Slow-light Airy wave packets and their active control via electromagnetically induced transparency
Hang, Chao
2014-01-01
We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant $\\Lambda$-type three-level atomic gas via electromagnetically induced transparency. We show that in the absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to $10^{-5}\\,c$ ($c$ is the light speed in vacuum). We also show that in the presence of dispersion it is possible to generate another type of slow-light Airy wave packets consisting of two Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation. Additionally, we further show that the transverse accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively manipulated ...
Pulse-induced focusing of Rydberg wave packets
Arbó, D. G.; Reinhold, C. O.; Burgdörfer, J.; Pattanayak, A. K.; Stokely, C. L.; Zhao, W.; Lancaster, J. C.; Dunning, F. B.
2003-06-01
We demonstrate that strong transient phase-space localization can be achieved by the application of a single impulsive “kick” in the form of a short (600 ps) unidirectional electric-field pulse to a strongly polarized, quasi-one-dimensional Rydberg atom. The underlying classical dynamics is analyzed and it is shown that phase-space localization results from a focusing effect analogous to rainbow scattering. Moreover, it is shown that the essential features of the classical analysis remain valid in a quantum-mechanical treatment of the system in terms of its phase-space Husimi distribution. The degree of phase-space localization is characterized by the coarse-grained Renyi entropy. Transient phase-space localization is demonstrated experimentally using extreme redshifted m=0 potassium Stark states in the n=351 manifold and a short probe pulse. The experimental data are in good agreement with theoretical predictions. The localized state provides an excellent starting point for further control and manipulation of the electron wave packet.
Robinett, R W
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (`minipackets' or `clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum w...
Energy Technology Data Exchange (ETDEWEB)
Robinett, R.W
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Robinett, R. W.
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Energy Technology Data Exchange (ETDEWEB)
Sacks, R.A.; Robinson, J.E.
1980-02-15
The time-dependent Schroedinger equation is integrated numerically to obtain the time evolution of an initially Gaussian packet in the presence of Eckart, truncated quadratic, and untruncated quadratic potentials. Potential and packet parameters are chosen with hydrogen interstitials in transition metals in mind and are varied over significant ranges. Use of the smooth, bounded Eckart potential eliminates the pronounced structure and the anomalous spreading reported previously for other potentials. An interesting transient feature of the scattered packet is found and discussed in terms of the Wigner time delay. Packet transmission coefficients are discussed, and a quasiclassical approximation is found to agree closely with the exact results.
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments
Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...
Dynamics of quantum wave packets
Energy Technology Data Exchange (ETDEWEB)
Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.
Heisenberg's wave packet reconsidered
Grabbe, J. Orlin
2005-01-01
This note shows that Heisenberg's choice for a wave function in his original paper on the uncertainty principle is simply a renormalized characteristic function of a stable distribution with certain restrictions on the parameters. Relaxing Heisenberg's restrictions leads to a more general formulation of the uncertainty principle. This reformulation shows quantum uncertainty can exist at a macroscopic level. These modifications also give rise to a new form of Schrodinger's wave equation as the...
Causal evolution of wave packets
Eckstein, Michał
2016-01-01
Drawing from the optimal transport theory adapted to the relativistic setting we formulate the principle of a causal flow of probability and apply it in the wave packet formalism. We demonstrate that whereas the Dirac system is causal, the relativistic-Schr\\"odinger Hamiltonian impels a superluminal evolution of probabilities. We quantify the causality breakdown in the latter system and argue that, in contrast to the popular viewpoint, it is not related to the localisation properties of the states.
Rotating Gaussian wave packets in weak external potentials
Goussev, Arseni
2017-07-01
We address the time evolution of two- and three-dimensional nonrelativistic Gaussian wave packets in the presence of a weak external potential of arbitrary functional form. The focus of our study is the phenomenon of rotation of a Gaussian wave packet around its center of mass, as quantified by mean angular momentum computed relative to the wave-packet center. Using a semiclassical approximation of the eikonal type, we derive an explicit formula for a time-dependent change of mean angular momentum of a wave packet induced by its interaction with a weak external potential. As an example, we apply our analytical approach to the scenario of a two-dimensional quantum particle crossing a tilted ridge potential barrier. In particular, we demonstrate that the initial orientation of the particle wave packet determines the sense of its rotation, and report a good agreement between analytical and numerical results.
Malakar, Y.; Kaderiya, B.; Zohrabi, M.; Pearson, W. L.; Ziaee, F.; Kananka Raju, P.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.
2016-05-01
Light-driven vibrational wave packets play an important role in molecular imaging and coherent control applications. Here we present the results of a pump-probe experiment characterizing laser-induced vibrational wave packets in both, neutral and ionic states of CH3 I (iodomethane), one of the prototypical polyatomic systems. Measuring yields and kinetic energies of all ionic fragments as a function of the time delay between two 25 fs, 800 nm pump and probe pulses, we map vibrational motion of the molecule, and identify the states involved by channel-resolved Fourier spectroscopy. In the Coulomb explosion channels we observe features with ~ 130 fs periodicity resulting from C-I symmetric stretch (ν3 mode) of the electronically excited cationic state. However the Fourier transform of the low-energy I+ ion yield produced by the dissociative ionization of CH3 I reveals the signatures of the same vibrational mode in the ground electronic states of both, neutral and cation, reflected in 65-70 fs oscillations. We observe the degeneration of the oscillatory structures from the cationic states within ~ 2 ps and discuss most likely reasons for this behavior. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049.
Segregation of helicity in inertial wave packets
Ranjan, A.
2017-03-01
Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.
Fictitious time wave packet dynamics: I. Nondispersive wave packets in the quantum Coulomb problem
Fabčič, T; Wunner, G
2009-01-01
Nondispersive wave packets in a fictitious time variable are calculated analytically for the field-free hydrogen atom. As is well known by means of the Kustaanheimo-Stiefel transformation the Coulomb problem can be converted into that of a four-dimensional harmonic oscillator, subject to a constraint. This regularization makes use of a fictitious time variable, but arbitrary Gaussian wave packets in that time variable in general violate that constraint. The set of "restricted Gaussian wave packets" consistent with the constraint is constructed and shown to provide a complete basis for the expansion of states in the original three-dimensional coordinate space. Using that expansion arbitrary localized Gaussian wave packets of the hydrogen atom can be propagated analytically, and exhibit a nondispersive periodic behavior as functions of the fictitious time. Restricted wave packets with and without well defined angular momentum quantum n umbers are constructed. They will be used as trial functions in time-depende...
Squeezed Wave Packets in Quantum Cosmology
Pedram, Pouria
2010-11-01
We use an appropriate initial condition for constructing squeezed wave packets in the context of Wheeler-DeWitt equation with complete classical description. This choice of initial condition does not alter the classical paths and only affect the quantum mechanical picture. To demonstrate the method, we consider an empty 4+1-dimensional Kaluza-Klein quantum cosmology in the presence of a negative cosmological constant. We show that these wave packets do not disperse and sharply peak on the classical trajectories in the whole configuration space. So, the probability of finding the corresponding physical quantities approaches zero everywhere except on the classical paths.
Short-time Chebyshev wave packet method for molecular photoionization
Sun, Zhaopeng; Zheng, Yujun
2016-08-01
In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.
Wave packet dynamics and factorization of numbers
Mack, H; Haug, F; Straub, F S; Freyberger, M; Schleich, W P; Mack, Holger; Bienert, Marc; Haug, Florian; Straub, Frank S.; Freyberger, Matthias; Schleich, Wolfgang P.
2002-01-01
We connect three phenomena of wave packet dynamics: Talbot images, revivals of a particle in a box and fractional revivals. The physical origin of these effects is deeply rooted in phase factors which are quadratic in the quantum number. We show that the characteristic structures in the time evolution of these systems allow us to factorize large integers.
Relativistic suppression of wave packet spreading.
Su, Q; Smetanko, B; Grobe, R
1998-03-30
We investigate numerically the solution of Dirac equation and analytically the Klein-Gordon equation and discuss the relativistic motion of an electron wave packet in the presence of an intense static electric field. In contrast to the predictions of the (non-relativistic) Schroedinger theory, the spreading rate in the field's polarization direction as well as in the transverse directions is reduced.
Weisskopf-Wigner model for wave packet excitation
Paloviita, A; Stenholm, S; Paloviita, Asta; Suominen, Kalle-Antti; Stenholm, Stig
1997-01-01
We consider a laser induced molecular excitation process as a decay of a single energy state into a continuum. The analytic results based on Weisskopf-Wigner approach and perturbation calculations are compared with numerical wave packet results. We find that the decay model describes the excitation process well within the expected parameter region.
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory
Mancal, Tomas; Milota, Franz; Lukes, Vladimir; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
We present a theory of vibrational modulation of two-dimensional coherent Fourier transformed electronic spectra. Based on an expansion of the system's energy gap correlation function in terms of Huang-Rhys factors, we explain the time-dependent oscillatory behavior of the absorptive and dispersive parts of two-dimensional spectra of a two-level electronic system, weakly coupled to intramolecular vibrational modes. The theory predicts oscillations in the relative amplitudes of the rephasing and non-rephasing parts of the two-dimensional spectra, and enables to analyze time dependent two-dimensional spectra in terms of simple elementary components whose line-shapes are dictated by the interaction of the system with the solvent only. The theory is applicable to both low and high energy (with respect to solvent induced line broadening) vibrations. The results of this paper enable to qualitatively explain experimental observations on low energy vibrations presented in the preceding paper [A. Nemeth et al, arXiv:1...
Teleportation of Nonclassical Wave Packets of light
Lee, Noriyuki; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira
2012-01-01
We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.
Spectral Modulation by Rotational Wave Packets
Baertschy, Mark; Hartinger, Klaus
2005-05-01
Periodic rephasing of molecular rotational wave packets can create rapid fluctuations in the optical properties of a molecular gas which can be used to manipulate the temporal phase and spectral content of ultrashort light pulses. We have demonstrated spectral control of a time-delayed ultrafast probe pulse propagating through the rotational wave packet prepared by a pump laser pulse. The spectrum of the probe pulse can be either broadened or compressed, depending on the relative sign of the temporal phase modulation and the initial chirp of the probe pulse. Adjustment of the spectral phase at the output of the interaction region allows controlled temporal pulse streching^1 and compression^2. The degree to which the spectrum of an ultrafast pulse can be modified depends on the strength and shape of the rotational wavepacket. We are studying the optimization of the rotational wave packet excitation with complex, shaped pump laser pulses for the purpose of optimizing probe pulse spectra modulation. ^1 Klaus Hartinger and Randy A. Bartels, Opt. Lett., submitted (2005). ^2 R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, Chris H. Greene, M.M. Murnane, and H.C. Kapteyn , Phys. Rev. Lett., 88, 013903 (2002). This work was supported by the NSF.
Massachusetts Bay - Internal wave packets digitized from SAR imagery
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...
Scattering of wave packets with phases
Karlovets, Dmitry
2016-01-01
A general problem of $2\\rightarrow N_f$ scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in $(3+1)$ D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet $\\sigma_p/\\langle p\\rangle$ as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the...
Scattering of wave packets with phases
Karlovets, Dmitry V.
2017-03-01
A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /p> as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.
Spreading of Ultrarelativistic Wave Packet and Redshift
Lev, Felix M
2012-01-01
The red shift of light coming to the Earth from distant objects is usually explained as a consequence of the fact that the Universe is expanding. Such an explanation implies that photons emitted by distant objects travel in the interstellar medium practically without interaction with interstellar matter and hence they can survive their long journey to the Earth. We analyze this assumption by considering wave-packet spreading for an ultrarelativistic particle. We derive a formula which shows that spreading in the direction perpendicular to the particle momentum is very important and cannot be neglected. The implications of the results are discussed.
Square-integrability of multivariate metaplectic wave-packet representations
Ghaani Farashahi, Arash
2017-03-01
This paper presents a systematic study for harmonic analysis of metaplectic wave-packet representations on the Hilbert function space {{L}2}≤ft({{{R}}d}\\right) . The abstract notions of symplectic wave-packet groups and metaplectic wave-packet representations will be introduced. We then present an admissibility condition on closed subgroups of the real symplectic group \\text{Sp}≤ft({{{R}}d}\\right) , which guarantees the square-integrability of the associated metaplectic wave-packet representation on {{L}2}≤ft({{{R}}d}\\right) .
Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias
2014-06-01
Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm-1 and 360 cm-1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].
Controlling the spreading of wave packets of a dissociating molecule
DEFF Research Database (Denmark)
Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm
2007-01-01
in the Franck-Condon region whereas, as well known, the positively chirped pulses focus the wave packet in the asymptotic region. For the negatively chirped pulses, we show that the time corresponding to the minimum in the width of the wave packet can be predicted by an analytical formula. (C) 2007 Elsevier B.V...
Equations of motion for a relativistic wave packet
Indian Academy of Sciences (India)
L Kocis
2012-05-01
The time derivative of the position of a relativistic wave packet is evaluated. It is found that it is equal to the mean value of the momentum of the wave packet divided by the mass of the particle. The equation derived represents a relativistic version of the second Ehrenfest theorem.
DEFF Research Database (Denmark)
Marquetand, P.; Materny, A.; Henriksen, Niels Engholm
2004-01-01
We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when...... the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational...
Einstein-de Broglie relations for wave packet: the acoustic world
Simaciu, Ion; Dumitrescu, Gheorghe; Georgeta, Nan
2015-01-01
In this paper we study the relations of Einstein-de Broglie type for the wave packets. We assume that the wave packet is a possible model of particle . When studying the behaviour of the wave packet for standing waves, in relation to an accelerated observer (i.e. Rindler observer), there can be demonstrated that the equivalent mass of the packet is the inertial mass. In our scenario, the waves and of the wave packets are depicted by the strain induced/produced in the medium. The properties of the waves, of the wave packet and, generally, of the perturbations in a material medium suggest the existence of an acoustic world. The acoustic world has mechanical and thermodynamical properties. The perturbations that are generated and propagated in the medium are correlated by means of acoustic waves with maximum speed. The observers of this world of disturbances (namely the acoustic world) have senses that are based on the perception of mechanical waves (disturbance of any kind) and apparatus for detecting and acqui...
Energy Technology Data Exchange (ETDEWEB)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H. [School of Physics, University of Sydney, New South Wales 2006 (Australia); Skjaeraasen, O. [ProsTek, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway)
2011-07-15
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed {nu}{sub e}/c increases and as the temperature ratio T{sub i}/T{sub e} of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on {nu}{sub e}/c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T{sub i}/T{sub e}. The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of {nu}{sub e}/c. For {nu}{sub e}/c < or approx. 0.17, strong turbulence is approximately electrostatic and wave packets have very similar structure to purely electrostatic wave packets. For {nu}{sub e}/c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all {nu}{sub e}/c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as {nu}{sub e}/c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
Analysis of circular wave packets generated by pulsed electric fields
Energy Technology Data Exchange (ETDEWEB)
Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)
2012-05-15
We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.
Information Geometry of Quantum Entangled Gaussian Wave-Packets
Kim, D -H; Cafaro, C; Mancini, S
2011-01-01
Describing and understanding the essence of quantum entanglement and its connection to dynamical chaos is of great scientific interest. In this work, using information geometric (IG) techniques, we investigate the effects of micro-correlations on the evolution of maximal probability paths on statistical manifolds induced by systems whose microscopic degrees of freedom are Gaussian distributed. We use the statistical manifolds associated with correlated and non-correlated Gaussians to model the scattering induced quantum entanglement of two spinless, structureless, non-relativistic particles, the latter represented by minimum uncertainty Gaussian wave-packets. Knowing that the degree of entanglement is quantified by the purity P of the system, we express the purity for s-wave scattering in terms of the micro-correlation coefficient r - a quantity that parameterizes the correlated microscopic degrees of freedom of the system; thus establishing a connection between entanglement and micro-correlations. Moreover, ...
Neutrino Oscillations in Intermediate States.II -- Wave Packets
Asahara, A; Shimomura, T; Yabuki, T
2004-01-01
We analyze oscillations of intermediate neutrinos in terms of scattering of particles described by Gaussian wave packets. We study a scalar model as in the previous paper (I) but in realistic situations, where two particles of the initial state and final state are wave packets and neutrinos are in the intermediate state. The oscillation of the intermediate neutrino is found from the time evolution of the total transition probability between the initial state and final state. The effect of a finite lifetime and a finite relaxation time $\\tau$ are also studied. We find that the oscillation pattern depends on the magnitude of wave packet sizes of particles in the initial state and final state and the lifetime of the initial particle. For $\\Delta m^2=10^{-2}$ eV$^2$, the oscillation probability deviates from the standard formula, if the wave packet sizes are around $10^{-13}$ m for 0.4 MeV neutrino.
Resonance-Assisted Decay of Nondispersive Wave Packets
Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.
2006-01-01
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
Wave packet dynamics of potassium dimers attached to helium nanodroplets
Claas, P.; Droppelmann, G.; Schulz, C. P.; Mudrich, M.; Stienkemeier, F.
2006-01-01
The dynamics of vibrational wave packets excited in K$_2$ dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump-probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K$^+_2$-formation are identified. While the wave packet dynamics of the electronic ground state is not influenced by the helium environment, perturbations of the electronically excited states are obs...
Electronic Wave Packet in a Quantized Electromagnetic Field
Institute of Scientific and Technical Information of China (English)
程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭
2002-01-01
We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.
On wave-packet dynamics in a decaying quadratic potential
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1997-01-01
We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....
Wave analysis of the evolution of a single wave packet in supersonic boundary layer
Yermolaev, Yury G.; Yatskikh, Aleksey A.; Kosinov, Alexander D.; Semionov, Nickolay V.
2016-10-01
The evolution of the artificial wave packet in laminar flat-plate boundary layer was experimentally studied by hot-wire measurements at M=2. The localized disturbances were generated by pulse glow discharge. The wave analysis of evolution of wave packet was provided. It was found, that the most unstable waves are oblique, that consistent with results of linear theory.
Climatology of extratropical atmospheric wave packets in the northern hemisphere
Grazzini, Federico
2010-01-01
Planetary and synoptic scale wave-packets represents one important component of the atmospheric large-scale circulation. These dissipative structures are able to rapidly transport eddy kinetic energy, generated locally (e.g. by baroclinic conversion), downstream along the upper tropospheric flow. The transported energy, moving faster than individual weather systems, will affect the development of the next meteorological system on the leading edge of the wave packet, creating a chain of connections between systems that can be far apart in time and space, with important implications on predictability. In this work we present a different and novel approach to investigate atmospheric variability, based on the objective recognition of planetary and synoptic wave packets. We have developed an objective tracking algorithm which allows to extract relevant statistical properties of the wave trains as a function of their dominant wavelength. We have applied the algorithm to the daily analysis (every 12h) from 1958-2009...
Electron acceleration by Landau resonance with whistler mode wave packets
Gurnett, D. A.; Reinleitner, L. A.
1983-01-01
Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.
Particle-like wave packets in complex scattering systems
Gérardin, Benoît; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre
2016-01-01
A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. We demonstrate how the direct experimental access to the information stored in the scattering matrix of these systems allows us to selectively excite scattering states and wave packets that travel along individual classical trajectories. Due to their limited dispersion, these particle-like scattering states will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.
Flavor entanglement in neutrino oscillations in the wave packet description
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2015-10-01
The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.
The Spatiotemporal Evolution of Wave Packets under Chaotic Condition
Institute of Scientific and Technical Information of China (English)
LIU Fang; LI Jun-Qing; LUO Yi-Xiao; XU Gong-Ou; ZUO Wei
2001-01-01
Using the minimum uncertainty state of quantum integrable system H0 as initial state,the spatiotemporal evolution of the wave packet under the action of perturbed Hamiltonian is studied causally as in classical mechanics. Due to the existence of the avoided energy level crossing in the spectrum there exist nonlinear resonances between somepairs of neighboring components of the wave packet,the deterministic dynamical evolution becomes very complicated and appears to be chaotic.It is proposed to use expectation values for the whole set of basic dynamical variables and the corresponding spreading widths to describe the topological features concisely such that the quantum chaotic motion can be studied in contrast with the quantum regular motion and well characterized with the asymptotic behaviors.It has been demonstrated with numerical results that such a wave packet has indeed quantum behaviors of ergodicity asin corresponding classical case.
Wave packet propagation across barriers by semiclassical initial value methods
Petersen, Jakob; Kay, Kenneth G.
2015-07-01
Semiclassical initial value representation (IVR) formulas for the propagator have difficulty describing tunneling through barriers. A key reason is that these formulas do not automatically reduce, in the classical limit, to the version of the Van Vleck-Gutzwiller (VVG) propagator required to treat barrier tunneling, which involves trajectories that have complex initial conditions and that follow paths in complex time. In this work, a simple IVR expression, that has the correct tunneling form in the classical limit, is derived for the propagator in the case of one-dimensional barrier transmission. Similarly, an IVR formula, that reduces to the Generalized Gaussian Wave Packet Dynamics (GGWPD) expression [D. Huber, E. J. Heller, and R. Littlejohn, J. Chem. Phys. 89, 2003 (1988)] in the classical limit, is derived for the transmitted wave packet. Uniform semiclassical versions of the IVR formulas are presented and simplified expressions in terms of real trajectories and WKB penetration factors are described. Numerical tests show that the uniform IVR treatment gives good results for wave packet transmission through the Eckart and Gaussian barriers in all cases examined. In contrast, even when applied with the proper complex trajectories, the VVG and GGWPD treatments are inaccurate when the mean energy of the wave packet is near the classical transmission threshold. The IVR expressions for the propagator and wave packet are cast as contour integrals in the complex space of initial conditions and these are generalized to potentially allow treatment of a larger variety of systems. A steepest descent analysis of the contour integral formula for the wave packet in the present cases confirms its relationship to the GGWPD method, verifies its semiclassical validity, and explains results of numerical calculations.
Analysis of Circular Wave Packets Generated by Pulsed Electric Fields
Energy Technology Data Exchange (ETDEWEB)
Yoshida, S. [Vienna University of Technology, Austria; Reinhold, Carlos O [ORNL; Burgdorfer, J. [Vienna University of Technology, Austria; Wyker, B. [Rice University; Ye, S. [Rice University; Dunning, F. B. [Rice University
2011-01-01
We demonstrate that circular wave packets in high Rydberg states generated using a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wavepackets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficient.
Wave packet dynamics under effect of a pulsed electric field
da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.
2016-06-01
We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.
Wave packets and initial conditions in quantum cosmology
Gousheh, S S
2000-01-01
We discuss the construction of wave packets resulting from the solutions of a class of Wheeler-DeWitt equations in Robertson-Walker type cosmologies. We present an ansatz for the initial conditions which leads to a unique determination of the expansion coefficients in the construction of the wave packets with probability distributions which, in an interesting contrast to some of the earlier works, agree well with all possible classical paths. The possible relationship between these initial conditions and signature transition in the context of classical cosmology is also discussed.
Symmetry and conservation laws in semiclassical wave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu [Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080-3021 (United States)
2015-03-15
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.
Propagation of gravity wave packet near critical level
Institute of Scientific and Technical Information of China (English)
YUE Xianchang; YI Fan
2005-01-01
A couple of two-dimensional linear and fully nonlinear numerical models for compressible atmosphere are used to numerically study the propagation of the gravity wave packet into a mean wind shear. For a linear propagation wave packet, the critical level interactions are in good agreement with the linear critical level theory. The dynamically and convectively unstable regions are formed due to the critical level interaction of a finite-amplitude wave packet, but they would not break. The free exchange of potential energy with kinetic energy in the background atmosphere at rest ceases after entering the mean wind shear. However, it still goes on in the nonlinear propagation. It is shown that the nonlinear effects modify the mean flow markedly, reduce the momentum and energy propagation velocity and drop the elevation of the critical level.The gravity wave packet becomes unstable and breaks down into smaller scales in some regions. It expends much more kinetic energy than potential energy in the early phase of the breakdown. This means that the wave breakdown sets up due to the action of the shear instability rather than a convective one.
Stochastic Acceleration of Ions Driven by Pc1 Wave Packets
Khazanov, G. V.; Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.
2015-01-01
The stochastic motion of protons and He(sup +) ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10(exp -4) nT sq/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.
Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Bathymetry
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with bathymetry for Massachusetts Bay. The internal wave packets were...
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with tidal zones for Massachusetts Bay. The internal wave packets were...
Chirp dependence of wave packet motion in oxazine 1.
Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus
2005-11-24
The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves
Driben, Rodislav
2014-01-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.
Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.
Driben, Rodislav; Meier, Torsten
2014-10-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.
Inversion of an Atomic Wave Packet in a Circularly Polarized Electromagnetic Wave
Institute of Scientific and Technical Information of China (English)
ZENG Gao-Jian
2001-01-01
We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.``
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Semiclassical wave-packets emerging from interaction with an environment
Energy Technology Data Exchange (ETDEWEB)
Recchia, Carla, E-mail: carla.recchia@libero.it [D.I.S.I.M., Università di L’Aquila, Via Vetoio - Loc. Coppito - 67010 L’Aquila (Italy); Teta, Alessandro, E-mail: teta@mat.uniroma1.it [Dipartimento di Matematica, “Sapienza” Università di Roma, P.le A. Moro 5, 00185 Roma (Italy)
2014-01-15
We study the quantum evolution in dimension three of a system composed by a test particle interacting with an environment made of N harmonic oscillators. At time zero the test particle is described by a spherical wave, i.e., a highly correlated continuous superposition of states with well localized position and momentum, and the oscillators are in the ground state. Furthermore, we assume that the positions of the oscillators are not collinear with the center of the spherical wave. Under suitable assumptions on the physical parameters characterizing the model, we give an asymptotic expression of the solution of the Schrödinger equation of the system with an explicit control of the error. The result shows that the approximate expression of the wave function is the sum of two terms, orthogonal in L{sup 2}(R{sup 3(N+1)}) and describing rather different situations. In the first one, all the oscillators remain in their ground state and the test particle is described by the free evolution of a slightly deformed spherical wave. The second one consists of a sum of N terms where in each term there is only one excited oscillator and the test particle is correspondingly described by the free evolution of a wave packet, well concentrated in position and momentum. Moreover, the wave packet emerges from the excited oscillator with an average momentum parallel to the line joining the oscillator with the center of the initial spherical wave. Such wave packet represents a semiclassical state for the test particle, propagating along the corresponding classical trajectory. The main result of our analysis is to show how such a semiclassical state can be produced, starting from the original spherical wave, as a result of the interaction with the environment.
Energy and Information Transfer Via Coherent Exciton Wave Packets
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The
Wave packet dynamics in the optimal superadiabatic approximation
Betz, Volker; Manthe, Uwe
2016-01-01
We explain the concept of superadiabatic approximations and show how in the context of the Born- Oppenheimer approximation they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic electronic energy levels near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic energy levels can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations.
Inclusion of quantum fluctuations in wave packet dynamics
Ohnishi, A
1996-01-01
We discuss a method by which quantum fluctuations can be included in microscopic transport models based on wave packets that are not energy eigenstates. By including the next-to-leading order term in the cumulant expansion of the statistical weight, which corresponds to the wave packets having Poisson energy distributions, we obtain a much improved global description of the quantum statistical properties of the many-body system. In the case of atomic nuclei, exemplified by 12C and 40Ca, the standard liquid-drop results are reproduced at low temperatures and a phase transformation to a fragment gas occurs as the temperature is raised. The treatment can be extended to dynamical scenarios by means of a Langevin force emulating the transitions between the wave packets. The general form of the associated transport coefficients is derived and it is shown that the appropriate microcanonical equilibrium distribution is achieved in the course of the time evolution. Finally, invoking Fermi's golden rule, we derive spec...
Electron Rydberg wave packets in one-dimensional atoms
Indian Academy of Sciences (India)
Supriya Chatterjee; Amitava Choudhuri; Aparna Saha; B Talukdar
2010-09-01
An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the motion of a localized quantum wave packet was studied with particular emphasis on its revival and super-revival properties. Closed form analytical expressions were derived for expectation values of the position and momentum operators that characterized the widths of the position and momentum distributions. Transient phase-space localization of the wave packet produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of the uncertainty product as a function of time was studied in order to visualize how the motion of the wave packet in its classical trajectory spreads throughout the orbit and the system becomes nonclassical. The process, however, repeats itself such that the atom undergoes a free evolution from a classical, to a nonclassical, and back to a classical state.
Rydberg Wave Packets and Half-Cycle Electromagnetic Pulses
Raman, Chandra S.
1998-05-01
This dissertation summarizes an examination of the dynamics of atomic Rydberg wave packets with coherent pulses of THz electromagnetic radiation consisting of less than a single cycle of the electric field. The bulk of the energy is contained in just a half-cycle. Previous work ( R. Jones, D. You, and P. Bucksbaum, ``Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 70, 1993. had shown how these half-cycle pulses can be used to ionize the highly excited states of an atom, and that a classical view of electronic motion in the atom explains the ionization mechanism. To further probe the boundary between classical trajectories and quantum mechanics, in this work I investigate dynamical combinations of Rydberg states, or Rydberg wave packets, and how they ionize under the influence of a half-cycle electromagnetic pulse. With time-domain techniques I am able to extract the dynamics of the wave packet from the ionization rate, and to observe wave packet motion in both the electronic radial ( C. Raman, C. Conover, C. Sukenik, and P. Bucksbaum, ``Ionization of Rydberg wavepackets by sub-picosecond half-cycle electromagnetic pulses,'' Phys. Rev. Lett.), vol. 76, 1996.and angular ( C. Raman, T. Weinacht, and P. Bucksbaum, ``Stark wavepackets viewed with half cycle pulses.'' Phys. Rev. A), vol. 55, No. 6, 1997. coordinates. This is the first time a wavepacket technique has been used to view electron motion everywhere on its trajectory, and not just at the nucleus. This is the principal feature of half-cycle pulse ionization. Semiclassical ideas of ionization in conjunction with quantum descriptions of the wave packet, are capable of reproducing the main trends in the data, and in the absence of a rigorous model I rely on these. Experiments of this nature provide examples of the ongoing effort to use the coherent properties of radiation to control electronic motion in an atom, as well as to probe the boundaries between
Maamache, Mustapha; Bouguerra, Yacine; Choi, Jeong Ryeol
2016-06-01
A Gaussian wave packet of the inverted oscillator is investigated using the invariant operator method together with the unitary transformation method. A simple wave packet directly derived from the eigenstates of the invariant operator of the system corresponds to a plane wave that is fully delocalized. However, we can construct a weighted wave packet in terms of such plane waves, which corresponds to a Gaussian wave. This wave packet is associated with the generalized coherent state, which can be crucially utilized for investigating the classical limit of quantum wave mechanics. Various quantum properties of the system, such as fluctuations of the canonical variables, the uncertainty product, and the motion of the wave packet or quantum particle, are analyzed by means of this wave packet. We have confirmed that the time behavior of such a wave packet is very similar to the counterpart classical state. The wave packet runs away from the origin in the positive or negative direction in the 1D coordinate depending on the condition of the initial state. We have confirmed that this wave packet not only moves acceleratively but also spreads out during its propagation.
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.
Riemann zeta function from wave-packet dynamics
DEFF Research Database (Denmark)
Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.
2010-01-01
is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...
Wave packet dynamics of the matter wave field of a Bose-Einstein condensate
Sudheesh, C; Lakshmibala, S
2004-01-01
We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of the matter wave field in a Bose-Einstein condensate, or of a suitably chosen initial state of the radiation field propagating in a Kerr-like medium.
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation......, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Cho, Jungyeon
2011-01-01
Electron magnetohydrodynamics (EMHD) provides a fluid-like description of small-scale magnetized plasmas. An EMHD wave (also known as whistler wave) propagates along magnetic field lines. The direction of propagation can be either parallel or anti-parallel to the magnetic field lines. We numerically study propagation of 3-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results: 1. Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite traveling wave packets via self-interaction and cascade energy to smaller scales. 2. EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and 2-dimensional (2D) hydrodynamic turbulence.
Qualitative dynamics of wave packets in turbulent jets
Semeraro, Onofrio; Lusseyran, François; Pastur, Luc; Jordan, Peter
2017-09-01
We analyze the temporal dynamics associated with axisymmetric coherent structures in a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wave packets" [Jordan and Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013), 10.1146/annurev-fluid-011212-140756]. These structures exhibit a marked spatiotemporal organization, despite turbulence, and we aim to characterize their temporal dynamics by means of nonlinear statistical tools. The analysis is based on data presented Breakey et al., in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083 (AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted at different streamwise locations. The experiment runs at Ma=0.6 and Re=5.7 ×105 . A thorough analysis is performed. Statistical tools are used to estimate the embedding and correlation dimensions that characterize the dynamical system. Input-output transfer functions are designed as control-oriented models; and for this special case, consistent with other recent studies, we find that linear models can reproduce much of the convective input-ouput behavior. Finally, we show how surrogate models can partially reproduce the nonlinear dynamics.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
The pump-probe coupling of matter wave packets to remote lattice states
DEFF Research Database (Denmark)
Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm;
2012-01-01
containing a Bose–Einstein condensate. The evolution of these wave packets is monitored in situ and their six-photon reflection at a band gap is observed. In direct analogy with pump–probe spectroscopy, a probe pulse allows for the resonant de-excitation of the wave packet into states localized around...
Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab.
Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong
2017-04-20
We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.
Tsurutani, Bruce T.; Smith, Edward J.; Brinca, Armando L.; Thorne, Richard M.; Matsumoto, Hiroshi
1989-01-01
The physical characteristics of high-frequency wave packets detected at the steepened edge of magnetosonic waves near Comet Giacobini-Zinner are explored, based on an examination of over 45 well-defined events. The results suggest that the wave packets play an important role in the reorientation and reduction in field magnitude from the steepened magnetosonic waves to the upstream ambient field. The observed properties of the wave packets are shown to be consistent with anomalously Doppler-shifted right-hand polarized waves.
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point
Nixon, Sean; Yang, Jianke
2012-01-01
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.
Discrete Wave-Packet Representation in Nuclear Matter Calculations
Müther, H; Kukulin, V I; Pomerantsev, V N
2016-01-01
The Lippmann-Schwinger equation for the nucleon-nucleon $t$-matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for coupled-channel $t$-matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices f...
Recovery time in quantum dynamics of wave packets
Energy Technology Data Exchange (ETDEWEB)
Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru [Russian Academy of Sciences, Voevodskii Institute of Chemical Kinetics and Combustion, Siberian Branch (Russian Federation)
2017-01-15
A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of the system is established. The recovery time is the longest for the maximal excitation level.
Time delay of wave packets during their tunnelling through a quantum diode
Energy Technology Data Exchange (ETDEWEB)
Ivanov, N A; Skalozub, V V [Dnipropetrovsk National University Oles Honchar (Ukraine)
2014-04-28
A modified saddle-point method is used to investigate the process of propagation of a wave packet through a quantum diode. A scattering matrix is constructed for the structure in question. The case of tunnelling of a packet with a Gaussian envelope through the diode is considered in detail. The time delay and the shape of the wave packet transmitted are calculated. The dependence of the delay time on the characteristics of the input packet and the internal characteristics of the quantum diode is studied. Possible applications of the results obtained are discussed. (laser applications and other topics in quantum electronics)
Transport of time-varying plasma currents by whistler wave packets
Stenzel, R. L.; Urrutia, J. M.; Rousculp, C.
