Model-independent partial wave analysis using a massively-parallel fitting framework
Sun, L.; Aoude, R.; dos Reis, A. C.; Sokoloff, M.
2017-10-01
The functionality of GooFit, a GPU-friendly framework for doing maximum-likelihood fits, has been extended to extract model-independent {\\mathscr{S}}-wave amplitudes in three-body decays such as D + → h + h + h -. A full amplitude analysis is done where the magnitudes and phases of the {\\mathscr{S}}-wave amplitudes are anchored at a finite number of m 2(h + h -) control points, and a cubic spline is used to interpolate between these points. The amplitudes for {\\mathscr{P}}-wave and {\\mathscr{D}}-wave intermediate states are modeled as spin-dependent Breit-Wigner resonances. GooFit uses the Thrust library, with a CUDA backend for NVIDIA GPUs and an OpenMP backend for threads with conventional CPUs. Performance on a variety of platforms is compared. Executing on systems with GPUs is typically a few hundred times faster than executing the same algorithm on a single CPU.
Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy
2018-01-01
Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Stanley, Leanne M.; Edwards, Michael C.
2016-01-01
The purpose of this article is to highlight the distinction between the reliability of test scores and the fit of psychometric measurement models, reminding readers why it is important to consider both when evaluating whether test scores are valid for a proposed interpretation and/or use. It is often the case that an investigator judges both the…
Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.
2018-04-01
We give the results of parameter fitting of the magnetic clouds (MCs) observed by the Wind spacecraft for the three-year period 2013 to the end of 2015 (called the "Present" period) using the MC model of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990). The Present period is almost coincident with the solar maximum of the sunspot number, which has a broad peak starting in about 2012 and extending to almost 2015. There were 49 MCs identified in the Present period. The modeling gives MC quantities such as size, axial attitude, field handedness, axial magnetic-field strength, center time, and closest-approach vector. Derived quantities are also estimated, such as axial magnetic flux, axial current density, and total axial current. Quality estimates are assigned representing excellent, fair/good, and poor. We provide error estimates on the specific fit parameters for the individual MCs, where the poor cases are excluded. Model-fitting results that are based on the Present period are compared to the results of the full Wind mission from 1995 to the end of 2015 (Long-term period), and compared to the results of two other recent studies that encompassed the periods 2007 - 2009 and 2010 - 2012, inclusive. We see that during the Present period, the MCs are, on average, slightly slower, slightly weaker in axial magnetic field (by 8.7%), and larger in diameter (by 6.5%) than those in the Long-term period. However, in most respects, the MCs in the Present period are significantly closer in characteristics to those of the Long-term period than to those of the two recent three-year periods. However, the rate of occurrence of MCs for the Long-term period is 10.3 year^{-1}, whereas this rate for the Present period is 16.3 year^{-1}, similar to that of the period 2010 - 2012. Hence, the MC occurrence rate has increased appreciably in the last six years. MC Type (N-S, S-N, All N, All S, etc.) is assigned to each MC; there is an inordinately large percentage of All S
Fitting PAC spectra with stochastic models: PolyPacFit
Energy Technology Data Exchange (ETDEWEB)
Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics and Geology (United States); Evenson, W. E. [Utah Valley University, College of Science and Health (United States); Newhouse, R.; Collins, G. S. [Washington State University, Department of Physics and Astronomy (United States)
2010-04-15
PolyPacFit is an advanced fitting program for time-differential perturbed angular correlation (PAC) spectroscopy. It incorporates stochastic models and provides robust options for customization of fits. Notable features of the program include platform independence and support for (1) fits to stochastic models of hyperfine interactions, (2) user-defined constraints among model parameters, (3) fits to multiple spectra simultaneously, and (4) any spin nuclear probe.
International Nuclear Information System (INIS)
Martin Llorente, F.
1990-01-01
The models of atmospheric pollutants dispersion are based in mathematic algorithms that describe the transport, diffusion, elimination and chemical reactions of atmospheric contaminants. These models operate with data of contaminants emission and make an estimation of quality air in the area. This model can be applied to several aspects of atmospheric contamination
Measured, modeled, and causal conceptions of fitness
Abrams, Marshall
2012-01-01
This paper proposes partial answers to the following questions: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genotype or phenotype), token fitness (a property of a particular individual), and purely mathematical fitness. Type fitness includes statistical type fitness, which can be measured from population data, and parametric type fitness, which is an underlying property estimated by statistical type fitnesses. Token fitness includes measurable token fitness, which can be measured on an individual, and tendential token fitness, which is assumed to be an underlying property of the individual in its environmental circumstances. Some of the paper's conclusions can be outlined as follows: claims that fitness differences do not cause evolution are reasonable when fitness is treated as statistical type fitness, measurable token fitness, or purely mathematical fitness. Some of the ways in which statistical methods are used in population genetics suggest that what natural selection involves are differences in parametric type fitnesses. Further, it's reasonable to think that differences in parametric type fitness can cause evolution. Tendential token fitnesses, however, are not themselves sufficient for natural selection. Though parametric type fitnesses are typically not directly measurable, they can be modeled with purely mathematical fitnesses and estimated by statistical type fitnesses, which in turn are defined in terms of measurable token fitnesses. The paper clarifies the ways in which fitnesses depend on pragmatic choices made by researchers. PMID:23112804
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...
Instantaneous wave emission model
International Nuclear Information System (INIS)
Kruer, W.L.
1970-12-01
A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag
International Nuclear Information System (INIS)
Benoit, M.; Marcos, F.; Teisson, Ch.
1999-01-01
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Are Physical Education Majors Models for Fitness?
Kamla, James; Snyder, Ben; Tanner, Lori; Wash, Pamela
2012-01-01
The National Association of Sport and Physical Education (NASPE) (2002) has taken a firm stance on the importance of adequate fitness levels of physical education teachers stating that they have the responsibility to model an active lifestyle and to promote fitness behaviors. Since the NASPE declaration, national initiatives like Let's Move…
Contrast Gain Control Model Fits Masking Data
Watson, Andrew B.; Solomon, Joshua A.; Null, Cynthia H. (Technical Monitor)
1994-01-01
We studied the fit of a contrast gain control model to data of Foley (JOSA 1994), consisting of thresholds for a Gabor patch masked by gratings of various orientations, or by compounds of two orientations. Our general model includes models of Foley and Teo & Heeger (IEEE 1994). Our specific model used a bank of Gabor filters with octave bandwidths at 8 orientations. Excitatory and inhibitory nonlinearities were power functions with exponents of 2.4 and 2. Inhibitory pooling was broad in orientation, but narrow in spatial frequency and space. Minkowski pooling used an exponent of 4. All of the data for observer KMF were well fit by the model. We have developed a contrast gain control model that fits masking data. Unlike Foley's, our model accepts images as inputs. Unlike Teo & Heeger's, our model did not require multiple channels for different dynamic ranges.
Fitting neuron models to spike trains
Directory of Open Access Journals (Sweden)
Cyrille eRossant
2011-02-01
Full Text Available Computational modeling is increasingly used to understand the function of neural circuitsin systems neuroscience.These studies require models of individual neurons with realisticinput-output properties.Recently, it was found that spiking models can accurately predict theprecisely timed spike trains produced by cortical neurons in response tosomatically injected currents,if properly fitted. This requires fitting techniques that are efficientand flexible enough to easily test different candidate models.We present a generic solution, based on the Brian simulator(a neural network simulator in Python, which allowsthe user to define and fit arbitrary neuron models to electrophysiological recordings.It relies on vectorization and parallel computing techniques toachieve efficiency.We demonstrate its use on neural recordings in the barrel cortex andin the auditory brainstem, and confirm that simple adaptive spiking modelscan accurately predict the response of cortical neurons. Finally, we show how a complexmulticompartmental model can be reduced to a simple effective spiking model.
Fitting Hidden Markov Models to Psychological Data
Directory of Open Access Journals (Sweden)
Ingmar Visser
2002-01-01
Full Text Available Markov models have been used extensively in psychology of learning. Applications of hidden Markov models are rare however. This is partially due to the fact that comprehensive statistics for model selection and model assessment are lacking in the psychological literature. We present model selection and model assessment statistics that are particularly useful in applying hidden Markov models in psychology. These statistics are presented and evaluated by simulation studies for a toy example. We compare AIC, BIC and related criteria and introduce a prediction error measure for assessing goodness-of-fit. In a simulation study, two methods of fitting equality constraints are compared. In two illustrative examples with experimental data we apply selection criteria, fit models with constraints and assess goodness-of-fit. First, data from a concept identification task is analyzed. Hidden Markov models provide a flexible approach to analyzing such data when compared to other modeling methods. Second, a novel application of hidden Markov models in implicit learning is presented. Hidden Markov models are used in this context to quantify knowledge that subjects express in an implicit learning task. This method of analyzing implicit learning data provides a comprehensive approach for addressing important theoretical issues in the field.
Kashchenko, Serguey
2015-01-01
This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.
Induced subgraph searching for geometric model fitting
Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi
2017-11-01
In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.
A generalized multivariate regression model for modelling ocean wave heights
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
... gov home http://www.girlshealth.gov/ Home Fitness Fitness Want to look and feel your best? Physical ... are? Check out this info: What is physical fitness? top Physical fitness means you can do everyday ...
Hamada, K.; Yoshizawa, K.
2015-09-01
A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit
The use of a wave boundary layer model in SWAN
DEFF Research Database (Denmark)
Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo
2017-01-01
A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...
Wave Generation in Physical Models
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.
2013-01-01
: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation
Modeling ionization by helicon waves
International Nuclear Information System (INIS)
Degeling, A.W.; Boswell, R.W.
1997-01-01
The response of the electron distribution function in one dimension to a traveling wave electric field is modeled for parameters relevant to a low-pressure helicon wave plasma source, and the resulting change in the ionization rate calculated. This is done by calculating the trajectories of individual electrons in a given wave field and assuming no collisions to build up the distribution function as the distance from the antenna is increased. The ionization rate is calculated for argon by considering the ionization cross section and electron flux at a specified position and time relative to the left-hand boundary, where the distribution function is assumed to be Maxwellian and the wave travels to the right. The simulation shows pulses in the ionization rate that move away from the antenna at the phase velocity of the wave, demonstrating the effect of resonant electrons trapped in the wave close-quote s frame of reference. It is found that the ionization rate is highest when the phase velocity of the wave is between 2 and 3x10 6 m/s, where the electrons interacting strongly with the wave (i.e., electrons with velocities inside the wave close-quote s open-quotes trapping widthclose quotes) have initial energies just below the ionization threshold. Results from the model are compared with experimental data and show reasonable qualitative agreement. copyright 1997 American Institute of Physics
Modeling Regional Seismic Waves
1992-06-29
the computation of the Green’s functions is rather time comsuming . they arc Computed for each of the fundamental faults, at I1(H) km intervals from 21...this record was very, small. Station GEO displays similar behavior in that the overall features of the waveform are matched, but fit in detail is not
Modelling offshore sand wave evolution
Nemeth, Attila; Hulscher, Suzanne J.M.H.; van Damme, Rudolf M.J.
2007-01-01
We present a two-dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of offshore sand waves. The model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport
A Model Fit Statistic for Generalized Partial Credit Model
Liang, Tie; Wells, Craig S.
2009-01-01
Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…
Goodness-of-Fit Assessment of Item Response Theory Models
Maydeu-Olivares, Alberto
2013-01-01
The article provides an overview of goodness-of-fit assessment methods for item response theory (IRT) models. It is now possible to obtain accurate "p"-values of the overall fit of the model if bivariate information statistics are used. Several alternative approaches are described. As the validity of inferences drawn on the fitted model…
A Stepwise Fitting Procedure for automated fitting of Ecopath with Ecosim models
Directory of Open Access Journals (Sweden)
Erin Scott
2016-01-01
Full Text Available The Stepwise Fitting Procedure automates testing of alternative hypotheses used for fitting Ecopath with Ecosim (EwE models to observation reference data (Mackinson et al. 2009. The calibration of EwE model predictions to observed data is important to evaluate any model that will be used for ecosystem based management. Thus far, the model fitting procedure in EwE has been carried out manually: a repetitive task involving setting >1000 specific individual searches to find the statistically ‘best fit’ model. The novel fitting procedure automates the manual procedure therefore producing accurate results and lets the modeller concentrate on investigating the ‘best fit’ model for ecological accuracy.
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2013-01-01
An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon...
Local fit evaluation of structural equation models using graphical criteria.
Thoemmes, Felix; Rosseel, Yves; Textor, Johannes
2018-03-01
Evaluation of model fit is critically important for every structural equation model (SEM), and sophisticated methods have been developed for this task. Among them are the χ² goodness-of-fit test, decomposition of the χ², derived measures like the popular root mean square error of approximation (RMSEA) or comparative fit index (CFI), or inspection of residuals or modification indices. Many of these methods provide a global approach to model fit evaluation: A single index is computed that quantifies the fit of the entire SEM to the data. In contrast, graphical criteria like d-separation or trek-separation allow derivation of implications that can be used for local fit evaluation, an approach that is hardly ever applied. We provide an overview of local fit evaluation from the viewpoint of SEM practitioners. In the presence of model misfit, local fit evaluation can potentially help in pinpointing where the problem with the model lies. For models that do fit the data, local tests can identify the parts of the model that are corroborated by the data. Local tests can also be conducted before a model is fitted at all, and they can be used even for models that are globally underidentified. We discuss appropriate statistical local tests, and provide applied examples. We also present novel software in R that automates this type of local fit evaluation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Curve fitting methods for solar radiation data modeling
Energy Technology Data Exchange (ETDEWEB)
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)
2014-10-24
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.
Curve fitting methods for solar radiation data modeling
Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder
2014-10-01
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.
Curve fitting methods for solar radiation data modeling
International Nuclear Information System (INIS)
Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder
2014-01-01
This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods
ITEM LEVEL DIAGNOSTICS AND MODEL - DATA FIT IN ITEM ...
African Journals Online (AJOL)
Global Journal
Item response theory (IRT) is a framework for modeling and analyzing item response ... data. Though, there is an argument that the evaluation of fit in IRT modeling has been ... National Council on Measurement in Education ... model data fit should be based on three types of ... prediction should be assessed through the.
A Comparison of Item Fit Statistics for Mixed IRT Models
Chon, Kyong Hee; Lee, Won-Chan; Dunbar, Stephen B.
2010-01-01
In this study we examined procedures for assessing model-data fit of item response theory (IRT) models for mixed format data. The model fit indices used in this study include PARSCALE's G[superscript 2], Orlando and Thissen's S-X[superscript 2] and S-G[superscript 2], and Stone's chi[superscript 2*] and G[superscript 2*]. To investigate the…
Overview of Wave to Wire Models
DEFF Research Database (Denmark)
Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco
A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge...
Automated Model Fit Method for Diesel Engine Control Development
Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.
2014-01-01
This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is
Sensitivity of Fit Indices to Misspecification in Growth Curve Models
Wu, Wei; West, Stephen G.
2010-01-01
This study investigated the sensitivity of fit indices to model misspecification in within-individual covariance structure, between-individual covariance structure, and marginal mean structure in growth curve models. Five commonly used fit indices were examined, including the likelihood ratio test statistic, root mean square error of…
Automated model fit method for diesel engine control development
Seykens, X.L.J.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.J.H.
2014-01-01
This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
topicmodels: An R Package for Fitting Topic Models
Directory of Open Access Journals (Sweden)
Bettina Grun
2011-05-01
Full Text Available Topic models allow the probabilistic modeling of term frequency occurrences in documents. The fitted model can be used to estimate the similarity between documents as well as between a set of specified keywords using an additional layer of latent variables which are referred to as topics. The R package topicmodels provides basic infrastructure for fitting topic models based on data structures from the text mining package tm. The package includes interfaces to two algorithms for fitting topic models: the variational expectation-maximization algorithm provided by David M. Blei and co-authors and an algorithm using Gibbs sampling by Xuan-Hieu Phan and co-authors.
HDFITS: Porting the FITS data model to HDF5
Price, D. C.; Barsdell, B. R.; Greenhill, L. J.
2015-09-01
The FITS (Flexible Image Transport System) data format has been the de facto data format for astronomy-related data products since its inception in the late 1970s. While the FITS file format is widely supported, it lacks many of the features of more modern data serialization, such as the Hierarchical Data Format (HDF5). The HDF5 file format offers considerable advantages over FITS, such as improved I/O speed and compression, but has yet to gain widespread adoption within astronomy. One of the major holdbacks is that HDF5 is not well supported by data reduction software packages and image viewers. Here, we present a comparison of FITS and HDF5 as a format for storage of astronomy datasets. We show that the underlying data model of FITS can be ported to HDF5 in a straightforward manner, and that by doing so the advantages of the HDF5 file format can be leveraged immediately. In addition, we present a software tool, fits2hdf, for converting between FITS and a new 'HDFITS' format, where data are stored in HDF5 in a FITS-like manner. We show that HDFITS allows faster reading of data (up to 100x of FITS in some use cases), and improved compression (higher compression ratios and higher throughput). Finally, we show that by only changing the import lines in Python-based FITS utilities, HDFITS formatted data can be presented transparently as an in-memory FITS equivalent.
Analytical fitting model for rough-surface BRDF.
Renhorn, Ingmar G E; Boreman, Glenn D
2008-08-18
A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.
An R package for fitting age, period and cohort models
Directory of Open Access Journals (Sweden)
Adriano Decarli
2014-11-01
Full Text Available In this paper we present the R implementation of a GLIM macro which fits age-period-cohort model following Osmond and Gardner. In addition to the estimates of the corresponding model, owing to the programming capability of R as an object oriented language, methods for printing, plotting and summarizing the results are provided. Furthermore, the researcher has fully access to the output of the main function (apc which returns all the models fitted within the function. It is so possible to critically evaluate the goodness of fit of the resulting model.
Modeling Evolution on Nearly Neutral Network Fitness Landscapes
Yakushkina, Tatiana; Saakian, David B.
2017-08-01
To describe virus evolution, it is necessary to define a fitness landscape. In this article, we consider the microscopic models with the advanced version of neutral network fitness landscapes. In this problem setting, we suppose a fitness difference between one-point mutation neighbors to be small. We construct a modification of the Wright-Fisher model, which is related to ordinary infinite population models with nearly neutral network fitness landscape at the large population limit. From the microscopic models in the realistic sequence space, we derive two versions of nearly neutral network models: with sinks and without sinks. We claim that the suggested model describes the evolutionary dynamics of RNA viruses better than the traditional Wright-Fisher model with few sequences.
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Macroscopic balance model for wave rotors
Welch, Gerard E.
1996-01-01
A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.
Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R
2013-03-08
We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
International Nuclear Information System (INIS)
Pronyaev, V.G.
2003-01-01
The information entropy is taken as a measure of knowledge about the object and the reduced univariante variance as a common measure of uncertainty. Covariances in the model versus non-model least square fits are discussed
Fast Algorithms for Fitting Active Appearance Models to Unconstrained Images
Tzimiropoulos, Georgios; Pantic, Maja
2016-01-01
Fitting algorithms for Active Appearance Models (AAMs) are usually considered to be robust but slow or fast but less able to generalize well to unseen variations. In this paper, we look into AAM fitting algorithms and make the following orthogonal contributions: We present a simple “project-out‿
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
Directory of Open Access Journals (Sweden)
Erik Friis-Madsen
2013-04-01
Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.
Fitting Simpson's neutrino into the standard model
International Nuclear Information System (INIS)
Valle, J.W.F.
1985-01-01
I show how to accomodate the 17 keV state recently by Simpson as one of the neutrinos of the standard model. Experimental constraints can only be satisfied if the μ and tau neutrino combine to a very good approximation to form a Dirac neutrino of 17 keV leaving a light νsub(e). Neutrino oscillations will provide the most stringent test of the model. The cosmological bounds are also satisfied in a natural way in models with Goldstone bosons. Explicit examples are given in the framework of majoron-type models. Constraints on the lepton symmetry breaking scale which follow from astrophysics, cosmology and laboratory experiments are discussed. (orig.)
Fitting ARMA Time Series by Structural Equation Models.
van Buuren, Stef
1997-01-01
This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)
A person fit test for IRT models for polytomous items
Glas, Cornelis A.W.; Dagohoy, A.V.
2007-01-01
A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability
Fitting polytomous Rasch models in SAS
DEFF Research Database (Denmark)
Christensen, Karl Bang
2006-01-01
The item parameters of a polytomous Rasch model can be estimated using marginal and conditional approaches. This paper describes how this can be done in SAS (V8.2) for three item parameter estimation procedures: marginal maximum likelihood estimation, conditional maximum likelihood estimation, an...
Model wave functions for the deuteron
International Nuclear Information System (INIS)
Certov, A.; Mathelitsch, L.; Moravcsik, M.J.
1987-01-01
Model wave functions are constructed for the deuteron to facilitate the unambiguous exploration of dependencies on the percentage D state and on the small-, medium-, and large-distance parts of the deuteron wave function. The wave functions are constrained by those deuteron properties which are accurately known experimentally, and are in an analytic form which is easily integrable in expressions usually encountered in the use of such wave functions
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1985-01-01
velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...
Critical elements on fitting the Bayesian multivariate Poisson Lognormal model
Zamzuri, Zamira Hasanah binti
2015-10-01
Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.
Wave model downscaling for coastal applications
Valchev, Nikolay; Davidan, Georgi; Trifonova, Ekaterina; Andreeva, Nataliya
2010-05-01
Downscaling is a suitable technique for obtaining high-resolution estimates from relatively coarse-resolution global models. Dynamical and statistical downscaling has been applied to the multidecadal simulations of ocean waves. Even as large-scale variability might be plausibly estimated from these simulations, their value for the small scale applications such as design of coastal protection structures and coastal risk assessment is limited due to their relatively coarse spatial and temporal resolutions. Another advantage of the high resolution wave modeling is that it accounts for shallow water effects. Therefore, it can be used for both wave forecasting at specific coastal locations and engineering applications that require knowledge about extreme wave statistics at or near the coastal facilities. In the present study downscaling is applied to both ECMWF and NCEP/NCAR global reanalysis of atmospheric pressure over the Black Sea with 2.5 degrees spatial resolution. A simplified regional atmospheric model is employed for calculation of the surface wind field at 0.5 degrees resolution that serves as forcing for the wave models. Further, a high-resolution nested WAM/SWAN wave model suite of nested wave models is applied for spatial downscaling. It aims at resolving the wave conditions in a limited area at the close proximity to the shore. The pilot site is located in the northern part the Bulgarian Black Sea shore. The system involves the WAM wave model adapted for basin scale simulation at 0.5 degrees spatial resolution. The WAM output for significant wave height, mean wave period and mean angle of wave approach is used in terms of external boundary conditions for the SWAN wave model, which is set up for the western Black Sea shelf at 4km resolution. The same model set up on about 400m resolution is nested to the first SWAN run. In this case the SWAN 2D spectral output provides boundary conditions for the high-resolution model run. The models are implemented for a
Random-growth urban model with geographical fitness
Kii, Masanobu; Akimoto, Keigo; Doi, Kenji
2012-12-01
This paper formulates a random-growth urban model with a notion of geographical fitness. Using techniques of complex-network theory, we study our system as a type of preferential-attachment model with fitness, and we analyze its macro behavior to clarify the properties of the city-size distributions it predicts. First, restricting the geographical fitness to take positive values and using a continuum approach, we show that the city-size distributions predicted by our model asymptotically approach Pareto distributions with coefficients greater than unity. Then, allowing the geographical fitness to take negative values, we perform local coefficient analysis to show that the predicted city-size distributions can deviate from Pareto distributions, as is often observed in actual city-size distributions. As a result, the model we propose can generate a generic class of city-size distributions, including but not limited to Pareto distributions. For applications to city-population projections, our simple model requires randomness only when new cities are created, not during their subsequent growth. This property leads to smooth trajectories of city population growth, in contrast to other models using Gibrat’s law. In addition, a discrete form of our dynamical equations can be used to estimate past city populations based on present-day data; this fact allows quantitative assessment of the performance of our model. Further study is needed to determine appropriate formulas for the geographical fitness.
LEP asymmetries and fits of the standard model
International Nuclear Information System (INIS)
Pietrzyk, B.
1994-01-01
The lepton and quark asymmetries measured at LEP are presented. The results of the Standard Model fits to the electroweak data presented at this conference are given. The top mass obtained from the fit to the LEP data is 172 -14-20 +13+18 GeV; it is 177 -11-19 +11+18 when also the collider, ν and A LR data are included. (author). 10 refs., 3 figs., 2 tabs
Model-based internal wave processing
Energy Technology Data Exchange (ETDEWEB)
Candy, J.V.; Chambers, D.H.
1995-06-09
A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.
Automatic fitting of spiking neuron models to electrophysiological recordings
Directory of Open Access Journals (Sweden)
Cyrille Rossant
2010-03-01
Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.
Extreme Wave Analysis by Integrating Model and Wave Buoy Data
Directory of Open Access Journals (Sweden)
Fabio Dentale
2018-03-01
Full Text Available Estimating the extreme values of significant wave height (HS, generally described by the HS return period TR function HS(TR and by its confidence intervals, is a necessity in many branches of coastal science and engineering. The availability of indirect wave data generated by global and regional wind and wave model chains have brought radical changes to the estimation procedures of such probability distribution—weather and wave modeling systems are routinely run all over the world, and HS time series for each grid point are produced and published after assimilation (analysis of the ground truth. However, while the sources of such indirect data are numerous, and generally of good quality, many aspects of their procedures are hidden to the users, who cannot evaluate the reliability and the limits of the HS(TR deriving from such data. In order to provide a simple engineering tool to evaluate the probability of extreme sea-states as well as the quality of such estimates, we propose here a procedure based on integrating HS time series generated by model chains with those recorded by wave buoys in the same area.
Opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Porous models for wave-seabed interactions
Energy Technology Data Exchange (ETDEWEB)
Jeng, Dong-Sheng [Shanghai Jiaotong Univ., SH (China)
2013-02-01
Detailed discussion about the phenomenon of wave-seabed interactions. Novel models for wave-induced seabed response. Intensive theoretical derivations for wave-seabed interactions. Practical examples for engineering applications. ''Porous Models for Wave-seabed Interactions'' discusses the Phenomenon of wave-seabed interactions, which is a vital issue for coastal and geotechnical engineers involved in the design of foundations for marine structures such as pipelines, breakwaters, platforms, etc. The most important sections of this book will be the fully detailed theoretical models of wave-seabed interaction problem, which are particularly useful for postgraduate students and junior researchers entering the discipline of marine geotechnics and offshore engineering. This book also converts the research outcomes of theoretical studies to engineering applications that will provide front-line engineers with practical and effective tools in the assessment of seabed instability in engineering design.
Fitting Equilibrium Search Models to Labour Market Data
DEFF Research Database (Denmark)
Bowlus, Audra J.; Kiefer, Nicholas M.; Neumann, George R.
1996-01-01
Specification and estimation of a Burdett-Mortensen type equilibrium search model is considered. The estimation is nonstandard. An estimation strategy asymptotically equivalent to maximum likelihood is proposed and applied. The results indicate that specifications with a small number of productiv...... of productivity types fit the data well compared to the homogeneous model....
Twitter classification model: the ABC of two million fitness tweets.
