WorldWideScience

Sample records for wave mixing process

  1. Multi-Wave Mixing Processes

    CERN Document Server

    Zhang, Yanpeng

    2009-01-01

    "Multi-Wave Mixing Processes - From Ultrafast Polarization Beats to Electromagnetically Induced Transparency" discusses the interactions of efficient multi-wave mixing (MWM) processes enhanced by atomic coherence in multilevel atomic systems. It covers topics in five major areas: attosecond and femtosecond polarization beats of four-wave mixing (FWM) processes; heterodyne detection of FWM, six-wave mixing (SWM) and eight-wave mixing (EWM) processes; Raman and Rayleigh enhanced polarization beats; coexistence and interactions of MWM processes via electromagnetically induced transparency(EIT); multi-dressing MWM processes. The book is intended for researchers, advanced undergraduate and graduate students in Nonlinear Optics. Dr. Yanpeng Zhang is a professor at the Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University. Dr. Min Xiao is a professor of Physics at University of Arkansas, Fayetteville, U.S.A.

  2. All Optical Signal-Processing Techniques Utilizing Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Refat Kibria

    2015-02-01

    Full Text Available Four Wave Mixing (FWM based optical signal-processing techniques are reviewed. The use of FWM in arithmetical operation like subtraction, wavelength conversion and pattern recognition are three key parts discussed in this paper after a brief introduction on FWM and its comparison with other nonlinear mixings. Two different approaches to achieve correlation are discussed, as well as a novel technique to realize all optical subtraction of two optical signals.

  3. Entanglement in a four-wave mixing process.

    Science.gov (United States)

    Zheng, Zhan; Wang, Hailong; Cheng, Bing; Jing, Jietai

    2017-07-15

    We investigate different kinds of entanglement in a four-wave mixing process with a degenerate pump. After analyses on means and quantum fluctuations of the three output beams (Stokes, anti-Stokes, and pump), we verify the existence of genuine tripartite entanglement, and quantify bipartite, two-mode, as well as tripartite entanglement with the covariance matrix. We find out that the input pump power and the nonlinear coupling strength are the physical origins to enhance entanglement at a given photon loss.

  4. Enhancement of entanglement using cascaded four-wave mixing processes.

    Science.gov (United States)

    Xin, Jun; Qi, Jian; Jing, Jietai

    2017-01-15

    A maximal joint quadrature squeezing of -6.8±0.4  dB is experimentally obtained by a scheme of cascaded four-wave mixing (FWM) processes, which gives strong proof about the inseparability or entanglement between output of the twin beams from the system. Here joint quadrature is the difference between the two quadratures of the twin beam output from the cascaded FWM processes. This result is enhanced by about 3.1 dB, compared with the one of the single FWM process. We also study the gain dependence of the entanglement enhancement in this cascaded system. Theoretical predictions with the considerations of the losses in the experiment are also studied, and a similar trend in the low-gain regime can be found between the experimental results and the theoretical predictions. The scheme of cascaded FWM processes, which can be used to improve or even manipulate the degree of the entanglement between the output fields from the single FWM process, may find its applications in the continuous-variable quantum communication protocols.

  5. Quantum steering in cascaded four-wave mixing processes.

    Science.gov (United States)

    Wang, Li; Lv, Shuchao; Jing, Jietai

    2017-07-24

    Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.

  6. Coexistence of three-wave, four-wave, and five-wave mixing processes in a superconducting artificial atom.

    Science.gov (United States)

    Li, Hai-Chao; Ge, Guo-Qin; Zhang, Hai-Yang

    2015-03-15

    We present a theoretical study of multiwave mixing in a driven superconducting quantum qubit (artificial atom) with a cyclic Ξ-type three-level structure. We first show that three-wave mixing (3WM), four-wave mixing (4WM), and five-wave mixing (5WM) processes can coexist in the microwave regime in such an artificial system due to the absence of selection rules. Because of electromagnetically induced transparency suppression of linear absorption in a standard Ξ-type configuration, the generated 4WM is enhanced greatly and its efficiency can be as high as 0.1% for only a single artificial atom. We also show that Autler-Townes splitting occurs in the 3WM and 5WM spectra and quantum interference has a significant impact on the total signal intensity being a coherent superposition of these two signals.

  7. High conversion efficiency in resonant four-wave mixing processes.

    Science.gov (United States)

    Lee, Chin-Yuan; Wu, Bo-Han; Wang, Gang; Chen, Yong-Fang; Chen, Ying-Cheng; Yu, Ite A

    2016-01-25

    We propose a new scheme of the resonant four-wave mixing (FWM) for the frequency up or down conversion, which is more efficient than the commonly-used scheme of the non-resonant FWM. In this new scheme, two control fields are spatially varied such that a probe field at the input can be converted to a signal field at the output. The efficiency of probe-to-signal energy conversion can be 90% at medium's optical depth of about 100. Our proposed scheme works for both the continuous-wave and pulse cases, and is flexible in choosing the control field intensity. This work provides a very useful tool in the nonlinear frequency conversion.

  8. Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film.

    Science.gov (United States)

    Poutrina, Ekaterina; Ciracì, Cristian; Gauthier, Daniel J; Smith, David R

    2012-05-07

    We consider the process of four-wave mixing in an array of gold nanowires strongly coupled to a gold film. Using full-wave simulations, we perform a quantitative comparison of the four-wave mixing efficiency associated with a bare film and films with nanowire arrays. We find that the strongly localized surface plasmon resonances of the coupled nanowires provide an additional local field enhancement that, along with the delocalized surface plasmon of the film, produces an overall four-wave mixing efficiency enhancement of up to six orders of magnitude over that of the bare film. The enhancement occurs over a wide range of excitation angles. The film-coupled nanowire array is easily amenable to nanofabrication, and could find application as an ultra-compact component for integrated photonic and quantum optic systems.

  9. Image processing by four-wave mixing in photorefractive GaAs

    Science.gov (United States)

    Gheen, Gregory; Cheng, Li-Jen

    1987-01-01

    Three image processing experiments were performed by degenerate four-wave mixing in photorefractive GaAs. The experiments were imaging by phase conjugation, edge enhancement, and autocorrelation. The results show that undoped, semiinsulating, liquid-encapsulated Czochralski-grown GaAs crystals can be used as effective optical processing media despite their small electrooptic coefficient.

  10. Higher order antibunching and subpossonian photon statistics in five wave mixing process

    CERN Document Server

    Verma, Amit

    2009-01-01

    We have investigated the possibility of observing higher order antibunching (HOA) and higher order subpossonian photon statistics (HOSPS) in five wave mixing and third harmonic generation process. It had been shown that both processes satisfy the criteria of HOA and HOSPS. Further, some observations on the nature of interaction which produces HOA and HOSPS are reported.

  11. Optical Multi-wave Mixing Process Based on Electromagnetically Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; PENG Ju-Cun; CHEN Ai-Xi

    2004-01-01

    In this paper, we propose and analyze an optical multi-wave mixing scheme for the generation of coherent light in a five-level atomic system in the context of electromagnetically induced transparency. A detailed semiclassical study of the propagation of generated mixing and probe fields is demonstrated. The analytical dependence of the generated mixing field on the probe field and the respective detuning is predicted. Such a nonlinear optical process can be used for generating short-wavelength radiation at low pump intensities.

  12. Parameterization of ocean wave-induced mixing processes for finite water depth

    Institute of Scientific and Technical Information of China (English)

    YANG Yongzeng; ZHAN Run; TENG Yong

    2009-01-01

    Three dimensional wave-induced mixing plays an important role in shallow water area. A quite direct approach through the Reynolds average upon characteristic length scale is proposed to parameterize the horizontal and vertical shallow water mixing. Comparison of finite depth case with infinite depth results indicates that the difference of the wave-induced mixing strength is evident. In the shallow water condition, the infinite water depth approximation overestimates the mixing strength in the lower layers. The nonzero horizontal wave-induced mixing presents anisotropic property near the shore. The Prandtl's mixing length theory underestimated the wave-induced mixing in the previous studies.

  13. A Compact Source for Quantum Image Processing with Four-wave Mixing in Rubidium-85

    CERN Document Server

    Vogl, Ulrich; Lett, Paul D; 10.1117/12.907333

    2012-01-01

    We have built a compact light source for bright squeezed twin-beams at 795\\,nm based on four-wave-mixing in atomic $^{85}$Rb vapor. With a total optical power of 400\\,mW derived from a free running diode laser and a tapered amplifier to pump the four-wave-mixing process, we achieve 2.1\\,dB intensity difference squeezing of the twin beams below the standard quantum limit, without accounting for losses. Squeezed twin beams generated by the type of source presented here could be used as reference for the precise calibration of photodetectors. Transferring the quantum correlations from the light to atoms in order to generate correlated atom beams is another interesting prospect. In this work we investigate the dispersion that is generated by the employed four-wave-mixing process with respect to bandwidth and dependence on probe detuning. We are currently using this squeezed light source to test the transfer of spatial information and quantum correlations through media of anomalous dispersion.

  14. Wave mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.

  15. Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process

    Science.gov (United States)

    Zheng, Jian; Katsuragawa, Masayuki

    2015-01-01

    Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm. PMID:25748023

  16. Scanning nonreciprocity spatial four-wave mixing process in moving photonic band gap

    Science.gov (United States)

    Wang, Hang; Zhang, Yunzhe; Li, Mingyue; Ma, Danmeng; Guo, Ji; Zhang, Dan; Zhang, Yanpeng

    2017-03-01

    We experimentally investigate the scanning nonreciprocity of four-wave mixing process induced by optical parametric amplification in moving photonic band gap, which is different from the propagation nonreciprocity in the optical diode. Meanwhile the frequency offset and the intensity difference are observed when we scan the frequency of the beams on two arm ramps of one round trip. Such scanning nonreciprocities can be controlled by changing the frequency detuning of the dressing beams. For the first time, we find that the intensity difference can cause the nonreciprocity in spatial image. In the nonreciprocity process, the focusing or defocusing is resulted from the feedback dressing self-phase modulation while shift and split is attributed to feedback dressing cross-phase modulation. Our study could have a potential application in the controllable optical diode.

  17. Atomic coherence effects in four-wave mixing process of a ladder-type atomic system.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2016-05-16

    We investigate the effects of atomic coherence on four-wave mixing (FWM), with respect to the transition routes between the hyperfine states in the 5S1/2-5P3/2-5D5/2 transition of 87Rb atoms. By comparing the FWM spectra with the electromagnetically induced transparency (EIT) spectra of the hyperfine states, we confirm that the FWM process is significantly influenced by both ladder-type and V-type two-photon coherences. From the observed FWM signal of each hyperfine structure, we clarify the role of two-photon coherence in the FWM process under EIT, double-resonance optical pumping (DROP), and two-photon absorption (TPA) conditions in a ladder-type atomic system, which is dependent on the open degree of the hyperfine states, the laser intensity, and the laser frequency detuning.

  18. Generation of tripartite entanglement from cascaded four-wave mixing processes.

    Science.gov (United States)

    Wang, Hailong; Zheng, Zhan; Wang, Yaxian; Jing, Jietai

    2016-10-03

    We investigate the possibility of an experimentally feasible cascaded four-wave mixing (FWM) system [Phys. Rev. Lett. 113, 023602 (2014)] to generate tripartite entanglement. We verify that genuine tripartite entanglement is present in this system by calculating the covariances of three output beams and then considering the violations of the inequalities of the three-mode entanglement criteria, such as two-condition criterion, single-condition criterion, optimal single-condition criterion and the positivity under partial transposition (PPT) criterion. We also consider the possibilities of the bipartite entanglement of any pair of the three output beams using the Duan-Giedke-Cirac-Zoller criterion and PPT criterion. We find that the tripartite entanglement and the bipartite entanglement for the two pairs are present in the whole gain region. The entanglement characteristics under different entanglement criteria are also considered. Our results pave the way for the realization and application of multipartite entanglement based on the cascaded FWM processes.

  19. Phase-sensitive cascaded four-wave mixing processes for generating continuous-variable entanglement.

    Science.gov (United States)

    Wang, Li; Jing, Jietai

    2017-03-20

    Quantum entanglement shared by different parties enhances their capabilities to communicate, which is the core content of continuous-variable quantum optics and quantum information science. Here, we study an experimentally feasible scheme for generating quantum entanglement of bipartite and tripartite cases based on phase-sensitive cascaded four-wave mixing processes in rubidium vapor. Quantum entanglement of bipartite and tripartite cases in our system, which can be manipulated by the phases and the intensity gains of the input beams, is predicted. We also find a sufficient optimal single-condition criterion to give a valid description for genuine tripartite quantum entanglement in our system. The sufficient optimal single-condition criterion is convenient and can be extended to genuine multipartite entanglement.

  20. Nonlinear Sagnac interferometer based on the four-wave mixing process.

    Science.gov (United States)

    Xin, Jun; Liu, Jinming; Jing, Jietai

    2017-01-23

    A new nonlinear Sagnac interferometer (NSI) is proposed by replacing the beam-splitter in the traditional Sagnac interferometer (TSI) with a four-wave mixing process. Such a NSI has better angular velocity sensitivity than the one of the TSI. The standard quantum limit can be beaten and the Heisenberg Limit can even be reached for the ideal case by the NSI. We study the effect of the losses on the angular velocity sensitivity of the NSI and find that the optimal angular velocity, where the best angular velocity sensitivity can be obtained, of the NSI may be dependent on the losses inside the interferometer. Such a NSI has its advantages compared with the TSI and may find its potential applications in quantum metrology.

  1. Spectral signatures of x((5)) processes in four-wave mixing of homogeneously broadened excitons

    DEFF Research Database (Denmark)

    Langbein, W.; Meier, T.; Koch, S.W.;

    2001-01-01

    The influence of fifth-order coherences on the spectrally resolved four-wave mixing response of predominantly homogeneously broadened quasi-two-dimensional excitons is studied. Fifth-order signatures are discussed as a function of spectral position and excitation polarization. An exciton-biexcito...... of one- and two-exciton resonances up to the fifth order in the optical field.......The influence of fifth-order coherences on the spectrally resolved four-wave mixing response of predominantly homogeneously broadened quasi-two-dimensional excitons is studied. Fifth-order signatures are discussed as a function of spectral position and excitation polarization. An exciton...

  2. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications. PMID:26463588

  3. Effects of noninstantaneous nonlinear processes on photon-pair generation by spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....

  4. Noncollinear wave mixing for measurement of dynamic processes in polymers: physical ageing in thermoplastics and epoxy cure.

    Science.gov (United States)

    Demčenko, A; Koissin, V; Korneev, V A

    2014-02-01

    Elastic wave mixing using an immersion method has shown effective monitoring and scanning capabilities when applied to thermoplastic ageing, epoxy curing, and non-destructive testing. In water, excitation and reception of waves do not require physical contact between the tools and the specimen, making the acquisition of high-resolution C-scans possible. The nonlinear material parameters exhibit a much higher sensitivity to the specimen state compared to linear ones. Thus, the nonlinear data for polymethyl methacrylate (PMMA) have a 40% difference between zones of "young" and "aged" material, while the linear data show no difference at all. Methodology and logistics of the immersion wave-mixing method are discussed in detail. Monitoring of epoxy curing has also revealed a good sensitivity of the method to this complex process including several characteristic stages, such as the time of maximal viscosity, the gel time, and the vitrification time. These stages are independently verified in separate rheometry measurements. The presented method allows for a number of possibilities: wave-mode and frequency separations, elimination of surrounding medium influence, "steering" (scanning) a scattered wave, controlling the location of the intersection volume, single-sided or double-sided measurements, and operation in detector mode.

  5. Characterization of Pairwise Correlations from Multiple Quantum Correlated Beams Generated from Cascaded Four-Wave Mixing Processes.

    Science.gov (United States)

    Wang, Hailong; Cao, Leiming; Jing, Jietai

    2017-01-10

    We theoretically characterize the performance of the pairwise correlations (PCs) from multiple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The presence of the PCs with quantum corre- lation in these systems can be verified by calculating the degree of intensity difference squeezing for any pair of all the output fields. The quantum correlation characteristics of all the PCs under different cascaded schemes are also discussed in detail and the repulsion effect between PCs in these cascaded FWM processes is theoretically predicted. Our results open the way for the classification and application of quantum states generated from the cascaded FWM processes.

  6. Hybrid interferometer with nonlinear four-wave mixing process and linear beam splitter.

    Science.gov (United States)

    Liu, Shengshuai; Jing, Jietai

    2017-07-10

    Optical interferometer has played an important role in optics. Up to now, many kinds of interferometers have been realized and found their applications. In this letter, we experimentally construct an interferometer by using parametric amplifier as a wave splitter and beam splitter as a wave combiner. We make measurements of interference fringes and explore the relationships between the interference visibility of the interferometer and various system parameters, such as the gain of the parametric amplifier, the one-photon detuning and the temperature of the Rb-85 vapor cell.

  7. Coherent Control of Four-Wave Mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2011-01-01

    "Coherent Control of Four-Wave Mixing" discusses the frequency, temporal and spatial domain interplays of four-wave mixing (FWM) processes induced by atomic coherence in multi-level atomic systems. It covers topics in five major areas: the ultrafast FWM polarization beats due to interactions between multi-color laser beams and multi-level media; coexisting Raman-Rayleigh-Brillouin-enhanced polarization beats due to color-locking noisy field correlations; FWM processes with different kinds of dual-dressed schemes in ultra-thin, micrometer and long atomic cells; temporal and spatial interference between FWM and six-wave mixing (SWM) signals in multi-level electromagnetically induced transparency (EIT) media; spatial displacements and splitting of the probe and generated FWM beams, as well as the observations of gap soliton trains, vortex solitons, and stable multicomponent vector solitons in the FWM signals. The book is intended for scientists, researchers, advanced undergraduate and graduate students in Nonlin...

  8. Diffraction manipulation by four-wave mixing

    CERN Document Server

    Katzir, Itay; Firstenberg, Ofer

    2014-01-01

    We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Lambda-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 micrometers can propagate with very little or even negative diffraction. The inherent gain prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.

  9. Quantum control of multi-wave mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2013-01-01

    Multi-wave mixing gives rise to new frequency components due to the interaction of light signals with a suitable nonlinear medium. In this book a systematic framework for the control of these processes is used to lead readers through a plethora of related effects and techniques.

  10. Transport and mixing of r-process elements in neutron star binary merger blast waves

    CERN Document Server

    Montes, Gabriela; Naiman, Jill; Shen, Sijing; Lee, William H

    2016-01-01

    The r-process nuclei are robustly synthesized in the material ejected during a neutron star binary merger (NSBM), as tidal torques transport angular momentum and energy through the outer Lagrange point in the form of a vast tidal tail. If NSBM are indeed solely responsible for the solar system r- process abundances, a galaxy like our own would require to host a few NSBM per million years, with each event ejecting, on average, about 5x10^{-2} M_sun of r-process material. Because the ejecta velocities in the tidal tail are significantly larger than in ordinary supernovae, NSBM deposit a comparable amount of energy into the interstellar medium (ISM). In contrast to extensive efforts studying spherical models for supernova remnant evolution, calculations quantifying the impact of NSBM ejecta in the ISM have been lacking. To better understand their evolution in a cosmological context, we perform a suite of three-dimensional hydrodynamic simulations with optically-thin radiative cooling of isolated NSBM ejecta expa...

  11. Entangled State Representation for Four-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    MA Shan-Jun; LU Hai-Liang; FAN Hong-Yi

    2008-01-01

    We introduce the entangled state representation to describe the four-wave mixing. We find that the four-wave mixing operator, which engenders the correct input-output field transformation, has a natural representation in the entangled state representation. In this way, we see that the four-wave mixing process not only involves squeezing but also is an entanglement process. This analysis brings convenience to the calculation of quadrature-amplitude measurement for the output state of four-wave mixing process.

  12. Entangled State Representation for Four-Wave Mixing

    Science.gov (United States)

    Ma, Shan-Jun; Lu, Hai-Liang; Fan, Hong-Yi

    2008-08-01

    We introduce the entangled state representation to describe the four-wave mixing. We find that the four-wave mixing operator, which engenders the correct input-output field transformation, has a natural representation in the entangled state representation. In this way, we see that the four-wave mixing process not only involves squeezing but also is an entanglement process. This analysis brings convenience to the calculation of quadrature-amplitude measurement for the output state of four-wave mixing process.

  13. Quasi-phase-matched DC-induced three wave mixing versus four wave mixing: a simulated comparison.

    Science.gov (United States)

    Sapiano, Christopher A; Aitchison, J Stewart; Qian, Li

    2012-04-01

    A comparison is made between DC-induced three-wave mixing under an on-off quasi-phase-matching scheme and a perfectly phase-matched four wave mixing process. It is shown that the DC-induced process is capable of producing a significantly larger conversion efficiency than the four wave mixing process. Despite the fact that it suffers greater effects of dispersion, the enhanced growth rate of the DC-induced process provides a conversion efficiency roughly 300× larger than that of four wave mixing. Over a sample length of 20 cm the DC-induced process is able to generate idler power more than 270 times greater than that produced by the equivalent four wave mixing process.

  14. Diffraction manipulation by four-wave mixing.

    Science.gov (United States)

    Katzir, Itay; Ron, Amiram; Firstenberg, Ofer

    2015-03-09

    We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Λ-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 μm can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.

  15. Transverse effects in photorefractive two-wave mixing

    Institute of Scientific and Technical Information of China (English)

    Cai Xin; Liu Jin-Song; Wang Sheng-Lie; Liu Shi-Xiong

    2009-01-01

    In a biased photorefractive crystal, the process of two one-dimensional waves mixing, I.e., the dynamical evolution of both pump beam and signal beam, is traced by numerically solving the coupled-wave equation. Direct simulations show that the propagation and stability of the two beams are completely determined by the system parameters, such as the external bias field, the intensity and the beam waist of the pump beam. By adjusting these parameters, one can control the state of two Gaussian waves mixing. The numerical results are helpful for performing a two-wave mixing experiment.

  16. Dual-dressed four-wave mixing and dressed six-wave mixing in a five-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Cuicui Zuo; Yigang Du; Tong Jiang; Zhiqiang Nie; Yanpeng Zhang; Huaibin Zheng; Chenli Gan; Weifeng Zhang; Keqing Lu

    2008-01-01

    We study the co-existing four-wave mixing (FWM) process with two dressing fields and the six-wave mixing (SWM) process with one dressing field in a five-level system with carefully arranged laser beams. We also show two kinds of doubly dressing mechanisms in the FWM process. FWM and SWM signals propagatingalong the same direction compete with each other. With the properly controlled dressing fields, the FWM signals can be suppressed, while the SWM signals have been enhanced.

  17. Analysis of Mixing of Pollutants in Water Waves and Currents

    Institute of Scientific and Technical Information of China (English)

    YUAN Li-rong; SHEN Yong-ming; TANG Jun

    2007-01-01

    A vertical two-dimensional turbulence numerical model for the interaction of waves and currents is developed in the paper based on the nonlinear two-equation k-ε model with the VOF method.The one-dimensional equivalent advection velocity and equivalent mixing coefficient are defined and the solving process is introduced: The pollutant concentration field,generated by an instant source in waves and currents,is calculated with the model,and then the equivalent advection velocity and equivalent mixing coefficient are obtained by calculating the time derivative of the mean and variance of pollutant concentration probability distribution.The effects of wave period and wave height on the equivalent mixing coefficient for waves and wave-currents are also investigated.

  18. Superresolution four-wave mixing microscopy.

    Science.gov (United States)

    Kim, Hyunmin; Bryant, Garnett W; Stranick, Stephan J

    2012-03-12

    We report on the development of a superresolution four-wave mixing microscope with spatial resolution approaching 130 nm which represents better than twice the diffraction limit at 800 nm while retaining the ability to acquire materials- and chemical- specific contrast. The resolution enhancement is achieved by narrowing the microscope's excitation volume in the focal plane through the combined use of a Toraldo-style pupil phase filter with the multiplicative nature of four-wave mixing.

  19. Near Shore Wave Processes

    Science.gov (United States)

    2016-06-07

    the alongshore current, and a full non linear bottom shear stress. Contributions from the alongshore wind stress are mostly evident offshore and over...fraction) profiles measured on a day with offshore wave height of 1.6m, and 10 ms-1 wind speed. The one hour mean void fraction profiles are measured in a...given the offshore wave conditions. OBJECTIVES We hypothesize that the wave-induced kinematic, sediment and morphologic processes are nonlinearly

  20. Tree-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients

    CERN Document Server

    Slabko, Vitaly V; Tkachenko, Viktor A; Myslivets, Sergey A

    2016-01-01

    Three-wave mixing of ordinary and backward electromagnetic waves in pulsed regime is investigated in the metamaterials, which enable co-existence and phase matching of such waves. It is shown that opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes in greatly enhanced optical parametric amplification and in frequency up or down shifting nonlinear reflectivity. The discovered transients resemble slowed response of an oscillator on pulsed excitation in the vicinity of its resonance

  1. A general theory of two-wave mixing in nonlinear media

    DEFF Research Database (Denmark)

    Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael

    2009-01-01

    A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...

  2. Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber.

    Science.gov (United States)

    Brès, Camille-Sophie; Zlatanovic, Sanja; Wiberg, Andreas O J; Radic, Stojan

    2011-12-12

    We present the experimental demonstration of broadband four-wave mixing in a 2.5 cm-long segment of AsSe Chalcogenide microstructured fiber. The parametric mixing was driven by a continuous-wave pump compatible with data signal wavelength conversion. Four-wave mixing products over more than 70 nm on the anti-stoke side of the pump were measured for 345 mW of pump power and 1.5 dBm of signal power. The ultrafast signal processing capability was verified through wavelength conversion of 1.4 ps pulses at 8 GHz repetition rate. © 2011 Optical Society of America

  3. 3-wave mixing Josephson dipole element

    Science.gov (United States)

    Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.

    2017-05-01

    Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.

  4. Parametric frequency fusion by inverse four-wave mixing

    CERN Document Server

    Sylvestre, Thibaut

    2015-01-01

    This work reports the experimental observation of a new type of four-wave mixing in which frequency-degenerate weak signal and idler waves are generated by mixing two pump waves of different frequencies in a normally dispersive birefringent optical fiber. This parametric frequency fusion is what we believed the first experimental evidence of inverse four-wave mixing.

  5. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides.

    Science.gov (United States)

    Apiratikul, Paveen; Wathen, Jeremiah J; Porkolab, Gyorgy A; Wang, Bohan; He, Lei; Murphy, Thomas E; Richardson, Christopher J K

    2014-11-03

    Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.

  6. Lutocline Mixing and sediment wave interaction

    Science.gov (United States)

    Medina, P.; Gonzalez/Nieto, P. L.

    2010-05-01

    Coastal mixing induced by waves is modeled experimentally by means of an oscillating grid, [1,2]when the boundary layer is turbulent as when waves generated by a storm break and spill, or when wind interacts with wave stirring, then a strong turbulence lifts off bottom sediments and these often form a distinct sediment laden region capped by a sharp density interface called in this case a Lutocline. These particle layer may be transported to deeper regions by compensation or gravity currents[3,4]. Point velocity distributions created by wind, waves and sloping currents are dominated by breaker areas which act as strong attractors for the sediments in suspension, because at the same time there is a higher mean water level near the coast due to wave radiation[5]. The combination of offshore and onshore together with the longshore and crosshore strong currents due to wave radiation imbalance produce the strongest local shear induced morphological sediment transport. The use of a circular Couette flow to hold sediments in suspension using a vortex generator (producing shear) or an oscilating grid is used to investigate the parameter range of sediment lift off. [1] Crespo A. and Redondo J.M.(1989) A simple experiment on the interaction between gravity currents and sediment transport, Rev. de Geofisica 45, 203-210. [2] Redondo J.M. and Cantalapiedra I.R. (1993) Mixing in horizontally heterogeneous flows", Applied Scientific Research, 51, 217-222 [3] J.E. Simpson (1997) Gravity Currents: In the Environment and the Laboratory, 2nd Edition, Cambridge University Press, Cambridge, England. [4] R.S.J. Sparks, R.T. Bonnecaze, H.E. Huppert, J.R. Lister, M.A. Hallworth, H. Mader, J. Phillips (1993) Sediment-laden gravity currents with reversing buoyancy, Earth Planet. Sci. Lett. 114. 243-257. [5] Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) Study on the influence of waves on coastal diffusion using image analysis. Applied

  7. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  8. Wave Period Distributions in Non-Gaussian Mixed Sea States

    Institute of Scientific and Technical Information of China (English)

    王迎光

    2013-01-01

    The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.

  9. Parametric four-wave mixing using a single cw laser

    CERN Document Server

    Brekke, E

    2013-01-01

    Four-wave mixing can be used to generate coherent output beams, with frequencies difficult to acquire in commercial lasers. Here a single narrow ECDL locked to the two photon 5s-5d transition in rubidium is combined with a tapered amplifier system to produce a high power cw beam at 778 nm and used to generate coherent light at 420 nm through parametric four-wave mixing. This process is analyzed in terms of the the intensity and frequency of the incoming beam as well as the atomic density of the sample. The efficiency of the process is currently limited when on resonance due to the absorption of the 420 nm beam, and modifications should allow a significant increase in output power.

  10. Time-reversed wave mixing in nonlinear optics.

    Science.gov (United States)

    Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng

    2013-11-19

    Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.

  11. Effects of ``atomic depletion'' on four-wave mixing in potassium

    Science.gov (United States)

    Mehendale, S. C.; Gupta, P. K.; Rustagi, K. C.

    1983-12-01

    Theoretical and experimental results are presented for a four-wave mixing process involving two photons generated internally by stimulated electronic Raman scattering. Effects of saturation of the Stokes wave due to loss of population in the ground state are analyzed in some detail. It is shown that phase mismatch and the absorption of the generated wave play an important role in determining the efficiency of the mixing process.

  12. Continuous-wave four-wave mixing with linear growth based on electromagnetically dual induced transparency

    Institute of Scientific and Technical Information of China (English)

    Jiahua Li(李家华); Wenxing Yang(杨文星); Jucun Peng(彭菊村)

    2004-01-01

    Using Schrodinger-Maxwell formalism, we propose and analyze a continuous-wave four-wave mixing (FWM) scheme for the generation of coherent light in a six-level atomic system based on electromagnetically dual induced transparency. We derive the corresponding explicit analytical expressions for the generated mixing field. We find that the scheme greatly enhances FWM production efficiency and is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference by choosing the proper decay rate in the second electromagnetically induced transparency (EIT) process.In addition, such an optical process also provides possibilities for producing short-wave-length coherent radiation at low pump intensities.

  13. Three-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients in the nonlinear reflectivity and parametric amplification.

    Science.gov (United States)

    Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A

    2016-09-01

    Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.

  14. VLSI mixed signal processing system

    Science.gov (United States)

    Alvarez, A.; Premkumar, A. B.

    1993-01-01

    An economical and efficient VLSI implementation of a mixed signal processing system (MSP) is presented in this paper. The MSP concept is investigated and the functional blocks of the proposed MSP are described. The requirements of each of the blocks are discussed in detail. A sample application using active acoustic cancellation technique is described to demonstrate the power of the MSP approach.

  15. Photoinduced processes and resonant third-order nonlinearity in poly (3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing

    Science.gov (United States)

    Pang, Yang; Prasad, Paras N.

    1990-08-01

    We have investigated the dynamics of resonant third-order optical nonlinearity of chemically prepared poly(3-dodecylthiophene) by the degenerate four wave mixing technique using 60 fs pulses at 620 nm. The measured effective value of χ(3) is 5.5×10-11 esu, sixfold smaller than that obtained with 400 fs pulses, emphasizing the pulse width dependence of effective χ(3) when the relaxation time of the photogenerated excitation responsible for the optical nonlinearity is comparable to the pulse width. Within the resolution of the optical pulse, the rise time of the nonlinear response is instantaneous and the dominant decay occurs within 200 fs, revealing that the short time, nonlinear response is derived from the initially photogenerated excitons. A detailed analysis of the total decay behavior is consistent with the polaron dynamics of the conformational deformation model proposed by Su, Schrieffer, and Heeger for a conjugated linear polymer with bond alternation.

  16. Triple-mode squeezing with dressed six-wave mixing.

    Science.gov (United States)

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-05-12

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging.

  17. FOUR-WAVE MIXING STUDIES OF IONS IN SOLIDS

    OpenAIRE

    Powell, R.; Suchocki, A.; Durville, F.; Gilliland, G.; Behrens, E.; Quarles, G.; BOULON, G.

    1987-01-01

    The laser technique of four-wave mixing is useful in both optical device applications and for characterizing fundamental properties of optical materials. This paper gives an overview of the theory and experimental technique of four-wave mixing, and presents examples of using this technique as a spectroscopic tool and of forming optical devices.

  18. Six-wave mixing induced by free-carrier plasma in silicon nanowire waveguides

    CERN Document Server

    Zhou, Heng; Huang, Shu-Wei; Zhou, Linjie; Qiu, Kun; Wong, Chee Wei

    2016-01-01

    Nonlinear wave mixing in mesoscopic silicon structures is a fundamental nonlinear process with broad impact and applications. Silicon nanowire waveguides, in particular, have large third-order Kerr nonlinearity, enabling salient and abundant four-wave-mixing dynamics and functionalities. Besides the Kerr effect, in silicon waveguides two-photon absorption generates high free-carrier densities, with corresponding fifth-order nonlinearity in the forms of free-carrier dispersion and free-carrier absorption. However, whether these fifth-order free-carrier nonlinear effects can lead to six-wave-mixing dynamics still remains an open question until now. Here we report the demonstration of free-carrier-induced six-wave mixing in silicon nanowires. Unique features, including inverse detuning dependence of six-wave-mixing efficiency and its higher sensitivity to pump power, are originally observed and verfied by analytical prediction and numerical modeling. Additionally, asymmetric sideband generation is observed for d...

  19. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    OpenAIRE

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.

  20. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  1. Four wave mixing as a probe of the vacuum

    Science.gov (United States)

    Tennant, Daniel M.

    2016-06-01

    Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.

  2. Quantum temporal imaging by four-wave mixing.

    Science.gov (United States)

    Shi, Junheng; Patera, Giuseppe; Kolobov, Mikhail I; Han, Shensheng

    2017-08-15

    We investigate temporal imaging of broadband squeezed light by four-wave-mixing. We consider two possible imaging configurations: phase-conjugating (PC) and phase-preserving (PP). Both of these configurations have been successfully used for temporal imaging of classical temporal waveforms. We demonstrate that for quantum temporal imaging, precisely, temporal imaging of broadband squeezed light, these two schemes have very different behavior: the PC configuration deteriorates squeezing, while the PP configuration leaves it intact. These results are very important for the applications of temporal imaging for quantum communications and quantum information processing.

  3. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  4. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces

    CERN Document Server

    Jin, Boyuan

    2016-01-01

    Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be...

  5. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  6. Four-wave mixing instabilities in photonic-crystal and tapered fibers.

    Science.gov (United States)

    Biancalana, F; Skryabin, D V; Russell, P St J

    2003-10-01

    Four-wave mixing instabilities are theoretically studied for continuous wave propagation in ultrasmall core photonic-crystal and tapered fibers. The waveguide, or geometrical, contribution to the overall dispersion of these structures is much stronger than in conventional fibers. This leads to the appearance of unstable frequency bands that are qualitatively and quantitatively different from those seen in conventional fibers. The four-wave mixing theory developed here is based on the full wave equation, which allows rigorous study of the unstable bands even when the detunings are of the order of the pump frequency itself. Solutions obtained using the generalized nonlinear Schrödinger equation, which is an approximate version of the full wave equation, reveal that it suffers from several deficiencies when used to describe four-wave mixing processes.

  7. Flavour Mixing, Gauge Invariance and Wave-function Renormalisation

    CERN Document Server

    Espriu, Doménec; Talavera, P

    2002-01-01

    We clarify some aspects of the LSZ formalism and wave function renormalisation for unstable particles in the presence of electroweak interactions when mixing and CP violation are considered. We also analyse the renormalisation of the CKM mixing matrix which is closely related to wave function renormalisation. We critically review earlier attempts to define a set of "on-shell" wave function renormalisation constants. With the aid of an extensive use of the Nielsen identities complemented by explicit calculations we corroborate that the counter term for the CKM mixing matrix must be explicitly gauge independent and demonstrate that the commonly used prescription for the wave function renormalisation constants leads to gauge parameter dependent amplitudes, even if the CKM counter term is gauge invariant as required. We show that a proper LSZ-compliant prescription leads to gauge independent amplitudes. The resulting wave function renormalisation constants necessarily possess absorptive parts, but we verify that ...

  8. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  9. Degenerate four wave mixing in solid core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2008-01-01

    Degenerate four wave mixing in solid core photonic bandgap fibers is studied theoretically. We demonstrate the possibility of generating parametric gain across bandgaps, and propose a specific design suited for degenerate four wave mixing when pumping at 532nmm. the possibility of tuning the effi...... the efficency of the parametric gain by varying the temperature is also considered. The sults are verified by numerical simultations of pulse propagation....

  10. Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity.

    Science.gov (United States)

    Ceoldo, D; Bendahmane, A; Fatome, J; Millot, G; Hansson, T; Modotto, D; Wabnitz, S; Kibler, B

    2016-12-01

    We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.

  11. Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Jung, Y.; Begleris, I.

    2016-01-01

    We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups.......We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups....

  12. Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-05-01

    Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  13. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces.

    Science.gov (United States)

    Jin, Boyuan; Argyropoulos, Christos

    2016-06-27

    Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.

  14. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  15. Coexisting Raman- and Rayleigh-Enhanced Four-Wave Mixing in Femtosecond Polarization Beats

    Institute of Scientific and Technical Information of China (English)

    NIE Zhi-Qiang; ZHAO Yan; ZHANG Yan-Peng; GAN Chen-Li; ZHENG Huai-Sin; LI Chang-Biao; LU Ke-Qing

    2009-01-01

    Based on the polarization interference of Raman- and Rayleigh-enhanced four-wave mixing processes,heterodyne detection of the Raman,Rayleigh and coexisting Raman and Rayleigh femtosecond difference-frequency polarization beats is investigated in the cw and the three Markovian stochastic models,respectively.These two processes exhibit asymmetric and symmetric spectra,respectively,and the thermal effect in them can be suppressed by a field-correlation method.Such studies of coexisting Raman- and Rayleigh-enhanced four-wave mixing processes can have important applications in coherence quantum control,and quantum information processing.