1992-01-01
The relationship between pulsed currents and electromagnetic waves is examined in a regime characterized by electron MHD. Pulsed currents are generated by (1) collection/emission of charged particles by/from biased electrodes and (2) induction of currents by time-varying and moving magnetic fields. Pulsed currents are observed to propagate at the speed of whistler wave packets. Their field structure forms ropelike configurations which are electromagnetically force-free. Moving sources induce 'eddy' currents which excite waves and form Cerenkov-like whistler 'wings'. The radiation patterns of moving magnetic antennas and electrodynamic tethers are investigated. Nonlinear effects of large-amplitude, antenna-launched whistler pulses are observed. These involve a new modulational instability in which a channel of high conductivity which permits the wave/currents to penetrate deeply into a collisional plasma is formed.
Statistical behavior of Langmuir wave packets observed inside the electron foreshock of Saturn
Pisa, David; Hospodarsky, George B.; Kurth, Willam S.; Gurnett, Donald A.; Santolik, Ondrej; Soucek, Jan
2014-05-01
We present a statistical study of Langmuir wave packets in the Saturnian foreshock using Cassini Wideband Receiver electric field waveforms. We analyzed all foreshock crossings from 2004 to 2012 using an automatic method for the identification of Langmuir wave signatures. Observed waveforms exhibit a shape similar to Langmuir solitons or monochromatic wave packets with a slowly varying envelope. This is in agreement with a variety of previous observations of Langmuir waves in the terrestrial foreshock and associated with Type III radio bursts. We determined the peak amplitude for all wave packets, and found the distributions of amplitude appeared to follow a power law with P(E) ≈ E-2. We confirm that the most intense electron plasma waves are observed near the foreshock boundary. We estimated the energy density ratio to be about one order below previously reported values at Saturn. Finally, we discuss the properties of the Langmuir wave packets at different locations in the foreshock.
Coriolis-coupled wave packet dynamics of H + HLi reaction.
Padmanaban, R; Mahapatra, S
2006-05-11
We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.
Quantum optimal control of wave packet dynamics under the influence of dissipation
Energy Technology Data Exchange (ETDEWEB)
Ohtsuki, Yukiyoshi; Nakagami, Kazuyuki; Zhu, Wusheng; Rabitz, Herschel
2003-02-01
Optimal control within the density matrix formalism is applied to the production of desired non-equilibrium distributions in condensed phases. The time evolution of a molecular system modeled by a displaced harmonic oscillator is assumed to be described by the Markoffian master equation with phenomenological relaxation parameters. The physical objectives of concern are the creation of a specified vibronic state, population inversion and wave packet shaping. The effects of an initial thermal distribution and dissipation on these targets are examined. In order to transfer a large amount of population (i.e., the strong-field regime) to a target wave packet in an electronic excited state, it is shown that creating a shaped packet in the ground state is often required to achieve high yield. This control pathway cannot be taken into account within the weak-field approximation, and is especially important when the target state includes vibrational states that are weakly accessible from the initial state or that have preferential indirect excitation paths from the initial state. Although relaxation effects usually reduce the control efficiency, under certain conditions, the bath-induced dynamics can help to create an objective state.
Chan, Yat-Long; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi
2015-01-01
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 $\\sigma$ confidence level.
Wave packet approach to the Jayne-Cummings and Rabi models
Larson, J
2006-01-01
This paper numerically studies the Jaynes-Cummings model with and without the rotating wave approximation in a non-standard way. Expressing the models with field quadrature operators, instead of the typically used boson ladder operators, a wave packet propagation approach is applied. The obtained evolved wave packets are then used to calculate various quantities, such as, Rabi oscillations, squeezing and entanglement. Many of the phenomenon can be explained from the wave packet evolution, either in the adiabatic or diabatic frames. Different behaviours of the two models are discussed.
Propagation of General Wave Packets in Some Classical and Quantum Systems
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2006-01-01
In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no precise counterpart to the center-of-probability velocity of quantum mechanics, in spite of the fact that there exist in the literature at least eight different velocities for the electromagnetic wave. We propose a center-of-energy velocity to describe the entire motion of general wave packets in classical physical systems. It is a measurable quantity, and is well defined for both continuous and discrete systems. For electromagnetic wave packets it is a generalization of the velocity of energy transport. General wave packets in several classical systems are studied and the center-of-energy velocity is calculated and expressed in terms of the dispersion relation and the Fourier coefficients. These systems include string subject to an external force, monatomic chain and diatomic chain in one dimension, and classical Heisenberg model in one dimension. In most cases the center-of-energy velocity reduces to the group velocity for quasi-monochromatic wave packets. Thus it also appears to be the generalization of the group velocity. Wave packets of the relativistic Dirac equation are discussed briefly.
Stability and evolution of wave packets in strongly coupled degenerate plasmas
Misra, A P
2011-01-01
We study the nonlinear propagation of electrostatic wave packets in a collisional plasma composed of strongly coupled ions and relativistically degenerate electrons. The equilibrium of ions is maintained by an effective temperature associated with their strong coupling, whereas that of electrons is provided by the relativistic degeneracy pressure. Using a multiple scale technique, a (3+1)-dimensional coupled set of nonlinear Schr\\"{o}dinger-like equations with nonlocal nonlinearity is derived from a generalized viscoelastic hydrodynamic model. These coupled equations, which govern the dynamics of wave packets, are used to study the oblique modulational instability of a Stoke's wave train to a small plane wave perturbation. We show that the wave packets, though stable to the parallel modulation, becomes unstable against oblique modulations. In contrast to the long-wavelength carrier modes, the wave packets with short-wavelengths are shown to be stable in the weakly relativistic case, whereas they can be stable...
Spreading of wave packets, Uncertainty Relations and the de Broglie Frequency
Caldas, H C G
1998-01-01
The spreading of quantum mechanical wave packets are studied in two cases. Firstly we look at the time behavior of the packet width of a free particle confined in the observable Universe. Secondly, by imposing the conservation of the time average of the packet width of a particle driven by a harmonic oscillator potential, we find a zero-point energy which frequency is the de Broglie frequency.
Quantum wave packet dynamics with trajectories: reflections on a downhill ramp potential
Lopreore, Courtney L.; Wyatt, Robert E.
2000-07-01
The quantum trajectory method (QTM) for wave packet dynamics involves solving discretized hydrodynamic equations-of-motion in the Lagrangian picture (C. Lopreore, R.E. Wyatt, Phys. Rev. Lett. 82 (1999) 5190). In this Letter, results are presented which illustrate the dynamics of an initial Gaussian wave packet on a downhill ramp potential. Plots are shown for the time evolving probability density, as well as phase space plots and force diagrams. The mechanism, deduced from these plots, surprisingly shows some of the transmitted fluid elements of the wave packet making a U-turn before they head downhill on the ramp potential.
Annular wave packets at Dirac points and probability oscillation in graphene
Luo, Ji; Valencia, Daniel
2011-01-01
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that respectively belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly fro...
Discrete wave-packet representation in nuclear matter calculations
Müther, H.; Rubtsova, O. A.; Kukulin, V. I.; Pomerantsev, V. N.
2016-08-01
The Lippmann-Schwinger equation for the nucleon-nucleon t matrix as well as the corresponding Bethe-Goldstone equation to determine the Brueckner reaction matrix in nuclear matter are reformulated in terms of the resolvents for the total two-nucleon Hamiltonians defined in free space and in medium correspondingly. This allows one to find solutions at many energies simultaneously by using the respective Hamiltonian matrix diagonalization in the stationary wave-packet basis. Among other important advantages, this approach simplifies greatly the whole computation procedures both for the coupled-channel t matrix and the Brueckner reaction matrix. Therefore this principally novel scheme is expected to be especially useful for self-consistent nuclear matter calculations because it allows one to accelerate in a high degree single-particle potential iterations. Furthermore the method provides direct access to the properties of possible two-nucleon bound states in the nuclear medium. The comparison between reaction matrices found via the numerical solution of the Bethe-Goldstone integral equation and the straightforward Hamiltonian diagonalization shows a high accuracy of the method suggested. The proposed fully discrete approach opens a new way to an accurate treatment of two- and three-particle correlations in nuclear matter on the basis of the three-particle Bethe-Faddeev equation by an effective Hamiltonian diagonalization procedure.
Trajectory description of the quantum–classical transition for wave packet interference
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.
Signatures of wave packet revival phenomena in the expectation values of observables
Sudheesh, C; Balakrishnan, V
2004-01-01
Wave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectationWave packet revivals and fractional revivals are striking quantum interference phenomena that can occur under suitable conditions in a system with a nonlinear spectrum. In the framework of a specific model (the propagation of an initially coherent wave packet in a Kerr-like medium), it is shown that distinctive signatures of these revivals and fractional revivals are displayed by the time evolution of the expectation values of physical observables and their powers, i.e., by experimentally measurable quantities. Moreover, different fractional revivals can be selectively identified by examining appr...
On the classical limit of Bohmian mechanics for Hagedorn wave packets
Dürr, Detlef
2010-01-01
We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.
Goos-Haenchen and Imbert-Fedorov shifts for bounded wave packets of light
Ornigotti, Marco
2012-01-01
We present precise expressions of the spatial and angular Goos-Haenchen and Imbert-Fedorov shifts experienced by a longitudinally and transversally limited beam of light (wave packet) upon reflection from a dielectric interface, as opposed to the well-known case of a monochromatic beam which is bounded in transverse directions but infinitely extended along the direction of propagation. This is done under the assumption that the detector time is longer than the temporal length of the wave packet (wave packet regime). Our results will be applied to the case of a Gaussian wave packet and show that, at the leading order in the Taylor expansion of reflected-field amplitudes, the results are the same of the monochromatic case.
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
Kelvin wave packets and flow acceleration - A comparison of modeling and observations
Coy, L.; Hitchman, M.
1984-01-01
Atmospheric Kelvin waves, as revealed by temperatures obtained from the recent Limb Infrared Monitor of the Stratosphere (LIMS) experiment, commonly occur in packets. A simple two-dimensional gravity-wave model is used to study the upward propagation of these packets through different zonal mean wind profiles derived from the LIMS data. The observed prevalence of high frequency waves in the lower mesosphere and low frequency waves in the lower stratosphere can be exlained by dispersion of energy associated with the range of frequencies comprising a packet. Dominant wave frequencies at upper and lower levels are more distinctly separated if the packet propagates through a layer of westerly winds. Due to dispersion and shear effects, a packet of short temporal length at low levels will have a considerably extended impact on a layer of westerly winds at higher levels. Observed and modeled westerly accelerations resulting from packet absorption occur in the same layer, and are similar in magnitude and duration. These results support the theory that Kelvin waves are responsible for the westerly phase of the semiannual oscillation.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2012-02-01
Organic materials form crystals by relatively weak Van der Waals attraction between molecules, and thus differ fundamentally from covalently bonded semiconductors. Carriers in the organic semiconductors induce the drastic lattice deformation, which is called as polaron state. The polaron effect on the transport is a serious problem. Exactly what conduction mechanism applies to organic semiconductors has not been established. Therefore, we have investigated the transport properties using the Time-Dependent Wave-Packet Diffusion (TD-WPD) method [1]. To consider the polaron effect on the transport, in the methodology, we combine the wave-packet dynamics based on the quantum mechanics theory with the molecular dynamics. As the results, we can describe the electron motion modified by (electron-phonon mediated) time-dependent structural change. We investigate the transport property from an atomistic viewpoint and evaluate the mobility of organic semiconductors. We clarify the temperature dependence of mobility from the thermal activated behavior to the power law behavior. I will talk about these results in my presentation. [1] H. Ishii, N. Kobayashi, K. Hirose, Phys. Rev. B, 82 085435 (2010).
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
Karlovets, D V; Serbo, V G
2015-01-01
Laser photons carrying non-zero orbital angular momentum are known and exploited during the last twenty years. Recently it has been demonstrated experimentally that such (twisted) electrons can be produced and even focused to a subnanometer scale. Thus, twisted electrons emerge as a new tool in atomic physics. The state of a twisted electron can be considered as a specific wave packet of plane waves. In the present paper-I we consider elastic scattering of the wave packets of fast non-relativistic particles on a potential field. We obtain simple and convenient formulae for a number of events in such a scattering. The equations derived represent, in fact, generalization of the well-known Born approximation for the case when finite sizes and inhomogeneity of the initial packet should be taken into account. To illustrate the obtained results, we consider two simple models corresponding to scattering of a Gaussian wave packet on the Gaussian potential and on the hydrogen atom. The scattering of twisted electrons ...
Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets
Pullen, M G; Le, A -T; Baudisch, M; Sclafani, M; Pires, H; Schröter, C D; Ullrich, J; Moshammer, R; Pfeifer, T; Lin, C D; Biegert, J
2016-01-01
The ability to directly follow and time resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as {\\pi}g) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with {\\pi}g and {\\pi}u symmetries, respectively, and where their ionisation probabilities do not maximise along their molecular axes. While this removes a serious bottleneck for laser induced diffraction imaging, we find unexpec...
Gaussian and Airy wave-packets of massive particles with orbital angular momentum
Karlovets, Dmitry V
2014-01-01
While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate that there is a family of such solutions, which are exact, by employing a null-plane (light-cone) variables formalism. A scalar Gaussian wave-packet in transverse plane is generalized so that it acquires a well-defined z-component of the orbital angular momentum (OAM), while may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel ones, may have an azimuthal-angle-dependent probability density and finite quantum uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave-packet, which can be interpreted as a one-particle state for relativistic massive boson, show that its center moves along the same quasi-classical straight path and, what is more important, spreads with time and distance exactly as a Gaussian wave-packet does, in accordance with the uncertainty principle. It is expla...
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-01
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N2 reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Iihama, S.; Sasaki, Y.; Sugihara, A.; Kamimaki, A.; Ando, Y.; Mizukami, S.
2016-07-01
Coherent spin-wave generation by focused ultrashort laser pulse irradiation was investigated for a permalloy thin film at micrometer scale using an all-optical space- and time-resolved magneto-optical Kerr effect microscope. The spin-wave packet propagating perpendicular to the magnetization direction was clearly observed; however, that propagating parallel to the magnetization direction was not observed. The propagation length, group velocity, center frequency, and packet width of the observed spin-wave packet were evaluated and quantitatively explained in terms of the propagation of a magnetostatic spin wave driven by the ultrafast change of an out-of-plane demagnetization field induced by the focused-pulse laser.
Principle of stationary phase for propagating wave packets in the unidimensional scattering problem
Energy Technology Data Exchange (ETDEWEB)
Bernardini, A.E. [Universidade Federal de Sao Carlos, Departamento de Fisica, PO Box 676, Sao Carlos, SP (Brazil)
2008-08-15
We point out some incompatibilities which appear when one applies the stationary phase method for deriving phase times to obtain the spatial localization of wave packets scattered by a unidimensional potential barrier. We concentrate on the above barrier diffusion problem where the wave packet collision implies the possibility of multiple reflected and transmitted wave packets, which, depending on the boundary conditions, can overlap or stand in relative separation in space. We demonstrate that the indiscriminate use of the method for such a particular configuration leads to paradoxical results for which the correct interpretation, confirmed by analytical/numerical calculations, imposes the necessity of the appearance of multiple peaks as a consequence of multiple reflections by the barrier steps. (orig.)
Analysis of wave packet motion in frequency and time domain: oxazine 1.
Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan
2006-08-17
Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion.
Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet
Institute of Scientific and Technical Information of China (English)
YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui
2006-01-01
We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance condition. A general method of the calculation is presented and the result is interesting. For example, under the condition that the wave packet is very narrow or/and the interaction is very strong, no matter whether the atom is initially in its ground state or excited state, as time approaches to infinity, the resonance-radiation force exerted by the light on the atom approaches to zero. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is a even function, then the resonance-radiation force exerted by the light on the atom is equal to zero.
Propagation of Gaussian wave packets in complex media and application to fracture characterization
Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu
2017-08-01
Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model
Efremov, MA; Petropavlovsky, SV; Fedorov, MV; Schleich, WP; Yakovlev, VP
2005-01-01
The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid deca
Institute of Scientific and Technical Information of China (English)
WU; Shaoping(吴少平); YI; Fan(易帆)
2002-01-01
By using FICE scheme, a numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere is presented. The whole nonlinear propagation process of the gravity wave packet is shown; the basic characteristics of nonlinear propagation and the influence of the ambient winds on the propagation are analyzed. The results show that FICE scheme can be extended in three-dimension by which the calculation is steady and kept for a long time; the increase of wave amplitude is faster than the exponential increase according to the linear gravity theory; nonlinear propagation makes the horizontal perturbation velocity increase greatly which can lead to enhancement of the local ambient winds; the propagation path and the propagation velocity of energy are different from the results expected by the linear gravity waves theory, the nonlinearity causes the change in propagation characteristics of gravity wave; the ambient winds alter the propagation path and group velocity of gravity wave.
Indian Academy of Sciences (India)
Maninder Kaur; Bindiya Arora; Mahmood Mian
2016-01-01
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers (, , ) determine its energy spectrum and consequently its dynamical behaviour. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits. The closed orbits are possible for certain specific values of quantum numbers (, , ) and initial momenta (, , ). We observe that a cubical billiard exhibits degenerate energy levels and the path lengths of the closed orbits for these degenerate energy levels are identical. In spite of the identical path lengths, the shapes of the closed orbits for degenerate levels are different and depend upon angles and which we term as the sweep and the elevation angles, respectively. These degenerate levels owe their origin to the symmetries prevailing in the cubical billiard and these levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks due to commensurate or incommensurate ratio of sides.
Strong field dissociative ionization of the D2+: Nuclear wave packet analysis
Tóth, A.; Borbély, S.; Halász, G. J.; Vibók, Á.
2017-09-01
Theoretical ab initio investigation of strong field dissociative ionization of the D2+ molecule in the multiphoton regime is reported. The dynamics is initiated by ultrashort laser pulses for fixed molecular axis orientations. Nuclear wave packet calculations are performed to provide the joint energy spectra (JES): ionization-dissociation probability density via electron (Ee) and nuclear (En) kinetic energy. Analyzing the time-dependent nuclear wave packet densities we have successfully identified the exact path followed by the D2+ target for each multiphoton peak.
Initial Dynamics of The Norrish Type I Reaction in Acetone: Probing Wave Packet Motion
DEFF Research Database (Denmark)
Brogaard, Rasmus Y.; Sølling, Theis I.; Møller, Klaus Braagaard
2011-01-01
agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival...... of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S1 minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics...
Bai, Xiao-Dong; Malomed, Boris A.; Deng, Fu-Guo
2016-09-01
We consider the transfer of lattice wave packets through a tilted discrete breather (TDB) in opposite directions in the discrete nonlinear Schrödinger model with asymmetric defects, which may be realized as a Bose-Einstein condensate trapped in a deep optical lattice, or as optical beams in a waveguide array. A unidirectional transport mode is found, in which the incident wave packets, whose energy belongs to a certain interval between full reflection and full passage regions, pass the TDB only in one direction, while in the absence of the TDB, the same lattice admits bidirectional propagation. The operation of this mode is accurately explained by an analytical consideration of the respective energy barriers. The results suggest that the TDB may emulate the unidirectional propagation of atomic and optical beams in various settings. In the case of the passage of the incident wave packet, the scattering TDB typically shifts by one lattice unit in the direction from which the wave packet arrives, which is an example of the tractor-beam effect, provided by the same system, in addition to the rectification of incident waves.
Program for quantum wave-packet dynamics with time-dependent potentials
Dion, C M; Rahali, G
2014-01-01
We present a program to simulate the dynamics of a wave packet interacting with a time-dependent potential. The time-dependent Schr\\"odinger equation is solved on a one-, two-, or three-dimensional spatial grid using the split operator method. The program can be compiled for execution either on a single processor or on a distributed-memory parallel computer.
Frame properties of wave packet systes in L^2 (R^d)
DEFF Research Database (Denmark)
Christensen, Ole; Rahimi, Asghar
2008-01-01
Extending work by Hernandez, Labate and Weiss, we present a sufficent condition for a generalized shift-invariant system to be a Bessel sequence or even a frame forL(2)(R-d). In particular, this leads to a sufficient condition for a wave packet system to form a frame. On the other hand, we show...
Monte Carlo Wave Packet Theory of Dissociative Double Ionization
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2009-01-01
Nuclear dynamics in strong-field double ionization processes is predicted using a stochastic Monte Carlo wave packet technique. Using input from electronic structure calculations and strong-field electron dynamics the description allows for field-dressed dynamics within a given molecule as well...
Quantum Chaos and Exponential Growth of Spreading Width of a Wave Packet in Chaotic Systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The quantum correspondence of one particular signature of classical chaos———the exponential instability f motion can be characterized by the initial exponential growth rate of the spreading width of the propagating quantum wave packet.In a former study~[1] a one to one correspondence has been found between the initial
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)
2013-07-15
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.
Recollision dynamics of electron wave packets in high-order harmonic generation
Yuan, Kai-Jun; Bandrauk, André D.
2009-11-01
We numerically investigate the dynamics of recollision of an electron in high-order harmonic generation (HHG) for an H atom and a molecular ion H2+ using a short (ten optical cycles), and intense (I0≥1014W/cm2) , z -polarized linear laser pulse with wavelength 800 nm by accurately solving the three-dimensional time-dependent Schrödinger equation. A time-frequency analysis obtained via Gabor transforms is employed to identify electron recollision and recombination times responsible for the generation of harmonics. We find that the HHG spectra are mainly attributed to the recollision of an inner electron wave packet with the parent ion in agreement with the classical recollision model. A time delay of the electron recollision occurs between wave packets in inner and outer regions, near to and far from the parent ion, due to different phase of the acceleration (as well as dipole velocity) of the electron. Inner wave packets at recollision contain mainly short and long trajectories whereas outer wave packets contain only single trajectories. Lower-order harmonics are generated mainly by single recollisions near field extrema, i.e., in strong electric fields whereas higher-order harmonics are generated by double trajectories with different intensities. In the case of H2+ at a critical nuclear distance for charge resonance enhanced ionization, we also find that HHG mainly comes from contributions of the inner electron wave packet, but with more complex recollision trajectories due to the presence of more than one Coulomb center. Triple recollision trajectories are shown to occur generally for the latter.
Energy Technology Data Exchange (ETDEWEB)
Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)
2016-06-15
We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)
A preliminary study on sea wave packet equations on slowly varying topography
Institute of Scientific and Technical Information of China (English)
朱首贤; 丁平兴; 孔亚珍; 沙文钰
2001-01-01
There is a common hypothesis for the presently popular mild-slope equations that wave particle motion is irrotational. In this paper, an attempt is made to abandon the irrotational assumption and to set up new sea wave packet equations on slowly varying topography by use of the WKBJ method. To simplify the deduction, the two-dimensional shallow water equations are used to describe the sea wave particle motion in the very shallow nearshore area. The established equations can give some characteristics of wave propagation near shore.
Frequencies of wave packets of whistler-mode chorus inside its source region: a case study
Directory of Open Access Journals (Sweden)
O. Santolik
2008-06-01
Full Text Available Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory.
Abdilghanie, Ammar M.; Diamessis, Peter J.
2012-01-01
Numerical simulations of internal gravity wave (IGW) dynamics typically rely on wave velocity and density fields which are either generated through forcing terms in the governing equations or are explicitly introduced as initial conditions. Both approaches are based on the associated solution to the inviscid linear internal wave equations and, thus, assume weak-amplitude, space-filling waves. Using spectral multidomain-based numerical simulations of the two-dimensional Navier-Stokes equations and focusing on the forcing-driven approach, this study examines the generation and subsequent evolution of large-amplitude IGW packets which are strongly localized in the vertical in a linearly stratified fluid. When the vertical envelope of the forcing terms varies relatively rapid when compared to the vertical wavelength, the associated large vertical gradients in the Reynolds stress field drive a nonpropagating negative horizontal mean flow component in the source region. The highly nonlinear interaction of this mean current with the propagating IGW packet leads to amplification of the wave, a significant distortion of its rear flank, and a substantial decay of its amplitude. Scaling arguments show that the mean flow is enhanced with a stronger degree of localization of the forcing, larger degree of hydrostaticity, and increasing wave packet steepness. Horizontal localization results in a pronounced reduction in mean flow strength mainly on account of the reduced vertical gradient of the wave Reynolds stress. Finally, two techniques are proposed toward the efficient containment of the mean flow at minimal computational cost. The findings of this study are of particular value in overcoming challenges in the design of robust computational process studies of IGW packet (or continuously forced wave train) interactions with a sloping boundary, critical layer, or caustic, where large wave amplitudes are required for any instabilities to develop. In addition, the detailed
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
Kaur, Maninder; Main, M
2015-01-01
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers ($n_x,n_y,n_z$) determine its energy spectrum and consequently its dynamical behavior. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits. The closed orbits are possible for certain specific values of quantum numbers ($n_x,n_y,n_z$) and initial momenta ($k_x,k_y,k_z$). We observe that a cubical billiard exhibits degenerate energy levels and the path lengths of the closed orbits for these degenerate energy levels are identical. In spite of the identical path lengths, the shapes of the closed orbits for degenerate levels are different and depend upon angles $\\theta$ and $\\phi$ which we term as the sweep and the elevation angle respectively. These degenerate levels owe their origin to the symmetries prevailing in the cubical billiard and degenerate levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks d...
Modulated Wave Packets in DNA and Impact of Viscosity
Institute of Scientific and Technical Information of China (English)
Conrad Bertrand Tabi; Alidou Mohamadou; Timoleon Crepin Kofan(e)
2009-01-01
We study the nonlinear dynamics of a DNA molecular system at physiological temperature in a viscous media by using the Peyrard-Bishop model.The nonlinear dynamics of the above system is shown to be governed by the discrete complex Ginzburg-Landau equation.In the non-viscous limit,the equation reduces to the nonlinear Schrodinger equation.Modulational instability criteria are derived for both the cases.On the basis of these criteria,numerical simulations are made,which confirm the analytical predictions.The planar wave solution used as the initial condition makes localized oscillations of base pairs and causes energy localization.The results also show that the viscosity of the solvent in the surrounding damps out the amplitude of wave patterns.
Abdel-Latif, Mahmoud K
2011-01-01
The excitation of the degenerate $E_1$ carbonyl stretching vibrations in dimanganese decacarbonyl is shown to trigger wave packet circulation in the subspace of these two modes. On the time scale of about 5 picoseconds intramolecular anharmonic couplings do not cause appreciable disturbance, even under conditions where the two $E_1$ modes are excited by up to about two vibrational quanta each. The compactness of the circulating wave packet is shown to depend strongly on the excitation conditions such as pulse duration and field strength. Numerical results for the solution of the seven-dimensional vibrational Schr\\"odinger equation are obtained for a density functional theory based potential energy surface and using the multi-configuration time-dependent Hartree method.
Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved....... The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined....
Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers
Energy Technology Data Exchange (ETDEWEB)
Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)
2009-05-01
We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.
High frequency wave packets for the Schr\\"odinger equation and its numerical approximations
Marica, Aurora-Mihaela
2010-01-01
We build Gaussian wave packets for the linear Schr\\"odinger equation and its finite difference space semi-discretization and illustrate the lack of uniform dispersive properties of the numerical solutions as established in Ignat, Zuazua, Numerical dispersive schemes for the nonlinear Schr\\"odinger equation, SIAM. J. Numer. Anal., 47(2) (2009), 1366-1390. It is by now well known that bigrid algorithms provide filtering mechanisms allowing to recover the uniformity of the dispersive properties as the mesh size goes to zero. We analyze and illustrate numerically how these high frequency wave packets split and propagate under these bigrid filtering mechanisms, depending on how the fine grid/coarse grid filtering is implemented.
System-level physics of autonomous nanorobots for hard chemistry and wave packet engineering
Santoli, Salvatore
1994-08-01
The operation of the prospective autonomous molecular robots that would represent the most advanced achievement of the molecular manufacturing conception is examined at various levels of physical description: the thermodynamic, the hydrodynamic, and the kinetic (Boltzmann) level down to local nonequilibrium thermodynamical and/or mechanical conditions possibly arising in work in some circumstances. The concept of wave packet engineering is suggested as a special technique in the exploitation of molecular robots possibilities, which are generally characterized as 'hard chemistry'.
Expansion of a wave-packet in lattices with disorder and nonlinearity
Naether, Uta; Martinez, Alejandro J; Sützer, Simon; Tünnermann, Andreas; Nolte, Stefan; Molina, Mario I; Vicencio, Rodrigo A; Szameit, Alexander
2012-01-01
We show, theoretically and experimentally, the counterintuitive result that an increase of disorder can result in an enhanced spreading of an initially localized excitation. Moreover, we find that adding a focusing nonlinearity facilitates the expansion of the wave-packet even further by increasing its effective size. We find a clear transition between between the regions of enhanced spreading (weak disorder) and localization (strong localization) described by a "diffusion peak".
Quantum control of electron wave packets in bound molecules by trains of half-cycle pulses
Energy Technology Data Exchange (ETDEWEB)
Persson, Emil; Pichler, Markus; Wachter, Georg; Hisch, Thomas; Burgdoerfer, Joachim; Graefe, Stefanie [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Jakubetz, Werner [Institute for Theoretical Chemistry, University of Vienna, Waehringerstr. 38, A-1090 Vienna (Austria)
2011-10-15
We investigate protocols for transient localization of electrons in homodiatomic molecules, as well as permanent localization via population inversion in polar molecules. By examining three different model systems with one electronic and one nuclear degree of freedom, we identify mechanisms leading to control over the localization of the electronic wave packets. We show that electronic states dressed by the quasi-dc component of the train of half-cycle pulses steer the combined electronic and nuclear motion toward the targeted state.
Massachusetts Bay - Internal Wave Packets Extracted from SAR Imagery Binned in 1x1 minute grid cells
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 1x1 minute latitude/longitude polygon grid cells. Statistics were...
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...
Wave packet dynamics in one-dimensional linear and nonlinear generalized Fibonacci lattices.
Zhang, Zhenjun; Tong, Peiqing; Gong, Jiangbin; Li, Baowen
2011-05-01
The spreading of an initially localized wave packet in one-dimensional linear and nonlinear generalized Fibonacci (GF) lattices is studied numerically. The GF lattices can be classified into two classes depending on whether or not the lattice possesses the Pisot-Vijayaraghavan property. For linear GF lattices of the first class, both the second moment and the participation number grow with time. For linear GF lattices of the second class, in the regime of a weak on-site potential, wave packet spreading is close to ballistic diffusion, whereas in the regime of a strong on-site potential, it displays stairlike growth in both the second moment and the participation number. Nonlinear GF lattices are then investigated in parallel. For the first class of nonlinear GF lattices, the second moment of the wave packet still grows with time, but the corresponding participation number does not grow simultaneously. For the second class of nonlinear GF lattices, an analogous phenomenon is observed for the weak on-site potential only. For a strong on-site potential that leads to an enhanced nonlinear self-trapping effect, neither the second moment nor the participation number grows with time. The results can be useful in guiding experiments on the expansion of noninteracting or interacting cold atoms in quasiperiodic optical lattices.
Multi-resolution schemes for time scaled propagation of wave packets
Frapiccini, Ana Laura; Mota-Furtado, Francisca; O'Mahony, Patrick F; Piraux, Bernard
2014-01-01
We present a detailed analysis of the time scaled coordinate approach and its implementation for solving the time-dependent Schr\\"odinger equation describing the interaction of atoms or molecules with radiation pulses. We investigate and discuss the performance of multi-resolution schemes for the treatment of the squeezing around the origin of the bound part of the scaled wave packet. When the wave packet is expressed in terms of B-splines, we consider two different types of breakpoint sequences: an exponential sequence with a constant density and an initially uniform sequence with a density of points around the origin that increases with time. These two multi-resolution schemes are tested in the case of a one-dimensional gaussian potential and for atomic hydrogen. In the latter case, we also use Sturmian functions to describe the scaled wave packet and discuss a multi-resolution scheme which consists in working in a sturmian basis characterized by a set of non-linear parameters. Regarding the continuum part ...
Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.
Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B
2011-02-10
The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.
Wave Packet Dynamics in the Infinite Square Well with the Wigner Quasi-probability Distribution
Belloni, Mario; Doncheski, Michael; Robinett, Richard
2004-05-01
Over the past few years a number of authors have been interested in the time evolution and revivals of Gaussian wave packets in one-dimensional infinite wells and in two-dimensional infinite wells of various geometries. In all of these circumstances, the wave function is guaranteed to revive at a time related to the inverse of the system's ground state energy, if not sooner. To better visualize these revivals we have calculated the time-dependent Wigner quasi-probability distribution for position and momentum, P_W(x; p), for Gaussian wave packet solutions of this system. The Wigner quasi-probability distribution clearly demonstrates the short-term semi-classical time dependence, as well as longer-term revival behavior and the structure during the collapsed state. This tool also provides an excellent way of demonstrating the patterns of highly-correlated Schrödinger-cat-like `mini-packets' which appear at fractional multiples of the exact revival time. This research is supported in part by a Research Corporation Cottrell College Science Award (CC5470) and the National Science Foundation under contracts DUE-0126439 and DUE-9950702.
Quantum Interferometry and Correlated Two-Electron Wave-Packet Observation in Helium
Ott, Christian; Raith, Philipp; Meyer, Kristina; Laux, Martin; Zhang, Yizhu; Hagstotz, Steffen; Ding, Thomas; Heck, Robert; Pfeifer, Thomas
2012-01-01
The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum regime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. However, at least two active electrons and a nucleus are required to address the quantum three-body problem. This situation is realized in the helium atom, but direct time-resolved observation of two-electron wave-packet motion remained an unaccomplished challenge. Here, we measure a 1.2-femtosecond quantum beating among low-lying doubly-excited states in helium to evidence a correlated two-electron wave packet. Our experimental method combines attosecond transient-absorption spectroscopy at unprecedented high spectral resolution (20 meV near 60 eV) with an intensity-tuneable visible laser field to couple the quantum states from the perturbative ...
Asymmetric acoustic propagation of wave packets via the self-demodulation effect
Devaux, Thibaut; Richoux, Olivier; Pagneux, Vincent
2015-01-01
This article presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to $10^6$, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.
Wasilewski, W; Wasilewski, Wojciech
2005-01-01
We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems (S. L. Braunstein, Phys. Rev. A, vol. 71, 055801 (2005)). We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored at...
Determining the wavelength of Langmuir wave packets at the Earth's bow shock
Krasnoselskikh, V V; Bale, S D; 10.5194/angeo-29-613-2011
2011-01-01
The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high frequency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earth's electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.
2016-02-01
Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational frequency up-shift time constants for the C12-H wagging mode at 216 fs and for the C10-H wagging mode at 161 fs which are larger than for the C11-H wagging mode at 127 fs, i.e., the C11-H wagging mode arrives at its final frequency while the C12-H and C10-H wagging modes are still up-shifting to their final values, agreeing with the findings of Yan et al. [Biochemistry 43, 10867 (2004)].
Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode
Li, Yunyun; Marchesoni, Fabio; Li, Baowen
2014-01-01
Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schr\\"odinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.
Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.
Borrelli, Raffaele; Peluso, Andrea
2016-03-21
A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems.
The phase delay and its complex time: From stationary states up to wave packets
Energy Technology Data Exchange (ETDEWEB)
Grossel, Ph., E-mail: philippe.grossel@univ-reims.fr
2013-03-15
Complex time is often invoked about tunneling effect where the classical phase delay is completed with a crucial filter effect. Usually the complex times are obtained by considering the flux-flux correlation function, but this can be obtained by a very simple approach using the search of the maximum of the generalized complex phase function, including the amplitude of the wave function. Various aspects of the phase delay are presented in the case of wave packets impinging on simple or resonant quantum barriers. Formal links with the classical mechanics give birth to quasi-trajectories of the quantum particle, totally compatible with the quantum mechanics. - Highlights: Black-Right-Pointing-Pointer The stationary phase method is extended in including the variations of the spectra. Black-Right-Pointing-Pointer The complex phase delay leads to a complex trajectory inside and out-side the barrier. Black-Right-Pointing-Pointer Examples of quasi-trajectories are given in case of different quantum barriers. Black-Right-Pointing-Pointer Phase delays are specified for resonant tunneling or above-barrier wave-packets. Black-Right-Pointing-Pointer The coherence between the quasi-trajectories and quantum mechanics is shown.
Wave-Packet Collapse Based on Weak Repeatability or Covariant Condition
Wu, Zhao-Qi; Zhu, Chuan-Xi; Wang, Jian-Hui
2016-02-01
The conflict between the dynamics postulate (unitary evolution) and the measurement postulate (wave-packet collapse) of quantum mechanics has been reconciled by Zurek from an information transfer perspective [Phys. Rev. A 76 (2007) 052110], and has further been extended to a more general scenario [Phys. Rev. A 87 (2013) 052111]. In this paper, we reconsider Zurek's new derivation by using weak repeatability postulate or covariant condition instead of repeatability postulate. Supported by National Natural Science Foundation of China under Grant Nos. 11461045, 11326099, 11361042, 11265010, and Natural Science Foundation of Jiangxi Province of China under Grant Nos. 20142BAB211016, 20132BAB201001, 20132BAB212009
Evolution of spin-dependent atomic wave packets in a harmonic potential
Institute of Scientific and Technical Information of China (English)
Wen Ling-Hua; Liu Min; Kong Ling-Bo; Chen Ai-Xi; Zhan Ming-Sheng
2005-01-01
We have investigated theoretically the evolution of spin-dependent atomic wave packets in a harmonic magnetic trapping potential. For a Bose-condensed gas, which undergoes a Mott insulator transition and a spin-dependent transport, the atomic wavefunction can be described by an entangled single-atom state. Due to the confinement of the -harmonic potential, the density distributions exhibit periodic decay and revival, which is different from the case of free expansion after switching off the combined harmonic and optical lattice potential.
Irreversible Behaviour and Collapse of Wave Packets in a Quantum System with Point Interactions
Guarneri, Italo
2011-01-01
A system of a particle and a harmonic oscillator, which have pure point spectrum if uncoupled, is known to acquire absolutely continuous spectrum when the particle and the oscillator are coupled by a sufficiently strong point interaction. Here the simple dynamical mechanism underlying this phenomenon is exposed. The energy of the oscillator is proven to exponentially diverge in time, while the spatial probability distribution of the particle collapses into a delta function in the interaction point. On account of this result, a generalized model with many oscillators which interact with the particle at different points is argued to provide a formal model for approximate measurement of position, and collapse of wave packets.
Irreversible behaviour and collapse of wave packets in a quantum system with point interactions
Energy Technology Data Exchange (ETDEWEB)
Guarneri, Italo [Center for Nonlinear and Complex Systems, Universita dell' Insubria, via Valleggio 11, I-22100 Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia (Italy)
2011-12-02
A system of a particle and a harmonic oscillator, which have pure point spectra if uncoupled, is known to acquire an absolutely continuous spectrum when they are coupled by a sufficiently strong point interaction. Here, the dynamical mechanism underlying this spectral phenomenon is exposed. The energy of the oscillator is proven to exponentially diverge in time, while the spatial probability distribution of the particle collapses into a {delta}-function at the interaction point. On account of this result, a generalized model with many oscillators which interact with the particle at different points is argued to provide a formal model for the approximate measurement of position and collapse of wave packets. (paper)
Wave packet evolution approach to ionization of hydrogen molecular ion by fast electrons
Serov, V V; Joulakian, B B; Vinitsky, S I; Serov, Vladislav V.; Derbov, Vladimir L.; Joulakian, Boghos B.; Vinitsky, Sergue I.
2000-01-01
The multiply differential cross section of the ionization of hydrogen molecular ion by fast electron impact is calculated by a direct approach, which involves the reduction of the initial 6D Schr\\"{o}dinger equation to a 3D evolution problem followed by the modeling of the wave packet dynamics. This approach avoids the use of stationary Coulomb two-centre functions of the continuous spectrum of the ejected electron which demands cumbersome calculations. The results obtained, after verification of the procedure in the case atomic hydrogen, reveal interesting mechanisms in the case of small scattering angles.
Wave packet dynamics in energy space, random matrix theory, and the quantum-classical correspondence
Cohen; Izrailev; Kottos
2000-03-06
We apply random-matrix-theory (RMT) to the analysis of evolution of wave packets in energy space. We study the crossover from ballistic behavior to saturation, the possibility of having an intermediate diffusive behavior, and the feasibility of strong localization effect. Both theoretical considerations and numerical results are presented. Using quantal-classical correspondence considerations we question the validity of the emerging dynamical picture. In particular, we claim that the appearance of the intermediate diffusive behavior is possibly an artifact of the RMT strategy.
Application of Wavelet Packet De-noising in Time-Frequency Analysis of the Local Wave Method
Institute of Scientific and Technical Information of China (English)
LI Hong-kun; MA Xiao-jiang; WANG Zhen; ZHU Hong
2003-01-01
The local wave method is a very good time-frequency method for nonstationary vibration signal analysis. But the interfering noise has a big influence on the accuracy of time-frequency analysis. The wavelet packet de-noising method can eliminate the interference of noise and improve the signal-noise-ratio. This paper uses the local wave method to decompose the de-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally, an example of wavelet packet de-noising and a local wave time-frequency spectrum application of diesel engine surface vibration signal is put forward.
Aharonovich, Igal
2016-01-01
We present a simple method to expedite simulation of quantum wave-packet dynamics by more than a factor of $2$ with the Strang split-operator propagation. Dynamics of quantum wave-packets are often evaluated using the the \\emph{Strang} split-step propagation, where the kinetic part of the Hamiltonian $\\hat{T}$ and the potential part $\\hat{V}$ are piecewise integrated according to $e^{- i \\hat{H} \\delta t} \\approx e^{- i \\hat{V} \\delta t/2} e^{- i \\hat{T}\\delta t} e^{- i \\hat{V} \\delta t/2}$, which is accurate to second order in the propagation time $\\delta t$. In molecular quantum dynamics, the potential propagation occurs over multiple coupled potential surfaces and requires matrix exponentiation for each position in space and time which is computationally demanding. Our method employs further splitting of the potential matrix $\\hat{V}$ into a diagonal space dependent part $\\hat{V}_{D}(R)$ and an off-diagonal time-dependent coupling-field $\\hat{V}_{OD}(t)$, which then requires only a single matrix exponentia...
Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions
Zhang, Song Bin; Wu, Yong; Wang, Jian Guo
2016-12-01
The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.
Zagoya, C; Ronto, M; Shalashilin, D V; Faria, C Figueira de Morisson
2014-01-01
We assess the suitability of quantum and semiclassical initial value representations, exemplified by the coupled coherent states (CCS) method and the Herman Kluk (HK) propagator, respectively, for modeling the dynamics of an electronic wave packet in a strong laser field, if this wave packet is initially bound. Using Wigner quasiprobability distributions and ensembles of classical trajectories, we identify signatures of over-the-barrier and tunnel ionization in phase space for static and time-dependent fields and the relevant sets of phase-space trajectories in order to model such features. Overall, we find good agreement with the full solution of the time-dependent Schr\\"odinger equation (TDSE) for Wigner distributions constructed with both initial-value representations. Our results indicate that the HK propagator does not fully account for tunneling and over-the-barrier reflections. However, it is able to partly reproduce features associated with the wave packet crossing classically forbidden regions, altho...
Quantum black hole wave packet: Average area entropy and temperature dependent width
Directory of Open Access Journals (Sweden)
Aharon Davidson
2014-09-01
Full Text Available A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekenstein's area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉 average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.
Tunneling wave packets of atoms from intense elliptically polarized fields in natural geometry
Han, Meng; Li, Min; Liu, Ming-Ming; Liu, Yunquan
2017-02-01
We study strong-field tunneling of atoms in intense elliptically polarized laser fields in natural tunneling geometry. We obtain the temporal- and spatial-dependent tunneling ionization rates, the transverse and longitudinal momentum distributions, and the position distributions of the tunnel exit in parabolic coordinates. The tunneling electron wave packets at the tunnel exit are three dimensionally characterized for both momentum and spatial distributions. The conjunction between the tunneling point and the classical propagation of the widely used semiclassical model are naturally connected. We further calculate the ellipticity-dependent photoelectron momentum distributions on the detector, which are validated by comparison with the exact results through numerically solving the time-dependent Schrödinger equation. The theory clarifies crucial questions about strong-field tunneling ionization, which has important implications for the attoclock with elliptical or circular fields, photoelectron holography, molecular orbital imaging, etc.
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-10-01
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.
Electronic excitation by short x-ray pulses: from quantum beats to wave packet revivals
Rivière, P.; Iqbal, S.; Rost, J. M.
2014-06-01
We propose a simple way to determine the periodicities of wave packets (WPs) in quantum systems directly from the energy differences of the states involved. The resulting classical periods and revival times are more accurate than those obtained with the traditional expansion of the energies about the central quantum number \\overline{n}, especially when \\overline{n} is low. The latter type of WP motion occurs upon excitation of highly charged ions with short XUV or x-ray pulses. Moreover, we formulate the WP dynamics in such a form that it directly reveals the origin of phase shifts in the maxima of the autocorrelation function, a phenomenon most prominent in the low \\overline{n} WP dynamics.
Rapid propagation of a Bloch wave packet excited by a femtosecond ultraviolet pulse
Krasovskii, E. E.; Friedrich, C.; Schattke, W.; Echenique, P. M.
2016-11-01
Attosecond streaking spectroscopy of solids provides direct observation of the dynamics of electron excitation and transport through the surface. We demonstrate the crucial role of the exciting field in electron propagation and establish that the lattice scattering of the outgoing electron during the optical pumping leads to the wave packet moving faster than with the group velocity and faster than the free electron. We solve the time-dependent Schrödinger equation for a model of laser-assisted photoemission, with inelastic scattering treated as electron absorption and alternatively by means of random collisions. For a weak lattice scattering, the phenomenological result that the photoelectron moves with the group velocity d E /d ℏ k and traverses on average the distance equal to the mean-free path is proved to hold even at very short traveling times. This offers a novel interpretation of the delay time in streaking experiment and sheds new light on tunneling in optoelectronic devices.
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-10-26
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.
The Liouville equation for flavour evolution of neutrinos and neutrino wave packets
Hansen, Rasmus Sloth Lundkvist
2016-01-01
We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of inelastic collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spacial dependence may steam from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.
Stienkemeier, Frank
2017-06-01
Time-resolved coherent spectroscopy has opened many new directions to study ultrafast dynamics in complex quantum systems. While most applications have been achieved in the condensed phase, we are focusing on dilute gas phase samples, in particular, on doped helium droplet beams. Isolation in such droplets at millikelvin temperatures provides unique opportunities to synthesize well-defined complexes, to prepare specific ro-vibronic states, and study their dynamics. To account for the small densities in our samples, we apply a phase modulation technique in order to reach enough sensitivity and a high spectral resolution in electronic wave packet interferometry experiments. The combination with mass-resolved ion detection enabled us e.g. to characterize vibrational structures of excimer molecules. By extending this technique we have observed collective resonances in samples of very low density (10^8 cm^{-3}). With a variant of this method, we are currently elaborating the implementation of nonlinear all-XUV spectroscopy.
Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime*
Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.
2016-05-01
Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Energy Technology Data Exchange (ETDEWEB)
Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)
2015-12-15
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Institute of Scientific and Technical Information of China (English)
LI JunQing; LIU Fang; XING YongZhong; ZUO Wei
2002-01-01
The quantum correspondence of the very peculiar phenomenon of classical chaos-the exponential instability of motion can be characterized by the initially exponential growth rate of the total uncertainty measurement of the propagating quantum wave packet. Our calculation indicates that quantitatively the growth rate is approximately twice the classical maximum Lyapunov exponent of the system.
Dynamical properties of a particle in a wave packet: Scaling invariance and boundary crisis
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Robnik, Marko, E-mail: robnik@uni-mb.si [CAMTP, Center For Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor (Slovenia); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatistica, Matematica Aplicada e Computacao, UNESP, Univ Estadual Paulista, Av. 24A, 1515-Bela Vista, 13506-900 Rio Claro, SP (Brazil)
2011-10-15
Highlights: > Acceleration of particles in a wave packet. > The location of the first invariant spanning curve which borders the chaotic sea. > Scaling to characterise the transition from integrability to non-integrability. > The property of area preservation is broken and attractors emerge. > After a tiny increase of the dissipation the system experience a boundary crisis. - Abstract: Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Study on the time-dependent wave packet of IBr molecule%IBr分子含时波包的理论探究
Institute of Scientific and Technical Information of China (English)
赵起; 刘瑞琼; 刘玉芳
2011-01-01
The simulation of time-resolved photoelectron spectra for Ibr molecule is studied mainly. The time-dependent quantum wave packet method is employed to calculate and analyze the photoelectron spectra of different delay times. The common characteristic of bimodal system and the phenomenon of more peaks are interpreted in reason using the theory of wave-packet and light-induced potentials. The reason why the peak decreases monotonically as the increases of delay-time is that the wave packet on the potential energy surface of A3 Ⅱ1 for dissociation make the oscillating of wave packet on the A3 Ⅱ1 curve to decrease. By analyzing the results further, we can conclude that the propagation of wave-packet is a decreasing process of energy. In addition, the competition between different ionization channels in the process of transition also have a certain impact on the energy spectrum.%本文主要对IBr分子的飞秒含时光电子能谱进行了模拟计算.运用含时量子波包方法,对不同延迟时间的光电子能谱进行模拟计算与理论分析.应用波包和光诱导势理论,对光电子能谱共同的两峰系特征及多峰现象给予合理解释.光电子能谱的峰值随延迟时间的增加而递减现象,是由于波包在A3Ⅱ1势能面上因分子解离发散,使整个波包在势能曲线上的振荡递减造成的.研究表明:波包的传播是一个能量减弱的过程；跃迁过程中不同电离通道之间的竞争,也对能谱存在一定的影响.
Energy Technology Data Exchange (ETDEWEB)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)
2017-01-15
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
Semiclassical wave packet study of anomalous isotope effect in ozone formation.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-10-21
We applied the semiclassical initial value representation method to calculate energies, lifetimes, and wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such scattering states represent the metastable O3* species and play a central role in the process of ozone formation. Autocorrelation functions for scattering states were computed and then analyzed using the Prony method, which permits one to extract accurate energies and widths of the resonances. We found that the results of the semiclassical wave packet propagation agree well with fully quantum results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated with formation of this molecule, either through the 16O16O+18O or the 16O+16O18O channels. An interesting correlation between the local vibration mode character of the metastable states and their lifetimes was observed and explained. New insight is obtained into the mechanism by which the long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large isotope effect.
Afraimovich, E. L.; Edemsky, I. K.; Voeykov, S. V.; Yasukevich, Y. V.; Zhivetiev, I. V.
2009-04-01
The great variety of solar terminator (ST) -linked phenomena in the atmosphere gave rise to a num¬ber of studies on the analysis of ionosphere parameter variations obtained by different ionosphere sounding methods. Main part of experimental data was obtained using methods for analyzing the spectrum of ionosphere parameter variations in separate local points. To identify ST-generated wave disturbances it is necessary to measure the dynamic and spectral characteristics of the wave disturbances and to compare it with spatial-temporal characteristics of ST. Using TEC measurements from the dense network of GPS sites GEONET (Japan), we have obtained the first GPS-TEC image of the space structure of medium-scale traveling wave packets (MS TWP) excited by the solar terminator. We use two known forms of the 2D GPS-TEC image for our presentation of the space structure of ST-generated MS TWP: 1) - the diagram "distance-time"; 2) - the 2D-space distribution of the values of filtered TEC series dI (λ, φ, t) on the latitude φ and longitude λ for each 30-sec TEC counts. We found that the time period and wave-length of ST-generated wave packets are about 10-20 min and 200-300 km, respectively. Dynamic images analysis of dI (λ, φ, t) gives precise estimation of velocity and azimuth of TWP wave front propagation. We use the method of determining velocity of traveling ionosphere disturbances (SADM-GPS), which take into account the relative moving of subionosphere points. We found that the velocity of the TWP phase front, traveling along GEONET sites, varies in accordance with the velocity of the ST line displacement. The space image of MS TWP manifests itself in pronounced anisotropy and high coherence over a long distance of about 2000 km. The TWP wave front extends along the ST line with the angular shift of about 20°. The hypothesis on the connection between the TWP generation and the solar terminator can be tested in the terminator local time (TLT) system: d
Afraimovich, E.; Lesyuta, O.; Lipko, Yu.; Perevalova, N.; Voyeikov, S.; Vodyannikov, V.; Yakovets, A.; Jacobi, Ch.
This report discusses the experimental research results on the morphology and physi- cal origin of total electron content (TEC) pulsations as measured using the data from the global GPS network. Periodic electron density oscillations of the type of wave packets were investigated previously in terms of the hypothesis of their association with geomagnetic field (GP) pulsations. The greater part of evidence of the association between GP ad periodic electron density oscillations in the ionosphere was obtained by recording the frequency Doppler shift if the ionosphere-reflected radio signal and TEC variations measured using signals from geostationary satellites. However, many years of investigations have not yet provided thorough insight into the mechanisms ac- counting for the linkage between GP and ionospheric variations. One reason for that is the difficulty associated with obtaining statistically significant sets of experimental data. The use of the international ground-based network of two-frequency receivers of the navigation GPS system which comprised no less than 900 site as of August 2001 and is currently placing the data on the Internet, opens up a new era of a global, con- tinuous and fully computerized monitoring of ionospheric disturbances of a different class. This report presents a global morphology of TEC pulsations for 50 days with a different level of geomagnetic activity and the number of stations of the global GPS network from 100 to 300. A total number of the "receiver - GPS satellites" radio paths used in the analysis is about 500,000. Quasi-periodic TEC variations in the range of periods from 10 to 20 min are investigated, which is dictated by the fact that the data from the global GPS network are placed on the Internet with a standard temporal res- olution of 30 s. Most often, the observed TEC pulsations represent wave packets with a duration on the order of 1 hour. It was found that such TEC pulsations are a rela- tively rare event and are
DEFF Research Database (Denmark)
Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus
2010-01-01
Theoretical calculations on dissociative double ionization of H2 and D2 in short intense laser pulses using the Monte Carlo wave packet technique are presented for several different field intensities, wavelengths, and pulse durations. We find convincing agreement between theory and experimental...... results for the kinetic energy release spectra of the nuclei. Besides the correctly predicted spectra the Monte Carlo wave packet method offers insight into the nuclear dynamics during the pulse and makes it possible to address the origin of different structures observed in the spectra. Three......-photon resonances in the singly ionized molecule and charge-resonance-enhanced ionization are shown to be the main processes responsible for the observed nuclear energy distributions....
Xie, Xinhua; Kartashov, Daniil; Zhang, Li; Baltuška, Andrius; Kitzler, Markus
2016-01-01
We report on the observation of subcycle interferences of electron wave packets released during the strong field ionization of H$_2$ with cycle-shaped two-color laser fields. With a reaction microscope, channel-resolved photoelectron momentum distribution are obtained for different final products originating from single ionization of H$_2$. Our results show that the subcycle interference structures of electron wave packet are very sensitive to the cycle-shape of the two-color laser field. The reason is that the ionization time within an optical cycle is determined by the cycle-shape of the laser field. The subcycle interference structures can be further used to get the subcycle dynamics of molecules during strong field interaction.
Energy Technology Data Exchange (ETDEWEB)
Mahapatra, Susanta; Ritschel, Thomas
2003-04-15
We report theoretical investigations on the second photoelectron band of chlorine dioxide molecule by ab initio quantum dynamical methods. This band exhibits a highly complex structure and represents a composite portrait of five excited energetically close-lying electronic states of ClO{sub 2}{sup +}. Much of this complexity is likely to be arising due to strong vibronic interactions among these electronic states - which we address and examine herein. The near equilibrium MRCI potential energy surfaces (PESs) of these five cationic states reported by Peterson and Werner [J. Chem. Phys. 99 (1993) 302] for the C{sub 2v} configuration, are extended for the C{sub s} geometry assuming a harmonic vibration along the asymmetric stretching mode. The strength of the vibronic coupling parameters of the Hamiltonian are calculated by ab initio CASSCF-MRCI method and conical intersections of the PESs are established. The diabatic Hamiltonian matrix is constructed within a linear vibronic coupling scheme and the resulting PESs are employed in the nuclear dynamical simulations, carried out with the aid of a time-dependent wave packet approach. Companion calculations are performed for transitions to the uncoupled electronic states in order to reveal explicitly the impact of the nonadiabatic coupling on the photoelectron dynamics. The theoretical findings are in good accord with the experimental observations. The femtosecond nonradiative decay dynamics of ClO{sub 2}{sup +} excited electronic states mediated by conical intersections is also examined and discussed.
Trojan Wave Packets in the Quantum Cavity within the Extended Jaynes-Cummings Model
Kalinski, Matt
2016-05-01
Some time ago we have developed the theory of the Trojan Wave Packets (TWP) in the classical strong Circularly Polarized electromagnetic field in terms of the Mathieu generating functions. We have discovered that by the proper partitioning of the Coulomb spectrum i.e. by considering the deviation from the circularity and the vertical tilt of the undressed states as the new quantum numbers we can reduce the problem to the problem of several non-interacting quantum pendula for the Stark-Zeeman field dressed states. The TWP in the infinite physical space however turned out to be weakly unstable due to the spontaneous emission. Here we develop the theory in which the TWP is truly eternal when the electromagnetic interactions are considered quantum and the field is confined by the perfect quantum cavity boundary conditions. First we extend the Jaynes-Cummings (JC) model from the two to the infinite number of levels interacting with the one or two perfectly resonant quantum modes of the electromagnetic field. Similarly the model of JC and our previous pendular model the dressed electron-field eigenstates are constructed within the weakly interacting manifolds. Superpositions of those states are possible with the quantum electron density moving on the circular trajectories.
Wächtler, Maria; Guthmuller, Julien; Kupfer, Stephan; Maiuri, Margherita; Brida, Daniele; Popp, Jürgen; Rau, Sven; Cerullo, Giulio; Dietzek, Benjamin
2015-05-18
The hydrogen-evolving photocatalyst [(tbbpy)2 Ru(tpphz)Pd(Cl)2 ](2+) (tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) shows excitation-wavelength-dependent catalytic activity, which has been correlated to the localization of the initial excitation within the coordination sphere. In this contribution the excitation-wavelength dependence of the early excited-state relaxation and the occurrence of vibrational coherences are investigated by sub-20 fs transient absorption spectroscopy and DFT/TDDFT calculations. The comparison with the mononuclear precursor [(tbbpy)2 Ru(tpphz)](2+) highlights the influence of the catalytic center on these ultrafast processes. Only in the presence of the second metal center, does the excitation of a (1) MLCT state localized on the central part of the tpphz bridge lead to coherent wave-packet motion in the excited state. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver
2017-09-01
Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.
Zauleck, Julius P P; Thallmair, Sebastian; Loipersberger, Matthias; de Vivie-Riedle, Regina
2016-12-13
The curse of dimensionality still remains as the central challenge of molecular quantum dynamical calculations. Either compromises on the accuracy of the potential landscape have to be made or methods must be used that reduce the dimensionality of the configuration space of molecular systems to a low dimensional one. For dynamic approaches such as grid-based wave packet dynamics that are confined to a small number of degrees of freedom this dimensionality reduction can become a major part of the overall problem. A common strategy to reduce the configuration space is by selection of a set of internal coordinates using chemical intuition. We devised two methods that increase the degree of automation of the dimensionality reduction as well as replace chemical intuition by more quantifiable criteria. Both methods reduce the dimensionality linearly and use the intrinsic reaction coordinate as guidance. The first one solely relies on the intrinsic reaction coordinate (IRC), whereas the second one uses semiclassical trajectories to identify the important degrees of freedom.
Energy Technology Data Exchange (ETDEWEB)
Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)
2007-05-15
Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.
Toyota, Koudai
2016-10-01
The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.
Characterization of a quantum phase transition in Dirac systems by means of the wave-packet dynamics
Directory of Open Access Journals (Sweden)
E. Romera
2012-12-01
Full Text Available We study the signatures of phase transitions in the time evolution of wave-packets by analyzing two simple model systems: a graphene quantum dot model in a magnetic field and a Dirac oscillator in a magnetic field. We have characterized the phase transitions using the autocorrelation function. Our work also reveals that the description in terms of Shannon entropy of the autocorrelation function is a clear phase transition indicator.
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets extracted from SAR imagery that were binned in 30x30 second latitude/longitude polygon grid cells. Statistics were...
Prodhan, Suryoday
2016-01-01
Singlet fission is a potential pathway for significant enhancement of efficiency in organic solar cells. In this article, we have studied singlet fission in a pair of polyene molecules employing exact many-body wave packet dynamics. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions and site charge-bond charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schr\\"{o}dinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, $2{}^1A$ excited singlet state leads to significant fission yield while the $1{}^1B$ state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, singlet state derived from $1{}^1B$ state also gives si...
Prodhan, Suryoday; Ramasesha, S.
2017-08-01
Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.
Misra, A P
2010-01-01
We consider the nonlinear propagation of electrostatic wave packets in an ultra-relativistic (UR) degenerate dense electron-ion plasma, whose dynamics is governed by the nonlocal two-dimensional nonlinear Schroedinger-like equations. The coupled set of equations are then used to study the modulational instability (MI) of a uniform wave train to an infinitesimal perturbation of multi-dimensional form. The condition for the MI is obtained, and it is shown that the nondimensional parameter, $\\beta\\propto\\lambda_C n_0^{1/3}$ (where $\\lambda_C$ is the reduced Compton wavelength and $n_0$ is the particle number density), associated with the UR pressure of degenerate electrons, shifts the stable (unstable) regions at $n_{0}\\sim10^{30}$ cm$^{-3}$ to unstable (stable) ones at higher densities, i.e. $n_{0}\\gtrsim7\\times10^{33}$. It is also found that higher the values of $n_{0}$, the lower is the growth rate of MI with cut-offs at lower wave numbers of modulation. Furthermore, the dynamical evolution of the wave packet...
Energy Technology Data Exchange (ETDEWEB)
Zhao, Bin [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Guo, Hua, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2014-06-21
A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D{sub 2} reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.
Zhao, Bin; Sun, Zhigang; Guo, Hua
2014-06-01
A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D2 reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.
Energy Technology Data Exchange (ETDEWEB)
Gray, S.K.
1994-03-01
Vibrational predissociation of XI{sub 2} and X{sub 2}I{sub 2} van der Waals complexes, with X = He and Ne, is studied with wave packets. Three-dimensional calculations are carried out on the three-atom systems. Suitable X{center_dot}{center_dot}I potential interactions are determined, and product distributions are predicted. Reduced dimension models of X{sub 2}I{sub 2}(v{prime}) {yields} 2X + I{sub 2}(v < v{prime}) are investigated. Comparison is made with available experimental results. Mechanistic issues, including the role of intramolecular vibrational relaxation resonances, are addressed.
Time-dependent wave packet approach to the pulse delay effect upon RbI photoelectron spectrum
Institute of Scientific and Technical Information of China (English)
LIU Chunhua; MENG Qingtian; ZHANG Qinggang
2006-01-01
The time-resolved photoelectron spectrum (TRPES) of Rbl molecule is simulated using the time-dependent wave-packet method. Both the normal three-photon ionization process and auto-ionization process are involved in the simulation. The calculated results show that the change of delay time will influence the shape of the photoelectron spectrum (PES), and the influence is substantially due to the existence of the crossing between excited states and the strong laser field which will change the position of relevant curves.
Kreisbeck, C.; Kramer, T.; Molina, R. A.
2017-04-01
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin–Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Goussev, Arseni; Dorfman, J. Robert
2006-01-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wave length, while being small compared to the size of the ...
Energy Technology Data Exchange (ETDEWEB)
Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)
2014-08-15
Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.
Directory of Open Access Journals (Sweden)
C. L. Fern
2007-02-01
Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.
Chen, Cao; Chu, Xinzhao
2017-09-01
Waves in the atmosphere and ocean are inherently intermittent, with amplitudes, frequencies, or wavelengths varying in time and space. Most waves exhibit wave packet-like properties, propagate at oblique angles, and are often observed in two-dimensional (2-D) datasets. These features make the wavelet transforms, especially the 2-D wavelet approach, more appealing than the traditional windowed Fourier analysis, because the former allows adaptive time-frequency window width (i.e., automatically narrowing window size at high frequencies and widening at low frequencies), while the latter uses a fixed envelope function. This study establishes the mathematical formalism of modified 1-D and 2-D Morlet wavelet transforms, ensuring that the power of the wavelet transform in the frequency/wavenumber domain is equivalent to the mean power of its counterpart in the time/space domain. Consequently, the modified wavelet transforms eliminate the bias against high-frequency/small-scale waves in the conventional wavelet methods and many existing codes. Based on the modified 2-D Morlet wavelet transform, we put forward a wave recognition methodology that automatically identifies and extracts 2-D quasi-monochromatic wave packets and then derives their wave properties including wave periods, wavelengths, phase speeds, and time/space spans. A step-by-step demonstration of this methodology is given on analyzing the lidar data taken during 28-30 June 2014 at McMurdo, Antarctica. The newly developed wave recognition methodology is then applied to two more lidar observations in May and July 2014, to analyze the recently discovered persistent gravity waves in Antarctica. The decomposed inertia-gravity wave characteristics are consistent with the conclusion in Chen et al. (2016a) that the 3-10 h waves are persistent and dominant, and exhibit lifetimes of multiple days. They have vertical wavelengths of 20-30 km, vertical phase speeds of 0.5-2 m/s, and horizontal wavelengths up to several
Konkin, D. A.; Litvinov, R. V.; Parfenova, E. S.; Rakhim, R. A. A.; Stukach, O. V.
2016-11-01
We consider the frequency dependence of propagation constants (phase dispersion) and of the spatial distribution of the electromagnetic field (shape dispersion) of guided optical TE modes in a thin left-handed film. It is shown that the spatiotemporal transformation of narrow-band intramode wave packets with the spectrum adjacent to the frequency of the zero group velocity is caused by the dispersion of both types. The propagation velocity of the power carried by such wave packets is significantly lower than the group velocity of light in a bulk left-handed metamaterial.
Dynamical analysis of mesoscale eddy-induced ocean internal waves using linear theories
Institute of Scientific and Technical Information of China (English)
XU Qing; ZHENG Quanan; LIN Hui; LIU Yuguang; SONG YTony; YUAN Yeli
2008-01-01
This study aims to explore generation mechanisms of the ocean internal wave using the dynamical analysis methods based on linear theories. Historical cruise measurements and recent synthetic aperture radar (SAR) observations of mesoscale eddies with diame-ter of several tens of kilometers to hundreds of kilometers show that the internal wave packets with wavelength of hundreds of me-ters to kilometer exist inside the mesoscale eddies. This coexistence phenomenon and inherent links between the two different scale processes are revealed in the solutions of governing equations and boundary conditions for the internal wave disturbance with a horizontally slowly variable amplitude in a cylindrical coordinate system. The theoretical solutions indicate that the instability of eddy current field provides the dynamical mechanism to internal wave generation. The derived dispersion relation indicates that the internal wave propagation is modified by the eddy current field structure. The energy equation of the internal waves clearly shows the internal wave energy increment comes from the eddy. The theoretical models are used to explain the observation of the mesoscale ed-dy-induced internal waves off the Norwegian coast. The two-dimensional waveform solution of the anticyclonic eddy-induced internal wave packet appears as ring-shaped curves, which contains the typical features of eddy stream lines. The comparison of theoretical solutions to the structure of the internal wave packets on SAR image shows a good agreement on the major features.
Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun
2016-04-01
Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.
Schlesinger, Martin; Stienkemeier, Frank; Strunz, Walter T
2009-01-01
Femtosecond pump-probe spectroscopy has been used to study vibrational dynamics of potassium dimers attached to superfluid helium nanodroplets. Comparing the measured data with theoretical results based on dissipative quantum dynamics we propose that the most important effect of the helium environment is a general damping of the vibrational dynamics as a result of the interaction between dimer and collective degrees of freedom of the helium droplet. The calculations allow us to explain crucial experimental findings that are unobserved in gas-phase measurements. Remarkably, best agreement with experiment is found for a model where we neglect damping once a wave packet moves below a critical velocity. In this way the results provide first direct evidence for the Landau critical velocity in superfluid nanodroplets.
Singh, D; Papini, G; Mobed, Nader; Papini, Giorgio; Singh, Dinesh
2006-01-01
We present the possibility that Dirac and Majorana neutrino wave packets can be distinguished when subject to spin-gravity interaction while propagating through vacuum described by the Lense-Thirring metric. By adopting the techniques of gravitational phase and time-independent perturbation theory following the Brillouin-Wigner method, we generate spin-gravity matrix elements from a perturbation Hamiltonian and show that this distinction is easily reflected in well-defined gravitational corrections to the neutrino oscillation length for a two-flavour system. Explicit examples are presented using the Sun and SN1987A as the gravitational sources for the Lense-Thirring metric. This approach offers the possibility to determine the absolute neutrino masses by this method and identify a theoretical upper bound for the absolute neutrino mass difference, where the distinctions between the Dirac and Majorana cases are evident. We discuss the relevance of this analysis to the upcoming attempts to measure the properties...
Institute of Scientific and Technical Information of China (English)
CHEN Shao-Hao; WANG Feng; LI Jia-Ming
2004-01-01
Introducing a theoretical method to treat time-dependent wave-packet dynamics for atom collisions, we calculate the cross sections of proton impact excitation (2s - 2p) with a Li atom by directly numerically integrating the time-dependent Schrodinger equation on a three-dimensional Cartesian mesh. Our calculated results are in good agreement with the available experimental measurements.
Energy Technology Data Exchange (ETDEWEB)
Segura, J.; Fernandez de Cordoba, P.
1993-01-01
We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)
Nonlinear propagation of a wave packet in a hard-walled circular duct
Nayfeh, A. H.
