis. The sea surface deforms as a response from the sea bottom motion caused by the earthquake. Analytical description of surface wave generated by bottom motion can be obtained from the linearized dispersive model. For a bottom motion in the form of a downward motion, the result is expressed in terms of improper integral. Here, we focus on analyzing the convergence of this integral, and then the improper integral is approximated into a finite integral so that the integral can be evaluated numerically. Further, we simulate free surface elevation for three different type of bottom motions, classified as impulsive, intermediate, and slow movements. We demonstrate that the wave propagating to the right, with a depression as the leading wave, followed with subsequent wave crests. This phenomena is often observed in most tsunami events.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
A Numerical Simulation of a Plunging Breaking Wave
Adams, Paul; Stephens, Mike; Brucker, Kyle A; O'Shea, Thomas; Dommermuth, Douglas
2009-01-01
This article describes the fluid dynamics video, "A Numerical Simulation of a Plunging Breaking Wave", which was submitted to the gallery of fluid motion at the 2009 APS/DFD conference. The simulation was of a deep-water plunging breaking wave. It was a two-phase calculation which used a Volume of Fluid (VOF) method to simulate the interface between the two immiscible fluids. Surface tension and viscous effects were not considered. The initial wave was generated by applying a spatio-temporal pressure forcing on the free surface. The video shows the 50% isocontour of the volume fraction from several different perspectives. Significant air entrainment is observed as well as the presence of stream-wise vortex structures.
Enhancement of Non-Air Conducted Speech Based on Wavelet-Packet Adaptive Threshold
Directory of Open Access Journals (Sweden)
Xijing Jing
2013-01-01
Full Text Available This study developed a new kind of speech detecting method by using millimeter wave. Because of the advantage of the millimeter wave, this speech detecting method has great potential application and may provide some exciting possibility for wide applications. However, the MMW conduct speech is in less intelligible and poor audibility since it is corrupted by additive combined noise. This paper, therefore, also developed an algorithm of wavelet packet threshold by using hard threshold and soft threshold for removing noise based on the good capability of wavelet packet for analyzing time-frequency signal. Comparing to traditional speech enhancement algorithm, the results from both simulation and listening evaluation suggest that the proposed algorithm takes on a better performance on noise removing while the distortion of MMW radar speech remains acceptable, the enhanced speech also sounds more pleasant to human listeners, resulting in improved results over classical speech enhancement algorithms.
Multiscale Simulation of Breaking Wave Impacts
DEFF Research Database (Denmark)
Lindberg, Ole
-distance based adaptivity method and redistributed via a point position filtering method. The incompressible and inviscid ALE-WLS model is applied to the following standard validation test cases: deforming elliptical drop, small amplitude standing waves and the dam break problem. The deforming elliptical drop...... and mass conservation is satisfied through a pressure-corrector type calculation of the pressure. The weighted least squares method (WLS) is combined with approximate Riemann solvers to introduce numerical smoothing of the solution around steep gradients in the velocity and pressure fields. The Poisson...... equation is solved and the pressure boundary conditions are satisfied by a generalized finite pointset method (GFPM); This provides a geometrically flexible and stable solution for the fluid pressure. The numerical approximations of these equations are performed on unstructured point distributions...
Simulation of Random Waves and Associated Laminar Bottom Shear Stresses
Institute of Scientific and Technical Information of China (English)
Mao-Lin SHEN; Ching-Jer HUANG
2008-01-01
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundary conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves are determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the numerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug's model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.
Wave climate of the Adriatic Sea: a future scenario simulation
Directory of Open Access Journals (Sweden)
A. Benetazzo
2012-06-01
Full Text Available We present a study on expected wind wave severity changes in the Adriatic Sea for the period 2070–2099 and their impact on extremes. To do so, the phase-averaged spectral wave model SWAN is forced using wind fields computed by the high-resolution regional climate model COSMO-CLM, the climate version of the COSMO meteorological model downscaled from a global climate model running under the IPCC-A1B emission scenario. Namely, the adopted wind fields are given with a horizontal resolution of 14 km and 40 vertical levels, and they are prepared by the Italian Aerospace Research Centre (CIRA. Firstly, in order to infer the wave model accuracy in predicting seasonal variability and extreme events, SWAN results are validated against a control simulation, which covers the period 1965–1994. In particular, numerical predictions of the significant wave height H_{s} are compared against available in-situ data. Further, a statistical analysis is carried out to estimate changes on wave storms and extremes during the simulated periods (control and future scenario simulations. In particular, the generalized Pareto distribution is used to predict changes of storm peak H_{s} for frequent and rare storms in the Adriatic Sea. Finally, Borgman's theory is applied to estimate the spatial pattern of the expected maximum wave height H_{max} during a storm, both for the present climate and that of the future scenario. Results show a future wave climate in the Adriatic Sea milder than the present climate, even though increases of wave severity can occur locally.
Reliable Damping of Free Surface Waves in Numerical Simulations
Peric, Robinson
2015-01-01
This paper generalizes existing approaches for free-surface wave damping via momentum sinks for flow simulations based on the Navier-Stokes equations. It is shown in 2D flow simulations that, to obtain reliable wave damping, the coefficients in the damping functions must be adjusted to the wave parameters. A scaling law for selecting these damping coefficients is presented, which enables similarity of the damping in model- and full-scale. The influence of the thickness of the damping layer, the wave steepness, the mesh fineness and the choice of the damping coefficients are examined. An efficient approach for estimating the optimal damping setup is presented. Results of 3D ship resistance computations show that the scaling laws apply to such simulations as well, so the damping coefficients should be adjusted for every simulation to ensure convergence of the solution in both model and full scale. Finally, practical recommendations for the setup of reliable damping in flow simulations with regular and irregular...
Design of full scale wave simulator for testing Power Take Off systems for wave energy converters
DEFF Research Database (Denmark)
Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard
2016-01-01
For wave energy to become a major future contributor of renewable energy it is a requirement that the efficiency and reliability of the Power Take-Off (PTO) systems is significantly improved. However, the cost of installing and testing PTO-systems at sea is very high. The focus of the current paper...... is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO......-systems. The paper presents the designed system, including the major design considerations. A model of the complete system is presented and controllers for the system are developed. These enable the system to emulate the wave behavior and the wave–float interaction. Finally both simulation and experimental results...
Characteristics of gravity waves generated in a baroclinic instability simulation
Directory of Open Access Journals (Sweden)
Y.-H. Kim
2015-11-01
Full Text Available An idealized baroclinic instability case is simulated using a ~ 10 km resolution global model to investigate the characteristics of gravity waves (GWs generated in the baroclinic life cycle. Three groups of GWs (W1–W3 appear around the high-latitude surface trough at the mature stage of the baroclinic wave. They have horizontal and vertical wavelengths of 40–400 and 2.9–9.8 km, respectively, in the upper troposphere. The two-dimensional phase-velocity spectrum of the waves is arc-shaped with a peak at 17 m s−1 eastward, which is difficult for the waves to propagate upward through the tropospheric westerly jet. At the breaking stage of the baroclinic wave, a midlatitude surface low is isolated from the higher-latitude trough, and two groups of quasi-stationary GWs (W4 and W5 appear near the surface low. These waves have horizontal and vertical wavelengths of 60–400 and 4.9–14 km, respectively, and are able to propagate vertically for long distances. The generation mechanism of the simulated GWs is discussed.
Waveform and packet structure of lion roars
Directory of Open Access Journals (Sweden)
W. Baumjohann
Full Text Available The Equator-S magnetometer is very sensitive and has a sampling rate of normally 128 Hz. The high sampling rate allows for the first time fluxgate magnetometer measurements of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dayside magnetosheath. The so-called lion roars, typically seen by the Equator-S magnetometer at the bottom of the magnetic troughs of magnetosheath mirror waves, are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.25 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5–1 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is usually smaller than 1.5^{°}.
Key words. Interplanetary physics (MHD waves and turbulence; plasma waves and turbulence
PIC simulations of wave-mode conversion on the plasmapause
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2017-04-01
We study a conversion process from the electron Bernstein modes to electromagnetic free space modes using a 2D-3V electromagnetic PIC code with predefined particle density irregularities. We use a Gaussian profile of the particle density irregularity along the external magnetic field. Our results show the electron Bernstein modes generated by the ring-beam instability in the dense plasma region as well as their conversion into the electromagnetic waves. The resulting free space mode waves propagate out of the dense region perpendicular to magnetic field with the corresponding energy flux. Our simulation results are compared with measured data from Cluster and Van Allen Probes spacecraft. This wave mode conversion process might help us to explain generation of electromagnetic waves over the plasmapause density gradient.
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media
Quezada de Luna, Manuel
2013-07-14
We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.
Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines
DEFF Research Database (Denmark)
Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu
2016-01-01
A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen......A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed...... and suspended load descriptions forming the basis for seabed morphology. The model was successfully validated against experimental measurements involving scour development and eventual equilibrium in pure-current flows over a range of Shields parameters characteristic of both clear-water and live-bed regimes....... This validation complements previously demonstrated accuracy for the same model in simulating pipeline scour processes in pure-wave environments. The model was subsequently utilized to simulate combined wave-plus-current scour over a wide range of combined Keulegan–Carpenter numbers and relative current strengths...
Simulation of guided wave propagation near numerical Brillouin zones
Kijanka, Piotr; Staszewski, Wieslaw J.; Packo, Pawel
2016-04-01
Attractive properties of guided waves provides very unique potential for characterization of incipient damage, particularly in plate-like structures. Among other properties, guided waves can propagate over long distances and can be used to monitor hidden structural features and components. On the other hand, guided propagation brings substantial challenges for data analysis. Signal processing techniques are frequently supported by numerical simulations in order to facilitate problem solution. When employing numerical models additional sources of errors are introduced. These can play significant role for design and development of a wave-based monitoring strategy. Hence, the paper presents an investigation of numerical models for guided waves generation, propagation and sensing. Numerical dispersion analysis, for guided waves in plates, based on the LISA approach is presented and discussed in the paper. Both dispersion and modal amplitudes characteristics are analysed. It is shown that wave propagation in a numerical model resembles propagation in a periodic medium. Consequently, Lamb wave propagation close to numerical Brillouin zone is investigated and characterized.
Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves
Sterlini, F.; Hulscher, S.J.M.H.; Hanes, D.M.
2009-01-01
In this paper we present a detailed comparison between measured features of the Golden Gate sand wave field and the results of a nonlinear sand wave model. Because the Golden Gate sand waves exhibit large variation in their characteristics and in their environmental physics, this area gives us the opportunity to study sand wave variation between locations, within one well-measured, large area. The nonlinear model used in this paper is presently the only tool that provides information on the nonlinear evolution of large-amplitude sand waves. The model is used to increase our understanding of the coupling between the variability in environmental conditions and the sand wave characteristics. Results show that the model is able to describe the variation in the Golden Gate sand waves well when both the local oscillating tidal current and the residual current are taken into account. Current and water depth seem to be the most important factors influencing sand wave characteristics. The simulation results give further confidence in the underlying model hypothesis and assumptions. Copyright 2009 by the American Geophysical Union.
Yao, Cui-Xia; Zhang, Pei-Yu
2014-07-10
The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed.
Voice communications over packet radio networks
Seah, M. M.
1985-03-01
The use of packet virtual circuit technique for voice communications in military radio networks was investigated. The work was concerned with various aspects of networking which include network modeling, communications techniques, traffic analysis and network control. An attempt has been made to develop a simple yet efficient time slot assignment algorithm . This was analyzed under a variety of slot depths and networks topologies using computer simulation. The Erlang' B results were used to provide more insight into the channel characteristics of the packet radio networks. The capabilities of implementing TDMA/CDMA hybrid schemes in the system were scrutinized. A method to estimate the transmission capacity of the inter-node links was found. We demonstrate its effectiveness in controlling local congestion by computer simulation. Graphical results were presented to highlight the behavior of the proposed packet radio networks. We concluded that an appropriate link weight function would provide efficient and reliable network services.
Simulation of Surface Wave with Large Eddy Simulation in σ-Coordinate System
Institute of Scientific and Technical Information of China (English)
王玲玲
2004-01-01
A three-dimensional numerical model in the σ-coordinate system is developed to study the problem of waves. Turbulence effects are modeled by a subgrid-scale (SGS) model with the concept of large eddy simulation (LES). The σ-coordinate transformation is introduced to map the irregular physical domain of the wavy free surface and uneven bottom onto the regular computational domain of the shape of rectangular prism. The operator splitting method, which splits the solution procedure into the advection, diffusion, and propagation steps, is used to solve the modified Navier-Stokes Equation.The model is used to simulate the propagation of solitary wave and wave passing over a submerged breakwater. Numerical results are compared with available analytical solutions and experimental data in terms of velocity profiles, free surface displacement, and energy conservation. Good agreement is obtained. The method is proved to be of high accuracy and efficiency in simulating surface wave propagation and wave-structure interaction. It is suitable for the large and irregular physical domain, and requiring the non-uniform grid system. The present work provides a foundation for further studies of random waves, wave-structure interaction, wave-discharge interaction,etc.