  16. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [CNRS, Laboratoire de Mathématiques et Physique Théorique,Université de Tours, 37200 (France); Soft Matter Physics Laboratory, Far Eastern Federal University,Sukhanova 8, Vladivostok (Russian Federation); Department of Physics and Astronomy, University of Gent,Krijgslaan 281, S9, Gent (Belgium)

    2016-01-18

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  17. Interfering Waves of Adaptation Promote Spatial Mixing

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Hallatschek, Oskar

    2011-01-01

    to the evolution of sex and recombination in well-mixed populations. Here, we study clonal interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection pressure. Clonal interference is much more prevalent with spatial structure than without...... for well-mixed populations (that scale as the logarithm of population size). Finally, we show that not only recombination, but also long-range migration is a highly efficient mechanism of relaxing clonal competition in structured populations. Our conservative estimates of the interference length predict...... prevalent clonal interference in microbial colonies and biofilms, so clonal competition should be a strong driver of both genetic and spatial mixing in those contexts....

  18. Interfering Waves of Adaptation Promote Spatial Mixing

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Hallatschek, Oskar

    2011-01-01

    to the evolution of sex and recombination in well-mixed populations. Here, we study clonal interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection pressure. Clonal interference is much more prevalent with spatial structure than without...... for well-mixed populations (that scale as the logarithm of population size). Finally, we show that not only recombination, but also long-range migration is a highly efficient mechanism of relaxing clonal competition in structured populations. Our conservative estimates of the interference length predict...... prevalent clonal interference in microbial colonies and biofilms, so clonal competition should be a strong driver of both genetic and spatial mixing in those contexts....

  19. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre.

    Science.gov (United States)

    Turitsyn, Sergei K; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Papernyi, Serguei B; Clements, Wallace R L

    2015-09-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics.

  20. Some Characterizations of Mixed Poisson Processes

    CERN Document Server

    Lyberopoulos, D P

    2011-01-01

    A characterization of mixed Poisson processes in terms of disintegrations is proven. As a consequence some further characterizations of such processes via claim interarrival processes, martingales and claim measures are obtained.

  1. Frequency translation via four-wave mixing Bragg scattering in Rb filled photonic bandgap fibers.

    Science.gov (United States)

    Donvalkar, Prathamesh S; Venkataraman, Vivek; Clemmen, Stéphane; Saha, Kasturi; Gaeta, Alexander L

    2014-03-15

    We demonstrate frequency translation at microwatt pump power levels in Rubidium vapor confined to a hollow-core photonic bandgap fiber using four-wave mixing Bragg scattering. The 5S(1/2)→5D(3/2) two-photon transition in 85Rb is employed for the four-wave mixing process. Using continuous-wave pump beams at 780 and 795 nm, a weak signal beam at 776 nm is translated to a wavelength of 762 nm with a 21% conversion efficiency at pump powers of 300 μW.

  2. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    CERN Document Server

    Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan

    2015-01-01

    The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  3. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    Science.gov (United States)

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  4. Observation of Quantum Beating from Two Coupled Parametric Six-Wave Mixing Signals in Rb

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-Jun; HE Jun-Fang; ZHAI Xue-Jun; XUE Bing

    2008-01-01

    Two processes of coupled difference-frequency axially phase-matched parametric six-wave mixing are carried out in Rb vapour by two-photon excitation using fs laser pulses, and parametric six-wave mixing signals in the infrared and near infrared regime are detected. The infrared parametric six-wave mixing signals are up-converted into the visible spectral range by sum-frequency mixing with the pump laser in a LiI03 crystal. Moreover, quantum beating at 608cm-1, corresponding to the 7s - 5d energy difference in Rb, is observed from the sum-frequency signal at 495 nm. As a result, we obtain modulated light signals in the visible, near infrared and infrared spectral ranges, and study the interference between 7s and 5d states of Rb.

  5. Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapor.

    Science.gov (United States)

    Akulshin, Alexander; Budker, Dmitry; McLean, Russell

    2014-02-15

    Directional infrared emission at 1.37 and 5.23 μm is generated in Rb vapors that are stepwise excited by low-power cw resonant light. The radiation at 5.23 μm originating from amplified spontaneous emission on the 5D(5/2)→6P(3/2) transition and wave mixing consists of forward- and backward-directed components with distinctive spectral and spatial properties. Diffraction-limited light at 1.37 μm generated in the copropagating direction only is a product of parametric wave mixing around the 5P(3/2)→5D(5/2)→6P(3/2)→6S(1/2)→5P(3/2) transition loop. This highly nondegenerate mixing process involves one externally applied and two internally generated optical fields. Similarities between wave mixing generated blue and 1.37 μm light are demonstrated.

  6. EMS wave logger data processing

    NARCIS (Netherlands)

    Verhagen, H.J.

    2013-01-01

    Waves can be measured in several ways. One way of measuring waves is by measuring the wave pressure at a certain depth using a pressure sensor and calculate the wave information from the pressure record. The EMS wave logger uses a Honeywell MLH 050 PGP 06A pressure sensor. The information is stored

  7. MAGNETOHYDRODYNAMIC KINK WAVES IN NONUNIFORM SOLAR FLUX TUBES: PHASE MIXING AND ENERGY CASCADE TO SMALL SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Terradas, Jaume, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2015-04-10

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.

  8. Non-Degenerate Four- Wave Mixing in Microstructure Fibres

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xia; REN Xiao-Min; WANG Zi-Nan; XU Yong-Zhao; ZHANG Rui-Rui; HUANG Yong-Qing; CHEN Xue

    2007-01-01

    Non-degenerate four wave mixing based on third-order susceptibility χ3 in high nonlinearity microstructure fibres is experimentally demonstrated. The Stokes and anti-Stokes peaks are observed simultaneously by launching 10-fs pulses from an 800nm Ti:sapphire laser into the fibre.

  9. Frequency comb-based four-wave-mixing spectroscopy.

    Science.gov (United States)

    Lomsadze, Bachana; Cundiff, Steven T

    2017-06-15

    We experimentally demonstrate four-wave-mixing (FWM) spectroscopy using frequency combs. The experiment uses a geometry where excitation pulses and FWM signals generated by a sample co-propagate. We separate them in the radio frequency domain by heterodyne detection with a local oscillator comb that has a different repetition frequency.

  10. Continuum contribution to excitonic four-wave mixing

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Vadim, Lyssenko

    1996-01-01

    Summary form only given. We present an experimental and theoretical investigation of ultrafast transient four-wave mixing (TFWM) of GaAs-AlGaAs quantum wells for simultaneous excitation of exciton and continuum states. Recent TFWM experiments on semiconductors have shown unexpected results when...

  11. Spontaneous Four-Wave Mixing in an Irregular Nanofiber

    Directory of Open Access Journals (Sweden)

    Shukhin A.A.

    2015-01-01

    Full Text Available The features of biphotons states generated via spontaneous four-wave mixing in nanofibers with a variable cross-section are studied. The spectral amplitude of the biphoton field is calculated and the effects of interference and phase modulation of the biphoton field in such structures is discussed.

  12. Atomic coherence in nondegenerate four-wave mixing

    Institute of Scientific and Technical Information of China (English)

    Zuo Zhan-Chun; Sun Jiang; Liu Xia; Mi Xin; Yu Zu-He; Jiang Qian; Fu Pan-Ming; Wu Ling-An

    2007-01-01

    Two-photon resonant nondegenerate four-wave mixing (NFWM) with the addition of a coupling field in Ba atomic vapour has been studied. We find that coherence of the atomic level transitions leads to suppression of the NFWM signal, giving rise to a dip with a linewidth that is linearly proportional to the intensity of the coupling field.

  13. Novel Optimization Approach to Mixing Process Intensification

    Institute of Scientific and Technical Information of China (English)

    Guo Kai; Liu Botan; Li Qi; Liu Chunjiang

    2015-01-01

    An approach was presented to intensify the mixing process. Firstly, a novel concept, the dissipationof mass transfer ability(DMA) associated with convective mass transfer, was defined via an analogy to the heat-work conversion. Accordingly, the focus on mass transfer enhancement can be shifted to seek the extremum of the DMA of the system. To this end, an optimization principle was proposed. A mathematical model was then developed to formu-late the optimization into a variational problem. Subsequently, the intensification of the mixing process for a gas mix-ture in a micro-tube was provided to demonstrate the proposed principle. In the demonstration example, an optimized velocity field was obtained in which the mixing ability was improved, i.e., the mixing process should be intensifiedby adjusting the velocity field in related equipment. Therefore, a specific procedure was provided to produce a mixer with geometric irregularities associated with an ideal velocity.

  14. Four wave mixing experiments with extreme ultraviolet transient gratings

    Science.gov (United States)

    Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.

    2015-01-01

    Four wave mixing (FWM) processes, based on third-order non-linear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enables to explore dynamics inaccessible by linear methods.1-7 The coherent and multi-wave nature of FWM approach has been crucial in the development of cutting edge technologies, such as silicon photonics,8 sub-wavelength imaging9 and quantum communications.10 All these technologies operate with optical wavelengths, which limit the spatial resolution and do not allow probing excitations with energy in the eV range. The extension to shorter wavelengths, that is the extreme ultraviolet (EUV) and soft-x-ray (SXR) range, will allow to improve the spatial resolution and to expand the excitation energy range, as well as to achieve elemental selectivity by exploiting core resonances.5-7,11-14 So far FWM applications at these wavelengths have been prevented by the absence of coherent sources of sufficient brightness and suitable experimental setups. Our results show how transient gratings, generated by the interference of coherent EUV pulses delivered by the FERMI free electron laser (FEL),15 can be used to stimulate FWM processes at sub-optical wavelengths. Furthermore, we have demonstrated the possibility to read the time evolution of the FWM signal, which embodies the dynamics of coherent excitations as molecular vibrations. This result opens the perspective for FWM with nanometer spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics.5-7 The theoretical possibility to realize these applications have already stimulated dedicated and ongoing FEL developments;16-20 today our results show that FWM at sub-optical wavelengths is feasible and would be the spark to the further advancements of the present and new sources. PMID:25855456

  15. Four-wave mixing experiments with extreme ultraviolet transient gratings.

    Science.gov (United States)

    Bencivenga, F; Cucini, R; Capotondi, F; Battistoni, A; Mincigrucci, R; Giangrisostomi, E; Gessini, A; Manfredda, M; Nikolov, I P; Pedersoli, E; Principi, E; Svetina, C; Parisse, P; Casolari, F; Danailov, M B; Kiskinova, M; Masciovecchio, C

    2015-04-09

    Four-wave mixing (FWM) processes, based on third-order nonlinear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths--that is, the extreme ultraviolet and soft-X-ray ranges--would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.

  16. Terahertz generation based on four-wave mixing difference frequency by resonance-enhanced third-order nonlinear of media

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hua; YAO Jian-quan; ZHOU Rui; WEN Wu-qi; XU De-gang; WANG Peng

    2011-01-01

    Using nanosecond pulse near-infrared and mid-infrared laser pulses as the pump source,we obtain terahertz wave sources via four-wave difference frequency mixing.From the coupled wave theory,.we analyze the four-wave mixing process of GaSe crystal and alkali metal vapor in detail,get the analytical expression of terahertz wave output power,and discuss the conditions for achieving phase matching.By adjusting the pump frequency,the third-order nonlinear polarization of alkali metal vapor is resonance-enhanced.This program offers a new type of high-power terahertz radiation source.

  17. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ping Zhou; Dianyuan Fan

    2011-01-01

    We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahert-wave source.%@@ We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahertz-wave source.

  18. Impact of ENSO on seasonal variations of Kelvin Waves and mixed Rossby-Gravity Waves

    Science.gov (United States)

    Rakhman, Saeful; Lubis, Sandro W.; Setiawan, Sonni

    2017-01-01

    Characteristics of atmospheric equatorial Kelvin waves and mixed Rossby-Gravity (MRG) waves as well as their relationship with tropical convective activity associated with El Niño-Southern Oscillation (ENSO) were analyzed. Kelvin waves and MRG waves were identified by using a Space-Time Spectral Analysis (STSA) technique, where the differences in the strength of both waves were quantified by taking the wave spectrum differences for each ENSO phase. Our result showed that Kelvin wave activity is stronger during an El Nino years, whereas the MRG wave activity is stronger during the La Nina years. Seasonal variations of Kelvin wave activity occurs predominantly in MAM over the central to the east Pacific in the El Nino years, while the strongest seasonal variation of MRG wave activity occus in MAM and SON over the northern and southern Pacific during La Nina years. The local variation of Kelvin wave and MRG wave activities are found to be controlled by variation in lower level atmospheric convection induced by sea surface temperature in the tropical Pacific Ocean.

  19. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: hz2299@columbia.edu, E-mail: tg2342@columbia.edu, E-mail: cww2104@columbia.edu [College of Electronic Information, Sichuan University, Chengdu 610064 (China); Optical Nanostructures Laboratory, Columbia University, New York, New York 10027 (United States); Gu, Tingyi, E-mail: hz2299@columbia.edu, E-mail: tg2342@columbia.edu, E-mail: cww2104@columbia.edu; McMillan, James F.; Wong, Chee Wei, E-mail: hz2299@columbia.edu, E-mail: tg2342@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Columbia University, New York, New York 10027 (United States); Petrone, Nicholas; Zande, Arend van der; Hone, James C. [Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee [The Institute of Microelectronics, Singapore 117685 (Singapore); Feng, Guoying [College of Electronic Information, Sichuan University, Chengdu 610064 (China); Zhou, Shouhuan [College of Electronic Information, Sichuan University, Chengdu 610064 (China); North China Research Institute of Electro-Optics, Beijing 100015 (China)

    2014-09-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  20. Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials

    Directory of Open Access Journals (Sweden)

    Jinping He

    2014-09-01

    Full Text Available This paper introduces and discusses the main aspects of multicolored femtosecond pulse generation using cascaded four-wave mixing (CFWM in transparent bulk materials. Theoretical analysis and semi-quantitative calculations, based on the phase-matching condition of the four-wave mixing process, explain the phenomena well. Experimental studies, based on our experiments, have shown the main characteristics of the multicolored pulses, namely, broadband spectra with wide tunability, high stability, short pulse duration and relatively high pulse energy. Two-dimensional multicolored array generation in various materials are also introduced and discussed.

  1. Quantum frequency translation by four-wave mixing in a fiber: low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Raymer, M. G.

    2012-01-01

    In this paper we consider frequency translation enabled by Bragg scattering, a four-wave mixing process. First we introduce the theoretical background of the Green function formalism and the Schmidt decomposition. Next the Green functions for the low-conversion regime are derived perturbatively...... in the frequency domain, using the methods developed for three-wave mixing, then transformed to the time domain. These results are also derived and verified using an alternative time-domain method, the results of which are more general. For the first time we include the effects of convecting pumps, a more...

  2. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  3. Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators.

    Science.gov (United States)

    Camacho, Ryan M

    2012-09-24

    A novel quantum mechanical formulation of the bi-photon wavefunction and spectra resulting from four-wave mixing is developed for azimuthally symmetric systems. Numerical calculations are performed verifying the use of the angular group velocity and angular group velocity dispersion in such systems, as opposed their commonly used linear counterparts. The dispersion profile and bi-photon spectra of two illustrative examples are given, emphasizing the physical origin of the effects leading to the conditions for angular momentum and energy conservation. A scheme is proposed in which widely spaced narrowband entangled photons may be produced through a four-wave mixing process in a chip-scale ring resonator. The entangled photon pairs are found to conserve energy and momentum in the four-wave mixing interaction, even though both photon modes lie in spectral regions of steep angular group velocity dispersion.

  4. Wave breaking on turbulent energy budget in the ocean surface mixed layer

    Institute of Scientific and Technical Information of China (English)

    SUN Qun; GUAN Changlong; SONG Jinbao

    2008-01-01

    As an important physical process at the air-sea interface.wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML).When breaking waves occur at the ocean surface,turbulent kinetic energy (TKE) is input downwards,and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced.A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget wimin OSML.The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input.The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered.Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE,which is twice higher than that of non-wave breaking.The shear production of TKE decreased bv 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing.As a result.a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer.Below the sublayer,the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner,1994).

  5. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  6. Time resolved four- and six-wave mixing in liquids .1. Theory

    NARCIS (Netherlands)

    Steffen, T; Fourkas, J.T.; Duppen, K.

    1996-01-01

    Low-frequency intermolecular dynamics in liquids is studied by ultrafast four- and six-wave mixing. The theory of these nonlinear optical processes is given for electronically nonresonant optical interactions up to fifth order in the electric field. The Born-Oppenheimer approximation is used to sepa

  7. Response of wave-dominated and mixed-energy barriers to storms

    NARCIS (Netherlands)

    Masselink, G.; Heteren, S. van

    2014-01-01

    Wave-dominated and mixed-energy barriers are extremely dynamic landforms, responding to processes operating over a spectrum of time scales, ranging from daily-to-monthly fluctuations related to storm and post-storm conditions, to century-to-millennium-scale evolution driven by relative sea-level cha

  8. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  9. Stimulated degenerate four-wave mixing in Si nanocrystal waveguides

    Science.gov (United States)

    Manna, Santanu; Bernard, Martino; Biasi, Stefano; Ramiro Manzano, Fernando; Mancinelli, Mattia; Ghulinyan, Mher; Pucker, George; Pavesi, Lorenzo

    2016-07-01

    Parametric frequency conversion via four-wave mixing (FWM) in silicon nanocrystal (Si NC) waveguides is observed at 1550 nm. To investigate the role of Si NC, different types of waveguides containing Si NC in a SiO2 matrix were fabricated. Owing to the increase of the dipole oscillator strength mediated by the quantum confinement effect, the non-linear refractive index ({n}2) of Si NCs is found to be more than one order of magnitude larger than the one of bulk Si. Coupled differential equations for the degenerate FWM process taking into account the role of Si NC were numerically solved to model the experimental data. The modeling yields an effective {n}2 for Si NCs in SiO2 waveguides which is similar to the one of Si waveguides. We also measured a large signal to idler conversion bandwidth of ∼22 nm. The large non-linear refractive index is joined with a large two photon absorption coefficient which makes the use of Si NC in non-linear optical devices mostly suitable for mid-infrared applications.

  10. Theoretical analysis of four wave mixing in quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....

  11. Nonlinear mixing of laser generated narrowband Rayleigh surface waves

    Science.gov (United States)

    Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.

  12. Phase matching in frequency mixing with internally generated waves

    Science.gov (United States)

    Rustagi, K. C.; Mehendale, S. C.; Gupta, P. K.

    1983-11-01

    The theory of frequency mixing is extended to situations where the growth rate of input waves is less than exponential as a consequence of saturation effects. It is shown that whereas Maker fringes may be washed out, the effect of phase matching on the conversion efficiency is important. Its manifestations in experimental data are analyzed. It is also found that with significant growth in the nonlinear source term over the interaction region. Maker fringes would be difficult to observe.

  13. Phase conjugation by four-wave mixing in inhomogeneous plasmas

    Science.gov (United States)

    Williams, Edward A.; Lininger, Diana M.; Goldman, Martin V.

    1989-01-01

    The effects of density, temperature, and velocity gradients on four-wave mixing (FWM) in a plasma are investigated. A fluid model is used in which the stimulated Brillouin terms are included, but pump depletion is neglected. The steady state phase conjugate reflectivity and signal transmission coefficients are calculated and discussed for both degenerate and resonant FWM. The substantial effects of inhomogeneity on the use of FWM as a plasma diagnostic are discussed.

  14. Four-Wave Mixing Aplication in Semiconductor Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Radoslav Odrobinak

    2004-01-01

    Full Text Available Four-Wave Mixing (FWM in semiconductor optical amplifiers is an attrative mechanism for wavelenght coversion in wavelenght-division multiplexed (WDM systems since it provides modulation format and bit rate transparency over wide tuning ranges. A series of systems experiments evaluating several aspects of the performance of these devices at bit rates of 2.5 and 10 Gb/s are presented.

  15. Two-wave mixing in a broad-area semiconductor amplifier

    DEFF Research Database (Denmark)

    Chi, M.; Jensen, S.B.; Huignard, J.P.;

    2006-01-01

    The two-wave mixing in the broad-area semiconductor amplifier was investigated, both theoretically and experimentally. In detail we investigated how the optical gain is affected by the presence of the two-wave mixing interference grating. In the experimental setup we are able to turn on and off...... the interference pattern in the semiconductor amplifier. This arrangement allows us to determine the two-wave mixing gain. The coupled-wave equations of two-wave mixing were derived based on the Maxwell’s wave equation and rate equation of the carrier density. The analytical solutions of the coupled-wave equations...

  16. Studies of Mixing and Internal Waves in the Upper Ocean

    Science.gov (United States)

    Wijesekera, Hemantha W.

    Microstructure measurements in the equatorial Pacific at 140^circW in late 1984 show a pronounced diurnal variation in both high-frequency internal wave energy and kinetic energy dissipation rate. Observations indicated that after sunset, internal waves propagate downward and increase turbulence levels in the pycnocline. A wave dissipation model based on the observed turbulent kinetic energy dissipation rate predicts that most of the downward wave momentum flux penetrates through the undercurrent core. It is hypothesized that when the wind stress is strong, the equatorial Pacific ocean responds by generating a westward-travelling internal wave field which transports much of the surface wind stress below the actively mixing surface layer. Several models now exist for predicting the dissipation rate of turbulent kinetic energy, varepsilon , in the oceanic thermocline as a function of the large-scale properties of the internal gravity wave field. These models are based on the transfer of energy towards smaller vertical scales by wave-wave interactions, and their predictions are typically evaluated for a canonical internal wave field as described by Garrett and Munk. Here we use simultaneous measurements of the internal wave field and varepsilon from a drifting ice camp in the eastern Arctic Ocean to evaluate the efficacy of existing models in a region with an anomalous wave field and energetic mixing. We find that, by explicitly retaining the vertical wavenumber bandwidth parameter, beta_*, models can still provide reasonable estimates of the dissipation rate. Statistics of turbulent patches are used to describe the nature of mixing in the pycnocline near abrupt bottom topography. It is found that the turbulent kinetic energy dissipation rate, varepsilon_{r }, averaged over a region of height r has a lognormal distribution consistent with Kolmogorov's third hypothesis: sigma_sp{ln(varepsilon _{r})}{2} = A + mu ln(L_{p}/r) where sigma_sp{ln(varepsilon _{r})}{2} is the

  17. Mixed density wave state in quasi-2D organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Katono, K., E-mail: k_katono@eng.hokudai.ac.jp [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Ichimura, K. [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Center of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628 (Japan); Kawashima, Y.; Yamaya, K. [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanda, S. [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Center of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628 (Japan)

    2012-06-01

    The density wave phase of {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} was investigated by transport properties and magnetic susceptibility. The density wave transition was observed as a broad increase at T{sub DW}=9 K by resistance measurement. Temperature dependence of the static magnetic susceptibility {chi} shows a large Curie tail below 100 K. By subtracting the Curie component, we found that the magnetic susceptibility increases like weak ferromagnetism with decreasing temperature below 7.4 K. The gradual increase of {chi} below T{sub DW} is not expected in simple CDW or SDW, where the magnetic susceptibility decreases with decreasing temperature due to the reduction of Pauli paramagnetic component. To explain the weak ferromagnetic behavior, we consider the coexistence of CDW and SDW. We propose a model of the mixed density wave, where CDW exists with antiferromagnetically coupled canting spins.

  18. Mixed density wave state in quasi-2D organic conductor

    Science.gov (United States)

    Katono, K.; Ichimura, K.; Kawashima, Y.; Yamaya, K.; Tanda, S.

    2012-06-01

    The density wave phase of α-(BEDT-TTF)2KHg(SCN)4 was investigated by transport properties and magnetic susceptibility. The density wave transition was observed as a broad increase at TDW=9 K by resistance measurement. Temperature dependence of the static magnetic susceptibility χ shows a large Curie tail below 100 K. By subtracting the Curie component, we found that the magnetic susceptibility increases like weak ferromagnetism with decreasing temperature below 7.4 K. The gradual increase of χ below TDW is not expected in simple CDW or SDW, where the magnetic susceptibility decreases with decreasing temperature due to the reduction of Pauli paramagnetic component. To explain the weak ferromagnetic behavior, we consider the coexistence of CDW and SDW. We propose a model of the mixed density wave, where CDW exists with antiferromagnetically coupled canting spins.

  19. Seismic reflection imaging of mixing processes in Fram Strait

    Science.gov (United States)

    Sarkar, Sudipta; Sheen, Katy L.; Klaeschen, Dirk; Brearley, J. Alexander; Minshull, Timothy A.; Berndt, Christian; Hobbs, Richard W.; Naveira Garabato, Alberto C.

    2015-10-01

    The West Spitsbergen Current, which flows northward along the western Svalbard continental slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of high-resolution seismic images and hydrographic sections across this current has uncovered the oceanographic processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding colder waters is observed. Strong seismic reflections characterize these interleaving features, with a negative polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of obliquely aligned internal waves emanating from the slope at 450-500 m. They follow the predicted trajectory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters.

  20. Influence of Four-Wave Mixing and Walk-Off on the Self-Focusing of Coupled Waves

    DEFF Research Database (Denmark)

    Bergé, L.; Bang, Ole; Krolikowski, W.

    2000-01-01

    Four-wave mixing and walk-off between two optical beams are! investigated For focusing Kerr media. It is shown that four-wave mixing reinforces the self-focusing of mutually trapped waves by lowering their power threshold for collapse, only when their phase mismatch is small. On the contrary, walk...

  1. Quantum Frequency Conversion of Single-Photon States by Three and Four-Wave Mixing

    DEFF Research Database (Denmark)

    Raymer, Michael G.; Reddy, Dileep V.; Andersen, Lasse Mejling

    2013-01-01

    Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets.......Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets....

  2. Bichromatic field generation from double-four-wave mixing in a double-electromagnetically induced transparency system

    CERN Document Server

    Liu, Yang; Ding, Dongsheng; Shi, Baosen; Guo, Guangcan

    2012-01-01

    We demonstrate the double electromagnetically induced transparency (double-EIT) and double four-wave mixing (double-FWM) based on a new scheme of non-degenerate four-wave mixing (FWM) involving five levels of a cold 85Rb atomic ensemble, in which the double-EIT windows are used to transmit the probe field and enhance the third-order nonlinear susceptibility. The phase-matching conditions for both four-wave mixings could be satisfied simultaneously. The frequency of one component of the generated bichromatic field is less than the other by the ground-state hyperfine splitting (3GHz). This specially designed experimental scheme for simultaneously generating different nonlinear wave-mixing processes is expected to find applications in quantum information processing and cross phase modulation. Our results agree well with the theoretical simulation.

  3. Far-detuned cascaded intermodal four-wave mixing in a multimode fiber.

    Science.gov (United States)

    Dupiol, R; Bendahmane, A; Krupa, K; Tonello, A; Fabert, M; Kibler, B; Sylvestre, T; Barthelemy, A; Couderc, V; Wabnitz, S; Millot, G

    2017-04-01

    We demonstrate far-detuned parametric frequency conversion processes in a few mode graded-index optical fibers pumped by a Q-switched picosecond laser at 1064 nm. Through a detailed analytical and numerical analysis, we show that the multiple sidebands are generated through a complex cascaded process involving inter-modal four-wave mixing. The resulting parametric wavelength detuning spans in the visible down to 405 nm and in the near-infrared up to 1355 nm.

  4. Internal wave coupling processes in Earth's atmosphere

    CERN Document Server

    Yiğit, Erdal

    2014-01-01

    This paper presents a contemporary review of vertical coupling in the atmosphere and ionosphere system induced by internal waves of lower atmospheric origin. Atmospheric waves are primarily generated by meteorological processes, possess a broad range of spatial and temporal scales, and can propagate to the upper atmosphere. A brief summary of internal wave theory is given, focusing on gravity waves, solar tides, planetary Rossby and Kelvin waves. Observations of wave signatures in the upper atmosphere, their relationship with the direct propagation of waves into the upper atmosphere, dynamical and thermal impacts as well as concepts, approaches, and numerical modeling techniques are outlined. Recent progress in studies of sudden stratospheric warming and upper atmospheric variability are discussed in the context of wave-induced vertical coupling between the lower and upper atmosphere.

  5. Four-wave-mixing experiments with seeded free electron lasers.

    Science.gov (United States)

    Bencivenga, F; Calvi, A; Capotondi, F; Cucini, R; Mincigrucci, R; Simoncig, A; Manfredda, M; Pedersoli, E; Principi, E; Dallari, F; Duncan, R A; Izzo, M G; Knopp, G; Maznev, A A; Monaco, G; Di Mitri, S; Gessini, A; Giannessi, L; Mahne, N; Nikolov, I P; Passuello, R; Raimondi, L; Zangrando, M; Masciovecchio, C

    2016-12-16

    The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.

  6. Observation of Quantum Beat in Rb by Parametric Four-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-Jun; HE Jun-Fang; XUE Bing; ZHAI Xue-Jun

    2007-01-01

    @@ Two coupled parametric four-wave-mixing processes in Rb atoms are studied using perturbation theory, which reveals clear evidence of the appearance of quantum beat at 608cm-1, corresponding to the energy difference of the 7s - 5d states of Rb atoms, in the parametric four-wave-mixing signals. A pump-probe technique is utilized to observe the quantum beat. Time-varying characteristics of the quantum beat are investigated using time-dependent Fourier transform. The results show that the time-varying characteristics of the quantum beat not only offers a sensitive detecting method for observing the decay of atomic wave packets, but also provides a potential tool for monitoring the dissociation of molecules.

  7. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing

    Science.gov (United States)

    Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.

    2013-01-01

    Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571

  8. Modeling of Mixed Decision Making Process

    OpenAIRE

    yahia, Nesrine Ben; Bellamine, Narjès; Ghezala, Henda Ben

    2012-01-01

    Decision making whenever and wherever it is happened is key to organizations success. In order to make correct decision, individuals, teams and organizations need both knowledge management (to manage content) and collaboration (to manage group processes) to make that more effective and efficient. In this paper, we explain the knowledge management and collaboration convergence. Then, we propose a formal description of mixed and multimodal decision making (MDM) process where decision may be mad...

  9. Modeling of Mixed Decision Making Process

    OpenAIRE

    Yahia, Nesrine Ben; Bellamine, Narjès; Ghezala, Henda Ben

    2012-01-01

    Decision making whenever and wherever it is happened is key to organizations success. In order to make correct decision, individuals, teams and organizations need both knowledge management (to manage content) and collaboration (to manage group processes) to make that more effective and efficient. In this paper, we explain the knowledge management and collaboration convergence. Then, we propose a formal description of mixed and multimodal decision making (MDM) process where decision may be mad...

  10. Spontaneous four-wave mixing in lossy microring resonators

    CERN Document Server

    Vernon, Z

    2015-01-01

    We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.

  11. Controllable azimuthons of four-wave mixing and their applications

    Science.gov (United States)

    Wang, R. M.; Che, J. L.; Wang, X. P.; Lan, H. Y.; Wu, Z. K.; Zhang, Y. Q.; Zhang, Y. P.

    2014-08-01

    We report controllable azimuthons of four-wave mixing (FWM), which can be modulated by several parameters in experiment. The spot number, splitting depth, rotation angular velocity and direction of such azimuthons can be controlled by the frequency and intensity of the FWM signal or the dressing field through the cross-phase modulation due to atomic coherence. The intensity gain of the azimuthons can be modulated by frequency detuning through quantum parametric amplification. The quantum correlated FWM vortex is observed in experiment. We also discuss the applications of such controllable azimuthons in all-optical circulators, multiplexers (demultiplexers), routers, cross-connects and optical amplifiers.

  12. NUMERICAL STUDY OF WAVE EFFECTS ON SURFACE WIND STRESS AND SURFACE MIXING LENGTH BY THREE-DIMENSIONAL CIRCULATION MODELING

    Institute of Scientific and Technical Information of China (English)

    LIANG Bing-chen; LI Hua-jun; LEE Dong-yong

    2006-01-01

    The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A three- dimensional coupled hydrodynamical-ecological model for regional and shelf seas (COHERENS) incorporating the influences of wave-current interactions was coupled with the third-generation wave model swan taking into account time-varying currents. The effects of waves on currents were included in the SDC, surface mixing length and bottom drag coefficient. Firstly, the formulations in Donelan were incorporated into the COHERENS to account for wave-dependent SDC. In order to compare simulation results for the wave-dependent SDC, the simulation for wind-dependent SDC was also carried out. Second, Wave-Induced Surface Mixing Length (described as WISML sometimes in this paper) was incorporated into the COHERENS. Four numerical experiments were conducted to discuss the effects of two kinds of wave processes. Generally, the values of time series of current velocity and water surface elevation given by the simulation with all of the three wave processes have a good agreement with observed data. The existence of WISML changes obviously current vertical profiles and the existence of the wave dependent SDC modifies the current field of both top and bottom layers with the wind-dependent SDC.

  13. Unidirectional Amplification and Shaping of Optical Pulses by Three-Wave Mixing with Negative Phonons

    CERN Document Server

    Popov, Alexander K; Myslivets, Sergey A; Slabko, Vitaly V

    2013-01-01

    A possibility to greatly enhance frequency-conversion efficiency of stimulated Raman scattering is shown by making use of extraordinary properties of three-wave mixing of ordinary and backward waves. Such processes are commonly attributed to negative-index plasmonic metamaterials. This work demonstrates the possibility to replace such metamaterials that are very challenging to engineer by readily available crystals which support elastic waves with contra-directed phase and group velocities. The main goal of this work is to investigate specific properties of indicated nonlinear optical process in short pulse regime and to show that it enables elimination of fundamental detrimental effect of fast damping of optical phonons on the process concerned. Among the applications is the possibility of creation of a family of unique photonic devices such as unidirectional Raman amplifiers and femtosecond pulse shapers with greatly improved operational properties.

  14. Observation of Optical Undular Bores in Multiple Four-Wave Mixing

    Directory of Open Access Journals (Sweden)

    J. Fatome

    2014-05-01

    Full Text Available We demonstrate that wave-breaking dramatically affects the dynamics of nonlinear frequency conversion processes that operate in the regime of high efficiency (strong multiple four-wave mixing. In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores (dispersive shock waves that mimic the typical behavior of dispersive hydrodynamics exhibited, e.g., by gravity waves and tidal bores. Thanks to the nonpulsed nature of the beat signal employed in our experiment, we are able to clearly observe how the periodic nature of the input modulation forces adjacent undular bores to collide elastically.

  15. Observation of Optical Undular Bores in Multiple Four-Wave Mixing

    Science.gov (United States)

    Fatome, J.; Finot, C.; Millot, G.; Armaroli, A.; Trillo, S.

    2014-04-01

    We demonstrate that wave-breaking dramatically affects the dynamics of nonlinear frequency conversion processes that operate in the regime of high efficiency (strong multiple four-wave mixing). In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores (dispersive shock waves) that mimic the typical behavior of dispersive hydrodynamics exhibited, e.g., by gravity waves and tidal bores. Thanks to the nonpulsed nature of the beat signal employed in our experiment, we are able to clearly observe how the periodic nature of the input modulation forces adjacent undular bores to collide elastically.

  16. Lamb Wave Dispersion Characterization Using Multiplexed Two-Wave Mixing Interferometry

    Science.gov (United States)

    Zhou, Yi; Zhang, Feifei; Krishnaswamy, Sridhar

    2003-03-01

    In recent work at Northwestern University, Multiplexed Two-Wave Mixing Interferometers (MTWM) have been developed. These systems are able to perform optical detection of ultrasonic motion over an array of points simultaneously. Optical phase gratings are used to create a detection-array of laser beams that are directed to the specimen. The detection array can be arranged in several ways on the test object. The scattered beams from the detection-array are collected and combined with a single reference beam in a photorefractive crystal to form a multiplexed two-wave mixing configuration. Each of the output beams from the photorefractive crystal is imaged on to a separate element of a photodetector array. The resulting MTWM system is capable of providing simultaneous optical detection (with high spatial resolution and sub-nanometer displacement sensitivities) at several points on a test object. The MTWM system can be used in several modes for laser ultrasonic NDE of flaws and materials characterization. In this paper we present recent advances and applications of this technology. An application of the MTWM system for fast recovery of Lamb wave dispersion curves is presented. We obtain the dispersive time-domain Lamb wave signals at multiple source-to-receiver distances. Following the algorithm of Alleyne and Cawley, these time-position domain signals are transformed to the frequency-wavenumber domain using a 2D FFT technique. The MTWM system enables rapid characterization of Lamb wave dispersion.

  17. Exploitation of transverse spatial modes in spontaneous four wave mixing photon-pair sources

    Science.gov (United States)

    Cruz-Ramirez, Hector; Ramirez-Alarcon, Roberto; Cruz-Delgado, Daniel; Monroy-Ruz, Jorge; Ortiz-Ricardo, Erasto; Dominguez-Serna, Francisco; Garay-Palmett, Karina; U'Ren, Alfred B.

    2016-09-01

    We present a source for which multiple spontaneous four-wave mixing (SFWM) processes are supported in a few mode birefringent fiber, each process associated with a particular combination of transverse modes for the four participating waves. Within the weakly guiding regime, for which the propagation modes may be well approximated by linearly polarized (LP) modes, the departure from circular symmetry due to the fiber birefringence translates into orbital angular momentum (OAM) and parity conservation rules, i.e. reflecting elements from both azimuthal and rectangular symmetries. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. The present paper covers work presented in Refs.1 and.2

  18. All-optical mode conversion via spatially-multimode four-wave mixing

    CERN Document Server

    Danaci, Onur; Glasser, Ryan T

    2016-01-01

    We experimentally demonstrate the conversion of a Gaussian beam to an approximate Bessel-Gauss mode by making use of a non-collinear four-wave mixing process in hot atomic vapor. The presence of a strong, spatially non-Gaussian pump both converts the probe beam into a non-Gaussian mode, and generates a conjugate beam that is in a similar non-Gaussian mode. The resulting probe and conjugate modes are compared to the output of a Gaussian beam incident on an annular aperture that is then spatially filtered according to the phase-matching conditions imposed by the four-wave mixing process. We find that the resulting experimental data agrees well with both numerical simulations, as well as analytical formulae describing the effects of annular apertures on Gaussian modes. These results show that spatially-multimode gain platforms may be used as a new method of mode conversion.