1975-01-01
The method of multiple scales is used to derive a nonlinear Schroedinger equation for the temporal and spatial modulation of the amplitudes and the phases of waves propagating in a hard-walled circular duct. This equation is used to show that monochromatic waves are stable and to determine the amplitude dependance of the cutoff frequencies.
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Kukulin, V I
2002-01-01
The construction of the basic operators of the theory of scattering on the mass surface and beyond in the terms of the stationary wave packages, limited in the space or Eigen differentials, is described. The finite-dimensional approximations for the Green function and T-matrix are obtained for the first time on the basis of the simple single diagonalization of the Hamiltonian. It is shown that the developed approach leads to the convenient finite-dimensional presentation of the scattering operators in the basis of the wave functions of the harmonic oscillators
Directory of Open Access Journals (Sweden)
Diaz-Torres Alexis
2015-01-01
Full Text Available Recent progress in a quantitative study of the 12C+12C sub-Coulomb fusion is reported. It is carried out using full-dimensional, time-dependent wave-packet dynamics, a quantum reaction model that has not been much exploited in nuclear physics, unlike in chemical physics. The low-energy collision is described in the rotating center-of-mass frame within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave-packet through the collective potential-energy landscape that is calculated with a realistic two-center shell model. Among other preliminary results, the theoretical sub-Coulomb fusion resonances for 12C+12C seem to correspond well with observations. The method appears to be useful for expanding the cross-section predictions towards stellar energies.
Bruder, Lukas; Stienkemeier, Frank
2015-01-01
Phase-modulated wave-packet interferometry is combined with mass-resolved photoion detection to investigate rubidium atoms attached to helium nanodroplets in a molecular beam experiment. The spectra of atomic Rb electronic states show a vastly enhanced sensitivity and spectral resolution when compared to conventional pump-probe wave-packet interferometry. Furthermore, the formation of Rb*He exciplex molecules is probed and for the first time a fully resolved vibrational spectrum for transitions between the lowest excited $5\\Pi_{3/2}$ and the high-lying electronic states $2^2\\Pi$, $4^2\\Delta$, $6^2\\Sigma$ is obtained and compared to theory. The feasibility of applying coherent multidimensional spectroscopy to dilute cold gas phase samples is demonstrated in these experiments.
ACCURATE TIME-DEPENDENT WAVE PACKET STUDY OF THE H{sup +}+LiH REACTION AT EARLY UNIVERSE CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
Aslan, E.; Bulut, N. [Department of Physics, Firat University, 23169 Elazig (Turkey); Castillo, J. F.; Banares, L.; Aoiz, F. J. [Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas (Unidad Asociada CSIC), Universidad Complutense de Madrid, 28040 Madrid (Spain); Roncero, O., E-mail: jfernand@quim.ucm.es [Instituto de Fisica Fundamental, CSIC, C/Serrano 123, E-28006 Madrid (Spain)
2012-11-01
The dynamics and kinetics of the H{sup +} + LiH reaction have been studied using a quantum reactive time-dependent wave packet (TDWP) coupled-channel quantum mechanical method on an ab initio potential energy surface at conditions of the early universe. The total reaction probabilities for the H{sup +} + LiH(v = 0, j = 0) {yields} H{sup +} {sub 2} + Li process have been calculated from 5 Multiplication-Sign 10{sup -3} eV up to 1 eV for total angular momenta J from 0 to 110. Using a Langevin model, integral cross sections have been calculated in that range of collision energies and extrapolated for energies below 5 Multiplication-Sign 10{sup -3} eV. The calculated rate constants are found to be nearly independent of temperature in the 10-1000 K interval with a value of Almost-Equal-To 10{sup -9} cm{sup 3} s{sup -1}, which is in good agreement with estimates used in evolutionary models of the early universe lithium chemistry.
Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems
Flambaum, V V
2001-01-01
Highly excited many-particle states in quantum systems such as nuclei, atoms, quantum dots, spin systems, quantum computers etc., can be considered as ``chaotic'' superpositions of mean-field basis states (Slater determinants, products of spin or qubit states). This is due to a very high level density of many-body states that are easily mixed by a residual interaction between particles (quasi-particles). For such systems, we have derived simple analytical expressions for the time dependence of energy width of wave packets, as well as for the entropy, number of principal basis components and inverse participation ratio, and tested them in numerical experiments. It is shown that the energy width $\\Delta (t)$ increases linearly and very quickly saturates. The entropy of a system increases quadratically, $S(t) \\sim t^2$ at small times, and after, can grow linearly, $S(t) \\sim t$, before the saturation. Correspondingly, the number of principal components determined by the entropy, $N_{pc} \\sim exp{(S(t))}$, or by ...
Goussev, Arseni; Dorfman, J R
2006-07-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.
Yuan, T.; Heale, C. J.; Snively, J. B.; Cai, X.; Pautet, P.-D.; Fish, C.; Zhao, Y.; Taylor, M. J.; Pendleton, W. R.; Wickwar, V.; Mitchell, N. J.
2016-01-01
Gravity wave packets excited by a source of finite duration and size possess a broad frequency and wave number spectrum and thus span a range of temporal and spatial scales. Observing at a single location relatively close to the source, the wave components with higher frequency and larger vertical wavelength dominate at earlier times and at higher altitudes, while the lower frequency components, with shorter vertical wavelength, dominate during the latter part of the propagation. Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper at Bear Lake Observatory (41.9°N, 111.4°W), we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W), that occurred on 2 September 2011, to study the waves' evolution as it propagates upward. The lidar-observed temperature perturbation was dominated by close to a 1 h modulation at 100 km during the early hours but gradually evolved into a 1.5 h modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is used to simulate the observed gravity wave processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
Li, Jian-ning; Su, Hong-ye; Wu, Zheng-guang; Chu, Jian
2013-06-01
A new stochastic switched linear model is established to describe the Zigbee-based wireless networked control system (WNCS) with both network-induced delay and packet dropout. The network-induced delay can be less or longer than one sampling period. A sufficient condition is presented for the exponentially mean square stability of the closed-loop WNCS, and corresponding state feedback controller is designed by using the augmenting technique and multi-Lyapunov approach. Then, combined with carrier sense multiple access with collision avoidance (CSMA-CA) algorithm, a method is given to choose proper parameter values. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.
Ono, Junichi; Ando, Koji
2012-11-01
A semiquantal (SQ) molecular dynamics (MD) simulation method based on an extended Hamiltonian formulation has been developed using multi-dimensional thawed gaussian wave packets (WPs), and applied to an analysis of hydrogen-bond (H-bond) dynamics in liquid water. A set of Hamilton's equations of motion in an extended phase space, which includes variance-covariance matrix elements as auxiliary coordinates representing anisotropic delocalization of the WPs, is derived from the time-dependent variational principle. The present theory allows us to perform real-time and real-space SQMD simulations and analyze nuclear quantum effects on dynamics in large molecular systems in terms of anisotropic fluctuations of the WPs. Introducing the Liouville operator formalism in the extended phase space, we have also developed an explicit symplectic algorithm for the numerical integration, which can provide greater stability in the long-time SQMD simulations. The application of the present theory to H-bond dynamics in liquid water is carried out under a single-particle approximation in which the variance-covariance matrix and the corresponding canonically conjugate matrix are reduced to block-diagonal structures by neglecting the interparticle correlations. As a result, it is found that the anisotropy of the WPs is indispensable for reproducing the disordered H-bond network compared to the classical counterpart with the use of the potential model providing competing quantum effects between intra- and intermolecular zero-point fluctuations. In addition, the significant WP delocalization along the out-of-plane direction of the jumping hydrogen atom associated with the concerted breaking and forming of H-bonds has been detected in the H-bond exchange mechanism. The relevance of the dynamical WP broadening to the relaxation of H-bond number fluctuations has also been discussed. The present SQ method provides the novel framework for investigating nuclear quantum dynamics in the many
Molecular wave-packet dynamics on laser-controlled transition states
Fischer, Andreas; Cörlin, Philipp; Sperl, Alexander; Schönwald, Michael; Mizuno, Tomoya; Sansone, Giuseppe; Senftleben, Arne; Ullrich, Joachim; Feuerstein, Bernold; Pfeifer, Thomas; Moshammer, Robert
2016-01-01
Understanding and controlling the electronic as well as ro-vibrational motion and, thus, the entire chemical dynamics in molecules is the ultimate goal of ultrafast laser and imaging science. In photochemistry, laser-induced dissociation has become a valuable tool for modification and control of reaction pathways and kinetics. Here, we present a pump-probe study of the dissociation dynamics of H$_2^+$ using ultrashort extreme-ultraviolet (XUV) and near-infrared (IR) laser pulses. The reaction kinematics can be controlled by varying the pump-probe delay. We demonstrate that the nuclear motion through the transition state can be reduced to isolated pairs of initial vibrational states. The dynamics is well reproduced by intuitive semi-classical trajectories on a time-dependent potential curve. From this most fundamental scenario we gain insight in the underlying mechanisms which can be applied as design principles for molecular quantum control, particularly for ultrafast reactions involving protons.
Ballistic quench-induced correlation waves in ultracold gases
Corson, John P
2016-01-01
We investigate the wave packet dynamics of a pair of particles that undergoes a rapid change of scattering length. The short-range interactions are modeled in the zero-range limit, where the quench is accomplished by switching the boundary condition of the wave function at vanishing particle separation. This generates a correlation wave that propagates rapidly to nonzero particle separations. We have derived universal, analytic results for this process that lead to a simple phase-space picture of the quench-induced scattering. Intuitively, the strength of the correlation wave relates to the initial contact of the system. We find that, in one spatial dimension, the $k^{-4}$ tail of the momentum distribution contains a ballistic contribution that does not originate from short-range pair correlations, and a similar conclusion can hold in other dimensionalities depending on the quench protocol. We examine the resultant quench-induced transport in an optical lattice in 1D, and a semiclassical treatment is found to...
Energy Technology Data Exchange (ETDEWEB)
Jakob, B.
2006-10-10
In this work the wave packet molecular dynamics (WPMD) is presented and applied to dense hydrogen. In the WPMD method the electrons are described by a slater determinant of periodic Gaussian wave packets. Each single particle wave function can parametrised through 8 coordinates which can be interpreted as the position and momentum, the width and its conjugate momentum. The equation of motion for these coordinates can be derived from a time depended variational principle. Properties of the equilibrium can be ascertained by a Monte Carlo simulation. With the now completely implemented antisymmetrisation the simulation yields a fundamental different behavior for dense hydrogen compare to earlier simplified models. The results show a phase transition to metallic hydrogen with a higher density than in the molecular phase. This behavior has e.g. a large implication to the physics of giant planets. This work describes the used model and explains in particular the calculation of the energy and forces. The periodicity of the wave function leads to a description in the Fourier space. The antisymmetrisation is done by Matrix operations. Moreover the numerical implementation is described in detail to allow the further development of the code. The results provided in this work show the equation of state in the temperature range 300K - 50000K an density 10{sup 23}-10{sup 24} cm{sup -3}, according a pressure 1 GPa-1000 GPa. In a phase diagram the phase transition to metallic hydrogen can be red off. The electrical conductivity of both phases is destined. (orig.)
Bohmian trajectories of Airy packets
Energy Technology Data Exchange (ETDEWEB)
Nassar, Antonio B., E-mail: anassar@hw.com [Science Department, Harvard-Westlake School, 3700 Coldwater Canyon, Studio City, 91604 (United States); Department of Sciences, University of California, Los Angeles, Extension Program, 10995 Le Conte Avenue, Los Angeles, CA 90024 (United States); Miret-Artés, Salvador [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)
2014-09-15
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.
Tan, Rui Shan; Yan, Wei; Lin, Shi Ying
2017-01-01
A computational study for the title reaction is carried out employing recent ab initio potential energy surface. J = 0 reaction probability is obtained using both quasiclassical trajectory (QCT) and wave packet methods. The total and state resolved integral as well as differential cross sections are also obtained by means of QCT method. Dynamics of the title reaction shows qualitative similarity with its isotopic counterpart, the H + CaCl reaction, but quantitatively, reactivity is significantly enhanced in the title reaction. In addition, the effect of initial rotational state excitation on H + CaCl reaction is investigated.
Doncheski, M. A.; Robinett, R. W.
2001-10-01
We discuss the time development of Gaussian wave packet solutions of the "quantum bouncer" (a quantum mechanical particle subject to a uniform downward force, above an impermeable flat surface). We focus on the evaluation and visualization of the expectation values and uncertainties of position and momentum variables during a single quasi-classical period as well as during the long-term collapsed phase and several revivals. This approach complements existing analytic and numerical analyses of this system, as well as being useful for comparison with similar results for the harmonic oscillator and infinite well cases.
Doncheski, M A
2001-01-01
We discuss the time development of Gaussian wave packet solutions of the quantum bouncer' (a quantum mechanical particle subject to a uniform downward force, above an impermeable flat surface). We focus on the evaluation and visualization of the expectation values and uncertainties of position and momentum variables during a single quasi-classical period as well as during the long term collapsed phase and several revivals. This approach complements existing analytic and numerical analyses of this system, as well as being useful for comparison with similar results for the harmonic oscillator and infinite well cases.
Effect of Coulomb interaction on multi-electronwave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Shiokawa, T. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 (Japan); Takada, Y. [Faculty of Engineering, Tokyo University of Science, Chiyoda, Tokyo, 102-0073, Japan and CREST, Japan Science and Technology Agency (Japan); Konabe, S.; Hatsugai, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and CREST, Japan Science and Technology Agency (Japan); Muraguchi, M. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and CREST, Japan Science and Technology Agency (Japan); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and Center for Spintronics Integrated Systems, Tohoku University, Sendai, 980-8577, Japan and CREST, Japan Science and Technology Agency (Japan); Shiraishi, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and Center for Computational Science, University of Tsukuba, Tsukuba, 305-8577, Japan and CREST, Japan Science and Technology Agency (Japan)
2013-12-04
We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.
Energy Technology Data Exchange (ETDEWEB)
Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Barrios, Lizandra; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es [Instituto de Física Fundamental, C.S.I.C., Serrano 123, Madrid 28006 (Spain)
2014-09-21
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Institute of Scientific and Technical Information of China (English)
陈召杭; 王德华; 程绍昊
2015-01-01
Using the combination of the time-dependent perturbation theory and the closed-orbit theory, we put forward a calculation formula for the autocorrelation function of H ion in a gradient electric field, and then calculate and analyze the autocorrelation function of the system. Especially, we discuss the effect of laser pulse width, electric field strength and the electric field gradient on the autocorrelation function of H ion in a gradient electric field. It is demonstrated that when the laser pulse width is very narrow, far less than the period of the detached electron, the quantum wave packet revival phenomenon is significant. A series of sharp reviving peaks appear in the autocorrelation function, which are caused by the interference between the returning electron wave packets travelling along the closed orbit and the outgoing electron wave packets. However, with the increase of laser pulse width, the quantum wave packet revival phenomenon becomes weakened. When the difference between the pulse width and the period of the closed orbit is not very large, the reviving peaks in the autocorrelation function become widely spread gradually and the oscillatory structures get flattened. This correspondence will vanish finally due to the interference between the adjacent peaks. In addition, our study also suggests that the background electric field strength and the electric field gradient in the gradient electric field can also have significant effects on the autocorrelation function. With the increase of background electric field strength and electric field gradient, the period of the detached electron’s closed orbit gets shorter, the number of the revival peaks in the autocorrelation function is increased gradually, and the quantum wave packet revival phenomenon will be enhanced. Therefore, we can control the autocorrelation function of the hydrogen negative ion by changing the laser pulse width and the external electric field strength. Our results will provide some
Reconfigurable heat-induced spin wave lenses
Dzyapko, O.; Borisenko, I. V.; Demidov, V. E.; Pernice, W.; Demokritov, S. O.
2016-12-01
We study the control and manipulation of propagating spin waves in yttrium iron garnet films using a local laser-induced heating. We show that, due to the refraction of spin waves in the thermal gradients, the heated region acts as a defocusing lens for Damon-Eshbach spin waves and as a focusing lens for backward volume waves enabling collimation of spin-wave beams in the latter case. In addition to the focusing/defocusing functionality, the local heating allows one to manipulate the propagation direction of the spin-wave beams and to efficiently suppress their diffraction spreading by utilizing caustic effects.
Kinematic dynamo induced by helical waves
Wei, Xing
2014-01-01
We investigate numerically the kinematic dynamo induced by the superposition of two helical waves in a periodic box as a simplified model to understand the dynamo action in astronomical bodies. The effects of magnetic Reynolds number, wavenumber and wave frequency on the dynamo action are studied. It is found that this helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for the dynamo growth rate. A lower wave frequency facilitates the dynamo action and the oscillations o...
Multipath packet switch using packet bundling
DEFF Research Database (Denmark)
Berger, Michael Stubert
2002-01-01
The basic concept of packet bundling is to group smaller packets into larger packets based on, e.g., quality of service or destination within the packet switch. This paper presents novel applications of bundling in packet switching. The larger packets created by bundling are utilized to extend...... switching capacity by use of parallel switch planes. During the bundling operation, packets will experience a delay that depends on the actual implementation of the bundling and scheduling scheme. Analytical results for delay bounds and buffer size requirements are presented for a specific scheduling...
Biggs, Jason D
2009-01-01
The preceding paper describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized control pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference ...
Institute of Scientific and Technical Information of China (English)
高洁; 房丽敏; 李华刚; 麦志杰
2012-01-01
Dispersion relation of 1-D photonic crystal is deduced by the method of transfer matrix, with coordinate transformation of arbitrary Fourier exponent of electromagnetic wave packet which is obliquely incident. By analyzing the dispersion relation, it is easy to find the difference between the first band gap under obliquely incident wave packet and that of plane wave, respectively. Meanwhile, the former gap is located in the latter one, for the former one is narrower than the latter one in width. Characteristic of band gap is obtained under obliquely incident wave packet, by comparing the first band gap structure with that of plane wave considering edge position and width of the gap. The condition of approximately substituting plane wave for wave packet to calculate band gap is analyzed, according to related factors such as different incident angle of central wave vector and angle spectrum of wave packet. The results demonstrate that the first band gap structure is closely related to incident angle of central wave vector and angle spectrum of wave packet. With smaller incident angle, the first band gap structure caused by wave packet would become closer to that of plane wave; and with smaller angle spectrum of wave packet, the width and position of the first band gap is closer to those of plane wave.%对波包的任意傅里叶分量进行坐标变换后,利用转移矩阵法推导出波包斜入射情形下一维光子晶体的色散关系表达式,利用色散关系曲线分析得出波包斜入射的第一带隙结构,与以往平面波的第一带隙结构不同,波包的带隙宽度小于平面波的带隙宽度,并且在位置上前者带隙包含在后者内部.比较了一维光子晶体分别在波包入射与平面波入射情形下带隙位置和宽度,分析了波包中心入射角的变化以及波包的角分布范围的变化对带隙结构的影响,得到了一维光子晶体对波包斜入射的带隙结构的基本特征,确定了计算波包带
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Extensible packet processing architecture
Energy Technology Data Exchange (ETDEWEB)
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Optical packet switching without packet alignment
DEFF Research Database (Denmark)
Hansen, Peter Bukhave; Danielsen, Søren Lykke; Stubkjær, Kristian
1998-01-01
Operation without packet alignment of an all-optical packet switch is proposed and predicted feasible through a detailed traffic analysis. Packet alignment units are eliminated resulting in a simple switch architecture while optimal traffic performance is maintained through the flexibility provided...
van Harrevelt, Rob; van Hemert, Marc C.
2000-04-01
A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.
Juanes-Marcos, Juan Carlos; Althorpe, Stuart C
2005-05-22
We report quantum wave-packet calculations on the H+H(2) reaction, aimed at resolving the controversy over whether geometric phase (GP) effects can be observed in this reaction. Two sets of calculations are reported of the state-to-state reaction probabilities, and integral and differential cross sections (ICSs and DCSs). One set includes the GP using the vector potential approach of Mead and Truhlar; the other set neglects the phase. We obtain unequivocal agreement with recent results of Kendrick [J. Phys. Chem. A 107, 6739 (2003)], predicting GP effects in the state-to-state reaction probabilities, which cancel exactly on summing the partial waves to yield the ICS. Our results therefore contradict those of Kuppermann and Wu [Chem. Phys. Lett. 349 537 (2001)], which predicted pronounced GP effects in the cross sections. We also agree with Kendrick in predicting that there are no significant GP effects in the full DCS at energies below 1.8 eV, and in the partial (0
Wave Induced Loads on the LEANCON Wave Energy Converter
DEFF Research Database (Denmark)
Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte
This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... on a desktop study based on available literature, supplemented by laboratory testing of models of the WEC provided by LEANCON. LEANCON, represented by Kurt Due Rasmussen, has been heavily involved in the testing of the device, including the instrumentation, model setup and execution of the tests...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....
两种扩展Harper模型的波包动力学%Wave packet dynamics of two extended Harper models
Institute of Scientific and Technical Information of China (English)
张振俊; 于淼; 巩龙龚; 童培庆
2011-01-01
We study the wave packet dynamics of two extended Harper models by using the second moment M2（t）and probability distribution Wn（t） numerically. The dynamical behaviors of two extended Harper models in all phases, on all phase boundary lines, and at the bicritical points are studied. For the first extended Harper model, we find that the wave packet is of ballistic diffusion in two metal phases, localized in the insulator phase, and of anomalous diffusion on the phase boundary lines and at the bicritical point. We also find the dynamical behavior on the boundary line of the metal-metal phase transition is the same as that on the metal-insulator phase transition. The spreading at the bicritical point is different from that on the phase boundary lines. For the second extended Harper model, we find that the wave packet is of ballistic diffusion in the metal phase, localized in the insulator phase, and of anomalous diffusion in the critical phase, on the phase boundary lines, and at the bicritical point. We also find the dynamical behavior on the boundary line of the critical-metal phase transition is similar to that at the bicritical point and the critical-insulator phase transition, but different from that of the metal-insulator phase transition.%本文通过二次矩M2（t）和概率分布Wn（t）数值地研究了两种扩展Harper模型的波包动力学,得到了这两种模型中各个相、各条临界线以及三相点的波包扩散情况.对于第一种扩展Harper模型,发现两个金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在三相点以及各条临界线上波包是反常扩散的.同时,发现金属相—金属相转变的临界线上的波包动力学行为与金属相—绝缘体相转变的临界线上的相同,但三相点的动力学行为与各临界线上的不同;对于第二种扩展Harper模型,发现金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在临界相、三相点、
Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C
2015-12-17
We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results.
Demekhin, Philipp V; Cederbaum, Lorenz S
2013-01-01
The time-dependent Schr\\"{o}dinger equation for the hydrogen atom and its interaction with coherent intense high-frequency short laser pulses is solved numerically exactly by employing the code implemented for the multi-configurational time-dependent Hartree-Fock (MCTDHF) method. Thereby, the wavefunction is followed in space and time for times longer than the pulse duration. Results are explicitly shown for 3 and 10 fs pulses. Particular attention is paid to identifying the effect of dynamic interference of photoelectrons emitted with the same kinetic energy at different times during the rising and falling sides of the pulse predicted in [\\emph{Ph.V. Demekhin and L.S. Cederbaum}, Phys. Rev. Lett. \\textbf{108}, 253001 (2012)]. In order to be able to see the dynamic interference pattern in the computed electron spectra, the photoelectron wave packet has to be propagated over long distances. Clearly, complex absorption potentials often employed to compute spectra of emitted particles cannot be used to detect dy...
Knappenberger, Kenneth L; Lerch, Eliza-Beth W; Wen, Patrick; Leone, Stephen R
2007-09-28
A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.
Indian Academy of Sciences (India)
Farzana Sharmin; Samir Saha; S S Bhattacharyya
2013-06-01
We have theoretically investigated the high harmonic generation (HHG) spectra of H$_{2}^{+}$ and HD+ using a time-dependent wave packet approach for the nuclear motion with pulsed lasers of peak intensities (0) of 3.5 × 1014 and 4.5 × 1014 W/cm2, wavelengths (L) of 800 and 1064 nm, and pulse durations () of 40 and 50 fs, for initial vibrational levels 0 = 0 and 1. We have argued that for these conditions the harmonic generation due to the transitions in the electronic continuum by tunnelling or multiphoton ionization will not be important. Thus, the characteristic features of HHG spectra in our model arise only due to the nuclear motions on the two lowest field-coupled electronic states between which both interelectronic and intraelectronic (due to intrinsic dipole moments, for HD+) radiative transitions can take place. For HD+, the effect of nonadiabatic (NA) interaction between the two lowest Born–Oppenheimer (BO) electronic states has been taken into account and comparison has been made with the HHG spectra of HD+ obtained in the BO approximation. Even harmonics and a second plateau in the HHG spectra of HD+ with the NA interaction and hyper-Raman lines in the spectra of both H$_{2}^{+}$ and HD+ for 0 = 1 have been observed for higher value of 0 or L. Our calculations indicate reasonable efficiencies of harmonic generation even without involving the electronic continuum.
Indian Academy of Sciences (India)
Raman Kumar Singh; Manabendra Sarma; Ankit Jain; Satrajit Adhikari; Manoj K Mishra
2007-09-01
Results from application of a new implementation of the time-dependent wave packet (TDWP) approach to the calculation of vibrational excitation cross-sections in resonant e-CO scattering are presented to examine its applicability in the treatment of e-molecule resonances. The results show that the SCF level local complex potential (LCP) in conjunction with the TDWP approach can reproduce experimental features quite satisfactorily.
Multiple scattering induced negative refraction of matter waves
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
Wu, Hui; Duan, Zhi-Xin; Yin, Shu-Hui; Zhao, Guang-Jiu
2016-09-01
The quantum dynamics calculations of the H + HS (v = 0, j = 0) reaction on the 3A' and 3A″ potential energy surfaces (PESs) are performed using the reactant coordinate based time-dependent wave packet method. State-averaged and state-resolved results for both channels of the title reaction are presented in the 0.02-1.0 eV collision energy range and compared with those carried out with quasi-classical trajectory (QCT) method. Total integral cross sections (ICSs) for both channels are in excellent agreement with previous quantum mechanical (QM)-Coriolis coupling results while poorly agree with the QCT ICSs of the exchange channel, particularly near the threshold energy region. The product rotational distributions show that for the abstraction channel, the agreement between our QM and the QCT results improves with increasing collision energy. For the exchange channel, our calculations predict colder rotational distributions as compared to those obtained by QCT calculations. Although the QM total differential cross sections (DCSs) are in qualitatively good agreement with the QCT results, the two sets of the state-to-state DCSs with several peaks exhibit great divergences. The origin of the divergences are traced by analyzing the QM DCS for the H + HS (v = 0, j = 0) → H2 (v' = 0, j' = 0) + S reaction on the 3A″ PES at Ec = 1.0 eV. It is discovered that several groups of J partial waves are involved in the reaction and the shape of the DCS is greatly altered by quantum interferences between them.
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Puthumpally-joseph, Raiju; Charron, Eric
2016-01-01
We introduce an accurate non-Hermitian Schr\\"odinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Halász, Gábor J; Moiseyev, Nimrod; Cederbaum, Lorenz S
2013-01-01
Recently it has been recognized that electronic conical intersections in molecular systems can be induced by laser light even in diatomics. As is known a direct consequence of these accidental degeneracies is the appearence of nonadiabatic effects which has a strong impact on the nuclear quantum dynamics. Studying the photodissociation process of the $\\mathrm{D}_{2}^{+}$ molecule, we report here some novel and observable quantum interference phenomena that arise from the topological singularity induced by a strong laser field.
Bliokh, Konstantin Yu; Bliokh, Yury P
2006-02-24
We present a solution to the problem of reflection and refraction of a polarized Gaussian beam on the interface between two transparent media. The transverse shifts of the beams' centers of gravity are calculated. They always satisfy the total angular momentum conservation law for beams, but, in general, do not satisfy the conservation laws for individual photons as a consequence of the lack of the "which path" information in a two-channel wave scattering. The field structure for the reflected and refracted beams is analyzed. In the scattering of a linearly polarized beam, photons of opposite helicities are accumulated at the opposite edges of the beam: this is the spin Hall effect for photons, which can be registered in the cross-polarized component of the scattered beam.
Henri, Pierre; Briand, Carine; Mangeney, André; 10.1029/2009JA014969
2013-01-01
Recent observation of large amplitude Langmuir waveforms during a Type III event in the solar wind have been interpreted as the signature of the electrostatic decay of beam-driven Langmuir waves. This mechanism is thought to be a first step to explain the generation of solar Type III radio emission. The threshold for this parametric instability in typical solar wind condition is investigated here by means of 1D-1V Vlasov-Poisson simulations. We show that the amplitude of the observed Langmuir beat-like waveforms is of the order of the effective threshold computed from the full kinetic simulations. The expected level of associated ion acoustic density fluctuations have also been computed for comparison with observations.
Gravitational waves induced by spinor fields
Feng, Kaixi
2015-01-01
In realistic model-building, spinor fields with various masses are present. During inflation, spinor field may induce gravitational waves as a second order effect. In this paper, we calculate the contribution of single massive spinor field to the power spectrum of primordial gravitational wave by using retarded Green propagator. We find that the correction is scale-invariant and of order $H^4/M_P^4$ for arbitrary spinor mass $m_{\\psi}$. Additionally, we also observe that when $m_\\psi \\gtrsim H$, the dependence of correction on $m_\\psi/H$ is nontrivial.
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Yu, Xianhuan; Yang, Weifeng; Hu, Shilin; Chen, Jing; Xu, SongPo; Chen, YongJu; Quan, Wei; Liu, XiaoJun
2016-01-01
A novel and universal interference structure is found in the photoelectron momentum distribution of atoms in intense infrared laser field. Theoretical analysis shows that this structure can be attributed to a new form of Coulomb-field-driven backward-scattering of photoelectrons in the direction perpendicular to the laser field, in contrast to the conventional rescattering along the laser polarization direction. This transverse backward-scattering process is closely related to a family of photoelectrons initially ionized within a time interval of less than 200 attosecond around the crest of the laser electric field. Those electrons, acquiring near-zero return energy in the laser field, will be pulled back solely by the ionic Coulomb field and backscattered in the transverse direction. Moreover, this rescattering process mainly occurs at the first or the second return times, giving rise to different phases of the photoelectrons. The interference between these photoelectrons leads to unique curved interference ...
Surface Shear, Persistent Wave Groups and Rogue Waves
Chafin, Clifford
2014-01-01
We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.
Vertical variations of wave-induced radiation stress tensor
Institute of Scientific and Technical Information of China (English)
Zheng Jinhai; Yan Yixin
2001-01-01
The distributions of the wave-induced radiation stress tensor over depth are studied by using the linear wave theory, which are divided into three regions, i.e., above the mean water level, below the wave trough level, and between these two levels. The computational expressions of the wave-induced radiation stress tensor at the arbitrary wave angle are established by means of the Eulerian coordinate transformation, and the asymptotic forms for deep and shallow water are also presented. The vertical variations of a 30° incident wave-induced radiation stress tensor in deep water, intermediate water and shallow water are calculated respectively. The following conclusions are obtained from computations.The wave-induced radiation stress tensor below the wave trough level is induced by the water wave particle velocities only, whereas both the water wave particle velocities and the wave pressure contribute to the tensor above the wave trough level. The vertical variations of the wave-induced radiation stress tensor are influenced substantially by the velocity component in the direction of wave propagation. The distributions of the wave-induced radiation stress tensor over depth are nonuniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water. From the water surface to the seabed, the reversed variations occur for the predominant tensor components.
Fraternale, Federico
2013-01-01
The present thesis deals with the non-modal linear analysis of 3D perturbations in wall flows. In the first part,a solution to the Orr-Sommerfeld and Squire IVP, in the form of orthogonal functions expansion, is researched. The Galerkin method is successfully implemented to numerically compute approximate solutions for bounded flows. The Chandrasekhar functions revealed to ensure a fifth order of accuracy. The focus of the subsequent analysis is on the transient behavior of the perturbation frequency and phase velocity. The results confirm recent observations about a jump in the temporal evolution of the frequency of the wall-normal velocity signal, considered as the end of an Early Transient. After this jump, the wave frequency for Plane Couette flow experiences a periodic modulation about the asymptotic value, which is motivated and investigated in detail. A new result is the presence of a second frequency jump for the wall-normal vorticity. This fact, together with the possibility for different values of t...
Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice
2017-02-15
The dynamics of the Si((3)P) + OH(X(2)Π) → SiO(X(1)Σ(+)) + H((2)S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X(2)A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.
Institute of Scientific and Technical Information of China (English)
Xin Xiang-Jun; Ma Jian-Xin; Zhang Qi; Deng Chao-Gong; Wang Kui-Ru; Yu Chong-Xiu; Liu Bo
2009-01-01
This paper introduces the mid-span spectral inversion by four-wave mixing in a commercially available semiconductor optical amplifier (SOA) with a length of about 1.5 mm to optical label switching network based on combined frequency shift keying (FSK)-intensiy modulation (IM)/optical label-packet modulation to overcome the dispersion limitation of fiber.The 155 Mb/s-10 Gb/s combined FSK/IM signal is experimentally transmitted over a 100 km standard single mode fiber.10-10 and 10-9 BER (bit error ratio),or even better,is achieved for the FSK label and IM packet,respectively.The -19 dB power conversion efficiency is obtained for -1 nm wavelength detuning.
Wigger, Daniel; Czerniuk, Thomas; Reiter, Doris E.; Bayer, Manfred; Kuhn, Tilmann
2017-07-01
Coherent phonons can greatly vary light-matter interaction in semiconductor nanostructures placed inside an optical resonator on a picosecond time scale. For an ensemble of quantum dots (QDs) as active laser medium, phonons are able to induce a large enhancement or attenuation of the emission intensity, as has been recently demonstrated. The physics of this coupled phonon-exciton-light system consists of various effects, which in the experiment typically cannot be clearly separated, in particular, due to the complicated sample structure a rather complex strain pulse impinges on the QD ensemble. Here we present a comprehensive theoretical study how the laser emission is affected by phonon pulses of various shapes as well as by ensembles with different spectral distributions of the QDs. This gives insight into the fundamental interaction dynamics of the coupled phonon-exciton-light system, while it allows us to clearly discriminate between two prominent effects: the adiabatic shifting of the ensemble and the shaking effect. This paves the way to a tailored laser emission controlled by phonons.
Energy Technology Data Exchange (ETDEWEB)
Mouret, L
2002-11-01
The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)
Wave-induced dynamics of flexible blades
Luhar, M
2015-01-01
We present an experimental and numerical study that describes the motion of flexible blades, scaled to be dynamically similar to natural aquatic vegetation, forced by wave-induced oscillatory flows. For the conditions tested, blade motion is governed primarily by two dimensionless variables: (i) the Cauchy number, $Ca$, which represents the ratio of the hydrodynamic forcing to the restoring force due to blade stiffness, and (ii) the ratio of the blade length to the wave orbital excursion, $L$. For flexible blades with $Ca \\gg 1$, the relationship between drag and velocity can be described by two different scaling laws at the large- and small-excursion limits. For large excursions ($L \\ll 1$), the flow resembles a unidirectional current and the scaling laws developed for steady-flow reconfiguration studies hold. For small excursions ($L \\gg 1$), the beam equations may be linearized and a different scaling law for drag applies. The experimental force measurements suggest that the small-excursion scaling applies...