Device for Underwater Laboratory Simulation of Unconfined Blast Waves
Courtney, Elijah; Courtney, Michael
2015-01-01
Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.
Simulated Obstructive Sleep Apnea Increases P-Wave Duration and P-Wave Dispersion
Wons, Annette M.; Rossi, Valentina; Bratton, Daniel J.; Schlatzer, Christian; Schwarz, Esther I.; Camen, Giovanni; Kohler, Malcolm
2016-01-01
Background A high P-wave duration and dispersion (Pd) have been reported to be a prognostic factor for the occurrence of paroxysmal atrial fibrillation (PAF), a condition linked to obstructive sleep apnea (OSA). We tested the hypothesis of whether a short-term increase of P-wave duration and Pd can be induced by respiratory manoeuvres simulating OSA in healthy subjects and in patients with PAF. Methods 12-lead-electrocardiography (ECG) was recorded continuously in 24 healthy subjects and 33 patients with PAF, while simulating obstructive apnea (Mueller manoeuvre, MM), obstructive hypopnea (inspiration through a threshold load, ITH), central apnea (AP), and during normal breathing (BL) in randomized order. The P-wave duration and Pd was calculated by using dedicated software for ECG-analysis. Results P-wave duration and Pd significantly increased during MM and ITH compared to BL in all subjects (+13.1ms and +13.8ms during MM; +11.7ms and +12.9ms during ITH; p<0.001 for all comparisons). In MM, the increase was larger in healthy subjects when compared to patients with PAF (p<0.05). Conclusion Intrathoracic pressure swings through simulated obstructive sleep apnea increase P-wave duration and Pd in healthy subjects and in patients with PAF. Our findings imply that intrathoracic pressure swings prolong the intra-atrial and inter-atrial conduction time and therefore may represent an independent trigger factor for the development for PAF. PMID:27071039
Compressive spectral method for the simulation of the water waves
Bayindir, Cihan
2015-01-01
In this paper an approach for decreasing the computational effort required for the spectral simulations of the water waves is introduced. Signals with majority of the components zero, are known as the sparse signals. Like majority of the signals in the nature it can be realized that water waves are sparse either in time or in the frequency domain. Using the sparsity property of the water waves in the time or in the frequency domain, the compressive sampling algorithm can be used as a tool for improving the performance of the spectral simulation of the water waves. The methodology offered in this paper depends on the idea of using a smaller number of spectral components compared to the classical spectral method with a high number of components. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique, it is shown that the water wave field can be reconstructed with a significantly better efficiency compared to the classical spectral method w...
FEM Simulations of Leaky Lamb Wave in Ultrasonic Waveguide Sensor
Energy Technology Data Exchange (ETDEWEB)
Bae, Jin Ho; Joo, Young Sang; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2011-05-15
As the sodium coolant of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection cannot be used for carrying out an in-service inspection of the internal structures under a sodium level. An ultrasonic wave should be applied for an under-sodium viewing of the internal structures in a reactor vessel. Recently, a noble plate-type ultrasonic waveguide sensor has been developed for versatile applications in an under-sodium viewing application. The beam profile of a A{sub 0}-mode leaky Lamb wave of the waveguide sensor affects the resolution of visualization image in under-sodium viewing. In the design and manufacture of the waveguide sensor, the finite element method (FEM) modeling and simulation of the propagation of a leaky Lamb wave is required for the estimation and optimization of the waveguide sensor design parameters. In the previous research, the simple 2D modeling and simulation of the waveguide sensor had been carried out. In this work, FEM simulation of the propagation and radiation of the leaky Lamb wave in the waveguide sensor is performed for the vertical and lateral beam profile analysis using the pseudo 3D modeling including the wedge
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Kinetic simulations of ladder climbing by electron plasma waves
Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, I. Y.; Fisch, N. J.
2017-05-01
The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015), 10.1103/PhysRevLett.115.075001] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves per se.
Numerical simulation for explosion wave propagation of combustible mixture gas
Institute of Scientific and Technical Information of China (English)
WANG Cheng; NING Jian-guo; MA Tian-bao
2008-01-01
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code, Young's technique was employed to track the interface between the explosion products and air, and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct, for point initiation, the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall, multi-peak values appear on pressure-time curve, and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct, explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products, and indicate that the ignition model and multi-material interface treatment method are feasible.
Numerical Simulation of Wave Interaction with Moving Net Structures
DEFF Research Database (Denmark)
Chen, Hao; Christensen, Erik Damgaard
2015-01-01
Fluid structure interaction is an important issue in designof many engineering systems including offshore fish cages. As a first step to develop a coupled CFD/FEM model, in the present study a moving porous media model has been developed in the open source library Open FOAM. The net structure...... was described as a sheet of porous media with prescribed rigid body motion and mesh motion was incorporated to conform the motion of the net. Free surface wave generation and absorption framework was also introduced to simulate wave interaction with moving net structures. The results showed that mesh motion...... with moving net structures....
Large Eddy Simulation of the ventilated wave boundary layer
DEFF Research Database (Denmark)
Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu
2006-01-01
A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... size. The results indicate that the large eddies develop in the resolved scale, corresponding to fluid with an effective viscosity decided by the sum of the kinematic and subgrid viscosity. Regarding case 2, the results are qualitatively in accordance with experimental findings. Injection generally...... significantly. Ventilation therefore results in a net current, even in symmetric waves....
Wide-band slow-wave systems simulation and applications
Staras, Stanislovas
2012-01-01
The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut
Simulations of shock wave propagation in heterogeneous solids
Hertzsch, Jan-Martin; Ivanov, Boris A.; Kenkmann, Thomas
2002-11-01
Studies of shock wave propagation in heterogeneous materials are important for the interpretation of impact deformation and impact metamorphism of natural rocks. Reflection, refraction, and interference of shock waves caused by inhomogeneities lead to localised concentrations of pressure, temperature, and deformation rate, and in some cases to phase transitions. We have simulated numerically the shock compression of complex media in selected geometries with the aim of modelling shock recovery experiments and have observed reversible phase transitions in the target, shock heating alone may not be sufficient for the formation of impact melt, but localised shear at material boundaries results in considerable temperature increase which makes partial melting possible.
Energy Technology Data Exchange (ETDEWEB)
Wu, Hui [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Dalian 116023 (China); Liang, Dongyue [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhang, Pei-Yu, E-mail: pyzhang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Dalian 116023 (China)
2015-05-12
Highlights: • The reaction probabilities, characteristic ICS and DCS are presented. • The features of ICS and DCS are explained. • Different mechanisms relevant to several sets of J partial waves lead to the maxima in the DCS in the collision process. - Abstract: The state-to-state quantum dynamics of the abstraction channel of S({sup 3}P) + H{sub 2}(v = 0, j = 0) reaction is studied on the potential energy surface (PES) constructed by Lv et al. (2012), utilizing the product Jacobi coordinate based time-dependent wave packet method. Reaction probabilities and total integral cross section (ICS) agree well with previous results (Lv et al., 2012) for collision energies ranging from 0.8 to 1.4 eV. Results show that total differential cross sections (DCSs) for small collision energies have backward structures, whereas those for large collision energies are sideways peaked. Although the summed-over-all-final-state DCS for single collision energy is smoothly varied, the DCS of the product HS of a selected final state shows strong oscillations. For the selected final state, the opacity function derived by reaction probability multiplied by (2J + 1), shows that different mechanisms relevant to several sets of J partial waves lead to the maxima in the differential cross section in the collision process.
Self-Destructing Spiral Waves: Global Simulations of a Spiral Wave Instability in Accretion Disks
Bae, Jaehan; Hartmann, Lee; Richard, Samuel
2016-01-01
We present results from a suite of three-dimensional global hydrodynamic simulations which show that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break-down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport, and vertical mixing, at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter $\\alpha \\sim 5 \\times 10^{-4}$ in our reference model). The instability is found to operate in a wide-range of ...
Ducrozet, Guillaume; BONNEFOY, Félicien; Ferrant, Pierre
2016-01-01
International audience; This paper deals with the reproduction of unidirectional extreme events in a numerical wave basin. From a rogue wave measurement at a given location , experiments or numerical simulations are conducted with the same wave profiles using reproduction procedures. Although it is recognized that many different physical mechanisms may be at play in freak wave formation, reproduction procedures generally use frequency focusing to generate these high waves. This paper intends ...
Predictive simulation of guide-wave structural health monitoring
Giurgiutiu, Victor
2017-04-01
This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.
Optical Packet Switching Demostrator
DEFF Research Database (Denmark)
Mortensen, Brian Bach; Berger, Michael Stübert
2002-01-01
In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set-up and the m......In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set...
Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations
Li, H; Wendroff, B; Liska, R
2000-01-01
(abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
DEFF Research Database (Denmark)
Wright, J.C.; Bonoli, P.T.; Brambilla, M.;
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....
Simulations of nonlinear continuous wave pressure fields in FOCUS
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-01-01
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Energy Technology Data Exchange (ETDEWEB)
Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
The dynamics and excitation of torsional waves in geodynamo simulations
Teed, Robert J; Tobias, Steven M
2013-01-01
The predominant force balance in rapidly rotating planetary cores is between Coriolis, pressure, buoyancy and Lorentz forces. This magnetostrophic balance leads to a Taylor state where the spatially averaged azimuthal Lorentz force is compelled to vanish on cylinders aligned with the rotation axis. Any deviation from this state leads to a torsional oscillation, signatures of which have been observed in the Earth's secular variation and are thought to influence length of day variations via angular momentum conservation. In order to investigate the dynamics of torsional oscillations, we perform several three-dimensional dynamo simulations in a spherical shell. We find torsional oscillations, identified by their propagation at the correct Alfv\\'{e}n speed, in many of our simulations. We find that the frequency, location and direction of propagation of the waves are influenced by the choice of parameters. Torsional waves are observed within the tangent cylinder and also have the ability to pass through it. Severa...
Simulation and Analysis of Converging Shock Wave Test Problems
Energy Technology Data Exchange (ETDEWEB)
Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-21
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.
Fair packet scheduling in Wireless Mesh Networks
Nawab, Faisal
2014-02-01
In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol called Timestamp-ordered MAC (TMAC), aiming to alleviate the unfairness problem in WMNs. TMAC extends CSMA/CA by scheduling data packets based on their age. Prior to transmitting a data packet, a transmitter broadcasts a request control message appended with a timestamp to a selected list of neighbors. It can proceed with the transmission only if it receives a sufficient number of grant control messages from these neighbors. A grant message indicates that the associated data packet has the lowest timestamp of all the packets pending transmission at the local transmit queue. We demonstrate that a loose ordering of timestamps among neighboring nodes is sufficient for enforcing local fairness, subsequently leading to flow rate fairness in a multi-hop WMN. We show that TMAC can be implemented using the control frames in IEEE 802.11, and thus can be easily integrated in existing 802.11-based WMNs. Our simulation results show that TMAC achieves excellent resource allocation fairness while maintaining over 90% of maximum link capacity across a large number of topologies.
Simulation of hypersonic shock wave - laminar boundary layer interactions
Kianvashrad, N.; Knight, D.
2017-06-01
The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.
ETHERNET PACKET PROCESSOR FOR SOC APPLICATION
Directory of Open Access Journals (Sweden)
Raja Jitendra Nayaka
2012-07-01
Full Text Available As the demand for Internet expands significantly in numbers of users, servers, IP addresses, switches and routers, the IP based network architecture must evolve and change. The design of domain specific processors that require high performance, low power and high degree of programmability is the bottleneck in many processor based applications. This paper describes the design of ethernet packet processor for system-on-chip (SoC which performs all core packet processing functions, including segmentation and reassembly, packetization classification, route and queue management which will speedup switching/routing performance. Our design has been configured for use with multiple projects ttargeted to a commercial configurable logic device the system is designed to support 10/100/1000 links with a speed advantage. VHDL has been used to implement and simulated the required functions in FPGA.
Global 3D MHD Simulations of Waves in Accretion Discs
Directory of Open Access Journals (Sweden)
Romanova M.M.