  19. Suppression of the four-wave mixing amplification via Raman absorption

    CERN Document Server

    Romanov, Gleb; Novikova, I

    2015-01-01

    We propose a method to controllably suppress the effect of the four-wave mixing caused by the coupling of the strong control optical field to both optical transitions in the $\\Lambda$ system under the conditions of electromagnetically induced transparency. At sufficiently high atomic density, this process leads to amplification of a weak optical signal field, that is detrimental for the fidelity of any EIT-based quantum information applications. Here we show that an additional absorption resonance centered around the idler field frequency, generated in such a four-wave mixing process, may efficiently suppress the unwanted signal amplification without affecting properties of the EIT interaction. We discuss the possibility of creating such tunable absorption using two-photon Raman absorption resonances in the other Rb isotope, and present some preliminary experimental results.

  20. Intermodal four-wave mixing in a higher-order-mode fiber

    OpenAIRE

    Cheng, Ji; Pedersen, Martin E. V.; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan

    2012-01-01

    We demonstrate a high-efficiency intermodal four-wave-mixing process in an all-fiber system, comprising a picosecond fiber laser and a high-order-mode (HOM) fiber. Two pump photons in the LP01 mode of the fiber can generate an anti-Stokes photon in the LP01 mode and a Stokes photon in the LP02 mode. The wavelength dependent mode profiles of the HOM fiber produce significant spatial overlap between the modes involved. The anti-Stokes wave at 941 nm is generated with 20% conversion efficiency w...

  1. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  2. Influence of mixing on the SNCR process

    DEFF Research Database (Denmark)

    Østberg, Martin; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    to a limiting value of the momentum ratio of approximately 20. Above this value no further improvement was observed. Chemical kinetic modelling of the initiating reactions involving NH3 showed that the reaction with OH radicals is the primary initiating reaction. It was also shown that process performance......An experimental and theoretical investigation of mixing in the SNCR process was performed. The experiments were carried out in a bench scale reactor using the flue gas from a natural gas burner as the main gas and injection of a jet of NH3 mixed with carrier gas in crossflow. The results show...... a dependency on the carrier gas flow at temperatures above the optimum temperature for NO reduction. No dependency on the variation of the O-2 concentration in the carrier gas from 0 to 21 vol% was observed. It was found that an increasing momentum ratio of the jet to the main gas improves the NO reduction up...

  3. Field-Correlation Effects on Rayleigh-Enhanced Nondegenerate Four-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    王延帮; 姜谦; 米辛; 俞祖和; 傅盘铭

    2002-01-01

    We study Rayleigh-enhanced nondegenerate four-wave mixing (NFWM) with time-delayed, correlated fluctuating fields. The importance of the field correlation is revealed in the Rayleigh-enhanced NFWM spectrum when the time delay is varied. The Rayleigh-enhanced NFWM is employed to study the ultrafast processes in the frequency domain. A relaxation time as short as 220 fs was deduced in the Rayleigh-enhanced NFWM experiments in carbon disulphide.

  4. Numerical analysis of multiwavelength erbium-doped fiber ring laser exploiting four-wave mixing.

    Science.gov (United States)

    Xu, Xiaochuan; Yao, Yong; Chen, Deying

    2008-08-04

    In this paper, a model is proposed to study the behavior of four-wave mixing assisted multiwavelength erbium doped fiber ring laser based on the theoretical model of the multiple FWM processes and Gile's theory of erbium-doped fiber. It is demonstrated that the mode competition can be effectively suppressed through FWM. The effect of phase matching, the nonlinear coefficient, the power in the cavity and the length of the nonlinear medium on output spectrum uniformity are also investigated.

  5. Four-wave mixing at maximum coherence and eliminated Doppler broadening controlled with the driving fields

    CERN Document Server

    Popov, A K; George, T F; Shalaev, V M; Bayev, Alexander S.; George, Thomas F.; Shalaev, Vladimir M.

    2000-01-01

    New feasibity of coherent quantum control of four-wave mixing processes in a resonant Doppler-broadened medium are studied. We propose a technique which enables one to enhance the quantum efficiency of nonlinear optical conversion. At the same time, it allows one to decrease the required intensities of the fundamental beams compared to those necessary in the approach based on coherent population trapping. The major outcomes of the analysis are illustrated with numerical simulation addressed within a practical medium.

  6. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  7. Measurement of coherence decay in GaMnAs using femtosecond four-wave mixing.

    Science.gov (United States)

    Webber, Daniel; de Boer, Tristan; Yildirim, Murat; March, Sam; Mathew, Reuble; Gamouras, Angela; Liu, Xinyu; Dobrowolska, Margaret; Furdyna, Jacek; Hall, Kimberley

    2013-12-03

    The application of femtosecond four-wave mixing to the study of fundamental properties of diluted magnetic semiconductors ((s,p)-d hybridization, spin-flip scattering) is described, using experiments on GaMnAs as a prototype III-Mn-V system.  Spectrally-resolved and time-resolved experimental configurations are described, including the use of zero-background autocorrelation techniques for pulse optimization.  The etching process used to prepare GaMnAs samples for four-wave mixing experiments is also highlighted.  The high temporal resolution of this technique, afforded by the use of short (20 fsec) optical pulses, permits the rapid spin-flip scattering process in this system to be studied directly in the time domain, providing new insight into the strong exchange coupling responsible for carrier-mediated ferromagnetism.  We also show that spectral resolution of the four-wave mixing signal allows one to extract clear signatures of (s,p)-d hybridization in this system, unlike linear spectroscopy techniques.   This increased sensitivity is due to the nonlinearity of the technique, which suppresses defect-related contributions to the optical response. This method may be used to measure the time scale for coherence decay (tied to the fastest scattering processes) in a wide variety of semiconductor systems of interest for next generation electronics and optoelectronics.

  8. Detailed study of four-wave mixing in Raman DFB fiber lasers.

    Science.gov (United States)

    Shi, Jindan; Horak, Peter; Alam, Shaif-Ul; Ibsen, Morten

    2014-09-22

    We both experimentally and numerically studied the ultra-compact wavelength conversion by using the four-wave mixing (FWM) process in Raman distributed-feedback (R-DFB) fiber lasers. The R-DFB fiber laser is formed in a 30 cm-long commercially available Ge/Si standard optical fiber. The internal generated R-DFB signal acts as the pump wave for the FWM process and is in the normal dispersion range of the fiber. Utilizing a tunable laser source as a probe wave, FWM frequency conversion up to ~40 THz has been demonstrated with conversion efficiency > -40 dB. The principle of such a wide bandwidth and high conversion efficiency in such a short R-DFB cavity has been theoretically analyzed. The simulation results match well with the experimental data.

  9. Linear Growth of Continuous-Wave Four-Wave Mixing with Dual Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Yi; LI Jia-Hua

    2005-01-01

    Using Schrodinger-Maxwell formalism, we propose and analyze an optical four-wave mixing (FWM) scheme for the generation of coherent light in a coherent six-level atomic medium based on dual electromagnetically induced transparency (EIT). We show that the significantly enhanced conversion efficiency enabled by ultraslow propagation of pump waves has no direct relationship with the single-photon detuning, which is different from the FWM with a single EIT. The most important feature is that our scheme is also capable of inhibiting and delaying the onset of the detrimental three-photon destructive interference that looks like a recent scheme [Phys. Rev. Lett. 91 (2003) 243902] andmay be used for generating short-wave-length coherent radiation.

  10. Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber

    Science.gov (United States)

    Mas Arabí, C.; Bessin, F.; Kudlinski, A.; Mussot, A.; Skryabin, D.; Conforti, M.

    2016-12-01

    We analyze the interaction between orthogonally polarized solitons and dispersive waves via four-wave mixing in a birefringent fiber. We calculate analytically the efficiency of the phase-sensitive scattering between orthogonally polarized solitons and dispersive waves. Experiments performed by using a photonic crystal fiber perfectly match the analytical predictions.

  11. Seismic Rayleigh Wave Digital Processing Technology

    Science.gov (United States)

    Jie, Li

    2013-04-01

    In Rayleigh wave exploration, the digital processing of data plays a very important position. This directly affects the interpretation of ground effect. Therefore, the use of accurate processing software and effective method in the Rayleigh wave exploration has important theoretical and practical significance. Previously, Rayleigh wave dispersion curve obtained by the one-dimensional phase analysis. This method requires channel spacing should be less than the effective wavelength. And minimal phase error will cause great changes in the phase velocity of Rayleigh wave. Damped least square method is a local linear model. It is easy to cause that inversion objective function cannot find the global optimal solution. Therefore, the method and the technology used in the past are difficult to apply the requirements of the current Rayleigh wave exploration. This study focused on the related technologies and algorithms of F-K domain dispersion curve extraction and GA global non-linear inversion, and combined with the impact of Rayleigh wave data acquisition parameters and the characteristics. Rayleigh wave exploration data processing software design and process technology research is completed. Firstly, the article describes the theoretical basis of Rayleigh wave method. This is also part of the theoretical basis of following treatment. The theoretical proof of existence of Rayleigh wave Dispersive in layered strata. Secondly, F-K domain dispersion curve extraction tests showed that the method can overcome the one-dimensional digital processing technology deficiencies, and make full use of multi-channel Rayleigh wave data record information. GA global non-linear inversion indicated that the inversion is not easy getting into local optimal solution. Thirdly, some examples illustrate each mode Rayleigh wave dispersion curve characteristics in the X-T domain. Tests demonstrated the impact on their extraction of dispersion curves. Parameters change example (including the X

  12. High-efficiency degenerate four wave-mixing in triply resonant nanobeam cavities

    CERN Document Server

    Lin, Zin; Loncar, Marko; Johnson, Steven G; Rodriguez, Alejandro W

    2013-01-01

    We demonstrate high-efficiency, degenerate four-wave mixing in triply resonant Kerr $\\chi^(3)$ photonic crystal (PhC) nanobeam cavities. Using a combination of temporal coupled mode theory and nonlinear finite-difference time-domain (FDTD) simulations, we study the nonlinear dynamics of resonant four-wave mixing processes and demonstrate the possibility of observing high-efficiency limit cycles and steady-state conversion corresponding to $\\approx 100$% depletion of the pump light at low powers, even including effects due to losses, self- and cross-phase modulation, and imperfect frequency matching. Assuming operation in the telecom range, we predict close to perfect quantum efficiencies at reasonably low $\\sim$ 50 mW input powers in silicon micrometer-scale cavities.

  13. Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing

    CERN Document Server

    Bajer, J; Bajer, Jiri; Miranowicz, Adam

    2001-01-01

    Sub-Poissonian light generation in the non-degenerate three-wave mixing is studied numerically and analytically within quantum and classical approaches. Husimi Q-functions and their classical trajectory simulations are analysed to reveal a special regime corresponding to the time-stable sub-Poissonian photocount statistics of the sum-frequency mode. Conditions for observation of this regime are discussed. Theoretical predictions of the Fano factor and explanation of the extraordinary stabilization of the sub-Poissonian photocount behavior are obtained analytically by applying the classical trajectories. Scaling laws for the maximum sub-Poissonian behavior are found. Noise suppression levels in the non-degenerate vs degenerate three-wave mixing are discussed on different time scales compared to the revival times. It is shown that the non-degenerate conversion offers much better stabilization of the suppressed noise in comparison to that of degenerate process.

  14. Useful models of four-wave mixing in Bose Einstein condensates

    Science.gov (United States)

    Infeld, E.; Trippenbach, M.

    2003-11-01

    A recent experiment demonstrated four-wave mixing of wavepackets in a sodium Bose-Einstein condensate (Deng et al 1999 Nature 398 218). This was followed by a theoretical and numerical treatment of the experiment (Trippenbach et al 2000 Phys. Rev. A 62 02368). In the experiment, a short period of free expansion of the condensate, after release from the magnetic trap, was followed by a set of two Bragg pulses which created moving wavepackets. These wavepackets, due to nonlinear interaction and under phase-matching conditions, created a new momentum component in a four-wave mixing process. We propose simple mathematical models for this process. Next we suggest that, instead of exactly matching the frequencies as in the abovementioned experiments, we introduce a small mismatch in the energies, and therefore the frequencies Dgrohgr. We show that such a small mismatch can compensate for the initial phases that are built on the condensate during free expansion. A physical explanation is offered. This compensation can improve the efficiency of four-wave mixing; in some cases even increasing it by a factor of 2. We also deal with the situation where two strong wavepackets are accompanied by a weak input beam applied as a seed both with and without a mismatch. Here the influence of the mismatch is less obviously beneficial. We also comment on recent work by Ketterle's group (Vogels et al 2002 Phys. Rev. Lett. 89 020401).

  15. Generation of Laser Light via Ultrasonic Four-wave Mixing

    Institute of Scientific and Technical Information of China (English)

    OU Fa; WU Fugen; HE Minggao

    2001-01-01

    On the basis of the interaction between phonons in ionic crystals with anharmonic lattice vibration, we present a laser model on acoustic nondegenerate four-wave mixing. Two beams of highfrequency ultrasound, incident on the acoustic cavity fulfilled with the medium of ionic crystal, play the role of pumping and one of the two side-band modes of the pumping frequency as an acoustic signal mode has a strong interaction with the optical cavity mode, the coupling-out of which wiIl be the light (far-infrared) output of a laser. The problem is treated with quantum-mechanics. The theory shows that there is the threshold phenomenon as usual lasers and a so called "phase-matching" condition is derived, which should be satisfied for stability of the system.

  16. Regenerative oscillation and four-wave mixing in graphene optoelectronics

    CERN Document Server

    Gu, Tingyi; Yang, Xiaodong; McMillian, James F; van der Zander, Arend; Yu, Min-bing; Lo, Guo-Qiang; Kwong, Dim-Lee; Hone, James; Wong, Chee-Wei

    2012-01-01

    The unique linear and massless band structure of graphene, in a purely two-dimensional Dirac fermionic structure, have led to intense research spanning from condensed matter physics to nanoscale device applications covering the electrical, thermal, mechanical and optical domains. Here we report three consecutive first-observations in graphene-silicon hybrid optoelectronic devices: (1) ultralow power resonant optical bistability; (2) self-induced regenerative oscillations; and (3) coherent four-wave mixing, all at a few femtojoule cavity recirculating energies. These observations, in comparison with control measurements with solely monolithic silicon cavities, are enabled only by the dramatically-large and chi(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These results demonstrate the feasibility and versatility of hybrid two-dimensional graphene-silicon nanophotonic devices for next-generation chip-scale ultrafast optical communications, radio-freque...

  17. Four-Wave Mixing in Landau-Quantized Graphene.

    Science.gov (United States)

    König-Otto, Jacob C; Wang, Yongrui; Belyanin, Alexey; Berger, Claire; de Heer, Walter A; Orlita, Milan; Pashkin, Alexej; Schneider, Harald; Helm, Manfred; Winnerl, Stephan

    2017-04-12

    For Landau-quantized graphene, featuring an energy spectrum consisting of nonequidistant Landau levels, theory predicts a giant resonantly enhanced optical nonlinearity. We verify the nonlinearity in a time-integrated degenerate four-wave mixing (FWM) experiment in the mid-infrared spectral range, involving the Landau levels LL-1, LL0 and LL1. A rapid dephasing of the optically induced microscopic polarization on a time scale shorter than the pulse duration (∼4 ps) is observed, while a complementary pump-probe experiment under the same experimental conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼6 kV/cm. Furthermore, the resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with our theoretical calculations.

  18. Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide.

    Science.gov (United States)

    Liu, Yang; Metcalf, Andrew J; Company, Victor Torres; Wu, Rui; Fan, Li; Varghese, Leo T; Qi, Minghao; Weiner, Andrew M

    2014-11-15

    We demonstrate an on-chip four-wave mixing (FWM) scheme in a silicon nanowaveguide to scale the bandwidth of a frequency comb generated by phase modulation of continuous-wave (CW) lasers. The FWM process doubles the bandwidth of the initial comb generated by the modulation of a CW laser. For example, a wavelength-tunable frequency comb with >100 comb lines spaced by 10 GHz within a bandwidth of 5 dB is generated.

  19. Intermodal four-wave mixing in a higher-order-mode fiber.

    Science.gov (United States)

    Cheng, Ji; Pedersen, Martin E V; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan

    2012-10-15

    We demonstrate a high-efficiency intermodal four-wave-mixing process in an all-fiber system, comprising a picosecond fiber laser and a high-order-mode (HOM) fiber. Two pump photons in the LP(01) mode of the fiber can generate an anti-Stokes photon in the LP(01) mode and a Stokes photon in the LP(02) mode. The wavelength dependent mode profiles of the HOM fiber produce significant spatial overlap between the modes involved. The anti-Stokes wave at 941 nm is generated with 20% conversion efficiency with input pulse energy of 20 nJ. The guidance of the anti-Stokes and Stokes waves in the HOM fiber enhances system stability.

  20. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P., E-mail: David.Pappas@NIST.gov [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2016-01-04

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  1. Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation.

    Science.gov (United States)

    Tombelaine, Vincent; Labruyère, Alexis; Kobelke, Jens; Schuster, Kay; Reichel, Volker; Leproux, Philippe; Couderc, Vincent; Jamier, Raphaël; Bartelt, Hartmut

    2009-08-31

    We report about a new type of nonlinear photonic crystal fibers allowing broadband four-wave mixing and supercontinuum generation. The microstructured optical fiber has a structured core consisting of a rod of highly nonlinear glass material inserted in a silica tube. This particular structure enables four wave mixing processes with very large frequency detuning (>135 THz), which permitted the generation of a wide supercontinuum spectrum extending over 1650 nm after 2.15 m of propagation length. The comparison with results obtained from germanium-doped holey fibers confirms the important role of the rod material properties regarding nonlinear process and dispersion.

  2. Characterization of Chirped Pump Four-Wave Mixing in Nonlinear Fibers using only Continuous-Wave-Lasers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Guan, Pengyu; Møller-kristensen, M. S.

    2017-01-01

    We propose a novel fiber characterization method that reveals the four-wave mixing bandwidth for chirped pump operation, using two tunable continuous-wave-lasers. The method accurately predicts the bandwidth for optical time lenses with broadband multi-carrier input......We propose a novel fiber characterization method that reveals the four-wave mixing bandwidth for chirped pump operation, using two tunable continuous-wave-lasers. The method accurately predicts the bandwidth for optical time lenses with broadband multi-carrier input...

  3. Designing slow-light photonic crystal waveguides for four-wave mixing applications.

    Science.gov (United States)

    Kanakis, Panagiotis; Kamalakis, Thomas; Sphicopoulos, Thomas

    2014-02-15

    We discuss the optimization of photonic crystal waveguides for four-wave mixing (FWM) applications, taking into account linear loss and free-carrier effects. Suitable figures of merit are introduced in order to guide us through the choice of practical, high-efficiency designs requiring relatively low pump power and small waveguide length. In order to realistically perform the waveguide optimization process, we propose and validate an approximate expression for the FWM efficiency, which significantly alleviates our numerical calculations. Promising waveguide designs are identified by means of an exhaustive search, altering some structural parameters. Our approach aims to optimize the waveguides for nonlinear signal-processing applications based on the FWM.

  4. Enhanced four-wave mixing via crossover resonance in cesium vapor

    CERN Document Server

    de Silans, T Passerat; Felinto, D; Tabosa, J W R

    2011-01-01

    We report on the observation of enhanced four-wave mixing via crossover resonance in a Doppler broadened cesium vapor. Using a single laser frequency, a resonant parametric process in a double-$\\Lambda$ level configuration is directly excited for a specific velocity class. We investigate this process in different saturation regimes and demonstrate the possibility of generating intensity correlation and anti-correlation between the probe and conjugate beams. A simple theoretical model is developed that accounts qualitatively well to the observed results.

  5. Polarization properties of coherent VUV light at 125 nm generated by sum-frequency four-wave mixing in mercury

    Science.gov (United States)

    Museur, L.; Olivero, C.; Riedel, D.; Castex, M. C.

    The polarization of the VUV light generated by four-wave sum-frequency mixing process ω4=2ω1+ω2 in mercury vapor at room temperature is analyzed in detail. Due to the specific two-photon transition used to enhance the nonlinear process, the polarization of the VUV wave is shown to be identical to the polarization of the wave at the frequency ω2. In particular, circularly polarized VUV is observed with degree of circular polarization exceeding 0.99.

  6. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  7. Experimental observation of strong mixing due to internal wave focusing over sloping terrain

    NARCIS (Netherlands)

    Swart, A.; Manders, A.; Harlander, U.; Maas, L.R.M.

    2010-01-01

    This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were perf

  8. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan;

    2014-01-01

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due...

  9. Mixing properties of ARCH and time-varying ARCH processes

    CERN Document Server

    Fryzlewicz, Piotr; 10.3150/10-BEJ270

    2011-01-01

    There exist very few results on mixing for non-stationary processes. However, mixing is often required in statistical inference for non-stationary processes such as time-varying ARCH (tvARCH) models. In this paper, bounds for the mixing rates of a stochastic process are derived in terms of the conditional densities of the process. These bounds are used to obtain the $\\alpha$, 2-mixing and $\\beta$-mixing rates of the non-stationary time-varying $\\operatorname {ARCH}(p)$ process and $\\operatorname {ARCH}(\\infty)$ process. It is shown that the mixing rate of the time-varying $\\operatorname {ARCH}(p)$ process is geometric, whereas the bound on the mixing rate of the $\\operatorname {ARCH}(\\infty)$ process depends on the rate of decay of the $\\operatorname {ARCH}(\\infty)$ parameters. We note that the methodology given in this paper is applicable to other processes.

  10. The effect of the wave-induced mixing on the upper ocean temperature in a climate model

    Institute of Scientific and Technical Information of China (English)

    HUANG Chuanjiang; QIAO Fangli; SONG Zhenya

    2008-01-01

    The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common prob-lems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was ex-amined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant im-provement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology,especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ig-nored in present climate models, and the wave-inducod mixing is one of those factors. Thus, the wave-induced mixing (or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then cli-mate system, more accurately.

  11. Symmetry-Breaking Zeeman-Coherence Parametric Wave Mixing Magnetometry

    CERN Document Server

    Zhou, Feng; Hagley, E W; Deng, L

    2016-01-01

    The nonlinear magneto-optical effect has significantly impacted modern society with prolific applications ranging from precision mapping of the Earth's magnetic field to bio-magnetic sensing. Pioneering works on collisional spin-exchange effects have led to ultra-high magnetic field detection sensitivities at the level of $fT/\\sqrt{Hz}$ using a single linearly-polarized probe light field. Here we demonstrate a nonlinear Zeeman-coherence parametric wave-mixing optical-atomic magnetometer using room temperature rubidium vapor that results in more than a three-order-of-magnitude optical signal-to-noise ratio (SNR) enhancement for extremely weak magnetic field sensing. This unprecedented enhancement was achieved with nearly a two-order-of-magnitude reduction in laser power while preserving the sensitivity of the widely-used single-probe beam optical-atomic magnetometry method. This new method opens a myriad of applications ranging from bio-magnetic imaging to precision measurement of the magnetic properties of su...

  12. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities

    Science.gov (United States)

    Azzini, Stefano; Grassani, Davide; Galli, Matteo; Gerace, Dario; Patrini, Maddalena; Liscidini, Marco; Velha, Philippe; Bajoni, Daniele

    2013-07-01

    We report on four-wave mixing in coupled photonic crystal nano-cavities on a silicon-on-insulator platform. Three photonic wire cavities are side-coupled to obtain three modes equally separated in energy. The structure is designed to be self-filtering, and we show that the pump is rejected by almost two orders of magnitude. We study both the stimulated and the spontaneous four-wave mixing processes: owing to the small modal volume, we find that signal and idler photons are generated with a hundred-fold increase in efficiency as compared to silicon micro-ring resonators.

  13. Parametrically Amplified Bright-state Polariton of Four- and Six-wave Mixing in an Optical Ring Cavity

    Science.gov (United States)

    Chen, Haixia; Zhang, Yiqi; Yao, Xin; Wu, Zhenkun; Zhang, Xun; Zhang, Yanpeng; Xiao, Min

    2014-01-01

    We report experimental studies of bright-state polaritons of four-wave mixing (FWM) and six-wave mixing (SWM) signals through cascade nonlinear optical parametric amplification processes in an atom-cavity composite system for the first time. Also, the coexisting cavity transmission modes of parametrically amplified FWM and SWM signals are observed. Finally, electromagnetically induced absorption by the FWM cavity modes in the probe beam is investigated. The investigations can find potential applications in multi-channel narrow-band long-distance quantum communication. PMID:24401795

  14. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities

    OpenAIRE

    Azzini, Stefano; Grassani, Davide; Galli, Matteo; Gerace,Dario; Patrini, Maddalena; Liscidini, Marco; Velha, Philippe; Bajoni, Daniele

    2013-01-01

    We report on four-wave mixing in coupled photonic crystal nano-cavities on a silicon-on-insulator platform. Three photonic wire cavities are side-coupled to obtain three modes equally separated in energy. The structure is designed to be self-filtering, and we show that the pump is rejected by almost two orders of magnitudes. We study both the stimulated and the spontaneous four-wave mixing processes: owing to the small modal volume, we find that signal and idler photons are generated with a h...

  15. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities

    OpenAIRE

    Azzini, Stefano; Grassani, Davide; Galli, Matteo; Gerace, Dario; Patrini, Maddalena; Liscidini, Marco; Velha, Philippe; Bajoni, Daniele

    2013-01-01

    We report on four-wave mixing in coupled photonic crystal nano-cavities on a silicon-on-insulator platform. Three photonic wire cavities are side-coupled to obtain three modes equally separated in energy. The structure is designed to be self-filtering, and we show that the pump is rejected by almost two orders of magnitudes. We study both the stimulated and the spontaneous four-wave mixing processes: owing to the small modal volume, we find that signal and idler photons are generated with a h...

  16. Detailed Characterization of Continuous-Wave and Pulsed-Pump Four-Wave Mixing in Nonlinear Fibers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, Lars;

    2016-01-01

    We explore the parametric gain differences for continuous-wave and pulse-pumped four-wave mixing, using various highly nonlinear fibers. Detailed simulations support our findings that the dispersion slope determines the experimentally observed differences, limiting the pulsed-pump performance....

  17. Numerical analysis to four-wave mixing induced spectral broadening in high power fiber lasers

    Science.gov (United States)

    Feng, Yujun; Wang, Xiaojun; Ke, Weiwei; Sun, Yinhong; Zhang, Kai; Ma, Yi; Li, Tenglong; Wang, Yanshan; Wu, Juan

    2015-02-01

    For powers exceeding a threshold the spectral broadening in fiber amplifiers becomes a significant challenge for the development of high power narrow bandwidth fiber lasers. In this letter, we show that the spectral broadening can be partly caused by four-wave mixing(FWM) process in which the power of the central wavelength would transfer to the side ones. A practical FWM induced spectral broadening theory has been derived from the early works. A numerical model of fiber amplifier has been established and FWM process has been added to the model. During the simulation process, we find that when a 10 GHz, several watts narrow bandwidth laser is seeded into a few modes fiber laser amplifier, the FWM induced spectral broadening effect might continually increase the FWHM of the spectra of the continuum laser to 100 GHz within the amplification process to several hundred watts which has been convinced by our experiments. Some other results have also been analyzed in this paper to complete the four-wave mixing induced spectral broadening theory in fiber amplifiers.

  18. Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Li, Feng; Zhou, Xian; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Tam, Hwa Yaw; Wai, P K A

    2015-04-01

    We demonstrate experimentally an enhanced intermodal four-wave mixing (FWM) process through coupling positively chirped femtosecond pulses into the deeply normal dispersion region of the fundamental mode of an in-house fabricated photonic crystal fiber (PCF). In the intermodal phase-matching scheme, the energy of the pump waves at 800 nm in the fundamental mode is efficiently converted into the anti-Stokes waves around 553 nm and the Stokes waves within the wavelength range of 1445-1586 nm in the second-order mode. The maximum conversion efficiency of η(as) and η(s) of anti-Stokes and Stokes waves can be up to 21% and 16%, respectively. The Stokes frequency shift Ω is 5580  cm(-1). The fiber bending and intermodal walk-off effect of pulses do not have significant influence on the nonlinear optical process.

  19. Group Velocity Reduction of Light Pulses in Photorefractive Two-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    张国权; 董嵘; 许京军

    2003-01-01

    We show theoretically that the group velocity of light pulses can be reduced significantly by use of the steep dispersion properties of the phase coupling effect in the photorefractive two-wave mixing process. The group velocity of light pulses of the order of 0.1 m/s can be achieved in typical photorefractive BSOcrystals with an appropriate externally applied electric field and moving gratings of appropriate speeds. It is also shown that the slowly propagating light pulses can be set to be amplified after passing through the photorefractive material.

  20. Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.

    Science.gov (United States)

    Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud

    2013-12-16

    The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.

  1. Extension of standard transfer-matrix method for three-wave mixing for plasmonic structures

    Science.gov (United States)

    Loot, A.; Hizhnyakov, V.

    2017-03-01

    Fast and accurate modeling of three-wave mixing processes in arbitrary stratified medium has significant practical and scientific importance. Several attempts to generalize transfer-matrix method (TMM) for nonlinear interactions have been made; however, none suits for easy-to-use modeling of plasmonic structures which requires oblique angle of incidence, p-polarization and minimal approximations. In this work, an easy-to-use extension to standard TMM is proposed. The proposed method is used to study the strength of unconventional plasmonic enhancement of second harmonic generation.

  2. Observations of Autler-Townes spatial splitting of four-wave mixing image

    Science.gov (United States)

    Huang, Gaoping; Sun, Jia; Feng, Weikang; Yuan, Jiamin; Wu, Zhenkun; Qin, Mengzhe; Zhang, Yiqi; Zhang, Yanpeng

    2013-08-01

    We report the self- and external-dressed Autler-Townes (A-T) splittings of the images of the generated four-wave mixing signal (FWM) and electromagnetically induced transparency (EIT) of probe images in cascade three-level atomic system. Such spatial properties of probe and FWM signals are induced by the enhanced cross-Kerr nonlinearity. We demonstrate the controlled electromagnetically induced spatial dispersion (EISD), splitting and focusing of probe and FWM signals images by adjusting self- and external-dressing fields. Studies on such controllable A-T spatial splitting and spatial EIT effect can be very useful in applications of spatial signal processing and optical communication.

  3. Polarization enhancement and suppression of four-wave mixing in multi-Zeeman levels

    Institute of Scientific and Technical Information of China (English)

    Zhiguo Wang; Yuxin Fu; Yue Song; Guoxian Dai; Feng Wen; Jinyan Zhao; Yanpeng Zhang

    2011-01-01

    Polarization dependence of the enhancement and suppression of four-wave mixing(FWM) in a multiZeeman level atomic system is investigated both theoretically and experimentally.A dressing field applied to the adjacent transition can cause energy level splitting.Therefore,it can control the enhancement and suppression of the FWM processes in the system due to the effect of electromagnetically induced transparency.The results show that the pumping beams with different polarizations select the transitions between different Zeeman levels that,in turn,affect the enhancement and suppression efficiencies of FWM.

  4. Properties of cat mutually pumped phase conjugation and two-wave mixing gain in doped KNSBN

    Institute of Scientific and Technical Information of China (English)

    Xinguang Xu(许心光); Zongshu Shao(邵宗书); Zhengping Wang(王正平); Junhai Liu(刘均海); Guibao Xu(许贵宝); Dawei Hu(胡大伟)

    2003-01-01

    Cat mutually pumped phase conjugation configuration is discovered and investigated by using two-wavemixing in (KyNa1-y)2z(SrxBa1-x)1-zNb2O6 (KNSBN) crystal. When only one signal or pumped beamdoes not give birth to phase conjugation, the maximum reflectivity of signal and pumped beam attain140% and 30% due to two-wave mixing, respectively. The experimental results show that the two-wavemixing can reduce the threshold of incident beams power, extend the incident angle range, and shortenresponse rate in the process of self-pumped phase conjugator (SPPC) in KNSBN crystal.

  5. Triply resonant coherent four-wave mixing in silicon nitride microresonators.

    Science.gov (United States)

    Fülöp, Attila; Krückel, Clemens J; Castelló-Lurbe, David; Silvestre, Enrique; Torres-Company, Victor

    2015-09-01

    Generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depend on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but it has never been studied in integrated microresonators. Waveguides arranged in a resonant way allow for an effective increase in the wavelength conversion efficiency (at the expense of a reduction in the operational bandwidth). In this Letter, we show that phase shaping of a three-wave pump provides an extra degree of freedom for controlling the FWM dynamics in microresonators. We present experimental results in single-mode, normal-dispersion high-Q silicon nitride resonators, and numerical calculations of systems operating in the anomalous dispersion regime. Our results indicate that the wavelength conversion efficiency and modulation instability gain in microcavities pumped by multiple waves can be significantly modified with the aid of simple lossless coherent control techniques.

  6. Wave-induced ripple development in mixed clay-sand substrates

    Science.gov (United States)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results

  7. Theory of Microwave 3-WAVE Mixing of Chiral Molecules

    Science.gov (United States)

    Lehmann, Kevin

    2016-06-01

    The traditional spectroscopic methods to measure enantiomeric excess, based upon optical rotation or circular dichroism arise from an interference of electric and magnetic dipole contributions of an optical transitions. The later is relativisitic and gets smaller with decreasing frequency and thus these effects have not been previously observed in pure rotational spectroscopy. First introduced by the group at Harvard^1, it is possible to use a 3-wave mixing method (with one of the fields potentially a Stark Field) to distinguish enantiomers if the three wave are nonplaner. In the conceptually simplest form of this experiment, a molecule is polarized with X polarization on a a → b transition, and then the resulting ρab molecular coherence is transferred to a ρac coherence by application of a π pulse on the b → c transition. For a chiral molecule with nonzero dipole projections on the three inertial axes, this ρac coherence can radiate Z polarized emission at the frequency of the a → c transition. In this talk, I will present the full theory of such experiments, including accounting for dirrection cosine matrix elements and M degeneracy. The resulting expressions can be used to calculate the expected size of the signal as a function of the specific transitions used in the a → b → c → a cycle.^2 It will be demonstrated that the maximum size of the ρac coherence is nearly that generated by a ``π/2'' pulse on the a → c transition. However, it is not possible to phase match the emission generated by this polarization due to the requirement that the three fields be orthogonal. Given that in rotational spectroscopy the physical size of the sample produced in a pulsed supersonic jet is comparable to the wavelengths of the microwave fields, the lack of phase matching produces a substantial but not catastrophic loss in the amplitude of the emitted free induction decay field. I will present a proposal to realize an analogy of quasiphase matching to

  8. Mixing and Restratification in the Upper Ocean: Competing Mechanisms in the Wave-Averaged Boussinesq Equations

    Science.gov (United States)

    Haney, Sean

    The ocean mixed layer serves as buffer through which the deep ocean and atmosphere communicate. Fluxes of heat, momentum, fresh water, and gases must pass through the mixed layer, and phytoplankton flourish most in the mixed layer where light is abundant. The dynamics of the mixed layer influence these fluxes and productivity of phytoplankton by altering the stratification and mean flow. Restratifying hurricane wakes provide a unique setting in which a dramatically perturbed mixed layer is observable from satellite sea surface temperature. Strong horizontal temperature fronts which border these wakes suggest that two and three dimensional, adiabatic processes play a role. These observations provide the necessary parameters to estimate wake restratification timescales by surface heat fluxes (SF), Ekman buoyancy fluxes (EBF), and mixed layer eddies (MLEs). In the four wakes observed, the timescales for SF and EBF were comparable, while MLEs were much slower. The restratification time for MLEs is reduced for deeper and narrower wakes compared with other mechanisms. Therefore, stronger mixed layer fronts make MLEs competitive with surface heat and wind forcing. Fronts are influenced by winds, waves (Langmuir circulations; LC), MLEs, and symmetric instabilities (SI). The wave averaged (Stokes drift) effects on MLEs are subtle, with aligned (anti-aligned) Stokes and geostrophic flows yielding a slight increase (decrease) in wavenumber and growth rate. Frontal effects on LC are very weak, with the primary result confirming that increased vertical stratification suppresses LC. The effect of Stokes drift on SI is profound. It changes the background flow necessary for SI, and it alters the structure of the SI themselves. Analytic stability criteria show that iii SI exist when the Ertel potential vorticity (PV) is negative. When the Stokes drift is aligned (anti-aligned) with the geostrophic shear, the PV is increased (reduced). This PV criterion is confirmed in more

  9. Near-inertial internal Poincare waves in Lake Michigan: Seasonal variability and effects on lateral dispersion and turbulent mixing

    OpenAIRE

    Choi, Jun M

    2015-01-01

    A dominant physical process in stratified Lake Michigan is near-inertial internal Poincaré waves. The near-inertial internal Poincaré waves is described as locally quasi-uniform currents in the lateral direction, with vertically-sheared structures rotating clockwise at a near-inertial period. The goal of this dissertation is to investigate their seasonal variation and the potential roles on lateral dispersion and vertical mixing. ^ At this mid-lake location, the Poincaré wave is seen to descr...

  10. Mixing of blackbodies: entropy production and dissipation of sound waves in the early Universe

    CERN Document Server

    Khatri, Rishi; Chluba, Jens

    2012-01-01

    Mixing of blackbodies with different temperatures creates a spectral distortion which, at lowest order, is a y-type distortion, indistinguishable from the thermal y-type distortion produced by the scattering of CMB photons by hot electrons residing in clusters of galaxies. This process occurs in the radiation-pressure dominated early Universe, when the primordial perturbations excite standing sound waves on entering the sound horizon. Photons from different phases of the sound waves, having different temperatures, diffuse through the electron-baryon plasma and mix together. This diffusion, with the length defined by Thomson scattering, dissipates sound waves and creates spectral distortions in the CMB. Of the total dissipated energy, 2/3 raises the average temperature of the blackbody part of spectrum, while 1/3 creates a distortion of y-type. It is well known that at redshifts 10^5< z< 2x10^6, comptonization rapidly transforms y-distortions into a Bose-Einstein spectrum. The chemical potential of the B...