Vickey, Theodore A; Ginis, Kathleen Martin; Dabrowski, Maciej
2013-09-01
The purpose of this project was to design and test data collection and management tools that can be used to study the use of mobile fitness applications and social networking within the context of physical activity. This project was conducted over a 6-month period and involved collecting publically shared Twitter data from five mobile fitness apps (Nike+, RunKeeper, MyFitnessPal, Endomondo, and dailymile). During that time, over 2.8 million tweets were collected, processed, and categorized using an online tweet collection application and a customized JavaScript. Using the grounded theory, a classification model was developed to categorize and understand the types of information being shared by application users. Our data show that by tracking mobile fitness app hashtags, a wealth of information can be gathered to include but not limited to daily use patterns, exercise frequency, location-based workouts, and overall workout sentiment.
Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan
2015-04-01
Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directional wave measurements and modelling
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.
Some of the results obtained from analysis of the monsoon directional wave data measured over 4 years in shallow waters off the west coast of India are presented. The directional spectrum computed from the time series data seems to indicate...
Flexible competing risks regression modeling and goodness-of-fit
DEFF Research Database (Denmark)
Scheike, Thomas; Zhang, Mei-Jie
2008-01-01
In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause...... models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy...... of the flexible regression models to analyze competing risks data when non-proportionality is present in the data....
Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport
National Research Council Canada - National Science Library
Winterwerp, Johan C
2007-01-01
.... Also a new rheological model has been proposed to describe liquefaction of soft mud by waves, and the subsequent strength recovery after the passage of the waves. A scheme is presented on how to implement these formulations in Delft3D.
[How to fit and interpret multilevel models using SPSS].
Pardo, Antonio; Ruiz, Miguel A; San Martín, Rafael
2007-05-01
Hierarchic or multilevel models are used to analyse data when cases belong to known groups and sample units are selected both from the individual level and from the group level. In this work, the multilevel models most commonly discussed in the statistic literature are described, explaining how to fit these models using the SPSS program (any version as of the 11 th ) and how to interpret the outcomes of the analysis. Five particular models are described, fitted, and interpreted: (1) one-way analysis of variance with random effects, (2) regression analysis with means-as-outcomes, (3) one-way analysis of covariance with random effects, (4) regression analysis with random coefficients, and (5) regression analysis with means- and slopes-as-outcomes. All models are explained, trying to make them understandable to researchers in health and behaviour sciences.
Assessing fit in Bayesian models for spatial processes
Jun, M.
2014-09-16
© 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models\\' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.
Assessing fit in Bayesian models for spatial processes
Jun, M.; Katzfuss, M.; Hu, J.; Johnson, V. E.
2014-01-01
© 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.
Person-fit to the Five Factor Model of personality
Czech Academy of Sciences Publication Activity Database
Allik, J.; Realo, A.; Mõttus, R.; Borkenau, P.; Kuppens, P.; Hřebíčková, Martina
2012-01-01
Roč. 71, č. 1 (2012), s. 35-45 ISSN 1421-0185 R&D Projects: GA ČR GAP407/10/2394 Institutional research plan: CEZ:AV0Z70250504 Keywords : Five Factor Model * cross - cultural comparison * person-fit Subject RIV: AN - Psychology Impact factor: 0.638, year: 2012
Gravitational waves in hybrid quintessential inflationary models
Energy Technology Data Exchange (ETDEWEB)
Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2011-09-22
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.
Gravitational waves in hybrid quintessential inflationary models
International Nuclear Information System (INIS)
Sa, Paulo M; Henriques, Alfredo B
2011-01-01
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.
The global electroweak Standard Model fit after the Higgs discovery
Baak, Max
2013-01-01
We present an update of the global Standard Model (SM) fit to electroweak precision data under the assumption that the new particle discovered at the LHC is the SM Higgs boson. In this scenario all parameters entering the calculations of electroweak precision observalbes are known, allowing, for the first time, to over-constrain the SM at the electroweak scale and assert its validity. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted from the global fit. The results are compatible with, and exceed in precision, the direct measurements. An updated determination of the S, T and U parameters, which parametrize the oblique vacuum corrections, is given. The obtained values show good consistency with the SM expectation and no direct signs of new physics are seen. We conclude with an outlook to the global electroweak fit for a future e+e- collider.
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
TE Wave Measurement and Modeling
Sikora, John P; Sonnad, Kiran G; Alesini, David; De Santis, Stefano
2013-01-01
In the TE wave method, microwaves are coupled into the beam-pipe and the effect of the electron cloud on these microwaves is measured. An electron cloud (EC) density can then be calculated from this measurement. There are two analysis methods currently in use. The first treats the microwaves as being transmitted from one point to another in the accelerator. The second more recent method, treats the beam-pipe as a resonant cavity. This paper will summarize the reasons for adopting the resonant TE wave analysis as well as give examples from CESRTA and DA{\\Phi}NE of resonant beam-pipe. The results of bead-pull bench measurements will show some possible standing wave patterns, including a cutoff mode (evanescent) where the field decreases exponentially with distance from the drive point. We will outline other recent developments in the TE wave method including VORPAL simulations of microwave resonances, as well as the simulation of transmission in the presence of both an electron cloud and magnetic fields.
Hydraulic Model Tests on Modified Wave Dragon
DEFF Research Database (Denmark)
Hald, Tue; Lynggaard, Jakob
A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following...... are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: ”Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequentiel tests of changes to the model geometry and mass distribution parameters” sponsored by the Danish Energy Agency...
A Blast Wave Model With Viscous Corrections
Yang, Z.; Fries, R. J.
2017-04-01
Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small.
A Blast Wave Model With Viscous Corrections
International Nuclear Information System (INIS)
Yang, Z; Fries, R J
2017-01-01
Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small. (paper)
International Nuclear Information System (INIS)
Sparks, W.M.; Kutter, G.S.
1980-01-01
The rapid coherent oscillation during a dwarf nova outburst is attributed to an accretion-driven wave going around the white dwarf component of the binary system. The increase and decrease in the period of this oscillation is due to the change in the velocity of the wave as it is first being driven and then damped. Qualitatively, a large number of observations can be explained with such a model. The beginnings of a mathematical representation of this model are developed. (orig.)
Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS
DEFF Research Database (Denmark)
Bolker, B.M.; Gardner, B.; Maunder, M.
2013-01-01
Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. R is convenient and (relatively) easy...... to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield...
-Advanced Models for Tsunami and Rogue Waves
Directory of Open Access Journals (Sweden)
D. W. Pravica
2012-01-01
Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.
Supersymmetry with prejudice: Fitting the wrong model to LHC data
Allanach, B. C.; Dolan, Matthew J.
2012-09-01
We critically examine interpretations of hypothetical supersymmetric LHC signals, fitting to alternative wrong models of supersymmetry breaking. The signals we consider are some of the most constraining on the sparticle spectrum: invariant mass distributions with edges and endpoints from the golden decay chain q˜→qχ20(→l˜±l∓q)→χ10l+l-q. We assume a constrained minimal supersymmetric standard model (CMSSM) point to be the ‘correct’ one, but fit the signals instead with minimal gauge mediated supersymmetry breaking models (mGMSB) with a neutralino quasistable lightest supersymmetric particle, minimal anomaly mediation and large volume string compactification models. Minimal anomaly mediation and large volume scenario can be unambiguously discriminated against the CMSSM for the assumed signal and 1fb-1 of LHC data at s=14TeV. However, mGMSB would not be discriminated on the basis of the kinematic endpoints alone. The best-fit point spectra of mGMSB and CMSSM look remarkably similar, making experimental discrimination at the LHC based on the edges or Higgs properties difficult. However, using rate information for the golden chain should provide the additional separation required.
User's Manual for the Simulating Waves Nearshore Model (SWAN)
National Research Council Canada - National Science Library
Allard, Richard
2002-01-01
The Simulating WAves Nearshore (SWAN) model is a numerical wave model used to obtain realistic estimates of wave parameters in coastal areas, lakes, and estuaries from given wind, bottom, and current conditions...
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Assessment of multi class kinematic wave models
Van Wageningen-Kessels, F.L.M.; Van Lint, J.W.C.; Vuik, C.; Hoogendoorn, S.P.
2012-01-01
In the last decade many multi class kinematic wave (MCKW) traffic ow models have been proposed. MCKW models introduce heterogeneity among vehicles and drivers. For example, they take into account differences in (maximum) velocities and driving style. Nevertheless, the models are macroscopic and the
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Thissen, David
2013-01-01
In this commentary, David Thissen states that "Goodness-of-fit assessment for IRT models is maturing; it has come a long way from zero." Thissen then references prior works on "goodness of fit" in the index of Lord and Novick's (1968) classic text; Yen (1984); Drasgow, Levine, Tsien, Williams, and Mead (1995); Chen and…
Bosone, Lucia; Martinez, Frédéric; Kalampalikis, Nikos
2015-04-01
In health-promotional campaigns, positive and negative role models can be deployed to illustrate the benefits or costs of certain behaviors. The main purpose of this article is to investigate why, how, and when exposure to role models strengthens the persuasiveness of a message, according to regulatory fit theory. We argue that exposure to a positive versus a negative model activates individuals' goals toward promotion rather than prevention. By means of two experiments, we demonstrate that high levels of persuasion occur when a message advertising healthy dietary habits offers a regulatory fit between its framing and the described role model. Our data also establish that the effects of such internal regulatory fit by vicarious experience depend on individuals' perceptions of response-efficacy and self-efficacy. Our findings constitute a significant theoretical complement to previous research on regulatory fit and contain valuable practical implications for health-promotional campaigns. © 2015 by the Society for Personality and Social Psychology, Inc.
Simple opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Wave Star modellen er udarbejdet i programmeringssproget Delphi. Modellerne er en videre udarbejdelse af tidligere anvendte Excel-modeller. I forhold til Excelmodellerne udmærker de nye Dephi-modeller sig ved at beregningerne udføres mange gange hurtigere og modellerne kan håndtere lange tidsserier...
Wave and Wind Model Performance Metrics Tools
Choi, J. K.; Wang, D. W.
2016-02-01
Continual improvements and upgrades of Navy ocean wave and wind models are essential to the assurance of battlespace environment predictability of ocean surface wave and surf conditions in support of Naval global operations. Thus, constant verification and validation of model performance is equally essential to assure the progress of model developments and maintain confidence in the predictions. Global and regional scale model evaluations may require large areas and long periods of time. For observational data to compare against, altimeter winds and waves along the tracks from past and current operational satellites as well as moored/drifting buoys can be used for global and regional coverage. Using data and model runs in previous trials such as the planned experiment, the Dynamics of the Adriatic in Real Time (DART), we demonstrated the use of accumulated altimeter wind and wave data over several years to obtain an objective evaluation of the performance the SWAN (Simulating Waves Nearshore) model running in the Adriatic Sea. The assessment provided detailed performance of wind and wave models by using cell-averaged statistical variables maps with spatial statistics including slope, correlation, and scatter index to summarize model performance. Such a methodology is easily generalized to other regions and at global scales. Operational technology currently used by subject matter experts evaluating the Navy Coastal Ocean Model and the Hybrid Coordinate Ocean Model can be expanded to evaluate wave and wind models using tools developed for ArcMAP, a GIS application developed by ESRI. Recent inclusion of altimeter and buoy data into a format through the Naval Oceanographic Office's (NAVOCEANO) quality control system and the netCDF standards applicable to all model output makes it possible for the fusion of these data and direct model verification. Also, procedures were developed for the accumulation of match-ups of modelled and observed parameters to form a data base
Fitting Latent Cluster Models for Networks with latentnet
Directory of Open Access Journals (Sweden)
Pavel N. Krivitsky
2007-12-01
Full Text Available latentnet is a package to fit and evaluate statistical latent position and cluster models for networks. Hoﬀ, Raftery, and Handcock (2002 suggested an approach to modeling networks based on positing the existence of an latent space of characteristics of the actors. Relationships form as a function of distances between these characteristics as well as functions of observed dyadic level covariates. In latentnet social distances are represented in a Euclidean space. It also includes a variant of the extension of the latent position model to allow for clustering of the positions developed in Handcock, Raftery, and Tantrum (2007.The package implements Bayesian inference for the models based on an Markov chain Monte Carlo algorithm. It can also compute maximum likelihood estimates for the latent position model and a two-stage maximum likelihood method for the latent position cluster model. For latent position cluster models, the package provides a Bayesian way of assessing how many groups there are, and thus whether or not there is any clustering (since if the preferred number of groups is 1, there is little evidence for clustering. It also estimates which cluster each actor belongs to. These estimates are probabilistic, and provide the probability of each actor belonging to each cluster. It computes four types of point estimates for the coefficients and positions: maximum likelihood estimate, posterior mean, posterior mode and the estimator which minimizes Kullback-Leibler divergence from the posterior. You can assess the goodness-of-fit of the model via posterior predictive checks. It has a function to simulate networks from a latent position or latent position cluster model.
Rapid world modeling: Fitting range data to geometric primitives
International Nuclear Information System (INIS)
Feddema, J.; Little, C.
1996-01-01
For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE's waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data
Wave propagation in the Lorenz-96 model
van Kekem, Dirk L.; Sterk, Alef E.
2018-04-01
In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.
Wave propagation in the Lorenz-96 model
Directory of Open Access Journals (Sweden)
D. L. van Kekem
2018-04-01
Full Text Available In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F < 0 and odd n, the first bifurcation is again a supercritical Hopf bifurcation, but in this case the period of the traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.
An NCME Instructional Module on Item-Fit Statistics for Item Response Theory Models
Ames, Allison J.; Penfield, Randall D.
2015-01-01
Drawing valid inferences from item response theory (IRT) models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. This instructional module provides an overview of methods used for evaluating the fit of IRT models. Upon completing…
DEFF Research Database (Denmark)
Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard
2015-01-01
Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....
DEFF Research Database (Denmark)
Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard
2014-01-01
Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral densit...
Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS
Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise
2013-01-01
1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Feature extraction through least squares fit to a simple model
International Nuclear Information System (INIS)
Demuth, H.B.
1976-01-01
The Oak Ridge National Laboratory (ORNL) presented the Los Alamos Scientific Laboratory (LASL) with 18 radiographs of fuel rod test bundles. The problem is to estimate the thickness of the gap between some cylindrical rods and a flat wall surface. The edges of the gaps are poorly defined due to finite source size, x-ray scatter, parallax, film grain noise, and other degrading effects. The radiographs were scanned and the scan-line data were averaged to reduce noise and to convert the problem to one dimension. A model of the ideal gap, convolved with an appropriate point-spread function, was fit to the averaged data with a least squares program; and the gap width was determined from the final fitted-model parameters. The least squares routine did converge and the gaps obtained are of reasonable size. The method is remarkably insensitive to noise. This report describes the problem, the techniques used to solve it, and the results and conclusions. Suggestions for future work are also given
Improved bag models of P-wave baryons
International Nuclear Information System (INIS)
Wang Fan; Wong Chunwa
1988-01-01
Problems in two previous bag-model calculations of P-wave baryon states are pointed out. The two-body matrix elements used in one of these models, the Myhrer-Wroldsen bag model, have now been revised and corrected by Myhrer, Umino and Wroldsen. We use their corrected matrix elements to construct simple bag models in which baryon masses are stabilized against collapse by using a finite pion size. We find that baryon masses in both ground and excited states can be fitted with the same model parameters. Models with small-bag baryons of the type proposed by Brown and Rho are then obtained. Typical bag radii are 0.5 fm for N, 0.6 fm for Δ and 0.7 fm for P-wave nonstrange baryons. In these models, the mixing angles are still unsatisfactory, while inadequacy in the treatment of center-of-mass motion found in an earlier paper persists. These results are briefly discussed. especially in connection with skyrmion models. (orig.)
Fit reduced GUTS models online: From theory to practice.
Baudrot, Virgile; Veber, Philippe; Gence, Guillaume; Charles, Sandrine
2018-05-20
Mechanistic modeling approaches, such as the toxicokinetic-toxicodynamic (TKTD) framework, are promoted by international institutions such as the European Food Safety Authority and the Organization for Economic Cooperation and Development to assess the environmental risk of chemical products generated by human activities. TKTD models can encompass a large set of mechanisms describing the kinetics of compounds inside organisms (e.g., uptake and elimination) and their effect at the level of individuals (e.g., damage accrual, recovery, and death mechanism). Compared to classical dose-response models, TKTD approaches have many advantages, including accounting for temporal aspects of exposure and toxicity, considering data points all along the experiment and not only at the end, and making predictions for untested situations as realistic exposure scenarios. Among TKTD models, the general unified threshold model of survival (GUTS) is within the most recent and innovative framework but is still underused in practice, especially by risk assessors, because specialist programming and statistical skills are necessary to run it. Making GUTS models easier to use through a new module freely available from the web platform MOSAIC (standing for MOdeling and StAtistical tools for ecotoxIClogy) should promote GUTS operability in support of the daily work of environmental risk assessors. This paper presents the main features of MOSAIC_GUTS: uploading of the experimental data, GUTS fitting analysis, and LCx estimates with their uncertainty. These features will be exemplified from literature data. Integr Environ Assess Manag 2018;00:000-000. © 2018 SETAC. © 2018 SETAC.
Fitting the Probability Distribution Functions to Model Particulate Matter Concentrations
International Nuclear Information System (INIS)
El-Shanshoury, Gh.I.
2017-01-01
The main objective of this study is to identify the best probability distribution and the plotting position formula for modeling the concentrations of Total Suspended Particles (TSP) as well as the Particulate Matter with an aerodynamic diameter<10 μm (PM 10 ). The best distribution provides the estimated probabilities that exceed the threshold limit given by the Egyptian Air Quality Limit value (EAQLV) as well the number of exceedance days is estimated. The standard limits of the EAQLV for TSP and PM 10 concentrations are 24-h average of 230 μg/m 3 and 70 μg/m 3 , respectively. Five frequency distribution functions with seven formula of plotting positions (empirical cumulative distribution functions) are compared to fit the average of daily TSP and PM 10 concentrations in year 2014 for Ain Sokhna city. The Quantile-Quantile plot (Q-Q plot) is used as a method for assessing how closely a data set fits a particular distribution. A proper probability distribution that represents the TSP and PM 10 has been chosen based on the statistical performance indicator values. The results show that Hosking and Wallis plotting position combined with Frechet distribution gave the highest fit for TSP and PM 10 concentrations. Burr distribution with the same plotting position follows Frechet distribution. The exceedance probability and days over the EAQLV are predicted using Frechet distribution. In 2014, the exceedance probability and days for TSP concentrations are 0.052 and 19 days, respectively. Furthermore, the PM 10 concentration is found to exceed the threshold limit by 174 days
The FIT Model - Fuel-cycle Integration and Tradeoffs
International Nuclear Information System (INIS)
Piet, Steven J.; Soelberg, Nick R.; Bays, Samuel E.; Pereira, Candido; Pincock, Layne F.; Shaber, Eric L.; Teague, Melissa C.; Teske, Gregory M.; Vedros, Kurt G.
2010-01-01
All mass streams from fuel separation and fabrication are products that must meet some set of product criteria - fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the 'system losses study' team that developed it (Shropshire2009, Piet2010) are an initial step by the FCR and D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R and D needs and set longer-term goals. The question originally posed to the 'system losses study' was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for 'minimum fuel treatment' approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
A fitting LEGACY – modelling Kepler's best stars
Directory of Open Access Journals (Sweden)
Aarslev Magnus J.
2017-01-01
Full Text Available The LEGACY sample represents the best solar-like stars observed in the Kepler mission[5, 8]. The 66 stars in the sample are all on the main sequence or only slightly more evolved. They each have more than one year's observation data in short cadence, allowing for precise extraction of individual frequencies. Here we present model fits using a modified ASTFIT procedure employing two different near-surface-effect corrections, one by Christensen-Dalsgaard[4] and a newer correction proposed by Ball & Gizon[1]. We then compare the results obtained using the different corrections. We find that using the latter correction yields lower masses and significantly lower χ2 values for a large part of the sample.
Global fits of GUT-scale SUSY models with GAMBIT
Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; de Austri, Roberto Ruiz; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin
2017-12-01
We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.
Global fits of GUT-scale SUSY models with GAMBIT
Energy Technology Data Exchange (ETDEWEB)
Athron, Peter [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Mahmoudi, Farvah [Univ Lyon, Univ Lyon 1, CNRS, ENS de Lyon, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); Theoretical Physics Department, CERN, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, Camperdown, NSW (Australia); Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration
2017-12-15
We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos. (orig.)
A bipartite fitness model for online music streaming services
Pongnumkul, Suchit; Motohashi, Kazuyuki
2018-01-01
This paper proposes an evolution model and an analysis of the behavior of music consumers on online music streaming services. While previous studies have observed power-law degree distributions of usage in online music streaming services, the underlying behavior of users has not been well understood. Users and songs can be described using a bipartite network where an edge exists between a user node and a song node when the user has listened that song. The growth mechanism of bipartite networks has been used to understand the evolution of online bipartite networks Zhang et al. (2013). Existing bipartite models are based on a preferential attachment mechanism László Barabási and Albert (1999) in which the probability that a user listens to a song is proportional to its current popularity. This mechanism does not allow for two types of real world phenomena. First, a newly released song with high quality sometimes quickly gains popularity. Second, the popularity of songs normally decreases as time goes by. Therefore, this paper proposes a new model that is more suitable for online music services by adding fitness and aging functions to the song nodes of the bipartite network proposed by Zhang et al. (2013). Theoretical analyses are performed for the degree distribution of songs. Empirical data from an online streaming service, Last.fm, are used to confirm the degree distribution of the object nodes. Simulation results show improvements from a previous model. Finally, to illustrate the application of the proposed model, a simplified royalty cost model for online music services is used to demonstrate how the changes in the proposed parameters can affect the costs for online music streaming providers. Managerial implications are also discussed.
Fitting outbreak models to data from many small norovirus outbreaks
Directory of Open Access Journals (Sweden)
Eamon B. O’Dea
2014-03-01
Full Text Available Infectious disease often occurs in small, independent outbreaks in populations with varying characteristics. Each outbreak by itself may provide too little information for accurate estimation of epidemic model parameters. Here we show that using standard stochastic epidemic models for each outbreak and allowing parameters to vary between outbreaks according to a linear predictor leads to a generalized linear model that accurately estimates parameters from many small and diverse outbreaks. By estimating initial growth rates in addition to transmission rates, we are able to characterize variation in numbers of initially susceptible individuals or contact patterns between outbreaks. With simulation, we find that the estimates are fairly robust to the data being collected at discrete intervals and imputation of about half of all infectious periods. We apply the method by fitting data from 75 norovirus outbreaks in health-care settings. Our baseline regression estimates are 0.0037 transmissions per infective-susceptible day, an initial growth rate of 0.27 transmissions per infective day, and a symptomatic period of 3.35 days. Outbreaks in long-term-care facilities had significantly higher transmission and initial growth rates than outbreaks in hospitals.
Correcting Model Fit Criteria for Small Sample Latent Growth Models with Incomplete Data
McNeish, Daniel; Harring, Jeffrey R.
2017-01-01
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
FITTING OF PARAMETRIC BUILDING MODELS TO OBLIQUE AERIAL IMAGES
Directory of Open Access Journals (Sweden)
U. S. Panday
2012-09-01
Full Text Available In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS data. This leads to inconsistent building outlines, which has a negative inﬂuence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of – 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for
Astrophysical Model Selection in Gravitational Wave Astronomy
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
Detailed modeling of mountain wave PSCs
Directory of Open Access Journals (Sweden)
S. Fueglistaler
2003-01-01
Full Text Available Polar stratospheric clouds (PSCs play a key role in polar ozone depletion. In the Arctic, PSCs can occur on the mesoscale due to orographically induced gravity waves. Here we present a detailed study of a mountain wave PSC event on 25-27 January 2000 over Scandinavia. The mountain wave PSCs were intensively observed by in-situ and remote-sensing techniques during the second phase of the SOLVE/THESEO-2000 Arctic campaign. We use these excellent data of PSC observations on 3 successive days to analyze the PSCs and to perform a detailed comparison with modeled clouds. We simulated the 3-dimensional PSC structure on all 3 days with a mesoscale numerical weather prediction (NWP model and a microphysical box model (using best available nucleation rates for ice and nitric acid trihydrate particles. We show that the combined mesoscale/microphysical model is capable of reproducing the PSC measurements within the uncertainty of data interpretation with respect to spatial dimensions, temporal development and microphysical properties, without manipulating temperatures or using other tuning parameters. In contrast, microphysical modeling based upon coarser scale global NWP data, e.g. current ECMWF analysis data, cannot reproduce observations, in particular the occurrence of ice and nitric acid trihydrate clouds. Combined mesoscale/microphysical modeling may be used for detailed a posteriori PSC analysis and for future Arctic campaign flight and mission planning. The fact that remote sensing alone cannot further constrain model results due to uncertainities in the interpretation of measurements, underlines the need for synchronous in-situ PSC observations in campaigns.
A wave model test bed study for wave energy resource characterization
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng
2017-12-01
This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.
A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves
International Nuclear Information System (INIS)
Yuan, Mao Dan; Kang, To; Kim, Hak Joon; Song, Sung Jin
2011-01-01
In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress
A cautionary note on the use of information fit indexes in covariance structure modeling with means
Wicherts, J.M.; Dolan, C.V.
2004-01-01
Information fit indexes such as Akaike Information Criterion, Consistent Akaike Information Criterion, Bayesian Information Criterion, and the expected cross validation index can be valuable in assessing the relative fit of structural equation models that differ regarding restrictiveness. In cases
Inflationary gravitational waves in collapse scheme models
Energy Technology Data Exchange (ETDEWEB)
Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)
2016-01-10
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Modeling stretched solitary waves along magnetic field lines
Directory of Open Access Journals (Sweden)
L. Muschietti
2002-01-01
Full Text Available A model is presented for a new type of fast solitary waves which is observed in downward current regions of the auroral zone. The three-dimensional, coherent structures are electrostatic, have a positive potential, and move along the magnetic field lines with speeds on the order of the electron drift. Their parallel potential profile is flattened and cannot fit to the Gaussian shape used in previous work. We develop a detailed BGK model which includes a flattened potential and an assumed cylindrical symmetry around a centric magnetic field line. The model envisions concentric shells of trapped electrons slowly drifting azimuthally while bouncing back and forth in the parallel direction. The electron dynamics is analysed in terms of three basic motions that occur on different time scales characterized by the cyclotron frequency We , the bounce frequency wb , and the azimuthal drift frequency wg. The ordering We >> wb >> wg is required. Self-consistent distribution functions are calculated in terms of approximate constants of motion. Constraints on the parameters characterizing the amplitude and shape of the stretched solitary wave are discussed.
A test-bed modeling study for wave resource assessment
Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.
2016-02-01
Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.
A versatile curve-fit model for linear to deeply concave rank abundance curves
Neuteboom, J.H.; Struik, P.C.
2005-01-01
A new, flexible curve-fit model for linear to concave rank abundance curves was conceptualized and validated using observational data. The model links the geometric-series model and log-series model and can also fit deeply concave rank abundance curves. The model is based ¿ in an unconventional way
Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures
Zou, T.; Kaminski, M.L.
2016-01-01
In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated
Matthew P. Adams; Catherine J. Collier; Sven Uthicke; Yan X. Ow; Lucas Langlois; Katherine R. O’Brien
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluat...