2013-04-01
Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
Electromagnetic Wave Scattering on Nonspherical Particles Basic Methodology and Simulations
Rother, Tom
2009-01-01
This book gives a detailed overview of the theory of electromagnetic wave scattering on single, homogeneous, but nonspherical particles. A related Green’s function formalism is systematically developed which provides a powerful mathematical basis not only for the development of numerical approaches but also to discuss those general aspects like symmetry, unitarity, and the validity of Rayleigh’s hypothesis. Example simulations are performed in order to demonstrate the usefulness of the developed formalism as well as to introduce the simulation software which is provided on a CD-ROM with the book.
Bader, Ahmed
2014-05-22
A multihop network transmits a packet including a RACH area and a hop number. The RACH area includes a list of subcarriers. A source node in the network dynamically determines the size of the RACH area. A node in the network performs an open-loop transmit power control.
Bureau of Reclamation (Dept. of Interior), Washington, DC.
This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…
Wave overtopping simulator on a 1/15 slope protected by two local grass species
Trung, L.H.
2012-01-01
The phenomenon of wave overtopping during storms was simulated by the Wave Overtopping Simulator on a 1/15 grass covered slope. The four 'Wave Overtopping Simulator' tests were done within the framework of the Research project 'Super sea dike with high safety level and environmental friendly' funded
Rayleigh wave inversion using heat-bath simulated annealing algorithm
Lu, Yongxu; Peng, Suping; Du, Wenfeng; Zhang, Xiaoyang; Ma, Zhenyuan; Lin, Peng
2016-11-01
The dispersion of Rayleigh waves can be used to obtain near-surface shear (S)-wave velocity profiles. This is performed mainly by inversion of the phase velocity dispersion curves, which has been proven to be a highly nonlinear and multimodal problem, and it is unsuitable to use local search methods (LSMs) as the inversion algorithm. In this study, a new strategy is proposed based on a variant of simulated annealing (SA) algorithm. SA, which simulates the annealing procedure of crystalline solids in nature, is one of the global search methods (GSMs). There are many variants of SA, most of which contain two steps: the perturbation of model and the Metropolis-criterion-based acceptance of the new model. In this paper we propose a one-step SA variant known as heat-bath SA. To test the performance of the heat-bath SA, two models are created. Both noise-free and noisy synthetic data are generated. Levenberg-Marquardt (LM) algorithm and a variant of SA, known as the fast simulated annealing (FSA) algorithm, are also adopted for comparison. The inverted results of the synthetic data show that the heat-bath SA algorithm is a reasonable choice for Rayleigh wave dispersion curve inversion. Finally, a real-world inversion example from a coal mine in northwestern China is shown, which proves that the scheme we propose is applicable.
Wave optics approach for incoherent imaging simulation through distributed turbulence
Underwood, Thomas A.; Voelz, David G.
2013-09-01
An approach is presented for numerically simulating incoherent imaging using coherent wave optics propagation methods. The approach employs averaging of irradiance from uncorrelated coherent waves to produce incoherent results. Novel aspects of the method include 1) the exploitation of a spatial windowing feature in the wave optics numerical propagator to limit the angular spread of the light and 2) a simple propagation scaling concept to avoid aliased field components after the focusing element. Classical linear systems theory is commonly used to simulate incoherent imaging when it is possible to incorporate aberrations and/or propagation medium characteristics into an optical transfer function (OTF). However, the technique presented here is useful for investigating situations such as "instantaneous" short-exposure imaging through distributed turbulence and phenomena like anisoplanatism that are not easily modeled with the typical linear systems theory. The relationships between simulation variables such as spatial sampling, source and aperture support, and intermediate focal plane are discussed and the requirement or benefits of choosing these in certain ways are demonstrated.
CFD simulation of a 300 Hz thermoacoustic standing wave engine
Yu, Guoyao; Dai, W.; Luo, Ercang
2010-09-01
High frequency operation of standing wave thermoacoustic heat engines is attractive for space applications due to compact size and high reliability. To expedite practical use, further improvement and optimization should be based on deep understanding and quantitative analysis. This article focuses on using computational fluid dynamics (CFD) to investigate nonlinear phenomena and processes of a 300 Hz standing wave thermoacoustic engine (SWTE). The calculated model was tested in detail, which indicated that the co-axially stacked tube model was suitable for the simulation of SWTEs. Two methods of imposing temperature gradient across the stack were studied, and the processes of mean pressure increasing, pressure wave amplification and saturation were obtained under the thermal boundary condition of applying heating power. The acoustic fields were given, and the flow vortices and their evolution in both ends of the stack and resonator were observed. Moreover, a comparison between the simulation and experiments was made, which demonstrated the validity and power of the CFD simulation for characterizing complicated nonlinear phenomenon involved in the self-excited SWTEs.
Beggi, Andrea; Bordone, Paolo; Buscemi, Fabrizio; Bertoni, Andrea
2015-12-01
We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schrödinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states, and their interference pattern—controlled via magnetic field and/or area variation—reproduces the one of (Ji et al 2003 Nature 422 415). By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects.
Packet transport network in metro
Huang, Feng; Yi, Xiaobo; Zhang, Hanzheng; Gong, Ping
2008-11-01
IP packet based services such as high speed internet, IP voice and IP video will be widely deployed in telecom network, which make transport network evolution to packet transport network. Characteristics of transport network and requirements of packet transport network are analyzed, T-MPLS/MPLS-TP based PTN technology is given and it will be used in metro (access, aggregation and core) network.
Packet Queueing Delay in Resilient Packet Ring Network Nodes
Institute of Scientific and Technical Information of China (English)
史国炜; 方红波; 曲建岭; 曾烈光
2004-01-01
The packet queueing delay is one of the most important performance measures of a data network and is also a significant factor to be considered in the scheduling buffer design for a network node.This paper presents a traffic queueing model for resilient packet ring (RPR) networks and a method for quantitatively analyzing queueing delays in RPR nodes.The method was used to calculate the average queueing delays of different priority traffic for different transit queue modes.The simulations show that,in the transmit direction,lower priority traffic is delayed more than higher priority traffic,and that Class-A traffic is delayed more in a single-queue ring than in a dual-queue ring.In the transit direction,the secondary transit buffer in the dual-queue ring contributes more to the traffic delay than the primary transit buffer in the single-queue ring,which in turn causes more delay than the primary transit buffer in the dual-queue ring.
Institute of Scientific and Technical Information of China (English)
Shuang-jiang Lv; Pei-yu Zhang; Guo-zhong He
2012-01-01
A new potential energy surface is presented for the triplet state 3A' of the chemical reaction S(3P)+H2 from a set of accurate ab initio data.The single point energies are computed using highly correlated complete active space self-consistent-field and multi-reference configuration interaction wave functions with a basis set of aug-cc-pV5Z.We have fitted the full set of energy values using many-body expansion method with an Aguado-Paniagua function.Based on the new potential energy surface,we carry out the time-dependent wave packet scattering calculations over the collision energy range of 0.8-2.2 eV.Both the centrifugalsudden approximation and Coriolis Coupling cross sections are obtained.In addition,the total reaction probabilities are calculated for the reactant H2 initially in the vibrational states v=0-3 (j=0).It is found that initial vibrational excitation enhances the title reaction.
Wu, Hui; Liang, Dongyue; Zhang, Pei-Yu
2015-05-01
The state-to-state quantum dynamics of the abstraction channel of S(3P) + H2(v = 0, j = 0) reaction is studied on the potential energy surface (PES) constructed by Lv et al. (2012), utilizing the product Jacobi coordinate based time-dependent wave packet method. Reaction probabilities and total integral cross section (ICS) agree well with previous results (Lv et al., 2012) for collision energies ranging from 0.8 to 1.4 eV. Results show that total differential cross sections (DCSs) for small collision energies have backward structures, whereas those for large collision energies are sideways peaked. Although the summed-over-all-final-state DCS for single collision energy is smoothly varied, the DCS of the product HS of a selected final state shows strong oscillations. For the selected final state, the opacity function derived by reaction probability multiplied by (2J + 1), shows that different mechanisms relevant to several sets of J partial waves lead to the maxima in the differential cross section in the collision process.
Numerical simulations of shoaling internal solitary waves of elevation
Xu, Chengzhu; Subich, Christopher; Stastna, Marek
2016-07-01
We present high-resolution, two- and three-dimensional direct numerical simulations of large amplitude internal solitary waves of elevation on the laboratory scale, shoaling onto and over a small-amplitude shelf. The three-dimensional, mapped coordinate, spectral collocation method used for the simulations allows for accurate modelling of both the shoaling waves and the bottom boundary layer. The shoaling of the waves is characterized by the formation of a quasi-trapped core which undergoes a spatially growing stratified shear instability at its edge and a lobe-cleft instability in its nose. Both of these instabilities develop and three-dimensionalize concurrently, leading to strong bottom shear stress. We explore significant regions of Schmidt and Reynolds number space and demonstrate that the formation of shear instabilities during shoaling is robust and should be readily observable in a number of standard laboratory setups. In the experiments with a corrugated bottom boundary, boundary layer separation is found inside each of the corrugations during shoaling. This more complex boundary layer phenomenology precludes the formation of the lobe-cleft instability almost completely and hence provides a different mechanism for fluid and material exchange across the bottom boundary layer. Our analyses suggest that all of these wave-induced instabilities can lead to enhanced turbulence in the water column and increased shear stress on the bottom boundary. Through the generation and evolution of these instabilities, the shoaling of internal solitary waves of elevation is likely to provide systematic mechanisms for material mixing, cross-boundary layer transport, and sediment resuspension.
Numerical Simulation of Long-period Surface Wave in Sediments
Li, Yiqiong; Yu, Yanxiang
2016-04-01
Studies have shown that the western Taiwan coastal plain is influenced by long-period ground motion from the 1999 Chi-Chi, Taiwan, earthquake, and engineering structures with natural vibration long-period are damaged by strong surface wave in the western coastal plain. The thick sediments in the western coastal plain are the main cause of the propagation of strong long-period ground motion. The thick sediments similar to in the western coastal plain also exist in northern China. It is necessary to research the effects of thick sediments to long-period ground motion in northern China. The numerical simulation of ground motion based on theoretical seismology is one of important means to study the ground motion. We will carry out the numerical simulation of long-period ground motion in northern China by using the existing tomographic imaging results of northern China to build underground medium model, and adopting finite fault source model for wave input. In the process of simulation, our previous developed structure-preserving algorithm, symplectic discrete singular convolution differentiator (SDSCD), is used to deal with seismic wave field propagation. Our purpose is to reveal the formation and propagation of long-period surface wave in thick sediments and grasp the amplification effect of long-period ground motion due to the thick sediments. It will lay the foundation on providing the reference for the value of the long-period spectrum during determining the ground motion parameters in seismic design. This work has been supported by the National Natural Science Foundation of China (Grant No.41204046, 42574051).
Discrete event simulation of Maglev transport considering traffic waves
Directory of Open Access Journals (Sweden)
Moo Hyun Cha
2014-10-01
Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.
Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading
Institute of Scientific and Technical Information of China (English)
SONG Hai-Feng; LIU Hai-Feng; ZHANG Guang-Cai; ZHAO Yan-Song
2009-01-01
We undertake a numerical simulation of shock experiments on tin reported in the literature,by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β,γ and liquid phases.In the MSG model,the Bauschinger effect is considered to better describe the unloading behavior.The phase diagram and Hugoniot of tin are calculated by MEOS,and they agree well with the experimental data.Combined with the MEOS and MSG models,hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment.Moreover,by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin,we further discuss the complex behavior of tin under shock-wave loading.
Stabilization of Networked Control System with Packet-Dropout
Directory of Open Access Journals (Sweden)
Hooman Sanatizadeh
2014-10-01
Secondly, by above method an inverted pendulum which was controlled in a network with delays, is controlled in a network through packet-dropouts. simulation results show the effectiveness of the above method.
SDRAM-based packet buffer model for high speed switches
DEFF Research Database (Denmark)
Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert
2011-01-01
This article investigates the how the performance of SDRAM based packet buffering systems for high performance switches can be simulated using OPNET. In order to include the access pattern dependent performance of SDRAM modules in simulations, a custom SDRAM model is implemented in OPNET Modeller...... based on the specifications of a real-life DDR3-SDRAM chip. Based on this model the performance of different schemes for optimizing the performance of such a packet buffer can be evaluated. The purpose of this study is to find efficient schemes for memory mapping of the packet queues and I/O traffic...
Yang, Si-Tong; Wei, Jiu-Chuan; Cheng, Jiu-Long; Shi, Long-Qing; Wen, Zhi-Jie
2016-12-01
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity V x, V y, and V z for the same node in 3-D staggered-grid finite difference models by calculating the average value of V y, and V z of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways
Self-destructing Spiral Waves: Global Simulations of a Spiral-wave Instability in Accretion Disks
Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee; Richard, Samuel
2016-09-01
We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ˜ 5 × 10-4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10-5. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.