  11. Ultrasensitive standoff chemical sensing based on nonlinear multi-photon laser wave-mixing spectroscopy

    Science.gov (United States)

    Gregerson, Marc; Hetu, Marcel; Iwabuchi, Manna; Jimenez, Jorge; Warren, Ashley; Tong, William G.

    2012-10-01

    Nonlinear multi-photon laser wave mixing is presented as an ultrasensitive optical detection method for chem/bio agents in thin films and gas- and liquid-phase samples. Laser wave mixing is an unusually sensitive optical absorption-based detection method that offers significant inherent advantages including excellent sensitivity, small sample requirements, short optical path lengths, high spatial resolution, high spectral resolution and standoff remote detection capability. Wave mixing can detect trace amounts of chemicals even when using micrometer-thin samples, and hence, it can be conveniently interfaced to fibers, microarrays, microfluidic systems, lab-on-a-chip, capillary electrophoresis and other capillary- or fiber-based chemical separation systems. The wave-mixing signal is generated instantaneously as the two input laser beams intersect inside the analyte of interest. Laser excitation wavelengths can be tuned to detect multiple chemicals in their native form since wave mixing can detect both fluorescing and non-fluorescing samples at parts-pertrillion or better detection sensitivity levels. The wave-mixing signal is a laser-like coherent beam, and hence, it allows reliable and effective remote sensing of chemicals. Sensitive wave-mixing detectors offer many potential applications including sensitive detection of biomarkers, early detection of diseases, sensitive monitoring of environmental samples, and reliable detection of hazardous chem/bio agents with a standoff detection capability.

  12. Polarization properties of optical phase conjugation by two-photon resonant degenerate four-wave mixing

    Science.gov (United States)

    Kauranen, Martti; Gauthier, Daniel J.; Malcuit, Michelle S.; Boyd, Robert W.

    1989-08-01

    We develop a semiclassical theory of the polarization properties of phase conjugation by two-photon resonant degenerate four-wave mixing. The theory includes the effects of saturation by the pump waves. We solve the density-matrix equations of motion in steady state for a nonlinear medium consisting of stationary atoms with a ground and excited state connected by two-photon transitions. As an illustration of the general results, we consider an S0-->S0 two-photon transition, which is known to lead to perfect polarization conjugation in the limit of third-order theory. We show that the fidelity of the polarization-conjugation process is degraded for excessively large pump intensities. The degradation can occur both due to transfer of population to the excited state and due to nonresonant Stark shifts. Theoretical results are compared to those of a recent experiment [Malcuit, Gauthier, and Boyd, Opt. Lett. 13, 663 (1988)].

  13. Four-wave mixing in a parity-time (PT)-symmetric coupler.

    Science.gov (United States)

    Wasak, T; Szańkowski, P; Konotop, V V; Trippenbach, M

    2015-11-15

    Parity-time (PT) symmetry allows for implementing controllable matching conditions for the four-wave mixing in 1D coupled waveguides. Different types of the process involving energy transition between slow and fast modes are established. In the case of defocusing Kerr media, the degenerated four-wave mixing is studied in detail. It is shown that unbroken PT symmetry supports the process existing in the conservative limit and, at the same time, originates new types of matching conditions, which cannot exist in the conservative system. In the former case, a slow beam splits into two fast beams, with nearly conserved total power, while in the latter case, one slow beam and one fast beam are generated. In the last process, the energy of the input primary slow beam is not changed and growth of the energy of the generated slow beam varies due to gain and loss of the medium. The appreciable generation of the fifth mode, i.e., the effect of the secondary resonant interactions, is observed.

  14. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing.

    Science.gov (United States)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-04-14

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors.

  15. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    Science.gov (United States)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-04-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors.

  16. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling

    Science.gov (United States)

    Aijaz, S.; Ghantous, M.; Babanin, A. V.; Ginis, I.; Thomas, B.; Wake, G.

    2017-05-01

    The effects of turbulence generated by nonbreaking waves have been investigated by testing and evaluating a new nonbreaking wave parameterization in a coupled hurricane-ocean-wave model. The MPI version of the Princeton Ocean Model (POM) with hurricane forcing is coupled with the WAVEWATCH-III (WW3) surface wave model. Hurricane Ivan is chosen as the test case due to its extreme intensity and availability of field data during its passage. The model results are validated against field observations of wave heights and sea surface temperatures (SSTs) from the National Data Buoy Centre (NDBC) during Hurricane Ivan and against limited in situ current and bottom temperature data. A series of numerical experiments is set up to examine the influence of the nonbreaking wave parameterization on the mixing of upper ocean. The SST response from the modeling experiments indicates that the nonbreaking wave-induced mixing leads to significant cooling of the SST and deepening of the mixed layer. It was found that the nondimensional constant b1 in the nonbreaking wave parameterization has different impacts on the weak and the strong sides of the storm track. A constant value of b1 leads to improved predictions on the strong side of the storm while a steepness-dependent b1 provides a better agreement with in situ observations on the weak side. A separate simulation of the intense tropical cyclone Olwyn in north-west Australia revealed the same trend for b1 on the strong side of the tropical cyclone.

  17. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    Science.gov (United States)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik; Guo Larsén, Xiaoli

    2016-07-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress reduces the near-surface wind speed. Introducing the wave influence roughness length has a larger influence than does adding the swell influence on mixing. Compared with measurements, adding the swell influence on both atmospheric mixing and wind stress gives the best model performance for the wind speed. The influence varies with wave characteristics for different sea basins. Swell occurs infrequently in the studied area, and one could expect more influence in high-swell-frequency areas (i.e., low-latitude ocean). We conclude that the influence of swell on atmospheric mixing and wind stress should be considered when developing climate models.

  18. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik;

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere......-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  19. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing.

    Science.gov (United States)

    Supradeepa, V R; Weiner, Andrew M

    2012-08-01

    We introduce a new cascaded four-wave mixing technique that scales up the bandwidth of frequency combs generated by phase modulation of a continuous-wave (CW) laser while simultaneously enhancing the spectral flatness. As a result, we demonstrate a 10 GHz frequency comb with over 100 lines in a 10 dB bandwidth in which a record 75 lines are within a flatness of 1 dB. The cascaded four-wave mixing process increases the bandwidth of the initial comb generated by the modulation of a CW laser by a factor of five. The broadband comb has approximately quadratic spectral phase, which is compensated upon propagation in single-mode fiber, resulting in a 10 GHz train of 940 fs pulses.

  20. Josephson Traveling-Wave Parametric Amplifier with Three-Wave Mixing

    Science.gov (United States)

    Zorin, A. B.

    2016-09-01

    We develop a concept of the traveling-wave Josephson parametric amplifier exploiting quadratic nonlinearity of a serial array of one-junction superconducting quantum interference devices (SQUIDs) embedded in a superconducting transmission line. The external magnetic flux applied to the SQUIDs makes it possible to efficiently control the shape of their current-phase relation and, hence, the balance between quadratic and cubic (Kerr-like) nonlinearities. This property allows us to operate in the favorable three-wave-mixing mode with a minimal phase mismatch, an exponential dependence of the power gain on number of sections N , a large bandwidth, a high dynamic range, and substantially separated signal (ωs ) and pump (ωp) frequencies obeying the relation ωs+ωi=ωp, where ωi is the idler frequency. An estimation of the amplifier characteristics with typical experimental parameters, a pump frequency of 12 GHz, and N =300 yields a flat gain of 20 dB in the bandwidth of 5.6 GHz.

  1. Linear theory of the response of Na mixing ratio to gravity waves

    Institute of Scientific and Technical Information of China (English)

    XU Jiyao; JI Qiao; WU Mingliang

    2003-01-01

    The influence of gravity waves on the sodium layer is studied by using a linear photochemical-dynamical coupling gravity wave model. The model includes the background photochemistry and the photochemical reactions in the sodium layer. The amplitude and phase difference of the response of sodium mixing ratio to gravity waves are calculated. The results indicate that the lower part of sodium layer is the most sensitive region responding to gravity waves. The perturbation of sodium mixing ratio is in phase with temperature in the lower part of the layer. However, it is out of phase with temperature fluctuation in the upper part.

  2. SAR detected river mixing and coastal wave/current difusion

    Science.gov (United States)

    Diez, Margarita; Martinez-Benjamin, Juan Jose; Sekula, Emil

    2014-05-01

    distribution of eddies and oil spills also mark the topology of the mixing [5-9]. A series of experimental measurements of the Lagrangian characteristics of the surface currents near Barcelona and Vilanova were performed during several years for different wind and wave conditions. The seasonal influence on the water recirculation and the influence of local conditions is apparent when the formation of a local thermocline also forces strong Langmuir circulations. Understanding the dispersion of very large freshwater discharge from the Rhone and the Ebro into the Mediterranean Sea and its impact on the biology and biogeochemistry of western Mediterranean. Because of the lack of tides and prevalence of strong wind forcing by the Mistral and Tramontana winds, the discharge of the rivers forms a classical example of a wind powered ROFI. The Fractal analysis indicates a river induced anisotropy anomalous surface mixing [6,7] Emil Sekula acknowledges the grants (SGR99-00145). ESP2005-07551, RYC-2003-005700). Authors also acknowledge the (ENV4-CT96-0334) European Union Project and the ESA (AO-ID C1P.2240) [1] Carrillo, A.; Sanchez, M.A.; Platonov, A.; Redondo, J.M., (2001). Coastal and Interfacial Mixing. Laboratory Experiments and Satellite Observations. Physics and Chemistry of the Earth, B, 26/4.305-311. [2] Sekula E., Redondo J. M. (2008) The structure of turbulent jets, vortices and boundary layer: Laboratory and field observations, Il Nuovo Cimento, Vol. 31, N. 5-6, 2008, DOI 10.1393/ncc/i2009-10358-y, 893-907. [3] B. Shirasago, V. Palà Comellas, J. J. Martínez Benjamín, D. Sánchez, A. Martínez, J. Font, R. Arbiol, J. Vázquez, V. Moreno (1996) Revista de teledetección: Revista de la Asociación Española de Teledetección, ISSN 1133-0953, Nº. 6. [4] J. M. Redondo, M. A. Sanchez, J. J. Martinez-Benjamin, and G. S. Jolly (1998)Spectral study of the ocean surface with SAR Proc. SPIE 3496, 217. [5] J. J. Martinez-Benjamin, C. Medeiros, O. Chic, M. O. Bezerra, and J. M

  3. Quantitative degenerate four-wave mixing spectroscopy: Probes for molecular species

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, R.; Rakestraw, D.; Paul, P.; Lucht, R.; Danehy, P.; Friedman-Hill, E.; Germann, G. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Resonant degenerate four-wave mixing (DFWM) is currently the subject of intensive investigation as a sensitive diagnostic tool for molecular species. DFWM has the advantage of generating a coherent (beam-like) signal which results in null-background detection and provides excellent immunity to background-light interference. Since multiple one-photon resonances are involved in the signal generation process, the DFWM technique can allow sensitive detection of molecules via electronic, vibrational or rotational transitions. These properties combine to make DFWM a widely applicable diagnostic technique for the probing of molecular species. The authors are conducting fundamental and applied investigations of DFWM for quantitative measurements of trace species in reacting gases. During the past year, efforts have been focussed in two areas: (1) understanding the effects of collisional processes on the DFWM signal generation process, and (2) exploring the applicability of infrared DFWM to detect polyatomic molecules via rovibrational transitions.

  4. Some Characterizations And A Construction Of Mixed Renewal Processes

    CERN Document Server

    Lyberopoulos, D P

    2012-01-01

    Some characterizations of mixed renewal processes in terms of exchangeability and of different types of disintegrations are given, extending de Finetti's Theorem. As a consequence, an existence result for mixed renewal processes, providing also a new construction for them, is obtained. As an application, some concrete examples of constructing such processes are presented and the corresponding disintegrating measures are explicitly computed.

  5. Performance Optimization of Dispersion-Managed WDM Systems Based on Four-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We systemically investigate the interchannel four-wave mixing (FWM) in dispersion-managed WDM systems with arbitrary launch position. We optimize the number of fiber sections, and the dispersion ratio for the system performance.

  6. Observation of Optical Undular Bores in Multiple Four-Wave Mixing

    National Research Council Canada - National Science Library

    Fatome, J; Finot, C; Millot, G; Armaroli, A; Trillo, S

    2014-01-01

    ... (strong multiple four-wave mixing). In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores...

  7. Investigation of Four wave mixing effects using different modulation formats in optical communication system

    Directory of Open Access Journals (Sweden)

    Prabhpreet Kaur,

    2014-01-01

    Full Text Available In this paper, the four wave mixing effect on sixteen channel wavelength divison multiplexing has been compared for different modulation formats at various values of dispersion, core effective area, channel spacing.The performance of system has been evaluated in terms of four wave mixing power, BER and Q-factor.This paper simulates that with increase in the channel spacing,core effective area of fiber, signal interference between input signals decreases hence four wave mixing effect also decreases. It has been observed that for duobinary FWM decreases 1dBm more than NRZ. So duobinary modulation format is best suitable technique to reduce four wave mixing power by varying dispersion from 0 to 4 ps/nm.km, core effective area and channel spacing.

  8. Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing.

    Science.gov (United States)

    Yin, Y C; French, D; Jovanovic, I

    2010-08-16

    It is well-known that the process of optical parametric amplification (OPA) can be sensitive to the phases of the incident waves. In OPA realized by three-wave mixing, injection of all three waves into the same mode with appropriate phase relationship results in amplification of the signal phase, with an associated deamplification of the signal energy. Prospects for the use of this technique in the temporal domain for shaping ultrashort laser pulses are analyzed using a numerical model. Several representative pulse shaping capabilities of this technique are identified, which can significantly augment the performance of common passive pulse shaping methods operating in the Fourier domain. It is found that the use of phase-sensitive OPA shows a potential for significant compression of approximately 100 fs pulses, steepening of the rise time of ultrashort pulses, and production of pulse doublets and pulse trains. It is also shown that the group velocity mismatch can assist the shaping process. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems.

  9. Efficient four-wave mixing by usage of resonances in mercury; Effizientes Vierwellenmischen durch Ausnutzen von Resonanzen in Quecksilber

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Daniel

    2011-05-05

    A continuous, coherent radiation source in the vacuum ultraviolet spectral region is presented. It is based on four-wave-mixing in mercury vapor with fundamental beams at 253.7 nm, 407.9 nm und 545.5 nm wavelength. The fundamental beams are produced by frequency doubling and quadrupling of beams from solid-state laser-systems respectively. Due to the 6{sup 1}S-7{sup 1}S two-photon resonance and additionally the 6{sup 1}S-6{sup 3}P one-photon resonance the efficiency can be increased compared to former sources. A near one-photon resonance reduces the optimal phasematching temperature of the four-wave-mixing process. This leads to smaller Doppler and pressure broadening resulting in a higher four-wave-mixing efficiency. A maximum power of 0.3 nW at 121.56 nm wavelength, the 1S-2P Lyman-{alpha} transition in hydrogen, can be obtained. This Lyman-{alpha} source is needed for future laser cooling of antihydrogen. Apart from the Lyman-{alpha} generation, four-wave-mixing with a slightly different third fundamental wavelength results in radiation near a one-photon resonance in the VUV at the 6{sup 1}S-12{sup 1}P transition in mercury. Due to this additional one-photon resonance the nonlinear susceptibility, responsible for the four-wave-mixing, can be strongly increased without an influence on the phasematching. With such a mixing process the efficiency can be enlarged by three orders of magnitude and powers up to 6 {mu}W in the VUV could be realised. This is an improvement of a factor of 30 to former laser sources in this VUV regime. Furthermore the two-photon resonance of mercury could be investigated in detail. We observed a velocity-selective double resonance at small Rabi frequencies of the fundamental beams, which has the same origin as dark resonances in {lambda}-systems. At high Rabi frequencies excitation to the two-photon level can be high enough to initiate a laser process on the 7{sup 1}S-6{sup 1}P transition. This process could be observed with continuouswave

  10. Boundaries of Parametric Gain due to Four-wave Mixing in Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2014-01-01

    Parametric gain by four-wave mixing is considered in photonic crystal fibers for an undepleted pump. The mode distributions are wavelength dependent, thus field overlap integrals cannot be simplified, and an extended gain region is observed......Parametric gain by four-wave mixing is considered in photonic crystal fibers for an undepleted pump. The mode distributions are wavelength dependent, thus field overlap integrals cannot be simplified, and an extended gain region is observed...

  11. Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2015-01-01

    Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching...... the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber. (C) 2015 Optical Society of America...

  12. Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2015-02-15

    Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber.

  13. 320 Gbit/s DQPSK all-optical wavelength conversion using four wave mixing

    DEFF Research Database (Denmark)

    Galili, Michael; Huettl, B.; Schmidt-Langhorst, C.

    2007-01-01

    In this paper we demonstrate wavelength conversion of 320 Gbit/s DQPSK and 160 Gbit/s DPSK data signals by four wave mixing in highly nonlinear fibre. Error free operation is shown for conversion of both DPSK and DQPSK......In this paper we demonstrate wavelength conversion of 320 Gbit/s DQPSK and 160 Gbit/s DPSK data signals by four wave mixing in highly nonlinear fibre. Error free operation is shown for conversion of both DPSK and DQPSK...

  14. Saturation properties of four-wave mixing between short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A.; Diez, S.

    1999-01-01

    Summary form only given. The authors report the first comparison between theory and experiment on the four wave mixing between trains of short pulses in semiconductor optical amplifiers. The theory is able to explain all qualitative features seen in the experiment.......Summary form only given. The authors report the first comparison between theory and experiment on the four wave mixing between trains of short pulses in semiconductor optical amplifiers. The theory is able to explain all qualitative features seen in the experiment....

  15. Polarization Insensitive Wavelength Conversion Based on Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Peucheret, Christophe

    2012-01-01

    We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements....

  16. Mode Selectivity with Quantum-state-preserving Frequency Conversion Using Four-wave Mixing

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Reddy, Dileep V.; McKinstrie, Colin J.

    2013-01-01

    We consider quantum frequency conversion using four-wave mixing Bragg scattering and the prospects for multiplexing using the temporal modes.We find that there is an optimal strength parameter, but that the fiber length is less critical.......We consider quantum frequency conversion using four-wave mixing Bragg scattering and the prospects for multiplexing using the temporal modes.We find that there is an optimal strength parameter, but that the fiber length is less critical....

  17. Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Yvind, Kresten

    2014-01-01

    Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....

  18. Measuring the correlation of two optical frequencies using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Watts, Regan T; Huynh, Tam N; Venkitesh, Deepa; Barry, Liam P

    2014-11-10

    We use the physics of four-wave mixing to study the decorrelation of two optical frequencies as they propagate through different fiber delays. The phase noise relationship between the four-wave mixing components is used to quantify and measure the correlation between the two optical frequencies using the correlation coefficient. We show the difference in the evolution of decorrelation between frequency-dependent and frequency-independent components of phase noise.

  19. Quantum Frequency Conversion by Four-wave Mixing Using Bragg Scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Rottwitt, Karsten; McKinstrie, C. J.

    2012-01-01

    Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection.......Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection....

  20. Quantum-state-preserving Frequency Conversion Using Four-wave Mixing

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Reddy, Dileep V.; McKinstrie, Colin J.

    2013-01-01

    We investigate the applicability of temporal multiplexing using four-wave mixing Bragg scattering for quantum frequency conversion. Various pump shapes are considered and we find that a large selectivity is possible for all the pump shapes.......We investigate the applicability of temporal multiplexing using four-wave mixing Bragg scattering for quantum frequency conversion. Various pump shapes are considered and we find that a large selectivity is possible for all the pump shapes....

  1. Phase-Sensitive Detection of Raman-Enhanced Nondegenerate Four-Wave Mixing by Polarization Interference

    Institute of Scientific and Technical Information of China (English)

    姜谦; 米辛; 俞祖和; 王延帮; 王利军; 傅盘铭

    2001-01-01

    We demonstrated a phase-sensitive method for studying the Raman-enhanced nondegenerate four-wave mixing (RENFWM). The reference beam is another four-wave mixing signal, which propagates along the same optical path as the RENFWM signal. This method is used for studying the phase dispersion of the third-ordersusceptibility X(3) and for the optical heterodyne detection of the RENFWM signal.

  2. Negative group velocity and three-wave mixing in dielectric crystals

    CERN Document Server

    Slabko, Vitaly V; Shalaev, Mikhail I; Popov, Alexander K

    2011-01-01

    Extraordinary features of optical parametric amplification of Stokes electromagnetic waves are investigated, which originate from three-wave mixing of two ordinary electromagnetic and one backward phonon wave with negative group velocity. A similarity with the counterpart in the negative-index plasmonic metamaterials and differences with those utilizing contra-propagating ordinary electromagnetic waves as well as electromagnetic and acoustic phonon waves are shown. They stem from backwardness of optical phonons with negative dispersion. Nonlinear-optical photonic devices with the properties similar to those predicted for the negative-index metamaterials are proposed.

  3. [Study on phase-matching of four-wave mixing spectrum in photonic crystal fiber].

    Science.gov (United States)

    Liu, Xiao-xu; Wang, Shu-tao; Zhao, Xing-tao; Chen, Shuang; Zhou, Gui-yao; Wu, Xi-jun; Li, Shu-guang; Hou, Lan-Tian

    2014-06-01

    In the present paper, the four-wave mixing principle of fiber was analyzed, and the high-gain phase-matching conditions were shown. The nonlinear coefficient and dispersion characteristics of photonic crystal fibers were calculated by multipole method. The phase mismatch characteristics of fibers with multiple zero-dispersion wavelengths were analyzed for the first time. The changing rules of phase matching wavelength with the pump wavelength and the pump power were obtained, and the phase matching curves were shown. The characteristics of phase matching wavelengths for different dispersion curves were analyzed. There are four new excitation wavelengths of four-wave mixing spectrum in two zero-dispersion wavelength photonic crystal fiers. Four-wave mixing spectroscopy of photonic crystal fibers with two zero-dispersion wavelengths was obtained in the experi-ent, which is consistent with the theoretical analysis, and verified the reliability of the phase matching theory. The fiber with multiple zero-dispersion wavelengths can create a ricbhphase-matching topology, excite more four-wave mixing wavelengths, ena-ling enhanced control over the spectral locations of the four-wave mixing and resonant-radiation bands emitted by solitons and short pulses. These provide theoretical guidance for photonic crystal fiber wavelength conversion and supercontinoum generation based on four-wave mixing.

  4. Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber.

    Science.gov (United States)

    Garay-Palmett, K; McGuinness, H J; Cohen, Offir; Lundeen, J S; Rangel-Rojo, R; U'ren, A B; Raymer, M G; McKinstrie, C J; Radic, S; Walmsley, I A

    2007-10-29

    We study theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in photonic crystal optical fiber. We show that it is possible to engineer two-photon states with specific spectral correlation ("entanglement") properties suitable for quantum information processing applications. We focus on the case exhibiting no spectral correlations in the two-photon component of the state, which we call factorability, and which allows heralding of single-photon pure-state wave packets without the need for spectral post filtering. We show that spontaneous four wave mixing exhibits a remarkable flexibility, permitting a wider class of two-photon states, including ultra-broadband, highly-anticorrelated states.

  5. Discussion of a “coherent artifact” in four-wave mixing experiments

    NARCIS (Netherlands)

    Ferwerda, Hedzer A.; Terpstra, Jacob; Wiersma, Douwe A.

    1989-01-01

    In this paper, we discuss the nonlinear optical effects that arise when stochastic light waves, with different correlation times, interfere in an absorbing medium. It is shown that four-wave mixing signals are generated in several directions that spectrally track the incoming light fields. This effe

  6. Discussion of a “coherent artifact” in four-wave mixing experiments

    NARCIS (Netherlands)

    Ferwerda, Hedzer A.; Terpstra, Jacob; Wiersma, Douwe A.

    1989-01-01

    In this paper, we discuss the nonlinear optical effects that arise when stochastic light waves, with different correlation times, interfere in an absorbing medium. It is shown that four-wave mixing signals are generated in several directions that spectrally track the incoming light fields. This effe

  7. A study of the noncollinear ultrasonic-wave-mixing technique under imperfect resonance conditions

    NARCIS (Netherlands)

    Demcenko, A.; Mainini, L.; Korneev, V.A.

    2015-01-01

    Geometrical and material property changes cause deviations in the resonant conditions used for noncollinear wave mixing. These deviations are predicted and observed using the SV(ω1) + L(ω2) → L(ω1 + ω2) interaction, where SV and L are the shear vertical and longitudinal waves, respectively, and ω1,

  8. Investigation of DWDM System Based on Cascaded Four-Wave Mixing

    OpenAIRE

    Spolītis, S; Lyashuk, I

    2011-01-01

    Four-wave mixing (FWM) in optical fibers refers to a nonlinear interaction among four different waves, in which the energy and wave-vector must be conserved. This requirement is often referred to as phase matching and depends strongly on the chromatic dispersion. FWM has received the attention in fiber optic parametric amplifiers due to the possibility to work in more optical regions than erbium doped fiber amplifier (EDFA) widely used in DWDM networks. This feature of FOPAs makes it poss...

  9. Degenerate four-wave mixing in semiconductor-doped glasses below the absorption edge

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1999-01-01

    We report measurements of degenerate four-wave-mixing reflectivity at a frequency below the band gap of semiconductor-doped glasses in the intensity range 0.5-10 GW/cm2. Up to intensities ~2.5 GW/cm2, the conjugate reflectivity varies like the fourth power of intensity signifying a fifth-order nonlinearity due to band filling by two-photon absorption. Surprisingly, at a higher intensity range the conjugate signal showed a cubic dependence on the pump intensity, which is typical of the χ(3) process. We show that this cubic dependence does not necessarily indicate a third-order process as usually assumed. Instead, it is shown to arise due to a reduction of the effective intensity by nonlinear absorption of the interacting beams.

  10. Enhanced four-wave mixing in a hollow-core photonic-crystal fiber.

    Science.gov (United States)

    Konorov, S O; Fedotov, A B; Zheltikov, A M

    2003-08-15

    Hollow-core photonic-crystal fibers are shown to substantially enhance four-wave mixing (FWM) of laser pulses in a gas filling the fiber core. Picosecond pulses of Nd:YAG fundamental radiation and its second harmonic are used to generate a signal at the frequency of the third harmonic by the FWM process 3omega = 2omega + 2omega - omega. The efficiency achieved for this process in a 9-cm-long, 13-microm-hollow-core-diameter photonic-crystal fiber, designed to simultaneously transmit a two-color pump and the FWM signal, is shown to be approximately 800 times higher than the maximum FWM efficiency attainable with the same laser pulses in the tight-focusing regime.

  11. Experimental observation of quantum correlations in four-wave mixing with a conical pump.

    Science.gov (United States)

    Cao, Leiming; Du, Jinjian; Feng, Jingliang; Qin, Zhongzhong; Marino, Alberto M; Kolobov, Mikhail I; Jing, Jietai

    2017-04-01

    Generation of multimode quantum states has drawn much attention recently due to its importance for both fundamental science and the future development of quantum technologies. Here, by using a four-wave mixing process with a conical pump beam, we have experimentally observed about -3.8  dB of intensity-difference squeezing between a single-axial probe beam and a conical conjugate beam. The multi-spatial-mode nature of the generated quantum-correlated beams has been shown by comparing the variation tendencies of the intensity-difference noise of the probe and conjugate beams under global attenuation and local cutting attenuation. Due to its compactness, phase-insensitive nature, and easy scalability, our scheme may find potential applications in quantum imaging, quantum information processing, and quantum metrology.

  12. A method for achieving larger enhancement in Four-Wave Mixing via plasmonic path interference effects

    CERN Document Server

    Singh, Shailendra Kumar; Tasgin, Mehmet Emre

    2016-01-01

    Enhancement and suppression of nonlinear processes in coupled systems of plasmonic converters and quantum emitters are well-studied theoretically, numerically and experimentally, in the past decade. Here, in difference, we explicitly demonstrate --with a single equation-- how the presence of a Fano resonance leads to cancellation of nonresonant terms in a four-wave mixing process. Cancellation in the denominator gives rise to enhancement in the nonlinearity. The explicit demonstration, we present here, guides us to the method for achieving more and more orders of magnitude enhancement factors via path interference effects. We also study the coupled system of a plasmonic converter with two quantum emitters. We show that the potential for the enhancement increases dramatically due to better cancellation of the terms in the denominator.

  13. Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths

    Science.gov (United States)

    Singh, Shailendra K.; Abak, M. Kurtulus; Tasgin, Mehmet Emre

    2016-01-01

    Recent experiments demonstrate that plasmonic resonators can enhance the four-wave mixing (FWM) process by several orders of magnitude, due to the localization of the incident fields. We show that, when the plasmonic resonator is coupled to two quantum emitters, a three orders of magnitude enhancement can be obtained on top of the enhancement due to the localization. We explicitly demonstrate—on an expression for the steady-state FWM amplitude—how the presence of a Fano resonance leads to the cancellation of nonresonant terms in a FWM process. A cancellation in the denominator gives rise to an enhancement in the nonlinearity. The explicit demonstration we present here guides one to a method for achieving even larger enhancement factors by introducing additional coupling terms. The method is also applicable to Fano resonances induced by all-plasmonic couplings, which are easier to control in experiments.

  14. Squeezing of thermal fluctuations in four-wave mixing in a \\Lambda-scheme

    CERN Document Server

    Erukhimova, Maria

    2016-01-01

    We theoretically investigate the mechanism of two-mode quadrature squeezing in regime of four-wave mixing in a \\Lambda-scheme of three-level atoms embedded in a thermal reservoir. We demonstrate that the process of nonlinear transfer of noise from the low frequency of ground state splitting to the optical frequency drastically modifies the condition of effective two-mode squeezing. The damage factor is significant if number of thermal photons at the low frequency is high and the role of inelastic processes in ground state coherence decay is not negligible. We found the optimal conditions for squeezing, in particular optimal density-length product of active medium depending on the relaxation parameters and drive intensity.

  15. Pricing Model of Multiattribute Derivatives Based on Mixed Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By Analyzing the behavior and character of derivative security, the authorsestablished a pricing model of multiattribute derivative security whose underlying asset pricingprocess is a mixed process, and obtained a new model for option pricing of multiattribute derivatives based on mixed process, and improved some original results.

  16. Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing.

    Science.gov (United States)

    Wu, Jian; Xiang, Dao; Gordon, Reuven

    2016-06-13

    We demonstrate continuous-wave four-wave mixing to probe the acoustic vibrations of gold nanorods in aqueous solution. The nonlinear optical response of gold nanorods, resonantly enhanced by electrostriction coupling to the acoustic vibration modes, shows an extensional vibration which combines an expansion along the long axis with a contraction along the short axis. We also observed the extensional vibration of gold nanospheres as byproducts of the gold nanorod synthesis. Theoretical calculation of the nanoparticle size and distribution based on the vibrational frequency agrees well with the experimental results obtained from the scanning electron microscopic examination, indicating the four-wave mixing technique can provide in situ nanoparticle characterization.

  17. Polarization-dependent intermodal four-wave mixing in a birefringent multimode photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Liang; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A

    2017-05-01

    In this Letter, polarization-dependent intermodal four-wave mixing (FWM) is demonstrated experimentally in a birefringent multimode photonic crystal fiber (BM-PCF) designed and fabricated in-house. Femtosecond pump pulses at wavelengths ∼800  nm polarized along one of the principal axes of the BM-PCF are coupled into a normal dispersion region away from the zero-dispersion wavelengths of the fundamental guided mode of the BM-PCF. Anti-Stokes and Stokes waves are generated in the 2nd guided mode at visible and near-infrared wavelengths, respectively. For pump pulses at an average input power of 500 mW polarized along the slow axis, the conversion efficiencies ηas and ηs of the anti-Stokes and Stokes waves generated at wavelengths 579.7 and 1290.4 nm are 19% and 14%, respectively. For pump pulses polarized along the fast axis, the corresponding ηas and ηs at 530.4 and 1627 nm are 23% and 18%, respectively. We also observed that fiber bending and intermodal walk-off have a small effect on the polarization-dependent intermodal FWM-based frequency conversion process.

  18. Simulation of the ocean surface mixed layer under the wave breaking

    Institute of Scientific and Technical Information of China (English)

    SUN Qun; SONG Jinbao; GUAN Changlong

    2005-01-01

    A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.

  19. Photon pair generation by intermodal spontaneous four wave mixing in birefringent, weakly guiding optical fibers

    CERN Document Server

    Garay-Palmett, K; Dominguez-Serna, F; Ortiz-Ricardo, E; Monroy-Ruz, J; Ramirez, H Cruz; Ramirez-Alarcon, R; U'Ren, A B

    2016-01-01

    We present a theoretical and experimental study of the generation of photon pairs through the process of spontaneous four wave mixing (SFWM) in a few-mode, birefringent fiber. Under these conditions, multiple SFWM processes are in fact possible, each associated with a different combination of transverse modes for the four waves involved. We show that in the weakly guiding regime, for which the propagation modes may be well approximated by linearly polarized modes, the departure from circular symmetry due to the fiber birefringence translates into conservation rules which retain elements from azimuthal and rectangular symmetries: both OAM and parity must be conserved for a process to be viable. We have implemented a SFWM source based on a "bow-tie" birefringent fiber, and have measured for a collection of pump wavelengths the SFWM spectra of each of the signal and idler photons in coincidence with its partner photon. We have used this information, together with knowledge of the transverse modes into which the ...

  20. Sensitivity to Dark Energy candidates by searching for four-wave mixing of high-intensity lasers in the vacuum

    CERN Document Server

    Homma, Kensuke

    2012-01-01

    Theoretical challenges to understand Dark Matter and Dark Energy suggest the existence of low-mass and weakly coupling fields in the universe. The quasi-parallel photon-photon collision system (QPS) can provide chances to probe the resonant production of these light dark fields and the induced decay by the coherent nature of laser fields simultaneously. By focusing high-intensity lasers with different colors in the vacuum, new colors emerge as the signature of the interaction. Because four photons in the initial and final states interplay via the dark field exchange, this process is analogous to four-wave mixing in quantum optics, where the frequency sum and difference among the incident three waves generate the fourth wave with a new frequency via the nonlinear property of crystals. The interaction rate of the four-wave mixing process has the cubic dependence on the intensity of each wave. Therefore, if high-intensity laser fields are given, the sensitivity to the weakly coupling of dark fields to photons ra...

  1. PROGRESSING WAVE SOLUTIONS TO QUASI-LINEAR SYSTEMS MIXED PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    WANGWEIKE

    1994-01-01

    The author studies the technique of paradifferential operator defined on a space of conormal distribution with three indeces,and then use this technique to prove that a progressing wave which hits the boundary is reflected according to the usual law.

  2. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    Science.gov (United States)

    2014-09-30

    various wave ages cp / u* binned by wave age, where markers indicate the mean and the whiskers represent the standard deviation. Stresses are...incident wave. Results also indicate that wave 7...water physics for WAVEWATCH-III and SWAN Babanin, A.V., Walsh, K., Young, I.R., Sandery, P.A., Hemer, M.A., Qiao, F., Ginis , I. “Coupling tropical

  3. Four-Wave Mixing Scheme in a Four-Level Ladder-Type Atomic System Based on Electromagnetically Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; CHEN Ai-Xi; PENG Ju-Cun

    2004-01-01

    @@ A nonlinear optical four-wave mixing scheme is presented and analysed for the generation of coherent light in a nearly four-level ladder-type atomic system in the context of electromagnetically induced transparency (EIT).We find that EIT can suppress nonlinear photon absorption and the peak of the generated mixing field is located at the centre of the transparency window where the loss is minimal, though there is a dip in the centre. Such a nonlinear optical process can also be used for generating coherent short-wavelength radiation.

  4. Buffer gas-assisted four-wave mixing resonances in alkali vapor excited by a single cw laser

    Science.gov (United States)

    Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Khanbekyan, Alen; Mariotti, Emilio; Papoyan, Aram V.

    2016-12-01

    We report the observation of a fluorescence peak appearing in dilute alkali (Rb, Cs) vapor in the presence of a buffer gas when the cw laser radiation frequency is tuned between the Doppler-broadened hyperfine transition groups of an atomic D2 line. Based on steep laser radiation intensity dependence above the threshold and spectral composition of the observed features corresponding to atomic resonance transitions, we have attributed these features to the buffer gas-assisted four-wave mixing process.

  5. Optical cavity for enhanced parametric four-wave mixing in rubidium

    CERN Document Server

    Brekke, E

    2016-01-01

    We demonstrate the implementation of a ring cavity to enhance the efficiency of parametric four-wave mixing in rubidium. Using an input coupler with 95% reflectance, a finesse of 19.6$\\pm$0.5 is achieved with a rubidium cell inside. This increases the circulating intensity by a factor of 5.6$\\pm$0.5, and through two-photon excitation on the $5s_{1/2}\\rightarrow5d_{5/2}$ transition with a single excitation laser, up to 1.9$\\pm$0.3 mW of power at 420 nm is generated, 50 times what was previously generated with this scheme. The dependence of the output on Rb density and input power has been explored, suggesting the process may be approaching saturation. The blue output of the cavity also shows greatly improved spatial quality, combining to make this a promising source of 420 nm light for future experiments.

  6. Ghost imaging with different frequencies through non-degenerated four-wave mixing.

    Science.gov (United States)

    Yu, Ya; Wang, Chengyuan; Liu, Jun; Wang, Jinwen; Cao, Mingtao; Wei, Dong; Gao, Hong; Li, Fuli

    2016-08-08

    As a novel imaging method, ghost imaging has been widely explored in various fields of research, such as lensless ghost imaging, computational ghost imaging, turbulence-free ghost imaging. Recently, ghost imaging in non-degenerated system with pseudo-thermal light has been discussed theoretically, however, to our best knowledge, no experimental evidence has been proven yet. In this paper, we propose a new approach to realize ghost imaging with different frequencies, which are generated through a non-degenerated four-wave mixing(FWM) process in Rb vapor. In our experiment, by employing pseudo-thermal light as the probe beam, we found that the generated FWM signal has a strong second-order correlation with the original thermal light. On basis of that, we successfully implement non-degenerate ghost imaging, and reconstruct highly similar images of objects.