Virtual Suit Fit Assessment Using Body Shape Model
National Aeronautics and Space Administration — Shoulder injury is one of the most serious risks for crewmembers in long-duration spaceflight. While suboptimal suit fit and contact pressures between the shoulder...
Waves, currents and sediment transport modelling at the Wave Hub site
Gonzalez-Santamaria, Raul
2013-01-01
Primary supervisory team: Qingping Zou and Shunqi Pan This research project uses an integrated modelling system to investigate the effects of a wave farm on nearshore sediment transport at the Wave Hub site. The Wave Hub project is a large scale demonstration site for the development of the operation of arrays of wave energy generation devices located at the southwest coast of the UK where multiple field measurements took place. Particular attention of this study was paid to th...
Fitness voter model: Damped oscillations and anomalous consensus.
Woolcock, Anthony; Connaughton, Colm; Merali, Yasmin; Vazquez, Federico
2017-09-01
We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which each agent is endowed with an integer fitness parameter k≥0, in addition to its + or - opinion state. The evolution of the distribution of k-values and the opinion dynamics are coupled together, so as to allow the system to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions interact, their k-values are compared, and with probability p the agent with the lower value adopts the opinion of the one with the higher value, while with probability 1-p the opposite happens. The agent that keeps its opinion (winning agent) increments its k-value by one. We study the dynamics of the system in the entire 0≤p≤1 range and compare with the case p=1/2, in which opinions are decoupled from the k-values and the dynamics is equivalent to that of the standard voter model. When 0≤psystem approaches exponentially fast to the consensus state of the initial majority opinion. The mean consensus time τ appears to grow logarithmically with the number of agents N, and it is greatly decreased relative to the linear behavior τ∼N found in the standard voter model. When 1/2system initially relaxes to a state with an even coexistence of opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic for 1/2oscillations around the coexistence value. The final approach to coexistence is approximately a power law t^{-b(p)} in both regimes, where the exponent b increases with p. Also, τ increases respect to the standard voter model, although it still scales linearly with N. The p=1 case is special, with a relaxation to coexistence that scales as t^{-2.73} and a consensus time that scales as τ∼N^{β}, with β≃1.45.
Horizontal circulation and jumps in Hamiltonian wave models
Gagarina, Elena; van der Vegt, Jacobus J.W.; Bokhove, Onno
2013-01-01
We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian
Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.
2010-01-01
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
Wave Modelling - The State of the Art
2007-09-27
8217) - -16 C-Ax( M) (I - 2y) -N +1CgAx’(1 -y)(6y’ - 6y + 1) + O(At4), (8.2) 24OX where p is the Courant- Friedrichs -Lewy (CFL) number, j = CgxAt/Ax. Thus...attainable time step is at the best of the order of min- utes . For early third generation wave models, this was unacceptable, and methods were developed to be... Barbara Channel. In: Beal, R. (Ed.), 5th California Islands Symposium, March 29-31. Mineral Management Service, Santa Barbara , CA. Onorato, M., Osborne
Item level diagnostics and model - data fit in item response theory ...
African Journals Online (AJOL)
Item response theory (IRT) is a framework for modeling and analyzing item response data. Item-level modeling gives IRT advantages over classical test theory. The fit of an item score pattern to an item response theory (IRT) models is a necessary condition that must be assessed for further use of item and models that best fit ...
Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach
Thomas, C.; Lark, R. M.
2013-12-01
Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second
Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2011-01-01
The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....
Rogue waves in a water tank: Experiments and modeling
Lechuga, Antonio
2013-04-01
Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.
CRAPONE, Optical Model Potential Fit of Neutron Scattering Data
International Nuclear Information System (INIS)
Fabbri, F.; Fratamico, G.; Reffo, G.
2004-01-01
1 - Description of problem or function: Automatic search for local and non-local optical potential parameters for neutrons. Total, elastic, differential elastic cross sections, l=0 and l=1 strength functions and scattering length can be considered. 2 - Method of solution: A fitting procedure is applied to different sets of experimental data depending on the local or non-local approximation chosen. In the non-local approximation the fitting procedure can be simultaneously performed over the whole energy range. The best fit is obtained when a set of parameters is found where CHI 2 is at its minimum. The solution of the system equations is obtained by diagonalization of the matrix according to the Jacobi method
International Nuclear Information System (INIS)
Mbagwu, J.S.C.
1994-05-01
Among the many models developed for monitoring the infiltration process those of Philip and Kostiakov have been studied in detail because of their simplicity and the ease of estimating their fitting parameters. The important soil physical factors influencing the fitting parameters in these infiltration models are reported in this study. The results of the study show that the single most important soil property affecting the fitting parameters in these models is the effective porosity. 36 refs, 2 figs, 5 tabs
Modeling secondary accidents identified by traffic shock waves.
Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R
2016-02-01
The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.
Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods
DEFF Research Database (Denmark)
Reikard, Gordon; Pinson, Pierre; Bidlot, Jean
2011-01-01
Recently, the technology has been developed to make wave farms commercially viable. Since electricity is perishable, utilities will be interested in forecasting ocean wave energy. The horizons involved in short-term management of power grids range from as little as a few hours to as long as several...... days. In selecting a method, the forecaster has a choice between physics-based models and statistical techniques. A further idea is to combine both types of models. This paper analyzes the forecasting properties of a well-known physics-based model, the European Center for Medium-Range Weather Forecasts...... (ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...
A methodology for spectral wave model evaluation
Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.
2017-12-01
Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave
Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics
Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies
1997-01-01
We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...
Stochastic model for joint wave and wind loads on offshore structures
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2002-01-01
_s,T_z)$ from the North Sea a well fitting joint distribution of $(H_s,T_z)$ is obtained as a so-called Nataf model. Since the wave field is wind driven, there is a correlation between the time averaged wind velocity pressure $Q$ and the characteristic wave height in the stationary situation. Using the Poisson...... process model to concentrate on those load events that are of importance for the evaluation of the safety of the structure, that is, events with $Q$ larger than some threshold $q_0$, available information about the wind velocity pressure distributionin high wind situations can be used to formulate a Nataf...
Modelling shear wave splitting observations from Wellington, New Zealand
Marson-Pidgeon, Katrina; Savage, Martha K.
2004-05-01
Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even
The FITS model office ergonomics program: a model for best practice.
Chim, Justine M Y
2014-01-01
An effective office ergonomics program can predict positive results in reducing musculoskeletal injury rates, enhancing productivity, and improving staff well-being and job satisfaction. Its objective is to provide a systematic solution to manage the potential risk of musculoskeletal disorders among computer users in an office setting. A FITS Model office ergonomics program is developed. The FITS Model Office Ergonomics Program has been developed which draws on the legislative requirements for promoting the health and safety of workers using computers for extended periods as well as previous research findings. The Model is developed according to the practical industrial knowledge in ergonomics, occupational health and safety management, and human resources management in Hong Kong and overseas. This paper proposes a comprehensive office ergonomics program, the FITS Model, which considers (1) Furniture Evaluation and Selection; (2) Individual Workstation Assessment; (3) Training and Education; (4) Stretching Exercises and Rest Break as elements of an effective program. An experienced ergonomics practitioner should be included in the program design and implementation. Through the FITS Model Office Ergonomics Program, the risk of musculoskeletal disorders among computer users can be eliminated or minimized, and workplace health and safety and employees' wellness enhanced.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
Impact of surface waves in a Regional Climate Model
DEFF Research Database (Denmark)
Rutgersson, Anna; Sætra, Oyvind; Semedo, Alvaro
2010-01-01
A coupled regional atmosphere-wave model system is developed with the purpose of investigating the impact of climate changes on the wave field, as well as feed-back effects of the wave field on the atmospheric parameters. This study focuses on the effects of introducing a two-way atmosphere...
Improved Wave-vessel Transfer Functions by Uncertainty Modelling
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio
2016-01-01
This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in inp...
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
Revisiting the Global Electroweak Fit of the Standard Model and Beyond with Gfitter
Flächer, Henning; Haller, J; Höcker, A; Mönig, K; Stelzer, J
2009-01-01
The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter projec...
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G
2007-01-01
..., for waves propagating over fringing reefs. The model evaluation had two goals: (a) investigate differences between laboratory and field characteristics of wave transformation processes over reefs, and (b...
Wave Resource Characterization Using an Unstructured Grid Modeling Approach
Directory of Open Access Journals (Sweden)
Wei-Cheng Wu
2018-03-01
Full Text Available This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization, using the unstructured grid Simulating WAve Nearshore (SWAN model coupled with a nested grid WAVEWATCH III® (WWIII model. The flexibility of models with various spatial resolutions and the effects of open boundary conditions simulated by a nested grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured grid-modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Center Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the ST2 physics package’s ability to predict wave power density for large waves, which is important for wave resource assessment, load calculation of devices, and risk management. In addition, bivariate distributions show that the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than with the ST2 physics package. This study demonstrated that the unstructured grid wave modeling approach, driven by regional nested grid WWIII outputs along with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (102 km.
Modelling population dynamics model formulation, fitting and assessment using state-space methods
Newman, K B; Morgan, B J T; King, R; Borchers, D L; Cole, D J; Besbeas, P; Gimenez, O; Thomas, L
2014-01-01
This book gives a unifying framework for estimating the abundance of open populations: populations subject to births, deaths and movement, given imperfect measurements or samples of the populations. The focus is primarily on populations of vertebrates for which dynamics are typically modelled within the framework of an annual cycle, and for which stochastic variability in the demographic processes is usually modest. Discrete-time models are developed in which animals can be assigned to discrete states such as age class, gender, maturity, population (within a metapopulation), or species (for multi-species models). The book goes well beyond estimation of abundance, allowing inference on underlying population processes such as birth or recruitment, survival and movement. This requires the formulation and fitting of population dynamics models. The resulting fitted models yield both estimates of abundance and estimates of parameters characterizing the underlying processes.
Toward a scalable flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.
For marine and coastal applications, current work are directed toward the development of a scalable numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included...... for flexibility in the description of structures by the use of curvilinear boundary-fitted meshes. The mathematical equations for potential waves in the physical domain is transformed through $\\sigma$-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution...... strategy on a time-invariant mesh. The 3D numerical model is based on a finite difference method as in the original works \\cite{LiFleming1997,BinghamZhang2007}. Full details and other aspects of an improved 3D solution can be found in \\cite{EBL08}. The new and improved approach for three...
Model Fitting for Predicted Precipitation in Darwin: Some Issues with Model Choice
Farmer, Jim
2010-01-01
In Volume 23(2) of the "Australian Senior Mathematics Journal," Boncek and Harden present an exercise in fitting a Markov chain model to rainfall data for Darwin Airport (Boncek & Harden, 2009). Days are subdivided into those with precipitation and precipitation-free days. The author abbreviates these labels to wet days and dry days.…
Model-fitting approach to kinetic analysis of non-isothermal oxidation of molybdenite
International Nuclear Information System (INIS)
Ebrahimi Kahrizsangi, R.; Abbasi, M. H.; Saidi, A.
2007-01-01
The kinetics of molybdenite oxidation was studied by non-isothermal TGA-DTA with heating rate 5 d eg C .min -1 . The model-fitting kinetic approach applied to TGA data. The Coats-Redfern method used of model fitting. The popular model-fitting gives excellent fit non-isothermal data in chemically controlled regime. The apparent activation energy was determined to be about 34.2 kcalmol -1 With pre-exponential factor about 10 8 sec -1 for extent of reaction less than 0.5
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-04-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.
Repair models of cell survival and corresponding computer program for survival curve fitting
International Nuclear Information System (INIS)
Shen Xun; Hu Yiwei
1992-01-01
Some basic concepts and formulations of two repair models of survival, the incomplete repair (IR) model and the lethal-potentially lethal (LPL) model, are introduced. An IBM-PC computer program for survival curve fitting with these models was developed and applied to fit the survivals of human melanoma cells HX118 irradiated at different dose rates. Comparison was made between the repair models and two non-repair models, the multitar get-single hit model and the linear-quadratic model, in the fitting and analysis of the survival-dose curves. It was shown that either IR model or LPL model can fit a set of survival curves of different dose rates with same parameters and provide information on the repair capacity of cells. These two mathematical models could be very useful in quantitative study on the radiosensitivity and repair capacity of cells
The l z ( p ) * Person-Fit Statistic in an Unfolding Model Context.
Tendeiro, Jorge N
2017-01-01
Although person-fit analysis has a long-standing tradition within item response theory, it has been applied in combination with dominance response models almost exclusively. In this article, a popular log likelihood-based parametric person-fit statistic under the framework of the generalized graded unfolding model is used. Results from a simulation study indicate that the person-fit statistic performed relatively well in detecting midpoint response style patterns and not so well in detecting extreme response style patterns.
Tele-Intervention: The Wave of the Future Fits Families' Lives Today
Behl, Diane D.; Houston, K. Todd; Guthrie, W. Spencer; Guthrie, Nancy K.
2010-01-01
This article provides information on providing early intervention services virtually using distance communication technologies. It describes "tele-intervention," a new method of providing services to children and their families, and how it is used in a family with a deaf child. Tele-intervention has proven to be a viable service delivery model for…
Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter
2010-01-01
The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...
Stochastic volatility models and Kelvin waves
Energy Technology Data Exchange (ETDEWEB)
Lipton, Alex [Merrill Lynch, Mlfc Main, 2 King Edward Street, London EC1A 1HQ (United Kingdom); Sepp, Artur [Merrill Lynch, 4 World Financial Center, New York, NY 10080 (United States)], E-mail: Alex_Lipton@ml.com, E-mail: Artur_Sepp@ml.com
2008-08-29
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.
Stochastic volatility models and Kelvin waves
Lipton, Alex; Sepp, Artur
2008-08-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.
Stochastic volatility models and Kelvin waves
International Nuclear Information System (INIS)
Lipton, Alex; Sepp, Artur
2008-01-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics
Model Predictive Control of a Wave Energy Converter
DEFF Research Database (Denmark)
Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard
2015-01-01
In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...
Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models
Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning
2012-01-01
The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…
Using the PLUM procedure of SPSS to fit unequal variance and generalized signal detection models.
DeCarlo, Lawrence T
2003-02-01
The recent addition of aprocedure in SPSS for the analysis of ordinal regression models offers a simple means for researchers to fit the unequal variance normal signal detection model and other extended signal detection models. The present article shows how to implement the analysis and how to interpret the SPSS output. Examples of fitting the unequal variance normal model and other generalized signal detection models are given. The approach offers a convenient means for applying signal detection theory to a variety of research.
A hydrodynamic model of nearshore waves and wave-induced currents
Directory of Open Access Journals (Sweden)
Ahmed Khaled Seif
2011-09-01
Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
the atmosphere must, by conservation, result in the generation of the surface waves and currents. The physics-based methods are sensitive to the choice of wind-input source function (Sin), parameterization of high-frequency wave spectra tail, and numerical cut-off frequencies. Unfortunately, literature survey......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... shows that in most wind-wave coupling systems, either the Sin in the wave model is different from the one used for the momentum flux estimation in the atmospheric model, or the methods are too sensitive to the parameterization of high-frequency spectra tail and numerical cut-off frequencies. To confront...
Modeling deflagration waves out of hot spots
Partom, Yehuda
2017-01-01
It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.
Experimental investigation of shock wave diffraction over a single- or double-sphere model
Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.
2017-01-01
In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.
The issue of statistical power for overall model fit in evaluating structural equation models
Directory of Open Access Journals (Sweden)
Richard HERMIDA
2015-06-01
Full Text Available Statistical power is an important concept for psychological research. However, examining the power of a structural equation model (SEM is rare in practice. This article provides an accessible review of the concept of statistical power for the Root Mean Square Error of Approximation (RMSEA index of overall model fit in structural equation modeling. By way of example, we examine the current state of power in the literature by reviewing studies in top Industrial-Organizational (I/O Psychology journals using SEMs. Results indicate that in many studies, power is very low, which implies acceptance of invalid models. Additionally, we examined methodological situations which may have an influence on statistical power of SEMs. Results showed that power varies significantly as a function of model type and whether or not the model is the main model for the study. Finally, results indicated that power is significantly related to model fit statistics used in evaluating SEMs. The results from this quantitative review imply that researchers should be more vigilant with respect to power in structural equation modeling. We therefore conclude by offering methodological best practices to increase confidence in the interpretation of structural equation modeling results with respect to statistical power issues.
Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R
2017-01-04
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.
Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.
Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.
Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin
2015-02-01
To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.
Improving wave forecasting by integrating ensemble modelling and machine learning
O'Donncha, F.; Zhang, Y.; James, S. C.
2017-12-01
Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.
Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P
2014-05-20
Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input-output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on
Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter
Directory of Open Access Journals (Sweden)
Bret Bosma
2015-08-01
Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.
Model-based dispersive wave processing: A recursive Bayesian solution
International Nuclear Information System (INIS)
Candy, J.V.; Chambers, D.H.
1999-01-01
Wave propagation through dispersive media represents a significant problem in many acoustic applications, especially in ocean acoustics, seismology, and nondestructive evaluation. In this paper we propose a propagation model that can easily represent many classes of dispersive waves and proceed to develop the model-based solution to the wave processing problem. It is shown that the underlying wave system is nonlinear and time-variable requiring a recursive processor. Thus the general solution to the model-based dispersive wave enhancement problem is developed using a Bayesian maximum a posteriori (MAP) approach and shown to lead to the recursive, nonlinear extended Kalman filter (EKF) processor. The problem of internal wave estimation is cast within this framework. The specific processor is developed and applied to data synthesized by a sophisticated simulator demonstrating the feasibility of this approach. copyright 1999 Acoustical Society of America.
Modelling of Performance of Caisson Type Breakwaters under Extreme Waves
Güney Doǧan, Gözde; Özyurt Tarakcıoǧlu, Gülizar; Baykal, Cüneyt
2016-04-01
Many coastal structures are designed without considering loads of tsunami-like waves or long waves although they are constructed in areas prone to encounter these waves. Performance of caisson type breakwaters under extreme swells is tested in Middle East Technical University (METU) Coastal and Ocean Engineering Laboratory. This paper presents the comparison of pressure measurements taken along the surface of caisson type breakwaters and obtained from numerical modelling of them using IH2VOF as well as damage behavior of the breakwater under the same extreme swells tested in a wave flume at METU. Experiments are conducted in the 1.5 m wide wave flume, which is divided into two parallel sections (0.74 m wide each). A piston type of wave maker is used to generate the long wave conditions located at one end of the wave basin. Water depth is determined as 0.4m and kept constant during the experiments. A caisson type breakwater is constructed to one side of the divided flume. The model scale, based on the Froude similitude law, is chosen as 1:50. 7 different wave conditions are applied in the tests as the wave period ranging from 14.6 s to 34.7 s, wave heights from 3.5 m to 7.5 m and steepness from 0.002 to 0.015 in prototype scale. The design wave parameters for the breakwater were 5m wave height and 9.5s wave period in prototype. To determine the damage of the breakwater which were designed according to this wave but tested under swell waves, video and photo analysis as well as breakwater profile measurements before and after each test are performed. Further investigations are carried out about the acting wave forces on the concrete blocks of the caisson structures via pressure measurements on the surfaces of these structures where the structures are fixed to the channel bottom minimizing. Finally, these pressure measurements will be compared with the results obtained from the numerical study using IH2VOF which is one of the RANS models that can be applied to simulate
Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics
Directory of Open Access Journals (Sweden)
M. H. Dao
2011-02-01
Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.
Information Theoretic Tools for Parameter Fitting in Coarse Grained Models
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A.; Plechac, Petr
2015-01-01
We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-08-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-01-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Towards a new technique to construct a 3D shear-wave velocity model based on converted waves
Hetényi, G.; Colavitti, L.
2017-12-01
A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of
The lz(p)* Person-Fit Statistic in an Unfolding Model Context
Tendeiro, Jorge N.
2017-01-01
Although person-fit analysis has a long-standing tradition within item response theory, it has been applied in combination with dominance response models almost exclusively. In this article, a popular log likelihood-based parametric person-fit statistic under the framework of the generalized graded
Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea
Akpınar, Adem; van Vledder, Gerbrant Ph.; Kömürcü, Murat İhsan; Özger, Mehmet
2012-12-01
This study summaries the implementation of the SWAN model forced by the ECMWF ERA Interim dataset reanalyzed 10 m winds over the Black Sea which will be used to study the wind-wave climate and wave energy potential in the region, and its verification. The SWAN model results were compared with directional buoy measurements at three locations along the north and south coasts of the Black Sea, parametric model results based on the JONSWAP growth relations, and the results of previous studies. The SWAN model has been applied in a third generation and non-stationary mode with spherical coordinates. The linear and exponential growth from wind input, depth-induced wave breaking, bottom friction, whitecapping, four-wave (for deep water) and triad-wave (for shallow water) nonlinear interactions have been activated in the simulations. The results of this study indicate that agreement between simulated and observed wave parameters is satisfactory and it is slightly more accurate than the results of the previous studies. However, it still has lower estimates for the maximum values of both wave parameters. These lower estimates are probably due to too low wind speeds in the applied ECMWF wind fields, which is probably caused by orographic effects, and due to the relatively course resolution in time and space of the ECMWF (ERA-Interim) wind fields for the Black Sea.
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo
2009-01-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...
Wind-wave modelling aspects within complicate topography
Directory of Open Access Journals (Sweden)
S. Christopoulos
Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Lorand Catalin STOENESCU
2011-01-01
The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D) of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishi...
Jacobian elliptic wave solutions in an anharmonic molecular crystal model
International Nuclear Information System (INIS)
Teh, C.G.R.; Lee, B.S.; Koo, W.K.
1997-07-01
Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig
Fitting and Testing Conditional Multinormal Partial Credit Models
Hessen, David J.
2012-01-01
A multinormal partial credit model for factor analysis of polytomously scored items with ordered response categories is derived using an extension of the Dutch Identity (Holland in "Psychometrika" 55:5-18, 1990). In the model, latent variables are assumed to have a multivariate normal distribution conditional on unweighted sums of item…
Clark, D Angus; Bowles, Ryan P
2018-04-23
In exploratory item factor analysis (IFA), researchers may use model fit statistics and commonly invoked fit thresholds to help determine the dimensionality of an assessment. However, these indices and thresholds may mislead as they were developed in a confirmatory framework for models with continuous, not categorical, indicators. The present study used Monte Carlo simulation methods to investigate the ability of popular model fit statistics (chi-square, root mean square error of approximation, the comparative fit index, and the Tucker-Lewis index) and their standard cutoff values to detect the optimal number of latent dimensions underlying sets of dichotomous items. Models were fit to data generated from three-factor population structures that varied in factor loading magnitude, factor intercorrelation magnitude, number of indicators, and whether cross loadings or minor factors were included. The effectiveness of the thresholds varied across fit statistics, and was conditional on many features of the underlying model. Together, results suggest that conventional fit thresholds offer questionable utility in the context of IFA.
Assessment of health surveys: fitting a multidimensional graded response model.
Depaoli, Sarah; Tiemensma, Jitske; Felt, John M
The multidimensional graded response model, an item response theory (IRT) model, can be used to improve the assessment of surveys, even when sample sizes are restricted. Typically, health-based survey development utilizes classical statistical techniques (e.g. reliability and factor analysis). In a review of four prominent journals within the field of Health Psychology, we found that IRT-based models were used in less than 10% of the studies examining scale development or assessment. However, implementing IRT-based methods can provide more details about individual survey items, which is useful when determining the final item content of surveys. An example using a quality of life survey for Cushing's syndrome (CushingQoL) highlights the main components for implementing the multidimensional graded response model. Patients with Cushing's syndrome (n = 397) completed the CushingQoL. Results from the multidimensional graded response model supported a 2-subscale scoring process for the survey. All items were deemed as worthy contributors to the survey. The graded response model can accommodate unidimensional or multidimensional scales, be used with relatively lower sample sizes, and is implemented in free software (example code provided in online Appendix). Use of this model can help to improve the quality of health-based scales being developed within the Health Sciences.
A No-Scale Inflationary Model to Fit Them All
Ellis, John; Nanopoulos, Dimitri; Olive, Keith
2014-01-01
The magnitude of B-mode polarization in the cosmic microwave background as measured by BICEP2 favours models of chaotic inflation with a quadratic $m^2 \\phi^2/2$ potential, whereas data from the Planck satellite favour a small value of the tensor-to-scalar perturbation ratio $r$ that is highly consistent with the Starobinsky $R + R^2$ model. Reality may lie somewhere between these two scenarios. In this paper we propose a minimal two-field no-scale supergravity model that interpolates between quadratic and Starobinsky-like inflation as limiting cases, while retaining the successful prediction $n_s \\simeq 0.96$.
Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters
Fusco, Francesco; Ringwood, John
2010-01-01
Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...
Modeling stress wave propagation in rocks by distinct lattice spring model
Directory of Open Access Journals (Sweden)
Gaofeng Zhao
2014-08-01
Full Text Available In this paper, the ability of the distinct lattice spring model (DLSM for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress waves (e.g. one-dimensional (1D P-wave, 1D S-wave and two-dimensional (2D cylindrical wave was studied through comparing results predicted by the DLSM with different mesh ratios (lr and those obtained from the corresponding analytical solutions. Suggested values of lr were obtained for modeling these stress waves accurately. Moreover, the weak material layer method and virtual joint plane method were used to model P-wave and S-wave propagating through a single discontinuity. The results were compared with the classical analytical solutions, indicating that the virtual joint plane method can give better results and is recommended. Finally, some remarks of the DLSM on modeling of stress wave propagation in rocks were provided.
SPSS macros to compare any two fitted values from a regression model.
Weaver, Bruce; Dubois, Sacha
2012-12-01
In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.
Modeling the Buoyancy System of a Wave Energy Power Plant
DEFF Research Database (Denmark)
Pedersen, Tom S.; Nielsen, Kirsten M.
2009-01-01
A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting...
Modeling sheet-flow sand transport under progressive surface waves
Kranenburg, Wouter
2013-01-01
In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.
Variational Boussinesq model for strongly nonlinear dispersive waves
Lawrence, C.; Adytia, D.; van Groesen, E.
2018-01-01
For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be
Models for seismic wave propagation in periodically layered porous media
Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.
2014-01-01
Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation
Information Theoretic Tools for Parameter Fitting in Coarse Grained Models
Kalligiannaki, Evangelia
2015-01-07
We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.
Particle transport model sensitivity on wave-induced processes
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.
The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...
Design of spatial experiments: Model fitting and prediction
Energy Technology Data Exchange (ETDEWEB)
Fedorov, V.V.
1996-03-01
The main objective of the paper is to describe and develop model oriented methods and algorithms for the design of spatial experiments. Unlike many other publications in this area, the approach proposed here is essentially based on the ideas of convex design theory.
Goodness-of-fit tests in mixed models
Claeskens, Gerda; Hart, Jeffrey D.
2009-01-01
Mixed models, with both random and fixed effects, are most often estimated on the assumption that the random effects are normally distributed. In this paper we propose several formal tests of the hypothesis that the random effects and/or errors
Reducing uncertainty based on model fitness: Application to a ...
African Journals Online (AJOL)
A weakness of global sensitivity and uncertainty analysis methodologies is the often subjective definition of prior parameter probability distributions, especially ... The reservoir representing the central part of the wetland, where flood waters separate into several independent distributaries, is a keystone area within the model.