Voice Communications Over Packet Radio Networks.
1985-03-01
standpoint, the major difference between telephone networks and packet radio networks concerns the availabilty of time slots over each frame. The...mentioning that simulations require large amounts of detailed knowledge about the structure of the system and about patterns of usage . Simulation is...proposed time slot algorithm adopts. Moreover, the proposed time slot scheme may give more uniform usage of time slots in each time frame. In addition
RF Wave Simulation Using the MFEM Open Source FEM Package
Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.
2016-10-01
A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.
Large eddy simulation of vertical turbulent jets under JONSWAP waves
Institute of Scientific and Technical Information of China (English)
Jun Lu; Ling-Ling Wang; Hong-Wu Tang; Hui-Chao Dai
2011-01-01
The effect of random waves on vertical plane turbulent jets is studied numerically and the mechanism behind the interaction of the jet and waves is analyzed. The large eddy simulation method is used and the σ-coordinate system is adopted. Turbulence is modeled by a dynamic coherent eddy model. The σ-coordinate transformation is introduced to map the irregular physical domain with a wavy free surface and an uneven bottom onto a regular computational domain. The fractional step method is used to solve the filtered Navier-Stokes equations. Results presented include the distribution of velocity, the decay law of the mean velocity along the jet axis, self-similar characteristics and volume flux per unit width. In particular, the role of coherent structures on the momentum transfer along the jet centerline and the jet instantaneous characteristics in JONSWAP waves are a special focus of this research. The numerical results obtained are of great theoretical importance in understanding the behavior of turbulent jets in random wave environments.
Performance analysis of a scalable optical packet switching architecture
Wu, Ho-Ting; Tuan, Chia-Wei
2010-10-01
We carry out the analysis of a scalable switching architecture for all-optical packet switching networks. The underlying switch is based on a 2×2 two-stage multibuffer switched delay-line-based optical switching node. By incorporating an additional bypass line and employing a novel switch control strategy, the optical packet switching node can effectively resolve packet contentions, thus reducing the packet deflection probability substantially. In this work, we develop an exact queueing model from a discrete time Markov chain (DTMC) to evaluate the system performance under bursty, nonbursty, symmetric, and asymmetric traffic conditions. The accurate deflection probability and mean packet delay are obtained from this analytical model. Furthermore, we derive an approximate analysis to calculate the lower bound of deflection probability without the heavy computational complexities incurred by the exact analytical model. Simulation results are performed to confirm the validity of our analytic models.
Simulation of the Reflected Blast Wave froma C-4 Charge
Energy Technology Data Exchange (ETDEWEB)
Howard, W M; Kuhl, A L; Tringe, J W
2011-08-01
The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.
Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests
Stewart, Gordon; Muskulus, Michael
2016-09-01
Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.
Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation
Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla
2014-07-01
Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.
Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations
Hyde, Milo W.; Bose-Pillai, Santasri R.
2017-08-01
High-spatial-frequency optical fields or sources are often encountered when simulating directed energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a challenge in wave optics simulations because the sampling required to represent and then propagate these fields without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first, called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the exact observation plane field as the broadband source over a user-specified region of interest. The second, called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, after propagation and over a specified region of interest, yields an observation plane field that is statistically representative of that produced by the original broadband source. The pros and cons of both approaches are discussed in detail. A wave optics simulation of light transiting a ground glass diffuser and then propagating to an observation plane in the near-zone is performed to validate the two filtering approaches.
Simulations of Shock Wave Interaction with a Particle Cloud
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'
2016-11-01
Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony
2005-02-01
We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.
Modeling and Simulation of a Wave Energy Converter INWAVE
Directory of Open Access Journals (Sweden)
Seung Kwan Song
2017-01-01
Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.
Simulation and Experimental Validation of Hypersonic Shock Wave Interaction
Directory of Open Access Journals (Sweden)
Li Jing
2013-12-01
Full Text Available The present paper examines the relevance of grid and simulation accuracy of hypersonic CFD in terms of hypersonic sharp double-cone flow. The flow grid and normal grid each adopted 250×100, 500×100, 1000×100, 500×200, 1000×200, 1000×400 and so on grids. When the normal grid was 100, the wall pressure and heat flux distribution obtained from flow grid 500 and 1000 were consistent, indicating that the solution of flow grid convergence was obtained. However, some difference was observed when the separation zone was compared with the experimental data. In increasing the normal grid number and adopting grid 500×200, the position of the separation point, wall pressure and heat flux peak was shown to be consistent with the experiment. When the grid was further encrypted, the calculation using grid 1000×200 and 1000×400 was equal to that using grid 500×200. The simulation of hypersonic sharp double-cone flow also showed that when the separation zone of the simulation was less than the experimental measurement, the wall pressure and heat flux peak moved forward. This is because the backwardness of the intersection of the separation shock and the first shock resulted in the forwardness of the intersection of the first shock and the second shock after interference, making the work region of the induction shock and boundary layer move forward. The key challenge in achieving the correct simulation of the hypersonic sharp double-cone flow is explained as follows: the algorithm can not only capture shock wave strength correctly and give the adverse pressure gradient formed by the interfering shock wave near the wall accurately. It can also prevent the numerical dissipation of the algorithm from affecting the simulation accuracy of the viscous boundary layer to ensure the correct prediction of the size of the separation zone.
NUMERICAL SIMULATION OF SEA SURFACE DIRECTIONAL WAVE SPECTRA UNDER TYPHOON WIND FORCING
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Numercial simulation of sea surface directional wave spectra under typhoon wind forcing in the South China Sea (SCS) was carreid out using the WAVEWATCH-III wave model. The simulation was run for 210 h until the Typhoon Damrey (2005) approached Vietnam. The simulated data were compared with buoy observations, which were obtained in the northwest sea area of Hainan Island. The results show that the significant wave height, wave direction, wave length and frequency spetra agree well with buoy observations. The spatial characteristics of the signifciant wave height, mean wave period, mean wave length, wave age and directional spectra depend on the relative position from the typhoon center. Also, the misalignment between local wind and wave directions were investigated.
Numerical Simulation of Breaking Wave Based on Higher-Order Mild Slope Equation
Institute of Scientific and Technical Information of China (English)
陶建华; 韩光
2001-01-01
The "surface roller" to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation including diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circularshoal, and the numerical results of random wave breaking model agree with the experimental data very well. This modelcan be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natural topography.
NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY
Directory of Open Access Journals (Sweden)
P. V. Bulat
2016-05-01
Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.
Numerical Simulation of Hydrodynamic Behaviors of Gravity Cage in Waves
Institute of Scientific and Technical Information of China (English)
ZHAO Yun-peng; LI Yu-cheng; DONG Guo-hai; GUI Fu-kun
2007-01-01
This paper aims at investigation of the dynamic properties of gravity cage exposed to waves by use of a numerical model. The numerical model is developed, based on lumped mass method to set up the equations of motion of the whole cage; meanwhile the solutions of equations are solved by the Runge-Kutta-Verner fifth-order and sixth-order method. Physical model tests have been carried out to examine the validity of the numerical model. The results by the numerical simulation agree well with the experimental data.
Packet combining based on cross-packet coding
Institute of Scientific and Technical Information of China (English)
LIN DengSheng; XIAO Ming; LI ShaoQian
2013-01-01
We propose a packet combining scheme of using cross-packet coding. With the coding scheme, one redundant packet can be used to ensure the error-correction of multiple source packets. Thus, the proposed scheme can increase the code rate. Moreover, the proposed coding scheme has also advantages of decoding complexity, reducing undetectable errors （by the proposed low-complexity decoder） and flexibility （applicable to channels with and without feedback）. Theoretical analysis under the proposed low-complexity decoding algorithm is given to maximize the code rate by optimizing the number of source packets. Finally, we give numerical results to demonstrate the advantages of the proposed scheme in terms of code rates compared to the traditional packet combining without coding or ARQ （automatic repeat-request） techniques.
Simulation of surface acoustic wave motor with spherical slider.
Morita, T; Kurosawa, M K; Higuchi, T
1999-01-01
The operation of a surface acoustic wave (SAW) motor using spherical-shaped sliders was demonstrated by Kurosawa et al. (1994). It was necessary to modify the previous simulation models for usual ultrasonic motors because of this slider shape and the high frequency vibration. A conventional ultrasonic motor has a flat contact surface slider and a hundredth driving frequency; so, the tangential motion caused by the elasticity of the slider and stator with regard to the spherical slider of the SAW motor requires further investigation. In this paper, a dynamic simulation model for the SAW motor is proposed. From the simulation result, the mechanism of the SAW motor was clarified (i.e., levitation and contact conditions were repeated during the operation). The transient response of the motor speed was simulated. The relationships between frictional factor and time constant and vibration velocity of the stator and the slider speed were understood. The detailed research regarding the elastic deformation caused by preload would be helpful to construct an exact simulation model for the next work.
Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium
Liu, Hao; Kang, Wei; Zhang, Qi; Zhang, Yin; Duan, Huilin; He, X. T.
2016-12-01
Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.
Simulations of short-crested harbour waves with variational Boussinesq modelling
Adytia, Didit
2014-01-01
Waves propagating from the deep ocean to the coast show large changes in wave height, wave length and direction. The challenge to simulate the essential wave characteristics is in particular to model the speed and nonlinear interaction correctly. All these physical phenomena are present, but hidden,
Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin
2006-01-01
We develop a formalism for the identification and accurate estimation of the strength of structure formation shocks during cosmological smoothed particle hydrodynamics simulations. Shocks not only play a decisive role for the thermalization of gas in virialising structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. Our formalism is applicable both to ordinary non-relativistic thermal gas, and to plasmas composed of CRs and thermal gas. To this end, we derive an analytical solution to the one-dimensional Riemann shock tube problem for a composite plasma of CRs and thermal gas. We apply our methods to study the properties of structure formation shocks in high-resolution hydrodynamic simulations of the LCDM model. We find that most of the energy is dissipated in weak internal shocks with Mach numbers M~2 which are predominantly central flow shocks or merger shock waves traversing halo centres. Collapsed cosmological structures are surrounded by external ...
Numerical simulation of supersquare patterns in Faraday waves
Kahouadji, L.; Périnet, N.; Tuckerman, L. S.; Shin, S.; Chergui, J.; Juric, D.
2015-06-01
We report the first simulations of the Faraday instability using the full three-dimensional Navier-Stokes equations in domains much larger than the characteristic wavelength of the pattern. We use a massively parallel code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. Simulations performed in rectangular and cylindrical domains yield complex patterns. In particular, a superlattice-like pattern similar to those of [Douady & Fauve, Europhys. Lett. 6, 221-226 (1988); Douady, J. Fluid Mech. 221, 383-409 (1990)] is observed. The pattern consists of the superposition of two square superlattices. We conjecture that such patterns are widespread if the square container is large compared to the critical wavelength. In the cylinder, pentagonal cells near the outer wall allow a square-wave pattern to be accommodated in the center.
Lu, Ruifeng; Wang, Yunhui; Deng, Kaiming
2013-07-30
The quantum mechanics (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the title reaction with the ground minimal allowed rotational state of CH (j = 1) on the 1 (1)A' potential energy surface. For the reaction probability at total angular momentum J = 0, a similar trend of the QM and QCT calculations is observed, and the QM results are larger than the latter almost in the whole considered energy range (0.1-1.5 eV). The QCT integral cross sections are larger than the QM results with centrifugal sudden approximation, while smaller than those from QM method including Coriolis coupling for collision energies bigger than 0.25 eV. The quantum wave-packet computations show that the Coriolis coupling effects get more and more pronounced with increasing of J. In addition to the scalar properties, the stereodynamical properties, such as the average rotational alignment factor , the angular distributions P(θr ), P(ϕr ), P(θr ,ϕr ), and the polarization-dependent generalized differential cross sections have been explored in detail by QCT approach.
Yuan, Jiuchuang; Cheng, Dahai; Sun, Zhigang; Chen, Maodu
2014-11-01
The time-dependent quantum wave packet (TDWP) and quasiclassical trajectory calculations (QCT) are carried out for the Au(2S) + H2(X1∑+g) → AuH(X1∑+g) + H(2S) reaction on a global potential energy surface. The reaction probabilities at a series of J values, integral cross sections (ICSs) and differential cross sections of the title reaction are calculated by the TDWP method. For reaction probabilities, there are a mass of sharp oscillations at low collision energy, which can be attributed to resonances supported by the potential well. Due to the endothermicity of the title reaction, the total ICS shows a threshold about 1.53 eV. In order to further investigate the reactive mechanism, the lifetime of complex is calculated by QCT method. At the low collision energy, most intermediate complexes are long lived, which implies that the reaction is governed by indirect reactive mechanism. With the collision energy increasing, the direct reactive mechanism occupies the dominant position. Due to the change of the reactive mechanism, the angular distribution shifts toward the forward direction with collision energy increasing. The isotopic variant, Au + D2→AuD + D reaction, is also calculated by TDWP method. The calculated reaction probabilities and ICSs show that the isotope effect reduces the reactivity.