Wave Packets can Factorize Numbers
Mack, H; Haug, F; Freyberger, M; Schleich, W P; Mack, Holger; Bienert, Marc; Haug, Florian; Freyberger, Matthias; Schleich, Wolfgang P.
2002-01-01
We draw attention to various aspects of number theory emerging in the time evolution of elementary quantum systems with quadratic phases. Such model systems can be realized in actual experiments. Our analysis paves the way to a new, promising and effective method to factorize numbers.
Packet Tracer network simulator
Jesin, A
2014-01-01
A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.
Topography-induced focusing of random waves
Smit, P.B.; Janssen, T.T.; Herbers, T.H.C.
2012-01-01
Refraction of narrow-band surface waves in coastal areas can result in wave-focal zones where due to interference, wave statistics vary rapidly and on similar length scales as those of individual waves. However such interference patterns, or wave coherence, are not accounted for in conventional stoc
Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport
2007-11-01
seabed. This can be a fairly rapid process (i.e. of the order of tens of seconds, up to a few minutes at most, e.g. Foda and Zhang (1994); Lindenberg...response of cohesive sediments to water waves, PhD-dissertation, University of California, Berkeley, USA. Chou, H.-T., M.A. Foda and J.R. Hunt, 1993...Dingemans, M.W., 1997, Water wave propagation over uneven bottoms; Part I & II, World Scientific, Singapore. Foda , M.A. and S.-Y. Tzang, 1994
Transporting live video over high packet loss networks
Werdin, Dave
2013-05-01
Transport of live video requires a robust backbone as live video decoders are subject to dropouts and buffer starvation. A short duration packet loss will many times cause a decoder to go black for many seconds as it reacquires the stream and clock. IP networks due to their connectionless approach and support for variable length packets, inherently display packet delivery variability. These characteristics most typically include packet loss, packet delay variation, and packets being delivered out of order. Deep Packet Recovery (DPR) techniques provide correction to IP network induced errors and issues. DPR can provide a much broader and stronger protection than traditional Forward Error Correction techniques enabling transport of live video across severely impaired networks.
Institute of Scientific and Technical Information of China (English)
关大任; 赵显; 邓从豪; John Z.H.Zhang
1997-01-01
Three-dimensional quantum mechanical calculations for vibrational predissociation of HeI2(B) van der Waals molecules are presented using the time-dependent wave packet technique within the golden rule approxima tion.The total and partial decay widths,lifetimes,rates and their dependence on initial vibrational states were obtained for HeI2 at low initial vibrational excited levels.Our calculations show that the calculated tota decay widths,lifetimes and rates agree well with those extrapolated from experimental data available The predicted total decay widths as a function of initial vibrational states exhibit highly nonlinear behavior.The very short propagation time (less.than 1 ps) required in the golden rule wave packet calculation is determined by the duration time of the final state inter-action between the fragments on the vibrationally deexcited adiabatic potential surface.The final state interaction between the fragments is shown to play an important role in determining the final rotational distri
Thermally induced acoustic waves in porous silicon
Energy Technology Data Exchange (ETDEWEB)
Gavrilchenko, Iryna V.; Shulimov, Yuriy G.; Skryshevsky, Valeriy A. [Radiophysics Department, Kyiv National Taras Shevchenko University, Kyiv (Ukraine); Benilov, Arthur I. [Radiophysics Department, Kyiv National Taras Shevchenko University, Kyiv (Ukraine); Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, Ecully (France)
2009-07-15
Thermally induced acoustic waves in structures with porous silicon have been studied. Two different schemas of acoustic phenomena recording are compared: in the first one a signal from microphone was measured as function of output frequency, in second one the resistance of porous silicon was measured using Wheatstone bridge. For both methods, the resonance peak is situated in same frequencies depending on difference in thermal properties between porous silicon and c-Si as well as geometry of studied structures. 1.0 kHz shifting of resonance peak in saturated alcohol vapors comparing to ambient air is observed. It can be applied as new transducer for chemical sensors based on porous silicon. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Estimation of Impulsive Wave-induced Loads on a FPSO
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Mansour, Alaa E.
2005-01-01
The effect of impulsive loads like slamming and green water on deck on the wave-induced bending moment is estimated by a semi-analytical approach. The impulse loads leading to transient vibrations are described in terms of magnitude, phase lag relative to the wave-induced peak and decay rate...
Selective Alignment of D2 Induced by Two Ultrashort Laser Pulses
Institute of Scientific and Technical Information of China (English)
Zeng-qiang Yang; Zhi-rong Guo; Gui-xian Ge
2009-01-01
The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent Schrodinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se-lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.
Optical packet switched networks
DEFF Research Database (Denmark)
Hansen, Peter Bukhave
1999-01-01
Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... between the electrical switched layer and the WDM transport layer. Analytical models are implemented to determine the signal quality ghrough the switch blocks in terms of power penalty and to assess the traffic performance of different switch block architectures. Further, a computer simulation model...... is used to investigate the influence on the traffic performance of asynchronous operation of the switch blocks. The signal quality investigation illustrates some of the component requirements in respect to gain saturation in SOA gates and crosstalk in order to obtain high cascadability of the switch...
A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices
Matula, Thomas J.; Hilmo, Paul R.; Bailey, Michael R.
2005-07-01
Cavitation plays a varied but important role in lithotripsy. Cavitation facilitates stone comminution, but can also form an acoustic barrier that may shield stones from subsequent shock waves. In addition, cavitation damages tissue. Spark-gap lithotripters generate cavitation with both a direct and a focused wave. The direct wave propagates as a spherically diverging wave, arriving at the focus ahead of the focused shock wave. It can be modeled with the same waveform (but lower amplitude) as the focused wave. We show with both simulations and experiments that bubbles are forced to grow in response to the direct wave, and that these bubbles can still be large when the focused shock wave arrives. A baffle or ``suppressor'' that blocks the propagation of the direct wave is shown to significantly reduce the direct wave pressure amplitude, as well as direct wave-induced bubble growth. These results are applicable to spark-gap lithotripters and extracorporeal shock wave therapy devices, where cavitation from the direct wave may interfere with treatment. A simple direct-wave suppressor might therefore be used to improve the therapeutic efficacy of these devices.
Waveform and packet structure of lion roars
Directory of Open Access Journals (Sweden)
W. Baumjohann
Full Text Available The Equator-S magnetometer is very sensitive and has a sampling rate of normally 128 Hz. The high sampling rate allows for the first time fluxgate magnetometer measurements of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dayside magnetosheath. The so-called lion roars, typically seen by the Equator-S magnetometer at the bottom of the magnetic troughs of magnetosheath mirror waves, are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.25 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5–1 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is usually smaller than 1.5^{°}.
Key words. Interplanetary physics (MHD waves and turbulence; plasma waves and turbulence
Numerical simulation of sediment transport in coastal waves and wave-induced currents
Institute of Scientific and Technical Information of China (English)
TANG Jun; LYU Yigang; SHEN Yongming
2016-01-01
Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems. The present study provided a numerical scheme for sediment transport in coastal waves and wave-induced currents. In the scheme, the sand transport model was implemented with wave refraction-diffraction model and near-shore current model. Coastal water wave was simulated by using the parabolic mild-slope equation in which wave refraction, diffraction and breaking effects are considered. Wave-induced current was simulated by using the nonlinear shallow water equations in which wave provides radiation stresses for driving current. Then, sediment transport in waves and wave-induced currents was simulated by using the two-dimensional suspended sediment transport equations for suspended sediment and the bed-load transport equation for bed load. The numerical scheme was validated by experiment results from the Large-scale Sediment Transport Facility at the US Army Corps of Engineer Research and Development Center in Vicksburg. The numerical results showed that the present scheme is an effective tool for modeling coastal sediment transport in waves and near-shore currents.
Yao, Cui-Xia; Zhang, Pei-Yu
2014-07-10
The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed.
Directory of Open Access Journals (Sweden)
Haoyun Tang
2016-01-01
Full Text Available The irregular wave condition, especially the oblique irregular wave condition, is the actual circumstances when trimaran is sailing in sea. In order to identify the characteristic of the wave-induced hydroelastic vibration in irregular waves, as well as investigate the change of vibration in different oblique irregular wave conditions, trimaran model tests were conducted to measure vibrations, wave impact, and motion under different azimuth and wave height. The vibration on main hull, side hull, and cross-desk is measured and analyzed separately to observe the influence of irregular wave in different structural parts. The longitudinal vibration, transverse vibration, and torsion are also included in the model tests measurement to investigate the relationship between these vibration deformation components and parameters of the irregular waves. The wave-induced hydroelastic vibrations and whipping effect is extracted and analyzed to find influence of whipping and springing on the total vibration. Based on the analysis, the dangerous positions and the critical waves condition is introduced to ensure that the subsequent structural strength assessment is more reliable.
Identification of rocket-induced acoustic waves in the ionosphere
Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald
2016-10-01
Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.
Toyota, Koudai
2016-01-01
The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. {\\bf 17}, 073005~(2015)] is applied to further study a detachment dynamics of a model negative ion in one-dimension in high-frequency regime. This method is based on the Floquet approach, but the time-dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photo absorption/emission but also a non-adiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schr\\"odinger equation, and underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we further explore two more aspects of the detachment dynamics, which were not done in our previous work. First, we find out features of both a {\\it spatial} and {\\it temporal} interference of photo electron wave pack...
Unfocused Extracorporeal Shock Waves Induce Anabolic Effects in Rat Bone
O.P. van der Jagt (Olav); T.M. Piscaer (Tom); W. Schaden (Wolfgang); J. Li; N. Kops (Nicole); H. Jahr (Holger); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); M. de Jong (Marion); H.H. Weinans (Harrie)
2011-01-01
textabstractAbstract. BACKGROUND: Extracorporeal shock waves are known to stimulate the differentiation of mesenchymal stem cells toward osteoprogenitors and induce the expression of osteogenic-related growth hormones. The aim of this study was to investigate if and how extracorporeal shock waves af
Unfocused Extracorporeal Shock Waves Induce Anabolic Effects in Rat Bone
O.P. van der Jagt (Olav); T.M. Piscaer (Tom); W. Schaden (Wolfgang); J. Li; N. Kops (Nicole); H. Jahr (Holger); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); M. de Jong (Marion); H.H. Weinans (Harrie)
2011-01-01
textabstractAbstract. BACKGROUND: Extracorporeal shock waves are known to stimulate the differentiation of mesenchymal stem cells toward osteoprogenitors and induce the expression of osteogenic-related growth hormones. The aim of this study was to investigate if and how extracorporeal shock waves
Wave-Induced Groundwater Flows in a Freshwater Beach Aquifer
Malott, S. S.; Robinson, C. E.; O'Carroll, D. M.
2014-12-01
Wave-induced recirculation across the sediment-water interface can impact the transport of pollutants through a beach aquifer and their ultimate flux into coastal waters. The fate of nutrients (e.g. from septic and agricultural sources) and fecal indicator bacteria (e.g. E. coil) near the sediment-water interface are of particular concern as these pollutants often lead to degradation of recreational water quality and nearshore ecosystems. This paper presents detailed field measurements of groundwater flows in a freshwater beach aquifer on Lake Huron over periods of intensified wave conditions. Quantifying wave-driven processes in a freshwater beach aquifer enables wave effects to be studied in isolation from density and tidal effects that complicate groundwater flows in marine beaches. Water exchange across the sediment-water interface and groundwater flow patterns were measured using groundwater wells, arrays of vertically nested pressure transducers and manometers. Results show that wave action induces rapid infiltration/exfiltration across the sediment-water interface and a larger recirculation cell through the beach aquifer. Field data is used to validate a numerical groundwater model of wave-induced groundwater flows. While prior studies have simulated the effects of waves on beach groundwater flows, this study is the first attempt to validate these sophisticated modeling approaches. Finally, field data illustrating the impact of wave-induced groundwater flows on nutrient and bacteria fate and transport in beach aquifers will also be presented.
Energy Technology Data Exchange (ETDEWEB)
Wu, Hui [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Dalian 116023 (China); Liang, Dongyue [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhang, Pei-Yu, E-mail: pyzhang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Dalian 116023 (China)
2015-05-12
Highlights: • The reaction probabilities, characteristic ICS and DCS are presented. • The features of ICS and DCS are explained. • Different mechanisms relevant to several sets of J partial waves lead to the maxima in the DCS in the collision process. - Abstract: The state-to-state quantum dynamics of the abstraction channel of S({sup 3}P) + H{sub 2}(v = 0, j = 0) reaction is studied on the potential energy surface (PES) constructed by Lv et al. (2012), utilizing the product Jacobi coordinate based time-dependent wave packet method. Reaction probabilities and total integral cross section (ICS) agree well with previous results (Lv et al., 2012) for collision energies ranging from 0.8 to 1.4 eV. Results show that total differential cross sections (DCSs) for small collision energies have backward structures, whereas those for large collision energies are sideways peaked. Although the summed-over-all-final-state DCS for single collision energy is smoothly varied, the DCS of the product HS of a selected final state shows strong oscillations. For the selected final state, the opacity function derived by reaction probability multiplied by (2J + 1), shows that different mechanisms relevant to several sets of J partial waves lead to the maxima in the differential cross section in the collision process.
Optical Packet Switching Demostrator
DEFF Research Database (Denmark)
Mortensen, Brian Bach; Berger, Michael Stübert
2002-01-01
In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set-up and the m......In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set...
Lim, Chai Heng; Lettmann, Karsten; Wolff, Jörg-Olaf
2013-12-01
Wave generation, propagation, and transformation from deep ocean over complex bathymetric terrains to coastal waters around Potter Cove (King George Island, South Shetland Islands, Antarctica) have been simulated for an austral summer month using the Simulating Waves Nearshore (SWAN) wave model. This study aims to examine and understand the wave patterns, energy fluxes, and dissipations in Potter Cove. Bed shear stress due to waves is also calculated to provide a general insight on the bed sediment erosion characteristics in Potter Cove.A nesting approach has been implemented from an oceanic scale to a high-resolution coastal scale around Potter Cove. The results of the simulations were compared with buoy observations obtained from the National Data Buoy Center, the WAVEWATCH III model results, and GlobWave altimeter data. The quality of the modelling results has been assessed using two statistical parameters, namely the Willmott's index of agreement D and the bias index. Under various wave conditions, the significant wave heights at the inner cove were found to be about 40-50 % smaller than the ones near the mouth of Potter Cove. The wave power in Potter Cove is generally low. The spatial distributions of the wave-induced bed shear stress and active energy dissipation were found to be following the pattern of the bathymetry, and waves were identified as a potential major driving force for bed sediment erosion in Potter Cove, especially in shallow water regions. This study also gives some results on global ocean applications of SWAN.
Curvature-Induced Asymmetric Spin-Wave Dispersion
Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila
2016-11-01
In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that reveal certain properties of their undulatory motion is an important task. Here, we show using micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-induced effect can be seen as a "dipole-induced Dzyalonshiinsky-Moriya-like" effect.
Bader, Ahmed
2014-05-22
A multihop network transmits a packet including a RACH area and a hop number. The RACH area includes a list of subcarriers. A source node in the network dynamically determines the size of the RACH area. A node in the network performs an open-loop transmit power control.
Bureau of Reclamation (Dept. of Interior), Washington, DC.
This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…
Numerical study on water waves and wave-induced longshore currents in Obaköy coastal water
Institute of Scientific and Technical Information of China (English)
TANG Jun; LYU Yigang; SHEN Yongming
2014-01-01
In this paper, the water waves and wave-induced longshore currents in Obaköy coastal water which is lo-cated at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical re-sults. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.
Packet transport network in metro
Huang, Feng; Yi, Xiaobo; Zhang, Hanzheng; Gong, Ping
2008-11-01
IP packet based services such as high speed internet, IP voice and IP video will be widely deployed in telecom network, which make transport network evolution to packet transport network. Characteristics of transport network and requirements of packet transport network are analyzed, T-MPLS/MPLS-TP based PTN technology is given and it will be used in metro (access, aggregation and core) network.
Institute of Scientific and Technical Information of China (English)
Shuang-jiang Lv; Pei-yu Zhang; Guo-zhong He
2012-01-01
A new potential energy surface is presented for the triplet state 3A' of the chemical reaction S(3P)+H2 from a set of accurate ab initio data.The single point energies are computed using highly correlated complete active space self-consistent-field and multi-reference configuration interaction wave functions with a basis set of aug-cc-pV5Z.We have fitted the full set of energy values using many-body expansion method with an Aguado-Paniagua function.Based on the new potential energy surface,we carry out the time-dependent wave packet scattering calculations over the collision energy range of 0.8-2.2 eV.Both the centrifugalsudden approximation and Coriolis Coupling cross sections are obtained.In addition,the total reaction probabilities are calculated for the reactant H2 initially in the vibrational states v=0-3 (j=0).It is found that initial vibrational excitation enhances the title reaction.
Wu, Hui; Liang, Dongyue; Zhang, Pei-Yu
2015-05-01
The state-to-state quantum dynamics of the abstraction channel of S(3P) + H2(v = 0, j = 0) reaction is studied on the potential energy surface (PES) constructed by Lv et al. (2012), utilizing the product Jacobi coordinate based time-dependent wave packet method. Reaction probabilities and total integral cross section (ICS) agree well with previous results (Lv et al., 2012) for collision energies ranging from 0.8 to 1.4 eV. Results show that total differential cross sections (DCSs) for small collision energies have backward structures, whereas those for large collision energies are sideways peaked. Although the summed-over-all-final-state DCS for single collision energy is smoothly varied, the DCS of the product HS of a selected final state shows strong oscillations. For the selected final state, the opacity function derived by reaction probability multiplied by (2J + 1), shows that different mechanisms relevant to several sets of J partial waves lead to the maxima in the differential cross section in the collision process.
Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture
Borek, Bartłomiej; Shajahan, T. K.; Gabriels, James; Hodge, Alex; Glass, Leon; Shrier, Alvin
2012-09-01
Pacemaker interactions can lead to complex wave dynamics seen in certain types of cardiac arrhythmias. We use experimental and mathematical models of pacemakers in heterogeneous excitable media to investigate how pacemaker interactions can be a mechanism for wave break and reentrant wave dynamics. Embryonic chick ventricular cells are cultured invitro so as to create a dominant central pacemaker site that entrains other pacemakers in the medium. Exposure of those cultures to a potassium channel blocker, E-4031, leads to emergence of peripheral pacemakers that compete with each other and with the central pacemaker. Waves emitted by faster pacemakers break up over the slower pacemaker to form reentrant waves. Similar dynamics are observed in a modified FitzHugh-Nagumo model of heterogeneous excitable media with two distinct sites of pacemaking. These findings elucidate a mechanism of pacemaker-induced reentry in excitable media.
Shock Wave Induced Separation Control by Streamwise Vortices
Institute of Scientific and Technical Information of China (English)
Ryszard SZWABA
2005-01-01
Control of shock wave and boundary layer interaction finds still a lot of attention. Methods of this interaction control have been especially investigated in recent decade. This research was mostly concerned with flows without separation. However, in many applications shock waves induce separation often leads to strong unsteady effects. In this context it is proposed to use streamwise vortices for the interaction control. The results of experimental investigations are presented here. The very promising results were obtained, meaning that the incipient separation was postponed and the separation size was reduced for the higher Mach numbers. The decrease of the RMS of average shock wave oscillation was also achieved.
Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony
2005-02-01
We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.
Deep-water bedforms induced by refracting Internal Solitary Waves
Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco
2017-04-01
Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.
Noise induced intercellular propagation of calcium waves
Nchange, A. K.; Kepseu, W. D.; Woafo, P.
2008-04-01
In this paper, we investigate the spatiotemporal dynamics of a bidirectional coupled chain of cells, in which a cell is subjected to an external noise. Noisy oscillations of calcium (Ca 2+), that is, a bursting-like phenomenon induced by noise with fluctuations in the baseline values of calcium, are induced in the first cell and propagated along the chain with noise suppression. This phenomenon of noise suppression is further investigated by computing the normalized fluctuation of pulse durations. It is therefore found that the noise induced coherence resonance phenomenon occurs at the cellular level. Coherence biresonance behaviour appears in the transmission of noise induced oscillations at appropriate noise intensity or noise coupling (for low noise intensity) and the information flow in each cell can be simultaneously optimized at the optimal value of noise or coupling.
Wave Effect on the Ocean Circulations Through Mass Transport and Wave-Induced Pumping
Institute of Scientific and Technical Information of China (English)
BI Fan; WU Kejian
2014-01-01
The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data (ERA-40 data) and the Simple Ocean Data Assimilation (SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.
Packet combining based on cross-packet coding
Institute of Scientific and Technical Information of China (English)
LIN DengSheng; XIAO Ming; LI ShaoQian
2013-01-01
We propose a packet combining scheme of using cross-packet coding. With the coding scheme, one redundant packet can be used to ensure the error-correction of multiple source packets. Thus, the proposed scheme can increase the code rate. Moreover, the proposed coding scheme has also advantages of decoding complexity, reducing undetectable errors （by the proposed low-complexity decoder） and flexibility （applicable to channels with and without feedback）. Theoretical analysis under the proposed low-complexity decoding algorithm is given to maximize the code rate by optimizing the number of source packets. Finally, we give numerical results to demonstrate the advantages of the proposed scheme in terms of code rates compared to the traditional packet combining without coding or ARQ （automatic repeat-request） techniques.
Mesoscale heat waves induced by orography
Gladich, I.; Gallai, I.; Giaiotti, D. B.; Mordacchini, Gp.; Palazzo, A.; Stel, F.
2008-07-01
This work is devoted to the analysis of an unusual and sudden thermal fluctuation that interested portions of Friuli Venezia Giulia (Italy) during the night of 27 July 1983. The whole 1983 summer was extremely warm in Europe and in particular on the Italian peninsula, from the Alps down to Sicily. Nevertheless, the day of 27 July 1983 in Friuli Venezia Giulia deserves special attention because the observed maximum temperatures did not occur during day-time but during night-time (from 23:00 up to 24:00 LT, 21:00-22:00 UTC). Peaks of 34.8°C and values of relative humidity of the order of 28% were registered by the official network of weather stations. This event interested mainly the central-eastern part of the plain of Friuli Venezia Giulia, a few kilometers far from the Slovenian border and relieves. The thermal anomalies lasted up to an hour, then temperatures decreased toward values more usual for the climate of the month. The study of this event is carried out with the aid of the AR-WRF numerical atmospheric model, initialized through the ECMWF analysis. The numerical simulations highlight the important role played by orography, jointly with the peculiar thermal structure of the atmosphere, for the enhancing of the internal wave pattern over that area. According to the sensitivity studies realized, the amplification of the internal wave pattern might represent a possible explanation for that meteorological enigma.
Mesoscale heat waves induced by orography
Directory of Open Access Journals (Sweden)
I. Gladich
2008-07-01
Full Text Available This work is devoted to the analysis of an unusual and sudden thermal fluctuation that interested portions of Friuli Venezia Giulia (Italy during the night of 27 July 1983. The whole 1983 summer was extremely warm in Europe and in particular on the Italian peninsula, from the Alps down to Sicily. Nevertheless, the day of 27 July 1983 in Friuli Venezia Giulia deserves special attention because the observed maximum temperatures did not occur during day-time but during night-time (from 23:00 up to 24:00 LT, 21:00–22:00 UTC. Peaks of 34.8°C and values of relative humidity of the order of 28% were registered by the official network of weather stations. This event interested mainly the central-eastern part of the plain of Friuli Venezia Giulia, a few kilometers far from the Slovenian border and relieves. The thermal anomalies lasted up to an hour, then temperatures decreased toward values more usual for the climate of the month. The study of this event is carried out with the aid of the AR-WRF numerical atmospheric model, initialized through the ECMWF analysis. The numerical simulations highlight the important role played by orography, jointly with the peculiar thermal structure of the atmosphere, for the enhancing of the internal wave pattern over that area. According to the sensitivity studies realized, the amplification of the internal wave pattern might represent a possible explanation for that meteorological enigma.
Depth-dependent expression of obliquely incident wave induced radiation stress
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The vertically dependent expressions of obliquely incident waves induced radiation stress are derived by use of the second order Stokes wave theory within three regions of the water column, that is, above the mean water level, below the wave trough level, and between these two levels. Computations indicate that the wave-induced radiation stress below the wave trough level is from the water wave particle velocity only, whereas both the water wave particle velocity and the wave pressure contribute to the tensor above the wave trough level; the vertical variations of the wave-induced radiation stress are influenced substantially by the velocity component in the direction of wave propagation; the distributions of the wave-induced radiation stress tensor over depth are non-uniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water; from water surface to seabed, the reversed variations occur for the predominant tensor components.
Estimating TCP Packet Loss Ratio from Sampled ACK Packets
Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu
The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.
Lu, Ruifeng; Wang, Yunhui; Deng, Kaiming
2013-07-30
The quantum mechanics (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the title reaction with the ground minimal allowed rotational state of CH (j = 1) on the 1 (1)A' potential energy surface. For the reaction probability at total angular momentum J = 0, a similar trend of the QM and QCT calculations is observed, and the QM results are larger than the latter almost in the whole considered energy range (0.1-1.5 eV). The QCT integral cross sections are larger than the QM results with centrifugal sudden approximation, while smaller than those from QM method including Coriolis coupling for collision energies bigger than 0.25 eV. The quantum wave-packet computations show that the Coriolis coupling effects get more and more pronounced with increasing of J. In addition to the scalar properties, the stereodynamical properties, such as the average rotational alignment factor , the angular distributions P(θr ), P(ϕr ), P(θr ,ϕr ), and the polarization-dependent generalized differential cross sections have been explored in detail by QCT approach.
Yuan, Jiuchuang; Cheng, Dahai; Sun, Zhigang; Chen, Maodu
2014-11-01
The time-dependent quantum wave packet (TDWP) and quasiclassical trajectory calculations (QCT) are carried out for the Au(2S) + H2(X1∑+g) → AuH(X1∑+g) + H(2S) reaction on a global potential energy surface. The reaction probabilities at a series of J values, integral cross sections (ICSs) and differential cross sections of the title reaction are calculated by the TDWP method. For reaction probabilities, there are a mass of sharp oscillations at low collision energy, which can be attributed to resonances supported by the potential well. Due to the endothermicity of the title reaction, the total ICS shows a threshold about 1.53 eV. In order to further investigate the reactive mechanism, the lifetime of complex is calculated by QCT method. At the low collision energy, most intermediate complexes are long lived, which implies that the reaction is governed by indirect reactive mechanism. With the collision energy increasing, the direct reactive mechanism occupies the dominant position. Due to the change of the reactive mechanism, the angular distribution shifts toward the forward direction with collision energy increasing. The isotopic variant, Au + D2→AuD + D reaction, is also calculated by TDWP method. The calculated reaction probabilities and ICSs show that the isotope effect reduces the reactivity.
Shear flow induced wave couplings in the solar wind
Energy Technology Data Exchange (ETDEWEB)
Poedts, S. [KULeuven, Heverlee (Belgium). Centre for Plasma Astrophysics; Rogava, A.D. [Tbilisi State Univ. (Georgia). Dept. of Physics]|[International Centre for Theoretical Physics, Trieste (Italy); Mahajan, S.M. [Univ. of Texas, Austin, TX (United States). Institute for Fusion Studies]|[International Centre for Theoretical Physics, Trieste (Italy)
1998-01-01
A sheared background flow in a plasma induces coupling between different MHD wave modes, resulting in their mutual transformations with corresponding energy redistributing between the modes. In this way, the energy can be transfered from one wave mode to the other, but energy can also be added to or extracted from the background flow. In the present paper it is investigated whether the wave coupling and energy transfer mechanisms can operate under solar wind conditions. It is shown that this is indeed the case. Hence, the long-period waves observed in the solar wind at r > 0.3 AU might be generated by much faster periodic oscillations in the photosphere of the Sun. Other possible consequences for observable beat phenomena in the wind and the acceleration of the solar wind particles are also discussed.
Wave Induced Stresses Measured at the Wave Dragon Nissum Bredning Prototype
DEFF Research Database (Denmark)
Corona, L.; Kofoed, Jens Peter
2006-01-01
The paper describes the wave induced loading on the overtopping based wave energy converter Wave Dragon. Focus is put on the junction between the main body and the reflector, also called the "shoulder part", where large cross sectional forces and bending moments acts. There are two main objectives...... for this paper, first to verify the FEM results obtained by Niras, Danish society in charge of the finite element modelling and structural design, and then to make a first experimental fatigue analysis of a particular part of the Wave Dragon. This last part shall be considered as an exercise for the further work...... that is to be done for the fatigue analysis, and which is not part of this paper....
Image reconstruction with acoustic radiation force induced shear waves
McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.
2003-05-01
Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.
Vortex induced vibrations of pipe in high waves. Field measurements
Energy Technology Data Exchange (ETDEWEB)
Hansen Ottesen, N.-E.; Pedersen, B.
1999-07-01
Vortex induced vibrations have been measured full scale on an instrumented pipe placed vertically in the crest zone of high and steep waves. The Reynolds numbers were in the range 105 to 106. It was found that the vortex induced vibrations in the wave motion were generated within a reduced velocity range of 4 and 8. The vibrations grew intermittently with the passing waves. The vibrations took place in 2-3 modes simultaneously. One mode, however, dominated over the other. The growths of the VIV using a modal analysis were consistent with a basic correlation length of 3 diameters for a stationary pipe with a linear growth of the correlation length of 10 diameter for each 0.1 diameter amplitude. (au)
Wave-induced Ship Hull Vibrations in Stochastic Seaways
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Dogliani, M.
1996-01-01
-Gaussian in stationary stochastic seaways. The statistical properties of a response are here described by the first four statistical moments through a Hermite series approximation to the probability density function. The peak value distributions of the low and high frequency responses are treated independently, due......A theoretical Study is undertaken on the determination of wave-induced loads in flexible ship hulls. The calculations are performed within the framework of a non-linear, quadratic strip theory formulated in the frequency domain. Included are non-linear effects due to changes in added mass...... to the large separation between dominating wave frequencies and the lowest two-node frequency of the hull beam. Both extreme value predictions and fatigue damage are considered.For a fast container ship the rigid body and two-node (springing) vertical wave-induced bending moments amidship are calculated...
Evanescent wave induced fluorescence. A tool for quantitative interfacial analysis
Byrne, C D
2000-01-01
Time-resolved angle-resolved evanescent wave induced fluorescence spectroscopy (EWIFS) has been used, for the first time, to determine interfacial concentration distributions of molecular species. Theoretical calculations demonstrate that in dynamic systems the non-radiative fluorescence decay coefficients of molecular species are effected only in a minor way by the presence of a dielectric interface. Consequently, measurements of interfacial fluorescence decay times are used to probe variations in molecular fluorescence quantum efficiencies, caused by the presence of an interface. The understanding of these variations is combined with angle-resolved evanescent wave theory. Examination of derived theoretical models using simulated data demonstrates that angle-resolved EWIFS is capable of measuring interfacial interactions on a nanometer scale. An evanescent wave induced fluorescence spectrometer is designed and fabricated to allow the measurement of the time-integrated and time-resolved interfacial emission. ...
Institute of Scientific and Technical Information of China (English)
Jiahua Li(李家华); Wenxing Yang(杨文星); Jucun Peng(彭菊村)
2004-01-01
Using Schrodinger-Maxwell formalism, we propose and analyze a continuous-wave four-wave mixing (FWM) scheme for the generation of coherent light in a six-level atomic system based on electromagnetically dual induced transparency. We derive the corresponding explicit analytical expressions for the generated mixing field. We find that the scheme greatly enhances FWM production efficiency and is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference by choosing the proper decay rate in the second electromagnetically induced transparency (EIT) process.In addition, such an optical process also provides possibilities for producing short-wave-length coherent radiation at low pump intensities.
On the effectiveness of mangroves in attenuating cyclone induced waves
Narayan, S.; Suzuki, T.; Stive, M.J.F.; Verhagen, H.J.; Ursem, W.N.J.; Ranasinghe, R.
2010-01-01
A study of the effectiveness of mangroves in attenuating cyclone- induced waves was done using the SWAN 40.81 numerical model. Hydraulic parameters during extreme events and local mangrove vegetation parameters were estimated for the Kanika Sands mangrove island near the upcoming Dhamra Port in Oris
On the effectiveness of mangroves in attenuating cyclone induced waves
Narayan, S.; Suzuki, T.; Stive, M.J.F.; Verhagen, H.J.; Ursem, W.N.J.; Ranasinghe, R.
2010-01-01
A study of the effectiveness of mangroves in attenuating cyclone- induced waves was done using the SWAN 40.81 numerical model. Hydraulic parameters during extreme events and local mangrove vegetation parameters were estimated for the Kanika Sands mangrove island near the upcoming Dhamra Port in
Technology Corner: Internet Packet Sniffers
Directory of Open Access Journals (Sweden)
Nick Flor
2011-03-01
Full Text Available A packet sniffer is a piece of software that allows a person to eavesdrop on computer communications over the internet.Â A packet sniffer can be used as a diagnostic tool by network administrators or as a spying tool by hackers who can use it to steal passwords and other private information from computer users.Â Whether you are a network administrator or information assurance specialist, it helps to have a detailed understanding of how packet sniffers work. Â And one of the best ways to acquire such an understanding is to build and modify an actual packet sniffer.
Magnetization dynamics and spin pumping induced by standing elastic waves
Azovtsev, A. V.; Pertsev, N. A.
2016-11-01
The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and lattice strains. Our calculations are based on the numerical solution of the Landau-Lifshitz-Gilbert equation comprising the damping term and the effective magnetic field with all relevant contributions. The simulations have been performed for 2-nm-thick F e81G a19 film dynamically strained by longitudinal and transverse standing waves with various frequencies, which span a wide range around the resonance frequency νres of coherent magnetization precession in unstrained F e81G a19 film. It is found that standing elastic waves give rise to complex local magnetization dynamics and spatially inhomogeneous dynamic patterns in the form of standing spin waves with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at nodes of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state regime, magnetization oscillates with the frequency of the elastic wave, except in the case of longitudinal waves with frequencies well below νres, where the magnetization precesses with variable frequency strongly exceeding the wave frequency. The results obtained for the magnetization dynamics driven by elastic waves are used to calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal. Numerical calculations demonstrate that the transverse charge current in the paramagnetic layer, which is created by the spin current via inverse spin Hall effect, is high enough to be measured experimentally.
Numerical study of pollutant movement in waves and wave-induced long-shore currents in surf zone
Institute of Scientific and Technical Information of China (English)
TANG Jun; SHEN Yongming; QIU Dahong
2008-01-01
Water waves,wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation,the shallow water equation,as well as the pollutant movement equation,and the nu- merical results have also been validated by experimental data.It is shown that the long-shore current velocity and wave set-up in- crease with the increasing incident wave amplitude and slope steepness of the shore plane;the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane.In surf zones,the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.