  7. Inter-modal four-wave mixing study in a two-mode fiber.

    Science.gov (United States)

    Friis, S M M; Begleris, I; Jung, Y; Rottwitt, K; Petropoulos, P; Richardson, D J; Horak, P; Parmigiani, F

    2016-12-26

    We demonstrate efficient four-wave mixing among different spatial modes in a 1-km long two-mode fiber at telecommunication wavelengths. Two pumps excite the LP01 and LP11 modes, respectively, while the probe signal excites the LP01 mode, and the phase conjugation (PC) and Bragg scattering (BS) idlers are generated in the LP11 mode. For these processes we experimentally characterize their phase matching efficiency and bandwidth and find that they depend critically on the wavelength separation of the two pumps, in good agreement with the numerical study we carried out. We also confirm experimentally that BS has a larger bandwidth than PC for the optimum choice of the pump wavelength separation.

  8. Squeezing of thermal fluctuations in four-wave mixing in a Λ scheme

    Science.gov (United States)

    Erukhimova, Maria; Tokman, Mikhail

    2017-01-01

    We theoretically investigated the mechanism of two-mode quadrature squeezing in a regime of four-wave mixing in a Λ scheme of three-level atoms embedded in a thermal reservoir. We demonstrated that the process of nonlinear transfer of noise from the low frequency of ground state splitting to the optical frequency is significant if the number of thermal photons at the low frequency is high. We have shown that correct calculation of the two-mode squeezing level taking into account both thermal noise and distortion of dissipative properties of the thermally excited medium resulted in a simple expression for the maximum squeezing level, which is defined by the ground-state coherence decay rate and the drive-field intensity. We found the optimal conditions for squeezing, in particular, the optimal density-length product of the active medium depending on the atomic relaxation parameters and the drive-field intensity.

  9. Time-resolved broadband Raman spectroscopies; A unified six-wave-mixing representation

    CERN Document Server

    Dorfman, Konstantin E; Mukamel, Shaul

    2013-01-01

    Excited-state vibrational dynamics in molecules can be studied by an electronically off-resonant Raman process induced by a probe pulse with variable delay with respect to an actinic pulse. We establish the connection between several variants of the technique that involve either spontaneous or stimulated Raman detection and different pulse configurations. By using loop diagrams in the frequency domain we show that all signals can be described as six wave mixing which depend on the same four point molecular correlation functions involving two transition dipoles and two polarizabilities and accompanied by a different gating. Simulations for the stochastic two-state-jump model illustrate the origin of the absorptive and dispersive features observed experimentally.

  10. Stimulated generation of superluminal light pulses via four-wave mixing.

    Science.gov (United States)

    Glasser, Ryan T; Vogl, Ulrich; Lett, Paul D

    2012-04-27

    We report on the four-wave mixing of superluminal pulses, in which both the injected and generated pulses involved in the process propagate with negative group velocities. Generated pulses with negative group velocities of up to v(g)=-1/880c are demonstrated, corresponding to the generated pulse's peak exiting the 1.7 cm long medium ≈50 ns earlier than if it had propagated at the speed of light in vacuum, c. We also show that in some cases the seeded pulse may propagate with a group velocity larger than c, and that the generated conjugate pulse peak may exit the medium even earlier than the amplified seed pulse peak. We can control the group velocities of the two pulses by changing the seed detuning and the input seed power.

  11. Spatial Four Wave Mixing, Probe Images, and Fluorescence Signals in Dressed Three-Level System

    Science.gov (United States)

    Lan, Huayan; Sun, Jia; Wu, Zhenkun; Zhang, Dan; Zhang, Yiqi; Zheng, Huaibin; Zhang, Yanpeng

    2013-10-01

    We investigate the spatial images of the probe, generated four wave mixing (FWM) signal and the accompanying fluorescence spectrum signal simultaneously in FWM process in a cascade three-level atomic system for the first time. We experimentally observe and theoretically investigate the three spectrum signals versus the probe field as well as the dressing field frequency detunings. Utilizing the experimental results of spectrum signals, the cross phase modulation and the relative position between the weak and strong beams, we analyze the characteristics indicated in the spatial images of probe transmission and FWM, such as focusing or defocusing, shift and splitting in detail. Such studies can be used in all-optical controlled spatial signal transmission.

  12. Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating.

    Science.gov (United States)

    Ullah, Zakir; Wang, Zhiguo; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2014-12-01

    For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  13. All-optical switching via four-wave mixing Bragg scattering in a silicon platform

    CERN Document Server

    Zhao, Yun; Mathews, Jay; Agha, Imad

    2016-01-01

    We employ the process of non-degenerate four-wave mixing Bragg scattering (FWM-BS) to demonstrate all-optical control in a silicon platform. In our configuration, a strong, non-information-carrying pump is mixed with a weak control pump and an input signal in a silicon-on-insulator waveguide. Through the optical nonlinearity of this highly-confining waveguide, the weak pump controls the wavelength conversion process from the signal to an idler, leading to a controlled depletion of the signal. The strong pump, on the other hand, plays the role of a constant bias. In this work, we show experimentally that it is possible to implement this low-power switching technique as a first step towards universal optical logic gates, and test the performance with random binary data. Even at very low powers, where the signal and control pump levels are almost equal, the eye-diagrams remain open, indicating a successful operation of the logic gates.

  14. All-optical switching via four-wave mixing Bragg scattering in a silicon platform

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2017-02-01

    Full Text Available We employ the process of non-degenerate four-wave mixing Bragg scattering to demonstrate all-optical control in a silicon platform. In our configuration, a strong, non-information-carrying pump is mixed with a weak control pump and an input signal in a silicon-on-insulator waveguide. Through the optical nonlinearity of this highly confining waveguide, the weak pump controls the wavelength conversion process from the signal to an idler, leading to a controlled depletion of the signal. The strong pump, on the other hand, plays the role of a constant bias. In this work, we show experimentally that it is possible to implement this low-power switching technique as a first step towards universal optical logic gates, and test the performance with random binary data. Even at very low powers, where the signal and control pump levels are almost equal, the eye-diagrams remain open, indicating a successful operation of the logic gates.

  15. Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Farrell, Gerald; Hou, Lantian

    2013-12-15

    Based on degenerate four-wave mixing (FWM), the broadband Stokes waves are efficiently generated at the mid-infrared wavelength above 2 μm, for the first time to our knowledge, by coupling the femtosecond pulses into the fundamental mode of a silica photonic crystal fiber designed and fabricated in our laboratory. Influences of the power and wavelength of pump pulses on the phase-matched frequency conversion process are discussed. When pump pulses with central wavelength of 815 nm and average power of 300 mW are used, the output power ratio of the Stokes wave generated at 2226 nm and the residual pump wave P(s)/P(res) is estimated to be 10.8:1, and the corresponding conversion efficiency η(s) and bandwidth B(s) of the Stokes wave can be up to 26% and 33 nm, respectively. The efficient and broadband Stokes waves can be used as the ultrashort pulse sources for mid-infrared photonics and spectroscopy.

  16. Experimental Study On The Mixing Induced By Inertia-gravity Wave Breaking On The Dynamical Barrier of A Vortex

    Science.gov (United States)

    Moulin, F.; Flor, J.

    We present the results of an experimental investigation on the material transport across the shear zone of a cyclonic vortex induced by the breaking of inertia-gravity waves. As has been suggested by McIntyre (1995) this could be a possible mechamism of ozone transport across the dynamical barrier of the polar vortex. The experiments were conducted in a 1 meter size tank containing a rotating stratified fluid. Barotropic vortices were generated by siphoning off fluid with a long perforated tube and per- turbed by planar internal waves generated by the vertical oscillation of a horizontal circular cylinder. As predicted by theorical results based on the WKB approximation, the waves opposing the vortex velocity field were trapped in the outer edge of the vor- tex. In some cases, the increase of wave energy in this region was strong enough to lead to 3-dimensional breaking of the wave pattern. Experimental visualization tech- niques were used to determine the class of instability responsible for this breaking and to measure the induced mixing. A simple model to predict the efficiency of the mixing process will be presented.

  17. Enhanced Mixed Feedstock Processing Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2016-10-22

    Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before IL pretreatment technology becomes commercially viable. Once of the most significant challenges is the affordable and scalable recovery and recycle or the IL itself. Pervaporation is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration than traditional solvent extraction processes, as well as efficient and energetically more advantageous than standard evaporative techniques. In this study we evaluated a commercially available pervaporation system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution and recycled at least five times. A preliminary techno-economic analysis validated the promising role of pervaporation in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. These findings establish the foundation for further development of pervaporation as an effective method of recovering and recycling ILs using a commercially viable process technology.

  18. A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

    2011-01-01

    We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave...... model is based on a potential flow formulation, which requires efficient solution of a Laplace problem at large-scales. We report recent results on a new mixed-precision strategy for efficient iterative high-order accurate and scalable solution of the Laplace problem using a multigrid......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...

  19. Adaptive defect and pattern detection in amplitude and phase structures via photorefractive four-wave mixing.

    Science.gov (United States)

    Nehmetallah, George; Banerjee, Partha; Khoury, Jed

    2015-11-10

    This work comprises the theoretical and numerical validations of experimental work on pattern and defect detection of periodic amplitude and phase structures using four-wave mixing in photorefractive materials. The four-wave mixing optical processor uses intensity filtering in the Fourier domain. Specifically, the nonlinear transfer function describing four-wave mixing is modeled, and the theory for detection of amplitude and phase defects and dislocations are developed. Furthermore, numerical simulations are performed for these cases. The results show that this technique successfully detects the slightest defects clearly even with no prior enhancement. This technique should prove to be useful in quality control systems, production-line defect inspection, and e-beam lithography.

  20. Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction.

    Science.gov (United States)

    Lin, Chih-Hao; Lin, Hung-Hsin; Lin, Fan-Yi

    2012-01-02

    We apply a four-wave mixing analysis on a quantum dot laser to simultaneously obtain the linewidth enhancement factor α and other intrinsic laser parameters. By fitting the experimentally obtained regenerative signals and power spectra at different detuning frequencies with the respective curves analytically calculated from the rate equations, parameters including the linewidth enhancement factor, the carrier decay rate in the dots, the differential gain, and the photon decay rate can be determined all at once under the same operating conditions. In this paper, a theoretical model for the four-wave mixing analysis of the QD lasers is derived and verified. The sensitivity and accuracy of the parameter extraction using the four-wave mixing method are presented. Moreover, how each each parameters alter the shapes of the regenerative signals and the power spectra are also discussed.

  1. Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;

    2015-01-01

    Degenerate four-wave mixing is considered in large mode area hybrid photonic crystal fibers, combining photonic bandgap guidance and index guidance. Co- and orthogonally polarized pump, signal and idler fields are considered numerically by calculating the parametric gain and experimentally...... by spontaneous degenerate four-wave mixing. Intermodal and birefringence assisted intramodal phase matching is observed. Good agreement between calculations and experimental observations is obtained. Intermodal four-wave mixing is achieved experimentally with a conversion efficiency of 17%. (C) 2015 Optical...

  2. Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2015-03-09

    Degenerate four-wave mixing is considered in large mode area hybrid photonic crystal fibers, combining photonic bandgap guidance and index guidance. Co- and orthogonally polarized pump, signal and idler fields are considered numerically by calculating the parametric gain and experimentally by spontaneous degenerate four-wave mixing. Intermodal and birefringence assisted intramodal phase matching is observed. Good agreement between calculations and experimental observations is obtained. Intermodal four-wave mixing is achieved experimentally with a conversion efficiency of 17%.

  3. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    Science.gov (United States)

    2015-09-30

    PROJECTS Section). With the group of Rogers, observation/modeling study of an energetic wave event in the Arctic marginal zone was conducted ...floe. (right) Surface elevation in the lee of a 5 mm thick polypropylene floe (thick black curves) and incident wave (grey), normalised with respect...Toffoli, A., Marusic, I., Klewicki, J., Hutchins, N., Suslov, S., Walker, D., Chung, D., “A Thermally Stratified Sea-Ice-Wave Interaction Facility”, ARC

  4. Numerical simulation of four-wave mixing efficiency and its induced relative intensity noise

    Institute of Scientific and Technical Information of China (English)

    Chen Wei; Meng Zhou; Zhou Hui-Juan; Luo Hong

    2012-01-01

    Four-wave mixing,as well as its induced intensity noise,is harmful to wavelength division multiplexing systems.The efficiency and the relative intensity noise of four-wave mixing are numerically simulated for the two-wave and the three-wave fiber transmissions.It is found that the efficiency decreases with the increase of both the frequency spacing and the fiber length,which can be explained using the quasi-phase-matching condition.Furthermore,the relative intensity noise decreases with the increase of frequency spacing,while it increases with the increase of fiber length,which is due to the considerable power loss of the pump light.This investigation presents a good reference for the practical application of wavelength division multiplexing systems.

  5. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    Science.gov (United States)

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  6. Uni-directional wavelength conversion in silicon using four-wave mixing driven by cross-polarized pumps.

    Science.gov (United States)

    Bell, Bryn A; Xiong, Chunle; Marpaung, David; McKinstrie, Colin J; Eggleton, Benjamin J

    2017-05-01

    We demonstrate optical frequency conversion between telecom wavelengths using four-wave mixing Bragg scattering powered by two pump pulses polarized on orthogonal axes of a silicon waveguide. This allows conversion in a single frequency direction while, with co-polarized pumps, the signal is redshifted or blueshifted with similar efficiency. Our approach exploits the birefringence of the waveguide and its effect on the phase matching of the four-wave mixing process. The blue or red direction can be selected by the input polarization of the signal, and 20 dB extinction ratios are observed with the unintended direction. This technique will allow efficient and controlled conversion between specified wavelength channels in integrated photonic devices.

  7. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    CERN Document Server

    Grassani, Davide; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  8. Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators.

    Science.gov (United States)

    Kultavewuti, Pisek; Pusino, Vincenzo; Sorel, Marc; Stewart Aitchison, J

    2015-07-01

    We experimentally demonstrate enhanced wavelength conversion in a Q∼7500 deeply etched AlGaAs-nanowaveguide microresonator via degenerate continuous-wave four-wave mixing with a pump power of 24 mW. The maximum conversion efficiency is -43  dB and accounts for 12 dB enhancement compared to that of a straight nanowaveguide. The experimental results and theoretical predictions agree very well and show optimized conversion efficiency of -15  dB. This work represents a step toward realizing a fully integrated optical devices for generating new optical frequencies.

  9. Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides.

    Science.gov (United States)

    Wathen, Jeremiah J; Apiratikul, Paveen; Richardson, Christopher J K; Porkolab, Gyorgy A; Carter, Gary M; Murphy, Thomas E

    2014-06-01

    We present a side-by-side comparison of the nonlinear behavior of four passive AlGaAs ridge waveguides where the bandgap energy of the core layers ranges from 1.60 to 1.79 eV. By engineering the bandgap to suppress two-photon absorption, minimizing the linear loss, and minimizing the mode area, we achieve efficient wavelength conversion in the C-band via partially degenerate four-wave mixing with a continuous-wave pump. The observed conversion efficiency [Idler(OUT)/Signal(IN)=-6.8  dB] is among the highest reported in passive semiconductor or glass waveguides.

  10. Continuous-wave anti-Stokes Raman laser based on phase-matched nondegenerate four-wave mixing.

    Science.gov (United States)

    Zaitsu, Shin-ichi; Imasaka, Totaro

    2015-01-01

    We demonstrate phase-matched nondegenerate four-wave mixing (FWM) in a high-finesse optical cavity using a gaseous Raman-active medium pumped by two independent continuous-wave lasers. Efficient upconversion is achieved for pump beams at different wavelengths under phase-matched conditions by optimizing the total dispersion of the hydrogen-filled optical cavity. The independent control of the pump-beam polarizations leads to further enhancement of the upconversion efficiency arising from a larger Raman gain than that in degenerate FWM. This approach offers a promising alternative for a narrow-linewidth tunable light source for highly precise laser spectroscopy.

  11. Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators

    CERN Document Server

    Kultavewuti, Pisek; Sorel, Marc; Aitchison, J Stewart

    2016-01-01

    We experimentally demonstrate enhanced wavelength conversion in a Q=7500 deeply etched AlGaAs-nanowaveguide microresonator via degenerate continuous-wave four-wave mixing with a pump power of 24 mW. The maximum conversion efficiency is -43 dB and accounts for 12 dB enhancement compared to that of a straight nanowaveguide. The experimental results and theoretical predictions agree very well and show optimized conversion efficiency of -15 dB. This work represents a step toward realizing a fully integrated optical devices for generating new optical frequencies.

  12. Four-wave mixing instabilities in tapered and photonic crystal fibers

    OpenAIRE

    Biancalana, Fabio; Skryabin, Dmitry V.; Ortigosa-Blanch, Arturo

    2002-01-01

    We present an analytical study of four-wave mixing instabilities in tapered fibers and photonic crystal fibers. Our approach avoids the use of Taylor expansion for the linear susceptibility and the slowly-varying envelope approximation. This allows us to describe the generation of sidebands strongly detuned from the pump wave with simultaneous account for the entire dispersion characteristic of a fiber, which is found to be important for describing properly the key role of the parametric inst...

  13. Investigation on the propagation process of rotating detonation wave

    Science.gov (United States)

    Deng, Li; Ma, Hu; Xu, Can; Zhou, Changsheng; Liu, Xiao

    2017-10-01

    Effects of mass flow rate and equivalence ratio on the wave speed performance and instantaneous pressure characteristics of rotating detonation wave are investigated using hydrogen and air mixtures. The interaction between air and fuel manifolds and combustion chamber is also identified. The results show that the rotating detonation waves are able to adapt themselves to the changes of equivalence ratio during the run, the rotating detonation waves decayed gradually and then quenched after the shutdown of reactants supply. The wave speed performance is closely related to the mass flow rate and the pressure ratio of the fuel to air manifolds at different equivalence ratios. The blockage ratio of the air manifold increases with the increasing of the wave speed due to high-pressure detonation products, while increasing of the equivalence ratios will reduce the blockage ratio of the hydrogen manifold. Higher equivalence ratio can enhance the stabilization of the rotating detonation wave and lower equivalence ratio will lead to the large fluctuations of the lap time and instantaneous pressure magnitude. The overpressure of rotating detonation wave is determined by the combination of mass flow rate and equivalence ratio, which increases with the increasing of mass flow rate in the equivalence ratio ranges that the rotating detonation wave propagates stably. The secondary spike in the instantaneous pressure and ionization signals indicates that a shocked mixing zone exists near the fuel injection holes and the reflection of shock in the mixing zone induces the reaction.

  14. Nonlinear wave mixing and susceptibility properties of negative refractive index materials.

    Science.gov (United States)

    Chowdhury, Aref; Tataronis, John A

    2007-01-01

    We present an analysis of second-order and third-order nonlinear susceptibilities and wave-mixing properties of negative refractive index materials. We show that the nonlinear susceptibilities for noncentrosymmetric and centrosymmetric media may be positive or negative and away from resonance depending on the frequency of interest relative to the resonant frequencies of the material. Manipulation of the signs of the nonlinear susceptibilities is important in the field of optics, particularly for solitons and compensation of nonlinear effects. We also show that three- and four-wave mixing can be naturally phase matched in the material.

  15. Self-diffraction oscillations of two-wave mixing in a acrylamide photopolymer film

    CERN Document Server

    Kwak, C H; Sung, G Y; Choe, O S; Lee, Y W; Lee, I W

    1999-01-01

    Degenerate two-wave energy-coupling experiments were performed on a thick photopolymer film. It was found that the observed periodic oscillations of the energy couplings between the two pump beams were closely related to mixed gratings of the phase and the absorption gratings and to nonzero spatial phase shifts of the gratings with respect to the intensity interference patterns. A simple theory based on coupled wave theory was developed in conjunction with nonlocal responses of the mixed gratings and was compared with the experimental data.

  16. Enhanced four-wave mixing via photonic bandgap coupled defect resonances.

    Science.gov (United States)

    Blair, S

    2005-05-16

    Frequency conversion efficiency via four-wave mixing in coupled 1-D photonic crystal defect structures is studied numerically. In structures where all interacting frequencies coincide with intraband defect resonances, energy conversion efficiencies greater than 5% are predicted. Because the frequency spacings are determined by the free-spectral range, thereby requiring long defects for small spacings using intraband resonances, four-wave mixing using coupled-defect miniband resonances in more compact structures is also studied. Conversion efficiencies of greater than 1% are obtained in this case.

  17. Wavelength multicasting through four-wave mixing with an optical comb source.

    Science.gov (United States)

    Ting, Hong-Fu; Wang, Ke-Yao; Stroud, Jasper R; Petrillo, Keith G; Sun, Hongcheng; Foster, Amy C; Foster, Mark A

    2017-04-17

    Based on four-wave mixing (FWM) with an optical comb source (OCS), we experimentally demonstrate 26-way or 15-way wavelength multicasting of 10-Gb/s differential phase-shift keying (DPSK) data in a highly-nonlinear fiber (HNLF) or a silicon waveguide, respectively. The OCS provides multiple spectrally equidistant pump waves leading to a multitude of FWM products after mixing with the signal. We achieve error-free operation with power penalties less than 5.7 dB for the HNLF and 4.2 dB for the silicon waveguide, respectively.

  18. Degeneration of Four Wave Mixing in 500 m Step Index Two Mode Fiber

    Directory of Open Access Journals (Sweden)

    J. Jamaludin

    2016-12-01

    Full Text Available Four wave mixing (FWM in two-mode fiber was experimentally demonstrated at 24.7 dBm of output Erbium doped fiber amplifier (EDFA. The 0.5 km two mode fiber in laser cavity enhances the performance of four wave mixing by suppressing the homogenous broadening effect in erbium-doped fiber and perform a stable oscillation. At output EDFA approaches to 24.7 dBm, FWM is generated and the increasing of output EDFA induced the optical signal to noise ratio (OSNR of all laser peaks.

  19. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide.

    Science.gov (United States)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan; Peucheret, Christophe

    2014-01-13

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both modes.

  20. Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D.E. (Los Alamos National Lab., NM (United States)); Scott, A.M.; Ridley, K.D. (Royal Signals and Radar Establishment, Malvern (United Kingdom))

    1990-12-01

    The threshold for instability in Brillouin-enhanced four-wave mixing has been experimentally determined as a function of both the phase mismatch and the ratio of the pump beam intensities, and is shown to agree with theoretical modeling. The effective input noise intensity for four-wave mixing in the unstable regime is compared to the noise in a stimulated Brillouin scattering amplifier and is found to be higher by a factor of three in the forward direction. Competition between two input signals has been investigated and it is shown that the signal which arrives first dominates the interaction in the unstable regime.

  1. A multiplexed two-wave mixing interferometer for laser ultrasonic measurements of material anisotropy

    Science.gov (United States)

    Zhou, Yi; Murray, Todd W.; Krishnaswamy, Sridhar

    2002-05-01

    A method to optically measure ultrasonic displacements simultaneously over an array of detection points has been developed. Optical phase gratings are used to create a detection-array of laser beams that are directed to the specimen. The detection array can be arranged in several ways on the test object. The scattered beams from the detection-array are collected and combined with a single reference beam in a photorefractive crystal to from a multiplexed two-wave mixing (MTWM) configuration. Each of the output beams from the photorefractive crystal is imaged on to a separate element of a photodetector array. The resulting MTWM system is capable of providing simultaneous optical detection (with high spatial resolution and sub-nanometer displacement sensitivities) at several points on a test object. The MTWM system can be used in several modes for laser ultrasonic NDE of flaws and materials characterization. In this paper, the MTWM is used to characterize material anisotropy. Surface acoustic waves (SAWs) are generated using a pulsed laser focused to a point on a test object. The resulting SAW propagation is monitored optically simultaneously at 8 points arranged circularly around the generating spot. The scattered beams from the eight detection points are processed simultaneously in the MTWM setup. The group velocity slowness curve is obtained directly from the measured signals from the MTWM array. Results are shown for silicon and quartz. It is shown that the MTWM enables rapid experimental determination of material anisotropy.

  2. A theory for non-degenerate four-wave mixing in doped graphene

    Science.gov (United States)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2017-03-01

    We present a theoretical study of the nonlinear optical (NLO) response of doped graphene to two coherent laser beams, of frequencies ω1 and ω2, resulting in the generation of radiation at frequency ωσ = 2ω1 -ω2 . The two main ingredients of the developed theory are the interplay of interband and intraband electron motion, induced by the incident light waves, and the finite lifetime of excited electronic states, caused by electron scattering. Adopting a tight-binding approximation for the π-electronic band structure of graphene and the Genkin-Mednis formalism of the nonlinear conductivity theory of semiconductors, we calculate the third-order NLO susceptibility χ (3) (-ωσ ;ω1 ,ω1 , -ω2) responsible for the non-degenerate four-wave mixing process under consideration. Our calculations show the resonant enhancement of the |χ (3) | (up to a value of 2.8 ×10-7 esu) when the frequencies ω1 and ω2 of the input beams are mat"ched to provide a resonance for the output photon energy ℏωσ with an effective optical gap of 2EF in the π-electronic band structure of doped graphene (EF is the Fermi energy of charge carriers in the graphene, tunable by an external gate voltage). The results obtained may be of practical interest for generating mid-infrared radiation from doped graphene pumped with two near-infrared laser beams.

  3. Atmospheric Transport and Mixing linked to Rossby Wave Breaking in GFDL Dynamical Core

    Science.gov (United States)

    Liu, C.; Barnes, E. A.

    2015-12-01

    Atmospheric transport and mixing plays an important role in the global energy balance and the distribution of health-related chemical constituents. Previous studies suggest a close linkage between large-scale transport and Rossby wave breaking (RWB). In this work, we use the GFDL spectral dynamical core to investigate this relationship and study the response of RWB-related transport in different climate scenarios. In a standard control run, we quantify the contribution of RWB to the total transport and mixing of an idealized tracer. In addition, we divide the contribution further into the two types of RWB - anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB) -- and contrast their efficiency at transport and mixing. Our results are compared to a previous study in which the transport ability of the two types of RWB is studied for individual baroclinic wave life-cycles. In a series of sensitivity runs, we study the response of RWB-related transport and mixing to various states of the jet streams. The responses of the mean strength, frequency, and the efficiency of RWB-related transport are documented and the implications for the transport and mixing in a warmer climate are discussed.

  4. Mixing by internal waves quantified using combined PIV/PLIF technique

    Science.gov (United States)

    Dossmann, Y.; Bourget, B.; Brouzet, C.; Dauxois, T.; Joubaud, S.; Odier, P.

    2016-08-01

    We present a novel characterization of mixing events associated with the propagation and overturning of internal waves studied, thanks to the simultaneous use of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. This combination of techniques had been developed earlier to provide an access to simultaneous velocity and density fields in two-layer stratified flows with interfacial gravity waves. Here, for the first time, we show how it is possible to implement it quantitatively in the case of a continuously stratified fluid where internal waves propagate in the bulk. We explain in details how the calibration of the PLIF data is performed by an iterative procedure, and we describe the precise spatial and temporal synchronizations of the PIV and PLIF measurements. We then validate the whole procedure by characterizing the triadic resonance instability (TRI) of an internal wave mode. Very interestingly, the combined technique is then applied to a precise measurement of the turbulent diffusivity K t associated with mixing events induced by an internal wave mode. Values up to K t = 15 mm2 s-1 are reached when TRI is present (well above the noise of our measurement, typically 1 mm2 s-1), unambiguously confirming that TRI is a potential pathway to turbulent mixing in stratified flows. This work therefore provides a step on the path to new measurements for internal waves.

  5. An H1-Galerkin Expanded Mixed Element Method for Semi-linear Hyperbolic Wave Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-feng; LIU Yang; LI Hong; HE Siriguleng

    2013-01-01

    An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations.By using the mixed formulation,we can get the optimal approximation for three variables:the scalar unknown,its gradient and its flux(coefficient times the gradient),simultaneously.We also prove the existence and uniqueness of semi-discrete solution.Finally,we obtain some numerical results to illustrate the efficiency of the method.

  6. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    Science.gov (United States)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  7. Gravitational Wave Emulation Using Gaussian Process Regression

    Science.gov (United States)

    Doctor, Zoheyr; Farr, Ben; Holz, Daniel

    2017-01-01

    Parameter estimation (PE) for gravitational wave signals from compact binary coalescences (CBCs) requires reliable template waveforms which span the parameter space. Waveforms from numerical relativity are accurate but computationally expensive, so approximate templates are typically used for PE. These `approximants', while quick to compute, can introduce systematic errors and bias PE results. We describe a machine learning method for generating CBC waveforms and uncertainties using existing accurate waveforms as a training set. Coefficients of a reduced order waveform model are computed and each treated as arising from a Gaussian process. These coefficients and their uncertainties are then interpolated using Gaussian process regression (GPR). As a proof of concept, we construct a training set of approximant waveforms (rather than NR waveforms) in the two-dimensional space of chirp mass and mass ratio and interpolate new waveforms with GPR. We demonstrate that the mismatch between interpolated waveforms and approximants is below the 1% level for an appropriate choice of training set and GPR kernel hyperparameters.

  8. Conditional Stochastic Processes Applied to Wave Load Predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    The concept of conditional stochastic processes provides a powerful tool for evaluation and estimation of wave loads on ships and offshore structures. This article first considers conditional waves with a focus on critical wave episodes. Then the inherent uncertainty in the results is illustrated...

  9. Phase-locking in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    CERN Document Server

    Buettner, Thomas F S; Hudson, Darren D; Pant, Ravi; Poulton, Christopher G; Judge, Alexander C; Eggleton, Benjamin J

    2014-01-01

    Stimulated Brillouin scattering (SBS) and Kerr-nonlinear four wave-mixing (FWM) are among the most important and widely studied nonlinear effects in optical fibres. At high powers SBS can be cascaded producing multiple Stokes waves spaced by the Brillouin frequency shift. Here, we investigate the complex nonlinear interaction of the cascade of Stokes waves, generated in a Fabry-Perot chalcogenide fibre resonator through the combined action of SBS and FWM. We demonstrate the existence of parameter regimes, in which pump and Stokes waves attain a phase-locked steady state. Real-time measurements of 40ps pulses with 8GHz repetition rate are presented, confirming short-and long-term stability. Numerical simulations qualitatively agree with experiments and show the significance of FWM in phase-locking of pump and Stokes waves. Our findings can be applied for the design of novel picosecond pulse sources with GHz repetition rate for optical communication systems.

  10. High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing.

    Science.gov (United States)

    Wu, Huihui; Liu, Hongjun; Huang, Nan; Sun, Qibing; Wen, Jin

    2011-09-20

    We demonstrate picosecond terahertz (THz)-wave generation via four-wave mixing in an octagonal photonic crystal fiber (O-PCF). Perfect phase-matching is obtained at the pump wavelength of 1.55 μm and a generation scheme is proposed. Using this method, THz waves can be generated in the frequency range of 7.07-7.74 THz. Moreover, peak power of 2.55 W, average power of 1.53 mW, and peak conversion efficiency of more than -66.65 dB at 7.42 THz in a 6.25 cm long fiber are realized with a pump peak power of 2 kW.

  11. Two-wave mixing of orthogonally polarized waves via anisotropic dynamic gratings in erbium-doped optical fiber

    Science.gov (United States)

    Stepanov, Serguei; Hernández, Eliseo; Plata, Marcos

    2005-06-01

    We report on observations of transient two-wave mixing (TWM) of orthogonally polarized waves counterpropagating through an Er-doped single-mode optical fiber. Experiments were performed in a 2-m-long moderately birefringent (with beat length ~2 cm) Er-doped fiber without optical pumping at the laser wavelength 1549 nm. The transient TWM signal observed for crossed linear polarizations of the recording waves oriented along two orthogonal birefringence axes of the fiber (i.e., for the interference pattern with spatially modulated state of light polarization only) proved to be approximately half of that observed for parallel polarizations. Direct measurements of the transient polarization hole-burning effect (i.e., that observed for fast switching of the input light linear polarization between two orthogonal orientations of the doped fiber birefringence axes) allow us to attribute formation of the corresponding anisotropic dynamic grating to this effect.

  12. Wave induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    Directory of Open Access Journals (Sweden)

    M. Drivdal

    2014-05-01

    Full Text Available The modelling of wave-current and wave-turbulence interactions have received much attention in recent years. In this study the focus is on how these wave effects modify the transport of particles in the ocean. Here the particles are buoyant tracers that can represent oil droplets, plastic particles or plankton, for example fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production as well as the stronger veering by the Coriolis–Stokes force affect the drift of the particles. The energy and momentum fluxes as well as the Stokes drift depend on the directional wave spectrum that can be obtained from a wave model or from observations. As a first test the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (e.g. classical Ekman theory. Secondly the model is applied to a case where we investigate the oil drift after an offshore oil spill outside the western coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by empirical models. With wind and wave forcing from the ERA Interim archive, it is shown that the wave effects are important for the resultant drift in this case, and has the potential to improve drift forecasting.

  13. Experimental characterization of nonlinear processes of whistler branch waves

    Science.gov (United States)

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.

    2016-05-01

    Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.

  14. Dispersion-Flattened Composite Highly Nonlinear Fibre Optimised for Broadband Pulsed Four-Wave Mixing

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Oxenløwe, Leif Katsuo

    2016-01-01

    We present a segmented composite HNLF optimised for mitigation of dispersion-fluctuation impairments for broadband pulsed four-wave mixing. The HNLF-segmentation allows for pulsed FWMprocessing of a 13-nm wide input WDM-signal with -4.6-dB conversion efficiency...

  15. Theory of Multiwave Mixing within the Superconducting Kinetic-Inductance Traveling-Wave Amplifier

    CERN Document Server

    Erickson, Robert P

    2016-01-01

    We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain vs. signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied DC bias, and four-wave mixing (4WM), without DC. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with DC. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC transmissi...

  16. On the strongly damped wave equation and the heat equation with mixed boundary conditions

    Directory of Open Access Journals (Sweden)

    Aloisio F. Neves

    2000-01-01

    Full Text Available We study two one-dimensional equations: the strongly damped wave equation and the heat equation, both with mixed boundary conditions. We prove the existence of global strong solutions and the existence of compact global attractors for these equations in two different spaces.

  17. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  18. A Novel All-optical Wavelength Converter Based on Self-pump Four-wave Mixing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianxiao; CHEN Zhangyuan; TAO Zhenning; WU Deming; XU Anshi; WANG Ziyu

    2002-01-01

    A novel scheme of all-optical wavelength converter(AOWC) based on dual pump four-wave mixing(DP-FWM) was demonstrated. To suppress the ASE noise of the semiconductor optical amplifier (SOA), one of the two pumps was generated interiorly from a loop laser constructed mainly by tunable optical filter and SOA. The theoretical model and some experimental results were presented.

  19. Transient four-wave mixing in T-shaped GaAs quantum wires

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Gislason, Hannes; Hvam, Jørn Märcher

    1999-01-01

    The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement...

  20. Polarisation independent bi-directional four wave mixing for mid span spectral inversion

    DEFF Research Database (Denmark)

    Clausen, Anders; Buxens, Alvaro A.; Poulsen, Henrik Nørskov

    1999-01-01

    Polarisation independent Four Wave Mixing in a Semiconductor Optical Amplifier used for Mid Span Spectral Inversion (MSSI) is implemented and introduce only 0.9 dB penalty compared to polarisation dependent MSSI. The polarisation dependence in receiver sensitivity is 1 dB....

  1. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...

  2. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  3. Spectrally resolved four-wave mixing in semiconductors: Influence of inhomogeneous broadening

    DEFF Research Database (Denmark)

    Erland, J.; Pantke, K.-H.; Mizeikis, V.

    1994-01-01

    We study the influence of inhomogeneous broadening on results obtained from spectrally resolved transient four-wave mixing. In particular, we study the case where more resonances are coherently excited, leading to polarization interference or quantum beats, depending on the microscopic nature...

  4. Theory of nondegenerate four-wave mixing between pulses in a semiconductor waveguide

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A.

    1997-01-01

    We develop a perturbation theory for calculating the effects of saturation on nondegenerate four-wave mixing between short optical pulses in a semiconductor optical amplifier. Saturation due to ultrafast intraband dynamics like carrier heating and spectral hole burning is found to be important...

  5. Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerge; McKinstrie, C. J.; Rottwitt, Karsten

    2016-01-01

    We study the preparation of heralded single-photon states using dual-pump spontaneous four-wave mixing. The dual-pump configuration, which in our case employs cross-polarized pumps, allows for a gradual variation of the nonlinear interaction strength enabled by a birefringence-induced walk...

  6. Coherent control over Liouville-space pathways interference in transient four-wave mixing spectroscopy

    NARCIS (Netherlands)

    Pshenichnikov, M.S; de Boeij, W.P.; Wiersma, D. A.

    1996-01-01

    A novel interference effect in transient four-wave mixing is demonstrated. The phenomenon is based on phase-controlled Liouville-space pathways interference and observed in the heterodyne-detected stimulated photon echo. Changing the phase difference between the first two excitation pulses from pi/2

  7. Solution dynamics by line shape analysis, resonance light scattering and femtosecond four-wave mixing

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Duppen, Koos; Wiersma, Douwe A.

    1992-01-01

    The results of line shape analysis, resonance light scattering and femtosecond four-wave mixing measurements are reported on several organic molecules in solution. It is shown that a Brownian oscillator model for line broadening provides a full description for the optical dynamics in aprotic solutio

  8. Delayed four-wave-mixing spectroscopy in molecular crystals : A nonperturbative approach

    NARCIS (Netherlands)

    Weitekamp, D.P.; Duppen, Koos; Wiersma, Douwe A.