Novel Adaptive Beamforming Algorithm Based on Wavelet Packet Transform
Institute of Scientific and Technical Information of China (English)
Zhang Xiaofei; Xu Dazhuan
2005-01-01
An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.
Wave Energy Converter Annual Energy Production Uncertainty Using Simulations
Directory of Open Access Journals (Sweden)
Clayton E. Hiles
2016-09-01
Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.
FIFO Queueing Policies for Packets with Heterogeneous Processing
Kogan, Kirill; Nikolenko, Sergey I; Sirotkin, Alexander V; Tugaryov, Denis
2012-01-01
We consider the problem of managing a bounded size First-In-First-Out (FIFO) queue buffer, where each incoming unit-sized packet requires several rounds of processing before it can be transmitted out. Our objective is to maximize the total number of successfully transmitted packets. We consider both push-out (when the policy is permitted to drop already admitted packets) and non-push-out cases. In particular, we provide analytical guarantees for the throughput performance of our algorithms. We further conduct a comprehensive simulation study which experimentally validates the predicted theoretical behaviour.
Research on performance of multicasting in optical packet switched networks
Institute of Scientific and Technical Information of China (English)
Xin Liu; Yuefeng Ji; Lin Bai; Hongxiang Wang; Yongmei Sun
2009-01-01
@@ Different multicasting schemes in optical packet switched networks are discussed, including the parallel mode, serial mode, and hybrid mode multicasting schemes.Simulated modeling technique is applied to compare the network-level performance of the three multicasting schemes.A conclusion can be drawn from the results that since the hybrid-mode multicasting scheme can increase the multicast success ratio and reduce the packet retransmission times compared with the other two schemes, it is the best choice for delivering multicasting sessions in the optical packet switched networks.
Simulate the volcanic radiation features in medium wave infrared channels
Gong, Cailan; Jiang, Shan; Liu, Fengyi; Hu, Yong
2015-10-01
There are different scales and intensities of the volcanic eruption in the world every year. Existing medium wave infrared (MWI) remote sensing channels are often at atmospheric window in 3-5μm, lack of water vapor and carbon dioxide(CO2) absorption channels data, such as 2.2μm, 2.7μm and so on, however the 2.7μm absorption bands can be used as volcanoes, forest fires and other hot target identification. In order to obtain the high-temperature targets (HTT)radiation features, such as volcanic eruptions and forest fires in the water vapor absorption channels, Firstly, the HTT should be identified from the existing bands based on the temperature differences between the objects and the surrounding environment. Then, the HTT radiation features were simulated, and the correlation between the radiations of different bands were established with statistical analysis method. The HTT reorganization from remote sensing data, radiation characteristics simulation in different atmospheric models were described, then the bands transformed models were set up. The volcanic HTT radiation characteristics were simulated in wavelength 2.7μm and 4.433-4.498μm (band 24 of MODIS) based on the known bands of 3.55 -3.93μm (band 3 of FengYun-3 Visible and Infrared Scanning Radiometer (VIRR)). The simulated results were tested by the volcanic HTT radiation characteristics with 4.433-4.498μm by known bands of MODIS image and the simulated 4.433-4.498μm image. The causes of errors generated were analyzed. The study methods were useful to the new remote sensor bands imaging characteristics simulation analysis.
Technology Corner: Internet Packet Sniffers
Directory of Open Access Journals (Sweden)
Nick Flor
2011-03-01
Full Text Available A packet sniffer is a piece of software that allows a person to eavesdrop on computer communications over the internet.Â A packet sniffer can be used as a diagnostic tool by network administrators or as a spying tool by hackers who can use it to steal passwords and other private information from computer users.Â Whether you are a network administrator or information assurance specialist, it helps to have a detailed understanding of how packet sniffers work. Â And one of the best ways to acquire such an understanding is to build and modify an actual packet sniffer.
A new type numerical model foraction balance equation in simulating nearshore waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Several current used wave numerical models are briefly described, the computing techniques of the source terms, numerical wave generation and boundary conditions in the action balance equation model are discussed. Not only the quadruplet wave-wave interactions, but also the triad wave-wave interactions are included in the model, so that nearshore waves could be simulated reasonably. The model is compared with the Boussinesq equation and the mild slope equation. The model is applied to calculating the distribu-tions of wave height and wave period field in the Haian Bay area and to simulating the influences of the unsteady current and water level variation on the wave field. Finally, the de-veloping tendency of the model is discussed.
Investigation on Radio Wave Propagation in Shallow Seawater: Simulations and Measurements
Jimenez, Eugenio; Mena, Pablo; Dorta, Pablo; Perez-Alvarez, Ivan; Zazo, Santiago; Perez, Marina; Quevedo, Eduardo
2016-01-01
The authors present full wave simulations and experimental results of propagation of electromagnetic waves in shallow seawaters. Transmitter and receiver antennas are ten-turns loops placed on the seabed. Some propagation frameworks are presented and simulated. Finally, simulation results are compared with experimental ones.
NUMERICAL SIMULATION OF TYPHOON WAVE UNDER THE INFLUENCE OF WINNIE (NO.9711)
Institute of Scientific and Technical Information of China (English)
JIANG Xiao-ping; ZHONG Zhong; ZHANG Jin-shan; LU Wen-feng
2007-01-01
In this paper, the wind field provided by a meso-scale atmospheric model is employed. When main physical processes, including wave-current interactions, are considered, the latest version of the third generation wave model SWAN is applied to simulate the typhoon wave generated by Typhoon Winnie. The model results are compared with the TOPEX/POSEIDON and ERS-2 satellite altimeter data and analyzed in details. Then the distribution of wave fields are analyzed, with the results showing that applying SWAN to simulate large-scale domain can also fairly reproduce the observed features of waves and realistically reflect the distribution of typhoon waves.
Performance improvement for optical packet switch with shared buffers
Institute of Scientific and Technical Information of China (English)
Junjie Yang; Qingji Zeng; Jie Li; Tong Ye; Guolong Zhu
2005-01-01
@@ In this paper, an inner wavelength method is proposed to enlarge buffering capacity of shared fiber delay line buffers. In addition, an optical packet switch called extended shared buffer type optical packet switch(extended SB-OPS) is proposed to realize the inner wavelength method. In order to further improve performance of extended SB-OPS, a greedy algorithm based on inner wavelength method is introduced.The performance of extended SB-OPS is evaluated by simulation experiments.
Low Model Analysis and Synchronous Simulation of the Wave Mechanics
Directory of Open Access Journals (Sweden)
Wenyuan Duan
2016-01-01
Full Text Available The dynamic behavior of a chaotic system in the internal wave dynamics and the problem of the tracing and synchronization are investigated, and the numerical simulation is carried out in this paper. The globally exponentially attractive set and positive invariant set of the chaotic system are studied via constructing the positive definite and radial unbounded Lyapunov function. There are no equilibrium positions, periodic solutions, quasi-period motions, wandering recovering motions, and other chaotic attractors of the system out of the globally exponentially attractive set. Strange attractors can only locate in the globally exponentially attractive set. A feedback controller is designed for the chaotic system to realize the control of the unstable point. The second method of Lyapunov is used to discuss theoretically the rationality of the design of the controller. The driving-response synchronization method is used to realize the globally exponential synchronization. The numerical simulation is carried out by MATLAB software, and the simulation results show that the method is effective.
2015-09-30
1 A multiscale nested modeling framework to simulate the interaction of surface gravity waves with nonlinear internal gravity waves...Minnesota LONG-TERM GOALS Our long-term goal is to develop a multiscale nested modeling framework that simulates, with the finest resolution...frameworks such as the proposed HYCOM-LZSNFS-SUNTANS-LES nested model are crucial for understanding multiscale processes that are unresolved, and hence
Analysis of nonlinear internal waves in the New York Bight
Liu, Antony K.
1988-01-01
An analysis of the nonlinear-internal-wave evolution in the New York Bight was performed on the basis of current meter mooring data obtained in the New York Bight during the SAR Internal Wave Signature Experiment (SARSEX). The solitary wave theory was extended to include dissipation and shoaling effects, and a series of numerical experiments were performed by solving the wave evolution equation, with waveforms observed in the SARSEX area as initial conditions. The results of calculations demonstrate that the relative balance of dissipation and shoaling effects is crucial to the detailed evolution of internal wave packets. From an observed initial wave packet at the upstream mooring, the numerical evolution simulation agreed reasonably well with the measurements at the distant mooring for the leading two large solitons.
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Design and simulation of a standing wave oscillator based PLL
Institute of Scientific and Technical Information of China (English)
Wei ZHANG; You-de HU; Li-rong ZHENG
2016-01-01
A standing wave oscillator (SWO) is a perfect clock source which can be used to produce a high frequency clock signal with a low skew and high reliability. However, it is difficult to tune the SWO in a wide range of frequencies. We introduce a frequency tunable SWO which uses an inversion mode metal-oxide-semiconductor (IMOS) field-effect transistor as a varactor, and give the simulation results of the frequency tuning range and power dissipation. Based on the frequency tunable SWO, a new phase locked loop (PLL) architecture is presented. This PLL can be used not only as a clock source, but also as a clock distribution network to provide high quality clock signals. The PLL achieves an approximately 50% frequency tuning range when designed in Global Foundry 65 nm 1P9M complementary metal-oxide-semiconductor (CMOS) technology, and can be used directly in a high performance multi-core microprocessor.
Wave propagation simulation of radio occultations based on ECMWF refractivity profiles
DEFF Research Database (Denmark)
von Benzon, Hans-Henrik; Høeg, Per
2015-01-01
This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...
Toyota, Koudai
2016-01-01
The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. {\\bf 17}, 073005~(2015)] is applied to further study a detachment dynamics of a model negative ion in one-dimension in high-frequency regime. This method is based on the Floquet approach, but the time-dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photo absorption/emission but also a non-adiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schr\\"odinger equation, and underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we further explore two more aspects of the detachment dynamics, which were not done in our previous work. First, we find out features of both a {\\it spatial} and {\\it temporal} interference of photo electron wave pack...
Full Wave Simulation of Integrated Circuits Using Hybrid Numerical Methods
Tan, Jilin
Transmission lines play an important role in digital electronics, and in microwave and millimeter-wave circuits. Analysis, modeling, and design of transmission lines are critical to the development of the circuitry in the chip, subsystem, and system levels. In the past several decays, at the EM modeling level, the quasi-static approximation has been widely used due to its great simplicity. As the clock rates increase, the inter-connect effects such as signal delay, distortion, dispersion, reflection, and crosstalk, limit the performance of microwave systems. Meanwhile, the quasi-static approach loses its validity for some complex system structures. Since the successful system design of the PCB, MCM, and the chip packaging, rely very much on the computer aided EM level modeling and simulation, many new methods have been developed, such as the full wave approach, to guarantee the successful design. Many difficulties exist in the rigorous EM level analysis. Some of these include the difficulties in describing the behavior of the conductors with finite thickness and finite conductivity, the field singularity, and the arbitrary multilayered multi-transmission lines structures. This dissertation concentrates on the full wave study of the multi-conductor transmission lines with finite conductivity and finite thickness buried in an arbitrary lossy multilayered environment. Two general approaches have been developed. The first one is the integral equation method in which the dyadic Green's function for arbitrary layered media has been correctly formulated and has been tested both analytically and numerically. By applying this method, the double layered high dielectric permitivitty problem and the heavy dielectrical lossy problem in multilayered media in the CMOS circuit design have been solved. The second approach is the edge element method. In this study, the correct functional for the two dimensional propagation problem has been successfully constructed in a rigorous way
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhaojun; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)
2014-10-14
Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.
A $55 Shock Tube for Simulated Blast Waves
Courtney, Elijah; Courtney, Michael
2015-01-01
Shock tubes are commonly employed to test candidate armor materials, validate numerical models, and conduct simulated blast experiments in animal models. As DoD interests desire to field wearable sensors as blast dosimeters, shock tubes may also serve for calibration and testing of these devices. The high blast pressures needed for experimental testing of candidate armors are unnecessary to test these sensors. An inexpensive, efficient, and easily available way of testing these pressure sensors is desirable. It is known that releasing compressed gas suddenly can create a repeatable shock front, and the pressures can be finely tuned by changing the pressure to which the gas is compressed. A Crosman 0.177 caliber air pistol was used (without loading any pellets) to compress and release air in one end of a 24 inch long 3/4 inch diameter standard pipe nipple to simulate a blast wave at the other end of the tube. A variable number of pumps were used to vary the peak blast pressure. As expected, the trials where 10...