Intensity improvement of shock waves induced by liquid electrical discharges
Liu, Yi; Li, Zhi-Yuan; Li, Xian-Dong; Liu, Si-Wei; Zhou, Gu-Yue; Lin, Fu-Chang
2017-04-01
When shock waves induced by pulsed electrical discharges in dielectric liquids are widely applied in industrial fields, it is necessary to improve the energy transfer efficiency from electrical energy to mechanical energy to improve the shock wave intensity. In order to investigate the effect of the plasma channel length created by the liquid electrical discharge on the shock wave intensity, a test stand of dielectric liquid pulsed electrical discharge is designed and constructed. The main capacitor is 3 μF, and the charging voltage is 0-30 kV. Based on the needle-needle electrode geometry with different gap distances, the intensities of shock waves corresponding to the electrical parameters, the relationship between the plasma channel length and the deposited energy, and the time-resolved observation of the plasma channel development by a high speed camera are presented and compared. The shock wave intensity is closely related to the power and energy dissipated into the plasma channel. The longer plasma channel and the quicker arc expansion can lead to a higher power and energy deposited into the plasma channel, which can activate a stronger shock wave.
Stratospheric Annular Modes Induced By Stationary Wave Forcing
Körnich, H.; Schmitz, G.
The variability of the winter stratosphere shows distinguishable features in the north- ern and southern hemisphere. Since these differences are based on the different plan- etary waves of the underlying atmosphere, we explore the mechanism how stationary wave forcing in the troposphere can induce a stratospheric Annular Mode using a simple GCM. The model KMCM (Kühlungsborn Mechanistic Circulation Model) extends from the ground up to 60 km height and produces a reasonable winter climate. It takes into account the different large-scale wave forcings in the troposphere as prescribed pro- cesses. This allows us to examine the stratospheric Annular-Mode generation depend- ing on different wave forcings under perpetual January conditions. Principal com- ponent analysis is applied to identify the variability patterns of the geopotential and of the zonally averaged zonal wind. By this way, it is shown that the amplitude and composition of the orographic and thermal eddy forcing determines the stratospheric Annular Mode and the related downward propagation in the temperature field. Further model simplifications are introduced in order to understand the mechanism of the stratospheric AM-generation. Using a linear model version we illuminate the influence of the different wave forcing processes on the Annular Modes. Addition- ally, a constant-troposphere model is used to clarify the importance of transient and stationary waves. Finally, the Annular Mode is interpreted in terms of the dynamical coupling of the troposphere and stratosphere.
Identification of Laser-induced Lamb waves
Energy Technology Data Exchange (ETDEWEB)
Castro C, M.; Lopez, J.A. [Physics Department, U. 1: El Paso, El Paso, TX 79968 (United States); Osegueda, R. [FAST Center, Burgess Hall, U. 1: El Paso, El Paso, TX 79968 (United States)
2007-07-01
We studied experimentally the ultrasonic propagating modes produced by a laser pulse of 532 nm while impinging on an aluminum plate. The beam, shaped as a line, induced various Lamb modes whose relative power varied with the laser line length. Identification of their mode was performed by detecting the ultrasonic modes with piezoelectric detectors along a propagation direction orthogonal to the line, and using two dimensional fast Fourier transform. Good agreement is observed between theoretical and experimental dispersion curves for the first fundamental symmetric and anti-symmetric modes. Results are shown for 12 and 24 mm laser line-length at 13.6 and 16.8 ns pulse-width. (Author)
Multiple structure of a laser-induced underwater shock wave
Tagawa, Yoshiyuki; Hayasaka, Keisuke; Kameda, Masaharu
2015-01-01
The structure of a laser-induced underwater shock wave is examined. Plasma formation, shock-wave expansion, and temporal evolution of shock pressure are observed simultaneously using a combined measurement system that obtains high-resolution nanosecond-order image sequences. In contrast to a well-known spherical-shock model, these detailed measurements reveal a non-spherically-symmteric distribution of pressure peak for a wide range of experimental parameters. The structure is determined to be a collection of multiple spherical shocks originated from elongated plasmas.
Wave induced extreme hull girder loads on containerships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Shi, Bill;
2009-01-01
, forward speed and hull flexibility. The vertical hull girder loads are evaluated for specific operational profiles. Firstly a quadratic strip theory is presented which can give separate predictions for the hogging and sagging bending moments and shear forces and for hull girder loads. Then this procedure...... is used as a base to derive semi-analytical formulas such that approximate wave load calculations can be performed by a simple spreadsheet program. Due to the few input parameters this procedure can be used to estimate the wave-induced bending moments at the conceptual design phase. Since the procedure...
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Wave induced density modification in RF sheaths and close to wave launchers
Energy Technology Data Exchange (ETDEWEB)
Van Eester, D., E-mail: d.van.eester@fz-juelich.de [Laboratory for Plasma Physics, ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Crombé, K. [Laboratory for Plasma Physics, ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Department of Applied Physics, Ghent University, Ghent (Belgium); Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)
2015-12-10
With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.
Wave induced density modification in RF sheaths and close to wave launchers
Van Eester, D.; Crombé, K.; Lu, Ling-Feng
2015-12-01
With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple 'derivative switch-on' procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang
2015-03-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).
Linear Growth of Continuous-Wave Four-Wave Mixing with Dual Induced Transparency
Institute of Scientific and Technical Information of China (English)
WANG Wen-Yi; LI Jia-Hua
2005-01-01
Using Schrodinger-Maxwell formalism, we propose and analyze an optical four-wave mixing (FWM) scheme for the generation of coherent light in a coherent six-level atomic medium based on dual electromagnetically induced transparency (EIT). We show that the significantly enhanced conversion efficiency enabled by ultraslow propagation of pump waves has no direct relationship with the single-photon detuning, which is different from the FWM with a single EIT. The most important feature is that our scheme is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference that looks like a recent scheme [Phys. Rev. Lett. 91 (2003) 243902] andmay be used for generating short-wave-length coherent radiation.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhaojun; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)
2014-10-14
Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.
Derakhti, Morteza; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng
2016-11-01
We examine wave-breaking predictions ranging from shallow- to deep-water conditions using a non-hydrostatic σ-coordinate RANS model NHWAVE as described in Derakhti et al. (2016a), comparing results both with corresponding experiments and with the results of a volume-of-fluid (VOF)/Navier-Stokes solver (Ma et al., 2011; Derakhti and Kirby, 2014a,b). Our study includes regular and irregular depth-limited breaking waves on planar and barred beaches as well as steepness-limited unsteady breaking focused wave packets in intermediate and deep water. In Part 1 of this paper, it is shown that the model resolves organized wave motions in terms of free-surface evolution, spectral evolution, organized wave velocity evolution and wave statistics, using a few vertical σ-levels. In addition, the relative contribution of modeled physical dissipation and numerical dissipation to the integral breaking-induced wave energy loss is discussed. In steepness-limited unsteady breaking focused wave packets, the turbulence model has not been triggered, and all the dissipation is imposed indirectly by the numerical scheme. Although the total wave-breaking-induced energy dissipation is underestimated in the unsteady wave packets, the model is capable of predicting the dispersive and nonlinear properties of different wave packet components before and after the break point, as well as the overall wave height decay and the evolution of organized wave velocity field and power spectrum density over the breaking region. In Part 2 (Derakhti et al., 2016b), model reproduction of wave-breaking-induced turbulence and mean circulation is examined in detail. The same equations and numerical methods are used for the various depth regimes, and no ad-hoc treatment, such as imposing hydrostatic conditions, is involved in triggering breaking. Vertical grid resolution in all simulated cases is at least an order of magnitude coarser than that of typical VOF-based simulations.
Quantum Frequency Conversion of Single-Photon States by Three and Four-Wave Mixing
DEFF Research Database (Denmark)
Raymer, Michael G.; Reddy, Dileep V.; Andersen, Lasse Mejling
2013-01-01
Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets.......Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets....
Quasi-phase-matched DC-induced three wave mixing versus four wave mixing: a simulated comparison.
Sapiano, Christopher A; Aitchison, J Stewart; Qian, Li
2012-04-01
A comparison is made between DC-induced three-wave mixing under an on-off quasi-phase-matching scheme and a perfectly phase-matched four wave mixing process. It is shown that the DC-induced process is capable of producing a significantly larger conversion efficiency than the four wave mixing process. Despite the fact that it suffers greater effects of dispersion, the enhanced growth rate of the DC-induced process provides a conversion efficiency roughly 300× larger than that of four wave mixing. Over a sample length of 20 cm the DC-induced process is able to generate idler power more than 270 times greater than that produced by the equivalent four wave mixing process.
The stress-induced surface wave velocity variations in concrete
Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.
2017-02-01
This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.
Analysis of Wave Fields induced by Offshore Pile Driving
Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.
2015-12-01
Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.
Wave Induced Loading and Stability of Rubble Mound Breakwaters
DEFF Research Database (Denmark)
Hald, Tue
conducting model tests very large variability in e.g. the degree of stability is observed. This background motivated the investigations conducted in the present study. The objective was to investigate and clarify which wave parameters are important for the hydraulic stability of the armour layer on typical...... related to the hydraulic stability was discussed. Further, governing parameters influencing the stability were identified and their influence quantified to retrieve the state- of-the-art. Model tests were conducted at SINTEF with scale models of prototype breakwaters and both the wave induced loading......The present state of knowledge when designing coastal structures has improved in the recent years. However the available design methods concerning especially rubble mound structures are characterized by a number of empirical and semi-empirical formulae making model tests inevitable and even when...
Investigating Dependences in Packet-queues
Institute of Scientific and Technical Information of China (English)
Cao Weihua(曹卫华); Girigi Deogratias; Wu Min
2004-01-01
Many packet communication networks carry several classes of traffic,each with its own service characteristics. The packet arrival processes from each source are also often bursty (highly variable),which can contribute to long packet delay. Ssociated dependence among successive service times and between service times and inter arrival times also can be for packet queues involving variable packet lengths. These dependence effects are demonstrated analytically by considering a multi class single server queue with batch Poisson arrival process.
Wave-packet dynamics in quantum wells
DEFF Research Database (Denmark)
Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.
1995-01-01
It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems......, this polarized pair creation is thought to be the only source of photocurrent at the early stages of photoexcitation since the bulk like transport current is inhibited by the barriers. In this work we perform a full quantum-mechanical analysis of ultrafast optical excitation in a de-biased quantum well. We take...... larger than the well width (for long pulses and/or narrow wells), we recover the polarized pairs behavior of the photocurrent. For shorter pulses, when the coherence length becomes comparable to the well width, the photocurrent exhibits quantum beats. Finally, for very short pulses (around 10 fs) we find...
NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS
Institute of Scientific and Technical Information of China (English)
L. Borup; M. Nielsen
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.
Nonlinear approximation with general wave packets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...... characterization of the approximation spaces is derived....
More Than 10 Gbps Photonic Packet-Switched Networks Using WDM-Based Packet Compression
Institute of Scientific and Technical Information of China (English)
Hiroaki Harai; Naoya Wada
2003-01-01
We propose photonic packet-switched networks in which more than 10Gbps optical packets are transferred. WDM- based packet compression at edge nodes plays an important role in resolving interface gap between core and metro.
Institute of Scientific and Technical Information of China (English)
ZHENG Jin-hai; TANG Yu
2009-01-01
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.
Wave-Induced Pressure Under an Internal Solitary Wave and Its Impact at the Bed
Rivera, Gustavo; Diamesis, Peter; Jenkins, James; Berzi, Diego
2015-11-01
The bottom boundary layer (BBL) under a mode-1 internal solitary wave (ISW) of depression propagating against an oncoming model barotropic current is examined using 2-D direct numerical simulation based on a spectral multidomain penalty method model. Particular emphasis is placed on the diffusion into the bed of the pressure field driven by the wake and any near-bed instabilities produced under specific conditions. To this end, a spectral nodal Galerkin approach is used for solving the diffusion equation for the wave-induced pressure. At sufficiently high ISW amplitude, the BBL undergoes a global instability which produces intermittent vortex shedding from within the separation bubble in the lee of the wave. The interplay between the bottom shear stress field and pressure perturbations during vortex ejection events and the subsequent evolution of the vortices is examined. The potential for bed failure upon the passage of the ISW trough and implications for resuspension of bottom particulate matter are both discussed in the context of specific sediment transport models.
Yang, T C
2014-02-01
This paper applies the mode coupling equation to calculate the mode-coupling matrix for nonlinear internal waves appearing as a train of solitons. The calculation is applied to an individual soliton up to second order expansion in sound speed perturbation in the Dyson series. The expansion is valid so long as the fractional sound speed change due to a single soliton, integrated over range and depth, times the wavenumber is smaller than unity. Scattering between the solitons are included by coupling the mode coupling matrices between the solitons. Acoustic fields calculated using this mode-coupling matrix formulation are compared with that obtained using a parabolic equation (PE) code. The results agree very well in terms of the depth integrated acoustic energy at the receivers for moving solitary internal waves. The advantages of using the proposed approach are: (1) The effects of mode coupling can be studied as a function of range and time as the solitons travel along the propagation path, and (2) it allows speedy calculations of sound propagation through a packet or packets of solitons saving orders of magnitude computations compared with the PE code. The mode coupling theory is applied to at-sea data to illustrate the underlying physics.
Mechanism of laser-induced plasma shock wave evolution in air
Institute of Scientific and Technical Information of China (English)
Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu
2009-01-01
A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.
Parameterization of ocean wave-induced mixing processes for finite water depth
Institute of Scientific and Technical Information of China (English)
YANG Yongzeng; ZHAN Run; TENG Yong
2009-01-01
Three dimensional wave-induced mixing plays an important role in shallow water area. A quite direct approach through the Reynolds average upon characteristic length scale is proposed to parameterize the horizontal and vertical shallow water mixing. Comparison of finite depth case with infinite depth results indicates that the difference of the wave-induced mixing strength is evident. In the shallow water condition, the infinite water depth approximation overestimates the mixing strength in the lower layers. The nonzero horizontal wave-induced mixing presents anisotropic property near the shore. The Prandtl's mixing length theory underestimated the wave-induced mixing in the previous studies.
Whistler modes with wave magnetic fields exceeding the ambient field.
Stenzel, R L; Urrutia, J M; Strohmaier, K D
2006-03-10
Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.
Modeling of random wave transformation with strong wave-induced coastal currents
Institute of Scientific and Technical Information of China (English)
Zheng Jinhai; H. Mase; Li Tongfei
2008-01-01
The propagation and transformation of multi-directional and uni-directional random waves over a coast with complicated bathymetric and geometric features are studied experimentally and numerically. Laboratory investigation indicates that wave energy convergence and divergence cause strong coastal currents to develop and inversely modify the wave fields. A coastal spectral wave model, based on the wave action balance equation with diffraction effect (WABED), is used to simulate the transformation of random waves over the complicated bathymetry. The diffraction effect in the wave model is derived from a parabolic approximation of wave theory, and the mean energy dissipation rate per unit horizontal area due to wave breaking is parameterized by the bore-based formulation with a breaker index of 0.73. The numerically simulated wave field without considering coastal currents is different from that of experiments, whereas model results considering currents clearly reproduce the intensification of wave height in front of concave shorelines.
Intraluminal bubble dynamics induced by lithotripsy shock wave
Song, Jie; Bai, Jiaming; Zhou, Yufeng
2016-12-01
Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.
Key Technologies for Optical Packet Switching
Institute of Scientific and Technical Information of China (English)
Akira; Okada
2003-01-01
The paper describes our recent progress on key technologies and components for realizing optical packet switching, including an out-of-band optical label switching technique, an optical packet synchronizer and a burst-mode optical receiver.
Key Technologies for Optical Packet Switching
Institute of Scientific and Technical Information of China (English)
Akira Okada
2003-01-01
The paper describes our recent progress on key technologies and components for realizing optical packet switching,including an out-of-band optical label switching technique, an optical packet synchronizer and a burst-mode optical receiver.
Seismic attenuation due to wave-induced flow
Energy Technology Data Exchange (ETDEWEB)
Pride, S.R.; Berryman, J.G.; Harris, J.M.
2003-10-09
Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.
Wave-induced stresses and pore pressures near a mudline
Directory of Open Access Journals (Sweden)
Andrzej Sawicki
2008-12-01
Full Text Available Conventional methods for the determination of water-wave induced stresses inseabeds composed of granular soils are based on Biot-type models, in which the soilskeleton is treated as an elastic medium. Such methods predict effective stressesin the soil that are unacceptable from the physical point of view, as they permittensile stresses to occur near the upper surface of the seabed. Therefore, in thispaper the granular soil is assumed to behave as an elastic-ideally plastic material,with the Coulomb-Mohr yield criterion adopted to bound admissible stress states inthe seabed. The governing equations are solved numerically by a~finite differencemethod. The results of simulations, carried out for the case of time-harmonicwater waves, illustrate the depth distributions of the excess pore pressures and theeffective stresses in the seabed, and show the shapes of zones of soil in the plastic state.~In particular, the effects on the seabed behaviour of suchparameters as the degree of pore water saturation, the soil permeability, and theearth pressure coefficient, are illustrated.
Shock-Induced Borehole Waves and Fracture Effects
Fan, H.; Smeulders, D.M.
2011-01-01
We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section, the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure p
Shock-Induced Borehole Waves and Fracture Effects
Fan, H.; Smeulders, D.M.
2011-01-01
We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section, the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure p
Institute of Scientific and Technical Information of China (English)
敖敏思; 胡友健; 赵斌; 叶险峰; 丁开华
2012-01-01
With the development of high-rate GPS receivers, precise orbit and processing technology of GPS data, it is possible to observe the high frequency, transient dynamic displacement by GPS. However, it remains a problem as how to mitigate the error such as multipath errors, and random noise aliasing in geophysical signals so as to extract seismic signals, which in turn limits the high-rate GPS and its geophysical applications. In this paper, an approach based on wavelet packets decomposition (WPD) is presented to extract seismic signals through mitigating the multipath error and random noise of dynamic displacement series from high-rate GPS. With the 1 Hz observation data from 19 stations in Southern California Integrated GPS Network (SCIGN) during the Mexico M7. 2 earthquake in 2010, the ground displacement is calculated. Meanwhile, the approach based on WPD is introduced for seismic signal extraction and spectrum analysis. As is shown in results, the approach is accurate and effective in seismic signal extraction to reflect the characteristics of seismic wave propagations and it enjoys an advantage that it does not necessarily involve multiple-day observation.%随着高采样率GPS接收机的出现、高精度的定轨以及数据处理技术的发展,利用GPS观测高频率、瞬态的地震波信号成为可能.但如何消除混叠在地震波信号中的多路径、随机噪声等误差,有效地提取地震波信号,仍然是制约高采样率GPS及其地球物理应用的重要因素.提出一种基于小波包分解的方法,对动态位移序列中的多路径误差进行消除,同时去除高频率随机噪声,提取地震波信号.通过结合SCIGN的19个GPS测站的1Hz采样GPS观测数据,对2010年墨西哥M7.2地震的地震波引起的地表动态位移进行解算,采用小波包分解有效地提取地震波信号并对其进行谱分析.结果表明,该方法提取的地震波信号能较好地反映出地震波的传播及其特性,具有无
Orthogonal Matrix-Valued Wavelet Packets
Institute of Scientific and Technical Information of China (English)
Qingjiang Chen; Cuiling Wang; Zhengxing Cheng
2007-01-01
In this paper,we introduce matrix-valued multiresolution analysis and matrixvalued wavelet packets. A procedure for the construction of the orthogonal matrix-valued wavelet packets is presented. The properties of the matrix-valued wavelet packets are investigated. In particular,a new orthonormal basis of L2(R,Cs×s) is obtained from the matrix-valued wavelet packets.
Ancient Chinese Bronzes: Teacher's Packet.
Smithsonian Institution, Washington, DC. Arthur M. Sackler Gallery.
The focus of this teacher's packet is the bronze vessels made for the kings and great families of the early Chinese dynasties between 1700 B.C. and 200 A.D. The materials in the guide are intended for use by teachers and students visiting the exhibition, "The Arts of China," at the Arthur M. Sackler Gallery of the Smithsonian Institution…
Experimental particle acceleration by water evaporation induced by shock waves
Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.
2010-12-01
Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial
Wave trains induced by circularly polarized electric fields in cardiac tissues.
Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong
2015-08-25
Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence.
Wave-induced release of methane : littoral zones as a source of methane in lakes
Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank
2010-01-01
This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...
Charge Order Induced in an Orbital Density-Wave State
Singh, Dheeraj Kumar; Takimoto, Tetsuya
2016-04-01
Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.
The criterion of gravity wave instability induced by photochemistry in summer polar mesopause region
Institute of Scientific and Technical Information of China (English)
XU; Jiyao(徐寄遥); WU; Yongfu(吴永富); WANG; Yongmei(王咏梅); FU; Liping(傅利平)
2002-01-01
This paper studies the effect of photochemistry on the gravity wave instability in summer polar mesopause region. The calculation method of the effects of eddy viscosity, conductivity and eddy diffusion of chemical species on the gravity wave instability induced by photochemistry are studied. The critical wavelength of the instability is given in this paper. The influences of some parameters on it are discussed. The study shows that the gravity wave instability induced by photochemistry is sensitive to the temperature and atomic oxygen profiles.
Aijaz, S.; Ghantous, M.; Babanin, A. V.; Ginis, I.; Thomas, B.; Wake, G.
2017-05-01
The effects of turbulence generated by nonbreaking waves have been investigated by testing and evaluating a new nonbreaking wave parameterization in a coupled hurricane-ocean-wave model. The MPI version of the Princeton Ocean Model (POM) with hurricane forcing is coupled with the WAVEWATCH-III (WW3) surface wave model. Hurricane Ivan is chosen as the test case due to its extreme intensity and availability of field data during its passage. The model results are validated against field observations of wave heights and sea surface temperatures (SSTs) from the National Data Buoy Centre (NDBC) during Hurricane Ivan and against limited in situ current and bottom temperature data. A series of numerical experiments is set up to examine the influence of the nonbreaking wave parameterization on the mixing of upper ocean. The SST response from the modeling experiments indicates that the nonbreaking wave-induced mixing leads to significant cooling of the SST and deepening of the mixed layer. It was found that the nondimensional constant b1 in the nonbreaking wave parameterization has different impacts on the weak and the strong sides of the storm track. A constant value of b1 leads to improved predictions on the strong side of the storm while a steepness-dependent b1 provides a better agreement with in situ observations on the weak side. A separate simulation of the intense tropical cyclone Olwyn in north-west Australia revealed the same trend for b1 on the strong side of the tropical cyclone.
Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators
Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry
2016-01-01
The nonlinear propagation of optical pulses in dielectric waveguides and resonators provides a laboratory to investigate a wide range of remarkable interactions. Many of the resulting phenomena find applications in optical systems. One example is dispersive wave generation, the optical analog of Cherenkov radiation. These waves have an essential role in fiber spectral broadeners that are routinely used in spectrocopy and metrology. Dispersive waves form when a soliton pulse begins to radiate power as a result of higher-order dispersion. Recently, dispersive wave generation in microcavities has been reported by phase matching the waves to dissipative Kerr cavity (DKC) solitons. Here, it is shown that spatial mode interactions within a microcavity can also be used to induce dispersive waves. These interactions are normally avoided altogether in DKC soliton generation. The soliton self frequency shift is also shown to induce fine tuning control of the dispersive wave frequency. Both this mechanism and spatial mo...
Research on the Wave-Induced Ship Motions in Front of Different Types of Wharf
Li, Yan Bao; Jiang, Xue Lian
One important function of the port is to protect ship or some other facilities from wave attack so as to stably handle cargoes. In current design codes, there are mainly two expressions of the tranquility standard of harbor basin: one is the acceptable wave height in front of wharf; the other is the tolerable amplitude of ship motion. However, ship motions are affected by some more factors simultaneously, such as wave frequency, wave height, incident wave direction, ship properties and wharf type. This paper presents some computed results of the wave-induced ship motions on the basis of a port case in China. First, the Simple Green Function method is employed to solve and compare the 2-dimension hydrodynamic coefficients in front of open or bulkhead wharf. The results show a great difference between them. Then, this paper computes and discusses the ship motions in front of open wharf at different wave frequencies and incident wave directions.
Nakanishi, Toshihiro
2015-01-01
We propose a metamaterial to realize true electromagnetically induced transparency (EIT), where the incidence of an auxiliary electromagnetic wave called the control wave induces transparency for a probe wave. The analogy to the original EIT effect in an atomic medium is shown through analytical and numerical calculations derived from a circuit model for the metamaterial. We performed experiments to demonstrate the EIT effect of the metamaterial in the microwave region. The width and position of the transparent region can be controlled by the power and frequency of the control wave. We also observed asymmetric transmission spectra unique to the Fano resonance.
Experimental and theoretical investigations on shock wave induced phase transitions
Gupta, Satish C.; Sikka, S. K.
2001-06-01
Shock wave loading of a material can cause variety of phase transitions, like polymorphism, amorphization, metallization and molecular dissociations. As the shocked state lasts only for a very short duration (about a few microseconds or less), in-situ microscopic measurements are very difficult. Although such studies are beginning to be possible, most of the shock-induced phase transitions are detected using macroscopic measurements. The microscopic nature of the transition is then inferred from comparison with static pressure data or interpreted by theoretical methods. For irreversible phase transitions, microscopic measurements on recovered samples, together with orientation relations determined from selected area electron diffraction and examination of the morphology of growth of the new phase can provide insight into mechanism of phase transitions. On theoretical side, the current ab initio band structure techniques based on density functional formalism provide capability for accurate computation of the small energy differences (a few mRy or smaller) between different plausible structures. Total energy calculation along the path of a phase transition can furnish estimates of activation barrier, which has implications for understanding kinetics of phase transitions. Molecular dynamics calculations, where the new structure evolves naturally, are becoming increasingly popular especially for understanding crystal to amorphous phase transitions. Illustrations from work at our laboratory will be presented.
Weak Turbulence in the Magnetosphere: Formation of Whistler Wave Cavity by Nonlinear Scattering
Crabtree, C; Ganguli, G; Mithaiwala, M; Galinsky, V; Shevchenko, V
2011-01-01
We consider the weak turbulence of whistler waves in the in low-\\beta\\ inner magnetosphere of the Earth. Whistler waves with frequencies, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scattered wave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wave cavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped e...
Dispersive radiation induced by shock waves in passive resonators.
Malaguti, Stefania; Conforti, Matteo; Trillo, Stefano
2014-10-01
We show that passive Kerr resonators pumped close to zero dispersion wavelengths on the normal dispersion side can develop the resonant generation of linear waves driven by cavity (mixed dispersive-dissipative) shock waves. The resonance mechanism can be successfully described in the framework of the generalized Lugiato-Lefever equation with higher-order dispersive terms. Substantial differences with radiation from cavity solitons and purely dispersive shock waves dispersion are highlighted.
A typical wave wake from high-speed vessels: its group structure and run-up
Directory of Open Access Journals (Sweden)
I. Didenkulova
2013-02-01
Full Text Available High-amplitude water waves induced by high-speed vessels are regularly observed in Tallinn Bay, the Baltic Sea, causing intense beach erosion and disturbing marine habitants in the coastal zone. Such a strong impact on the coast may be a result of a certain group structure of the wave wake. In order to understand it, here we present an experimental study of the group structure of these wakes at Pikakari beach, Tallinn Bay. The most energetic vessel waves at this location (100 m from the coast at the water depth 2.7 m have amplitudes of about 1 m and periods of 8–10 s and cause maximum run-up heights on a beach up to 1.4 m. These waves represent frequency modulated packets where the largest and longest waves propagate ahead of other smaller amplitude and period waves. Sometimes the groups of different heights and periods can be separated even within one wave wake event. The wave heights within a wake are well described by the Weibull distribution, which has different parameters for wakes from different vessels. Wave run-up heights can also be described by Weibull distribution and its parameters can be connected to the parameters of the distribution of wave heights 100 m from the coast. Finally, the run-up of individual waves within a packet is studied. It is shown that the specific structure of frequency modulated wave packets, induced by high-speed vessels, leads to a sequence of high wave run-ups at the coast, even when the original wave heights are rather moderate. This feature can be a key to understanding the significant impact on coasts caused by fast vessels.
A modified criterion for wave-induced momentary liquefaction of sandy seabed
Directory of Open Access Journals (Sweden)
Wen-Gang Qi
2015-01-01
Full Text Available The assessment of the wave-induced soil liquefaction plays a key role in the geotechnical design for offshore foundations. The underlying shortcomings of the existing momentary liquefaction criteria are identified and clarified by mechanism analyses and the recent field observations. A modified criterion for the wave-induced momentary liquefaction of a sandy seabed is given to describe the vertical pore-pressure distributions. An improved approximation of the momentary liquefaction depth is further presented. Parametric study of the effects of the saturation degree of soils indicates that this modification is significant for the evaluation of wave-induced momentary liquefaction.
Analytical Solution for Wave-Induced Response of Seabed with Variable Shear Modulus
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus. By employing integral transform and Frobenius methods, the transient and steady solutions for the wave-induced pore water pressure, effective stresses and displacements are analytically derived in detail. Verification is available through the reduction to the simple case of homogeneous seabed. The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.
The gravity wave instability induced by photochemistry in summer polar mesopause region
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The effect of diabatic process due to the photochemical heating and cooling on the gravity wave propagation in middle atmosphere is studied. A linear gravity wave model which considers the diabatic process is established. The unstable region and the growth rate of the gravity wave caused by photochemistry are calculated. And the comparison between the model and the adiabatic gravity wave theory of pure dynamics is made. The results indicate that the photochemical heating process can induce the instability of gravity wave at mesopause. The intensity of the instability becomes stronger as the temperature decreases. The temperature feature and the altitude characteristics of the instability are consistent with the observation. Therefore, the instability of the gravity wave induced by photochemistry may be an important mechanism in polar mesopause region in summer.
Thermal conductivity of nonlinear waves in disordered chains
Indian Academy of Sciences (India)
Sergej Flach; Mikhail Ivanchenko; Nianbei Li
2011-11-01
We present computational data on the thermal conductivity of nonlinear waves in disordered chains. Disorder induces Anderson localization for linear waves and results in a vanishing conductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent conductivity (). We ﬁnd indications for an asymptotic low-temperature ∼ 4 and intermediate temperature ∼ 2 laws. These ﬁndings are in accord with theoretical studies of wave packet spreading, where a regime of strong chaos is found to be intermediate, followed by an asymptotic regime of weak chaos (Laptyeva et al, Europhys. Lett. 91, 30001 (2010)).
Intrusion Detection Systems Based On Packet Sniffing
Directory of Open Access Journals (Sweden)
Ushus Maria Joseph
2013-01-01
Full Text Available In the present era of networks, security of network systems is becoming increasingly important, as more and more sensitive information is being stored and manipulated online. The paper entitled ’Packet Sniffing’ is a IDS where it monitors packets on the network wire and attempts to the discovery of hacker/cracker who is attempting to break into system. Packet Sniffing also finds the contents and tracks the data packet in the network system. This sniffing is being performed by comparing the captured packet with the intruder details stored in the database .If the packet is found to be an intruder it is then forwarded to the firewall with the respective message for blocking. The Emotional Ants module contains the sender and receiver .The sender will inform all the other Ants running in other machines about the detection of intruder through his pheromone (Messages. The receiver in Ants will listen for the messages from other Ants
Noise-induced standing waves in oscillatory systems with time-delayed feedback
Stich, Michael
2016-01-01
In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.
Wave-induced stress and estimation of its driven effect on currents
Institute of Scientific and Technical Information of China (English)
SUN Fu; GAO Shan; WANG Wei; QIAN Chengchun
2004-01-01
A genuine geostrophic small amplitude wave solution is deduced for the first time from the general form of linear fluid dynamic equations with the f-plane approximation, where the horizontal component of angular velocity of the earth rotation is taken into account. The Coriolisinduced stress obtained from this solution consists of lateral and reverse component, while its first order approximation is reduced to the result of Hasselmann or Xu Zhigang. Accordingly,combining the Coriolis-induced wave stress with the virtual wave stress proposed by Longuet-Higgins, the ratio of total wave-induced stress to wind stress on the sea surface is estimated, through which the importance of the wave-induced stress is emphasized in the study of the currents in the seas around China, especially in the Bohai Sea and the Yellow Sea.
Spin current-induced by a sound wave.
Lyapilin, Igor I
2013-04-01
The interaction of conduction electrons with a longitudinal sound wave propagating in a crystal in a constant magnetic field is investigated. It is shown that the transverse spin current arises when the longitudinal sound wave propagation through the system. The average power absorbed by the spin subsystem of the conduction electrons and the spin-Hall conductivity have a resonant character.
Ship-induced solitary Riemann waves of depression in Venice Lagoon
Energy Technology Data Exchange (ETDEWEB)
Parnell, Kevin E. [College of Marine and Environmental Sciences and Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland 4811 (Australia); Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Soomere, Tarmo, E-mail: soomere@cs.ioc.ee [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn (Estonia); Zaggia, Luca [Institute of Marine Sciences, National Research Council, Castello 2737/F, 30122 Venice (Italy); Rodin, Artem [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Lorenzetti, Giuliano [Institute of Marine Sciences, National Research Council, Castello 2737/F, 30122 Venice (Italy); Rapaglia, John [Sacred Heart University Department of Biology, 5151 Park Avenue, Fairfield, CT 06825 (United States); Scarpa, Gian Marco [Università Ca' Foscari, Dorsoduro 3246, 30123 Venice (Italy)
2015-03-06
We demonstrate that ships of moderate size, sailing at low depth Froude numbers (0.37–0.5) in a navigation channel surrounded by shallow banks, produce depressions with depths up to 2.5 m. These depressions (Bernoulli wakes) propagate as long-living strongly nonlinear solitary Riemann waves of depression substantial distances into Venice Lagoon. They gradually become strongly asymmetric with the rear of the depression becoming extremely steep, similar to a bore. As they are dynamically similar, air pressure fluctuations moving over variable-depth coastal areas could generate meteorological tsunamis with a leading depression wave followed by a devastating bore-like feature. - Highlights: • Unprecedently deep long-living ship-induced waves of depression detected. • Such waves are generated in channels with side banks under low Froude numbers. • The propagation of these waves is replicated using Riemann waves. • Long-living waves of depression form bore-like features at rear slope.
Directory of Open Access Journals (Sweden)
Yuhong Zou
Full Text Available Partial hepatectomy (PH triggers hepatocyte proliferation-mediated liver repair and is widely used to study the mechanisms governing liver regeneration in mice. However, the dynamics of the hepatocyte proliferative response to PH remain unclear. We found that PH-induced mouse liver regrowth was driven by four consecutive waves of hepatocyte replication. The first wave exhibited the highest magnitude followed by two moderate waves and one minor wave. Underlying this continuous hepatocyte replication was persistent activation of cell cycle components throughout the period of liver regeneration. Hepatocyte mitotic activity in the first three proliferative cycles showed a circadian rhythm manifested by three corresponding mitosis peaks, which were always observed at Zeitgeber time 0. The Bmal1-Clock/Wee1/Cdc2 pathway has been proposed by others to govern the circadian rhythm of hepatocyte mitosis during liver regeneration. However, we did not observe the correlations in the expression or phosphorylation of these proteins in regenerating livers. Notably, Bmal1 protein displayed frequent changes in hepatic distribution and cellular localization as the liver regrowth progressed. Further, three waves of hepatic fat accumulation occurred during hepatic regeneration. The first started before and lasted through the first round of hepatocyte proliferation, whereas the second and third occurred concomitantly with the second and third mitotic peaks, respectively.PH-induced liver regeneration consists of four continuous waves of hepatocyte proliferation coupled with three waves of hepatic fat accumulation. Bmal1, Wee1, and Cdc2 may not form a pathway regulating the circadian rhythm of hepatocyte mitosis during liver regeneration.