Modeling aspects of wave kinematics in offshore structures dynamics
International Nuclear Information System (INIS)
Spanos, P.D.; Ghanem, R.; Bhattacharjee, S.
1993-01-01
Magnitude and phase related issues of modeling of ocean wave kinematics are addressed. Causal and non-causal filters are examined. It is shown that if for a particular ocean engineering problem only the magnitude representation of wave spectra spatial relation is critical, analog filters can be quite useful models in conjunction with the technique of statistical linearization, for calculating dynamic analyses. This is illustrated by considering the dynamic response of a simple model of a guyed tower
The traveling-wave amplifier model of the cochlea adapted to dolphins
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Au, W.W.L.
1999-01-01
The traveling-wave amplifier (TWA) model of the cochlea [A. Hubbard, Science 259, 68–71 (1993)] has been shown to produce outputs that compare quite well with experimental data. A TWA model with parameters adjusted to fit the physiological properties of the dolphin cochlea was used as part...... of a sonar signal discrimination system. The system was tested on a cylinder wall thickness discrimination problem. Broadband echoes from cylinders with different wall thicknesses were aligned using a matched filter and envelope detection. The aligned signals were used as inputs to the TWA model and energy...
Goodness-of-fit tests in mixed models
Claeskens, Gerda
2009-05-12
Mixed models, with both random and fixed effects, are most often estimated on the assumption that the random effects are normally distributed. In this paper we propose several formal tests of the hypothesis that the random effects and/or errors are normally distributed. Most of the proposed methods can be extended to generalized linear models where tests for non-normal distributions are of interest. Our tests are nonparametric in the sense that they are designed to detect virtually any alternative to normality. In case of rejection of the null hypothesis, the nonparametric estimation method that is used to construct a test provides an estimator of the alternative distribution. © 2009 Sociedad de Estadística e Investigación Operativa.
Solvable model of spiral wave chimeras.
Martens, Erik A; Laing, Carlo R; Strogatz, Steven H
2010-01-29
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.
Solvable Model of Spiral Wave Chimeras
DEFF Research Database (Denmark)
Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.
2010-01-01
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....
Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagtion
International Nuclear Information System (INIS)
Matda, Y.; Crawford, F.W.
1974-12-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described. (auth)
Traveling waves in an optimal velocity model of freeway traffic
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Modelization of highly nonlinear waves in coastal regions
Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre
2015-04-01
The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.
Modelling of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, M.; Schmidt, J.; Salo, H.
2014-04-01
Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to
New Gravity Wave Treatments for GISS Climate Models
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2011-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.
Energy Technology Data Exchange (ETDEWEB)
Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Dallman, Ann Renee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies
2016-03-01
A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.
Gfitter - Revisiting the global electroweak fit of the Standard Model and beyond
Energy Technology Data Exchange (ETDEWEB)
Flaecher, H.; Hoecker, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Goebel, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Haller, J. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Moenig, K.; Stelzer, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2008-11-15
The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit in the Standard Model, and for a model with an extended Higgs sector (2HDM). Numerical and graphical results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron are given. Perspectives for future colliders are analysed and discussed. Including the direct Higgs searches, we find M{sub H}=116.4{sup +18.3}{sub -1.3} GeV, and the 2{sigma} and 3{sigma} allowed regions [114,145] GeV and [[113,168] and [180,225
Fitting measurement models to vocational interest data: are dominance models ideal?
Tay, Louis; Drasgow, Fritz; Rounds, James; Williams, Bruce A
2009-09-01
In this study, the authors examined the item response process underlying 3 vocational interest inventories: the Occupational Preference Inventory (C.-P. Deng, P. I. Armstrong, & J. Rounds, 2007), the Interest Profiler (J. Rounds, T. Smith, L. Hubert, P. Lewis, & D. Rivkin, 1999; J. Rounds, C. M. Walker, et al., 1999), and the Interest Finder (J. E. Wall & H. E. Baker, 1997; J. E. Wall, L. L. Wise, & H. E. Baker, 1996). Item response theory (IRT) dominance models, such as the 2-parameter and 3-parameter logistic models, assume that item response functions (IRFs) are monotonically increasing as the latent trait increases. In contrast, IRT ideal point models, such as the generalized graded unfolding model, have IRFs that peak where the latent trait matches the item. Ideal point models are expected to fit better because vocational interest inventories ask about typical behavior, as opposed to requiring maximal performance. Results show that across all 3 interest inventories, the ideal point model provided better descriptions of the response process. The importance of specifying the correct item response model for precise measurement is discussed. In particular, scores computed by a dominance model were shown to be sometimes illogical: individuals endorsing mostly realistic or mostly social items were given similar scores, whereas scores based on an ideal point model were sensitive to which type of items respondents endorsed.
Identification and modeling of internal waves
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.
Analyses of Internal Wave (IW) signatures by insitu observations off Visakhapatnam have been presented to study the impact of IWs on acoustic field. Temperature data were collected for 44 hours off Visakhapatnam (17° 26.46’N and 83° 31.20’E...
Nonlinear models for fitting growth curves of Nellore cows reared in the Amazon Biome
Directory of Open Access Journals (Sweden)
Kedma Nayra da Silva Marinho
2013-09-01
Full Text Available Growth curves of Nellore cows were estimated by comparing six nonlinear models: Brody, Logistic, two alternatives by Gompertz, Richards and Von Bertalanffy. The models were fitted to weight-age data, from birth to 750 days of age of 29,221 cows, born between 1976 and 2006 in the Brazilian states of Acre, Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins. The models were fitted by the Gauss-Newton method. The goodness of fit of the models was evaluated by using mean square error, adjusted coefficient of determination, prediction error and mean absolute error. Biological interpretation of parameters was accomplished by plotting estimated weights versus the observed weight means, instantaneous growth rate, absolute maturity rate, relative instantaneous growth rate, inflection point and magnitude of the parameters A (asymptotic weight and K (maturing rate. The Brody and Von Bertalanffy models fitted the weight-age data but the other models did not. The average weight (A and growth rate (K were: 384.6±1.63 kg and 0.0022±0.00002 (Brody and 313.40±0.70 kg and 0.0045±0.00002 (Von Bertalanffy. The Brody model provides better goodness of fit than the Von Bertalanffy model.
Modeling nonstationary extreme wave heights in present and future climates of Greek Seas
Directory of Open Access Journals (Sweden)
Panagiota Galiatsatou
2016-01-01
Full Text Available In this study the generalized extreme value (GEV distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climates. The available significant wave height data were divided into groups corresponding to the present period (1951–2000, a first future period (2001–2050, and a second future period (2051–2100. For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN. For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3 developed by the International Center for Theoretical Physics (ICTP with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA. The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.
Directory of Open Access Journals (Sweden)
Grant B. Morgan
2015-02-01
Full Text Available Bi-factor confirmatory factor models have been influential in research on cognitive abilities because they often better fit the data than correlated factors and higher-order models. They also instantiate a perspective that differs from that offered by other models. Motivated by previous work that hypothesized an inherent statistical bias of fit indices favoring the bi-factor model, we compared the fit of correlated factors, higher-order, and bi-factor models via Monte Carlo methods. When data were sampled from a true bi-factor structure, each of the approximate fit indices was more likely than not to identify the bi-factor solution as the best fitting. When samples were selected from a true multiple correlated factors structure, approximate fit indices were more likely overall to identify the correlated factors solution as the best fitting. In contrast, when samples were generated from a true higher-order structure, approximate fit indices tended to identify the bi-factor solution as best fitting. There was extensive overlap of fit values across the models regardless of true structure. Although one model may fit a given dataset best relative to the other models, each of the models tended to fit the data well in absolute terms. Given this variability, models must also be judged on substantive and conceptual grounds.
Magnetospheric pulsations: Models and observations of compressional waves
International Nuclear Information System (INIS)
Zhu, Xiaoming.
1989-01-01
The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
Can plane wave modes be physical modes in soliton models?
International Nuclear Information System (INIS)
Aldabe, F.
1995-08-01
I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs
Computer modeling of inelastic wave propagation in porous rock
International Nuclear Information System (INIS)
Cheney, J.A.; Schatz, J.F.; Snell, C.
1979-01-01
Computer modeling of wave propagation in porous rock has several important applications. Among them are prediction of fragmentation and permeability changes to be caused by chemical explosions used for in situ resource recovery, and the understanding of nuclear explosion effects such as seismic wave generation, containment, and site hardness. Of interest in all these applications are the distance from the source to which inelastic effects persist and the amount of porosity change within the inelastic region. In order to study phenomena related to these applications, the Cam Clay family of models developed at Cambridge University was used to develop a similar model that is applicable to wave propagation in porous rock. That model was incorporated into a finite-difference wave propagation computer code SOC. 10 figures, 1 table
International Nuclear Information System (INIS)
Matsuda, Y.; Crawford, F.W.
1975-01-01
An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories
Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model
Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.
2018-03-01
The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.
International Nuclear Information System (INIS)
Liang, Zhong Wei; Wang, Yi Jun; Ye, Bang Yan; Brauwer, Richard Kars
2012-01-01
In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process
Energy Technology Data Exchange (ETDEWEB)
Liang, Zhong Wei; Wang, Yi Jun [Guangzhou Univ., Guangzhou (China); Ye, Bang Yan [South China Univ. of Technology, Guangzhou (China); Brauwer, Richard Kars [Indian Institute of Technology, Kanpur (India)
2012-10-15
In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process.
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Huang, Can
2018-01-01
–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....
An Arctic Ice/Ocean Coupled Model with Wave Interactions
2015-09-30
discussed by DRI participants may aid our understanding as well, e.g. those conducted in the Hamburg Ship Model Basin. Our theoretical advances benefit...the project are – continued modifications to the Arctic wide WIM code in association with advances relating to a new ice/ocean model known as... Auckland , December 2014. Montiel, F. Transmission of ocean waves through a row of randomly perturbed circular ice floes. Minisymposium on Wave Motions of
Modeling Stop-and-Go Waves in Pedestrian Dynamics
Portz, Andrea; Seyfried, Armin
2010-01-01
Several spatially continuous pedestrian dynamics models have been validated against empirical data. We try to reproduce the experimental fundamental diagram (velocity versus density) with simulations. In addition to this quantitative criterion, we tried to reproduce stop-and-go waves as a qualitative criterion. Stop-and-go waves are a characteristic phenomenon for the single file movement. Only one of three investigated models satisfies both criteria.
Stojek, Monika M K; Montoya, Amanda K; Drescher, Christopher F; Newberry, Andrew; Sultan, Zain; Williams, Celestine F; Pollock, Norman K; Davis, Catherine L
We used mediation models to examine the mechanisms underlying the relationships among physical fitness, sleep-disordered breathing (SDB), symptoms of depression, and cognitive functioning. We conducted a cross-sectional secondary analysis of the cohorts involved in the 2003-2006 project PLAY (a trial of the effects of aerobic exercise on health and cognition) and the 2008-2011 SMART study (a trial of the effects of exercise on cognition). A total of 397 inactive overweight children aged 7-11 received a fitness test, standardized cognitive test (Cognitive Assessment System, yielding Planning, Attention, Simultaneous, Successive, and Full Scale scores), and depression questionnaire. Parents completed a Pediatric Sleep Questionnaire. We used bootstrapped mediation analyses to test whether SDB mediated the relationship between fitness and depression and whether SDB and depression mediated the relationship between fitness and cognition. Fitness was negatively associated with depression ( B = -0.041; 95% CI, -0.06 to -0.02) and SDB ( B = -0.005; 95% CI, -0.01 to -0.001). SDB was positively associated with depression ( B = 0.99; 95% CI, 0.32 to 1.67) after controlling for fitness. The relationship between fitness and depression was mediated by SDB (indirect effect = -0.005; 95% CI, -0.01 to -0.0004). The relationship between fitness and the attention component of cognition was independently mediated by SDB (indirect effect = 0.058; 95% CI, 0.004 to 0.13) and depression (indirect effect = -0.071; 95% CI, -0.01 to -0.17). SDB mediates the relationship between fitness and depression, and SDB and depression separately mediate the relationship between fitness and the attention component of cognition.
Lin, Shangfei; Sheng, Jinyu
2017-12-01
Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
Cleveland, Robin O; Sapozhnikov, Oleg A
2005-10-01
A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Geometric models of nested field wave forms
International Nuclear Information System (INIS)
Winters, D.
1984-01-01
The authors start with two dimensions. ''Maybe there's this thing we ought to call a 'compressible medium' that seems to be around here''. Maybe it's air or ether. There seems to be this compressible medium which has this quality which is that it conveys inertia momentum. And it is compressible. So, given that, and given not much else, they ought to be able to build things like atomic tables and fundamental concepts of physics. The idea is that the principles of creation are principles of superposition of wave shapes. The suggestion is that wave shape archetypally, naturally builds geometry, and that is the clue to the information structure of atoms and molecules and people
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
Holographic p-wave superconductor models with Weyl corrections
Directory of Open Access Journals (Sweden)
Lu Zhang
2015-04-01
Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.
Wave Model Development in Multi-Ion Plasmas
Directory of Open Access Journals (Sweden)
Sung-Hee Song
1999-06-01
Full Text Available Near-earth space is composed of plasmas which embed a number of plasma waves. Space plasmas consist of electrons and multi-ion that determine local wave propagation characteristics. In multi-ion plasmas, it is di cult to find out analytic solution from the dispersion relation in general. In this work, we have developed a model with an arbitrary magnetic field and density as well as multi-ion plasmas. This model allows us to investigate how plasma waves behave when they propagate along realistic magnetic field lines, which are assumed by IGRF(International Geomagnetic Reference Field. The results are found to be useful for the analysis of the in situ observational data in space. For instance, if waves are assumed to propagate into the polar region, from the equatorial region, our model quantitatively shows how polarization is altered along earth travel path.
Collapse of the wave function models, ontology, origin, and implications
2018-01-01
This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2011-01-01
A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves the Hami...... is proposed. The dynamics of the rarefaction wave is approximated by a collective coordinate approach in the energy balance equation. © 2010 Springer Science+Business Media B.V.......A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...... the Hamiltonian structure, in contrast to the Kuznetsov equation, a model often used in nonlinear acoustics. An exact traveling wave front solution is derived from a generalized traveling wave assumption for the velocity potential. Numerical studies of the evolution of a number of arbitrary initial conditions...
Unifying distance-based goodness-of-fit indicators for hydrologic model assessment
Cheng, Qinbo; Reinhardt-Imjela, Christian; Chen, Xi; Schulte, Achim
2014-05-01
The goodness-of-fit indicator, i.e. efficiency criterion, is very important for model calibration. However, recently the knowledge about the goodness-of-fit indicators is all empirical and lacks a theoretical support. Based on the likelihood theory, a unified distance-based goodness-of-fit indicator termed BC-GED model is proposed, which uses the Box-Cox (BC) transformation to remove the heteroscedasticity of model errors and the generalized error distribution (GED) with zero-mean to fit the distribution of model errors after BC. The BC-GED model can unify all recent distance-based goodness-of-fit indicators, and reveals the mean square error (MSE) and the mean absolute error (MAE) that are widely used goodness-of-fit indicators imply statistic assumptions that the model errors follow the Gaussian distribution and the Laplace distribution with zero-mean, respectively. The empirical knowledge about goodness-of-fit indicators can be also easily interpreted by BC-GED model, e.g. the sensitivity to high flow of the goodness-of-fit indicators with large power of model errors results from the low probability of large model error in the assumed distribution of these indicators. In order to assess the effect of the parameters (i.e. the BC transformation parameter λ and the GED kurtosis coefficient β also termed the power of model errors) of BC-GED model on hydrologic model calibration, six cases of BC-GED model were applied in Baocun watershed (East China) with SWAT-WB-VSA model. Comparison of the inferred model parameters and model simulation results among the six indicators demonstrates these indicators can be clearly separated two classes by the GED kurtosis β: β >1 and β ≤ 1. SWAT-WB-VSA calibrated by the class β >1 of distance-based goodness-of-fit indicators captures high flow very well and mimics the baseflow very badly, but it calibrated by the class β ≤ 1 mimics the baseflow very well, because first the larger value of β, the greater emphasis is put on
Antiferromagnetism and d-wave superconductivity in the Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Krahl, H.C.
2007-07-25
The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)
Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements
Energy Technology Data Exchange (ETDEWEB)
Fouques, Sebastien
2005-07-01
The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting
modeling for oshore wind farms. This modeling system consists of the atmospheric Weather Research and Forecasting (WRF) model, the wave model SWAN and an interface the Wave Boundary Layer Model WBLM, within the framework of coupled-ocean-atmosphere-wave-sediment transport modeling system COAWST...... (Hereinafter the WRF-WBLM-SWAN model). WBLM is implemented in SWAN, and it calculates stress and kinetic energy budgets in the lowest atmospheric layer where the wave-induced stress is introduced to the atmospheric modeling. WBLM ensures consistent calculation of stress for both the atmospheric and wave......, which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...
Hybrid Modelling of a Traveling Wave Piezoelectric Motor
DEFF Research Database (Denmark)
El, Ghouti N.
a theoretical model is derived. Since the dynamic characteristics of the real motor are difficult to capture in an analytical model, and the parameters of the motor are time varying and highly nonlinear, then some assumptions are required in order to simplify the modeling task and thus provide a suitable model......This thesis considers the modeling of the traveling wave piezoelectric motor (PEM). The rotary traveling wave ultrasonic motor "Shinsei type USR60" is the case study considered in this work. The traveling wave PEM has excellent performance and many useful features such as high holding torque, high....... Despite many attempts a lumped motor model of the PEM is unavailable so far. The dynamical characteristics of the PEM are complicated, highly nonlinear, and the motor parameters are time varying due to temperature rise and changes in motor drive operating conditions. Therefore it is difficult to predict...
Irvine, Michael A; Hollingsworth, T Déirdre
2018-05-26
Fitting complex models to epidemiological data is a challenging problem: methodologies can be inaccessible to all but specialists, there may be challenges in adequately describing uncertainty in model fitting, the complex models may take a long time to run, and it can be difficult to fully capture the heterogeneity in the data. We develop an adaptive approximate Bayesian computation scheme to fit a variety of epidemiologically relevant data with minimal hyper-parameter tuning by using an adaptive tolerance scheme. We implement a novel kernel density estimation scheme to capture both dispersed and multi-dimensional data, and directly compare this technique to standard Bayesian approaches. We then apply the procedure to a complex individual-based simulation of lymphatic filariasis, a human parasitic disease. The procedure and examples are released alongside this article as an open access library, with examples to aid researchers to rapidly fit models to data. This demonstrates that an adaptive ABC scheme with a general summary and distance metric is capable of performing model fitting for a variety of epidemiological data. It also does not require significant theoretical background to use and can be made accessible to the diverse epidemiological research community. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Standard error propagation in R-matrix model fitting for light elements
International Nuclear Information System (INIS)
Chen Zhenpeng; Zhang Rui; Sun Yeying; Liu Tingjin
2003-01-01
The error propagation features with R-matrix model fitting 7 Li, 11 B and 17 O systems were researched systematically. Some laws of error propagation were revealed, an empirical formula P j = U j c / U j d = K j · S-bar · √m / √N for describing standard error propagation was established, the most likely error ranges for standard cross sections of 6 Li(n,t), 10 B(n,α0) and 10 B(n,α1) were estimated. The problem that the standard error of light nuclei standard cross sections may be too small results mainly from the R-matrix model fitting, which is not perfect. Yet R-matrix model fitting is the most reliable evaluation method for such data. The error propagation features of R-matrix model fitting for compound nucleus system of 7 Li, 11 B and 17 O has been studied systematically, some laws of error propagation are revealed, and these findings are important in solving the problem mentioned above. Furthermore, these conclusions are suitable for similar model fitting in other scientific fields. (author)
Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models
Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo
2009-06-01
The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.
Modelling of wave propagation over a submerged sand bar using SWASH
Digital Repository Service at National Institute of Oceanography (India)
Jishad, M.; Vu, T.T.T.; JayaKumar, S.
cases The wave heights and wave induced velocities obtained from the model and the laboratory experimental resultsare compared The model without the morphology feedback provided good correlation with the measurements for case of low wave energy, whereas...
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...
Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes
Leite, Walter L.; Stapleton, Laura M.
2011-01-01
In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…
Assessing model fit in latent class analysis when asymptotics do not hold
van Kollenburg, Geert H.; Mulder, Joris; Vermunt, Jeroen K.
2015-01-01
The application of latent class (LC) analysis involves evaluating the LC model using goodness-of-fit statistics. To assess the misfit of a specified model, say with the Pearson chi-squared statistic, a p-value can be obtained using an asymptotic reference distribution. However, asymptotic p-values
Development and design of a late-model fitness test instrument based on LabView
Xie, Ying; Wu, Feiqing
2010-12-01
Undergraduates are pioneers of China's modernization program and undertake the historic mission of rejuvenating our nation in the 21st century, whose physical fitness is vital. A smart fitness test system can well help them understand their fitness and health conditions, thus they can choose more suitable approaches and make practical plans for exercising according to their own situation. following the future trends, a Late-model fitness test Instrument based on LabView has been designed to remedy defects of today's instruments. The system hardware consists of fives types of sensors with their peripheral circuits, an acquisition card of NI USB-6251 and a computer, while the system software, on the basis of LabView, includes modules of user register, data acquisition, data process and display, and data storage. The system, featured by modularization and an open structure, is able to be revised according to actual needs. Tests results have verified the system's stability and reliability.
Self-organized Criticality Model for Ocean Internal Waves
International Nuclear Information System (INIS)
Wang Gang; Hou Yijun; Lin Min; Qiao Fangli
2009-01-01
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...
Fast and exact Newton and Bidirectional fitting of Active Appearance Models.
Kossaifi, Jean; Tzimiropoulos, Yorgos; Pantic, Maja
2016-12-21
Active Appearance Models (AAMs) are generative models of shape and appearance that have proven very attractive for their ability to handle wide changes in illumination, pose and occlusion when trained in the wild, while not requiring large training dataset like regression-based or deep learning methods. The problem of fitting an AAM is usually formulated as a non-linear least squares one and the main way of solving it is a standard Gauss-Newton algorithm. In this paper we extend Active Appearance Models in two ways: we first extend the Gauss-Newton framework by formulating a bidirectional fitting method that deforms both the image and the template to fit a new instance. We then formulate a second order method by deriving an efficient Newton method for AAMs fitting. We derive both methods in a unified framework for two types of Active Appearance Models, holistic and part-based, and additionally show how to exploit the structure in the problem to derive fast yet exact solutions. We perform a thorough evaluation of all algorithms on three challenging and recently annotated inthe- wild datasets, and investigate fitting accuracy, convergence properties and the influence of noise in the initialisation. We compare our proposed methods to other algorithms and show that they yield state-of-the-art results, out-performing other methods while having superior convergence properties.
Test particle modeling of wave-induced energetic electron precipitation
International Nuclear Information System (INIS)
Chang, H.C.; Inan, U.S.
1985-01-01
A test particle computer model of the precipitation of radiation belt electrons is extended to compute the dynamic energy spectrum of transient electron fluxes induced by short-duration VLF wave packets traveling along the geomagnetic field lines. The model is adapted to estimate the count rate and associated spectrum of precipitated electrons that would be observed by satellite-based particle detectors with given geometric factor and orientation with respect to the magnetic field. A constant-frequency wave pulse and a lightning-induced whistler wave packet are used as examples of the stimulating wave signals. The effects of asymmetry of particle mirror heights in the two hemispheres and the atmospheric backscatter of loss cone particles on the computed precipitated fluxes are discussed
Suppression of Spiral Wave in Modified Orengonator Model
International Nuclear Information System (INIS)
Ma Jun; Wang Chunni; Jin Wuyin; Yi Ming
2008-01-01
In this paper, a spatial perturbation scheme is proposed to suppress the spiral wave in the modified Orengonator model, which is used to describe the chemical reaction in the light-sensitive media. The controllable external illumination Φ is perturbed with a spatial linear function. In our numerical simulation, the scheme is investigated by imposing the external controllable illumination on the space continuously and/or intermittently. The numerical simulation results confirm that the stable rotating spiral wave still can be removed with the scheme proposed in this paper even if the controllable Φ changed vs. time and space synchronously. Then the scheme is also used to control the spiral wave and turbulence in the modified Fitzhugh-Nagumo model. It is found that the scheme is effective to remove the sable rotating and meandering spiral wave but it costs long transient period and intensity of the gradient parameter to eliminate the spiral turbulence
DLCQ and plane wave matrix Big Bang models
Blau, Matthias; O'Loughlin, Martin
2008-09-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
DLCQ and plane wave matrix Big Bang models
International Nuclear Information System (INIS)
Blau, Matthias; O'Loughlin, Martin
2008-01-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
The Predicting Model of E-commerce Site Based on the Ideas of Curve Fitting
Tao, Zhang; Li, Zhang; Dingjun, Chen
On the basis of the idea of the second multiplication curve fitting, the number and scale of Chinese E-commerce site is analyzed. A preventing increase model is introduced in this paper, and the model parameters are solved by the software of Matlab. The validity of the preventing increase model is confirmed though the numerical experiment. The experimental results show that the precision of preventing increase model is ideal.
Towards a new tool to develop a 3-D shear-wave velocity model from converted waves
Colavitti, Leonardo; Hetényi, György
2017-04-01
The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter
Anshel, Mark H; Brinthaupt, Thomas M; Kang, Minsoo
2010-01-01
This study examined the effect of a 10-week wellness program on changes in physical fitness and mental well-being. The conceptual framework for this study was the Disconnected Values Model (DVM). According to the DVM, detecting the inconsistencies between negative habits and values (e.g., health, family, faith, character) and concluding that these "disconnects" are unacceptable promotes the need for health behavior change. Participants were 164 full-time employees at a university in the southeastern U.S. The program included fitness coaching and a 90-minute orientation based on the DVM. Multivariate Mixed Model analyses indicated significantly improved scores from pre- to post-intervention on selected measures of physical fitness and mental well-being. The results suggest that the Disconnected Values Model provides an effective cognitive-behavioral approach to generating health behavior change in a 10-week workplace wellness program.
Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model
Marsooli, Reza; Orton, Philip M.; Mellor, George
2017-07-01
Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.
Directory of Open Access Journals (Sweden)
Maria E. Ceballos-Villegas
2017-11-01
Full Text Available The Hoffmann reflex (H-wave is produced by alpha-motoneuron activation in the spinal cord. A feature of this electromyography response is that it exhibits fluctuations in amplitude even during repetitive stimulation with the same intensity of current. We herein explore the hypothesis that physical training induces plastic changes in the motor system. Such changes are evaluated with the fractal dimension (FD analysis of the H-wave amplitude-fluctuations (H-wave FD and the cross-covariance (CCV between the bilateral H-wave amplitudes. The aim of this study was to compare the H-wave FD as well as the CCV before and after track training in sedentary individuals and athletes. The training modality in all subjects consisted of running three times per week (for 13 weeks in a concrete road of 5 km. Given the different physical condition of sedentary vs. athletes, the running time between sedentary and athletes was different. After training, the FD was significantly increased in sedentary individuals but significantly reduced in athletes, although there were no changes in spinal excitability in either group of subjects. Moreover, the CCV between bilateral H-waves exhibited a significant increase in athletes but not in sedentary individuals. These differential changes in the FD and CCV indicate that the plastic changes in the complexity of the H-wave amplitude fluctuations as well as the synaptic inputs to the Ia-motoneuron systems of both legs were correlated to the previous fitness history of the subjects. Furthermore, these findings demonstrate that the FD and CCV can be employed as indexes to study plastic changes in the human motor system.