Parametric decay of a parallel propagating monochromatic whistler wave: Particle-in-cell simulations
Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Shui
2017-01-01
In this paper, by using one-dimensional (1-D) particle-in-cell simulations, we investigate the parametric decay of a parallel propagating monochromatic whistler wave with various wave frequencies and amplitudes. The pump whistler wave can decay into a backscattered daughter whistler wave and an ion acoustic wave, and the decay instability grows more rapidly with the increase of the frequency or amplitude. When the frequency or amplitude is sufficiently large, a multiple decay process may occur, where the daughter whistler wave undergoes a secondary decay into an ion acoustic wave and a forward propagating whistler wave. We also find that during the parametric decay a considerable part of protons can be accelerated along the background magnetic field by the enhanced ion acoustic wave through the Landau resonance. The implication of the parametric decay to the evolution of whistler waves in Earth's magnetosphere is also discussed in the paper.
Comparison between wave generation methods for numerical simulation of bimodal seas
Directory of Open Access Journals (Sweden)
Daniel A. Thompson
2016-01-01
Full Text Available This paper describes an investigation of the generation of desired sea states in a numerical wave model. Bimodal sea states containing energetic swell components can be coastal hazards along coastlines exposed to large oceanic fetches. Investigating the effects of long-period bimodal seas requires large computational domains and increased running time to ensure the development of the desired sea state. Long computational runs can cause mass stability issues due to the Stokes drift and wave reflection, which in turn affect results through the variation of the water level. A numerical wave flume, NEWRANS, was used to investigate two wave generation methods: the wave paddle method, allowing for a smaller domain; and the internal mass source function method, providing an open boundary allowing reflected waves to leave the domain. The two wave generation methods were validated against experimental data by comparing the wave generation accuracy and the variance of mass in the model during simulations. Results show that the wave paddle method not only accurately generates the desired sea state but also provides a more stable simulation, in which mass fluctuation has less of an effect on the water depth during the long-duration simulations. As a result, it is suggested that the wave paddle method with active wave absorption is preferable to the internal wave maker option when investigating intermediate-depth long-period bimodal seas for long-duration simulations.
Some Results on the Wavelet Packet Decomposition of Nonstationary Processes
Directory of Open Access Journals (Sweden)
Touati Sami
2002-01-01
Full Text Available Wavelet/wavelet packet decomposition has become a very useful tool in describing nonstationary processes. Important examples of nonstationary processes encountered in practice are cyclostationary processes or almost-cyclostationary processes. In this paper, we study the statistical properties of the wavelet packet decomposition of a large class of nonstationary processes, including in particular cyclostationary and almost-cyclostationary processes. We first investigate in a general framework, the existence and some properties of the cumulants of wavelet packet coefficients. We then study more precisely the almost-cyclostationary case, and determine the asymptotic distributions of wavelet packet coefficients. Finally, we particularize some of our results in the cyclostationary case before providing some illustrative simulations.
Evolution of Nonlinear Internal Waves in China Seas
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
Quantum Frequency Conversion of Single-Photon States by Three and Four-Wave Mixing
DEFF Research Database (Denmark)
Raymer, Michael G.; Reddy, Dileep V.; Andersen, Lasse Mejling
2013-01-01
Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets.......Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets....
A SCHEDULING ALGORITHM USING COMPENSATING ROUND ROBIN IN PACKET-SWTICHING BROADBAND NETWORKS
Institute of Scientific and Technical Information of China (English)
Lan Julong; Wang Binqiang; Li Ou; Wu Jiangxing
2002-01-01
A new approximation of fair queuing called Compensating Round Robin (CRR)is presented in this paper. The algorithm uses packet-by-packet scheduler with a compensating measure. It achieves good fairness in terms of throughput, requires only O(1) time complexity to process a packet, and is simple enough to be implemented in hardware. After the performances are analyzed, the fairness and packet loss rate of the algorithm are simulated. Simulation results show that the CRR can effectively isolate the effects of contending sources.
SAR IMAGING SIMULATION OF HORIZONTAL FULLY TWO-DIMENSIONAL INTERNAL WAVES
Institute of Scientific and Technical Information of China (English)
SHEN Hui; HE Yi-Jun
2006-01-01
Based on the research of Lynett and Liu, a new horizontal fully two-dimensional internal wave propagation model with rotation effect was deduced, which can be used to simulate the characteristics of internal waves in a horizontal fully two-dimensional plane. By combining the imaging mechanism of Synthetic Aperture Radar(SAR), a simulation procedure was fatherly acquired, which can simulate the propagation characteristics of oceanic internal waves into SAR images. In order to evaluate the validity of the proposed simulation procedure, case studies are performed in South China Sea and results from simulation procedure are analyzed in detail. A very good consistency was found between the simulation results and satellite images. The proposed simulation procedure will be a possible foundation for the quantitative interpretation of internal waves from fully two-dimensional satellite images.
Bond, Charlotte; Freise, Andreas
2013-01-01
A comparison of analytic calculations and FINESSE simulations of interferometer responses to gravitational wave strain. The response to a gravitational wave is gradually built up from the effect of modulating a space by a gravitational wave to Sagnac and Michelson interferometers with and without arm cavities. This document details the steps necessary to perform such simulations in FINESSE and explicitly derives the interferometer response equations.
Wave-Tide-Surge Coupled Simulation for Typhoon Maemi
Institute of Scientific and Technical Information of China (English)
Byung Ho Choi; Byung Il Min; Kyeong Ok Kim; Jin Hee Yuk
2013-01-01
The main task of this study focuses on studying the effect of wave-current interaction on currents,storm surge and wind wave as well as effects of current induced wave refraction and current on waves by using numerical models which consider the bottom boundary layer and sea surface roughness parameter for shallow and smooth bed area around Korean Peninsula.The coupled system (unstructured-mesh SWAN wave and ADCIRC) run on the same unstructured mesh.This identical and homogeneous mesh allows the physics of wave-circulation interactions to be correctly resolved in both models.The unstructured mesh can be applied to a large domain allowing all energy from deep to shallow waters to be seamlessly followed.There is no nesting or overlapping of structured wave meshes,and no interpolation is required.In response to typhoon Maemi (2003),all model components were validated independently,and shown to provide a faithful representation of the system's response to this storm.The waves and storm surge were allowed to develop on the continental shelf and interact with the complex nearshore environment.The resulting modeling system can be used extensively for prediction of the typhoon surge.The result show that it is important to incorporate the wave-current interaction effect into coastal area in the wave-tide-surge coupled model.At the same time,it should consider effects of depth-induced wave breaking,wind field,currents and sea surface elevation in prediction of waves.Specially,we found that:(1) wave radiation stress enhanced the current and surge elevation otherwise wave enhanced nonlinear bottom boundary layer decreased that,(2) wind wave was significantly controlled by sea surface roughness thus we cautiously took the experimental expression.The resulting modeling system can be used for hindcasting (prediction) the wave-tide-surge coupled environments at complex coastline,shallow water and fine sediment area like areas around Korean Peninsula.
Derakhti, Morteza; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng
2016-11-01
We examine wave-breaking predictions ranging from shallow- to deep-water conditions using a non-hydrostatic σ-coordinate RANS model NHWAVE as described in Derakhti et al. (2016a), comparing results both with corresponding experiments and with the results of a volume-of-fluid (VOF)/Navier-Stokes solver (Ma et al., 2011; Derakhti and Kirby, 2014a,b). Our study includes regular and irregular depth-limited breaking waves on planar and barred beaches as well as steepness-limited unsteady breaking focused wave packets in intermediate and deep water. In Part 1 of this paper, it is shown that the model resolves organized wave motions in terms of free-surface evolution, spectral evolution, organized wave velocity evolution and wave statistics, using a few vertical σ-levels. In addition, the relative contribution of modeled physical dissipation and numerical dissipation to the integral breaking-induced wave energy loss is discussed. In steepness-limited unsteady breaking focused wave packets, the turbulence model has not been triggered, and all the dissipation is imposed indirectly by the numerical scheme. Although the total wave-breaking-induced energy dissipation is underestimated in the unsteady wave packets, the model is capable of predicting the dispersive and nonlinear properties of different wave packet components before and after the break point, as well as the overall wave height decay and the evolution of organized wave velocity field and power spectrum density over the breaking region. In Part 2 (Derakhti et al., 2016b), model reproduction of wave-breaking-induced turbulence and mean circulation is examined in detail. The same equations and numerical methods are used for the various depth regimes, and no ad-hoc treatment, such as imposing hydrostatic conditions, is involved in triggering breaking. Vertical grid resolution in all simulated cases is at least an order of magnitude coarser than that of typical VOF-based simulations.
Effects of Simulated Heat Waves on Cardiovascular Functions in Senile Mice
Directory of Open Access Journals (Sweden)
Xiakun Zhang
2014-08-01
Full Text Available The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter.
Institute of Scientific and Technical Information of China (English)
WANG Zhong; LU Xiao-ping
2011-01-01
Up to now, there are no satisfactory numerical methods for simulating wave resistance of trimarans, mainly due to the difficulty related with the strong nonlinear features of the piece hull wave making and their interference. This article proposes a numerical method for quick and effective calculation of wave resistance of trimarans to be used in engineering applications. Based on Wyatt's work、 the nonlinear free surface boundary condition, the time domain concept, and the full nonlinear wave making theory,using the Rankine source Green function, the 3-D surface panel method is expanded to solve the trimaran wave making problems,with high order nonlinear factors being taken into account, such as the influence of the sinking and trim, transom, and ship wave immersed hull surface. And the software is successfully developed to implement the method, which is validated. Several trimaran models, including a practical trimaran with a sonar dome and the transom, are used as numerical calculation samples, their wave making resistance is calculated both by the present method and some other methods such as linear (Dawson) methods. Moreover,sample model resistance tests were carried out to provide data for comparison, validation and analysis. Through the validation by model experiments, it is concluded that present method can well predict the wave making resistance, sinking and trim, and the accuracy of wave making resistance calculation is significantly improved by taking the trim and sinking into account, especially at high speeds.
Farhat, Rim; Farhat, Amel; Menif, Mourad
2016-04-01
We proposed a novel 2×2 all optical packet switching router architecture supporting asynchronous, labelled and variablelength packet. A proof of concept through Matlab Simulink simulation is validated. Then we discussed the three possible scenarios to demonstrate the contention resolution technique based on deflection routing. We have showing that the contending packet is detected and forwarded according FIFO (First In First Out) strategy to another output.
Inner Magnetosphere Simulations: Exploring Magnetosonic Wave Generation Conditions
Zaharia, S. G.; Jordanova, V. K.; MacDonald, E.; Thomsen, M. F.
2012-12-01
We investigate the conditions for magnetosonic wave generation in the near-Earth magnetosphere by performing numerical simulations with our newly improved self-consistent model, RAM-SCB. The magnetosonic (ion Bernstein) instability, a potential electron acceleration mechanism in the outer radiation belt, is driven by a positive slope in the ion distribution function perpendicular to the magnetic field, a so-called "velocity ring" distribution at energies above 1 keV. The formation of such distributions is dependent on the interplay of magnetic and electric drifts, as well as ring current losses, and therefore its study requires a realistic treatment of both plasma and field dynamics. The RAM-SCB model represents a 2-way coupling of the kinetic ring current-atmosphere interactions model (RAM) with a 3D plasma equilibrium code. In RAM-SCB the magnetic field is computed in force balance with the RAM anisotropic pressures and then returned to RAM to guide the particle dynamics. RAM-SCB thus properly treats both the kinetic drift physics crucial in the inner magnetosphere and the self-consistent interaction between plasma and magnetic field (required due to the strong field depressions during storms, depressions that strongly affect particle drifts). In order to provide output at geosynchronous locations, recently the RAM-SCB boundary has been expanded to 9 RE from Earth, with plasma pressure and magnetic field boundary conditions prescribed there from empirical models. This presentation will analyze, using event simulations with the improved model and comparisons with LANL MPA geosynchronous observations, the occurrence and location of magnetosonic unstable regions in the inner magnetosphere and their dependence on the following factors: 1). geomagnetic activity level (including quiet time, storm main phase and recovery); 2). magnetic field self-consistency (stretched vs. dipole fields). We will also discuss the physical mechanism for the occurrence of the velocity
Analysis and implementation of packet preemption for Time Sensitive Networks
DEFF Research Database (Denmark)
Zhou, Zifan; Yan, Ying; Ruepp, Sarah Renée
2017-01-01
level simulation in Riverbed Modeler. The simulation is complemented by numerical analysis which provides the average queuing delay for both types of traffic (preemptable and express). Furthermore, the paper describes an approach to implement the packet preemption solution on an FPGA in VHDL, which...