    1983-01-01

    The delayed or time-domain four-wave-mixing experiment is treated in the regime of intense near-resonant pulses. The interaction with the radiation during both pump and probe pulses is considered to all powers of the electric field amplitude. Analytical results are obtained for an effective four-lev

  9. Four-wave mixing Bragg scattering in hydrogenated amorphous silicon waveguides.

    Science.gov (United States)

    Li, Kangmei; Sun, Hongcheng; Foster, Amy C

    2017-04-15

    We demonstrate 15% on-chip conversion efficiency of four-wave mixing Bragg scattering in a hydrogenated amorphous silicon waveguide with only 55 and 194 mW peak pump powers in the waveguide. The lightwaves can be maintained in the telecommunication band, and the operational bandwidth is measured to be larger than 4 nm.

  10. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    1996-01-01

    We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrally...

  11. Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing

    DEFF Research Database (Denmark)

    McKinstrie, C. J.; Andersen, Lasse Mejling; Raymer, M. G.

    2012-01-01

    Nondegenerate four-wave mixing driven by two pulsed pumps transfers the quantum state of an input signal pulse to an output idler pulse, which is a frequency-converted and reshaped version of the signal. By varying the pump shapes appropriately, one can connect signal and idler pulses...

  12. Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC

    NARCIS (Netherlands)

    Demcenko, A.; Akkerman, Remko; Nagy, P.B.; Loendersloot, Richard

    2012-01-01

    This work considers the characterization of linear PVC acoustic properties using a linear ultrasonic measurement technique and the non-collinear ultrasonic wave mixing technique for measurement of the physical ageing state in PVC. The immersion pulse-echo measurements were used to evaluate phase

  13. Delayed four-wave-mixing spectroscopy in molecular crystals : A nonperturbative approach

    NARCIS (Netherlands)

    Weitekamp, D.P.; Duppen, Koos; Wiersma, Douwe A.

    1983-01-01

    The delayed or time-domain four-wave-mixing experiment is treated in the regime of intense near-resonant pulses. The interaction with the radiation during both pump and probe pulses is considered to all powers of the electric field amplitude. Analytical results are obtained for an effective four-lev

  14. Plasmonic assisted two wave mixing phenomenon for energy transfer in ferroelectric PZT film

    Science.gov (United States)

    Gupta, Reema; Kumari, Satchi; Tomar, Monika; Gupta, Vinay

    2017-04-01

    Ferroelectric - photorefractive PZT thin films have been exploited to study the energy transfer using pump probe technique for the development of optical delay lines. Two-wave mixing has been studied for three different PZT thin film samples deposited using pulsed laser deposition (PLD) technique. Uniform distribution of gold micro-discs of 40 nm thickness and 120 μm diameter over the surface of PZT thin film plays a vital role in enhancing the two-wave mixing. This is due to the ferroelectric domains present in PZT thin film which get polarized as a result of excited surface plasmons at the Au-PZT interface. The dual effect leads to an enhanced energy transfer from pump to 'Probe Beam'. The maximum two-wave mixing gain was found to be about 1.185 and 1.055 respectively for gold micro-discs patterned and bare PZT thin film deposited on STO substrate. In comparison, the PZT thin film covered completely with the gold overlayer does not show any significant two wave mixing gain due to the scattering of light by Au overlayer.

  15. Mixing Processes in High-Level Waste Tanks - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  16. Magnetohydrodynamic kink waves in nonuniform solar flux tubes: phase mixing and energy cascade to small scales

    CERN Document Server

    Soler, Roberto

    2015-01-01

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...

  17. Eikonal Simulations for the Energy Transfer in the Deep Ocean Internal Wave Field near Mixing Hotspots

    Science.gov (United States)

    Ijichi, T.; Hibiya, T.

    2016-02-01

    In the proximity of mixing hotspots, the observed internal wave spectra are usually distorted from the Garrett-Munk (GM) spectrum and are characterized by the high energy level E as well as the shear/strain ratio Rω quite different from the corresponding value for the GM spectrum (Rω = 3). Accurate parameterization of the energy transfer toward dissipation scales that takes into account the effects of E and Rω is therefore indispensable to quantify the deep ocean mixing. In this study, a series of eikonal simulations are carried out to examine energy transfer within such distorted internal wave spectra. The obtained results are used to assess the recently proposed parameterization for energy dissipation in the distorted internal wave field near mixing hotspots (Ijichi and Hibiya, 2015). In particular, several factors neglected by these authors in formulating the parameterization such as the background vertical divergence and the WKB horizontal scale-separation between small-scale test waves and the background waves are all taken into account throughout the eikonal simulations. It is shown that the calculated energy transfer rate ɛ is fairly consistent with the scaling ɛ E2N2f with N the local buoyancy frequency and f the local inertial frequency. Furthermore, the calculated results exhibit strong Rω dependence quite similar to that predicted from the parameterization by Ijichi and Hibiya (2015), suggesting the validity of their formulation.

  18. Modeling Recycling Asphalt Pavement Processing Technologies in Asphalt Mixing Plants

    OpenAIRE

    Simonas Tamaliūnas; Henrikas Sivilevičius

    2011-01-01

    The article presents reclaimed asphalt pavement (RAP) processing technologies and equipment models used in the asphalt mixing plant (AMP). The schematic model indicating all possible ways to process RAP in AMP is shown. The model calculating the needed temperature of mineral materials used for heating RAP is given and an example of such calculation is provided.Article in Lithuanian

  19. Modeling Recycling Asphalt Pavement Processing Technologies in Asphalt Mixing Plants

    Directory of Open Access Journals (Sweden)

    Simonas Tamaliūnas

    2011-04-01

    Full Text Available The article presents reclaimed asphalt pavement (RAP processing technologies and equipment models used in the asphalt mixing plant (AMP. The schematic model indicating all possible ways to process RAP in AMP is shown. The model calculating the needed temperature of mineral materials used for heating RAP is given and an example of such calculation is provided.Article in Lithuanian

  20. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-07-01

    Full Text Available We propose and demonstrate the generation of optical frequency combs via four-wave mixing in a dual wavelength Brillouin laser cavity. When pumped by two continuous-wave lasers with a varied frequency separation, dual wavelength Brillouin lasers with reduced linewidth and improved optical signal to noise ratios are generated in a direction opposite to the pump laser. Simultaneously, cavity-enhanced cascaded four-wave mixing between dual wavelength Brillouin lasers occurs in the laser cavity, causing the generation of broadband optical frequency combs with step tunable mode spacing from 40 to 1300 GHz. Compared to the cavity-less case, the number of the comb lines generated in the dual wavelength Brillouin laser cavity is increased by ∼38 times.

  1. Observation of soliton-induced resonant radiation due to three-wave mixing

    CERN Document Server

    Zhou, B; Guo, H R; Zeng, X L; Chen, X F; Chung, H P; Chen, Y H; Bache, M

    2016-01-01

    We show experimental proof that three-wave mixing can lead to formation of resonant radiation when interacting with a temporal soliton. This constitutes a new class of resonant waves, and due to the parametric nature of the three-wave mixing nonlinearity, the resonant radiation frequencies are widely tunable over broad ranges in the visible and mid-IR. The experiment is conducted in a periodically poled lithium niobate crystal, where a femtosecond self-defocusing soliton is excited in the near-IR, and resonant radiation due to the sum- and difference-frequency generation quadratic nonlinear terms are observed in the near- and mid-IR, respectively. Their spectral positions are widely tunable by changing the poling pitch and are in perfect agreement with theoretical calculations.

  2. Optimized wave-mixing in single and compact aluminum nanoantennas

    CERN Document Server

    de Corny, Maeliss Ethis; Laurent, Guillaume; Jeannin, Mathieu; Olgeirsson, Logi; Drezet, Aurélien; Huant, Serge; Dantelle, Géraldine; Nogues, Gilles; Bachelier, Guillaume

    2016-01-01

    The outstanding optical properties for plasmon resonances in noble metal nanoparticles enable the observation of non-linear optical processes such as second-harmonic generation (SHG) at the nanoscale. Here, we investigate the SHG process in single rectangular aluminum nanoantennas and demonstrate a doubly resonant regime in very compact nanostructures. In this regime, we highlight a nonlinear intensity eight times higher compared to a single resonant enhancement. Quantitative agreement is obtained between experimental and simulated far-field SHG maps taking into account the real experimental configuration (focusing and substrate). This allows identifying the physical origin of the SHG in small aluminum nanoantennas as arising mainly from local surface sources.

  3. Phononic Frequency Comb via Intrinsic Three-Wave Mixing

    Science.gov (United States)

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-01-01

    Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.

  4. A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis

    Science.gov (United States)

    Bui, ThuHang; Morana, Bruno; Scholtes, Tom; Chu Duc, Trinh; Sarro, Pasqualina M.

    2016-08-01

    This work presents the mixing wave generation of a novel surface acoustic wave (M-SAW) device for sensing in liquids. Two structures are investigated: One including two input and output interdigital transducer (IDT) layers and the other including two input and one output IDT layers. In both cases, a thin (1 μm) piezoelectric AlN layer is in between the two patterned IDT layers. These structures generate longitudinal and transverse acoustic waves with opposite phase which are separated by the film thickness. A 3-dimensional M-SAW device coupled to the finite element method is designed to study the mixing acoustic wave generation propagating through a delay line. The investigated configuration parameters include the number of finger pairs, the piezoelectric cut profile, the thickness of the piezoelectric substrate, and the operating frequency. The proposed structures are evaluated and compared with the conventional SAW structure with the single IDT layer patterned on the piezoelectric surface. The wave displacement along the propagation path is used to evaluate the amplitude field of the mixing longitudinal waves. The wave displacement along the AlN depth is used to investigate the effect of the bottom IDT layer on the transverse component generated by the top IDT layer. The corresponding frequency response, both in simulations and experiments, is an additive function, consisting of sinc(X) and uniform harmonics. The M-SAW devices are tested to assess their potential for liquid sensing, by dropping liquid medium in volumes between 0.05 and 0.13 μl on the propagation path. The interaction with the liquid medium provides information about the liquid, based on the phase attenuation change. The larger the droplet volume is, the longer the duration of the phase shift to reach stability is. The resolution that the output change of the sensor can measure is 0.03 μl.

  5. Efficient calculation of time- and frequency-resolved four-wave-mixing signals.

    Science.gov (United States)

    Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang

    2009-09-15

    "Four-wave-mixing" is the generic name for a family of nonlinear electronic and vibrational spectroscopies. These techniques are widely used to explore dissipation, dephasing, solvation, and interstate coupling mechanisms in various material systems. Four-wave-mixing spectroscopy needs a firm theoretical support, because it delivers information on material systems indirectly, through certain transients, which are measured as functions of carrier frequencies, durations, and relative time delays of the laser pulses. The observed transients are uniquely determined by the three-pulse-induced third-order polarization. There exist two conceptually different approaches to the calculation of the nonlinear polarization. In the standard perturbative approach to nonlinear spectroscopy, the third-order polarization is expressed in terms of the nonlinear response functions. As the material systems become more complex, the evaluation of the response functions becomes cumbersome and the calculation of the signals necessitates a number of approximations. Herein, we review alternative methods for the calculation of four-wave-mixing signals, in which the relevant laser pulses are incorporated into the system Hamiltonian and the driven system dynamics is simulated numerically exactly. The emphasis is on the recently developed equation-of-motion phase-matching approach (EOM-PMA), which allows us to calculate the three-pulse-induced third-order polarization in any phase-matching direction by performing three (with the rotating wave approximation) or seven (without the rotating wave approximation) independent propagations of the density matrix. The EOM-PMA is limited to weak laser fields (its domain of validity is equivalent to the approach based on the third-order response functions) but allows for arbitrary pulse durations and automatically accounts for pulse-overlap effects. As an illustration, we apply the EOM-PMA to the calculation of optical three-pulse photon-echo two

  6. Wavelength conversion by use of four-wave mixing in a novel optical loop configuration

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2000-01-01

    A novel loop configuration for generation of four-wave mixing (FWM) and suppression of input pump wave, signal wave, and amplified spontaneous emission is proposed and experimentally demonstrated. The novel loop configuration is very simple and functions independently of the wavelengths of the pump...... and the signal waves. By use of the novel loop configuration, nonreturn-to-zero wavelength conversion at 10 Gbits/s is achieved. The FWM-to-pump ratio, the FWM-to-signal ratio, and the signal-to-noise ratio are improved by 17.9, 18.8, and 8.2 dB, respectively. A principle experiment of wavelength conversion...... of four simultaneous channels is demonstrated....

  7. Phase quadrature discrimination based on three-pump four-wave mixing in nonlinear optical fibers.

    Science.gov (United States)

    Baillot, Maxime; Gay, Mathilde; Peucheret, Christophe; Michel, Joindot; Chartier, Thierry

    2016-11-14

    We theoretically and experimentally study the principle of phase-sensitive frequency conversion in a highly-nonlinear fiber using three pump waves. This mechanism, originally demonstrated with four continuous-wave pumps and a signal wave, is based on four-wave mixing and enables to convert the two quadrature components of the signal to different frequencies. In this work, we derive a set of two simple equations to describe this mechanism and find analytic solutions. We show that only three pumps are required, instead of four as originally proposed. We give simple relations to determine the initial conditions for the power levels and the phases of the pumps. To validate this approach, we perform an experimental demonstration of the three-pump scheme and find excellent agreement with the theory.

  8. Femtosecond Non-degenerate Four Wave Mixing Spectroscopy: The Two Color Photon Echo Peak Shift

    CERN Document Server

    Prall, B S

    2005-01-01

    The couplings between multiple electronic states and electronic and nuclear coordinates are examined for condensed phase systems by femtosecond degenerate and non-degenerate four wave mixing. The two-color photon echo peak shift experiment is developed which allows measurement of the correlation between transition frequencies in two different spectral regions. Two-color photon echo peak shift (2C3PEPS) experiments are used to study coupling between electronic states in the lutetium bisphthalocyanine anion, LuPc2−. Electronically induced mixing between exciton and charge resonance states leads to correlations in transition energies for the two observed transitions. This correlation generates non-zero 2C3PEPS which, when compared with 1C3PEPS, allows experimental determination of the degree of mixing, which was in good agreement with theoretical predictions. By exploiting a coherently excited nuclear wavepacket, the nuclear dependence on the electronic mixing between exciton and charge resonance state...

  9. Continuous Wave Phase-Sensitive Four-Wave Mixing in Silicon Waveguides With Reverse-Biased p-i-n Junctions

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Vukovic, Dragana; Gajda, A.

    2013-01-01

    Phase-sensitive four-wave mixing is experimentally demonstrated using continuous wave pumps in silicon waveguides with p-i-n junctions. The reverse biasing allows decreasing the free carrier lifetime, enabling a phase-sensitive extinction ratio in excess of 15 dB.......Phase-sensitive four-wave mixing is experimentally demonstrated using continuous wave pumps in silicon waveguides with p-i-n junctions. The reverse biasing allows decreasing the free carrier lifetime, enabling a phase-sensitive extinction ratio in excess of 15 dB....

  10. Three-wave mixing mediated femtosecond pulse compression in β-barium borate.

    Science.gov (United States)

    Grün, A; Austin, Dane R; Cousin, Seth L; Biegert, J

    2015-10-15

    Nonlinear pulse compression mediated by three-wave mixing is demonstrated for ultrashort Ti:sapphire pulses in a type II phase-matched β-barium borate (BBO) crystal using noncollinear geometry. 170 μJ pulses at 800 nm with a pulse duration of 74 fs are compressed at their sum frequency to 32 fs with 55 μJ of pulse energy. Experiments and computer simulations demonstrate the potential of sum-frequency pulse compression to match the group velocities of the interacting waves to crystals that were initially not considered in the context of nonlinear pulse compression.

  11. NUMEREICAL ANALYSIS OF FOUR WAVE MIXING AND EXTRACTION OF DISPERSION PARAMETERS OF THE FIBRE

    Directory of Open Access Journals (Sweden)

    S.Sugumaran

    2013-04-01

    Full Text Available Four wave mixing generally occurs when two or more different wavelengths from two or more sources are launched into the fibre, resulting in a new wavelength known as idler (different from thegiven wavelengths. Here in this paper the efficiency of the generation of idler and the power of idler will be numerically simulated for two wave fibre transmissions. From this simulation, a curve will be obtained between power of idler and wavelength separation between signal and pump source, which will be used topropose a power independent method for extraction of dispersion parameters of a fibre.

  12. Wave tectono-sedimentary processes in Tarim basin

    Institute of Scientific and Technical Information of China (English)

    JIN; Zhijun; ZHANG; Yiwei; CHEN; Shuping

    2005-01-01

    Based on the unconformities, the formation times of structures, and geological wave filtering applied to basin fills of typical wells around the Manjiaer area in the Tarim basin, the wave tectono-sedimentary processes in the Tarim Basin are discussed. The results of geological wave filtering of basin fills of typical wells show that, in time domain, the evolution of the Tarim basin was controlled by various wave processes with the periods of 740±Ma, 200±Ma, 100±Ma and 30±Ma. The analyses of basin fills, basin subsidence and unconformities show that the trends of the sedimentary facies belts, depocenters, and centers of subsidence migrated and interchanged periodically with periods of 200±Ma. These show the propagation of wave movements in space domain. The wave evolution of the Tarim basin is of significance to understanding the formation of the oil and gas reservoirs in the basin.

  13. Low-noise on-chip frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides

    CERN Document Server

    Agha, Imad; Thurston, Bryce; Srinivasan, Kartik

    2012-01-01

    Low-noise, tunable wavelength-conversion through non-degenerate four-wave mixing Bragg scattering in SiNx waveguides is experimentally demonstrated. Finite element method simulations of waveguide dispersion are used with the split-step Fourier method to predict device performance, and indicate a strong dependence of the conversion efficiency on phase matching, which is controlled by the waveguide geometry. Two 1550 nm wavelength band pulsed pumps are used to achieve tunable conversion of a 980 nm signal over a range of 5 nm with a peak conversion efficiency of \\approx 5 %. The demonstrated Bragg scattering process is suitable for frequency conversion of quantum states of light.

  14. Time domain switching/demultiplexing using four wave mixing in GaInP photonic crystal waveguides.

    Science.gov (United States)

    Cestier, I; Willinger, A; Eckhouse, V; Eisenstein, G; Combrié, S; Colman, P; Lehoucq, G; De Rossi, A

    2011-03-28

    We describe dynamical four wave mixing (FWM) functionalities of an GaInP photonic crystal waveguide. A W1 waveguide was used to wavelength convert 100 ps pulses and for sampling a 10.56 Gbit/s data stream so as to time demultiplex it into 16 or 32 channels. In all cases, the extracted pulses at the idler wavelength are undistorted and have a high signal to noise ratio proving the high efficiency and the versatility of the FWM process in the GaInP PhC waveguides we used.

  15. Four-Wave Mixing of a Laser and Its Frequency-Doubled Version in a Multimode Optical Fiber

    Directory of Open Access Journals (Sweden)

    Hamed Pourbeyram

    2015-08-01

    Full Text Available It is shown that it is possible to couple a laser beam and its frequency-doubled daughter into a multimode optical fiber through the four-wave mixing nonlinear process and generate a new wavelength. The frequency-doubled daughter can be generated in an external crystal with a large second order nonlinearity. It is argued that while this possibility is within the design parameter range of conventional multimode optical fibers, it necessitates a lower-bound for the core-cladding refractive index contrast of the multimode optical fiber.

  16. Narrowband Biphoton Generation with Four-Wave Mixing in a Far-Detuning Three-Level System

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; ZHOU Shu-Yu; XU Zhen; DUAN Ya-Fan; CUI Guo-Dong; HONG Tao; WANG Yu-Zhu

    2011-01-01

    Non-classical paired photons are generated by a four-wave mixing process in a far-detuning three-level system with cold atoms.A violation of the Cauchy-Schwartz inequality of a factor of 310 is observed.This phenomenon shows that paired photons have a non-classical correlation. The experimental results are compared with theoretical results obtained using perturbation theory.The oscillation frequencies of the two-photon intensity correlation functions are in reasonable agreement with the effective Rabi frequencies of the coupling laser.However,we find that the dephasing rates (or decay rates) observed are far larger than the theoretical values.

  17. The Worm Process for the Ising Model is Rapidly Mixing

    Science.gov (United States)

    Collevecchio, Andrea; Garoni, Timothy M.; Hyndman, Timothy; Tokarev, Daniel

    2016-09-01

    We prove rapid mixing of the worm process for the zero-field ferromagnetic Ising model, on all finite connected graphs, and at all temperatures. As a corollary, we obtain a fully-polynomial randomized approximation scheme for the Ising susceptibility, and for a certain restriction of the two-point correlation function.

  18. 7 CFR 58.619 - Mix processing room.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Mix processing room. 58.619 Section 58.619 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  19. Mix and Switch Effects in Bilingual Language Processing

    Science.gov (United States)

    Koeth, Joel T.

    2012-01-01

    This study utilized a novel task design in an effort to identify the source of the second language processing advantage commonly reported in mixed language conditions, investigate switch cost asymmetry in non-balanced bilinguals, and identify task-related variables that potentially contribute to inconsistent results across studies with similar…

  20. Preliminary results of assessing the mixing of wave transport flux residualin the upper ocean with ROMS

    Science.gov (United States)

    Shi, Yongfang; Wu, Kejian; Yang, Yongzeng

    2016-04-01

    The effects of the mixing of wave transport flux residual (Bvl) on the upper ocean is studied through carrying out the control run (CR) and a series of sensitive runs (SR) with ROMS model. In this study, the important role of Bvl is revealed by comparing the ocean temperature, statistical analysis of errors and evaluating the mixed layer depth. It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme. As can be seen from the vertical structure of temperature 28°C isotherm changes from 20 min CR to 35 m in SR3, which is more close to the observation. Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl. The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter, especially in the strong current regions in summer. In August the mixed layer depth (MLD) which is defined as the depth that the temperature has changed 0.5°C from the reference depth of 10 m is further analyzed. The simulation results have a close relationship with undetermined coefficient of Bvl, sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.

  1. Phase mixing of Alfvén waves propagating in non-reflective magnetic plasma configurations

    Science.gov (United States)

    Ruderman, Michael S.; Petrukhin, Nikolai S.

    2017-04-01

    The ability of phase mixing to provide efficient damping of Alfvén waves even in weakly dissipative plasmas made it a popular mechanism for explaining the solar coronal heating. Initially it was studied in the equilibrium configurations with the straight magnetic field lines and the Alfvén speed only varying in the direction perpendicular to the magnetic field. Later the analysis of the Alfvén wave phase mixing was extended in various directions. In particular it was studied in two-dimensional planar magnetic plasma equilibria. Analytical investigation was carried out under the assumption that the wavelength is much smaller than the characteristic scale of the background quantity variation. This assumption enabled using the Wentzel, Kramers, and Brillouin (WKB) method. When it is not satisfied the study was only carried out numerically. In general, even the wave propagation in a one-dimensional inhomogeneous equilibrium can be only studied numerically. However there is one important exception, so-called non-reflective equilibria. In these equilibria the wave equation with the variable phase speed reduces to the Klein-Gordon equation with constant coefficients. In this paper we apply the theory of non-reflective wave propagation to studying the Alfvén wave phase mixing in two-dimensional planar magnetic plasma equilibria. Using curvilinear coordinates we reduce the equation describing the Alfvén wave phase mixing to the equation that becomes a one-dimensional wave equation in the absence of dissipation. This equation is further reduced to the equation which is the one-dimensional Klein-Gordon equation in the absence of dissipation. Then we show that this equation has constant coefficients when a particular relation between the plasma density and magnetic field magnitude is satisfied. Using the derived Klein-Gordon-type equation we study the phase mixing in various non-reflective equilibria. We emphasise that our analysis is valid even when the wavelength is

  2. Application of pyrolysis process in processing of mixed food wastes

    National Research Council Canada - National Science Library

    Barbora Grycová; Ivan Koutník; Adrian Pryszcz; Miroslav Kaloč

    2016-01-01

    .... The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.

  3. All-optical wavelength conversion by four-wave mixing in a semiconductor optical amplifier

    Science.gov (United States)

    Lee, Robert Bumju

    1997-11-01

    Wavelength division multiplexed optical communication systems will soon become an integral part of commercial optical networks. A crucial new function required in WDM networks is wavelength conversion, the spectral translation of information-laden optical carriers, which enhances wavelength routing options and greatly improves network reconfigurability. One of several techniques for implementing this function is four-wave mixing utilizing ultra-fast intraband nonlinearities in semiconductor optical amplifiers. The effects of input power, noise prefiltering and semiconductor optical amplifier length on the conversion efficiency and optical signal-to-noise ratio were examined. Systems experiments have been conducted in which several important performance characteristics of the wavelength converter were studied. A bit-error-rate performance of BER performance were studied at 2.5 Gb/s for both a single-channel conversion and a simultaneous 2-channel conversion. The crosstalk penalty induced by parasitic cross-gain modulation in 2-channel conversion is quantified. The spectral inversion which results from the conversion process is studied by time-resolved spectral analysis, and its application as a technique for dispersion compensation is demonstrated. Finally, the application of selective organometallic vapor-phase epitaxy for the formation of highly-uniform and densely-packed arrays of GaAs quantum dots is demonstrated. GaAs dots of 15-20 nm in base diameter and 8-10 nm in height terminated by slow-growth crystallographic planes were grown within dielectric-mask openings and characterized by atomic force microscopy.

  4. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    Science.gov (United States)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  5. Efficient and broadband optical parametric four wave mixing in chalcogenide-PMMA hybrid microwires

    CERN Document Server

    Ahmad, Raja

    2012-01-01

    The recent development of devices based on novel nonlinear materials like chalcogenides (ChGs), silicon (Si) and other semi-conductors has revolutionized the field of nonlinear photonics [1,2,3]. Among the nonlinear effects observed in these materials, four-wave mixing (FWM) is the process that finds the most applications including wavelength conversion [4], optical regeneration [5,6], optical delay [7], time-domain demultiplexing[8], temporal cloaking[9] and negative refraction[10]. Although FWM has been observed in several media including chalcogenides [11,12,13,14], silicon[15, 16], bismuth [17] and silica [18,19], there is a continued quest for devices that realize efficient and broadband FWM while offering compactness, low-power consumption and compatibility with optical fibers. Here, we demonstrate the fabrication of 10 cm long polymer cladded chalcogenide (As2Se3) microwires to realize FWM-led sub watt threshold (70-370 mW) wavelength conversion with a 12 dB bandwidth as broad as 190 nm, and conversion...

  6. Time-resolved four-wave-mixing spectroscopy for inner-valence transitions.

    Science.gov (United States)

    Ding, Thomas; Ott, Christian; Kaldun, Andreas; Blättermann, Alexander; Meyer, Kristina; Stooss, Veit; Rebholz, Marc; Birk, Paul; Hartmann, Maximilian; Brown, Andrew; Van Der Hart, Hugo; Pfeifer, Thomas

    2016-02-15

    Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.

  7. Sensitivity Enhancement for Fiber Bragg Grating Sensors by Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Jiangbing Du

    2015-04-01

    Full Text Available All-optical signal processing based on four wave mixing (FWM in a highly nonlinear fiber (HNLF to enhance the sensitivity of a fiber sensor is demonstrated and comprehensively reviewed in this paper. The principle is based on the frequency chirp magnification (FCM by FWM. Degenerated FWM, cascaded two-stage FWM and pump-pulsed FWM with optical parametric amplification (OPA are experimentally utilized for magnifying the frequency chirp. By using the pump pulse modulation to increase the peak power, OPA can be induced with the use of a dispersion-optimized HNLF. Therefore, ultra-highly efficient FWM can be realized due to the high peak power and OPA. By using the fiber Bragg grating (FBG laser as the FWM pump, the wavelength drift of the FBG can thus be magnified due to the FCM. We obtain a sensing performance of 13.3 pm/με strain sensitivity and 141.2 pm/°C temperature sensitivity for a conventional FBG, which has an intrinsic strain sensitivity of only ~1 pm/με and an intrinsic temperature sensitivity of only ~10 pm/°C, respectively.

  8. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M. W.; O' Neil, T. M.; Dubin, D. H. E.; Gould, R. W. [Physics Department, University of California at San Diego, La Jolla, California 92093 (United States)

    2011-10-15

    In the cold-fluid dispersion relation {omega}={omega}{sub p}/[1+(k{sub perpendicular}/k{sub z}){sup 2}]{sup 1/2} for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k{sub perpendicular}/k{sub z}. As a result, for any frequency {omega}<{omega}{sub p}, there are infinitely many degenerate waves, all having the same value of k{sub perpendicular}/k{sub z}. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr={+-}({omega}{sub p}{sup 2}/{omega}{sup 2}-1){sup 1/2}. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  9. Impact of Low-Level Southerly Surges on Mixed Rossby Gravity Waves over the Central Pacific.

    Science.gov (United States)

    Fukutomi, Y.

    2014-12-01

    This study examines dynamical impacts of lower-tropospheric southerly wind surges originating in midlatitudes of the Southern Hemisphere (SH) on the development of mixed Rossby gravity (MRG) waves over the central Pacific during June-August 1979-2012, through the statistical analysis of the JRA-55 products and NOAA outgoing long wave radiation data. The central Pacific MRG waves are identified by an extended EOF (EEOF) analysis on 2-8-day filtered daily 850-hPa meridional wind anomalies during June-August 1979-2012. Composite analysis based on the leading EEOF time coefficients is able to capture the development of the MRG waves associated with a southerly surge originating in the SH extratropics. As a weak clockwise gyre as a part of an off-equatorial easterly wavetrain moves eastward and southeastward from the off-equatorial eastern Pacific into the equatorial central Pacific, the southerly surge penetrates into the equatorial tropics at around 150W. Then, the clockwise gyre develops into a MRG-type gyre over the central Pacific. A transition from an easterly wave-type gyre into a MRG-type gyre occurs associated with the southerly surge. The southerly surge forms a cross-equatorial flow on the western flank of the MRG-type gyre. The gyre is amplified when the southerly surge reaches the equatorial tropics. At the same time, convection coupled with the MRG-type gyre is enhanced. The southerly surges are originated in the midlatitude South Pacific, and they are induced by synoptic-scale baroclinic disturbances propagating along the SH midlatitude westerly jet. An eddy vorticity budget analysis indicates that the southerly surge plays an important role in spinning up the MRG-type gyre through transient advection of absolute vorticiy. A case study of a MRG-wave event in mid-July 2006 also illustrates development of a MRG wave associated with the southerly surge and an easterly wave-to-MRG wave transition.

  10. Noise-like pulse based on dissipative four-wave-mixing with photonic crystal fiber filled by reduced graphene oxide

    CERN Document Server

    Gao, Lei; Huang, Wei

    2014-01-01

    A noise-like pulse based on dissipative four-wave-mixing in a fiber cavity with photonic crystal fiber filled by reduced graphene oxide is proposed. Due to large evanescent field provided by 3 cm photonic crystal fiber and ultrahigh nonlinearity of reduced graphene oxide, this mixed structure provides excellent saturable absorption and high nonlinearity, which are necessary for generating four-wave-mixing (FWM). We experimentally prove that the mode-locked laser transfers its energy from center wavelength to sidebands through degenerate FWM, and new frequencies are generated via cascaded FWM among those sidebands. During this process, the frequencies located in various orders of longitudinal modes of the ring cavity are supported, and others are suppressed due to destructive interference. As the longitudinal modes of the cavity with a spacing of 6.874 MHz are partially supported, the loosely fixed phase relationship results in noise-like pulse with a coherent peak of 530 fs locating on a pedestal of 730.693 p...

  11. Double-lambda microscopic model for entangled light generation by four-wave-mixing

    CERN Document Server

    Glorieux, Q; Guibal, S; Guidoni, L; Likforman, J -P; Coudreau, T; Arimondo, E

    2010-01-01

    Motivated by recent experiments, we study four-wave-mixing in an atomic double-{\\Lambda} system driven by a far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic properties of the medium, we calculate the classical and quantum properties of seed and conju- gate beams beyond the linear amplifier approximation. A continuous variable approach gives us access to relative-intensity noise spectra that can be directly compared to experiments. Restricting ourselves to the cold-atom regime, we predict the generation of quantum-correlated beams with a relative-intensity noise spectrum well below the standard quantum limit (down to -6 dB). Moreover entanglement between seed and conjugate beams measured by an inseparability down to 0.25 is expected. This work opens the way to the generation of entangled beams by four-wave mixing in a cold atomic sample.

  12. Metal-free flat lens using negative refraction by nonlinear four-wave mixing.

    Science.gov (United States)

    Cao, Jianjun; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Wan, Wenjie

    2014-11-21

    A perfect lens with unlimited resolution has always posed a challenge to both theoretical and experimental physicists. Recent developments in optical metamaterials promise an attractive approach towards perfect lenses using negative refraction to overcome the diffraction limit, improving resolution. However, those artificially engineered metamaterials are usually accompanied by high losses from metals and are extremely difficult to fabricate. An alternative proposal using negative refraction by four-wave mixing has attracted much interest recently, though most existing experiments still require metals and none of them have been implemented for an optical lens. Here, we experimentally demonstrate a metal-free flat lens for the first time using negative refraction by degenerate four-wave mixing with a thin glass slide. We realize an optical lensing effect utilizing a nonlinear refraction law, which may have potential applications in microscopy.

  13. Classical-to-quantum transition with broadband four-wave mixing.

    Science.gov (United States)

    Vered, Rafi Z; Shaked, Yaakov; Ben-Or, Yelena; Rosenbluh, Michael; Pe'er, Avi

    2015-02-13

    A key question of quantum optics is how nonclassical biphoton correlations at low power evolve into classical coherence at high power. Direct observation of the crossover from quantum to classical behavior is desirable, but difficult due to the lack of adequate experimental techniques that cover the ultrawide dynamic range in photon flux from the single photon regime to the classical level. We investigate biphoton correlations within the spectrum of light generated by broadband four-wave mixing over a large dynamic range of ∼80  dB in photon flux across the classical-to-quantum transition using a two-photon interference effect that distinguishes between classical and quantum behavior. We explore the quantum-classical nature of the light by observing the interference contrast dependence on internal loss and demonstrate quantum collapse and revival of the interference when the four-wave mixing gain in the fiber becomes imaginary.

  14. Monitoring Gold Nanoparticle Growth in Situ via the Acoustic Vibrations Probed by Four-Wave Mixing.

    Science.gov (United States)

    Wu, Jian; Xiang, Dao; Gordon, Reuven

    2017-02-21

    We monitor in situ gold nanoparticle growth in aqueous solution by probing the acoustic vibrations with four-wave mixing. We observe two acoustic vibrational modes of gold nanoparticles from the nonlinear optical response: an extensional mode with longitudinal expansion and transverse contraction and a breathing mode with radial expansion and contraction. The mode frequencies, which show an inverse dependence on the nanoparticle diameter, allow one to monitor the nanoparticle size and size distribution during synthesis. The information about the nanoparticle size and size distribution calculated on the basis of the mode frequencies agrees well with the results obtained from the electron microscopy analysis, validating the four-wave mixing technique as an accurate and effective tool for in situ monitoring of colloidal growth.

  15. The influence of velocity-changing collisions on resonant degenerate four-wave mixing

    Science.gov (United States)

    Richardson, W. H.; Maleki, L.; Garmire, Elsa

    1989-01-01

    The phase-conjugate signal observed in resonant degenerate four-wave mixing on the 6 3P2 to 7 3S1 transition of atomic Hg in an Hg-Ar discharge is investigated. At a fixed Ar pressure the variation of the signal with pump powers is explained by a model that includes the effects of velocity-changing collisions (VCCs). As the Ar pressure was varied from 0 to 1 torr, an increase in the phase-conjugate signal was observed and is ascribed to a change in the discharge dynamics with Ar pressure and to the influence of VCCs. To further clarify the role of collisions and optical pumping, degenerate four-wave mixing spectra are examined as a function of pump power. Line shapes are briefly discussed.

  16. Observation of four-wave mixing in caesium atoms using a noncycling transition

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Rong; Ma Jie; Zhao Jian-Ming; Xiao Lian-Tuan; Jia Suo-Tang

    2006-01-01

    In this paper the generation of four-wave mixing (FWM) signal using a noncycling transition of caesium atoms is investigated when the pumping laser is locked to the transition 6S1/2F = 4 → 6P3/2F' = 4, and meanwhile the probe frequency is scanned across the 6S1/2F = 4 → 6P3/2 transition. The efficiency of the four-wave mixing signal as a function of the intensity of the pumping beams and the detuning of the pumping beams is also studied. In order to increase the detection efficiency, a repumping laser which is resonant with 6S1/2F = 3 → 6P3/2F' = 4 transition is used. A theoretical model is also introduced, and the theoretical results are in qualitative agreement with experimental ones.

  17. Metal-Free Flat Lens Using Negative Refraction by Nonlinear Four-wave Mixing

    CERN Document Server

    Cao, Jianjun; Feng, Yaming; Chen, Xianfeng; Wan, Wenjie

    2014-01-01

    A perfect lens with unlimited resolution has always posed a challenge to both theoretical and experimental physicists. Recent developments in optical meta-materials promise an attractive approach towards perfect lenses using negative refraction to overcome the diffraction limit, improving resolution. However, those artificially engineered meta-materials usually company by high losses from metals and are extremely difficult to fabricate. An alternative proposal on using negative refraction by four-wave mixing has attracted much interests recently, though most of existing experiments still require metals and none of them has been implemented for an optical lens. Here we experimentally demonstrate a metal-free flat lens for the first time using negative refraction by degenerate four-wave mixing with a simple thin glass slide. We realize optical lensing utilizing a nonlinear refraction law, which may have potential applications in infrared microscopy and super-resolution imaging.

  18. Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.