Packet Queueing Delay in Resilient Packet Ring Network Nodes
Institute of Scientific and Technical Information of China (English)
史国炜; 方红波; 曲建岭; 曾烈光
2004-01-01
The packet queueing delay is one of the most important performance measures of a data network and is also a significant factor to be considered in the scheduling buffer design for a network node.This paper presents a traffic queueing model for resilient packet ring (RPR) networks and a method for quantitatively analyzing queueing delays in RPR nodes.The method was used to calculate the average queueing delays of different priority traffic for different transit queue modes.The simulations show that,in the transmit direction,lower priority traffic is delayed more than higher priority traffic,and that Class-A traffic is delayed more in a single-queue ring than in a dual-queue ring.In the transit direction,the secondary transit buffer in the dual-queue ring contributes more to the traffic delay than the primary transit buffer in the single-queue ring,which in turn causes more delay than the primary transit buffer in the dual-queue ring.
Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao
2013-01-01
We propose a method for dynamically controlling the properties of a metamaterial that mimics electromagnetically induced transparency (EIT) by introducing varactor diodes to manipulate the structural symmetry of the metamaterial. Dynamic modulation of the EIT property enables the storage and retrieval of electromagnetic waves. We confirmed that the electromagnetic waves were stored and released, while maintaining the phase distribution in the propagating direction.
Wave-induced nearshore circulation along the Calangute-Candolim beach, Goa, West coast of India
Digital Repository Service at National Institute of Oceanography (India)
Krishnakumar, V.; Murty, C.S.; Heblekar, A.K.
The wave-induced nearshore circulation model suggested by Noda has been modified and applied for three small segments along the coast of Goa. The present model incorporates the prevailing bottom topography and considers its variation along...
Electromagnetic fields induced by surface ring waves in the deep sea
Kozitskiy, S. B.
2014-01-01
The paper deals with electromagnetic effects associated with a radially symmetric system of progressive surface waves in the deep sea, induced by underwater oscillating sources or by dispersive decay of the initial localized perturbations of the sea surface.
Boussinesq modeling of wave-induced hydrodynamics in coastal wetlands
Chakrabarti, Agnimitro; Brandt, Steven R.; Chen, Qin; Shi, Fengyan
2017-05-01
In this paper, an improved formulation of the vegetation drag force, applicable for the fully nonlinear Boussinesq equations and based on the use of the depth-varying, higher-order expansion of the horizontal velocity, in the quadratic vegetation drag law has been presented. The model uses the same numerical schemes as FUNWAVE TVD but is based on the CACTUS framework. The model is validated for wave height and setup, against laboratory experiments with and without vegetation cover. The wave attenuation results using the improved formulation were compared with those using the first-order reference velocity as well as with analytical solutions using linear wave theory. The analytical solution using the depth-varying velocity, predicted by the linear wave theory, was shown to match the model results with the fully expanded velocity approach very well for all wave cases, except under near-emergent and emergent conditions (when the ratio of stem height to water depth is greater than 0.75) and when the Ursell (Ur) number is less than 5. Simulations during peak storm waves, during Hurricane Isaac, showed that vegetation is very effective in reducing setup on platforms and in reducing the wave energy within the first few hundred meters.
A hydrodynamic model of nearshore waves and wave-induced currents
Directory of Open Access Journals (Sweden)
Ahmed Khaled Seif
2011-09-01
Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.
Primordial Gravitational Waves Induced by Magnetic Fields in Ekpyrotic Scenario
Ito, Asuka
2016-01-01
Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.
Flow and sediment transport induced by a plunging solitary wave
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Sen, M.Berke; Karagali, Ioanna
2011-01-01
, and for observation of the morphological changes. The two experimental conditions were maintained as similar as possible. The experiments showed that the complete sequence of the plunging solitary wave involves the following processes: Shoaling and wave breaking; Runup; Rundown and hydraulic jump; and Trailing wave...... affected, by as much as a factor of 2, in the runup and hydraulic jump stages. The pore-water pressure measurements showed that the sediment at (or near) the surface of the bed experiences upward-directed pressure gradient forces during the downrush phase. The magnitude of this force can reach values...
Flexural waves induced by electro-impulse deicing forces
Gien, P. H.
1990-01-01
The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.
A Service Ratio-Based Dynamic Fair Queueing Algorithm for Packet Switching Networks
Institute of Scientific and Technical Information of China (English)
YIN De-bin; XIE Jian-ying; ZHANG Yan; WU Jian-zhen; SUN Hua-li
2008-01-01
A new weighted fair queeetng algodthm is proposed,which uses the novel flow-based service ratio parameters to schedule flows.This solves the main drawback of traditional weighted fair quoneing algorithmsthe packet-based calculation of the weight parameters.In addition,this paper proposes a novel service ratio calculation method and a queue management techaology.The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and then solves the unfairness problem induced by the variable packet length.The latter impgoves the utilization of the server's queue buffeg and reduces the delay jitter throegh restricting the buffer length for each flow.
A modified criterion for wave-induced momentary liquefaction of sandy seabed
Wen-Gang Qi; Fu-Ping Gao
2015-01-01
The assessment of the wave-induced soil liquefaction plays a key role in the geotechnical design for offshore foundations. The underlying shortcomings of the existing momentary liquefaction criteria are identified and clarified by mechanism analyses and the recent field observations. A modified criterion for the wave-induced momentary liquefaction of a sandy seabed is given to describe the vertical pore-pressure distributions. An improved approximation of the momentary liquefaction depth is f...
DEFF Research Database (Denmark)
Pu, Minhao; Chen, Yaohui; Yvind, Kresten
2014-01-01
Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....
Louis, Hélène; Odent, Vincent; Louvergneaux, Eric
2016-04-01
Shock waves are well-known nonlinear waves, displaying an abrupt discontinuity. Observation can be made in a lot of physical fields, as in water wave, plasma and nonlinear optics. Shock waves can either break or relax through either catastrophic or regularization phenomena. In this work, we restrain our study to dispersive shock waves. This regularization phenomenon implies the emission of dispersive waves. We demonstrate experimentally and numerically the generation of spatial dispersive shock waves in a nonlocal focusing media. The generation of dispersive shock wave in a focusing media is more problematic than in a defocusing one. Indeed, the modulational instability has to be frustrated to observe this phenomenon. In 2010, the dispersive shock wave was demonstrated experimentally in a focusing media with a partially coherent beam [1]. Another way is to use a nonlocal media [2]. The impact of nonlocality is more important than the modulational instability frustration. Here, we use nematic liquid crystals (NLC) as Kerr-like nonlocal medium. To achieve shock formation, we use the Riemann condition as initial spatial condition (edge at the beam entrance of the NLC cell). In these experimental conditions, we generate, experimentally and numerically, shock waves that relax through the emission of dispersive waves. Associated with this phenomenon, we evidence the emergence of a localized wave that travels through the transverse beam profile. The beam steepness, which is a good indicator of the shock formation, is maximal at the shock point position. This latter follows a power law versus the injected power as in [3]. Increasing the injected power, we found multiple shock points. We have good agreements between the numerical simulations and the experimental results. [1] W. Wan, D. V Dylov, C. Barsi, and J. W. Fleischer, Opt. Lett. 35, 2819 (2010). [2] G. Assanto, T. R. Marchant, and N. F. Smyth, Phys. Rev. A - At. Mol. Opt. Phys. 78, 1 (2008). [3] N. Ghofraniha, L. S
Determination of hydrocarbon levels in water via laser-induced acoustics wave
Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman
2016-04-01
Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.
Geometric phase and Pancharatnam phase induced by light wave polarization
Lages, J; Vigoureux, J -M
2013-01-01
We use the quantum kinematic approach to revisit geometric phases associated with polarizing processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually considered case of absorbing polarizers, we found that a light wave passing through a polarizer may acquire in general a non zero geometric phase. This geometric phase exists despite the fact that initial and final polarization states are in phase according to the Pancharatnam criterion and can not be measured using interferometric superposition. Consequently, there is a difference between the Pancharatnam phase and the complete geometric phase acquired by a light wave passing through a polarizer. We illustrate our work with the particular example of total reflection based polarizers.
Measurement and modelling of bed shear induced by solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.
to combined waves and current. Ocean Engineering, 29(7): 753-768. Coussot, P., 1997. Mudflow rheology and dynamics, xvi, Balkema, Rotterdam, 255 pp. DHI, 2009. Mike21 flow model - hydrodynamic module - scientific documentation. DHI, Denmark, 60 pp...
Wave-particle interactions induced by SEPAC on Spacelab 1 Wave observations
Taylor, W. W. L.; Obayashi, T.; Kawashima, N.; Sasaki, S.; Yanagisawa, M.; Burch, J. L.; Reasoner, D. L.; Roberts, W. T.
1985-01-01
Space experiments with particle accelerators (SEPAC) flew on Spacelab 1 in November and December 1983. SEPAC included an accelerator which emitted electrons into the ionospheric plasma with energies up to 5 keV and currents up to 300 mA. The SEPAC equipment also included an energetic plasma generator, a neutral gas generator, and an extensive array of diagnostics. The diagnostics included plasma wave detectors, and energetic electron analyzer, a photometer, a high sensitivity television camera, a Langmuir probe and a pressure gage. Twenty-eight experiments were performed during the mission to investigate beam-plasma interactions, electron beam dynamics, plasma beam propagation, and vehicle charging. The wave-particle interactions were monitored by the plasma wave instrumentation, by the energetic electron detector and by the optical detectors. All show evidence of wave-particle interactions, which are described in this paper.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Excitation of Light-Induced Acoustic Waves in Doped Lithium Niobate Crystals
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The phenomena of acoustic emission in doped lithium niobate crystals were observed in the process of light-induced quasi-breakdown. It is found that the ultrasonic waves introduce into the crystal have been modulated by the low frequency acoustic waves. Its frequency increases with the rise of the intensity of incident light and its jump period of breakdown is the same as that of the photovoltaic current Ic, the change of light-induced refractive index Δn and the diffracted light intensity L. This effect was explained with the interaction of the three waves and resonant state theory. The experimental results and the theoretical analysis are in conformity.
Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel.
Tochitsky, S Ya; Narang, R; Filip, C V; Musumeci, P; Clayton, C E; Yoder, R B; Marsh, K A; Rosenzweig, J B; Pellegrini, C; Joshi, C
2004-03-05
Enhanced energy gain of externally injected electrons by a approximately 3 cm long, high-gradient relativistic plasma wave (RPW) is demonstrated. Using a CO2 laser beat wave of duration longer than the ion motion time across the laser spot size, a laser self-guiding process is initiated in a plasma channel. Guiding compensates for ionization-induced defocusing (IID) creating a longer plasma, which extends the interaction length between electrons and the RPW. In contrast to a maximum energy gain of 10 MeV when IID is dominant, the electrons gain up to 38 MeV energy in a laser-beat-wave-induced plasma channel.
Simulation of Wave-Plus-Current Induced Scour Beneath Submarine Pipelines
DEFF Research Database (Denmark)
Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu
of combined wave-plus-current scour processes beneath pipelines. The results of 77 simulated wave-plus-current scour cases will be presented and analysed. The cases considered will consist of waves characterized by 10 different Keulegan-Carpenter numbers, KC=UmTw/D and up to eight different values of m......-plus-current environments. The present study, which is published in Larsen et al. (2016) focuses on the numerical simulation of wave-plus-current induced scour beneath submarine pipelines, based on a model solving Reynolds-averaged Navier-Stokes (RANS) equations, fully coupled with turbulence closure, bed and suspended...... load sediment transport descriptions, and a seabed morphological model. The model was utilized in simulating breaker bar development by Jacobsen et al. (2014) and has been used in simulating wave induced scour beneath pipelines by Fuhrman et al. (2014) . The model is utilized for the numerical study...
Controlling the profile of ion-cyclotron-resonant ions in JET with the wave-induced pinch effect
Mantsinen, M. J.; Ingesson, L. C.; Johnson, T.; Kiptily, V. G.; Mayoral, M. L.; Sharapov, S. E.; Alper, B.; Bertalot, L.; Conroy, S.; Eriksson, L. G.; Hellsten, T.; Noterdaeme, J. M.; Popovichev, S.; Righi, E.; Tuccillo, A. A.
2002-01-01
Experiments on the JET tokamak show that the wave-induced pinch in the presence of toroidally asymmetric waves can provide a tool for controlling the profile of ion-cyclotron-resonant He-3 ions. Direct evidence for the wave-induced pinch has been obtained from the measured gamma-ray emission profile
Grooming. Instructor's Packet. Learning Activity Package.
Stark, Pamela
This instructor's packet accompanies the learning activity package (LAP) on grooming. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to issue to students as an…
Effective Packet-level FEC Software Coding
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper introduces an effective software-based FEC redundant packets generating algorithm. The algorithm is based on Reed-Solomon coding over Galois Field. By operating on words of packets and performing polynomial multiplication via lookup tables, software coding efficiency is achieved to satisfy the needs of most of computer network applications. The approach to generate lookup tables is detailed.
Oral Hygiene. Instructor's Packet. Learning Activity Package.
Hime, Kirsten
This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…
Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions
Kumar, Prashant; Gulshan
2017-08-01
A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal
DEFF Research Database (Denmark)
Zhou, Binbin; Bache, Morten
2015-01-01
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited...... in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phasematching wavelengths due to degenerate four-wave mixing to the soliton. We also...... observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations....
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal.
Zhou, Binbin; Bache, Morten
2015-09-15
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phase-matching wavelengths due to degenerate four-wave mixing to the soliton. We also observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations.
Aizawa, Yoshifusa; Nakayama, Masafumi; Sato, Masahito; Okabe, Masaaki; Aizawa, Yoshiyasu; Takatsuki, Seiji; Fukuda, Keiichi
2017-04-24
To confirm the presence of tachycardia-induced slur or notch in the terminal portion of the QRS complexes in a general patient population. A tachycardia-induced J wave was defined as a slur or notch in the terminal portion of the QRS complexes newly induced at short RR intervals during atrial premature contractions (APCs) or atrial electrical stimulation in the electrophysiological study (EPS). Twenty-three out of 2000 patients with general diseases were involved. All patients with aborted sudden cardiac death, ventricular fibrillation or a family history of sudden cardiac death were excluded. The mean age was 72 ± 9 years, and 11 patients were male (47.8%). When the RR interval was shortened from 821 ± 142 ms to 464 ± 52 ms in the conducted APCs (P waves became diagnostic (0.02 ± 0.03 mV to 0.20 ± 0.07 mV, P waves were confined to the inferior leads in 22 (95.7%) patients and were notched in 11 (47.8%) and slurred in 12 (52.2%) patients. The induction of J waves was accompanied by visible changes of the QRS morphology. When the post-APC RR interval was prolonged to 992 ± 305 ms (P = 0.0154 vs. baseline), the J waves were similar to baseline levels. During the EPS, J wave induction was confirmed during atrial stimulation. There were no characteristic clinical or ECG features in the patients with tachycardia-induced J waves. J waves can be newly induced by short RR intervals in a general patient population, and a conduction delay is the likely mechanism causing such J waves.
Experimental and numerical study of wave-induced backfilling beneath submarine pipelines
DEFF Research Database (Denmark)
Bayraktar, Deniz; Ahmad, Joseph; Eltard-Larsen, Bjarke
2016-01-01
utilizing a fully-coupled hydrodynamic and morphodynamic CFD model. The numerical simulations demonstrate the ability of the model to predict backfilling towards expected equilibrium scour depths based on the new wave climate, with time scales reasonably inline with experimental expectations....... velocities, synchronized flow visualizations using digital image technology, along with live-bed scour and backfilling measurements. Each experiment is based on a two-stage process: (1) initial scour induced by a pure current, followed by: (2) backfilling induced by pure waves (either regular or irregular...... primarily by the Shields parameter).The developed expression is strictly valid for the current-to-wave backfilling scenarios considered, while likely serving as an upper limit for more general wave-induced backfilling circumstances. The experiments are complemented by similar backfilling simulations...
Rotation-induced nonlinear wavepackets in internal waves
Energy Technology Data Exchange (ETDEWEB)
Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk [Department of Mathematics, University College London, London WC1E 6BT (United Kingdom)
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Rotation-induced nonlinear wavepackets in internal waves
Whitfield, A. J.; Johnson, E. R.
2014-05-01
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Method and Apparatus for Processing UDP Data Packets
Murphy, Brandon M. (Inventor)
2017-01-01
A method and apparatus for processing a plurality of data packets. A data packet is received. A determination is made as to whether a portion of the data packet follows a selected digital recorder standard protocol based on a header of the data packet. Raw data in the data packet is converted into human-readable information in response to a determination that the portion of the data packet follows the selected digital recorder standard protocol.
DPDK-based Improvement of Packet Forwarding
Directory of Open Access Journals (Sweden)
Bi Hao
2016-01-01
Full Text Available Reel-time processing of packets occupies a significant position in the field of computer network security. With theexplosive growth of the backbone link rate,which is consistent with Gilder's law, many bottlenecks of server performance leave the real-time data stream unprocessed.Thus, we proposedto take use of DPDK(Data Plan Development Kit framework to achieve an intelligent NIC packet forwarding system. During this research, we deeply analysis the forwarding process of packet in DPDK and improve its DMA mode.According to the results of experiment, the system greatly enhanced the performance of packet forwarding,and the throughput of forwarding 64-byet or random-length packets by 20Gbit NIC reaches13.3Gbps and 18.7Gbps(dual ports forwarding.
Influence of clay content on wave-induced liquefaction
DEFF Research Database (Denmark)
Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen
2014-01-01
of measurements were carried out: (1) pore-water pressure measurements across the soil depth and (2) water-surface elevation measurements. These measurements were synchronized with video recordings of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height......:17 mmwas partially liquefied with CC as small as 2.9%. Remarks are made as to how to check for liquefaction of clayey soils exposed to waves in real-life situations......This paper presents the results of an experimental study of the influence of clay content (CC) on liquefaction of seabed beneath progressive waves. Experiments were, for the most part, conducted with silt and silt-clay mixtures; in supplementary tests, sand-clay mixtures were used. Two types...
Thermally-induced vacuum instability in a single plane wave
King, B; Di Piazza, A
2012-01-01
Ever since Schwinger published his influential paper [J. Schwinger, Phys. Rev. \\textbf{82}, 664 (1951)], it has been unanimously accepted that the vacuum is stable in the presence of an electromagnetic plane wave. However, we advance an analysis that indicates this statement is not rigorously valid in a real situation, where thermal effects are present. We show that the thermal vacuum, in the presence of a single plane-wave field, even in the limit of zero frequency (a constant crossed field), decays into electron-positron pairs. Interestingly, the pair-production rate is found to depend nonperturbatively on both the amplitude of the constant crossed field and on the temperature.
Institute of Scientific and Technical Information of China (English)
BUEH Cholaw; SHI Ning; JI LiRen; WEI Jie; TAO ShiYan
2008-01-01
In this paper, features for the evolution of the East Asia/Pacific (EAP) events and their association with high-and mid-latitude Rossby waves during the Meiyu period are analyzed on the medium-range time scale. It is shown that life cycles of the positive and negative EAP events cannot be simply regarded as "mirror" each other, in the upper troposphere, downward propagations of Rossby wave packets both over high- and mid-latitude regions of Eurasian continent and over the Asian jet region are responsible for generating basic patterns of high- and mid-latitude anomaly centers of the events. In this layer, Rossby wave packets also propagate from the mid-latitude anomaly center to the high-latitude one. In the middle and lower troposphere, the formation of the subtropical anomaly center of the event is mainly attributed to the anomalous convective activity in the tropical Pacific warm pool. The northward Rossby wave energy dispersion from this center is favorable to the enhancement and maintenance of the mid-latitude anomaly center in the same layer. Finally, it might be hypothesized that typical features of the positive and negative EAP events in their mature phase result from the interaction between (or phase-locking of) respective anomalous circulations induced both by quasi-zonal Rossby wave packets embedded in upper troposphere westerly and by quasi-meridional Rossby wave packets in the background flow of the East Asian summer monsoon in the middle and lower troposphere.
Mass transport induced by internal Kelvin waves beneath shore-fast ice
StøYlen, Eivind; Weber, Jan Erik H.
2010-03-01
A one-layer reduced-gravity model is used to investigate the wave-induced mass flux in internal Kelvin waves along a straight coast beneath shore-fast ice. The waves are generated by barotropic tidal pumping at narrow sounds, and the ice lid introduces a no-slip condition for the horizontal wave motion. The mean Lagrangian fluxes to second order in wave steepness are obtained by integrating the equations of momentum and mass between the material interface and the surface. The mean flow is forced by the conventional radiation stress for internal wave motion, the mean pressure gradient due to the sloping surface, and the frictional drag at the boundaries. The equations that govern the mean fluxes are expressed in terms of mean Eulerian variables, while the wave forcing terms are given by the horizontal divergence of the Stokes flux. Analytical results show that the effect of friction induces a mean Eulerian flux along the coast that is comparable to the Stokes flux. In addition, the horizontal divergence of the total mean flux along the coast induces a small mass flux in the cross-shore direction. This flux changes the mean thickness of the upper layer outside the trapping region and may facilitate geostrophically balanced boundary currents in enclosed basins. This is indeed demonstrated by numerical solutions of the flux equations for confined areas larger than the trapping region. Application of the theory to Arctic waters is discussed, with emphasis on the transport of biological material and pollutants in nearshore regions.
Experimental investigation on the wave-induced pore pressure around shallowly embedded pipelines
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines. The model pipelines are buried in three kinds of soils, including gravel, sand and silt with different burial depth. The input waves change with height and period. The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase, and decay from the surface to the bottom of seabed. Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom, especially in the sand seabed. The normalized pressure around pipeline decreases as the relative water depth, burial depth or scattering parameters increase. For the silt seabed, the wavelet transform has been successfully used to analyze the signals of wave-induced pore pressure, and the oscillatory and residual pore pressure can be extracted by wavelet analysis. Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline. However, higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline.
Whistler wave-induced ionospheric plasma turbulence: Source mechanisms and remote sensing
Pradipta, R.; Rooker, L. A.; Whitehurst, L. N.; Lee, M. C.; Ross, L. M.; Sulzer, M. P.; Gonzalez, S.; Tepley, C.; Aponte, N.; See, B. Z.; Hu, K. P.
2013-10-01
We report a series of experiments conducted at Arecibo Observatory in the past, aimed at the investigation of 40.75 kHz whistler wave interactions with ionospheric plasmas and the inner radiation belts at L=1.35. The whistler waves are launched from a Naval transmitter (code-named NAU) operating in Aguadilla, Puerto Rico at the frequency and power of 40.75 kHz and 100 kW, respectively. Arecibo radar, CADI, and optical instruments were used to monitor the background ionospheric conditions and detect the induced ionospheric plasma effects. Four-wave interaction processes produced by whistler waves in the ionosphere can excite lower hybrid waves, which can accelerate ionospheric electrons. Furthermore, whistler waves propagating into the magnetosphere can trigger precipitation of energetic electrons from the radiation belts. Radar and optical measurements can distinguish wave-wave and wave-particle interaction processes occurring at different altitudes. Electron acceleration by different mechanisms can be verified from the radar measurements of plasma lines. To facilitate the coupling of NAU-launched 40.75 kHz whistler waves into the ionosphere, we can rely on naturally occurring spread F irregularities to serve as ionospheric ducts. We can also use HF wave-created ducts/artificial waveguides, as demonstrated in our earlier Arecibo experiments and recent Gakona experiments at HAARP. The newly constructed Arecibo HF heater will be employed in our future experiments, which can extend the study of whistler wave interactions with the ionosphere and the magnetosphere/radiation belts as well as the whistler wave conjugate propagation between Arecibo and Puerto Madryn, Argentina.
On Plasma Rotation Induced by Traveling Fast Alfvin Waves
Energy Technology Data Exchange (ETDEWEB)
F.W. Perkins; R.B. White; and V.S. Chan
2001-08-09
Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.
Unfocused extracorporeal shock waves induce anabolic effects in osteoporotic rats
van der Jagt, Olav P.; Waarsing, Jan H.; Kops, Nicole; Schaden, Wolfgang; Jahr, Holger; Verhaar, Jan A. N.; Weinans, Harrie
2013-01-01
Unfocused extracorporeal shock waves (UESW) have been shown to have an anabolic effect on bone mass. Therefore we investigated the effects of UESW on bone in osteoporotic rats with and without anti-resorptive treatment. Twenty-week-old rats were ovariectomized (n=27). One group was treated with sali
Utilization of sparker induced pressure waves to tenderize meat
This study investigated the feasibility of tenderizing meat using high pressure waves generated from a sparker source. Beef strip loins were cut into steaks from the anterior end and one to two steaks from each strip loin were randomly selected to serve as non-treated controls and the remaining ste...
The sequence of sediment behaviour during wave-induced liquefaction
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Hatipoglu, Figen; Fredsøe, Jørgen
2006-01-01
This paper presents the results of an experimental investigation of the complete sequence of sediment behaviour beneath progressive waves. The sediment was silty with d(50) = 0.060 mm. Two kinds of measurements were carried out: pore-water pressure measurements (across the sediment depth), and wa......This paper presents the results of an experimental investigation of the complete sequence of sediment behaviour beneath progressive waves. The sediment was silty with d(50) = 0.060 mm. Two kinds of measurements were carried out: pore-water pressure measurements (across the sediment depth......), and water-surface elevation measurements. The process of liquefaction/compaction was videotaped from the side simultaneously with the pressure and water-surface elevation measurements. The video records were then analysed to measure: (i) the time development of the mudline, (ii) the time development.......6 sec, water depth = 42 cm, and the Shields parameter = 0.34-0.59. The experiments reveal that, with the introduction of waves, excess pore pressure builds up, which is followed by liquefaction during which internal waves are experienced at the interface of the water body and the liquefied sediment...
The effects of antiepileptic drugs on estrogen-induced electrographic spike-wave discharge.
Julien, R M; Fowler, G W; Danielson, M G
1975-05-01
In locally anesthetized, paralyzed cats with bilateral conjugated estrogen (CE)-induced foci in sensory motor cortex, electrographic activity was characterized by 2 to 3 Hz spike and slow wave discharge. Commonly used anti-petit mal drugs (esthosuximide, trimethadione, acetazolamide and diazepam) all reduced CE-induced spike wave activity while diphenylhydantoin converted such activity into 9 to 12 Hz polyspike bursts separated by periods of interictal silence. Correlation appears to exist, therefore, between the ability of the drug to reduce CE-induced spike wave activity and its clinical utility in petit mal epilepsy. In addition to the above compounds, five drugs of less proven utility were evaluated. Of these, two benzodiazepine derivatives (clonazepam and clorazepate) were found to exert a potent and prolonged depressant action on CE-induced activity. The relation of CE to clinical petit mal epilepsy and the potential usefulness of CE as a laboratory model for the evaluation of anti-petit mal drugs are discussed.
Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon
Directory of Open Access Journals (Sweden)
A. Torres-Freyermuth
2012-12-01
Full Text Available Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH. This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i laboratory experiments conducted on a physical model (Demirbilek et al., 2007and (ii field observations (Coronado et al., 2007. Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (H_{s} >2 m. The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.
Analytical solution for wave-induced response of isotropic poro-elastic seabed
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
By use of separation of variables,the governing equations describing the Biot consolidation model is firstly transformed into a complex coefficient linear homogeneous ordinary differential equation,and the general solution of the horizontal displacement of seabed is constructed by employing a complex wave number,thus,all the explicit analytical solutions of the Biot consolidation model are determined. By comparing with the experimental results and analytical solution of Yamamoto etc. and the analytical solution of Hsu and Jeng,the validity and superiority of the suggested solution are verified. After investigating the influence of seabed depth on the wave-induced response of isotropic poro-elastic seabed based on the present theory,it can be concluded that the influence depth of wave-induced hydrodynamic pressure in the seabed is equal to the wave length.
Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines
DEFF Research Database (Denmark)
Fuhrman, David R.; Baykal, Cüneyt; Sumer, B. Mutlu
2014-01-01
A fully-coupled hydrodynamic/morphodynamic numerical model is presented and utilized for the simulation of wave-induced scour and backfilling processes beneath submarine pipelines. The model is based on solutions to Reynolds-averaged Navier–Stokes equations, coupled with k−ω turbulence closure......≤30 demonstrate reasonable match with previous experiments, both in terms of the equilibrium scour depth as well as the scour time scale. Wave-induced backfilling processes are additionally studied by subjecting initial conditions taken from scour simulations with larger KC to new wave climates...... characterized by lower KC values. The simulations considered demonstrate the ability of the model to predict backfilling toward expected equilibrium scour depths based on the new wave climate, in line with experimental expectations. The simulated backfilling process is characterized by two stages: (1...
Analysis of silt behavior induced by water waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the weak non-elastic porous model, the expressions of pore pressure, effective stress and displacements of soil skeletal frame and pore water have been deduced for a finite depth seabed. The distributions of several physical parameters have been analyzed for three kinds of marine sediment, including pore pressure, effective stress, stress angle, displacement of skeletal frame and pore fluid, and the variations of elastic waves with wave period. According to the experimental results, the resonant phenomena in the silt bed and the mechanism underlying such events have been discussed. It is proposed that the existence of a stiff soil layer inside the silt bed is a necessary condition for resonance to occur, and the possible location of resonance can be forecasted.
Stochastic procedures for extreme wave induced responses in flexible ships
Directory of Open Access Journals (Sweden)
Jensen Jørgen Juncher
2014-12-01
Full Text Available Different procedures for estimation of the extreme global wave hydroelastic responses in ships are discussed. Firstly, stochastic procedures for application in detailed numerical studies (CFD are outlined. The use of the First Order Reliability Method (FORM to generate critical wave episodes of short duration, less than 1 minute, with prescribed probability content is discussed for use in extreme response predictions including hydroelastic behaviour and slamming load events. The possibility of combining FORM results with Monte Carlo simulations is discussed for faster but still very accurate estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects.
Irregular Wave-Induced Velocities in Shallow Water
1992-09-01
and Acceleration of the Surface of Wind Waves," Rep. Res. Inst. Appl . Mech. (Kyushu Univ.), 24, No. 76, 31-48. 19, Hughes, S.A. (1991) "Estimating...8217 siilk 2 i- (D½ 0 0 411 0 Ursoll No. 0.1 10 100 1000 10000 Ursell No. W (.), z-mid-depth W (#), z-bottom W (-), z-mid-depth W (-), z-bottom (b) Figure 72
Emission of radiation induced by pervading Alfven waves
Energy Technology Data Exchange (ETDEWEB)
Zhao, G. Q. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wu, C. S. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Institute of Space Science, National Central University, Zhongli, Taiwan (China)
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
Optical rogue waves and W-shaped solitons in the multiple self-induced transparency system
Wang, Xin
2016-01-01
We study localized nonlinear waves on a plane wave background in the multiple self-induced transparency (SIT) system, which describes an important enhancement of the amplification and control of optical waves compared to the single SIT system. A hierarchy of exact multiparametric rational solutions in a compact determinant representation are presented. We demonstrate that, this family of solutions contains known rogue wave solution and unusual W-shaped soliton solution, which strictly corresponds to the linear stability analysis that involves modulation instability and stability regimes in the low perturbation frequency region. State transitions between rogue waves and W-shaped solitons as well as the higher-order nonlinear superposition modes are revealed by the suitable choice for the background wavenumber of electric field component. In particular, our results show that, the multiple SIT system admits stationary and nonstationary nonlinear modes in contrast to the results in the single SIT system. Correspo...
Six-wave mixing induced by free-carrier plasma in silicon nanowire waveguides
Zhou, Heng; Huang, Shu-Wei; Zhou, Linjie; Qiu, Kun; Wong, Chee Wei
2016-01-01
Nonlinear wave mixing in mesoscopic silicon structures is a fundamental nonlinear process with broad impact and applications. Silicon nanowire waveguides, in particular, have large third-order Kerr nonlinearity, enabling salient and abundant four-wave-mixing dynamics and functionalities. Besides the Kerr effect, in silicon waveguides two-photon absorption generates high free-carrier densities, with corresponding fifth-order nonlinearity in the forms of free-carrier dispersion and free-carrier absorption. However, whether these fifth-order free-carrier nonlinear effects can lead to six-wave-mixing dynamics still remains an open question until now. Here we report the demonstration of free-carrier-induced six-wave mixing in silicon nanowires. Unique features, including inverse detuning dependence of six-wave-mixing efficiency and its higher sensitivity to pump power, are originally observed and verfied by analytical prediction and numerical modeling. Additionally, asymmetric sideband generation is observed for d...
Packet Guide to Routing and Switching
Hartpence, Bruce
2011-01-01
Go beyond layer 2 broadcast domains with this in-depth tour of advanced link and internetwork layer protocols, and learn how they enable you to expand to larger topologies. An ideal follow-up to Packet Guide to Core Network Protocols, this concise guide dissects several of these protocols to explain their structure and operation. This isn't a book on packet theory. Author Bruce Hartpence built topologies in a lab as he wrote this guide, and each chapter includes several packet captures. You'll learn about protocol classification, static vs. dynamic topologies, and reasons for installing a pa
Tamma, Kumar K.; Railkar, Sudhir B.
1989-01-01
Accurate solutions have been obtained for a class of non-Fourier models in dynamic thermoelasticity which are relevant to the understanding of thermally-induced stress wave disturbances. The method employs tailored hybrid formulations based on the transfinite element approach. The results show that significant thermal stresses may arise due to non-Fourier effects, especially when the speeds of propagation of the thermal and stress waves are equal.
The effect of instanton-induced interaction on -wave meson spectra in constituent quark model
Indian Academy of Sciences (India)
Bhavyashri; S Sarangi; Godfrey Saldanha; K B Vijaya Kumar
2008-01-01
The mass spectrum of the -wave mesons is considered in a non-relativistic constituent quark model. The full Hamiltonian used in the investigation includes the kinetic energy, the confinement potential, the one-gluon-exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good description of the mass spectrum is obtained. The respective role of III and OGEP in the P-wave meson spectrum is discussed.
Roughness-induced streaming in turbulent wave boundary layers
DEFF Research Database (Denmark)
Fuhrman, David R.; Sumer, B. Mutlu; Fredsøe, Jørgen
2011-01-01
-averaged streaming characteristics induced by bottom roughness variations are systematically assessed. The effects of variable roughness ratio, gradual roughness transitions, as well as changing flow orientation in plan are all considered. As part of the latter, roughness-induced secondary flows are predicted...
Reduced sodium current in the lateral ventricular wall induces inferolateral J-waves
Directory of Open Access Journals (Sweden)
Veronique Marlinde Frederica Meijborg
2016-08-01
Full Text Available Background: J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Methods: Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa, increasing transient outward current conductivity (Gto or cellular uncoupling in three predefined ventricular regions (lateral, anterior or septal. Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT.Results: Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation.Conclusion: Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.