Ceballos-Villegas, Maria E; Saldaña Mena, Juan J; Gutierrez Lozano, Ana L; Sepúlveda-Cañamar, Francisco J; Huidobro, Nayeli; Manjarrez, Elias; Lomeli, Joel
2017-01-01
The Hoffmann reflex (H-wave) is produced by alpha-motoneuron activation in the spinal cord. A feature of this electromyography response is that it exhibits fluctuations in amplitude even during repetitive stimulation with the same intensity of current. We herein explore the hypothesis that physical training induces plastic changes in the motor system. Such changes are evaluated with the fractal dimension (FD) analysis of the H-wave amplitude-fluctuations (H-wave FD) and the cross-covariance (CCV) between the bilateral H-wave amplitudes. The aim of this study was to compare the H-wave FD as well as the CCV before and after track training in sedentary individuals and athletes. The training modality in all subjects consisted of running three times per week (for 13 weeks) in a concrete road of 5 km. Given the different physical condition of sedentary vs. athletes, the running time between sedentary and athletes was different. After training, the FD was significantly increased in sedentary individuals but significantly reduced in athletes, although there were no changes in spinal excitability in either group of subjects. Moreover, the CCV between bilateral H-waves exhibited a significant increase in athletes but not in sedentary individuals. These differential changes in the FD and CCV indicate that the plastic changes in the complexity of the H-wave amplitude fluctuations as well as the synaptic inputs to the Ia-motoneuron systems of both legs were correlated to the previous fitness history of the subjects. Furthermore, these findings demonstrate that the FD and CCV can be employed as indexes to study plastic changes in the human motor system.
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
Numerical Modeling of a Wave Energy Point Absorber
DEFF Research Database (Denmark)
Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning
2009-01-01
The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....
Modeling storm waves; Modeliser les houles de tempete
Energy Technology Data Exchange (ETDEWEB)
Benoit, M.; Marcos, F.; Teisson, Ch
1999-07-01
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
A goodness-of-fit test for occupancy models with correlated within-season revisits
Wright, Wilson; Irvine, Kathryn M.; Rodhouse, Thomas J.
2016-01-01
Occupancy modeling is important for exploring species distribution patterns and for conservation monitoring. Within this framework, explicit attention is given to species detection probabilities estimated from replicate surveys to sample units. A central assumption is that replicate surveys are independent Bernoulli trials, but this assumption becomes untenable when ecologists serially deploy remote cameras and acoustic recording devices over days and weeks to survey rare and elusive animals. Proposed solutions involve modifying the detection-level component of the model (e.g., first-order Markov covariate). Evaluating whether a model sufficiently accounts for correlation is imperative, but clear guidance for practitioners is lacking. Currently, an omnibus goodnessof- fit test using a chi-square discrepancy measure on unique detection histories is available for occupancy models (MacKenzie and Bailey, Journal of Agricultural, Biological, and Environmental Statistics, 9, 2004, 300; hereafter, MacKenzie– Bailey test). We propose a join count summary measure adapted from spatial statistics to directly assess correlation after fitting a model. We motivate our work with a dataset of multinight bat call recordings from a pilot study for the North American Bat Monitoring Program. We found in simulations that our join count test was more reliable than the MacKenzie–Bailey test for detecting inadequacy of a model that assumed independence, particularly when serial correlation was low to moderate. A model that included a Markov-structured detection-level covariate produced unbiased occupancy estimates except in the presence of strong serial correlation and a revisit design consisting only of temporal replicates. When applied to two common bat species, our approach illustrates that sophisticated models do not guarantee adequate fit to real data, underscoring the importance of model assessment. Our join count test provides a widely applicable goodness-of-fit test and
Tests of fit of historically-informed models of African American Admixture.
Gross, Jessica M
2018-02-01
African American populations in the U.S. formed primarily by mating between Africans and Europeans over the last 500 years. To date, studies of admixture have focused on either a one-time admixture event or continuous input into the African American population from Europeans only. Our goal is to gain a better understanding of the admixture process by examining models that take into account (a) assortative mating by ancestry in the African American population, (b) continuous input from both Europeans and Africans, and (c) historically informed variation in the rate of African migration over time. We used a model-based clustering method to generate distributions of African ancestry in three samples comprised of 147 African Americans from two published sources. We used a log-likelihood method to examine the fit of four models to these distributions and used a log-likelihood ratio test to compare the relative fit of each model. The mean ancestry estimates for our datasets of 77% African/23% European to 83% African/17% European ancestry are consistent with previous studies. We find admixture models that incorporate continuous gene flow from Europeans fit significantly better than one-time event models, and that a model involving continuous gene flow from Africans and Europeans fits better than one with continuous gene flow from Europeans only for two samples. Importantly, models that involve continuous input from Africans necessitate a higher level of gene flow from Europeans than previously reported. We demonstrate that models that take into account information about the rate of African migration over the past 500 years fit observed patterns of African ancestry better than alternative models. Our approach will enrich our understanding of the admixture process in extant and past populations. © 2017 Wiley Periodicals, Inc.
Modeling Waves and Coastal Flooding along the Connecticut Coast
Cifuentes-Lorenzen, A.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.; O'Donnell, J.; Asthita, M.
2015-12-01
We have used a hydrodynamic- wave coupled numerical model (FVCOM-SWAVE) to simulate flooding at the Connecticut coastline during severe storms. The model employed a one-way nesting scheme and an unstructured grid. The parent domain spanned most of the southern New England shelf and the fine resolution grid covered Long Island Sound (LIS) and extended across the Connecticut coast to the 10m elevation contour. The model results for sea level, current and wave statistics from the parent grid have been tested with data from several field campaigns at different locations spanning the western, central and eastern portions of LIS. Waves are fetch limited and improvements to the model-data comparison required modifications to spectral coefficients in the wave model. Finally, the nested results were validated with two field campaigns in shallow water environments (i.e. New Haven and Old Saybrook). To assess the spatial variability of storm wave characteristics the domain was forced with the hindcast winds obtained from meteorological models (NAM and WRF) for 13 severe weather events that affected LIS in the past 15 years. We have also forced the system with a simulation of Superstorm Sandy in a warmer climate to assess the impact a climate change on the character of flooding. The nested grid is currently being used to map flooding risks under severe weather events including the effects of precipitation on river flow and discharge.
Source modelling at the dawn of gravitational-wave astronomy
Gerosa, Davide
2016-09-01
The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary
GOODNESS-OF-FIT TEST FOR THE ACCELERATED FAILURE TIME MODEL BASED ON MARTINGALE RESIDUALS
Czech Academy of Sciences Publication Activity Database
Novák, Petr
2013-01-01
Roč. 49, č. 1 (2013), s. 40-59 ISSN 0023-5954 R&D Projects: GA MŠk(CZ) 1M06047 Grant - others:GA MŠk(CZ) SVV 261315/2011 Keywords : accelerated failure time model * survival analysis * goodness-of-fit Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/novak-goodness-of-fit test for the aft model based on martingale residuals.pdf
Efficient occupancy model-fitting for extensive citizen-science data
Morgan, Byron J. T.; Freeman, Stephen N.; Ridout, Martin S.; Brereton, Tom M.; Fox, Richard; Powney, Gary D.; Roy, David B.
2017-01-01
Appropriate large-scale citizen-science data present important new opportunities for biodiversity modelling, due in part to the wide spatial coverage of information. Recently proposed occupancy modelling approaches naturally incorporate random effects in order to account for annual variation in the composition of sites surveyed. In turn this leads to Bayesian analysis and model fitting, which are typically extremely time consuming. Motivated by presence-only records of occurrence from the UK Butterflies for the New Millennium data base, we present an alternative approach, in which site variation is described in a standard way through logistic regression on relevant environmental covariates. This allows efficient occupancy model-fitting using classical inference, which is easily achieved using standard computers. This is especially important when models need to be fitted each year, typically for many different species, as with British butterflies for example. Using both real and simulated data we demonstrate that the two approaches, with and without random effects, can result in similar conclusions regarding trends. There are many advantages to classical model-fitting, including the ability to compare a range of alternative models, identify appropriate covariates and assess model fit, using standard tools of maximum likelihood. In addition, modelling in terms of covariates provides opportunities for understanding the ecological processes that are in operation. We show that there is even greater potential; the classical approach allows us to construct regional indices simply, which indicate how changes in occupancy typically vary over a species’ range. In addition we are also able to construct dynamic occupancy maps, which provide a novel, modern tool for examining temporal changes in species distribution. These new developments may be applied to a wide range of taxa, and are valuable at a time of climate change. They also have the potential to motivate citizen
Directory of Open Access Journals (Sweden)
Thomas J Matthews
2014-06-01
Full Text Available A species abundance distribution (SAD characterises patterns in the commonness and rarity of all species within an ecological community. As such, the SAD provides the theoretical foundation for a number of other biogeographical and macroecological patterns, such as the species–area relationship, as well as being an interesting pattern in its own right. While there has been resurgence in the study of SADs in the last decade, less focus has been placed on methodology in SAD research, and few attempts have been made to synthesise the vast array of methods which have been employed in SAD model evaluation. As such, our review has two aims. First, we provide a general overview of SADs, including descriptions of the commonly used distributions, plotting methods and issues with evaluating SAD models. Second, we review a number of recent advances in SAD model fitting and comparison. We conclude by providing a list of recommendations for fitting and evaluating SAD models. We argue that it is time for SAD studies to move away from many of the traditional methods available for fitting and evaluating models, such as sole reliance on the visual examination of plots, and embrace statistically rigorous techniques. In particular, we recommend the use of both goodness-of-fit tests and model-comparison analyses because each provides unique information which one can use to draw inferences.
Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.
Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei
2015-02-01
This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.
Wave climatology of the Indian Ocean derived from altimetry and wave model
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.
are found to be low compared to model values. As expected, central Indian Ocean region is found to have higher waves, generally swells, generated by strong winds prevailing over there in all seasons. In July, the entire Arabian Sea is under the influence...
Travelling waves in models of neural tissue: from localised structures to periodic waves
Meijer, Hil Gaétan Ellart; Coombes, Stephen
2014-01-01
We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength
Attenuation of surface waves in porous media: Shock wave experiments and modelling
Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.
2005-01-01
In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement
Ranger, Jochen; Kuhn, Jörg-Tobias; Szardenings, Carsten
2017-05-01
Cognitive psychometric models embed cognitive process models into a latent trait framework in order to allow for individual differences. Due to their close relationship to the response process the models allow for profound conclusions about the test takers. However, before such a model can be used its fit has to be checked carefully. In this manuscript we give an overview over existing tests of model fit and show their relation to the generalized moment test of Newey (Econometrica, 53, 1985, 1047) and Tauchen (J. Econometrics, 30, 1985, 415). We also present a new test, the Hausman test of misspecification (Hausman, Econometrica, 46, 1978, 1251). The Hausman test consists of a comparison of two estimates of the same item parameters which should be similar if the model holds. The performance of the Hausman test is evaluated in a simulation study. In this study we illustrate its application to two popular models in cognitive psychometrics, the Q-diffusion model and the D-diffusion model (van der Maas, Molenaar, Maris, Kievit, & Boorsboom, Psychol Rev., 118, 2011, 339; Molenaar, Tuerlinckx, & van der Maas, J. Stat. Softw., 66, 2015, 1). We also compare the performance of the test to four alternative tests of model fit, namely the M 2 test (Molenaar et al., J. Stat. Softw., 66, 2015, 1), the moment test (Ranger et al., Br. J. Math. Stat. Psychol., 2016) and the test for binned time (Ranger & Kuhn, Psychol. Test. Asess. , 56, 2014b, 370). The simulation study indicates that the Hausman test is superior to the latter tests. The test closely adheres to the nominal Type I error rate and has higher power in most simulation conditions. © 2017 The British Psychological Society.
Simulating Freak Waves in the Ocean with CFD Modeling
Manolidis, M.; Orzech, M.; Simeonov, J.
2017-12-01
Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.
A parametric costing model for wave energy technology
International Nuclear Information System (INIS)
1992-01-01
This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)
Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria
2010-05-01
Together with the building and maintenance of observational and data banking infrastructures - i.e. an integrated organization of coordinated sensor networks, in conjunction with connected data banks and efficient data retrieval tools - a strategic vision for bolstering the future development of geophysics in Europe should also address the essential issue of improving our current ability to model coherently the propagation of seismic waves across the European plate. This impacts on fundamental matters, such as correctly locating earthquakes, imaging detailed earthquake source properties, modeling ground shaking, inferring geodynamic processes. To this extent, we both need detailed imaging of shallow and deep earth structure, and accurate modeling of seismic waves by numerical methods. Our current abilities appear somewhat limited, but emerging technologies may enable soon a significant leap towards better accuracy and reliability. To contribute to this debate, we present here the state-of-the-art of knowledge of earth structure and numerical wave modeling in the European plate, as the result of a comprehensive study towards the definition of a continental-scale reference model. Our model includes a description of crustal structure (EPcrust) merging information deriving from previous studies - large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness, density, and seismic parameters. This a priori crustal model improves the overall fit to observed Bouguer anomaly maps over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan
2010-09-14
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.
Heat waves over Central Europe in regional climate model simulations
Lhotka, Ondřej; Kyselý, Jan
2014-05-01
Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed
ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction
International Nuclear Information System (INIS)
Toledo, Maria Luíza Guerra de; Freitas, Marta A.; Colosimo, Enrico A.; Gilardoni, Gustavo L.
2015-01-01
An appropriate maintenance policy is essential to reduce expenses and risks related to equipment failures. A fundamental aspect to be considered when specifying such policies is to be able to predict the reliability of the systems under study, based on a well fitted model. In this paper, the classes of models Arithmetic Reduction of Age and Arithmetic Reduction of Intensity are explored. Likelihood functions for such models are derived, and a graphical method is proposed for model selection. A real data set involving failures in trucks used by a Brazilian mining is analyzed considering models with different memories. Parameters, namely, shape and scale for Power Law Process, and the efficiency of repair were estimated for the best fitted model. Estimation of model parameters allowed us to derive reliability estimators to predict the behavior of the failure process. These results are a valuable information for the mining company and can be used to support decision making regarding preventive maintenance policy. - Highlights: • Likelihood functions for imperfect repair models are derived. • A goodness-of-fit technique is proposed as a tool for model selection. • Failures in trucks owned by a Brazilian mining are modeled. • Estimation allowed deriving reliability predictors to forecast the future failure process of the trucks
Identification of wind fields for wave modeling near Qatar
Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay
2016-04-01
Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin; Xue, Chuan; Painter, Kevin J.; Erban, Radek
2013-01-01
. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death
Wave attenuation model for dephasing and measurement of ...
Indian Academy of Sciences (India)
An analysis of previous models to simulate inelastic scattering in such systems is presented and a relatively new model based on wave attenuation is introduced. The problem of Aharonov–Bohm (AB) oscillations in conductance of a mesoscopic ring is studied. We show that the conductance is symmetric under ﬂux reversal ...
A water wave model with horizontal circulation and accurate dispersion
Cotter, C.; Bokhove, Onno
We describe a new water wave model which is variational, and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite element
Simple model for decay of laser generated shock waves
International Nuclear Information System (INIS)
Trainor, R.J.
1980-01-01
A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects
Non-homogeneous polymer model for wave propagation and its ...
African Journals Online (AJOL)
This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...
Numerical modeling of shoreline undulations part 1: Constant wave climate
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg; Fredsøe, Jørgen
2013-01-01
integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model.First the length of the shoreline undulations is determined in the linear regime using a stability analysis. Next the further evolution from the linear to the fully non-linear regime is described...
Wave-particle duality in a quark model
International Nuclear Information System (INIS)
Gudder, S.P.
1984-01-01
A quark model based on finite-dimensional quantum mechanics is presented. Observables associated with color, flavor, charge, and spin are considered. Using these observables, quark and baryon Hamiltonians are constructed. Wave-particle dualities in this model are pointed out. (Auth.)
International Nuclear Information System (INIS)
Ji Zhilong; Ma Yuanwei; Wang Dezhong
2014-01-01
Background: In radioactive nuclides atmospheric diffusion models, the empirical dispersion coefficients were deduced under certain experiment conditions, whose difference with nuclear accident conditions is a source of deviation. A better estimation of the radioactive nuclide's actual dispersion process could be done by correcting dispersion coefficients with observation data, and Genetic Algorithm (GA) is an appropriate method for this correction procedure. Purpose: This study is to analyze the fitness functions' influence on the correction procedure and the forecast ability of diffusion model. Methods: GA, coupled with Lagrange dispersion model, was used in a numerical simulation to compare 4 fitness functions' impact on the correction result. Results: In the numerical simulation, the fitness function with observation deviation taken into consideration stands out when significant deviation exists in the observed data. After performing the correction procedure on the Kincaid experiment data, a significant boost was observed in the diffusion model's forecast ability. Conclusion: As the result shows, in order to improve dispersion models' forecast ability using GA, observation data should be given different weight in the fitness function corresponding to their error. (authors)
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Directory of Open Access Journals (Sweden)
Lorand Catalin STOENESCU
2011-05-01
Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.
Models for short-wave instability in inviscid shear flows
Grimshaw, Roger
1999-11-01
The generation of instability in an invsicid fluid occurs by a resonance between two wave modes, where here the resonance occurs by a coincidence of phase speeds for a finite, non-zero wavenumber. We show that in the weakly nonlinear limit, the appropriate model consists of two coupled equations for the envelopes of the wave modes, in which the nonlinear terms are balanced with low-order cross-coupling linear dispersive terms rather than the more familiar high-order terms which arise in the nonlinear Schrodinger equation, for instance. We will show that this system may either contain gap solitons as solutions in the linearly stable case, or wave breakdown in the linearly unstable case. In this latter circumstance, the system either exhibits wave collapse in finite time, or disintegration into fine-scale structures.
von Cramon-Taubadel, Noreen; Lycett, Stephen J
2008-05-01
Recent studies comparing craniometric and neutral genetic affinity matrices have concluded that, on average, human cranial variation fits a model of neutral expectation. While human craniometric and genetic data fit a model of isolation by geographic distance, it is not yet clear whether this is due to geographically mediated gene flow or human dispersal events. Recently, human genetic data have been shown to fit an iterative founder effect model of dispersal with an African origin, in line with the out-of-Africa replacement model for modern human origins, and Manica et al. (Nature 448 (2007) 346-349) have demonstrated that human craniometric data also fit this model. However, in contrast with the neutral model of cranial evolution suggested by previous studies, Manica et al. (2007) made the a priori assumption that cranial form has been subject to climatically driven natural selection and therefore correct for climate prior to conducting their analyses. Here we employ a modified theoretical and methodological approach to test whether human cranial variability fits the iterative founder effect model. In contrast with Manica et al. (2007) we employ size-adjusted craniometric variables, since climatic factors such as temperature have been shown to correlate with aspects of cranial size. Despite these differences, we obtain similar results to those of Manica et al. (2007), with up to 26% of global within-population craniometric variation being explained by geographic distance from sub-Saharan Africa. Comparative analyses using non-African origins do not yield significant results. The implications of these results are discussed in the light of the modern human origins debate. (c) 2007 Wiley-Liss, Inc.
DEFF Research Database (Denmark)
Victor, L.; Troch, P.; Kofoed, Jens Peter
2009-01-01
For overtopping wave energy converters (WECs) a more efficient energy conversion can be achieved when the volumes of water, wave by wave, that enter their reservoir are known and can be predicted. A numerical tool is being developed using a commercial CFD-solver to study and optimize...... nearshore 2Dstructure. First numerical model results are given for a specific test with regular waves, and are compared with the corresponding experimental results in this paper....
A scaled Lagrangian method for performing a least squares fit of a model to plant data
International Nuclear Information System (INIS)
Crisp, K.E.
1988-01-01
Due to measurement errors, even a perfect mathematical model will not be able to match all the corresponding plant measurements simultaneously. A further discrepancy may be introduced if an un-modelled change in conditions occurs within the plant which should have required a corresponding change in model parameters - e.g. a gradual deterioration in the performance of some component(s). Taking both these factors into account, what is required is that the overall discrepancy between the model predictions and the plant data is kept to a minimum. This process is known as 'model fitting', A method is presented for minimising any function which consists of the sum of squared terms, subject to any constraints. Its most obvious application is in the process of model fitting, where a weighted sum of squares of the differences between model predictions and plant data is the function to be minimised. When implemented within existing Central Electricity Generating Board computer models, it will perform a least squares fit of a model to plant data within a single job submission. (author)
'Oscillator-wave' model: properties and heuristic instances
International Nuclear Information System (INIS)
Damgov, Vladimir; Trenchev, Plamen; Sheiretsky, Kostadin
2003-01-01
The article considers a generalized model of an oscillator, subjected to the influence of an external wave. It is shown that the systems of diverse physical background, which this model encompasses by their nature, should belong to the broader, proposed in previous works class of 'kick-excited self-adaptive dynamical systems'. The theoretical treatment includes an analytic approach to the conditions for emergence of small and large amplitudes, i.e. weak and strong non-linearity of the system. Derived also are generalized conditions for the transition of systems of this 'oscillator-wave' type to non-regular and chaotic behaviour. For the purpose of demonstrating the heuristic properties of the generalized oscillator-wave model from this point of view are considered the relevant systems and phenomena of the quantized cyclotron resonance and the megaquantum resonance-wave model of the Solar System. We point to a number of other natural and scientific phenomena, which can be effectively analyzed from the point of view of the developed approach. In particular we stress on the possibility for development and the wide applicability of specific wave influences, for example for the improvement and the speeding up of technological processes
Updated thermal model using simplified short-wave radiosity calculations
International Nuclear Information System (INIS)
Smith, J.A.; Goltz, S.M.
1994-01-01
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Updated thermal model using simplified short-wave radiosity calculations
Energy Technology Data Exchange (ETDEWEB)
Smith, J. A.; Goltz, S. M.
1994-02-15
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Forward modeling of space-borne gravitational wave detectors
International Nuclear Information System (INIS)
Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier
2004-01-01
Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction
Improvements on Semi-Classical Distorted-Wave model
Energy Technology Data Exchange (ETDEWEB)
Sun Weili; Watanabe, Y.; Kuwata, R. [Kyushu Univ., Fukuoka (Japan); Kohno, M.; Ogata, K.; Kawai, M.
1998-03-01
A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon potential, instead of those based on the local Fermi-gas model which were incorporated into previous SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p`x) reaction on {sup 90}Zr with the Wigner transform of harmonic oscillator wave functions. It is shown that the present calculation of angular distributions increase remarkably at backward angles than the previous ones and the agreement with the experimental data is improved. (author)
Evaluation of surface-wave waveform modeling for lithosphere velocity structure
Chang, Tao-Ming
Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.
Directory of Open Access Journals (Sweden)
Javier Macias-Guarasa
2012-10-01
Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.
Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling
Wilson, William; Atkinson, Gary
2009-01-01
Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.
Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT
Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)
2001-01-01
Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.
McCluskey, Ken W.
2010-01-01
This article presents the author's comments on Hisham B. Ghassib's "Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?" Ghassib's article focuses on the transformation of science from pre-modern times to the present. Ghassib (2010) notes that, unlike in an earlier era when the economy depended on static…
Checking the Adequacy of Fit of Models from Split-Plot Designs
DEFF Research Database (Denmark)
Almini, A. A.; Kulahci, Murat; Montgomery, D. C.
2009-01-01
models. In this article, we propose the computation of two R-2, R-2-adjusted, prediction error sums of squares (PRESS), and R-2-prediction statistics to measure the adequacy of fit for the WP and the SP submodels in a split-plot design. This is complemented with the graphical analysis of the two types......One of the main features that distinguish split-plot experiments from other experiments is that they involve two types of experimental errors: the whole-plot (WP) error and the subplot (SP) error. Taking this into consideration is very important when computing measures of adequacy of fit for split-plot...... of errors to check for any violation of the underlying assumptions and the adequacy of fit of split-plot models. Using examples, we show how computing two measures of model adequacy of fit for each split-plot design model is appropriate and useful as they reveal whether the correct WP and SP effects have...
Direct fit of a theoretical model of phase transition in oscillatory finger motions.
Newell, K.M.; Molenaar, P.C.M.
2003-01-01
This paper presents a general method to fit the Schoner-Haken-Kelso (SHK) model of human movement phase transitions directly to time series data. A robust variant of the extended Kalman filter technique is applied to the data of a single subject. The options of covariance resetting and iteration
A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.
Glas, Cees A. W.; Meijer, Rob R.
A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…
Haberman, Shelby J; Sinharay, Sandip; Chon, Kyong Hee
2013-07-01
Residual analysis (e.g. Hambleton & Swaminathan, Item response theory: principles and applications, Kluwer Academic, Boston, 1985; Hambleton, Swaminathan, & Rogers, Fundamentals of item response theory, Sage, Newbury Park, 1991) is a popular method to assess fit of item response theory (IRT) models. We suggest a form of residual analysis that may be applied to assess item fit for unidimensional IRT models. The residual analysis consists of a comparison of the maximum-likelihood estimate of the item characteristic curve with an alternative ratio estimate of the item characteristic curve. The large sample distribution of the residual is proved to be standardized normal when the IRT model fits the data. We compare the performance of our suggested residual to the standardized residual of Hambleton et al. (Fundamentals of item response theory, Sage, Newbury Park, 1991) in a detailed simulation study. We then calculate our suggested residuals using data from an operational test. The residuals appear to be useful in assessing the item fit for unidimensional IRT models.
Fit Gap Analysis – The Role of Business Process Reference Models
Directory of Open Access Journals (Sweden)
Dejan Pajk
2013-12-01
Full Text Available Enterprise resource planning (ERP systems support solutions for standard business processes such as financial, sales, procurement and warehouse. In order to improve the understandability and efficiency of their implementation, ERP vendors have introduced reference models that describe the processes and underlying structure of an ERP system. To select and successfully implement an ERP system, the capabilities of that system have to be compared with a company’s business needs. Based on a comparison, all of the fits and gaps must be identified and further analysed. This step usually forms part of ERP implementation methodologies and is called fit gap analysis. The paper theoretically overviews methods for applying reference models and describes fit gap analysis processes in detail. The paper’s first contribution is its presentation of a fit gap analysis using standard business process modelling notation. The second contribution is the demonstration of a process-based comparison approach between a supply chain process and an ERP system process reference model. In addition to its theoretical contributions, the results can also be practically applied to projects involving the selection and implementation of ERP systems.
Improved Modeling and Prediction of Surface Wave Amplitudes
2017-05-31
AFRL-RV-PS- AFRL-RV-PS- TR-2017-0162 TR-2017-0162 IMPROVED MODELING AND PREDICTION OF SURFACE WAVE AMPLITUDES Jeffry L. Stevens, et al. Leidos...data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented...SUBTITLE Improved Modeling and Prediction of Surface Wave Amplitudes 5a. CONTRACT NUMBER FA9453-14-C-0225 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro
2009-01-01
Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...
Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas
International Nuclear Information System (INIS)
Guo Yonghui; Duan Yaoyong; Kuai Bin
2007-01-01
The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)
Effective Orthorhombic Anisotropic Models for Wave field Extrapolation
Ibanez Jacome, Wilson
2013-05-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the
Vackář, Jiří; Zahradník, Jiří
2013-04-01
A recent shallow earthquake in the Corinth Gulf, Greece (Mw 5.3, January 18, 2010; Sokos et al., Tectonophysics 2012) generated unusual long-period waves (periods > 5 seconds), well recorded at several near-regional stations between the P - and S-wave arrival. The 5-second period, being significantly longer than the source duration, indicates a structural effect. The wave is similar to PL-wave or Pnl-wave, but with shorter periods and observed in much closer distances (ranging from 30 to 200 km). For theoretical description of the observed wave, structural model is required. No existing regional crustal model generates that wave, so we need to find another model, better in terms of the PL-wave existence and strength. We find such models by full waveform inversion using the subset of stations with strong PL-wave. The Discrete Wavenumber method (Bouchon, 1981; Coutant 1989) is used for forward problem and the Neighborhood Algorithm (Sambridge, 1999) for stochastic search (more details in poster by V. Plicka and J. Zahradník). We obtain a suite of models well fitting synthetic seismograms and use some of these models to evaluate dependence of the studied waves on receiver distance and azimuth as well as dependence on source depth. We compare real and synthetic dispersion curves (derived from synthetic seismograms) as an independent validation of found model and discuss limitations of using dispersion curves for these cases. We also relocated the event in the new model. Then we calculate the wavefield by two other methods: modal summation and ray theory to better understand the nature of the PL-wave. Finally, we discuss agreement of found models with published crustal models in the region. The full waveform inversion for structural parameters seems to be powerful tool for improving seismic source modeling in cases we do not have accurate structure model of studied area. We also show that the PL-wave strength has a potential to precise the earthquake depth
Shavit Grievink, Liat; Penny, David; Hendy, Michael D; Holland, Barbara R
2010-05-01
Commonly used phylogenetic models assume a homogeneous process through time in all parts of the tree. However, it is known that these models can be too simplistic as they do not account for nonhomogeneous lineage-specific properties. In particular, it is now widely recognized that as constraints on sequences evolve, the proportion and positions of variable sites can vary between lineages causing heterotachy. The extent to which this model misspecification affects tree reconstruction is still unknown. Here, we evaluate the effect of changes in the proportions and positions of variable sites on model fit and tree estimation. We consider 5 current models of nucleotide sequence evolution in a Bayesian Markov chain Monte Carlo framework as well as maximum parsimony (MP). We show that for a tree with 4 lineages where 2 nonsister taxa undergo a change in the proportion of variable sites tree reconstruction under the best-fitting model, which is chosen using a relative test, often results in the wrong tree. In this case, we found that an absolute test of model fit is a better predictor of tree estimation accuracy. We also found further evidence that MP is not immune to heterotachy. In addition, we show that increased sampling of taxa that have undergone a change in proportion and positions of variable sites is critical for accurate tree reconstruction.
Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy
Nabizadeh, Nooshin; John, Nigel
2014-03-01
Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.
Directory of Open Access Journals (Sweden)
Jaclyn K Mann
2014-08-01
Full Text Available Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model, generalizing our previous approach (Ising model that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = -0.74, p = 3.6×10-6 are strongly correlated, and this was further strengthened in the regularized Ising model (r = -0.83, p = 3.7×10-12. Performance of the Potts model (r = -0.73, p = 9.7×10-9 was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion
Optimal parametric modelling of measured short waves
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
the importance of selecting a suitable sampling interval for better estimates of parametric modelling and also for better statistical representation. Implementation of the above algorithms in a structural monitoring system has the potential advantage of storing...
Directory of Open Access Journals (Sweden)
Rita Yi Man Li
2012-03-01
Full Text Available Entrepreneurs have always born the risk of running their business. They reap a profit in return for their risk taking and work. Housing developers are no different. In many countries, such as Australia, the United Kingdom and the United States, they interpret the tastes of the buyers and provide the dwellings they develop with basic fittings such as floor and wall coverings, bathroom fittings and kitchen cupboards. In mainland China, however, in most of the developments, units or houses are sold without floor or wall coverings, kitchen or bathroom fittings. What is the motive behind this choice? This paper analyses the factors affecting housing developers’ decisions to provide fittings based on 1701 housing developments in Hangzhou, Chongqing and Hangzhou using a Probit model. The results show that developers build a higher proportion of bare units in mainland China when: 1 there is shortage of housing; 2 land costs are high so that the comparative costs of providing fittings become relatively low.
Anticipating mismatches of HIT investments: Developing a viability-fit model for e-health services.
Mettler, Tobias
2016-01-01
Albeit massive investments in the recent years, the impact of health information technology (HIT) has been controversial and strongly disputed by both research and practice. While many studies are concerned with the development of new or the refinement of existing measurement models for assessing the impact of HIT adoption (ex post), this study presents an initial attempt to better understand the factors affecting viability and fit of HIT and thereby underscores the importance of also having instruments for managing expectations (ex ante). We extend prior research by undertaking a more granular investigation into the theoretical assumptions of viability and fit constructs. In doing so, we use a mixed-methods approach, conducting qualitative focus group discussions and a quantitative field study to improve and validate a viability-fit measurement instrument. Our findings suggest two issues for research and practice. First, the results indicate that different stakeholders perceive HIT viability and fit of the same e-health services very unequally. Second, the analysis also demonstrates that there can be a great discrepancy between the organizational viability and individual fit of a particular e-health service. The findings of this study have a number of important implications such as for health policy making, HIT portfolios, and stakeholder communication. Copyright © 2015. Published by Elsevier Ireland Ltd.
Frontiers in Anisotropic Shock-Wave Modeling
2012-02-01
Epoxy IFPT simulated and experimental back surface velocities for 572, 788, and 1015 m/s. The experimental data Kevlar / Epoxy materials recovered after...model development for the Nextel and Kevlar / Epoxy materials subject to hypervelocity impact. They also performed the experimental inverse flyer test...IFPT) for Nextel and Kevlar / Epoxy . Their models were to be macro-mechanically based and suitable for implementation into a hydrocode coupled with EOS
A Coupled Atmospheric and Wave Modeling System for Storm Simulations
DEFF Research Database (Denmark)
Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.
2015-01-01
to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...
James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll
2003-01-01
This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...
Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures
Marshall, T.; Challis, R. E.; Tebbutt, J. S.
2002-05-01
The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.
Seismic waves and earthquakes in a global monolithic model
Roubíček, Tomáš
2018-03-01
The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.
A delay differential equation model of follicle waves in women.
Panza, Nicole M; Wright, Andrew A; Selgrade, James F
2016-01-01
This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.
DEFF Research Database (Denmark)
Nielsen, Karen L.; Pedersen, Thomas M.; Udekwu, Klas I.
2012-01-01
phage types, predominantly only penicillin resistant. We investigated whether isolates of this epidemic were associated with a fitness cost, and we employed a mathematical model to ask whether these fitness costs could have led to the observed reduction in frequency. Bacteraemia isolates of S. aureus...... from Denmark have been stored since 1957. We chose 40 S. aureus isolates belonging to phage complex 83A, clonal complex 8 based on spa type, ranging in time of isolation from 1957 to 1980 and with varyous antibiograms, including both methicillin-resistant and -susceptible isolates. The relative fitness...... of each isolate was determined in a growth competition assay with a reference isolate. Significant fitness costs of 215 were determined for the MRSA isolates studied. There was a significant negative correlation between number of antibiotic resistances and relative fitness. Multiple regression analysis...
Herman, Agnieszka
2017-11-01
In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.
On observational foundations of models with a wave spiral structure
International Nuclear Information System (INIS)
Suchkov, A.A.
1978-01-01
The validity of the density wave models of the spiral structure is considered. It is shown that the density wave in the Galaxy is doverned by its flat subsystem only, whereas the disk and the halo do not contribute significantly into the wave. It is found that the density wave model of the spiral structure of the Galaxy is confirmed by the value of the pattern speed derived from observational data (Ω = 20-25 km s -1 kpc -1 ). The position and the properties of the outer Lindblad resonance are confirmed by the existence and position of gas ring features in outer regions of our Galaxy and external galaxies. The corotation region in the Galaxy is situated at R=10/12 kpc. Near the corotation region the galactic shock wave is not expected to develop. The observed rapid decrease in the number of H2 regions while moving from R=5 kpc to R=10 kpc confirms this conclusion. The similar consistency between the positions of corotation region and outer resonance and the observed properties of H2 and H1 distribution has also been found for a number of extermal galaxies
A flexible, interactive software tool for fitting the parameters of neuronal models.
Friedrich, Péter; Vella, Michael; Gulyás, Attila I; Freund, Tamás F; Káli, Szabolcs
2014-01-01
The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool.
A flexible, interactive software tool for fitting the parameters of neuronal models
Directory of Open Access Journals (Sweden)
Péter eFriedrich
2014-07-01
Full Text Available The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problem of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting
Full-wave modeling of ICRF waves: global and quasi-local descriptions
International Nuclear Information System (INIS)
Dumont, R. J.
2007-01-01
Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes
The fitting parameters extraction of conversion model of the low dose rate effect in bipolar devices
International Nuclear Information System (INIS)
Bakerenkov, Alexander
2011-01-01
The Enhanced Low Dose Rate Sensitivity (ELDRS) in bipolar devices consists of in base current degradation of NPN and PNP transistors increase as the dose rate is decreased. As a result of almost 20-year studying, the some physical models of effect are developed, being described in detail. Accelerated test methods, based on these models use in standards. The conversion model of the effect, that allows to describe the inverse S-shaped excess base current dependence versus dose rate, was proposed. This paper presents the problem of conversion model fitting parameters extraction.
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2015-09-30
measured by R/V Lance ( black solid line) and predicted by SWAN ( black dashed line) and the ship velocity (grey solid line). (c) BFI ( black solid line) and...and potential future trends; and WAVEWATCH-III® and SWAN wave models with new physics, adapted and validated for the Beaufort and Chukchi Seas...nondimensional spectral width ν ( black dashed line). (d–i) Selected photographs from the ship show local sea ice state. Fig. 6 illustrates a
Variational Boussinesq model for simulation of coastal waves and tsunamis
Adytia, D.; Adytia, Didit; van Groesen, Embrecht W.C.; Tan, Soon Keat; Huang, Zhenhua
2009-01-01
In this paper we describe the basic ideas of a so-called Variational Boussinesq Model which is based on the Hamiltonian structure of gravity surface waves. By using a rather simple approach to prescribe the profile of vertical fluid potential in the expression for the kinetic energy, we obtain a set
Non-homogeneous polymer model for wave propagation and its ...
African Journals Online (AJOL)
user
density are functions of space i.e. non-homogeneous engineering material. .... The Solution of equation Eq. (9) in the form of Eq. (10) can be obtained by taking a phase ..... Viscoelastic Model Applied to a Particular Case .... p m i exp m α α σ σ σ. = −. +. −. (35). The progressive harmonic wave which starts from the end. 0 x =.
The second-order decomposition model of nonlinear irregular waves
DEFF Research Database (Denmark)
Yang, Zhi Wen; Bingham, Harry B.; Li, Jin Xuan
2013-01-01
into the first- and the second-order super-harmonic as well as the second-order sub-harmonic components by transferring them into an identical Fourier frequency-space and using a Newton-Raphson iteration method. In order to evaluate the present model, a variety of monochromatic waves and the second...
FDTD Modelling of Electromagnetic waves in Stratified Medium ...
African Journals Online (AJOL)
The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm in mathematica environment is presented. Source implementation and the effect of conductivity on the incident field ...
Gravitational Jaynes–Cummings model beyond the rotating wave
Indian Academy of Sciences (India)
In this paper, the quantum properties of a two-level atom and the cavity-ﬁeld in the Jaynes–Cummings model with the gravity beyond the rotating wave approximation are investigated. For this purpose, by solving the Schrödinger equation in the interaction picture, the evolving state of the system is found by which the ...
Lake St. Clair: Storm Wave and Water Level Modeling
2013-06-01
R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser
Innovative technologies to accurately model waves and moored ship motions
CSIR Research Space (South Africa)
van der Molen, W
2010-09-01
Full Text Available Late in 2009 CSIR Built Environment in Stellenbosch was awarded a contract to carry out extensive physical and numerical modelling to study the wave conditions and associated moored ship motions, for the design of a new iron ore export jetty for BHP...
Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi
2015-11-01
There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.
Millimeter Wave Radio Frequency Propagation Model Development
2014-08-28
be not be exceeded due to rain could be 95%. However, if the location were in a tropical rain forest , then then threshold might not be exceeded for...molecules grows. Approved for Public Release; Distribution is Unlimited. 14 Figure 3. Specific Attenuation Due to Water Vapor and Dry Air 3.1.1.2 Rain ... rain being the most detrimental and uncertain. Predictive models of rain attenuation claim some degree of accuracy up to 55 GHz, although they are
Orlova, Ksenia; Spasojevic, Maria; Shprits, Yuri
Particle populations in the inner magnetosphere can change by orders of magnitude on very short time scales. For the last decade observations and theoretical computations showed that resonant interaction of electrons with various plasma waves plays an important role in acceleration and loss mechanisms. Using data from the CRRES plasma wave experiment, we develop quadratic fits to the mean of the wave amplitude squared for plasmaspheric hiss as a function of geomagnetic activity (Kp) and magnetic latitude (lambda) for the dayside (6pitch-angle diffusion coefficients of energetic and relativistic electrons. We take into account the obliqueness of hiss waves and increase of plasmaspheric density with increasing magnetic latitude. The lifetimes of electrons are then calculated from the diffusion coefficients. The obtained lifetimes are parameterized as a function of energy, Kp-index, L-shell and can be used in 2D/3D/4D convection and particle tracing codes.
Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system
International Nuclear Information System (INIS)
Myong, R.S.; Roe, P.L.
1997-01-01
The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)
McNeish, Daniel; Hancock, Gregory R
2018-03-01
Lance, Beck, Fan, and Carter (2016) recently advanced 6 new fit indices and associated cutoff values for assessing data-model fit in the structural portion of traditional latent variable path models. The authors appropriately argued that, although most researchers' theoretical interest rests with the latent structure, they still rely on indices of global model fit that simultaneously assess both the measurement and structural portions of the model. As such, Lance et al. proposed indices intended to assess the structural portion of the model in isolation of the measurement model. Unfortunately, although these strategies separate the assessment of the structure from the fit of the measurement model, they do not isolate the structure's assessment from the quality of the measurement model. That is, even with a perfectly fitting measurement model, poorer quality (i.e., less reliable) measurements will yield a more favorable verdict regarding structural fit, whereas better quality (i.e., more reliable) measurements will yield a less favorable structural assessment. This phenomenon, referred to by Hancock and Mueller (2011) as the reliability paradox, affects not only traditional global fit indices but also those structural indices proposed by Lance et al. as well. Fortunately, as this comment will clarify, indices proposed by Hancock and Mueller help to mitigate this problem and allow the structural portion of the model to be assessed independently of both the fit of the measurement model as well as the quality of indicator variables contained therein. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Wave propagation model of heat conduction and group speed
Zhang, Long; Zhang, Xiaomin; Peng, Song
2018-03-01
In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.
Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components
Zhang, Saijuan
2011-01-06
There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole
Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components
Zhang, Saijuan; Krebs-Smith, Susan M.; Midthune, Douglas; Perez, Adriana; Buckman, Dennis W.; Kipnis, Victor; Freedman, Laurence S.; Dodd, Kevin W.; Carroll, Raymond J
2011-01-01
There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole
Energy Technology Data Exchange (ETDEWEB)
Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones
2014-08-01
A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .
Energy Technology Data Exchange (ETDEWEB)
Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Fischer, W. J. [Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Ali, B. [Space Science Institute, 4750 Walnut Street, Boulder, CO 80301 (United States); Stutz, A. M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Stanke, T. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Megeath, S. T.; Booker, J. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Osorio, M. [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Hartmann, L.; Calvet, N. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Poteet, C. A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Allen, L., E-mail: furlan@ipac.caltech.edu [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)
2016-05-01
We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel , and submillimeter photometry from APEX, our SEDs cover 1.2–870 μ m and sample the peak of the protostellar envelope emission at ∼100 μ m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.
A robust absorbing layer method for anisotropic seismic wave modeling
Energy Technology Data Exchange (ETDEWEB)
Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)
2014-12-15
When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.
A robust absorbing layer method for anisotropic seismic wave modeling
International Nuclear Information System (INIS)
Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.
2014-01-01
When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped
Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior
Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco
2015-02-01
We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.
International Nuclear Information System (INIS)
Mbagwu, J.S.C.
1993-10-01
Six infiltration models, some obtained by reformulating the fitting parameters of the classical Kostiakov (1932) and Philip (1957) equations, were investigated for their ability to describe water infiltration into highly permeable sandy soils from the Nsukka plains of SE Nigeria. The models were Kostiakov, Modified Kostiakov (A), Modified Kostiakov (B), Philip, Modified Philip (A) and Modified Philip (B). Infiltration data were obtained from double ring infiltrometers on field plots established on a Knadic Paleustult (Nkpologu series) to investigate the effects of land use on soil properties and maize yield. The treatments were; (i) tilled-mulched (TM), (ii) tilled-unmulched (TU), (iii) untilled-mulched (UM), (iv) untilled-unmulched (UU) and (v) continuous pasture (CP). Cumulative infiltration was highest on the TM and lowest on the CP plots. All estimated model parameters obtained by the best fit of measured data differed significantly among the treatments. Based on the magnitude of R 2 values, the Kostiakov, Modified Kostiakov (A), Philip and Modified Philip (A) models provided best predictions of cumulative infiltration as a function of time. Comparing experimental with model-predicted cumulative infiltration showed, however, that on all treatments the values predicted by the classical Kostiakov, Philip and Modified Philip (A) models deviated most from experimental data. The other models produced values that agreed very well with measured data. Considering the eases of determining the fitting parameters it is proposed that on soils with high infiltration rates, either Modified Kostiakov model (I = Kt a + Ict) or Modified Philip model (I St 1/2 + Ict), (where I is cumulative infiltration, K, the time coefficient, t, time elapsed, 'a' the time exponent, Ic the equilibrium infiltration rate and S, the soil water sorptivity), be used for routine characterization of the infiltration process. (author). 33 refs, 3 figs 6 tabs
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
Efficient Constrained Local Model Fitting for Non-Rigid Face Alignment.
Lucey, Simon; Wang, Yang; Cox, Mark; Sridharan, Sridha; Cohn, Jeffery F
2009-11-01
Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The "simultaneous" algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The "project-out" algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor generic alignment performance. In this paper we introduce an extension to a discriminative method for non-rigid face registration/tracking referred to as a constrained local model (CLM). Our proposed method is able to achieve superior performance to the "simultaneous" AAM algorithm along with real time fitting speeds (35 fps). We improve upon the canonical CLM formulation, to gain this performance, in a number of ways by employing: (i) linear SVMs as patch-experts, (ii) a simplified optimization criteria, and (iii) a composite rather than additive warp update step. Most notably, our simplified optimization criteria for fitting the CLM divides the problem of finding a single complex registration/warp displacement into that of finding N simple warp displacements. From these N simple warp displacements, a single complex warp displacement is estimated using a weighted least-squares constraint. Another major advantage of this simplified optimization lends from its ability to be parallelized, a step which we also theoretically explore in this paper. We refer to our approach for fitting the CLM as the "exhaustive local search" (ELS) algorithm. Experiments were conducted on the CMU Multi-PIE database.
Czech Academy of Sciences Publication Activity Database
Čársky, Petr
2009-01-01
Roč. 109, č. 620 (2009), s. 1237-1242 ISSN 0020-7608 R&D Projects: GA ČR GA203/07/0070; GA ČR GA202/08/0631; GA AV ČR 1ET400400413; GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : Derivatives of Coulomb integrals * mixed Gaussian and plane-wave basis sets * electron scattering * computer time saving Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2009
Development and Analysis of Volume Multi-Sphere Method Model Generation using Electric Field Fitting
Ingram, G. J.
Electrostatic modeling of spacecraft has wide-reaching applications such as detumbling space debris in the Geosynchronous Earth Orbit regime before docking, servicing and tugging space debris to graveyard orbits, and Lorentz augmented orbits. The viability of electrostatic actuation control applications relies on faster-than-realtime characterization of the electrostatic interaction. The Volume Multi-Sphere Method (VMSM) seeks the optimal placement and radii of a small number of equipotential spheres to accurately model the electrostatic force and torque on a conducting space object. Current VMSM models tuned using force and torque comparisons with commercially available finite element software are subject to the modeled probe size and numerical errors of the software. This work first investigates fitting of VMSM models to Surface-MSM (SMSM) generated electrical field data, removing modeling dependence on probe geometry while significantly increasing performance and speed. A proposed electric field matching cost function is compared to a force and torque cost function, the inclusion of a self-capacitance constraint is explored and 4 degree-of-freedom VMSM models generated using electric field matching are investigated. The resulting E-field based VMSM development framework is illustrated on a box-shaped hub with a single solar panel, and convergence properties of select models are qualitatively analyzed. Despite the complex non-symmetric spacecraft geometry, elegantly simple 2-sphere VMSM solutions provide force and torque fits within a few percent.
Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment
DEFF Research Database (Denmark)
Parmeggiani, Stefano
-commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...
Using the Flipchem Photochemistry Model When Fitting Incoherent Scatter Radar Data
Reimer, A. S.; Varney, R. H.
2017-12-01
The North face Resolute Bay Incoherent Scatter Radar (RISR-N) routinely images the dynamics of the polar ionosphere, providing measurements of the plasma density, electron temperature, ion temperature, and line of sight velocity with seconds to minutes time resolution. RISR-N does not directly measure ionospheric parameters, but backscattered signals, recording them as voltage samples. Using signal processing techniques, radar autocorrelation functions (ACF) are estimated from the voltage samples. A model of the signal ACF is then fitted to the ACF using non-linear least-squares techniques to obtain the best-fit ionospheric parameters. The signal model, and therefore the fitted parameters, depend on the ionospheric ion composition that is used [e.g. Zettergren et. al. (2010), Zou et. al. (2017)].The software used to process RISR-N ACF data includes the "flipchem" model, which is an ion photochemistry model developed by Richards [2011] that was adapted from the Field LineInterhemispheric Plasma (FLIP) model. Flipchem requires neutral densities, neutral temperatures, electron density, ion temperature, electron temperature, solar zenith angle, and F10.7 as inputs to compute ion densities, which are input to the signal model. A description of how the flipchem model is used in RISR-N fitting software will be presented. Additionally, a statistical comparison of the fitted electron density, ion temperature, electron temperature, and velocity obtained using a flipchem ionosphere, a pure O+ ionosphere, and a Chapman O+ ionosphere will be presented. The comparison covers nearly two years of RISR-N data (April 2015 - December 2016). Richards, P. G. (2011), Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi:10.1029/2011JA016613.Zettergren, M., Semeter, J., Burnett, B., Oliver, W., Heinselman, C., Blelly, P.-L., and Diaz, M.: Dynamic variability in F-region ionospheric composition at auroral arc boundaries, Ann. Geophys., 28, 651-664, https
Building Customer Churn Prediction Models in Fitness Industry with Machine Learning Methods
Shan, Min
2017-01-01
With the rapid growth of digital systems, churn management has become a major focus within customer relationship management in many industries. Ample research has been conducted for churn prediction in different industries with various machine learning methods. This thesis aims to combine feature selection and supervised machine learning methods for defining models of churn prediction and apply them on fitness industry. Forward selection is chosen as feature selection methods. Support Vector ...
Bereczkei, Tamas; Mesko, Norbert
2007-01-01
Multiple Fitness Model states that attractiveness varies across multiple dimensions, with each feature representing a different aspect of mate value. In the present study, male raters judged the attractiveness of young females with neotenous and mature facial features, with various hair lengths. Results revealed that the physical appearance of long-haired women was rated high, regardless of their facial attractiveness being valued high or low. Women rated as most attractive were those whose f...
Efficient parallel implementation of active appearance model fitting algorithm on GPU.
Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou
2014-01-01
The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU
Directory of Open Access Journals (Sweden)
Jinwei Wang
2014-01-01
Full Text Available The active appearance model (AAM is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.
Modeling of a Surface Acoustic Wave Strain Sensor
Wilson, W. C.; Atkinson, Gary M.
2010-01-01
NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented
Traveling waves in a continuum model of 1D schools
Oza, Anand; Kanso, Eva; Shelley, Michael
2017-11-01
We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.
Measuring fit of sequence data to phylogenetic model: gain of power using marginal tests.
Waddell, Peter J; Ota, Rissa; Penny, David
2009-10-01
Testing fit of data to model is fundamentally important to any science, but publications in the field of phylogenetics rarely do this. Such analyses discard fundamental aspects of science as prescribed by Karl Popper. Indeed, not without cause, Popper (Unended quest: an intellectual autobiography. Fontana, London, 1976) once argued that evolutionary biology was unscientific as its hypotheses were untestable. Here we trace developments in assessing fit from Penny et al. (Nature 297:197-200, 1982) to the present. We compare the general log-likelihood ratio (the G or G (2) statistic) statistic between the evolutionary tree model and the multinomial model with that of marginalized tests applied to an alignment (using placental mammal coding sequence data). It is seen that the most general test does not reject the fit of data to model (P approximately 0.5), but the marginalized tests do. Tests on pairwise frequency (F) matrices, strongly (P < 0.001) reject the most general phylogenetic (GTR) models commonly in use. It is also clear (P < 0.01) that the sequences are not stationary in their nucleotide composition. Deviations from stationarity and homogeneity seem to be unevenly distributed amongst taxa; not necessarily those expected from examining other regions of the genome. By marginalizing the 4( t ) patterns of the i.i.d. model to observed and expected parsimony counts, that is, from constant sites, to singletons, to parsimony informative characters of a minimum possible length, then the likelihood ratio test regains power, and it too rejects the evolutionary model with P < 0.001. Given such behavior over relatively recent evolutionary time, readers in general should maintain a healthy skepticism of results, as the scale of the systematic errors in published trees may really be far larger than the analytical methods (e.g., bootstrap) report.
UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions
International Nuclear Information System (INIS)
Siebert, Xavier; Navaza, Jorge
2009-01-01
UROX is software designed for the interactive fitting of atomic models into electron-microscopy reconstructions. The main features of the software are presented, along with a few examples. Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30–10 Å range and sometimes even beyond 10 Å. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpretation of the latter at near-atomic resolution, providing insight into the interactions between the components. Graphical software is presented that was designed for the interactive fitting and refinement of atomic models into electron-microscopy reconstructions. Several characteristics enable it to be applied over a wide range of cases and resolutions. Firstly, calculations are performed in reciprocal space, which results in fast algorithms. This allows the entire reconstruction (or at least a sizeable portion of it) to be used by taking into account the symmetry of the reconstruction both in the calculations and in the graphical display. Secondly, atomic models can be placed graphically in the map while the correlation between the model-based electron density and the electron-microscopy reconstruction is computed and displayed in real time. The positions and orientations of the models are refined by a least-squares minimization. Thirdly, normal-mode calculations can be used to simulate conformational changes between the atomic model of an individual component and its corresponding density within a macromolecular complex determined by electron microscopy. These features are illustrated using three practical cases with different symmetries and resolutions. The software, together with examples and user instructions, is available free of charge at http://mem.ibs.fr/UROX/
International Nuclear Information System (INIS)
Valeo, Ernest; Johnson, Jay R.; Kim, Eun-Hwa; Phillips, Cynthia
2012-01-01
A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
A hands-on approach for fitting long-term survival models under the GAMLSS framework.
de Castro, Mário; Cancho, Vicente G; Rodrigues, Josemar
2010-02-01
In many data sets from clinical studies there are patients insusceptible to the occurrence of the event of interest. Survival models which ignore this fact are generally inadequate. The main goal of this paper is to describe an application of the generalized additive models for location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models. In this work the number of competing causes of the event of interest follows the negative binomial distribution. In this way, some well known models found in the literature are characterized as particular cases of our proposal. The model is conveniently parameterized in terms of the cured fraction, which is then linked to covariates. We explore the use of the gamlss package in R as a powerful tool for inference in long-term survival models. The procedure is illustrated with a numerical example. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Assessing a moderating effect and the global fit of a PLS model on online trading
Directory of Open Access Journals (Sweden)
Juan J. García-Machado
2017-12-01
Full Text Available This paper proposes a PLS Model for the study of Online Trading. Traditional investing has experienced a revolution due to the rise of e-trading services that enable investors to use Internet conduct secure trading. On the hand, model results show that there is a positive, direct and statistically significant relationship between personal outcome expectations, perceived relative advantage, shared vision and economy-based trust with the quality of knowledge. On the other hand, trading frequency and portfolio performance has also this relationship. After including the investor’s income and financial wealth (IFW as moderating effect, the PLS model was enhanced, and we found that the interaction term is negative and statistically significant, so, higher IFW levels entail a weaker relationship between trading frequency and portfolio performance and vice-versa. Finally, with regard to the goodness of overall model fit measures, they showed that the model is fit for SRMR and dG measures, so it is likely that the model is true.
Multiple organ definition in CT using a Bayesian approach for 3D model fitting
Boes, Jennifer L.; Weymouth, Terry E.; Meyer, Charles R.
1995-08-01
Organ definition in computed tomography (CT) is of interest for treatment planning and response monitoring. We present a method for organ definition using a priori information about shape encoded in a set of biometric organ models--specifically for the liver and kidney-- that accurately represents patient population shape information. Each model is generated by averaging surfaces from a learning set of organ shapes previously registered into a standard space defined by a small set of landmarks. The model is placed in a specific patient's data set by identifying these landmarks and using them as the basis for model deformation; this preliminary representation is then iteratively fit to the patient's data based on a Bayesian formulation of the model's priors and CT edge information, yielding a complete organ surface. We demonstrate this technique using a set of fifteen abdominal CT data sets for liver surface definition both before and after the addition of a kidney model to the fitting; we demonstrate the effectiveness of this tool for organ surface definition in this low-contrast domain.
Renormalization group approach to a p-wave superconducting model
International Nuclear Information System (INIS)
Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron
2014-01-01
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.
Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.
Zhang, Xuan; Andrews, Jared N; Pedersen, Steen E
2007-02-15
Reaction kinetics for complex, highly interconnected kinetic schemes are modeled using analytical solutions to a system of ordinary differential equations. The algorithm employs standard linear algebra methods that are implemented using MatLab functions in a Visual Basic interface. A graphical user interface for simple entry of reaction schemes facilitates comparison of a variety of reaction schemes. To ensure microscopic balance, graph theory algorithms are used to determine violations of thermodynamic cycle constraints. Analytical solutions based on linear differential equations result in fast comparisons of first order kinetic rates and amplitudes as a function of changing ligand concentrations. For analysis of higher order kinetics, we also implemented a solution using numerical integration. To determine rate constants from experimental data, fitting algorithms that adjust rate constants to fit the model to imported data were implemented using the Levenberg-Marquardt algorithm or using Broyden-Fletcher-Goldfarb-Shanno methods. We have included the ability to carry out global fitting of data sets obtained at varying ligand concentrations. These tools are combined in a single package, which we have dubbed VisKin, to guide and analyze kinetic experiments. The software is available online for use on PCs.
Fitting the CDO correlation skew: a tractable structural jump-diffusion model
DEFF Research Database (Denmark)
Willemann, Søren
2007-01-01
We extend a well-known structural jump-diffusion model for credit risk to handle both correlations through diffusion of asset values and common jumps in asset value. Through a simplifying assumption on the default timing and efficient numerical techniques, we develop a semi-analytic framework...... allowing for instantaneous calibration to heterogeneous CDS curves and fast computation of CDO tranche spreads. We calibrate the model to CDX and iTraxx data from February 2007 and achieve a satisfactory fit. To price the senior tranches for both indices, we require a risk-neutral probability of a market...
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Modeling and Simulation of a Wave Energy Converter INWAVE
Directory of Open Access Journals (Sweden)
Seung Kwan Song
2017-01-01
Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.
Modelling and Experiments of a Standing Wave Piezomotor
DEFF Research Database (Denmark)
Andersen, B.; Helbo, Jan; Blanke, Mogens
The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...
Modelling and Experiments of a Standing Wave Piezomotor
DEFF Research Database (Denmark)
Helbo, Jan; Andersen, Brian; Blanke, Mogens
2002-01-01
The paper presents a new contact model for standing wave piezomotors. The contact model is based on the Hertz theory for normal contact deformations and elastic contact theory for tangential loads. The contact theory is simplified into a model with discrete springs for normal and tangential loads...... which allows the calculation of slip/stick transitions. Simulations show that tip trajectories in general cannot be prescribed. The paper presents the principle of a bending resonator. Experiments indicate that the bending vibrations are too small to generate rotor rotations. However, due to unintended...
A particle model of rolling grain ripples under waves
DEFF Research Database (Denmark)
Andersen, Ken Haste
2001-01-01
A simple model for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave is presented. An equation of motion is derived for the individual ripples, seen as "particles," on the otherwise flat bed. The model accounts for the initial appearance...... of the ripples, the subsequent coarsening of the ripples, and the final equilibrium state. The model is related to the physical parameters of the problem, and an analytical approximation for the equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples scales...
Permutation tests for goodness-of-fit testing of mathematical models to experimental data.
Fişek, M Hamit; Barlas, Zeynep
2013-03-01
This paper presents statistical procedures for improving the goodness-of-fit testing of theoretical models to data obtained from laboratory experiments. We use an experimental study in the expectation states research tradition which has been carried out in the "standardized experimental situation" associated with the program to illustrate the application of our procedures. We briefly review the expectation states research program and the fundamentals of resampling statistics as we develop our procedures in the resampling context. The first procedure we develop is a modification of the chi-square test which has been the primary statistical tool for assessing goodness of fit in the EST research program, but has problems associated with its use. We discuss these problems and suggest a procedure to overcome them. The second procedure we present, the "Average Absolute Deviation" test, is a new test and is proposed as an alternative to the chi square test, as being simpler and more informative. The third and fourth procedures are permutation versions of Jonckheere's test for ordered alternatives, and Kendall's tau(b), a rank order correlation coefficient. The fifth procedure is a new rank order goodness-of-fit test, which we call the "Deviation from Ideal Ranking" index, which we believe may be more useful than other rank order tests for assessing goodness-of-fit of models to experimental data. The application of these procedures to the sample data is illustrated in detail. We then present another laboratory study from an experimental paradigm different from the expectation states paradigm - the "network exchange" paradigm, and describe how our procedures may be applied to this data set. Copyright © 2012 Elsevier Inc. All rights reserved.
FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND
DEFF Research Database (Denmark)
Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph
2004-01-01
the distribution of current density and further how thisaffects the polarization curve.The porosity and conductivity of the catalyst layer are some ofthe most difficult parameters to measure, estimate and especiallycontrol. Yet the proposed model shows how these two parameterscan have significant influence...... on the performance of the fuel cell.The two parameters are shown to be key elements in adjusting thethree-dimensional model to fit measured polarization curves.Results from the proposed model are compared to single cellmeasurements on a test MEA from IRD Fuel Cells.......A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the...
Fitting the Fractional Polynomial Model to Non-Gaussian Longitudinal Data
Directory of Open Access Journals (Sweden)
Ji Hoon Ryoo
2017-08-01
Full Text Available As in cross sectional studies, longitudinal studies involve non-Gaussian data such as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate exponential families. A number of statistical tools have thus been developed to deal with non-Gaussian longitudinal data, including analytic techniques to estimate parameters in both fixed and random effects models. However, as yet growth modeling with non-Gaussian data is somewhat limited when considering the transformed expectation of the response via a linear predictor as a functional form of explanatory variables. In this study, we introduce a fractional polynomial model (FPM that can be applied to model non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting two empirical binary and count data models. The results clearly show the efficiency and flexibility of the FPM for such applications.
Modeling internal wave generation by seamounts in oceans
Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.
2017-12-01
Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.
Duarte, Adam; Adams, Michael J.; Peterson, James T.
2018-01-01
Monitoring animal populations is central to wildlife and fisheries management, and the use of N-mixture models toward these efforts has markedly increased in recent years. Nevertheless, relatively little work has evaluated estimator performance when basic assumptions are violated. Moreover, diagnostics to identify when bias in parameter estimates from N-mixture models is likely is largely unexplored. We simulated count data sets using 837 combinations of detection probability, number of sample units, number of survey occasions, and type and extent of heterogeneity in abundance or detectability. We fit Poisson N-mixture models to these data, quantified the bias associated with each combination, and evaluated if the parametric bootstrap goodness-of-fit (GOF) test can be used to indicate bias in parameter estimates. We also explored if assumption violations can be diagnosed prior to fitting N-mixture models. In doing so, we propose a new model diagnostic, which we term the quasi-coefficient of variation (QCV). N-mixture models performed well when assumptions were met and detection probabilities were moderate (i.e., ≥0.3), and the performance of the estimator improved with increasing survey occasions and sample units. However, the magnitude of bias in estimated mean abundance with even slight amounts of unmodeled heterogeneity was substantial. The parametric bootstrap GOF test did not perform well as a diagnostic for bias in parameter estimates when detectability and sample sizes were low. The results indicate the QCV is useful to diagnose potential bias and that potential bias associated with unidirectional trends in abundance or detectability can be diagnosed using Poisson regression. This study represents the most thorough assessment to date of assumption violations and diagnostics when fitting N-mixture models using the most commonly implemented error distribution. Unbiased estimates of population state variables are needed to properly inform management decision
Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-04-01
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.
Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models
International Nuclear Information System (INIS)
Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan
2006-01-01
The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data
Fitted HBT radii versus space-time variances in flow-dominated models
International Nuclear Information System (INIS)
Lisa, Mike; Frodermann, Evan; Heinz, Ulrich
2007-01-01
The inability of otherwise successful dynamical models to reproduce the 'HBT radii' extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the 'RHIC HBT Puzzle'. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source which can be directly computed from the emission function, without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models some of which exhibit significant deviations from simple Gaussian behaviour. By Fourier transforming the emission function we compute the 2-particle correlation function and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and measured HBT radii remain, we show that a more 'apples-to-apples' comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data. (author)
Directory of Open Access Journals (Sweden)
S. Vijaya Bhaskara Rao
2008-06-01
Full Text Available The potential utility of Mesosphere-Stratosphere-Troposphere (MST radar measurements of zonal, meridional and vertical winds for divulging the gravity wave vertical wave number spectra is discussed. The data collected during the years 1995–2004 are used to obtain the mean vertical wave number spectra of gravity wave kinetic energy in the tropical troposphere over Gadanki (13.5° N, 79.2° E. First, the climatology of 3-dimensional wind components is developed using ten years of radar observations, for the first time, over this latitude. This climatology brought out the salient features of background tropospheric winds over Gadanki. Further, using the second order polynomial fit as background, the day-to-day wind anomalies are estimated. These wind anomalies in the 4–14 km height regions are used to estimate the profiles of zonal, meridional and vertical kinetic energy per unit mass, which are then used to estimate the height profile of total kinetic energy. Finally, the height profiles of total kinetic energy are subjected to Fourier analysis to obtain the monthly mean vertical wave number spectra of gravity wave kinetic energy. The monthly mean vertical wave number spectra are then compared with a saturation spectrum predicted by gravity wave saturation theory. A slope of 5/3 is used for the model gravity wave spectrum estimation. In general, the agreement is good during all the months. However, it is noticed that the model spectrum overestimates the PSD at lower vertical wave numbers and underestimates it at higher vertical wave numbers, which is consistently observed during all the months. The observed discrepancies are attributed to the differences in the slopes of theoretical and observed gravity wave spectra. The slopes of the observed vertical wave number spectra are estimated and compared with the model spectrum slope, which are in good agreement. The estimated slopes of the observed monthly vertical wave number spectra are in the
Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder
DEFF Research Database (Denmark)
Albertsen, Christoffer Moesgaard; Whoriskey, Kim; Yurkowski, David
2015-01-01
recommend using the Laplace approximation combined with automatic differentiation (as implemented in the novel R package Template Model Builder; TMB) for the fast fitting of continuous-time multivariate non-Gaussian SSMs. Through Argos satellite tracking data, we demonstrate that the use of continuous...... are able to estimate additional parameters compared to previous methods, all without requiring a substantial increase in computational time. The model implementation is made available through the R package argosTrack....
International Nuclear Information System (INIS)
Greenwood, Charles; Christie, David; Venugopal, Vengatesan; Morrison, James; Vogler, Arne
2016-01-01
This paper presents results from numerical simulations of three Oscillating Wave Surge Converters (OWSC) using two different computational models, Boussinesq wave (BW) and Spectral wave (SW) of the commercial software suite MIKE. The simulation of a shallow water wave farm applies alternative methods for implementing a frequency dependent absorption in both the BW and SW models, where energy extraction is based on experimental data from a scaled Oyster device. The effects of including wave diffraction within the SW model is tested by using diffraction smoothing steps and various directional wave conditions. The results of this study reveal important information on the models realms of validity that is heavily dependent on the incident sea state and the removal of diffraction for the SW model. This yields an increase in simulation accuracy for far-field disturbances when diffraction is entirely removed. This highlights specific conditions where the BW and SW model may thrive but also regions where reduced performance is observed. The results presented in this paper have not been validated with real sea site wave device array performance, however, the methodology described would be useful to device developers to arrive at preliminary decisions on array configurations and to minimise negative environmental impacts.
Simulations of short-crested harbour waves with variational Boussinesq modelling
Adytia, D.
2014-01-01
Waves propagating from the deep ocean to the coast show large changes in wave height, wave length and direction. The challenge to simulate the essential wave characteristics is in particular to model the speed and nonlinear interaction correctly. All these physical phenomena are present, but hidden,
A coupled DEM-CFD method for impulse wave modelling
Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista
2015-04-01
Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been
Cnoidal waves as solutions of the nonlinear liquid drop model
International Nuclear Information System (INIS)
Ludu, Andrei; Sandulescu, Aureliu; Greiner Walter
1997-01-01
By introducing in the hydrodynamic model, i.e. in the hydrodynamic equation and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equations (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by ratio of the square amplitudes in the two minima. (authors)
Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy
2016-04-01
As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.
Modeling North Atlantic Nor'easters With Modern Wave Forecast Models
Perrie, Will; Toulany, Bechara; Roland, Aron; Dutour-Sikiric, Mathieu; Chen, Changsheng; Beardsley, Robert C.; Qi, Jianhua; Hu, Yongcun; Casey, Michael P.; Shen, Hui
2018-01-01
Three state-of-the-art operational wave forecast model systems are implemented on fine-resolution grids for the Northwest Atlantic. These models are: (1) a composite model system consisting of SWAN implemented within WAVEWATCHIII® (the latter is hereafter, WW3) on a nested system of traditional structured grids, (2) an unstructured grid finite-volume wave model denoted "SWAVE," using SWAN physics, and (3) an unstructured grid finite element wind wave model denoted as "WWM" (for "wind wave model") which uses WW3 physics. Models are implemented on grid systems that include relatively large domains to capture the wave energy generated by the storms, as well as including fine-resolution nearshore regions of the southern Gulf of Maine with resolution on the scale of 25 m to simulate areas where inundation and coastal damage have occurred, due to the storms. Storm cases include three intense midlatitude cases: a spring Nor'easter storm in May 2005, the Patriot's Day storm in 2007, and the Boxing Day storm in 2010. Although these wave model systems have comparable overall properties in terms of their performance and skill, it is found that there are differences. Models that use more advanced physics, as presented in recent versions of WW3, tuned to regional characteristics, as in the Gulf of Maine and the Northwest Atlantic, can give enhanced results.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Canary, Jana D; Blizzard, Leigh; Barry, Ronald P; Hosmer, David W; Quinn, Stephen J
2016-05-01
Generalized linear models (GLM) with a canonical logit link function are the primary modeling technique used to relate a binary outcome to predictor variables. However, noncanonical links can offer more flexibility, producing convenient analytical quantities (e.g., probit GLMs in toxicology) and desired measures of effect (e.g., relative risk from log GLMs). Many summary goodness-of-fit (GOF) statistics exist for logistic GLM. Their properties make the development of GOF statistics relatively straightforward, but it can be more difficult under noncanonical links. Although GOF tests for logistic GLM with continuous covariates (GLMCC) have been applied to GLMCCs with log links, we know of no GOF tests in the literature specifically developed for GLMCCs that can be applied regardless of link function chosen. We generalize the Tsiatis GOF statistic originally developed for logistic GLMCCs, (TG), so that it can be applied under any link function. Further, we show that the algebraically related Hosmer-Lemeshow (HL) and Pigeon-Heyse (J(2) ) statistics can be applied directly. In a simulation study, TG, HL, and J(2) were used to evaluate the fit of probit, log-log, complementary log-log, and log models, all calculated with a common grouping method. The TG statistic consistently maintained Type I error rates, while those of HL and J(2) were often lower than expected if terms with little influence were included. Generally, the statistics had similar power to detect an incorrect model. An exception occurred when a log GLMCC was incorrectly fit to data generated from a logistic GLMCC. In this case, TG had more power than HL or J(2) . © 2015 John Wiley & Sons Ltd/London School of Economics.
A Comparison of Surface Acoustic Wave Modeling Methods
Wilson, W. c.; Atkinson, G. M.
2009-01-01
Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.
Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model
International Nuclear Information System (INIS)
Edwards, Darrin C.; Kupinski, Matthew A.; Metz, Charles E.; Nishikawa, Robert M.
2002-01-01
We have developed a model for FROC curve fitting that relates the observer's FROC performance not to the ROC performance that would be obtained if the observer's responses were scored on a per image basis, but rather to a hypothesized ROC performance that the observer would obtain in the task of classifying a set of 'candidate detections' as positive or negative. We adopt the assumptions of the Bunch FROC model, namely that the observer's detections are all mutually independent, as well as assumptions qualitatively similar to, but different in nature from, those made by Chakraborty in his AFROC scoring methodology. Under the assumptions of our model, we show that the observer's FROC performance is a linearly scaled version of the candidate analysis ROC curve, where the scaling factors are just given by the FROC operating point coordinates for detecting initial candidates. Further, we show that the likelihood function of the model parameters given observational data takes on a simple form, and we develop a maximum likelihood method for fitting a FROC curve to this data. FROC and AFROC curves are produced for computer vision observer datasets and compared with the results of the AFROC scoring method. Although developed primarily with computer vision schemes in mind, we hope that the methodology presented here will prove worthy of further study in other applications as well
VizieR Online Data Catalog: GRB prompt emission fitted with the DREAM model (Ahlgren+, 2015)
Ahlgren, B.; Larsson, J.; Nymark, T.; Ryde, F.; Pe'Er, A.
2018-01-01
We illustrate the application of the DREAM model by fitting it to two different, bright Fermi GRBs; GRB 090618 and GRB 100724B. While GRB 090618 is well fitted by a Band function, GRB 100724B was the first example of a burst with a significant additional BB component (Guiriec et al. 2011ApJ...727L..33G). GRB 090618 is analysed using Gamma-ray Burst Monitor (GBM) data (Meegan et al. 2009ApJ...702..791M) from the NaI and BGO detectors. For GRB 100724B, we used GBM data from the NaI and BGO detectors as well as Large Area Telescope Low Energy (LAT-LLE) data. For both bursts we selected NaI detectors seeing the GRB at an off-axis angle lower than 60° and the BGO detector as being the best aligned of the two BGO detectors. The spectra were fitted in the energy ranges 8-1000 keV (NaI), 200-40000 keV (BGO) and 30-1000 MeV (LAT-LLE). (2 data files).
Adapted strategic plannig model applied to small business: a case study in the fitness area
Directory of Open Access Journals (Sweden)
Eduarda Tirelli Hennig
2012-06-01
Full Text Available The strategic planning is an important management tool in the corporate scenario and shall not be restricted to big Companies. However, this kind of planning process in small business may need special adaptations due to their own characteristics. This paper aims to identify and adapt the existent models of strategic planning to the scenario of a small business in the fitness area. Initially, it is accomplished a comparative study among models of different authors to identify theirs phases and activities. Then, it is defined which of these phases and activities should be present in a model that will be utilized in a small business. That model was applied to a Pilates studio; it involves the establishment of an organizational identity, an environmental analysis as well as the definition of strategic goals, strategies and actions to reach them. Finally, benefits to the organization could be identified, as well as hurdles in the implementation of the tool.
Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling
Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.
2017-12-01
Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.
Using geometry to improve model fitting and experiment design for glacial isostasy
Kachuck, S. B.; Cathles, L. M.
2017-12-01
As scientists we routinely deal with models, which are geometric objects at their core - the manifestation of a set of parameters as predictions for comparison with observations. When the number of observations exceeds the number of parameters, the model is a hypersurface (the model manifold) in the space of all possible predictions. The object of parameter fitting is to find the parameters corresponding to the point on the model manifold as close to the vector of observations as possible. But the geometry of the model manifold can make this difficult. By curving, ending abruptly (where, for instance, parameters go to zero or infinity), and by stretching and compressing the parameters together in unexpected directions, it can be difficult to design algorithms that efficiently adjust the parameters. Even at the optimal point on the model manifold, parameters might not be individually resolved well enough to be applied to new contexts. In our context of glacial isostatic adjustment, models of sparse surface observations have a broad spread of sensitivity to mixtures of the earth's viscous structure and the surface distribution of ice over the last glacial cycle. This impedes precise statements about crucial geophysical processes, such as the planet's thermal history or the climates that controlled the ice age. We employ geometric methods developed in the field of systems biology to improve the efficiency of fitting (geodesic accelerated Levenberg-Marquardt) and to identify the maximally informative sources of additional data to make better predictions of sea levels and ice configurations (optimal experiment design). We demonstrate this in particular in reconstructions of the Barents Sea Ice Sheet, where we show that only certain kinds of data from the central Barents have the power to distinguish between proposed models.
Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays
Energy Technology Data Exchange (ETDEWEB)
Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba
2013-01-26
This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate
Energy Technology Data Exchange (ETDEWEB)
Long, M. S. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences; Keene, William C. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences; Zhang, J. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Reichl, B. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Shi, Y. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Hara, T. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Reid, J. S. [Naval Research Lab. (NRL), Monterey, CA (United States); Fox-Kemper, B. [Brown Univ., Providence, RI (United States). Earth, Environmental and Planetary Sciences; Craig, A. P. [National Center for Atmospheric Research, Boulder, CO (United States); Erickson, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Ginis, I. [Univ. of Rhode Island, Narragansett, RI (United States). Graduate School of Oceanography; Webb, A. [Univ. of Tokyo (Japan). Dept. of Ocean Technology, Policy, and Environment
2016-11-08
Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3^{rd} generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD or Na^{+}, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.
Modelling viscoacoustic wave propagation with the lattice Boltzmann method.
Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen
2017-08-31
In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.
Describing the Process of Adopting Nutrition and Fitness Apps: Behavior Stage Model Approach.
König, Laura M; Sproesser, Gudrun; Schupp, Harald T; Renner, Britta
2018-03-13
Although mobile technologies such as smartphone apps are promising means for motivating people to adopt a healthier lifestyle (mHealth apps), previous studies have shown low adoption and continued use rates. Developing the means to address this issue requires further understanding of mHealth app nonusers and adoption processes. This study utilized a stage model approach based on the Precaution Adoption Process Model (PAPM), which proposes that people pass through qualitatively different motivational stages when adopting a behavior. To establish a better understanding of between-stage transitions during app adoption, this study aimed to investigate the adoption process of nutrition and fitness app usage, and the sociodemographic and behavioral characteristics and decision-making style preferences of people at different adoption stages. Participants (N=1236) were recruited onsite within the cohort study Konstanz Life Study. Use of mobile devices and nutrition and fitness apps, 5 behavior adoption stages of using nutrition and fitness apps, preference for intuition and deliberation in eating decision-making (E-PID), healthy eating style, sociodemographic variables, and body mass index (BMI) were assessed. Analysis of the 5 behavior adoption stages showed that stage 1 ("unengaged") was the most prevalent motivational stage for both nutrition and fitness app use, with half of the participants stating that they had never thought about using a nutrition app (52.41%, 533/1017), whereas less than one-third stated they had never thought about using a fitness app (29.25%, 301/1029). "Unengaged" nonusers (stage 1) showed a higher preference for an intuitive decision-making style when making eating decisions, whereas those who were already "acting" (stage 4) showed a greater preference for a deliberative decision-making style (F 4,1012 =21.83, Pdigital interventions. This study highlights that new user groups might be better reached by apps designed to address a more intuitive
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
Energy Technology Data Exchange (ETDEWEB)
Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)
2007-12-15
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
International Nuclear Information System (INIS)
Kim, No Hyu; Yang, Seung Yong
2007-01-01
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Directory of Open Access Journals (Sweden)
Dylan Molenaar
2015-08-01
Full Text Available In the psychometric literature, item response theory models have been proposed that explicitly take the decision process underlying the responses of subjects to psychometric test items into account. Application of these models is however hampered by the absence of general and flexible software to fit these models. In this paper, we present diffIRT, an R package that can be used to fit item response theory models that are based on a diffusion process. We discuss parameter estimation and model fit assessment, show the viability of the package in a simulation study, and illustrate the use of the package with two datasets pertaining to extraversion and mental rotation. In addition, we illustrate how the package can be used to fit the traditional diffusion model (as it has been originally developed in experimental psychology to data.
Directory of Open Access Journals (Sweden)
G. Emmanouil
2007-03-01
Full Text Available An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas.
Model Predictive Control of Buoy Type Wave Energy Converter
DEFF Research Database (Denmark)
Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood
2014-01-01
by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....
Modelling guided waves in the Alaskan-Aleutian subduction zone
Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas
2016-04-01
Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G
2007-01-01
This report describes evaluation of a two-dimensional Boussinesq-type wave model, BOUSS-2D, with data obtained from two laboratory experiments and two field studies at the islands of Guam and Hawaii...
Inverse problem theory methods for data fitting and model parameter estimation
Tarantola, A
2002-01-01
Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals wi
On the fit of models to covariances and methodology to the Bulletin.
Bentler, P M
1992-11-01
It is noted that 7 of the 10 top-cited articles in the Psychological Bulletin deal with methodological topics. One of these is the Bentler-Bonett (1980) article on the assessment of fit in covariance structure models. Some context is provided on the popularity of this article. In addition, a citation study of methodology articles appearing in the Bulletin since 1978 was carried out. It verified that publications in design, evaluation, measurement, and statistics continue to be important to psychological research. Some thoughts are offered on the role of the journal in making developments in these areas more accessible to psychologists.