  19. Fundamentals of Highly Non-Degenerate Cascaded Four-Wave Mixing

    Directory of Open Access Journals (Sweden)

    Rosa Weigand

    2015-09-01

    Full Text Available By crossing two intense ultrashort laser pulses with different colors in a transparent medium, like a simple piece of glass, a fan of multicolored broadband light pulses can be simultaneously generated. These newly generated pulses are emitted in several well-defined directions and can cover a broad spectral range, from the infrared to the ultraviolet and beyond. This beautiful phenomenon, first observed and described 15 years ago, is due to highly-nondegenerate cascaded four-wave mixing (cascaded FWM, or CFWM. Here, we present a review of our work on the generation and measurement of multicolored light pulses based on third-order nonlinearities in transparent solids, from the discovery and first demonstration of highly-nondegenerate CFWM, to the coherent synthesis of single-cycle pulses by superposition of the multicolored light pulses produced by CFWM. We will also present the development and main results of a dedicated 2.5-D nonlinear propagation model, i.e., with propagation occurring along a two-dimensional plane while assuming cylindrically symmetric pump beam profiles, capable of adequately describing noncollinear FWM and CFWM processes. A new method for the generation of femtosecond pulses in the deep-ultraviolet (DUV based on FWM and CFWM will also be described. These experimental and theoretical results show that highly-nondegenerate third-order nonlinear optical processes are formally well understood and provide broader bandwidths than other nonlinear optical processes for the generation of ultrashort light pulses with wavelengths extending from the near-infrared to the deep-ultraviolet, which have many applications in science and technology.

  20. Mixing and the s-process in rotating AGB stars

    CERN Document Server

    Herwig, F; Lugaro, M; Herwig, Falk; Langer, Norbert; Lugaro, Maria

    2003-01-01

    We model the nucleosynthesis during a radiative interpulse phase of a rotating 3Msun Asymptotic Giant Branch (AGB) star. We find an enhanced production of the neutron source species C13 compared to non-rotating models due to shear mixing of protons and C12 at the core-envelope interface. We estimate that the resulting total production of heavy elements by slow neutron capture s-process is too low to account for most observations. This due to the fact that rotationally induced mixing during the interpulse phase causes a pollution of the C13 pocket layer with the neutron poison N14. As a result we find a maximum neutron exposure of tau_max=0.04mbarn^{-1} in the s-process layer of our solar metallicity model with rotation. This is about a factor of 5 to 10 less than required to reproduce the observed stellar s-process abundance patterns. We compare our results with models that include hydrodynamic overshooting mixing, and with simple parametric models including the combined effects of overshooting and mixing in ...

  1. Application of pyrolysis process in processing of mixed food wastes

    Directory of Open Access Journals (Sweden)

    Grycová Barbora

    2016-03-01

    Full Text Available The food industry produces large amounts of solid and also liquid wastes. Different waste materials and their mixtures were pyrolysed in the laboratory pyrolysis unit to a final temperature of 800°C with a 10 minute delay at the final temperature. After the pyrolysis process of the selected wastes a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The highest concentration of methane, hydrogen and carbon monoxide were analyzed during the 4th gas sampling at a temperature of approx. 720–780°C. The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.

  2. Silicon-on-Sapphire Waveguides: Mode-converting Couplers and Four-wave Mixing

    Science.gov (United States)

    2014-09-01

    width of the waveguides was between 1600 and 1900 nm . Figure 1 shows gain bands for a waveguide with 500- nm height and 1700 - nm width, demonstrating...1. Calculated conversion efficiency of four-wave mixing in 1700 - nm wide silicon-on-sapphire waveguide. Color bar indicates conversion efficiency in...dominance. Previous investigations show that this spectral range is of interest for applications that include free-space communications, laser radar

  3. Experimental demonstration of optical switching and routing via four-wave mixing spatial shift.

    Science.gov (United States)

    Nie, Zhiqiang; Zheng, Huaibin; Zhang, Yanpeng; Zhao, Yan; Zuo, Cuicui; Li, Changbiao; Chang, Hong; Xiao, Min

    2010-01-18

    We demonstrate the shift characteristics of four-wave mixing (FWM) beam spots which are controlled by the strong laser fields via the large cross-Kerr nonlinearity. The shift distances and directions are determined by the nonlinear dispersions. Based on such spatial displacements of the FWM beams, as well as the probe beam, we experimentally demonstrate spatial optical switching for one beam or multiple optical beams, which can be used for all-optical switching, switching arrays and routers.

  4. Carbon nanotube/polymer composite coated tapered fiber for four wave mixing based wavelength conversion.

    Science.gov (United States)

    Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro

    2013-02-11

    In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).

  5. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides.

    Science.gov (United States)

    McMillan, James F; Yu, Mingbin; Kwong, Dim-Lee; Wong, Chee Wei

    2010-07-19

    Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.

  6. Observations of four-wave mixing in slow-light silicon photonic crystal waveguides

    CERN Document Server

    McMillan, James F; Kwong, Dim-Lee; Wong, Chee Wei

    2010-01-01

    Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.

  7. Theory of slow light enhanced four-wave mixing in photonic crystal waveguides

    OpenAIRE

    Santagiustina M.; Someda C.G.; Vadala G.; Combrie S.; Rossi A.

    2010-01-01

    The equations for Four-Wave-Mixing in a Photonic Crystal waveguide are derived accurately. The dispersive nature of slow-light enhancement, the impact of Bloch mode reshaping in the nonlinear overlap integrals and the tensor nature of the third order polarization are therefore taken into account. Numerical calculations reveal substantial differences with simpler models, which increase with decreasing group velocity. We predict that the gain for a 1.3 mm long, unoptimized GaInP waveguide will ...

  8. The 3rd-order nonlinearity of bacteriorhodopsin by four-wave mixing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 3rd-order nonlinear optical susceptibility X(3) and the response time of the light-transducing biomolecule bacteriorhodopsin were measured with the four-wave mixing technique and a picosecond frequency-doubled Nd:YAG laser(532nm).The X(3) and the response time measured are 10-9 esu and 20 ps,respectively.The possible mechanism for generating the 3rd-order nonlinear optical susceptibility X(3) and response time were discussed.

  9. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Science.gov (United States)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-10-01

    In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  10. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.

    2016-01-01

    We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....

  11. Formation of Vector Solitary waves with Mixed Dispersion in Bose-Einstein Condensates

    OpenAIRE

    Plaja, L.; Roman, J. San

    2005-01-01

    We demonstrate the existence of a new class of two-component vector solitary waves in which dispersion coefficients have of opposite signs. Stability is achieved by inclusion of an additional linear coupling between the vector components that counterbalances the instability produced by the mixed dispersion and the non-linearity. In addition, we demonstrate that these solutions are experimentally observable as gap vector solitons in Bose-Einstein condensates located in oscillating optical latt...

  12. Effect of signal frequency on four-wave mixing through stimulated Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D.E. (Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM (USA)); Scott, A.M.; Ridley, K.D. (Royal Signals and Radar Establishment, Great Malvern, Worcestershire (England))

    1990-11-15

    We present measurements of the dependence of the phase-conjugate reflectivity on signal frequency for Brillouin-enhanced four-wave mixing at pump intensities above the threshold instability. The measurements were made in TiCl{sub 4} at {lambda}=1 {mu}m and are consistent with a computer model of the reflectivity. We have observed that the frequency of the conjugate beam is independent of the frequency of the input signal beam in the unstable regime.

  13. Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    Directory of Open Access Journals (Sweden)

    M. Drivdal

    2014-12-01

    Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.

  14. Saturation process of nonlinear standing waves

    Institute of Scientific and Technical Information of China (English)

    马大猷; 刘克

    1996-01-01

    The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.

  15. Alfv\\'en wave phase-mixing and damping in the ion cyclotron range of frequencies

    CERN Document Server

    Threlfall, J W; De Moortel, I

    2010-01-01

    Aims. To determine the effect of the Hall term in the generalised Ohm's law on the damping and phase mixing of Alfv\\'en waves in the ion cyclotron range of frequencies in uniform and non-uniform equilibrium plasmas. Methods. Wave damping in a uniform plasma is treated analytically, whilst a Lagrangian remap code (Lare2d) is used to study Hall effects on damping and phase mixing in the presence of an equilibrium density gradient. Results. The magnetic energy associated with an initially Gaussian field perturbation in a uniform resistive plasma is shown to decay algebraically at a rate that is unaffected by the Hall term to leading order in k^2di^2 where k is wavenumber and di is ion skin depth. A similar algebraic decay law applies to whistler perturbations in the limit k^2di^2>>1. In a non-uniform plasma it is found that the spatially-integrated damping rate due to phase mixing is lower in Hall MHD than it is in MHD, but the reduction in the damping rate, which can be attributed to the effects of wave dispers...

  16. Phase Mixing of Alfv\\'en Waves Near a 2D Magnetic Null Point

    CERN Document Server

    McLaughlin, J A

    2014-01-01

    The propagation of linear Alfv\\'en wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfv\\'en wavefront remains planar, despite the varying equilibrium Alfv\\'en speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfv\\'enic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfv\\'en wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfv\\'en wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered.

  17. Threshold based Bit Error Rate Optimization in Four Wave Mixing Optical WDM Systems

    Directory of Open Access Journals (Sweden)

    Er. Karamjeet Kaur

    2016-07-01

    Full Text Available Optical communication is communication at a distance using light to carry information which can be performed visually or by using electronic devices. The trend toward higher bit rates in light-wave communication has interest in dispersion-shifted fibre to reduce dispersion penalties. At an equivalent time optical amplifiers have exaggerated interest in wavelength multiplexing. This paper describes optical communication systems where we discuss different optical multiplexing schemes. The effect of channel power depletion due to generation of Four Wave Mixing waves and the effect of FWM cross talk on the performance of a WDM receiver has been studied in this paper. The main focus is to minimize Bit Error Rate to increase the QoS of the optical WDM system.

  18. Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point

    Indian Academy of Sciences (India)

    J. A. McLaughlin

    2013-09-01

    The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered.

  19. Analytical investigation of surface plasmon excitation on a graphene sheet using four-wave mixing.

    Science.gov (United States)

    Jamalpoor, Kamal; Zarifkar, Abbas

    2017-01-20

    In the present paper, the general conditions for exciting graphene surface plasmon polaritons (GSPPs) on a suspended graphene using nonlinear optics are investigated. The approach uses the Green's function analysis to derive GSPP fields generated under the basis of momentum conservation using four-wave mixing (FWM). Since the incident beam polarization is challenging in the nonlinear excitation of GSPPs, the significant target of this paper has been set to achieve the conditions for the third-order susceptibility tensor and the wave vectors so that the incident beams with varied polarizations are able to excite GSPPs. Nonlinear optics, in particular FWM, is utilized to compensate the mismatch between the free-space and GSPPs wave vectors. In addition, it avoids the need for applying any patterning or lithography on graphene or its substrate.

  20. Pseudo-Hermitian Transition in Degenerate Nonlinear Four-Wave Mixing

    CERN Document Server

    Ge, Li

    2016-01-01

    We show that degenerate four-wave mixing (FWM) in nonlinear optics can be described by an effective Hamiltonian that is pseudo-Hermitian, which enables a transition between a pseudo-Hermitian phase with real eigenvalues and a broken pseudo-Hermitian phase with complex conjugate eigenvalues. While bearing certain similarity to that in Parity-Time symmetric systems, this transition is in stark contrast because of the absence of gain and loss in the effective Hamiltonian. The latter is real after factoring out the system decay, and the onset of non-Hermiticity in degenerate FWM is due to the total phase change of the signal wave and the idler wave. This property underlines the intrinsic coherence in FWM, which opens the door to probe quantum implications of exceptional points.

  1. Spectral anti-broadening due to four-wave mixing in optical fibers

    CERN Document Server

    Balk, Alexander M

    2015-01-01

    We show that the four-wave mixing can restrict spectral broadening. This is a general physical phenomenon that occurs in one-dimensional systems of four wave packets that resonantly interact "2-to-2": $ \\omega_1+\\omega_2=\\omega_3+\\omega_4,\\; k_1+k_2=k_3+k_4$, when an annihilation of one pair of waves results in the creation of another pair. In addition, for this phenomenon to occur, the group velocities $C_1,C_2,C_3,C_4$ of the packets should be in a certain order: The extreme value (max or min) of the four group velocities should be in the same pair with the middle value of the remaining three, e.g. $C_1

  2. Graphene Near-Degenerate Four-Wave Mixing for Phase Characterization of Broadband Pulses in Ultrafast Microscopy.

    Science.gov (United States)

    Ciesielski, Richard; Comin, Alberto; Handloser, Matthias; Donkers, Kevin; Piredda, Giovanni; Lombardo, Antonio; Ferrari, Andrea C; Hartschuh, Achim

    2015-08-12

    We investigate near-degenerate four-wave mixing in graphene using femtosecond laser pulse shaping microscopy. Intense near-degenerate four-wave mixing signals on either side of the exciting laser spectrum are controlled by amplitude and phase shaping. Quantitative signal modeling for the input pulse parameters shows a spectrally flat phase response of the near-degenerate four-wave mixing due to the linear dispersion of the massless Dirac Fermions in graphene. Exploiting these properties we demonstrate that graphene is uniquely suited for the intrafocus phase characterization and compression of broadband laser pulses, circumventing disadvantages of common methods utilizing second or third harmonic light.

  3. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  4. Kinetic Alfv\\'en waves generation by large-scale phase-mixing

    CERN Document Server

    Vasconez, C L; Valentini, F; Servidio, S; Matthaeus, W H; Malara, F

    2015-01-01

    One view of the solar-wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length $d_p$ may be considered as Kinetic Alfv\\'en waves (KAWs). In the present paper, we show how phase-mixing of large-scale parallel propagating Alfv\\'en waves is an efficient mechanism for the production of KAWs at wavelengths close to $d_p$ and at large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall-Magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfv\\'en waves in inhomogeneous plasmas are performed. In linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase-mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave group velocity with analytical linear predictions. In the nonlinear regime, comparison of HMHD and HVM simulations allows to point out the role of kinetic effe...

  5. A NEW STELLAR MIXING PROCESS OPERATING BELOW SHELL CONVECTION ZONES FOLLOWING OFF-CENTER IGNITION

    Energy Technology Data Exchange (ETDEWEB)

    Mocak, M.; Siess, L. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, CP 226, 1050 Brussels (Belgium); Meakin, Casey A. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Mueller, E., E-mail: mmocak@ulb.ac.be [Max-Planck-Institut fuer Astrophysik, Postfach 1312, 85741 Garching (Germany)

    2011-12-10

    During most stages of stellar evolution the nuclear burning of lighter to heavier elements results in a radial composition profile which is stabilizing against buoyant acceleration, with light material residing above heavier material. However, under some circumstances, such as off-center ignition, the composition profile resulting from nuclear burning can be destabilizing and characterized by an outwardly increasing mean molecular weight. The potential for instabilities under these circumstances and the consequences that they may have on stellar structural evolution remain largely unexplored. In this paper we study the development and evolution of instabilities associated with unstable composition gradients in regions that are initially stable according to linear Schwarzschild and Ledoux criteria. In particular, we study the development of turbulent flow under a variety of stellar evolution conditions with multi-dimensional hydrodynamic simulation; the phases studied include the core helium flash in a 1.25 M{sub Sun} star, the core carbon flash in a 9.3 M{sub Sun} star, and oxygen shell burning in a 23 M{sub Sun} star. The results of our simulations reveal a mixing process associated with regions having outwardly increasing mean molecular weight that reside below convection zones. The mixing is not due to overshooting from the convection zone, nor is it due directly to thermohaline mixing which operates on a timescale several orders of magnitude larger than the simulated flows. Instead, the mixing appears to be due to the presence of a wave field induced in the stable layers residing beneath the convection zone which enhances the mixing rate by many orders of magnitude and allows a thermohaline type mixing process to operate on a dynamical, rather than thermal, timescale. The mixing manifests itself in the form of overdense and cold blob-like structures originating from density fluctuations at the lower boundary of convective shell and 'shooting' down

  6. Quantum Image Processing and Storage with Four Wave Mixing

    Science.gov (United States)

    2016-08-10

    quantum correlations between the twin beams from the source survive. When the gain is higher than the loss in the testing arm we need to renormalize the...the attainment of low- frequency squeezing will be critical to our being able to apply squeezed light technology to problems in the real world. In...measurements but the apparatus has not yet been rebuilt in our new labs due to a lack of space and personnel at the present time. Other In addition

  7. Absorption of ultrasound waves during dynamic processes in disperse systems

    Science.gov (United States)

    Kol'tsova, I. S.; Khomutova, A. S.

    2016-11-01

    Measurements of ultrasound wave absorption are conducted at a frequency of 3 MHz in 3% suspensions of starch, gelatin, and lactose. It is shown that the dynamics of the additional ultrasound wave absorption coefficient in the suspensions carries information on the processes of swelling, dissolution, and the phase and structural periods occurring in the interaction of the disperse and dispersoid phases; it also reflects the influence of the temperature field on these processes.

  8. Perspectives of using spin waves for computing and signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Csaba, György, E-mail: gcsaba@gmail.com [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Papp, Ádám [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Porod, Wolfgang [Center for Nano Science and Technology, University of Notre Dame (United States)

    2017-05-03

    Highlights: • We give an overview of spin wave-based computing with emphasis on non-Boolean signal processors. • Spin waves can combine the best of electronics and photonics and do it in an on-chip and integrable way. • Copying successful approaches from microelectronics may not be the best way toward spin-wave based computing. • Practical devices can be constructed by minimizing the number of required magneto-electric interconnections. - Abstract: Almost all the world's information is processed and transmitted by either electric currents or photons. Now they may get a serious contender: spin-wave-based devices may just perform some information-processing tasks in a lot more efficient and practical way. In this article, we give an engineering perspective of the potential of spin-wave-based devices. After reviewing various flavors for spin-wave-based processing devices, we argue that the niche for spin-wave-based devices is low-power, compact and high-speed signal-processing devices, where most traditional electronics show poor performance.

  9. Boundary Current and Mixing Processes in The High Latitude Oceans

    Science.gov (United States)

    2016-06-07

    Boundary Current and Mixing Processes in The High Latitude Oceans Robin D. Muench Earth & Space Research 1910 Fairview Ave E., Ste 210 Seattle...Thorpe and Ozmidov length scales. Journal of Geophysical Research , 87, 9601-9613. Galbraith, P.S., and D.E. Kelley, 1996: Identifying overturns in...and near Marguerite Bay during winter 2003: A SO GLOBEC study. Deep-Sea Research 2, 54. Padman, L., S.L. Howard, and R.D. Muench, 2006a: Internal

  10. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    Science.gov (United States)

    Heath, Robert W.; Gonzalez-Prelcic, Nuria; Rangan, Sundeep; Roh, Wonil; Sayeed, Akbar M.

    2016-04-01

    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

  11. Time-Resolved Femtosecond Degenerate Four-Wave Mixing in LiNbO3:Fe,Mg Crystal

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen-Hua; HUANG Zi-Heng; LI Bing; LIU Shi-Guo; ZHANG Ling; ZHANG Xin-Zheng; XU Jing-Jun; WU Qiang; QIAO Hai-Jun; TANG Bai-Quan; RUPP Romano; KONG Yong-Fa; CHEN Shao-Lin

    2005-01-01

    @@ Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser inlithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependencereveals a pure third-order nonlinear response, and the third-order nonlinear susceptibility x(3) in the materialis evaluated to be 4.96 × 10-13 esu. The time-resolved DFWM process shows a response time of x(3) shorterthan l00 fs, which is due to the nonresonant electronic nonlinearities. Our results indicate that LiNbO3 crystalshave potentials for ultrafast real-time optical processing systems, which require a large and fast x(3) opticalnonlinearity.

  12. Role of mixing processes in the burning of pyrotechnics mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhman, N.N. [Institute of Chemical Physics, Academy of Sciences, Moscow (Russian Federation)

    1996-12-31

    The burning velocity, u, of pyrotechnics mixtures and the dependence u(d) (where d is particles size of components of mixtures) is affected significantly by the mixing rate of oxidizer and fuel in the combustion wave. The rate of mixing depends strongly on the aggregate state of components in the preheat and reaction zone (P- and R-zone). If the molecular diffusion is the only mechanism of mixing, the mass transfer rate is proportional to {rho}D (where {rho} and D is density and diffusion coefficient). The experiments carried out in this paper show that u(d) dependence is very strong for non-volatile components for which the value {rho}D is small enough. Thus, for KCIO{sub 4}-W mixtures u augments 20-50 times with d{sub w} decreasing from 340 to {approx}3 {mu}m. In contrast, for components which can readily gasify in the P- and R-zone the value {rho}D is high enough and the dependence u(d) is faint. Thus, for AP -PMMA and AP-PS mixtures the burning rate augments not more than twice with d{sub AP} decreasing from 240 to {approx}9 {mu}m (and for stoichiometric Ba(NO{sub 3}){sub 2} AP-AI mixture u increases 3-.5 times with d{sub Bat(NO{sub 3})2} decreasing from 820 to {approx}10 {mu}m). If oxidizer and fuel remain solid in the P- and R-zone the burning rate may be increased with the addition of substances capable to transport one of the components through the gas phase to the surface of particles of the second component. Possible role of turbulent diffusion and convective transfer of a component in the combustion zone are discussed. (author) 11 refs.

  13. Kinetic Alfvén Wave Generation by Large-scale Phase Mixing

    Science.gov (United States)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.

    2015-12-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  14. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036, Rende (CS) (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States)

    2015-12-10

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  15. Parallel femtosecond laser processing with vector-wave control

    Directory of Open Access Journals (Sweden)

    Hayasaki Yoshio

    2013-11-01

    Full Text Available Parallel femtosecond laser processing with a computer-generated hologram displayed on a spatial light modulator, has the advantages of high throughput and high energy-use efficiency. for further increase of the processing efficiency, we demonstrated parallel femtosecond laser processing with vector-wave control that is based on polarization control using a pair of spatial light modulators.

  16. Spectrally-isolated violet to blue wavelength generation by cascaded degenerate four-wave mixing in a photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A

    2016-06-01

    Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.

  17. Improving efficiency of supercontinuum generation in photonic crystal|fibers by direct degenerate four-wave-mixing

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Bang, Ole; Bjarklev, Anders Overgaard

    2002-01-01

    The efficiency of supercontinuum generation in photonic crystal fibers is significantly improved by designing the dispersion to allow widely separated spectral lines generated by degenerate four-wave-mixing directly from the pump to broaden and merge.......The efficiency of supercontinuum generation in photonic crystal fibers is significantly improved by designing the dispersion to allow widely separated spectral lines generated by degenerate four-wave-mixing directly from the pump to broaden and merge....

  18. Nonlinear Pulse-reshaping of Sub-picosecond Pulses by Non-degenerate Four-wave Mixing

    DEFF Research Database (Denmark)

    Christensen, Jesper; Andersen, Lasse Mejling; Rottwitt, Karsten

    Four-wave mixing does according to various models allow for arbitrary pulse-reshaping of the generated idler. Using subpicosecond pulses, we investigate numerically whether nonlinear effects and dispersion broadening begin to prevent this ability.......Four-wave mixing does according to various models allow for arbitrary pulse-reshaping of the generated idler. Using subpicosecond pulses, we investigate numerically whether nonlinear effects and dispersion broadening begin to prevent this ability....

  19. Broadband Polarization-Insensitive Wavelength Conversion Based on Non-Degenerate Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2012-01-01

    We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements....

  20. On-chip wavelength switch based on thermally tunable discrete four-wave mixing in a silicon waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Hu, Hao

    2014-01-01

    An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances.......An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances....

  1. Vertical mixing and internal wave energy fluxes in a sill fjord

    Science.gov (United States)

    Staalstrøm, André; Røed, Lars Petter

    2016-07-01

    We consider the distribution and level of local vertical mixing inside of the Drøbak Sill in the Oslofjord, Norway. The work is motivated by observations of long periods (∼years) of hypoxic or even anoxic conditions in the innermost basin, episodes attributed to weak vertical mixing. In line with earlier work on the subject we assume that the local vertical mixing level inside of the sill is predominantly determined by the loss of energy of propagating, tidally-induced internal waves whose source is the sill region. To investigate possible differences in vertical mixing we estimate the eddy diffusivity in the various basins based on model simulations and observations using three methods whereby the eddy diffusion coefficient is estimated. The model we use is an ultra high-resolution version of the three-dimensional, hydrostatic ocean model ROMS forced solely by barotropic tide well outside of the sill. To evaluate the sensitivity of the model results we perform sensitivity experiments in which the mesh size and various parameters and parameterizations are varied. We find indeed that the internal waves lose most of their energy before they reach the innermost basin, and hence set the scene for long periods of no deep water renewal. The sensitivity experiments reveal that it is important that the model's mesh size is small enough to resolve the dominant wavelengths of the topography. Moreover, we find that the strength of the turbulence production and hence the mixing depends on the initially chosen stratification. The method we use is generic and may be applied to any sill fjord.

  2. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV

    Science.gov (United States)

    Molesky, Brian P.; Giokas, Paul G.; Guo, Zhenkun; Moran, Andrew M.

    2014-09-01

    Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries.

  3. Using the seventh-order numerical method to solve first-order nonlinear coupled-wave equations for degenerate two-wave and four-wave mixing

    Science.gov (United States)

    Ja, Y. H.

    1984-12-01

    Using a new seventh-order numerical method [the O(h 7) method] for solving two-point boundary value problems, numerical solutions of the first-order nonlinear coupledwave equations for degenerate two-wave and four-wave mixing in a reflection geometry have been obtained. A computer program employing the Gauss-Jordan elimination technique has also been adopted to effectively solve the resultant large, sparse and unsymmetric matrix, obtained from the O(h 7) method and the Newton-Raphson iteration method. Numerical results from the computer calculations are presented graphically. A comparison between this O(h 7) method and the shooting method, mainly from the viewpoint of computational efficiency, is also made.

  4. Sound topology, duality, coherence and wave-mixing an introduction to the emerging new science of sound

    CERN Document Server

    Deymier, Pierre

    2017-01-01

    This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing).  The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time revers al symmetry of acoustic waves. Symmetry brea...

  5. On SWNT reinforced composites from a continuous mixing process

    Science.gov (United States)

    Subramanian, Gopinath; Andrews, Malcolm J.

    2007-08-01

    A new continuous impingement mixing process has been used to disperse unpurified single-walled carbon nanotubes (SWNTs) in a Shell EPON-862/EpiCURE system. Composites with up to 0.2 wt% loading of SWNTs were prepared by this process. The hydrodynamic dispersion of SWNTs was found to depend on the non-dimensional Curtet number (Ct). Dispersion was evaluated by analyzing SEM images of the fracture surface using an image processing technique based on the concept of Shannon entropy. Electrical conductivity of these composites was greatly enhanced when compared with the plain material. The behavior of electrical conductivity as a function of dispersion was found to be in accordance with results from the image processing technique, and was also used to estimate the sedimentation of SWNTs.

  6. On SWNT reinforced composites from a continuous mixing process

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gopinath [Department of Mechanical Engineering, Texas A and M University, 3123 TAMU, College Station, TX 77843 (United States); Andrews, Malcolm J [Los Alamos National Laboratory, PO Box 1663, Mail Stop D 413, Los Alamos, NM 87545 (United States)

    2007-08-29

    A new continuous impingement mixing process has been used to disperse unpurified single-walled carbon nanotubes (SWNTs) in a Shell EPON-862/EpiCURE system. Composites with up to 0.2 wt% loading of SWNTs were prepared by this process. The hydrodynamic dispersion of SWNTs was found to depend on the non-dimensional Curtet number (C{sub t}). Dispersion was evaluated by analyzing SEM images of the fracture surface using an image processing technique based on the concept of Shannon entropy. Electrical conductivity of these composites was greatly enhanced when compared with the plain material. The behavior of electrical conductivity as a function of dispersion was found to be in accordance with results from the image processing technique, and was also used to estimate the sedimentation of SWNTs.

  7. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  8. Code-Mixing and Code Switchingin The Process of Learning

    Directory of Open Access Journals (Sweden)

    Diyah Atiek Mustikawati

    2016-09-01

    Full Text Available This study aimed to describe a form of code switching and code mixing specific form found in the teaching and learning activities in the classroom as well as determining factors influencing events stand out that form of code switching and code mixing in question.Form of this research is descriptive qualitative case study which took place in Al Mawaddah Boarding School Ponorogo. Based on the analysis and discussion that has been stated in the previous chapter that the form of code mixing and code switching learning activities in Al Mawaddah Boarding School is in between the use of either language Java language, Arabic, English and Indonesian, on the use of insertion of words, phrases, idioms, use of nouns, adjectives, clauses, and sentences. Code mixing deciding factor in the learning process include: Identification of the role, the desire to explain and interpret, sourced from the original language and its variations, is sourced from a foreign language. While deciding factor in the learning process of code, includes: speakers (O1, partners speakers (O2, the presence of a third person (O3, the topic of conversation, evoke a sense of humour, and just prestige. The significance of this study is to allow readers to see the use of language in a multilingual society, especially in AL Mawaddah boarding school about the rules and characteristics variation in the language of teaching and learning activities in the classroom. Furthermore, the results of this research will provide input to the ustadz / ustadzah and students in developing oral communication skills and the effectiveness of teaching and learning strategies in boarding schools.

  9. Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers

    Science.gov (United States)

    Garay-Palmett, K.; Cruz-Delgado, D.; Dominguez-Serna, F.; Ortiz-Ricardo, E.; Monroy-Ruz, J.; Cruz-Ramirez, H.; Ramirez-Alarcon, R.; U'Ren, A. B.

    2016-03-01

    We present a theoretical and experimental study of the generation of photon pairs through the process of spontaneous four-wave mixing (SFWM) in a few-mode, birefringent fiber. Under these conditions, multiple SFWM processes are in fact possible, each associated with a different combination of transverse modes for the four waves involved. We show that in the weakly guiding regime, for which the propagation modes may be well approximated by linearly polarized modes, the departure from circular symmetry due to the fiber birefringence translates into conservation rules, which retain elements from azimuthal and rectangular symmetries: both OAM and parity must be conserved for a process to be viable. We have implemented a SFWM source based on a bowtie birefringent fiber, and have measured for a collection of pump wavelengths the SFWM spectra of each of the signal and idler photons in coincidence with its partner photon. We have used this information, together with knowledge of the transverse modes into which the signal and idler photons are emitted, as input for a genetic algorithm, which accomplishes two tasks: (i) the identification of the particular SFWM processes that are present in the source, and (ii) the characterization of the fiber used.

  10. Phase conjugation of vector fields by degenerate four-wave mixing in a Fe-doped LiNbO₃.

    Science.gov (United States)

    Qian, Sheng-Xia; Li, Yongnan; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-15

    We propose a method to generate the phase-conjugate wave of the vector field by degenerate four-wave mixing in a c-cut Fe-doped LiNbO3 crystal. We demonstrate experimentally that the phase-conjugate wave of the vector field can be generated. In particular, the phase-conjugate vector field has also the peculiar function of compensating the polarization distortion, as the traditional phase-conjugate scaler field can compensate the phase distortion.

  11. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves

    Science.gov (United States)

    Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi

    2012-01-01

    Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.

  12. Four-wave mixing in slow light photonic crystal waveguides with very high group index.

    Science.gov (United States)

    Li, Juntao; O'Faolain, Liam; Krauss, Thomas F

    2012-07-30

    We report efficient four-wave mixing in dispersion engineered slow light silicon photonic crystal waveguides with a flat band group index of n(g) = 60. Using only 15 mW continuous wave coupled input power, we observe a conversion efficiency of -28 dB. This efficiency represents a 30 dB enhancement compared to a silicon nanowire of the same length. At higher powers, thermal redshifting due to linear absorption was found to detune the slow light regime preventing the expected improvement in efficiency. We then overcome this thermal limitation by using oxide-clad waveguides, which we demonstrate for group indices of ng = 30. Higher group indices may be achieved with oxide clad-waveguides, and we predict conversion efficiencies approaching -10 dB, which is equivalent to that already achieved in silicon nanowires but for a 50x shorter length.

  13. Four-wave mixing in slow light engineered silicon photonic crystal waveguides.

    Science.gov (United States)

    Monat, C; Ebnali-Heidari, M; Grillet, C; Corcoran, B; Eggleton, B J; White, T P; O'Faolain, L; Li, J; Krauss, T F

    2010-10-25

    We experimentally investigate four-wave mixing (FWM) in short (80 μm) dispersion-engineered slow light silicon photonic crystal waveguides. The pump, probe and idler signals all lie in a 14 nm wide low dispersion region with a near-constant group velocity of c/30. We measure an instantaneous conversion efficiency of up to -9dB between the idler and the continuous-wave probe, with 1W peak pump power and 6 nm pump-probe detuning. This conversion efficiency is found to be considerably higher (>10 × ) than that of a Si nanowire with a group velocity ten times larger. In addition, we estimate the FWM bandwidth to be at least that of the flat band slow light window. These results, supported by numerical simulations, emphasize the importance of engineering the dispersion of PhC waveguides to exploit the slow light enhancement of FWM efficiency, even for short device lengths.

  14. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations.

    Science.gov (United States)

    Li, Juntao; O'Faolain, Liam; Rey, Isabella H; Krauss, Thomas F

    2011-02-28

    We demonstrate continuous wave four-wave mixing in silicon photonic crystal waveguides of 396 μm length with a group index of ng=30. The highest observed conversion efficiency is -24 dB for 90 mW coupled input pump power. The key question we address is whether the predicted fourth power dependence of the conversion efficiency on the slowdown factor (η≈S4) can indeed be observed in this system, and how the conversion efficiency depends on device length in the presence of propagation losses. We find that the expected dependencies hold as long as both realistic losses and the variation of mode shape with slowdown factor are taken into account. Having achieved a good agreement between a simple analytical model and the experiment, we also predict structures that can achieve the same conversion efficiency as already observed in nanowires for the same input power, yet for a device length that is 50 times shorter.

  15. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers.

    Science.gov (United States)

    Lillieholm, M; Galili, M; Grüner-Nielsen, L; Oxenløwe, L K

    2016-11-01

    We present a quantitative comparison of continuous-wave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW- and pulsed-pump FWM bandwidths are limited in practice. The CW- and pulsed-pump parametric gain is characterized experimentally for several HNLFs with various dispersion properties, including zero-dispersion wavelength fluctuations, and the results are interpreted in conjunction with detailed numerical simulations. It is found that a low third-order dispersion (TOD) is essential for the pulsed-pump FWM bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations leads to different CW-optimized fibers, which depend only on the even dispersion orders.

  16. Quasiclassical approach to nonlocal generalized London equation in mixed state of s -wave superconductors

    Science.gov (United States)

    Laiho, R.; Safonchik, M.; Traito, K. B.

    2007-05-01

    We extend the Ginsburg-Landau solution for cutoff function in London equation to low temperatures by solving numerically the quasiclassical Eilenberger equations in mixed state of s -wave superconductors. As a result the nonlocal generalized London equation (NGLE) is obtained. The magnetic field and temperature dependence of the cutoff function parameter k1(B,T) are calculated. Due to Kramer-Pesch effect k1 decreases strongly at low temperatures. It is also found that k1 has a minimum at a value of magnetic field depending on temperature. We reduce the NGLE model to an effective local model and calculate the value of an effective penetration depth λeff(B,T) . The sublinear field dependence of λeff is predicted that agrees with experimental μ SR results for the penetration depth of magnetic field in the s -wave superconductor V3Si and NbSe2 .

  17. SPREADING LAYERS IN ACCRETING OBJECTS: ROLE OF ACOUSTIC WAVES FOR ANGULAR MOMENTUM TRANSPORT, MIXING, AND THERMODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M., E-mail: sashaph@princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2016-01-20

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  18. Fast-light Assisted Four-Wave-Mixing in Photonic Bandgap

    CERN Document Server

    Feng, Cheng; Zhang, Liang; Liu, Jinmei; Zhan, Li

    2014-01-01

    Since the forward and backward waves are coupled with each other and a standing wave with no net propagation of energy is formed in the photonic bandgap, it is a commonsense of basic physics that, any kinds of effects associated with wave propagation including four-wave-mixing (FWM) are thought to be impossible. However, we lay great emphasis here on explaining that this commonsense could be broken under specific circumstances. In this article, we report with the first experimental observation of the energy conversion in the photonic bandgap into other channel via FWM. Owing to the phase manipulation by fast light effect in the photonic bandgap, we manage to achieve the phase-match condition and thus occurred FWM transfer energy into other channels outside the photonic bandgap efficiently. As one-dimensional photonic crystal, simulations on fiber Bragg grating (FBG) with and without fast light were conducted respectively, and an enhanced FWM in photonic bandgap of FBG was observed. The experimental result sho...

  19. RELATIONSHIPS AMONG PROCESSING AND RHEOLOGIC PARAMETERS DURING WHEAT DOUGH MIXING AND THEIR ASSETS FOR THE INDUSTRIAL PROCESSING

    OpenAIRE

    Miriam Líšková; Zdenka Muchová; Ladislav Haris; Boris Žitný

    2011-01-01

    The wheat dough mixing process today, is not perceived only as the blending process of the input materials. During the wheat dough mixing there are many factors which affect the final quality and processiblity of wheat doughs. This study describe the rheologic behaviour of doughs mixed on the Diosna SP12 kneader in particular stages of their development in dependecy from the mixing settings. The processing parameters as mixing energy, temperature increase and spiral rotation was monitored wit...

  20. Numerical analysis of four-wave-mixing based multichannel wavelength conversion techniques in fibers

    Institute of Scientific and Technical Information of China (English)

    Jia Liang; Zhang Fan; Li Ming; Liu Yuliang; Chen Zhangyuan

    2009-01-01

    We numerically investigate four-wave-mixing (FWM) based multichannel wavelength conversion for amplitude-modulated signals, phase-modulated signals, together with mixed amplitude and phase modulated signals. This paper also discusses the influence of stimulated Brillouin scattering (SBS) effects on high-efficiency FWM-based wavelength conversion applications. Our simulation results show that DPSK signals are more suitable for FWM-based multichannel wavelength conversion because the OOK signals will suffer from the inevitable datapattern-dependent pump depletion. In future applications, when the modulation format is partially upgraded from OOK to DPSK, the influence of OOK signals on the updated DPSK signals must be considered when using multichannel wavelength conversion. This influence becomes severe with the increase of OOK channel number. It can be concluded that DPSK signals are more appropriate for both transmission and multichannel wavelength conversion,especially in long haul and high bit-rate system.