Numerical Simulated Study on the Separation of Oblique Incident and Reflected Waves
Institute of Scientific and Technical Information of China (English)
邵利民; 俞聿修
2001-01-01
The Goda's method of separating the frequency spectrum of the unidirectional incident and reflected waves is improved. The proposed method can be applied to the separation of oblique incident and reflected waves and the two wave gauges can be arranged in an arbitrary angle in front of a structure. When the projected distance of the two probes on the incident wave direction is the multiple ofthe half length of the incident waves, the singular problem will emerge by using the method. It is advised that when the projected distance of the two measured points on the incident wave direction is 0.05～0.45 times the wave length of peak frequency wave, good results can be obtained. The simulated resultant waves are separated by the method of numerical simulation and the separated wave spectra are basically corresponding to the target spectra input. The wave trains calculated by the separated incident and reflected wave frequency spectrum are approximated to the input wave trains and the reflected coefficient can be derived correctly. Therefore, the method proposed in this paper is reliable.
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
拍卖机制的包转发路由模型及其仿真研究%Auction mechanism for packet forwarding routing model and simulation study
Institute of Scientific and Technical Information of China (English)
徐名霞
2012-01-01
In this paper,with the idea of the auction game,taking into account the various parameters of the entire sensor network routing influential,giving the process of an auction game in the form of packet forwarding routing algorithm,the algorithm flow can be achieved efficiently promote the nodes cooperate with each other,thus effectively reducing the number of control packets in the transmission process,to achieve the full and effective implementation of multiple distributed scientific control and take advantage of the NS2 platform as the auction game algorithm simulation,Comparative analysis the entire experimental results.%本文结合拍卖博弈的思想,考虑到对整个传感器网络路由有影响的各种有关参数,给出了一种以拍卖博弈形式的包转发路由算法流程,通过该算法流程可以达到高效地促进多个节点的相互合作,从而有效地减少控制包在传输过程中的次数,全面有效地实现多个分布式的科学控制,并充分利用NS2平台作为对拍卖博弈算法进行仿真验证,对整个实验结果进行对比分析。
The frustrated Brownian motion of nonlocal solitary waves
Folli, Viola
2010-01-01
We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equation
Numerical simulation of azimuth electromagnetic wave tool response based on self-adaptive FEM
Li, Hui; Shen, Yi-Ze
2017-07-01
Azimuth electromagnetic wave is a new type of electromagnetic prospecting technology. It can detect weak electromagnetic wave signal and realize real-time formation conductivity imaging. For effectively optimizing measurement accuracy of azimuth electromagnetic wave imaging tool, the efficient numerical simulation algorithm is required. In this paper, self-adaptive finite element method (FEM) has been used to investigate the azimuth electromagnetic wave logging tool response by adjusting antenna array system in different geological conditions. Numerical simulation examples show the accuracy and efficiency of the method, and provide physical interpretation of amplitude attenuation and phase shift of electromagnetic wave signal. Meanwhile, the high-accuracy numerical simulation results have great value to azimuth electromagnetic wave imaging tool calibration and data interpretation.
Bingham, Jill; Hinders, Mark
2009-07-01
The development of automatic guided wave interpretation for detecting corrosion in aluminum aircraft structural stringers is described. The dynamic wavelet fingerprint technique (DWFT) is used to render the guided wave mode information in two-dimensional binary images. Automatic algorithms then extract DWFT features that correspond to the distorted arrival times of the guided wave modes of interest, which give insight into changes of the structure in the propagation path. To better understand how the guided wave modes propagate through real structures, parallel-processing elastic wave simulations using the finite integration technique (EFIT) has been performed. Three-dimensional (3D) simulations are used to examine models too complex for analytical solutions. They produce informative visualizations of the guided wave modes in the structures and mimic the output from sensors placed in the simulation space. Using the previously developed mode extraction algorithms, the 3D EFIT results are compared directly to their experimental counterparts.
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation
Nariyuki, Yasuhiro; Hada, Tohru
2008-01-01
We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.
Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes
Jouve, Laurène
2014-01-01
In a uniformly rotating fluid, inertial waves propagate along rays that are inclined to the rotation axis by an angle that depends on the wave frequency. In closed domains, multiple reflections from the boundaries may cause inertial waves to focus on to particular structures known as wave attractors. Such structures have previously been studied from a theoretical point of view, in laboratory experiments, in linear numerical calculations and in some recent numerical simulations. In the present paper, two-dimensional direct numerical simulations of an inertial wave attractor are presented. In the linear regime, we first recover the results of the linear calculations and asymptotic theory of Ogilvie (2005) who considered a prototypical problem involving the focusing of linear internal waves into a narrow beam centred on a wave attractor in a steady state. The velocity profile of the beam and its scalings with the Ekman number, as well as the asymptotic value of the dissipation rate, are found to be in agreement ...
Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis
Zhu, Wei; Shan, Rui
2016-06-01
Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.
DESIGN OF AN ARRAYED WAVEGUIDE GRATINGS BASED OPTICAL PACKET SWITCH
Directory of Open Access Journals (Sweden)
VAIBHAV SHUKLA
2016-12-01
Full Text Available Optical packet switching is considered as the future of data transfer technologyin combination with middle-aged electronics. The biggest challenge encountered in optical packet switching is the lack of optical buffers for storing the contending packets. Therefore, for the contention resolution of packets, a temporary storage in terms of fiber delay lines is used. This task is accomplished by an optical packet switch. In this paper, a design modification in the AWGR (Arrayed Waveguide Grating Router is presented for improving the switch performance. The power budget analysis of the switch is also presented to estimate the sufficient power level of the switch. The obtained results clearly reveal that the architecture presented in this paper can be operated in micro-watts in comparison to the earlier optical switch which operates in milli watts regime. Finally, simulation results are presented to obtain packet loss probability and average delay. Even at the higher load of 0.6, the switch presented in this paper provides a very low loss probability (10^6 and delay remain within 2 slots.
Simulation of Wave-Plus-Current Induced Scour Beneath Submarine Pipelines
DEFF Research Database (Denmark)
Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu
of combined wave-plus-current scour processes beneath pipelines. The results of 77 simulated wave-plus-current scour cases will be presented and analysed. The cases considered will consist of waves characterized by 10 different Keulegan-Carpenter numbers, KC=UmTw/D and up to eight different values of m......-plus-current environments. The present study, which is published in Larsen et al. (2016) focuses on the numerical simulation of wave-plus-current induced scour beneath submarine pipelines, based on a model solving Reynolds-averaged Navier-Stokes (RANS) equations, fully coupled with turbulence closure, bed and suspended...... load sediment transport descriptions, and a seabed morphological model. The model was utilized in simulating breaker bar development by Jacobsen et al. (2014) and has been used in simulating wave induced scour beneath pipelines by Fuhrman et al. (2014) . The model is utilized for the numerical study...
Simulation of breaking gravity waves during the south foehn of 7 - 13 January 1996
Energy Technology Data Exchange (ETDEWEB)
Schmid, H.; Doernbrack, A.
1998-07-01
A high-resolution mesoscale model with horizontal mesh size of 6 km is applied to simulate upper-level wave breaking above the Alps during a south foehn event in January 1996. The model reproduces the key synoptic and mesoscale features of cross-alpine airflow during foehn. High-resolution radiosonde ascents at Munich and Innsbruck are used to evaluate the quality of the model simulations. The simulations predict breaking gravity waves above the jet stream in a layer between 10 and 15 km altitude where the shear is maximum. In part of the foehn period a critical level is present at about 200 hPa that results in wave steepening below and no wave activity aloft. Regions where aircraft report clear-air turbulence encounters agree reasonably with the simulated locations of gravity wave breaking. (orig.)
Directory of Open Access Journals (Sweden)
Anesa Maolod Omar Al-Najeh
2012-07-01
Full Text Available The packet loss has become an important issue to the research community, which needs to be addressed. In FMIPv6, Packet losses are significantly related to the handover latency and buffer size used for packet buffering. In the case of increased handover latency or decreased buffer size, packet losses will be increased. To solve the problem, we propose an adaptive packet buffering (APT algorithm based on priority of packets and traffic throughput in layer 3 (L3 were the packets are buffered by the predefined rule in the new access point during handover. This algorithm is designed to reduce packet loss in FMIPv6 and high level of throughput and low delay can be achieved through the proposed technique. To achieve a fair comparison with Adaptive Buffer Limit Tuning (ALT algorithm, we have implemented the APT algorithm in Omnet++ along with the FMIPv6 to develop the model and the algorithm. The results of the simulation study show that the proposed algorithm can reduce the packet loss as well as the delay.
Investigating Dependences in Packet-queues
Institute of Scientific and Technical Information of China (English)
Cao Weihua(曹卫华); Girigi Deogratias; Wu Min
2004-01-01
Many packet communication networks carry several classes of traffic,each with its own service characteristics. The packet arrival processes from each source are also often bursty (highly variable),which can contribute to long packet delay. Ssociated dependence among successive service times and between service times and inter arrival times also can be for packet queues involving variable packet lengths. These dependence effects are demonstrated analytically by considering a multi class single server queue with batch Poisson arrival process.
Wave-packet dynamics in quantum wells
DEFF Research Database (Denmark)
Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.
1995-01-01
It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems......, this polarized pair creation is thought to be the only source of photocurrent at the early stages of photoexcitation since the bulk like transport current is inhibited by the barriers. In this work we perform a full quantum-mechanical analysis of ultrafast optical excitation in a de-biased quantum well. We take...... larger than the well width (for long pulses and/or narrow wells), we recover the polarized pairs behavior of the photocurrent. For shorter pulses, when the coherence length becomes comparable to the well width, the photocurrent exhibits quantum beats. Finally, for very short pulses (around 10 fs) we find...
NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS
Institute of Scientific and Technical Information of China (English)
L. Borup; M. Nielsen
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.
Nonlinear approximation with general wave packets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...... characterization of the approximation spaces is derived....
Simulation and Optimization of Surface Acoustic Wave Devises
DEFF Research Database (Denmark)
Dühring, Maria Bayard
2007-01-01
In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model of a piezoele......In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model...
Simulation of Storm Surge and Wave Due to Typhoon Isewan (5915)
Institute of Scientific and Technical Information of China (English)
Jin-Hee YUK; Kyeong Ok KIM; Han Soo LEE; Byung Ho CHOI
2015-01-01
An integrally coupled wave-tide-surge model was developed and then applied to the simulation of the wave-typhoon surge for the typhoon Isewan (typhoon Vera (5915)), which is the strongest typhoon that has struck Japan and caused incalculable damage. An integrally coupled tide-surge-wave model using identical and homogeneous meshes in an unstructured grid system was used to correctly resolve the physics of wave-circulation interaction in both models. All model components were validated independently. The storm surge and wave properties such as the surge height, the significant wave height, wave period and direction were reproduced reasonably under the meteorological forcing, which was reprocessed to be close to the observations. The resulting modeling system can be used extensively for the prediction of the storm surge and waves and the usual barotropic forecast.
THREE-DIMENSIONAL NUMERICAL SIMULATION OF WAVE SLAMMING ON AN OPEN STRUCTURE
Institute of Scientific and Technical Information of China (English)
DING Zhao-qiang; WANG Guo-yu; REN Bing
2012-01-01
The three-dimensional numerical simulation of wave slamming on an open structure in the splash zone is carried out based upon the Volume Of Fluid (VOF) method.A wave basin is established by solving the continuity equation and the Navier-Stoke equations.The linear wave-maker is placed on the left side of the basin,and the numerical sponge layer and the SRC are placed on the right side of the basin to damp the incident waves.The three-dimensional wave slamming boundary condition is adopted to model waves in contact with and separated from the underside of the structure.The numerical results of wave slamming on a foursquare structure for various parametric cases are verified by the experimental results.Meanwhile,the characteristics of the wave impact forces on the undersides of the rectangular structures with various length-breadth ratios are discussed.