Fitting the two-compartment model in DCE-MRI by linear inversion.
Flouri, Dimitra; Lesnic, Daniel; Sourbron, Steven P
2016-09-01
Model fitting of dynamic contrast-enhanced-magnetic resonance imaging-MRI data with nonlinear least squares (NLLS) methods is slow and may be biased by the choice of initial values. The aim of this study was to develop and evaluate a linear least squares (LLS) method to fit the two-compartment exchange and -filtration models. A second-order linear differential equation for the measured concentrations was derived where model parameters act as coefficients. Simulations of normal and pathological data were performed to determine calculation time, accuracy and precision under different noise levels and temporal resolutions. Performance of the LLS was evaluated by comparison against the NLLS. The LLS method is about 200 times faster, which reduces the calculation times for a 256 × 256 MR slice from 9 min to 3 s. For ideal data with low noise and high temporal resolution the LLS and NLLS were equally accurate and precise. The LLS was more accurate and precise than the NLLS at low temporal resolution, but less accurate at high noise levels. The data show that the LLS leads to a significant reduction in calculation times, and more reliable results at low noise levels. At higher noise levels the LLS becomes exceedingly inaccurate compared to the NLLS, but this may be improved using a suitable weighting strategy. Magn Reson Med 76:998-1006, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Saunders, Christina T; Blume, Jeffrey D
2017-10-26
Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.
Tikhonov, Mikhail; Monasson, Remi
2018-01-01
Much of our understanding of ecological and evolutionary mechanisms derives from analysis of low-dimensional models: with few interacting species, or few axes defining "fitness". It is not always clear to what extent the intuition derived from low-dimensional models applies to the complex, high-dimensional reality. For instance, most naturally occurring microbial communities are strikingly diverse, harboring a large number of coexisting species, each of which contributes to shaping the environment of others. Understanding the eco-evolutionary interplay in these systems is an important challenge, and an exciting new domain for statistical physics. Recent work identified a promising new platform for investigating highly diverse ecosystems, based on the classic resource competition model of MacArthur. Here, we describe how the same analytical framework can be used to study evolutionary questions. Our analysis illustrates how, at high dimension, the intuition promoted by a one-dimensional (scalar) notion of fitness can become misleading. Specifically, while the low-dimensional picture emphasizes organism cost or efficiency, we exhibit a regime where cost becomes irrelevant for survival, and link this observation to generic properties of high-dimensional geometry.
A staggered-grid convolutional differentiator for elastic wave modelling
Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun
2015-11-01
The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.
Multi-binding site model-based curve-fitting program for the computation of RIA data
International Nuclear Information System (INIS)
Malan, P.G.; Ekins, R.P.; Cox, M.G.; Long, E.M.R.
1977-01-01
In this paper, a comparison will be made of model-based and empirical curve-fitting procedures. The implementation of a multiple binding-site curve-fitting model which will successfully fit a wide range of assay data, and which can be run on a mini-computer is described. The latter sophisticated model also provides estimates of binding site concentrations and the values of the respective equilibrium constants present: the latter have been used for refining assay conditions using computer optimisation techniques. (orig./AJ) [de
Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf
Directory of Open Access Journals (Sweden)
H. Michaud
2012-08-01
Full Text Available We develop and implement a new method to take into account the impact of waves into the 3-D circulation model SYMPHONIE (Marsaleix et al., 2008, 2009a following the simplified equations of Bennis et al. (2011 which use glm2z-RANS theory (Ardhuin et al., 2008c. These adiabatic equations are completed by additional parameterizations of wave breaking, bottom friction and wave-enhanced vertical mixing, making the forcing valid from the surf zone through to the open ocean. The wave forcing is performed by wave generation and propagation models WAVEWATCH III® (Tolman, 2008, 2009; Ardhuin et al., 2010 and SWAN (Booij et al., 1999. The model is tested and compared with other models for a plane beach test case, previously tested by Haas and Warner (2009and Uchiyama et al. (2010. A comparison is also made with the laboratory measurements of Haller et al. (2002 of a barred beach with channels. Results fit with previous simulations performed by other models and with available observational data.
Finally, a realistic case is simulated with energetic waves travelling over a coast of the Gulf of Lion (in the northwest of the Mediterranean Sea for which currents are available at different depths as well as an accurate bathymetric database of the 0–10 m depth range. A grid nesting approach is used to account for the different forcings acting at different spatial scales. The simulation coupling the effects of waves and currents is successful to reproduce the powerful northward littoral drift in the 0–15 m depth zone. More precisely, two distinct cases are identified: When waves have a normal angle of incidence with the coast, they are responsible for complex circulation cells and rip currents in the surf zone, and when they travel obliquely, they generate a northward littoral drift. These features are more complicated than in the test cases, due to the complex bathymetry and the consideration of wind and non-stationary processes. Wave impacts in the
Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models
Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui
2010-01-01
Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.
Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models
DEFF Research Database (Denmark)
Christensen, Morten
in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...... generator is capable of of reducing the problem of rereflection in multidirectional, irregular wave fields significantly....
GRace: a MATLAB-based application for fitting the discrimination-association model.
Stefanutti, Luca; Vianello, Michelangelo; Anselmi, Pasquale; Robusto, Egidio
2014-10-28
The Implicit Association Test (IAT) is a computerized two-choice discrimination task in which stimuli have to be categorized as belonging to target categories or attribute categories by pressing, as quickly and accurately as possible, one of two response keys. The discrimination association model has been recently proposed for the analysis of reaction time and accuracy of an individual respondent to the IAT. The model disentangles the influences of three qualitatively different components on the responses to the IAT: stimuli discrimination, automatic association, and termination criterion. The article presents General Race (GRace), a MATLAB-based application for fitting the discrimination association model to IAT data. GRace has been developed for Windows as a standalone application. It is user-friendly and does not require any programming experience. The use of GRace is illustrated on the data of a Coca Cola-Pepsi Cola IAT, and the results of the analysis are interpreted and discussed.
Wenseleers, Tom; Helanterä, Heikki; Alves, Denise A.; Dueñez-Guzmán, Edgar; Pamilo, Pekka
2013-01-01
The conflicts over sex allocation and male production in insect societies have long served as an important test bed for Hamilton's theory of inclusive fitness, but have for the most part been considered separately. Here, we develop new coevolutionary models to examine the interaction between these two conflicts and demonstrate that sex ratio and colony productivity costs of worker reproduction can lead to vastly different outcomes even in species that show no variation in their relatedness structure. Empirical data on worker-produced males in eight species of Melipona bees support the predictions from a model that takes into account the demographic details of colony growth and reproduction. Overall, these models contribute significantly to explaining behavioural variation that previous theories could not account for. PMID:24132088
Klijn, Sven L; Weijenberg, Matty P; Lemmens, Paul; van den Brandt, Piet A; Lima Passos, Valéria
2017-10-01
Background and objective Group-based trajectory modelling is a model-based clustering technique applied for the identification of latent patterns of temporal changes. Despite its manifold applications in clinical and health sciences, potential problems of the model selection procedure are often overlooked. The choice of the number of latent trajectories (class-enumeration), for instance, is to a large degree based on statistical criteria that are not fail-safe. Moreover, the process as a whole is not transparent. To facilitate class enumeration, we introduce a graphical summary display of several fit and model adequacy criteria, the fit-criteria assessment plot. Methods An R-code that accepts universal data input is presented. The programme condenses relevant group-based trajectory modelling output information of model fit indices in automated graphical displays. Examples based on real and simulated data are provided to illustrate, assess and validate fit-criteria assessment plot's utility. Results Fit-criteria assessment plot provides an overview of fit criteria on a single page, placing users in an informed position to make a decision. Fit-criteria assessment plot does not automatically select the most appropriate model but eases the model assessment procedure. Conclusions Fit-criteria assessment plot is an exploratory, visualisation tool that can be employed to assist decisions in the initial and decisive phase of group-based trajectory modelling analysis. Considering group-based trajectory modelling's widespread resonance in medical and epidemiological sciences, a more comprehensive, easily interpretable and transparent display of the iterative process of class enumeration may foster group-based trajectory modelling's adequate use.
Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.
Mi, Gu; Di, Yanming; Schafer, Daniel W
2015-01-01
This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.
Yuan, Shupei; Ma, Wenjuan; Kanthawala, Shaheen; Peng, Wei
2015-09-01
Health and fitness applications (apps) are one of the major app categories in the current mobile app market. Few studies have examined this area from the users' perspective. This study adopted the Extended Unified Theory of Acceptance and Use of Technology (UTAUT2) Model to examine the predictors of the users' intention to adopt health and fitness apps. A survey (n=317) was conducted with college-aged smartphone users at a Midwestern university in the United States. Performance expectancy, hedonic motivations, price value, and habit were significant predictors of users' intention of continued usage of health and fitness apps. However, effort expectancy, social influence, and facilitating conditions were not found to predict users' intention of continued usage of health and fitness apps. This study extends the UTATU2 Model to the mobile apps domain and provides health professions, app designers, and marketers with the insights of user experience in terms of continuously using health and fitness apps.
A History of Regression and Related Model-Fitting in the Earth Sciences (1636?-2000)
International Nuclear Information System (INIS)
Howarth, Richard J.
2001-01-01
The (statistical) modeling of the behavior of a dependent variate as a function of one or more predictors provides examples of model-fitting which span the development of the earth sciences from the 17th Century to the present. The historical development of these methods and their subsequent application is reviewed. Bond's predictions (c. 1636 and 1668) of change in the magnetic declination at London may be the earliest attempt to fit such models to geophysical data. Following publication of Newton's theory of gravitation in 1726, analysis of data on the length of a 1 o meridian arc, and the length of a pendulum beating seconds, as a function of sin 2 (latitude), was used to determine the ellipticity of the oblate spheroid defining the Figure of the Earth. The pioneering computational methods of Mayer in 1750, Boscovich in 1755, and Lambert in 1765, and the subsequent independent discoveries of the principle of least squares by Gauss in 1799, Legendre in 1805, and Adrain in 1808, and its later substantiation on the basis of probability theory by Gauss in 1809 were all applied to the analysis of such geodetic and geophysical data. Notable later applications include: the geomagnetic survey of Ireland by Lloyd, Sabine, and Ross in 1836, Gauss's model of the terrestrial magnetic field in 1838, and Airy's 1845 analysis of the residuals from a fit to pendulum lengths, from which he recognized the anomalous character of measurements of gravitational force which had been made on islands. In the early 20th Century applications to geological topics proliferated, but the computational burden effectively held back applications of multivariate analysis. Following World War II, the arrival of digital computers in universities in the 1950s facilitated computation, and fitting linear or polynomial models as a function of geographic coordinates, trend surface analysis, became popular during the 1950-60s. The inception of geostatistics in France at this time by Matheron had its
Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter
The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...
Entanglement entropy in a holographic p-wave superconductor model
Directory of Open Access Journals (Sweden)
Li-Fang Li
2015-05-01
Full Text Available In a recent paper, arXiv:1309.4877, a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
Optimization of arterial age prediction models based in pulse wave
Energy Technology Data Exchange (ETDEWEB)
Scandurra, A G [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Meschino, G J [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Passoni, L I [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Dai Pra, A L [Engineering Aplied Artificial Intelligence Group, Mathematics Department, Mar del Plata University (Argentina); Introzzi, A R [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina); Clara, F M [Bioengineering Laboratory, Electronic Department, Mar del Plata University (Argentina)
2007-11-15
We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff.
Entanglement entropy in a holographic p-wave superconductor model
Energy Technology Data Exchange (ETDEWEB)
Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Rong-Gen, E-mail: cairg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li, E-mail: liliphy@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao, E-mail: sc@nssc.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2015-05-15
In a recent paper, (arXiv:1309.4877), a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.
Optimization of arterial age prediction models based in pulse wave
International Nuclear Information System (INIS)
Scandurra, A G; Meschino, G J; Passoni, L I; Dai Pra, A L; Introzzi, A R; Clara, F M
2007-01-01
We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff
Kinetic computer modeling of microwave surface-wave plasma production
International Nuclear Information System (INIS)
Ganachev, Ivan P.
2004-01-01
Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)
Falsification of Leggett's model using neutron matter waves
International Nuclear Information System (INIS)
Hasegawa, Yuji; Sponar, Stephan; Durstberger-Rennhofer, Katharina; Badurek, Gerald; Schmitzer, Claus; Bartosik, Hannes; Klepp, Jürgen
2012-01-01
According to Bell's theorem, no theory based on the joint assumption of realism and locality can reproduce certain predictions of quantum mechanics. Another class of realistic models, proposed by Leggett, that demands realism but abandons reliance on locality, is predicted to be in conflict with quantum mechanics. In this paper, we report on an experimental test of a contextual realistic model analogous to the model of Leggett performed with matter waves, more precisely with neutrons. Correlation measurements of the spin-energy entangled single-particle system show violation of a Leggett-type inequality by more than 7.6 standard deviations. Our experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics. (paper)
A modified symplectic PRK scheme for seismic wave modeling
Liu, Shaolin; Yang, Dinghui; Ma, Jian
2017-02-01
A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.
Microstrip natural wave spectrum mathematical model using partial inversion method
International Nuclear Information System (INIS)
Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.
1995-01-01
It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types
A two dimension model of the uterine electrical wave propagation.
Rihana, S; Lefrançois, E; Marque, C
2007-01-01
The uterus, usually quiescent during pregnancy, exhibits forceful contractions at term leading to delivery. These contractions are caused by the synchronized propagation of electrical waves from the pacemaker cells to its neighbors inducing the whole coordinated contraction of the uterus wall leading to labor. In a previous work, we simulate the electrical activity of a single uterine cell by a set of ordinary differential equations. Then, this model has been used to simulate the electrical activity propagation. In the present work, the uterine cell tissue is assumed to have uniform and isotropic propagation, and constant electrical membrane properties. The stability of the numerical solution imposes the choice of a critical temporal step. A wave starts at a pacemaker cell; this electrical activity is initiated by the injection of an external stimulation current to the cell membrane. We observe synchronous wave propagation for axial resistance values around 0.5 GOmega or less and propoagation blocking for values greater than 0.7 GOmega. We compute the conduction velocity of the excitation, for different axial resistance values, and obtain a velocity about 10 cm/sec, approaching the one described by the literature for the rat at end of term.
Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches
Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.
2016-12-01
We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.
Levy flights and self-similar exploratory behaviour of termite workers: beyond model fitting.
Directory of Open Access Journals (Sweden)
Octavio Miramontes
Full Text Available Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties--including Lévy flights--in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale.
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
A Monte Carlo-adjusted goodness-of-fit test for parametric models describing spatial point patterns
Dao, Ngocanh; Genton, Marc G.
2014-01-01
Assessing the goodness-of-fit (GOF) for intricate parametric spatial point process models is important for many application fields. When the probability density of the statistic of the GOF test is intractable, a commonly used procedure is the Monte
Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung
2012-05-01
In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.
Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser
Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.
Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.
New exact travelling wave solutions of nonlinear physical models
International Nuclear Information System (INIS)
Bekir, Ahmet; Cevikel, Adem C.
2009-01-01
In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.
Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)
International Nuclear Information System (INIS)
Bohm, A.; Teese, R.B.
1982-01-01
We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy
Reference Model 6 (RM6): Oscillating Wave Energy Converter.
Energy Technology Data Exchange (ETDEWEB)
Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan
2014-10-01
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.
Model of the electromagnetic waves processing in ultrasound
International Nuclear Information System (INIS)
Abrego L, J.; Azorin N, J.; Siles A, S.; Cruz O, A.
2004-01-01
In this work, a model to process the electromagnetic waves in ultrasonic equipment is proposed and it is experimentally demonstrated that, the origin of the ultrasound is electronic and non mechanic. The above mentioned, it has been demonstrated when making in an electronic equipment a spectral analysis the one that indicated an unfolding of the original ultrasonic pulses of 17 K Hz., to 88 K Hz., and of 5 MHz., to 23 GHz. Also, it was obtained the degradation with ultrasound of particles of Hematite and of Galena, as well as the fading of the methylene blue and the generation of an electric current exciting with ultrasound. (Author)
Directory of Open Access Journals (Sweden)
Cristina García Magro
2015-06-01
Full Text Available Purpose: The aims of the paper is offers a model of analysis which allows to measure the impact on the performance of fairs, as well as the knowledge or not of the motives of participation of the visitors on the part of the exhibitors. Design/methodology: A review of the literature is established concerning two of the principal interested agents, exhibitors and visitors, focusing. The study is focused on the line of investigation referred to the motives of participation or not in a trade show. According to the information thrown by each perspectives of study, a comparative analysis is carried out in order to determine the degree of existing understanding between both. Findings: The trade shows allow to be studied from an integrated strategic marketing approach. The fit model between the reasons for participation of exhibitors and visitors offer information on the lack of an understanding between exhibitors and visitors, leading to dissatisfaction with the participation, a fact that is reflected in the fair success. The model identified shows that a strategic plan must be designed in which the reason for participation of visitor was incorporated as moderating variable of the reason for participation of exhibitors. The article concludes with the contribution of a series of proposals for the improvement of fairground results. Social implications: The fit model that improve the performance of trade shows, implicitly leads to successful achievement of targets for multiple stakeholders beyond the consideration of visitors and exhibitors. Originality/value: The integrated perspective of stakeholders allows the study of the existing relationships between the principal groups of interest, in such a way that, having knowledge on the condition of the question of the trade shows facilitates the task of the investigator in future academic works and allows that the interested groups obtain a better performance to the participation in fairs, as visitor or as
Ye, W; Bel-Brunon, A; Catheline, S; Combescure, A; Rochette, M
2018-01-01
In this study, visco-hyperelastic Landau's model, which is widely used in acoustical physic field, is introduced into a finite element formulation. It is designed to model the nonlinear behaviour of finite amplitude shear waves in soft solids, typically, in biological tissues. This law is used in finite element models based on elastography, experiments reported in Jacob et al, the simulations results show a good agreement with the experimental study: It is observed in both that a plane shear wave generates only odd harmonics and a nonplane wave generates both odd and even harmonics in the spectral domain. In the second part, a parametric study is performed to analyse the influence of different factors on the generation of odd harmonics of plane wave. A quantitative relation is fitted between the odd harmonic amplitudes and the non-linear elastic parameter of Landau's model, which provides a practical guideline to identify the non-linearity of homogeneous tissues using elastography experiment. Copyright © 2017 John Wiley & Sons, Ltd.
Modelling the effect of acoustic waves on nucleation
Energy Technology Data Exchange (ETDEWEB)
Haqshenas, S. R., E-mail: seyyed.haqshenas.12@ucl.ac.uk; Saffari, N., E-mail: n.saffari@ucl.ac.uk [Department of Mechanical Engineering, University College London, Gower Street, London WC1E 7JE (United Kingdom); Ford, I. J., E-mail: i.ford@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2016-07-14
A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory.
Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter
DEFF Research Database (Denmark)
López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede
2017-01-01
Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym
2007-01-01
In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves
Hydro-morphological modelling of small, wave-dominated estuaries
Slinger, Jill H.
2017-11-01
Small, intermittently open or closed estuaries are characteristic of the coasts of South Africa, Australia, California, Mexico and many other areas of the world. However, modelling attention has tended to focus on big estuaries that drain large catchments and serve a wide diversity of interests e.g. agriculture, urban settlement, recreation, commercial fishing. In this study, the development of a simple, parametric, system dynamics model to simulate the opening and closure of the mouths of small, wave-dominated estuaries is reported. In the model, the estuary is conceived as a basin with a specific water volume to water level relationship, connected to the sea by a channel of fixed width, but variable sill height. Changes in the form of the basin are not treated in the model, while the dynamics of the mouth channel are central to the model. The magnitude and direction of the flow through the mouth determines whether erosion or deposition of sediment occurs in the mouth channel, influencing the sill height. The model is implemented on the Great Brak Estuary in South Africa and simulations reveal that the raised low water levels in the estuary during spring tide relative to neap tide, are occasioned by the constriction of the tidal flow through the shallow mouth. Freshwater inflows to the estuary are shown to be significant in determining the behaviour of the inlet mouth, a factor often ignored in studies on tidal inlets. Further it is the balance between freshwater inflows and wave events that determines the opening or closure of the mouth of a particular estuary.
Fitting Data to Model: Structural Equation Modeling Diagnosis Using Two Scatter Plots
Yuan, Ke-Hai; Hayashi, Kentaro
2010-01-01
This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…
WaveSAX device: design optimization through scale modelling and a PTO strategical control system
Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto
2017-04-01
WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench
Directory of Open Access Journals (Sweden)
Yichao Liu
2017-01-01
Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.
Model Atmosphere Spectrum Fit to the Soft X-Ray Outburst Spectrum of SS Cyg
Directory of Open Access Journals (Sweden)
V. F. Suleimanov
2015-02-01
Full Text Available The X-ray spectrum of SS Cyg in outburst has a very soft component that can be interpreted as the fast-rotating optically thick boundary layer on the white dwarf surface. This component was carefully investigated by Mauche (2004 using the Chandra LETG spectrum of this object in outburst. The spectrum shows broad ( ≈5 °A spectral features that have been interpreted as a large number of absorption lines on a blackbody continuum with a temperature of ≈250 kK. Because the spectrum resembles the photospheric spectra of super-soft X-ray sources, we tried to fit it with high gravity hot LTE stellar model atmospheres with solar chemical composition, specially computed for this purpose. We obtained a reasonably good fit to the 60–125 °A spectrum with the following parameters: Teff = 190 kK, log g = 6.2, and NH = 8 · 1019 cm−2, although at shorter wavelengths the observed spectrum has a much higher flux. The reasons for this are discussed. The hypothesis of a fast rotating boundary layer is supported by the derived low surface gravity.
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Kuhlman, J. M.
1979-01-01
The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.
FIT ANALYSIS OF INDOSAT DOMPETKU BUSINESS MODEL USING A STRATEGIC DIAGNOSIS APPROACH
Directory of Open Access Journals (Sweden)
Fauzi Ridwansyah
2015-09-01
Full Text Available Mobile payment is an industry's response to global and regional technological-driven, as well as national social-economical driven in less cash society development. The purposes of this study were 1 identifying positioning of PT. Indosat in providing a response to Indonesian mobile payment market, 2 analyzing Indosat’s internal capabilities and business model fit with environment turbulence, and 3 formulating the optimum mobile payment business model development design for Indosat. The method used in this study was a combination of qualitative and quantitative analysis through in-depth interviews with purposive judgment sampling. The analysis tools used in this study were Business Model Canvas (MBC and Ansoff’s Strategic Diagnosis. The interviewees were the representatives of PT. Indosat internal management and mobile payment business value chain stakeholders. Based on BMC mapping which is then analyzed by strategic diagnosis model, a considerable gap (>1 between the current market environment and Indosat strategy of aggressiveness with the expected future of environment turbulence level was obtained. Therefore, changes in the competitive strategy that need to be conducted include 1 developing a new customer segment, 2 shifting the value proposition that leads to the extensification of mobile payment, 3 monetizing effective value proposition, and 4 integrating effective collaboration for harmonizing company’s objective with the government's vision. Keywords: business model canvas, Indosat, mobile payment, less cash society, strategic diagnosis
A new fit-for-purpose model testing framework: Decision Crash Tests
Tolson, Bryan; Craig, James
2016-04-01
Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building
DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS
Directory of Open Access Journals (Sweden)
S. A. Bornyakov
2016-01-01
Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of
Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting
Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.
2016-02-01
It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.
Integration of coastal inundation modeling from storm tides to individual waves
Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai
2014-11-01
Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.
O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn
2017-04-01
During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution
Ultra high energy interaction models for Monte Carlo calculations: what model is the best fit
Energy Technology Data Exchange (ETDEWEB)
Stanev, Todor [Bartol Research Institute, University of Delaware, Newark DE 19716 (United States)
2006-01-15
We briefly outline two methods for extension of hadronic interaction models to extremely high energy. Then we compare the main characteristics of representative computer codes that implement the different models and give examples of air shower parameters predicted by those codes.
Directory of Open Access Journals (Sweden)
Misztal Ignacy
2009-01-01
Full Text Available Abstract A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale.
Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-01-01
This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.
Modeling whistler wave generation regimes in magnetospheric cyclotron maser
Directory of Open Access Journals (Sweden)
D. L. Pasmanik
2004-11-01
Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.
It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.
On the basis of the results obtained, the model for explanation of
A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions
International Nuclear Information System (INIS)
Griffond, J; Soulard, O; Souffland, D
2010-01-01
To predict the evolution of turbulent mixing zones developing in shock tube experiments with different gases, a turbulence model must be able to reliably evaluate the production due to the shock-turbulence interaction. In the limit of homogeneous weak turbulence, 'linear interaction analysis' (LIA) can be applied. This theory relies on Kovasznay's decomposition and allows the computation of waves transmitted or produced at the shock front. With assumptions about the composition of the upstream turbulent mixture, one can connect the second-order moments downstream from the shock front to those upstream through a transfer matrix, depending on shock strength. The purpose of this work is to provide a turbulence model that matches LIA results for the shock-turbulent mixture interaction. Reynolds stress models (RSMs) with additional equations for the density-velocity correlation and the density variance are considered here. The turbulent states upstream and downstream from the shock front calculated with these models can also be related through a transfer matrix, provided that the numerical implementation is based on a pseudo-pressure formulation. Then, the RSM should be modified in such a way that its transfer matrix matches the LIA one. Using the pseudo-pressure to introduce ad hoc production terms, we are able to obtain a close agreement between LIA and RSM matrices for any shock strength and thus improve the capabilities of the RSM.
On wave breaking for Boussinesq-type models
Kazolea, M.; Ricchiuto, M.
2018-03-01
We consider the issue of wave breaking closure for Boussinesq type models, and attempt at providing some more understanding of the sensitivity of some closure approaches to the numerical set-up, and in particular to mesh size. For relatively classical choices of weakly dispersive propagation models, we compare two closure strategies. The first is the hybrid method consisting in suppressing the dispersive terms in breaking regions, as initially suggested by Tonelli and Petti in 2009. The second is an eddy viscosity approach based on the solution of a a turbulent kinetic energy. The formulation follows early work by O. Nwogu in the 90's, and some more recent developments by Zhang and co-workers (Ocean Mod. 2014), adapting it to be consistent with the wave breaking detection used here. We perform a study of the behaviour of the two closures for different mesh sizes, with attention to the possibility of obtaining grid independent results. Based on a classical shallow water theory, we also suggest some monitors to quantify the different contributions to the dissipation mechanism, differentiating those associated to the scheme from those of the partial differential equation. These quantities are used to analyze the dynamics of dissipation in some classical benchmarks, and its dependence on the mesh size. Our main results show that numerical dissipation contributes very little to the the results obtained when using eddy viscosity method. This closure shows little sensitivity to the grid, and may lend itself to the development and use of non-dissipative/energy conserving numerical methods. The opposite is observed for the hybrid approach, for which numerical dissipation plays a key role, and unfortunately is sensitive to the size of the mesh. In particular, when working, the two approaches investigated provide results which are in the same ball range and which agree with what is usually reported in literature. With the hybrid method, however, the inception of instabilities