Scroll wave meandering induced by phase difference in a three-dimensional excitable medium.
Yang, Zhao; Gao, Shiyuan; Ouyang, Qi; Wang, Hongli
2012-11-01
We investigated scroll waves in an inhomogeneous excitable 3D system with gradient of excitability. The gradient promotes twisting of the scroll waves. Sufficiently large excitability gradient enhances the twisting and causes simple scroll waves to transition to meandering scroll waves. For the twist-induced instability of scroll waves, we analyzed the stability of 2D spiral waves sliced from the twisted scroll in the vertical direction. The 3D problem is simplified by taking into account the diffusive coupling in the third direction as a time-delayed perturbation to the 2D spiral wave. An additional "negative mass" term measuring the twist thus arises in the 2D system and induces the transition from simple rotation to meandering. A further increase in the gradient ruins partially the unity of the meandering scrolls and generates semiturbulence, the analogs of which were observed in the Belousov-Zhabotinski reaction. We also generated the phase diagram in the parameter space by adjusting the threshold for excitation of the media.
Secondary current properties generated by wind-induced water waves in experimental conditions
Directory of Open Access Journals (Sweden)
Michio Sanjou
2014-06-01
Full Text Available Secondary currents such as the Langmuir circulation are of high interest in natural rivers and the ocean because they have striking impacts on scour, sedimentation, and mass transport. Basic characteristics have been well-studied in straight open-channel flows. However, little is known regarding secondary circulation induced by wind waves. The presented study describes the generation properties of wind waves observed in the laboratory tank. Wind-induced water waves are known to produce large scale circulations. The phenomenon is observed together with high-speed and low-speed streaks, convergence and divergence zones, respectively. Therefore, it is important to determine the hydrodynamic properties of secondary currents for wind-induced water waves within rivers and lakes. In this study, using two high-speed CMOS cameras, stereoscopic particle image velocimetry (PIV measurements were conducted in order to reveal the distribution of all three components of velocity vectors. The experiments allowed us to investigate the three-dimensional turbulent structure under water waves and the generation mechanism of large-scale circulations. Additionally, a third CMOS camera was used to measure the spanwise profile of thefree-surface elevation. The time-series of velocity components and the free-surface were obtained simultaneously. From our experiments, free-surface variations were found to influence the instantaneous velocity distributions of the cross-sectional plane. We also considered thegeneration process by the phase analysis related to gravity waves and compared the contribution of the apparent stress.
Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves.
Dodson, Jacob C; Inman, Daniel J
2014-11-01
Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂v(P)/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂v(P)/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures.
Measurements in a container ship of wave-induced hull girder stresses in excess of design values
DEFF Research Database (Denmark)
Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher
2014-01-01
This paper describes full-scale measurements of the wave-induced vertical bending moment amidships a 9400 TEU container carrier and focuses on the effect of the hydro-elastic high-frequency vibration on the extreme hogging wave bending moment. One extreme event, where the vertical wave-induced ho......This paper describes full-scale measurements of the wave-induced vertical bending moment amidships a 9400 TEU container carrier and focuses on the effect of the hydro-elastic high-frequency vibration on the extreme hogging wave bending moment. One extreme event, where the vertical wave......-frequency vibrations caused by impulsive loads are observed to be of the same magnitude as the rigid-body wave-induced response and thus acts to double the total vertical bending moment amidships. It was also found that even though the ship is sailing in bow quartering seas, only the 2-node vertical vibration mode...
Imaging of shear waves induced by Lorentz force in soft tissues.
Grasland-Mongrain, P; Souchon, R; Cartellier, F; Zorgani, A; Chapelon, J Y; Lafon, C; Catheline, S
2014-07-18
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues
Grasland-Mongrain, Pol; Cartellier, Florian; Zorgani, Ali; Chapelon, Jean-Yves; Lafon, Cyril; Catheline, Stefan
2014-01-01
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this 5 study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 um. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model 10 using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
Thermal waves induced by a rapidly moving line source
Rostami, A. A.; Shamsai, M.
For the cases involving a fast moving heat source or extremely short pulses emitted by lasers or short time after the start of transients, the classical theory of heat conduction breaks down since the wave nature of heat transport dominates. In this study, the temperature field due to a fast moving line source was determined analytically using the wave concept. The results are given for different values of thermal Mach number (M=V/C). For M>1 the heat affected zone is confined in a wedge shape region behind the source. The wedge half angle is equal to sin-1 (1/M). It was confirmed that the difference between the results of diffusion and wave models depends on the corresponding time scale and the relaxation time. Zusammenfassung Im Falle schnell bewegter Wärmequellen oder extrem kurzer Laserpulse sowie unmittelbar nach Beginn transienter Vorgänge versagt die klassische Theorie der Wärmeleitung, da die Wellennatur des Wärmetransportes dominiert. In der vorliegenden Studie wurde das durch eine raschbewegte Linienquelle ausgelöste Temperaturfeld auf der Basis des Wellenkonzepts analytisch bestimmt, und zwar für verschiedene Werte der thermischen Mach-Zahl (M=V/C). Für M>1 bleibt der von der Wärmeausbreitung erfaßte Bereich auf eine keilförmige Zone hinter der Quelle beschränkt, wobei der halbe Keilwinkel gleich sin-1 (1/M) ist. Es konnte gezeigt werden, daß der Unterschied zwischen den Ergebnissen des Diffusions- und des Wellenmodells von der entsprechenden Zeitskala und von der Relaxationszeit abhängt.
A Computer Simulation Study of Anatomy Induced Drift of Spiral Waves in the Human Atrium
Directory of Open Access Journals (Sweden)
Sanjay R. Kharche
2015-01-01
Full Text Available The interaction of spiral waves of excitation with atrial anatomy remains unclear. This simulation study isolates the role of atrial anatomical structures on spiral wave spontaneous drift in the human atrium. We implemented realistic and idealised 3D human atria models to investigate the functional impact of anatomical structures on the long-term (∼40 s behaviour of spiral waves. The drift of a spiral wave was quantified by tracing its tip trajectory, which was correlated to atrial anatomical features. The interaction of spiral waves with the following idealised geometries was investigated: (a a wedge-like structure with a continuously varying atrial wall thickness; (b a ridge-like structure with a sudden change in atrial wall thickness; (c multiple bridge-like structures consisting of a bridge connected to the atrial wall. Spiral waves drifted from thicker to thinner regions and along ridge-like structures. Breakthrough patterns caused by pectinate muscles (PM bridges were also observed, albeit infrequently. Apparent anchoring close to PM-atrial wall junctions was observed. These observations were similar in both the realistic and the idealised models. We conclude that spatially altering atrial wall thickness is a significant cause of drift of spiral waves. PM bridges cause breakthrough patterns and induce transient anchoring of spiral waves.
Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit
DEFF Research Database (Denmark)
Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan
2012-01-01
We study packetized predictive control, known to be robust against packet dropouts in networked systems. To obtain sparse packets for rate-limited networks, we design control packets via an ℓ0 optimization, which can be eectively solved by orthogonal matching pursuit. Our formulation ensures asym...
Sparse Packetized Predictive Control for Networked Control over Erasure Channels
DEFF Research Database (Denmark)
Nagahara, Masaaki; Quevedo, Daniel E.; Østergaard, Jan
2014-01-01
We study feedback control over erasure channels with packet-dropouts. To achieve robustness with respect to packet-dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. To reduce the data size of packets, we propose to a...
Performance optimization for multicast packet authentication
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In secure multicast, one of the challenging problems is the authentication of multicast packets. This paper presents a novel scheme to address this problem, which combines ideas in both the hash tree schemes and the hash chain schemes. In this scheme, a group of packets is partitioned into equal-sized subgroups. Then a Merkle hash tree is built for each subgroup of packets, and the hash value of every root is appended to preceding packets to form hash chains. Its performance is analyzed and simulated using Biased Coin Toss loss model and 2-state Markov Chain loss model, respectively. Compared with the original hash chain schemes, results show that this scheme is much more efficient in term of communication overhead.
Fair Scheduling in Networks Through Packet Election
Jagabathula, Srikanth
2008-01-01
We consider the problem of designing a fair scheduling algorithm for discrete-time constrained queuing networks. Each queue has dedicated exogenous packet arrivals. There are constraints on which queues can be served simultaneously. This model effectively describes important special instances like network switches, interference in wireless networks, bandwidth sharing for congestion control and traffic scheduling in road roundabouts. Fair scheduling is required because it provides isolation to different traffic flows; isolation makes the system more robust and enables providing quality of service. Existing work on fairness for constrained networks concentrates on flow based fairness. As a main result, we describe a notion of packet based fairness by establishing an analogy with the ranked election problem: packets are voters, schedules are candidates and each packet ranks the schedules based on its priorities. We then obtain a scheduling algorithm that achieves the described notion of fairness by drawing upon ...
Multiwavelet Packets and Frame Packets of $L^2(\\mathbb{R}^d)$
Indian Academy of Sciences (India)
Biswaranjan Behera
2001-11-01
The orthonormal basis generated by a wavelet of $L^2(\\mathbb{R})$ has poor frequency localization. To overcome this disadvantage Coifman, Meyer, and Wickerhauser constructed wavelet packets. We extend this concept to the higher dimensions where we consider arbitrary dilation matrices. The resulting basis of $L^2(\\mathbb{R}^d)$ is called the multiwavelet packet basis. The concept of wavelet frame packet is also generalized to this setting. Further, we show how to construct various orthonormal bases of $L^2(\\mathbb{R}^d)$ from the multiwavelet packets.
Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures
Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou
2015-01-01
Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.
Xu, Bin; Chen, Hongbing; Xia, Song
2017-03-01
In recent years, Piezoelectric Lead Zirconate Titanate (PZT) based active interfacial debonding defect detection approach for concrete-filled steel tubular (CFST) columns has been proposed and validated experimentally. In order to investigate the mechanism of the PZT based interfacial debonding detection approach, a multi-physics coupling finite element model (FEM) composed of surface-mounted PZT actuator, embedded PZT sensor and a rectangular CFST column is constructed to numerically simulate the stress wave propagation induced by the surface-mounted PZT actuator under different excitation signals with different frequency and amplitude. The measurements of the embedded PZT sensor in concrete core of the CFST columns with different interfacial debonding defect lengths and depths are determined numerically with transient dynamic analysis. The linearity between the PZT response and the input amplitude, the effect of different frequency and measurement distance are discussed and the stress wave fields of CFST members without and with interface debonding defects are compared. Then, the response of the embedded PZT in concrete core is analyzed with wavelet packet analysis. The root mean square deviation (RMSD) of wavelet packet energy spectrum of the PZT measurement is employed as an evaluation index for the interfacial debonding detection. The results showed that the defined index under continuous sinusoidal and sweep frequency signals changes with the interfacial defects length and depth and is capable of effectively identifying the interfacial debonding defect between the concrete core and the steel tubular. Moreover, the index under sweep frequency signal is more sensitive to the interfacial debonding. The simulation results indicate that the interfacial debonding defect leads to the changes in the propagation path, travel time and the magnitude of stress waves. The simulation results meet the findings from the previous experimental study by the authors and help
Packet Reordering Procedure with Ubiquous Communication Systems
Directory of Open Access Journals (Sweden)
Giridhar Akula
2012-11-01
Full Text Available Satellite links are going to play a vital role in the deployment of ubiquous broad band systems. Non- Geostationary (NGEO satellite communication systems are more advantageous than terrestrial satellites. This paper presents an exchange of information on cooperation status among neiboring satellites. The new explicit load balancing scheme is used to avoid congestion and packet drops at the satellite. A TTL based algorithm is used for packet reordering.
Asymmetric Best Effort Service for Packet Networks
Le Boudec, Jean-Yves; Hamdi, M; Blazevic, L.; P. Thiran
1998-01-01
We propose a system and method for providing a ``throughput versus delay'' differentiated service for IP packets. We distinguish two types of traffic: type A and type B. It is expected that type A traffic receives less throughput per flow than type B. On the other hand, type A packets experience considerably smaller delay. The method is intended to be implemented in Internet routers. No bandwidth or buffer reservation is assumed in this system. The service remains a Best Effort service, thus ...
Asymmetric Best Effort Service for Packet Networks
Blazevic, Ljubica; Le Boudec, Jean-Yves; Thiran, Patrick
1998-01-01
We propose a system and method for providing a ``throughput versus delay`` differentiated service for IP packets. We distinguish two types of traffic: type A and type B. It is expected that type A traffic receives less throughput per flow than type B. On the other hand, type A packets experience considerably smaller delay. The method is intended to be implemented in Internet routers. No bandwidth or buffer reservation is assumed in this system. The service remains a Best Effort service, thus...
Protocol Software for a Packet Voice Terminal
1983-11-16
III satellite. The PVTs with their attached telephone instrument serve as the interface with the voice user. The PVTs prepare speech for transmission...through a packet network by digitizing the speech, preparing speech data packets, and sending speech data messages. The PVT handles the speech coming...TOTALKin. Thes Foori alControle wilno trani speech message s unlTreessin ithas note rcenie s speehdfr ao sufficentpo toefl erAcofitt cdng atei t pfres
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-04-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-01-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.
The Absence of Stokes Drift in Waves
Chafin, Clifford
2015-01-01
Stokes drift has been as central to the history of wave theory as it has been distressingly absent from experiment. Neither wave tanks nor experiments in open bodies detect this without nearly canceling "eulerian flows." Acoustic waves have an analogous problem that is particularly problematic in the vorticity production at the edges of beams. Here we demonstrate that the explanation for this arises from subtle end-of-packet and wavetrain gradient effects such as microbreaking events and wave-flow decomposition subtleties required to conserve mass and momentum and avoid fictitious external forces. These losses occur at both ends of packets and can produce a significant nonviscous energy loss for translating and spreading surface wave packets and wavetrains. In contrast, monochromatic sound wave packets will be shown to asymmetrically distort to conserve momentum. This provides an interesting analogy to how such internal forces arise for gradients of electromagnetic wavetrains in media. Such examples show that...
Detecting the BAO using Discrete Wavelet Packets
Garcia, Noel Anthony; Wu, Yunyun; Kadowaki, Kevin; Pando, Jesus
2017-01-01
We use wavelet packets to investigate the clustering of matter on galactic scales in search of the Baryon Acoustic Oscillations. We do so in two ways. We develop a wavelet packet approach to measure the power spectrum and apply this method to the CMASS galaxy catalogue from the Sloan Digital Sky Survey (SDSS). We compare the resulting power spectrum to published BOSS results by measuring a parameter β that compares our wavelet detected oscillations to the results from the SDSS collaboration. We find that β=1 indicating that our wavelet packet methods are detecting the BAO at a similar level as traditional Fourier techniques. We then use wavelet packets to decompose, denoise, and then reconstruct the galaxy density field. Using this denoised field, we compute the standard two-point correlation function. We are able to successfully detect the BAO at r ≈ 105 h-1 Mpc in line with previous SDSS results. We conclude that wavelet packets do reproduce the results of the key clustering statistics computed by other means. The wavelet packets show distinct advantages in suppressing high frequency noise and in keeping information localized.
Comparison of Ring-Buffer-Based Packet Capture Solutions
Energy Technology Data Exchange (ETDEWEB)
Barker, Steven Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-10-01
Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.
Study on the storm surges induced by cold waves in the Northern East China Sea
Mo, Dongxue; Hou, Yijun; Li, Jian; Liu, Yahao
2016-08-01
Cold wave, a kind of severe weather system, can bring strong wind and induce significant sea level rise to the Northern East China Sea. Based on CFSR data, the study shows the monthly distributions of invaded days and the spatiotemporal distributions of cold-wave wind direction and wind speed. A three-dimensional numerical model (ROMS) was developed to study storm surges induced by cold waves. The role of wind direction, wind speed, wind duration, extratropical cyclone and tide-surge interaction is investigated by conducting different sensitivity experiments. The results indicate that storm surges mainly happen at the coasts perpendicular to the wind directions. Surge range and time lag are related to the geometry of the basin and the continental shelf. The response of the sea-level fluctuations to cold wave indicates that there is a positive correlation between crests and wind speed, a negative correlation between troughs and wind speed, but no obvious correlations to wind duration. Coupled weather cold waves, which yield a larger range and a multi-peak structure of surges, can be classified according to cold wave tracks and extratropical cyclones. The tide-surge interaction has an obvious and different effect on the magnitudes and phases of storm surges for different tidal stages.
One-Directional Fluidic Flow Induced by Chemical Wave Propagation in a Microchannel.
Arai, Miyu; Takahashi, Kazuhiro; Hattori, Mika; Hasegawa, Takahiko; Sato, Mami; Unoura, Kei; Nabika, Hideki
2016-05-26
A one-directional flow induced by chemical wave propagation was investigated to understand the origin of its dynamic flow. A cylindrical injection port was connected with a straight propagation channel; the chemical wave was initiated at the injection port. Chemical waves propagated with a constant velocity irrespective of the channel width, indicating that the dynamics of the chemical waves were governed by a geometry-independent interplay between the chemical reaction and diffusion. In contrast, the velocity of the one-directional flow was dependent on the channel width. Furthermore, enlargement of the injection port volume increased the flow velocity and volume flux. These results imply that the one-directional flow in the microchannel is due to a hydrodynamic effect induced in the injection port. Spectroscopic analysis of a pH indicator revealed the simultaneous behavior between the pH increase near the injection port and the one-directional flow. Hence, we can conclude that the one-directional flow in the microchannel with chemical wave propagation was caused by a proton consumption reaction in the injection port, probably through liquid volume expansion by the reaction products and the reaction heat. It is a characteristic feature of the present system that the hydrodynamic flow started from the chemical wave initiation point and not the propagation wavefront, as observed for previous systems.
Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation
Institute of Scientific and Technical Information of China (English)
吕勇军; 解文军; 魏炳波
2003-01-01
The rapid solidification of acoustically levitated drops of Pb-61.9 wt. %Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves.Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.
Institute of Scientific and Technical Information of China (English)
CUI Lei; TONG Fei-fei; SHI Feng
2011-01-01
Researches on breaking-induced currents by waves are summarized firstly in this paper.Then,a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline.The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation.The wave module actually serves as the driving force to provide the current module with required radiation stresses.The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module,respectively.The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater.The numerical results are compared with the measured data and published numerical results.
Waves induced by a submerged moving dipole in a two-layer fluid of finite depth
Institute of Scientific and Technical Information of China (English)
Gang Wei; Dongqiang Lu; Shiqiang Dai
2005-01-01
The waves induced by a moving dipole in a twofluid system are analytically and experimentally investigated.The velocity potential of a dipole moving horizontally in the lower layer of a two-layer fluid with finite depth is derived by superposing Green's functions of sources (or sinks). The far-field waves are studied by using the method of stationary phase. The effects of two resulting modes, i.e. the surfaceand internal-wave modes, on both the surface divergence field and the interfacial elevation are analyzed. A laboratory study on the internal waves generated by a moving sphere in a two-layer fluid is conducted in a towing tank under the same conditions as in the theoretical approach. The qualitative consistency between the present theory and the laboratory study is examined and confirmed.
Influence of deposited energy on shock wave induced by underwater pulsed current discharge
Li, Xian-Dong; Liu, Yi; Liu, Si-Wei; Li, Zhi-Yuan; Zhou, Gu-Yue; Li, Hua; Lin, Fu-Chang; Pan, Yuan
2016-10-01
In this paper, an integrated experimental system is established to study the influence of deposited energy on the intensity of the shock wave induced by underwater pulse discharge. Considering the time varying behavior of the arc, the calculation methods of the deposited energy into the plasma channel and the average arc resistance are proposed and presented. The effect of the breakdown process on the deposited energy and the shock wave is analyzed. It can be concluded that the shock wave intensity can be improved by depositing more energy in the first half oscillation period and increasing the arc resistance. It is also found that the energy deposition and the shock wave intensity are significantly influenced by the breakdown time delay and the shape of the initial plasma channel.
Dey, Indranuj; Bhattacharjee, Sudeep
2011-04-01
Laboratory observation of rotation of the polarization axis (θc˜20°-40° with respect to vacuum) of a penetrating electromagnetic wave through a bounded supercritical plasma (plasma frequency ωp>wave frequency ω), confined in a multicusp magnetic field is reported. Birefringence of the radial and polar wave electric field components (Er and Eθ) has been identified as the cause for the rotation, similar to a magneto-optic medium, however, with distinct differences owing to the presence of wave induced resonances. Numerical simulation results obtained by solving the Maxwell's equations by incorporating the plasma and magnetostatic field inhomogeneities within a conducting boundary shows a reasonable agreement with the experimental results.
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
Numerical simulation of four-wave mixing efficiency and its induced relative intensity noise
Institute of Scientific and Technical Information of China (English)
Chen Wei; Meng Zhou; Zhou Hui-Juan; Luo Hong
2012-01-01
Four-wave mixing,as well as its induced intensity noise,is harmful to wavelength division multiplexing systems.The efficiency and the relative intensity noise of four-wave mixing are numerically simulated for the two-wave and the three-wave fiber transmissions.It is found that the efficiency decreases with the increase of both the frequency spacing and the fiber length,which can be explained using the quasi-phase-matching condition.Furthermore,the relative intensity noise decreases with the increase of frequency spacing,while it increases with the increase of fiber length,which is due to the considerable power loss of the pump light.This investigation presents a good reference for the practical application of wavelength division multiplexing systems.
Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland
Directory of Open Access Journals (Sweden)
S. Buss
2004-01-01
Full Text Available A polar stratospheric ice cloud (PSC type II was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.
Controlled generation of high-intensity optical rogue waves by induced modulation instability.
Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun
2017-01-04
Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.
HF wave propagation and induced ionospheric turbulence in the magnetic equatorial region
Eliasson, B.; Papadopoulos, K.
2016-03-01
The propagation and excitation of artificial ionospheric turbulence in the magnetic equatorial region by high-frequency electromagnetic (EM) waves injected into the overhead ionospheric layer is examined. EM waves with ordinary (O) mode polarization reach the critical layer only if their incidence angle is within the Spitze cone. Near the critical layer the wave electric field is linearly polarized and directed parallel to the magnetic field lines. For large enough amplitudes, the O mode becomes unstable to the four-wave oscillating two-stream instability and the three-wave parametric decay instability driving large-amplitude Langmuir and ion acoustic waves. The interaction between the induced Langmuir turbulence and electrons located within the 50-100 km wide transmitter heating cone at an altitude of 230 km can potentially accelerate the electrons along the magnetic field to several tens to a few hundreds of eV, far beyond the thresholds for optical emissions and ionization of the neutral gas. It could furthermore result in generation of shear Alfvén waves such as those recently observed in laboratory experiments at the University of California, Los Angeles Large Plasma Device.
Laboratory observations of flow and sediment transport induced by plunging regular waves
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Güner, Anil; Hansen, Nilas Mandrup
2013-01-01
Two parallel experiments involving the evolution and runup induced by plunging regular waves near the shoreline of a sloping bed are considered: (1) a rigid-bed experiment, allowing direct (hot film) measurements of bed shear stresses and (2) a sediment-bed experiment, allowing for the measurement...... of pore-water pressures as well as observation of sediment suspension and bed morphological changes. Both experiments utilize the same initial bed profile and wave forcing. The experiments show that the mean bed shear stresses experienced onshore of incipient breaking are amplified by nearly a factor of 2...... breaking event. These findings are related to the induced morphological changes over both short and long time scales. The present results are also compared and contrasted with previous experiments utilizing a similar methodology, but involving plunging solitary waves....
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a
Sinking of irregular shape blocks into marine seabed under wave-induced liquefaction
DEFF Research Database (Denmark)
Kirca, Özgür
2013-01-01
The sinking of initially buried irregular blocks into the seabed under wave-induced liquefaction was investigated by experimental methods. Pore-water pressure in the soil, water surface elevation time series and block displacements were measured. Results indicated that initiation of sinking...
Garcia-Munoz, M.; Hicks, N.; van Voornveld, R.; Classen, I.G.J.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H. U.; Igochine, V.; Jaemsae, S.; Maraschek, M.; Sassenberg, K.
2010-01-01
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process
Body-wave seismic interferometry applied to earthquake- and storm-induced wavefield
Ruigrok, E.N.
2012-01-01
Seismology is the study of the vibration of the Earth. Seismologists pay much attention to the main source of Earth vibration: earthquakes. But also other seismic sources, like mining blasts, ocean storms and windmills, are studied. All these sources induce seismic waves, which can eventually be rec
Body-wave seismic interferometry applied to earthquake- and storm-induced wavefield
Ruigrok, E.N.
2012-01-01
Seismology is the study of the vibration of the Earth. Seismologists pay much attention to the main source of Earth vibration: earthquakes. But also other seismic sources, like mining blasts, ocean storms and windmills, are studied. All these sources induce seismic waves, which can eventually be
DEFF Research Database (Denmark)
Troch, Peter; Rouck, Julien De; Burcharth, Hans Falk
2003-01-01
The main objective of this paper is to study the attenuation of the wave induced pore pressures inside the core of a rubble mound breakwater. The knowledge of the distribution and the attenuation of the pore pressures is important for the design of a stable and safe breakwater. The pore pressure...
Shear driven waves in the induced magnetosphere of Mars
Energy Technology Data Exchange (ETDEWEB)
Gunell, H; Koepke, M [Department of Physics, West Virginia University, Morgantown, WV 26506-6315 (United States); Amerstorfer, U V; Biernat, H K [Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz (Austria); Nilsson, H; Holmstroem, M; Lundin, R; Barabash, S [Swedish Institute of Space Physics, P.O. Box 812, SE-981 28 Kiruna (Sweden); Grima, C [Laboratoire de Planetologie de Grenoble, BP-53, F-38041 Grenoble Cedex 9 (France); Fraenz, M [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Winningham, J D; Frahm, R A [Southwest Research Institute, San Antonio, TX 7228-0510 (United States); Sauvaud, J-A; Fedorov, A [Centre d' Etude Spatiale des Rayonnements, BP-4346, F-31028 Toulouse (France); Erkaev, N V [Institute of Computational Modelling, Russian Academy of Sciences, 660036 Krasnoyarsk-36 (Russian Federation)], E-mail: herbert.gunell@physics.org
2008-07-15
We present measurements of oscillations in the electron density, ion density and ion velocity in the induced magnetosphere of Mars. The fundamental frequency of the oscillations is a few millihertz, but higher harmonics are present in the spectrum. The oscillations are observed in a region where there is a velocity shear in the plasma flow. The fundamental frequency is in agreement with computational results from an ideal-MHD model. An interpretation based on velocity-shear instabilities is described.
DEFF Research Database (Denmark)
Fjelde, Tina; Hansen, Peter Bukhave; Kloch, Allan;
1999-01-01
We show that complex packet synchronisation may be avoided in optical packetswitched networks. Detailed traffic analysis demonstrates that packet lossratios of 1e-10 are feasible under bursty traffic conditions for a highcapacity network consisting of asynchronously operated add-drop switch...
Nonlinear mechanisms for drift wave saturation and induced particle transport
Energy Technology Data Exchange (ETDEWEB)
Dimits, A.M. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Lee, W.W. (Princeton Univ., NJ (USA). Plasma Physics Lab.)
1989-12-01
A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs.
Song, Zhongchang; Zhang, Yu; Wei, Chong; Wang, Xianyan
2016-01-01
Through numerically solving the appropriate wave equations, propagation of biosonar signals in a Chinese river dolphin (baiji) was studied. The interfacial waves along the rostrum-tissue interfaces, including both compressional (longitudinal) and shear (transverse) waves in the solid rostrum through fluid-solid coupling were examined. The baiji's rostrum was found to effect acoustic beam formation not only as an interfacial wave generator but also as a sound reflector. The wave propagation patterns in the solid rostrum were found to significantly change the wave movement through the bone. Vibrations in the rostrum, expressed in solid displacement, initially increased but eventually decreased from posterior to anterior sides, indicating a complex physical process. Furthermore, the comparisons among seven cases, including the combination of (1) the rostrum, melon, and air sacs; (2) rostrum-air sacs; (3) rostrum-melon; (4) only rostrum; (5) air sacs-melon; (6) only air sacs; and (7) only melon revealed that the cases including the rostrum were better able to approach the complete system by inducing rostrum-tissue interfacial waves and reducing the differences in main beam angle and -3 dB beam width. The interfacial waves in the rostrum were considered complementary with reflection to determine the obbligato role of the rostrum in the baiji's biosonar emission. The far-field beams formed from complete fluid-solid models and non-fluid-solid models were compared to reveal the effects brought by the consideration of shear waves of the solid structures of the baiji. The results may provide useful information for further understanding the role of the rostrum in this odontocete species.
Enhanced Chondrocyte Proliferation in a Prototyped Culture System with Wave-Induced Agitation
Directory of Open Access Journals (Sweden)
Pilarek Maciej
2017-06-01
Full Text Available One of the actual challenges in tissue engineering applications is to efficiently produce as high of number of cells as it is only possible, in the shortest time. In static cultures, the production of animal cell biomass in integrated forms (i.e. aggregates, inoculated scaffolds is limited due to inefficient diffusion of culture medium components observed in such non-mixed culture systems, especially in the case of cell-inoculated fiber-based dense 3D scaffolds, inside which the intensification of mass transfer is particularly important. The applicability of a prototyped, small-scale, continuously wave-induced agitated system for intensification of anchorage-dependent CP5 chondrocytes proliferation outside and inside three-dimensional poly(lactic acid (PLA scaffolds has been discussed. Fibrous PLA-based constructs have been inoculated with CP5 cells and then maintained in two independent incubation systems: (i non-agitated conditions and (ii culture with wave-induced agitation. Significantly higher values of the volumetric glucose consumption rate have been noted for the system with the wave-induced agitation. The advantage of the presented wave-induced agitation culture system has been confirmed by lower activity of lactate dehydrogenase (LDH released from the cells in the samples of culture medium harvested from the agitated cultures, in contrast to rather high values of LDH activity measured for static conditions. Results of the proceeded experiments and their analysis clearly exhibited the feasibility of the culture system supported with continuously wave-induced agitation for robust proliferation of the CP5 chondrocytes on PLA-based structures. Aside from the practicability of the prototyped system, we believe that it could also be applied as a standard method offering advantages for all types of the daily routine laboratory-scale animal cell cultures utilizing various fiber-based biomaterials, with the use of only regular laboratory
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Ultrafast ignition with relativistic shock waves induced by high power lasers
Institute of Scientific and Technical Information of China (English)
Shalom; Eliezer; Noaz; Nissim; Shirly; Vinikman; Pinhasi; Erez; Raicher; José; Maria; Martinez; Val
2014-01-01
In this paper we consider laser intensities greater than 1016 W cm-2where the ablation pressure is negligible in comparison with the radiation pressure.The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer(DL).This DL is accelerated into the target,like a piston that pushes the matter in such a way that a shock wave is created.Here we discuss two novel ideas.Firstly,the transition domain between the relativistic and non-relativistic laser-induced shock waves.Our solution is based on relativistic hydrodynamics also for the above transition domain.The relativistic shock wave parameters,such as compression,pressure,shock wave and particle flow velocities,sound velocity and rarefaction wave velocity in the compressed target,and temperature are calculated.Secondly,we would like to use this transition domain for shockwave-induced ultrafast ignition of a pre-compressed target.The laser parameters for these purposes are calculated and the main advantages of this scheme are described.If this scheme is successful a new source of energy in large quantities may become feasible.
Velocity Measurement of Induced Flow by a Laser Focusing Shock Wave
Institute of Scientific and Technical Information of China (English)
Hiroyuki HIRAHARA; Masaru FUJINAMI; Masaaki KAWAHASHI
2006-01-01
The objective of this study is to apply the shock wave for control in a micro channel. The shock wave was generated by a laser focusing of pulsed laser beam in the channel. Using a pulse laser to generate a shock wave,a non-stationary flow was induced in the small space between the parallel plates. The spherical and cylindrical shock propagations were observed with schlieren method. The shock Mach number decreases with time and approaches to unity. As reported in the previous investigations, the shock speed was attenuated in a short distance and time. In the present experiment, It was not found a remarkable difference in the shock speed between the spherical and cylindrical shock experiments. Subsequently, the flow induced by the cylindrical shock wave was studied using PIV technique. A smoke tracer was used in the experiment and its velocity was measured within 100 μs. A numerical simulation was carried out to investigate the momentum relaxation between the gas and smoke particle. A suitable shock initiation model was introduced in the simulation. The experimental results show that a wide acceleration and deceleration zone exist behind the shock wave. Also,the relaxation distance in the experimental data is much longer than that in numerical simulation.
A Packet Routing Model for Computer Networks
Directory of Open Access Journals (Sweden)
O. Osunade
2012-05-01
Full Text Available The quest for reliable data transmission in today’s computer networks and internetworks forms the basis for which routing schemes need be improved upon. The persistent increase in the size of internetwork leads to a dwindling performance of the present routing algorithms which are meant to provide optimal path for forwarding packets from one network to the other. A mathematical and analytical routing model framework is proposed to address the routing needs to a substantial extent. The model provides schemes typical of packet sources, queuing system within a buffer, links and bandwidth allocation and time-based bandwidth generator in routing chunks of packets to their destinations. Principal to the choice of link are such design considerations as least-congested link in a set of links, normalized throughput, mean delay and mean waiting time and the priority of packets in a set of prioritized packets. These performance metrics were targeted and the resultant outcome is a fair, load-balanced network.
Fair packet scheduling in Wireless Mesh Networks
Nawab, Faisal
2014-02-01
In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol called Timestamp-ordered MAC (TMAC), aiming to alleviate the unfairness problem in WMNs. TMAC extends CSMA/CA by scheduling data packets based on their age. Prior to transmitting a data packet, a transmitter broadcasts a request control message appended with a timestamp to a selected list of neighbors. It can proceed with the transmission only if it receives a sufficient number of grant control messages from these neighbors. A grant message indicates that the associated data packet has the lowest timestamp of all the packets pending transmission at the local transmit queue. We demonstrate that a loose ordering of timestamps among neighboring nodes is sufficient for enforcing local fairness, subsequently leading to flow rate fairness in a multi-hop WMN. We show that TMAC can be implemented using the control frames in IEEE 802.11, and thus can be easily integrated in existing 802.11-based WMNs. Our simulation results show that TMAC achieves excellent resource allocation fairness while maintaining over 90% of maximum link capacity across a large number of topologies.
An overview of packet-switching communications
Heggestad, H. M.
1984-04-01
A brief introduction is provided to an alternative computer-based technique for connecting a source to a destination, one which is not an evolutionary improvement in circuit switching but a radical departure from traditional techniques, namely packet switching. It is noted that this mechanism is becoming firmly established as a method for communicating digital data. Advances are also being made rapidly in the transmission of voice by this means, and packet switching may in fact be ideal for some future systems in which voice and data are fully integrated. The distinguishing feature of a packet-switched system is that a computer organizes outgoing digital information into segments which make their way independently to the receiving stations. Here, other computers reassemble them into replicas of the original message. One of the objectives conveniently achieved by packet systems is robustness with respect to blockage on particular links in the network. It is pointed out that two significant limitations affect the design and use of packet-switched systems; one is the need for substantial computer processing and bit manipulation at the network nodes, the other is accumulation of delay for real-time traffic.