Dynamic simulation of hydrodynamic model of drum level wave action and sloshing
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In order to build the model of the drum level wave action and sloshing, based on the method of modularization modeling,the hydrodynamic model of drum level wave action and sloshing was developed, and dynamic simulation researches were carried out based on the model. The results indicate that both drum level and drum length have functional relations with period of drum level wave action and sloshing. When the drum level decreases or drum length increases, the period of drum level wave action and sloshing increases, density of liquid and number of sub-module division have little influence on the period of drum level wave action and sloshing. The model was validated by the analytical solution theory of liquid's wave action and sloshing in cuboid container, and the 3D graphics of drum level wave action and sloshing was also obtained. The model can dynamically reflect the rules of wave action and sloshing of water in the container exactly.
Numerical Simulation of Wave Field near Submerged Bars by PLIC-VOF Model
Institute of Scientific and Technical Information of China (English)
LIU Cheng; LIU Xiao-qing; JIANG Chang-bo
2005-01-01
Investigating the wave field near structures in coastal and offshore engineering is of increasing significance. In the present study, simulation is done of the wave profile and flow field for waves propagating over submerged bars, using PLIC-VOF (Piecewise Linear Interface Construction) to trace the free surface of wave and finite difference method to solve vertical 2D Navier-Stokes (N-S) equations. A comparison of the numerical results for two kinds of submerged bars with the experimental ones shows that the PLIC-VOF model used in this study is effective and can compute the wave field precisely.
More Than 10 Gbps Photonic Packet-Switched Networks Using WDM-Based Packet Compression
Institute of Scientific and Technical Information of China (English)
Hiroaki Harai; Naoya Wada
2003-01-01
We propose photonic packet-switched networks in which more than 10Gbps optical packets are transferred. WDM- based packet compression at edge nodes plays an important role in resolving interface gap between core and metro.
A Probabilistic Scheme for Reducing the Packet Loss in Mobile IPv6
Directory of Open Access Journals (Sweden)
Kabir Md. Humayun
2012-12-01
Full Text Available Mobile IPv6 allows a Mobile Node to remain reachable by a Correspondent Node while roaming from one network to another network. In Mobile IPv6, a Mobile Node directly updates its current location information to a Correspondent Node using a route optimization method. Route optimization helps to culminate the packet delay incurred due to suboptimal route traversed by the packets from a Correspondent Node to a Mobile Node in Mobile IPv4. However, it introduces packet losses during Mobile Node's transition from one network to another network. This packet loss increases as the mobility of the node increases. In this paper, we propose a probabilistic scheme to reduce this packet loss. Our solution is based on the Mobile Node's mobility prediction at the Correspondent Node and a buffering mechanism at the Home Agent. Simulation results prove the effectiveness of our scheme in case of reducing the packet loss problem besetting the Mobile IPv6.
AUTOMATING SELECTION OF OPTIMAL PACKET SCHEDULING DURING VOIP-TRAFFIC TRANSMISSION
Directory of Open Access Journals (Sweden)
Yuliya A. Balakshina
2016-11-01
Full Text Available The usage of various packet scheduling disciplines in computer networking devices as a mechanism to ensure the quality of service is described. Stages for selection of necessary parameters values of packet scheduling during VoIP-traffic transmission in computer networks are defined. VoIP-traffic was set as a research object because there are strict requirements of VoIP-applications to the network transmission parameters. With the aid of training and experimental simulation system the numerous experiments for parameters selection of the most common packet scheduling disciplines were carried out (FIFO, WFQ, non-preemptive priority queueing. The example that illustrates the ability to adjust the weighting coefficients of WFQ packet scheduling discipline is presented. Approximate analytical dependences are obtained and they will significantly reduce system administrators’ efforts to assess and modify the parameters of packet scheduling in network devices. A method of automating selection of the optimal packet scheduling discipline is formulated.
Numerical Simulation and Experiment for Underwater Shock Wave in Newly Designed Pressure Vessel
Directory of Open Access Journals (Sweden)
M Shibuta
2016-09-01
Full Text Available Modern eating habits depend in large part on the development of food processing technology. Thermal treatments are often performed in the conventional food processing, but it can cause discoloration and loss of nutrients of the food by thermal processing or treatment. On the other hand, food processing using an underwater shock wave has little influence of heat and its processing time is very short, preventing the loss of nutrients. In this research optical observation experiment and the numerical simulation were performed, in order to understand and control the behavior of the underwater shock wave in the development of the processing container using an underwater shock wave for the factory and home. In this experiment a rectangular container was used to observe the behavior of the underwater shock wave. In the experiment, the shock wave was generated by using explosive on the shock wave generation side. The shock wave, which passed through the phosphor bronze and propagated from the aluminum sidewall, was observed on the processing container side. Numerical simulation of an analogous experimental model was investigated, where LS-DYNA software was used for the numerical simulation. The comparative study of the experiment and the numerical simulation was investigated. The behavior of a precursor shock wave from the device wall was able to be clarified. This result is used for development of the device in numerical simulation.
Numerical simulation of floating bodies in extreme free surface waves
Directory of Open Access Journals (Sweden)
Z. Z. Hu
2011-02-01
Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Numerical simulation of floating bodies in extreme free surface waves
Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.
2011-02-01
In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Wave Simulation in Truncated Domains for Offshore Applications
Wellens, P.R.
2012-01-01
Integrated design and simulation for millimeter-wave antenna systems
Cwik, T.; Katz, D. S.; Villegas, F. J.
2000-01-01
In this paper the development and application of MODTool (Millimeter-wave Optics Design), a design tool that efficiently integrates existing millimeter-wave optics design software with a solid body modeler and thermal/structural analysis packages, will be discussed.
Wave Simulation in Truncated Domains for Offshore Applications
Wellens, P.R.
2012-01-01
URANS simulations of ship motion responses in long-crest irregular waves
Institute of Scientific and Technical Information of China (English)
沈志荣; 叶海轩; 万德成
2014-01-01
In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, conside-rably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spe-ctrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.
Simulation Analysis of Wave Effect on Exceeding Water Gesture and Load of Submarine Launched Missile
Directory of Open Access Journals (Sweden)
Ke Zhao
2014-02-01
Full Text Available In this study, we have a research on wave action on the submarine launched missile water trajectory and gesture angles during the process between launch and exit from water. Infinite water depth plane wave was used as the wave model, mathematics models of missile exceeding water under different wave conditions were established based on ideal potential flow theory. The flow field velocity potential was obtained by solving the Laplace equation, thus can obtain missile surface pressure. Considering free surface effects, simple Green’s function was introduced to solve boundary value problems. Three-dimensional Fortran program and finite software ABAQUS were combined to complete the fluid-structure interaction simulation. The rules that wave level and phases effects on submarine-launched missile were finally obtained, which shows wave affect cannot be neglected. Simulation methods and results of this study have a certain reference value for the submarine-launched missile launching.
Finite-Difference Simulation of Elastic Wave with Separation in Pure P- and S-Modes
Directory of Open Access Journals (Sweden)
Ke-Yang Chen
2014-01-01
Full Text Available Elastic wave equation simulation offers a way to study the wave propagation when creating seismic data. We implement an equivalent dual elastic wave separation equation to simulate the velocity, pressure, divergence, and curl fields in pure P- and S-modes, and apply it in full elastic wave numerical simulation. We give the complete derivations of explicit high-order staggered-grid finite-difference operators, stability condition, dispersion relation, and perfectly matched layer (PML absorbing boundary condition, and present the resulting discretized formulas for the proposed elastic wave equation. The final numerical results of pure P- and S-modes are completely separated. Storage and computing time requirements are strongly reduced compared to the previous works. Numerical testing is used further to demonstrate the performance of the presented method.
Novel Scheme for Packet Forwarding without Header Modifications in Optical Networks
DEFF Research Database (Denmark)
Wessing, Henrik; Christiansen, Henrik Lehrmann; Fjelde, Tina
2002-01-01
We present a novel scheme for packet forwarding in optical packet-switched networks and we further demonstrate its good scalability through simulations. The scheme requires neither header modification nor any label distribution protocol, thus reducing component cost while simplifying network...
Lattice Boltzmann simulation for the spiral waves in the excitable medium
Institute of Scientific and Technical Information of China (English)
GuangwuYAN; LiYUAN
2000-01-01
We propose lattice Boltzmann method for the spiral waves. Using Chapman-Enskog expansion and multiscales technique, we obtain equilibrium distribution functions of the model. As an example, we simulate the Selkov reactions with scratching mark, i. e. using a scratching mark pacemaker, obtained one classical spiral waves.
Numerical Simulation of Hydrodynamic Wave Loading by a Compressible Two-Phase Model
Wemmenhove, R.; Loots, G.E.; Veldman, A.E.P.
2006-01-01
The numerical simulation of hydrodynamic wave loading on different types of offshore structures is important to predict forces on and water motion around these structures. This paper presents a numerical study of the effects of two-phase flow on an offshore structure subject to breaking waves. The
Numerical simulation of hydrodynamic wave loading by a compressible two-phase flow method
Wemmenhove, Rik; Luppes, Roelf; Veldman, Arthur; Bunnik, Tim
2015-01-01
Hydrodynamic wave loading on and in offshore structures is studied by carrying out numerical simulations. Particular attention is paid to complex hydrodynamic phenomena such as wave breaking and air entrapment. The applied CFD method, ComFLOW, solves the Navier–Stokes equations with an improved Volu
A Coupled VOF-Eulerian Multiphase CFD Model to Simulate Breaking Wave Impacts on Offshore Structures
DEFF Research Database (Denmark)
Tomaselli, Pietro; Christensen, Erik Damgaard
2016-01-01
Breaking wave-induced loads on offshore structures can be extremely severe. The air entrainment mechanism during the breaking process plays a not well-known role in the exerted forces. This paper present a CFD solver, developed in the Open-FOAM environment, capable of simulating the wave breaking...
Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid
Institute of Scientific and Technical Information of China (English)
Li Hua-Bing; Fang Hai-Ping
2004-01-01
A nine-velocity lattice Boltzmann method for Maxwell viscoelastic fluid is proposed. Travelling of transverse wave in Maxwell viscoelastic fluid is simulated. The instantaneous oscillating velocity, transverse shear speed and decay rate agree with theoretical results very well.
Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines
DEFF Research Database (Denmark)
Fuhrman, David R.; Baykal, Cüneyt; Sumer, B. Mutlu
2014-01-01
A fully-coupled hydrodynamic/morphodynamic numerical model is presented and utilized for the simulation of wave-induced scour and backfilling processes beneath submarine pipelines. The model is based on solutions to Reynolds-averaged Navier–Stokes equations, coupled with k−ω turbulence closure......≤30 demonstrate reasonable match with previous experiments, both in terms of the equilibrium scour depth as well as the scour time scale. Wave-induced backfilling processes are additionally studied by subjecting initial conditions taken from scour simulations with larger KC to new wave climates...... characterized by lower KC values. The simulations considered demonstrate the ability of the model to predict backfilling toward expected equilibrium scour depths based on the new wave climate, in line with experimental expectations. The simulated backfilling process is characterized by two stages: (1...
Statistical analysis of nonlinear wave interactions in simulated Langmuir turbulence data
Directory of Open Access Journals (Sweden)
J. Soucek
Full Text Available We present a statistical analysis of strong turbulence of Langmuir and ion-sound waves resulting from beam-plasma interaction. The analysis is carried out on data sets produced by a numerical simulation of one-dimensional Zakharov’s equations. The nonlinear wave interactions are studied using two different approaches: high-order spectra and Volterra models. These methods were applied to identify two and three wave processes in the data, and the Volterra model was furthermore employed to evaluate the direction and magnitude of energy transfer between the wave modes in the case of Langmuir wave decay. We demonstrate that these methods allow one to determine the relative importance of strongly and weakly turbulent processes. The statistical validity of the results was thoroughly tested using surrogated data set analysis.
Key words. Space plasma physics (wave-wave interactions; experimental and mathematical techniques; nonlinear phenomena
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
Directory of Open Access Journals (Sweden)
Deng Shuaiqi
2013-05-01
Full Text Available The high-order staggering grid Finite-Difference (FD scheme based on first-order velocity-stress elastic wave equation has been deduced. The calculation method of PML boundary condition and stability condition established in this study can be used for numerical simulation of advanced detection of elastic wave in roadway, with the obtaining of high-precision seismogram. Then we systematically analyze the polarity of vector wave field in post-source observation system. The results indicate that the relationship between the vector wave field and the polarity of direct wave is related to reflection coefficient on the interface, while the polarity relationship between horizontal and vertical components of vector wave field is related to vertical position of the interface. During data processing for advanced detection of elastic waves, the sign of the reflection coefficient on the interface ahead can be determined based on the polarity relationship between reflected wave and direct wave from the seismograms; the soft and hard rock and other geological information on both sides of the interface is thus be determined. In addition, the direction of source wave depends on polarity relationship between horizontal and vertical components of reflected wave and is used to achieve the separation of up going and down going waves.