  1. Full-band quantum-dynamical theory of saturation and four-wave mixing in graphene.

    Science.gov (United States)

    Zhang, Zheshen; Voss, Paul L

    2011-12-01

    The linear and nonlinear optical response of graphene are studied within a quantum-mechanical, full-band, steady-state density-matrix model. This nonpurtabative method predicts the saturatable absorption and saturable four-wave mixing of graphene. The model includes τ(1) and τ(2) time constants that denote carrier relaxation and quantum decoherence, respectively. Fits to existing experimental data yield τ(2) < 1 fs due to carrier-carrier scattering. τ(1) is found to be on the timescale from 250 fs to 550 fs, showing agreement with experimental data obtained by differential transmission measurements. © 2011 Optical Society of America

  2. Theory of slow light enhanced four-wave mixing in photonic crystal waveguides.

    Science.gov (United States)

    Santagiustina, M; Someda, C G; Vadalà, G; Combrié, S; De Rossi, A

    2010-09-27

    The equations for Four-Wave-Mixing in a Photonic Crystal waveguide are derived accurately. The dispersive nature of slow-light enhancement, the impact of Bloch mode reshaping in the nonlinear overlap integrals and the tensor nature of the third order polarization are therefore taken into account. Numerical calculations reveal substantial differences with simpler models, which increase with decreasing group velocity. We predict that the gain for a 1.3 mm long, unoptimized GaInP waveguide will exceed 10 dB if the pump power exceeds 1 W.

  3. Theory of Slow Light Enhanced Four-Wave Mixing in Photonic Crystal Waveguides

    CERN Document Server

    Santagiustina, M; Vadalà, G; Combrié, S; De Rossi, A

    2010-01-01

    The equations for Four-Wave-Mixing in a Photonic Crystal waveguide are derived accurately. The dispersive nature of slow-light enhancement, the impact of Bloch mode reshaping in the nonlinear overlap integrals and the tensor nature of the third order polarization are therefore taken into account. Numerical calculations reveal substantial differences with simpler models, which increase with decreasing group velocity. We predict that the gain for a 1.3 mm long, unoptimized GaInP waveguide will exceed 10 dB if the pump power exceeds 1 W.

  4. Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber.

    Science.gov (United States)

    Tu, H; Jiang, Z; Marks, D L; Boppart, S A

    2009-03-09

    Large Stokes-shift ( approximately 4700 cm(-1)) four-wave mixing is generated in a deeply normal dispersion regime from a 20 cm commercial large-mode-area photonic crystal fiber pumped by amplified approximately 800 nm femtosecond pulses. The phase-matching condition is realized through an intermodal scheme involving two pump photons in the fundamental fiber mode and a pair of Stokesanti-Stokes photons in a higher-order fiber mode. Over 7% conversion efficiency from the pump input to 586 nm anti-Stokes signal has been attained.

  5. Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator

    CERN Document Server

    Asano, Motoki; Özdemir, Şahin Kaya; Ikuta, Rikizo; Yang, Lan; Imoto, Nobuyuki; Yamamoto, Takashi

    2016-01-01

    We report the first observation of stimulated Brillouin scattering (SBS) with Brillouin lasing, and Brillouin-coupled four-wave-mixing (FWM) in an ultra-high-Q silica microbottle resonator. The Brillouin lasing was observed at the frequency of $\\Omega_B=2\\pi\\times10.4$ GHz with a threshold power of $0.45$ mW. Coupling between Brillouin and FWM was observed in both backward and forward scattering directions with separations of $2\\Omega_B$. At a pump power of $10$ mW, FWM spacing reached to 7th and 9th order anti-Stokes and Stokes, respectively.

  6. Four-wave mixing and nonlinear losses in thick silicon waveguides.

    Science.gov (United States)

    Morrison, Blair; Zhang, Yanbing; Pagani, Mattia; Eggleton, Benjamin; Marpaung, David

    2016-06-01

    We experimentally investigate four-wave mixing and nonlinear losses in low-loss 3 μm thick silicon strip waveguides. Adiabatic bends allow for single-mode operation in an ultra-compact 35 cm long spiral. The waveguides exhibited reduced nonlinear losses due to the large mode area of 2.75  μm2. The nonlinear coefficient γ was measured as 5.5  m-1  W-1. These features, along with the low propagation loss of 0.17 dB/cm, enable large idler power generation at 1550 nm.

  7. Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator.

    Science.gov (United States)

    Asano, Motoki; Takeuchi, Yuki; Ozdemir, Sahin Kaya; Ikuta, Rikizo; Yang, Lan; Imoto, Nobuyuki; Yamamoto, Takashi

    2016-05-30

    We report the first observation of stimulated Brillouin scattering (SBS) with Brillouin lasing, and Brillouin-coupled four-wave-mixing (FWM) in an ultra-high-Q silica microbottle resonator. The Brillouin lasing was observed at the frequency of ΩB = 2π × 10.4 GHz with a threshold power of 0.45 mW. Coupling between Brillouin and FWM was observed in both backward and forward scattering directions with separations of 2ΩB. At a pump power of 10 mW, FWM spacing reached to 7th and 9th order anti-Stokes and Stokes, respectively.

  8. Polarization properties of degenerate four-wave mixing in GaAs

    Science.gov (United States)

    Liu, Duncan T.; Cheng, Li-Jen

    1989-01-01

    The effect of an applied dc electric field on beam-polarization properties of degenerate four-wave mixing in GaAs is investigated. The results can be interpreted in terms of the phase retardation arising from the applied electric field and the light-induced periodic space-charge field. The conditions for attaining a cross-polarized diffracted beam and read beam are discussed. The experimental results agree reasonably well with the theoretical calculations for an applied voltage of 6 kV.

  9. Raman enhanced polarization-insensitive wavelength conversion based on two-pump four-wave mixing.

    Science.gov (United States)

    Guo, Xiaojie; Shu, Chester

    2016-12-12

    Backward Raman amplification is applied to improve the conversion efficiency of two-orthogonal-pump four-wave mixing (FWM) with polarization insensitivity. Wavelength conversion with ~0dB efficiency and negligible polarization dependency is demonstrated by using a common highly nonlinear fiber without pump dithering. The conversion efficiency is increased by ~29dB with Raman enhancement. We also discuss the impact of the Raman pump power and the FWM pump powers on the performance of wavelength conversion. The results indicate that moderate pump powers without inducing significant spontaneous noise and stimulated Brillouin scattering are favorable to ensure high conversion efficiency and low excess noise for performance optimization.

  10. Optical precursor with four-wave mixing and storage based on a cold-atom ensemble.

    Science.gov (United States)

    Ding, Dong-Sheng; Jiang, Yun Kun; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2015-03-06

    We observed optical precursors in four-wave mixing based on a cold-atom gas. Optical precursors appear at the edges of pulses of the generated optical field, and propagate through the atomic medium without absorption. Theoretical analysis suggests that these precursors correspond to high-frequency components of the signal pulse, which means the atoms cannot respond quickly to rapid changes in the electromagnetic field. In contrast, the low-frequency signal components are absorbed by the atoms during transmission. We also showed experimentally that the backward precursor can be stored using a Raman transition of the atomic ensemble and retrieved later.

  11. Strong relative intensity squeezing by 4-wave mixing in Rb vapor

    CERN Document Server

    McCormick, C F; Boyer, V; Lett, P D

    2006-01-01

    We have measured -3.5 dB (-8.1 dB corrected for losses) relative intensity squeezing between the probe and conjugate beams generated by stimulated, nondegenerate four-wave mixing in hot rubidium vapor. Unlike early observations of squeezing in atomic vapors based on saturation of a two-level system, our scheme uses a resonant nonlinearity based on ground-state coherences in a three-level system. Since this scheme produces narrowband, squeezed light near an atomic resonance it is of interest for experiments involving cold atoms or atomic ensembles.

  12. Relative-intensity squeezing at audio frequencies using four-wave mixing in an atomic vapor

    CERN Document Server

    McCormick, C F; Lett, P D; Marino, A M

    2007-01-01

    We demonstrate the use of four-wave mixing in hot atomic vapor to generate up to -7.1 dB of measured relative-intensity squeezing. Due to its intrinsic simplicity, our system is strongly decoupled from environmental noise, and we observe more than -4 dB of squeezing down to frequencies as low as 5 kHz. This robust source of narrowband squeezed light may be useful for a variety of applications, such as coupling to atomic ensembles and enhancing the sensitivity of photothermal spectroscopy.

  13. Degenerate Four-Wave Mixing in SO2 in Free Jets

    Institute of Scientific and Technical Information of China (English)

    CHEN De-Ying; FAN Rong-Wei; YANG Xin-Ju; ZHENG Qi-Ke; QIN Qi-Zong

    2004-01-01

    @@ A rotational excitation spectrum of SO2 [A 1A2(511) ← X 1A1(000)] at about 33331cm-1 in free jets was observed by using the forward degenerate four-wave mixing (DFWM). Twelve lines of the G band and 11 ones of the E band were marked based on the rotational constants according to Hamada's result [Can. J. Phys. 53(1975) 2555]. The relation between the DFWM signal intensity and the pressure of the buffer gas in free-jets was experimentally investigated.

  14. Observation of multi-component spatial vector solitons of four-wave mixing.

    Science.gov (United States)

    Wang, Ruimin; Wu, Zhenkun; Zhang, Yiqi; Zhang, Zhaoyang; Yuan, Chenzhi; Zheng, Huaibin; Li, Yuanyuan; Zhang, Jinhai; Zhang, Yanpeng

    2012-06-18

    We report the observation of multi-component dipole and vortex vector solitons composed of eight coexisting four-wave mixing (FWM) signals in two-level atomic system. The formation and stability of the multi-component dipole and vortex vector solitons are observed via changing the experiment parameters, including the frequency detuning, powers, and spatial configuration of the involved beams and the temperature of the medium. The transformation between modulated vortex solitons and rotating dipole solitons is observed at different frequency detunings. The interaction forces between different components of vector solitons are also investigated.

  15. Spatially nondegenerate four-wave mixing in a broad area semiconductor laser: Modeling

    DEFF Research Database (Denmark)

    Jensen, Søren Blaaberg; Tromborg, Bjarne; Petersen, P. M.

    coupled equations for the field components in the cavity and a rate equation is used to describe the carrier density of the semiconductor material. The interference pattern of the four field components inside the cavity induces a periodic spatial modulation of the carrier density and thus of the complex......We present a numerical model of spatially nondegenerate four-wave mixing in a bulk broad area semiconductor laser with an external reflector and a spatial filter. The external reflector provides a feedback with an off-aixs direction of propagation. Such a configuration has experimentally been seen...

  16. Four-wave mixing in InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Birkedal, Dan; Hvam, Jørn Märcher

    2001-01-01

    The nonlinear optical properties of semiconductor quantum dots are of interest, both fundamentally and for potential device applications. Large optical nonlinearities are predicted due to the three dimensional confinement but the small active volume of the dots and their large inhomogeneous...... broadening strongly reduce the interaction with the electromagnetic field. Until now, four-wave mixing (FWM) in III-V quantum dots has only been reported in optical amplifiers at room temperature, where the interaction length is increased by waveguiding in the quantum dot plane. We have carried out...

  17. Upscaling of Mixing Processes using a Spatial Markov Model

    Science.gov (United States)

    Bolster, Diogo; Sund, Nicole; Porta, Giovanni

    2016-11-01

    The Spatial Markov model is a model that has been used to successfully upscale transport behavior across a broad range of spatially heterogeneous flows, with most examples to date coming from applications relating to porous media. In its most common current forms the model predicts spatially averaged concentrations. However, many processes, including for example chemical reactions, require an adequate understanding of mixing below the averaging scale, which means that knowledge of subscale fluctuations, or closures that adequately describe them, are needed. Here we present a framework, consistent with the Spatial Markov modeling framework, that enables us to do this. We apply and present it as applied to a simple example, a spatially periodic flow at low Reynolds number. We demonstrate that our upscaled model can successfully predict mixing by comparing results from direct numerical simulations to predictions with our upscaled model. To this end we focus on predicting two common metrics of mixing: the dilution index and the scalar dissipation. For both metrics our upscaled predictions very closely match observed values from the DNS. This material is based upon work supported by NSF Grants EAR-1351625 and EAR-1417264.

  18. Derivation of relativistic wave equation from the Poisson process

    Indian Academy of Sciences (India)

    Tomoshige Kudo; Ichiro Ohba

    2002-08-01

    A Poisson process is one of the fundamental descriptions for relativistic particles: both fermions and bosons. A generalized linear photon wave equation in dispersive and homogeneous medium with dissipation is derived using the formulation of the Poisson process. This formulation provides a possible interpretation of the passage time of a photon moving in the medium, which never exceeds the speed of light in vacuum.

  19. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  20. Sunspot seismology: accounting for magnetohydrodynamic wave processes using imaging spectropolarimetry

    CERN Document Server

    Rajaguru, S P

    2012-01-01

    The effects of acoustic wave absorption, mode conversion and transmission by a sunspot on the helioseismic inferences are widely discussed, but yet accounting for them has proved difficult for lack of a consistent framework within helioseismic modelling. Here, following a discussion of problems and issues that the near-surface magnetohydrodynamics hosts through a complex interplay of radiative transfer, measurement issues, and MHD wave processes, I present some possibilities entirely from observational analyses based on imaging spectropolarimetry. In particular, I present some results on wave evolution as a function of observation height and inclination of magnetic field to the vertical, derived from a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings using the instrument IBIS (NSO/Sac Peak, USA). These observations were made in magnetically sensitive (Fe I 6173 A) and insensitive (Fe I 7090 A) upper photospheric absorption lines. Wave travel time contributions from within...

  1. Separating Internal Waves and Vortical Motions: Analysis of LatMix -EM-APEX Float Measurements

    Science.gov (United States)

    2015-09-30

    Washington 98105 Phone: (206) 685-1079 fax: (206) 543-6785 email: lien@apl.washington.edu Thomas B. Sanford Applied Physics Laboratory and School ...project is to separate internal waves and vortical motions. These two processes coexist at small spatial scales (Müller 1984). However, they have distinct

  2. NATURE OF WAVE PROCESSES AND THEIR INTERACTION WITH Tidal power PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ol'ga Aleksandrovna

    2012-07-01

    Full Text Available The author examines the nature of wave processes and their impact on the operation of tidal power plants. The article also has an overview of both operating and prospective tidal power plants in Russia and worldwide. Patterns of tidal fluctuations and the intensity of their driving forces are also considered in the article. The author discloses the origin of tides in terms of elementary physics and hydraulics. The author covers various aspects of formation of different types of inequality of tides caused by alterations in the mutual positions of the Sun and the Moon in relation to the Earth, variable declination of tide-generating luminaries (the Sun and the Moon in relation to the plane of the Earth equator, and variable distance between the luminaries and the Earth. The author analyzes wave-related phenomena, including refraction, diffraction and interference, their origin and influence onto the properties of waves. The author also covers the origin of advancing and standing waves, or waves of mixed origin, and the impact of the wind onto the characteristics of wave fluctuations. The author provides suggestions regarding potential methods of their control that can affect the essential concept of construction of tidal power plants.

  3. Electromagnetic mixed-waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

  4. Quantum correlations by four-wave-mixing in atomic vapor. Theory and Experiments

    CERN Document Server

    Glorieux, Quentin

    2011-01-01

    We study both theoretically and experimentally the generation of quantum correlations in the continuous variable regime by way of four-wave mixing in a hot atomic vapor. Two theoretical approaches have been developed. On one side, we study the four-wave mixing under the "classical" non-linear optics point of view. In such a way we obtain the evolution equation for an ideal linear amplifier in a {\\chi}^(3) medium. On the other side, we present a microscopic model with 4 levels in the double-{\\Lambda} configuration to calculate the {\\chi}^(3) coefficient in a atomic vapor dressed with a laser. This calculation allows us to derive the spectra of intensity noise for interesting parameters. The experimental part of this work describes the demonstration of this effect on the D1 line of rubidium 85. We present a measurement of relative intensity squeezing as high as -9.2dB below the standard quantum limit, and an original regime where quantum correlations have been measured without amplification.These results have b...

  5. Highly efficient four wave mixing in GaInP photonic crystal waveguides.

    Science.gov (United States)

    Eckhouse, V; Cestier, I; Eisenstein, G; Combrié, S; Colman, P; De Rossi, A; Santagiustina, M; Someda, C G; Vadalà, G

    2010-05-01

    We report highly efficient four wave mixing in a GaInP photonic crystal waveguide. Owing to its large bandgap, the ultrafast Kerr nonlinearity of GaInP is not diminished by two photon absorption and related carrier effects for photons in the 1550 nm range. A four-wave-mixing efficiency of -49 dB was demonstrated for cw pump and probe signals in the milliwatt range, while for pulsed pumps with a peak power of 25 mW the conversion efficiency increased to -36 dB. Measured conversion efficiency dependencies on pump probe detuning and on pump power are in excellent agreement with a simple analytical model from which the nonlinear parameter gamma is extracted. Gamma scales approximately with the square of the slow down factor and varies from 800 W(-1) m(-1) at a pump wavelength lambda(p)=1532 nm to 2900 W(-1) m(-1) at lambda(p)=1550 nm. These values are consistent with those obtained from self phase modulation experiments in similar devices.

  6. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  7. Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems

    Institute of Scientific and Technical Information of China (English)

    FU Yu-Xin; ZHAO Jin-Yan; SONG Yue; DAI Guo-Xian; HUO Shu-Li; ZHANG Yan-Peng

    2011-01-01

    @@ We illustrate our experimental observation of the periodic changes of spatial splitting of the generated four-wave mixing(FWM)signal induced by different polarization states of one of the dressing beams.It is pointed out that the changes of intensity of the dressing beam and the FWM signal have influences on the spatial splitting and their influences compete with each other.The differences between p- and s-polarized FWM beams are demonstrated.The influences of the dressing beams, which lead to the larger spatial splitting with different polarization states or frequency detuning, are observed as well.%We illustrate our experimental observation of the periodic changes of spatial splitting of the generated four-wave mixing (FWM) signal induced by different polarization states of one of the dressing beams. It is pointed out that the changes of intensity of the dressing beam and the FWM signal have influences on the spatial splitting and their influences compete with each other. The differences between p- and s-polarized FWM beams are demonstrated.The influences of the dressing beams, which lead to the larger spatial splitting with different polarization states or frequency detuning, are observed as well.

  8. Observation of nonlinear wave decay processes in the solar wind by the AMPTE IRM plasma wave experiment

    Science.gov (United States)

    Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.

    1987-01-01

    Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.

  9. Observations of wind and waves in the central Bay of Bengal during BOBMEX-99 and their effect on mixed layer depth variability due to forced mixing

    Indian Academy of Sciences (India)

    J Swain; R K Shukla; A Raghunadha Rao; J K Panigrahi; N R Venkitachalam

    2003-06-01

    Time-series wind and wave measurements were carried out onboard INS Sagardhwani in the central Bay of Bengal during BOBMEX-99. Various other marine meteorological and oceanographic measurements relevant to monsoon studies were also collected simultaneously. The observed variations of wind and waves and the associated mixed layer depth (MLD) variability based on both temperature and density criteria at 3 hourly intervals are presented in this paper as a case study. At the time-series location (13°N, 87°E) wind varied between 6 and 16 m/s and the predominant direction was southwesterly. The significant wave height and period varied from 1.9 to 3.7m and 8 to 13 s respectively. Some of the available statistical predictive methods for the determination of MLD by forced mixing are utilized to test the extent of mechanical mixing within the top layer of water by the local wind and wave activity. The same is extended to formulate a new empirical relation for gross estimation of effective depth within which the sound energy is generally trapped during its transmission in the surface duct. The present analysis aiming for estimation of observed MLD variability (35 to 75 m) using the suggested simple empirical relation reveals that, the mixed layer variability observed during the experiment depends on both local ocean variability as well as remote forcing as reported earlier.

  10. Experimental investigation of combined four-wave mixing and Raman effect in the normal dispersion regime of a photonic crystal fiber.

    Science.gov (United States)

    Kudlinski, A; Pureur, V; Bouwmans, G; Mussot, A

    2008-11-01

    We study the effect of stimulated Raman scattering on four-wave mixing sidebands generated by pumping in the normal dispersion regime of a photonic crystal fiber. Q-switch nanosecond pulses at 1064 nm are used to generate signal and idler wavelengths by degenerate four-wave mixing. These three waves generate their own Raman Stokes orders, leading to a broadband supercontinuum.

  11. Spectral phase transfer from near IR to deep UV by broadband phase-matched four-wave mixing in an argon-filled hollow core waveguide

    Science.gov (United States)

    Siqueira, J. P.; Mendonça, C. R.; Zilio, S. C.; Misoguti, L.

    2016-10-01

    We report on the implementation of a spectral phase transfer scheme from near IR to deep UV, in which the frequency conversion step is based on the broadband phase-matched four-wave mixing in a gas-filled hollow core waveguide. Micro joule level femtosecond pulses at 260 nm were generated by nonlinear mixing of a Ti:sapphire laser and its second-harmonic. The transfer of a π-step phase in a controllable manner was proposed and confirmed by a modulation observed in the generated deep UV femtosecond pulse spectrum due to an interference process. Numerical simulations confirmed our results.

  12. Optoelectronic down-conversion by four-wave mixing in a highly nonlinear fiber for millimeter-wave and THz phase-locking

    CERN Document Server

    Rolland, Antoine; Brunel, Marc; Alouini, Mehdi

    2014-01-01

    Optoelectronic down-conversion of a THz optical beatnote to a RF intermediate frequency is performed with a standard Mach-Zehnder modulator followed by a zero dispersion-slope fiber. The two interleaved optical spectra obtained by four-wave mixing are shown to contain more than 75 harmonics enabling to conveniently recover the phase noise of a beatnote at 770 GHz at around 500 MHz. This four-wave mixing down-conversion technique is implemented in a two-frequency solid-state laser in order to directly phase-lock its 168 GHz beatnote to a 10 MHz local oscillator.

  13. Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach

    Science.gov (United States)

    Thomas, C.; Lark, R. M.

    2013-12-01

    Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second

  14. Storage and Retrieval of Image using a Four-Wave Mixing System in a Cold Atomic Ensemble

    CERN Document Server

    Wu, Jinghui; Liu, Yang; Zhou, Zhiyuan; Shi, Baosen; Zou, Xubo; Guo, Guangcan

    2012-01-01

    We realized storage and retrieval of image of light in a two-dimensional magneto-optical trap of Rubidium 85 using a four-wave mixing system. When we imprint an image on a signal laser beam, the generated idler field also carries this image information. The retrieved signal and idler fields are observed this image information. That means the spatial patterns of the signal and idler are simultaneously mapped into the long-lived ground state coherence of the atoms. It is worth noticing that the retrieval efficiency is oscillating due to the time evolution of the ground state coherence in a uniform magnetic field. This image storage result holds promise for application in image processing, remote sensing and quantum communication.

  15. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media

    CERN Document Server

    Zhang, Yiqi; Yao, Xin; Zhang, Zhaoyang; Chen, Haixia; Zhang, Huaibin; Zhang, Yanpeng

    2013-01-01

    We experimentally demonstrate dressed multi-wave mixing (MWM) and the reflection of the probe beam due to electromagnetically induced absorption (EIA) grating can coexist in a five-level atomic ensemble. The reflection is derived from the photonic band gap (PBG) of EIA grating, which is much broader than the PBG of EIT grating. Therefore, EIA-type PBG can reflect more energy from probe than EIT-type PBG does, which can effectively affect the MWM signal. The EIA-type as well as EIT-type PBG can be controlled by multiple parameters including the frequency detunings, propagation angles and powers of the involved light fields. Also, the EIA-type PBG by considering both the linear and third-order nonlinear refractive indices is also investigated. The theoretical analysis agrees well with the experimental results. This investigation has potential applications in all-optical communication and information processing.

  16. Analytical analysis of adaptive defect detection in amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, George; Donoghue, John; Banerjee, Partha; Khoury, Jed; Yamamoto, Michiharu; Peyghambarian, Nasser

    2016-04-01

    In this work, brief theoretical modeling, analysis, and novel numerical verification of a photorefractive polymer based four wave mixing (FWM) setup for defect detection has been developed. The numerical simulation helps to validate our earlier experimental results to perform defect detection in periodic amplitude and phase objects using FWM. Specifically, we develop the theory behind the detection of isolated defects, and random defects in amplitude, and phase periodic patterns. In accordance with the developed theory, the results show that this technique successfully detects the slightest defects through band-pass intensity filtering and requires minimal additional post image processing contrast enhancement. This optical defect detection technique can be applied to the detection of production line defects, e.g., scratch enhancement, defect cluster enhancement, and periodic pattern dislocation enhancement. This technique is very useful in quality control systems, production line defect inspection, and computer vision.

  17. Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides.

    Science.gov (United States)

    Kim, Dong Wook; Kim, Seung Hwan; Lee, Seoung Hun; Jong, Heung Sun; Lee, Jong-Moo; Lee, El-Hang; Kim, Kyong Hon

    2013-12-02

    Enhanced four-wave-mixing (FWM) effects have been observed with the help of large group-indices near the band edges in one-dimensional (1-D) silicon photonic crystal waveguides (Si PhCWs). A significant increase of the FWM conversion efficiency of about 17 dB was measured near the transmission band edge of the 1-D PhCW through an approximate 3.2 times increase of the group index from 8 to 24 with respect to the central transmission band region despite a large group-velocity dispersion. Numerical analyses based on the coupled-mode equations for the degenerated FWM process describe the experimentally measured results well. Our results indicate that the 1-D PhCWs are good candidates for large group-index enhanced nonlinearity devices even without having any special dispersion engineering.

  18. Mixing processes in the vitreous chamber induced by eye rotations

    Science.gov (United States)

    Stocchino, Alessandro; Repetto, Rodolfo; Siggers, Jennifer H.

    2010-01-01

    In this paper, we study a model of flow in the vitreous humour in the posterior chamber of the human eye, induced by saccadic eye rotations. We concentrate on the effect of the shape of the chamber upon the mixing properties of the induced flows. We make particle image velocimetry measurements of the fluid velocity in a transparent plastic (Perspex) model of the posterior chamber during sinusoidal torsional oscillations about a vertical axis. We use a Newtonian fluid to model the vitreous humour, which is most realistic when either the vitreous humour is liquefied or has been replaced by purely viscous tamponade fluids. The model of the posterior chamber is a sphere with an indentation, representing the effect of the lens. In spite of the purely periodic forcing, a steady streaming flow is generated, which plays a fundamental role in the mixing processes in the domain. The streaming flow differs markedly from that in a perfect sphere, and its topological characteristics change substantially as the frequency of oscillation varies. We discuss the flow characteristics in detail and show that, for physiological parameter values, the Péclet number (based on a suitable measure of the steady streaming velocity) is large, suggesting that advection strongly dominates over diffusion for mass transport phenomena. We also compute particle trajectories based on the streaming velocity and use these to investigate the stirring properties of the flow.

  19. Mixing processes in the vitreous chamber induced by eye rotations

    Energy Technology Data Exchange (ETDEWEB)

    Stocchino, Alessandro [Department of Civil, Environmental and Architectural Engineering, University of Genoa (Italy); Repetto, Rodolfo [Department of Engineering of Structures, Water and Soil, University of L' Aquila (Italy); Siggers, Jennifer H [Department of Bioengineering, Imperial College London, London SW7 2AZ (United Kingdom)], E-mail: jorma@diam.unige.it

    2010-01-21

    In this paper, we study a model of flow in the vitreous humour in the posterior chamber of the human eye, induced by saccadic eye rotations. We concentrate on the effect of the shape of the chamber upon the mixing properties of the induced flows. We make particle image velocimetry measurements of the fluid velocity in a transparent plastic (Perspex) model of the posterior chamber during sinusoidal torsional oscillations about a vertical axis. We use a Newtonian fluid to model the vitreous humour, which is most realistic when either the vitreous humour is liquefied or has been replaced by purely viscous tamponade fluids. The model of the posterior chamber is a sphere with an indentation, representing the effect of the lens. In spite of the purely periodic forcing, a steady streaming flow is generated, which plays a fundamental role in the mixing processes in the domain. The streaming flow differs markedly from that in a perfect sphere, and its topological characteristics change substantially as the frequency of oscillation varies. We discuss the flow characteristics in detail and show that, for physiological parameter values, the Peclet number (based on a suitable measure of the steady streaming velocity) is large, suggesting that advection strongly dominates over diffusion for mass transport phenomena. We also compute particle trajectories based on the streaming velocity and use these to investigate the stirring properties of the flow.

  20. Mixing, Ergodic, and Nonergodic Processes with Rapidly Growing Information between Blocks

    CERN Document Server

    Dębowski, Łukasz

    2011-01-01

    We construct mixing processes over an infinite alphabet and ergodic processes over a finite alphabet for which Shannon mutual information between adjacent blocks of length $n$ grows as $n^\\beta$, where $\\beta\\in(0,1)$. The processes are a modification of nonergodic Santa Fe processes, which were introduced in the context of natural language modeling. The rates of mutual information for the latter processes are alike and also established in this paper. As an auxiliary result, it is shown that infinite direct products of mixing or weakly mixing processes are mixing or weakly mixing respectively.

  1. Breaking waves and near-surface sea spray aerosol dependence on changing winds: Wave breaking efficiency and bubble-related air-sea interaction processes

    Science.gov (United States)

    Hwang, P. A.; Savelyev, I. B.; Anguelova, M. D.

    2016-05-01

    Simultaneous measurements of sea spray aerosol (SSA), wind, wave, and microwave brightness temperature are obtained in the open ocean on-board Floating Instrument Platform (FLIP). These data are analysed to clarify the ocean surface processes important to SSA production. Parameters are formulated to represent surface processes with characteristic length scales spanning a broad range. The investigation reveals distinct differences of the SSA properties in rising winds and falling winds, with higher SSA volume in falling winds. Also, in closely related measurements of whitecap coverage, higher whitecap fraction as a function of wind speed is found in falling winds than in rising winds or in older seas than in younger seas. Similar trend is found in the short scale roughness reflected in the microwave brightness temperature data. In the research of length and velocity scales of breaking waves, it has been observed that the length scale of wave breaking is shorter in mixed seas than in wind seas. For example, source function analysis of short surface waves shows that the characteristic length scale of the dissipation function shifts toward higher wavenumber (shorter wavelength) in mixed seas than in wind seas. Similarly, results from feature tracking or Doppler analysis of microwave radar sea spikes, which are closely associated with breaking waves, show that the magnitude of the average breaking wave velocity is smaller in mixed seas than in wind seas. Furthermore, breaking waves are observed to possess geometric similarity. Applying the results of breaking wave analyses to the SSA and whitecap observations described above, it is suggestive that larger air cavities resulting from the longer breakers are entrained in rising high winds. The larger air cavities escape rapidly due to buoyancy before they can be fully broken down into small bubbles for the subsequent SSA production or whitecap manifestation. In contrast, in falling winds (with mixed seas more likely), the

  2. Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber.

    Science.gov (United States)

    Le, Sy Dat; Nguyen, Duc Minh; Thual, Monique; Bramerie, Laurent; Costa e Silva, Marcia; Lenglé, Kevin; Gay, Mathilde; Chartier, Thierry; Brilland, Laurent; Méchin, David; Toupin, Perrine; Troles, Johann

    2011-12-12

    We report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As(38)Se(62).With a core diameter as small as 1.13 µm, a record Kerr nonlinearity of 46,000 W(-1) km(-1) is demonstrated with attenuation loss of 0.9 dB/m. Four-wave mixing is experimented by using a 1m-long chalcogenide fiber for 10 GHz and 42.7 GHz signals. Four-wave mixing efficiencies of -5.6 dB at 10 GHz and -17.5 dB at 42.7 GHz are obtained. We also observed higher orders of four-wave mixing for both repetition rates. © 2011 Optical Society of America

  3. Rotational spectroscopy and three-wave mixing of 4-carvomenthenol: A technical guide to measuring chirality in the microwave regime

    Energy Technology Data Exchange (ETDEWEB)

    Shubert, V. Alvin; Schmitz, David; Medcraft, Chris; Krin, Anna [Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg (Germany); The Center for Free-Electron Laser Science, 22761 Hamburg (Germany); Patterson, David; Doyle, John M. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Schnell, Melanie, E-mail: melanie.schnell@mpsd.mpg.de [Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg (Germany); The Center for Free-Electron Laser Science, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg (Germany)

    2015-06-07

    We apply chirality sensitive microwave three-wave mixing to 4-carvomenthenol, a molecule previously uncharacterized with rotational spectroscopy. We measure its rotational spectrum in the 2-8.5 GHz range and observe three molecular conformers. We describe our method in detail, from the initial step of spectral acquisition and assignment to the final step of determining absolute configuration and enantiomeric excess. Combining fitted rotational constants with dipole moment components derived from quantum chemical calculations, we identify candidate three-wave mixing cycles which were further tested using a double resonance method. Initial optimization of the three-wave mixing signal is done by varying the duration of the second excitation pulse. With known transition dipole matrix elements, absolute configuration can be directly determined from a single measurement.

  4. Configuration mixing of mean-field wave-functions projected on angular momentum and particle number; application to 24Mg

    CERN Document Server

    Valor, A; Bonche, P

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF+BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF+BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment.

  5. Generation of femtosecond anti-stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber.

    Science.gov (United States)

    Konorov, S O; Serebryannikov, E E; Zheltikov, A M; Zhou, Ping; Tarasevitch, A P; von der Linde, D

    2004-07-01

    Phase-matched parametric four-wave mixing in higher-order guided modes of a photonic crystal fiber is shown to result in an efficient decay of 40-fs 800-nm Ti:sapphire laser pump pulses into an anti-Stokes signal with a central wavelength around 590-600 nm and a Stokes signal centered at 1.25 microm. The photonic crystal fiber is designed in such a way as to minimize the group-velocity dispersion at the pump wavelength, phase match the parametric four-wave-mixing process, and reduce the group delay between the pump and the anti-Stokes pulses. The duration of the anti-Stokes pulse under these conditions, as shown by cross-correlation frequency-resolved optical gating measurements, is less than 200 fs.

  6. Improving gravitational-wave parameter estimation using Gaussian process regression

    CERN Document Server

    Moore, Christopher J; Chua, Alvin J K; Gair, Jonathan R

    2015-01-01

    Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalising over model uncertainty using a prior distribution constructed using Gaussian process regression (GPR). Here, we apply this technique to (simulated) gravitational-wave signals from binary black holes that could be observed using advanced-era gravitational-wave detectors. Unless properly accounted for, uncertainty in the gravitational-wave templates could be the dominant source of error in studies of these systems. We explain our approach in detail and provide proofs of various features of the method, including the limiting behaviour for high signal-to-noise, where systematic model uncertainties dominate over noise errors. We find that the marginalised likelihood constructed via GPR offers a significant improvement in parameter estimation over the standard, uncorrected likelihood. We also examine the dependence of the method on the ...

  7. Mixed Initial-Boundary Value Problem for the Capillary Wave Equation

    Directory of Open Access Journals (Sweden)

    B. Juarez Campos

    2016-01-01

    Full Text Available We study the mixed initial-boundary value problem for the capillary wave equation: iut+u2u=∂x3/2u,  t>0,  x>0;  u(x,0=u0(x,  x>0; u(0,t+βux(0,t=h(t,  t>0, where ∂x3/2u=(1/2π∫0∞sign⁡x-y/x-yuyy(y dy. We prove the global in-time existence of solutions of IBV problem for nonlinear capillary equation with inhomogeneous Robin boundary conditions. Also we are interested in the study of the asymptotic behavior of solutions.

  8. Analytical study of four-wave mixing with large atomic coherence

    CERN Document Server

    Korsunsky, E A; Marangos, J P; Bergmann, K

    2002-01-01

    Four-wave mixing in resonant atomic vapors based on maximum coherence induced by Stark-chirped rapid adiabatic passage (SCRAP) is investigated theoretically. We show the advantages of a coupling scheme involving maximum coherence and demonstrate how a large atomic coherence between a ground and an highly excited state can be prepared by SCRAP. Full analytic solutions of the field propagation problem taking into account pump field depletion are derived. The solutions are obtained with the help of an Hamiltonian approach which in the adiabatic limit permits to reduce the full set of Maxwell-Bloch equations to simple canonical equations of Hamiltonian mechanics for the field variables. It is found that the conversion efficiency reached is largely enhanced if the phase mismatch induced by linear refraction is compensated. A detailed analysis of the phase matching conditions shows, however, that the phase mismatch contribution from the Kerr effect cannot be compensated simultaneously with linear refraction contrib...

  9. Low-light-level four-wave mixing by quantum interference

    CERN Document Server

    Chiu, Chang-Kai; Chen, Yen-Chun; Yu, Ite A; Chen, Ying-Cheng; Chen, Yong-Fan

    2013-01-01

    We observed electromagnetically-induced-transparency-based four-wave mixing (FWM) in the pulsed regime at low light levels. The FWM conversion efficiency of 3.8(9)% was observed in a four-level system of cold 87Rb atoms using a driving laser pulse with a peak intensity of approximately 80 {\\mu}W/cm^2, corresponding to an energy of approximately 60 photons per atomic cross section. Comparison between the experimental data and the theoretical predictions proposed by Harris and Hau [Phys. Rev. Lett. 82, 4611 (1999)] showed strong agreement. Additionally, a high conversion efficiency of 46(2)% was demonstrated when applying this scheme using a driving laser intensity of approximately 1.8 mW/cm^2. According to our theoretical predictions, this FWM scheme can achieve a conversion efficiency of nearly 100% when using a dense medium with an optical depth of 500.

  10. Spatio-temporal study of non-degenerate two-wave mixing in bacteriorhodopsin films.

    Science.gov (United States)

    Blaya, Salvador; González, Alejandro; Acebal, Pablo; Carretero, Luis

    2016-10-31

    A spatio-temporal analysis of non-degenerate two-wave mixing in a saturable absorber, such as bacteriorhodopsin (bR) film, is performed. To do this, a theoretical model describing the temporal variation of the intensities is developed by taking into account the dielectric constant as a function of bR population. A good agreement between theory and experimental measurements is obtained. Thus, the dependence of the optical gain and the main dielectric constant parameters are studied at different intensities and frequencies. As a result, the best intensity-frequency zones where higher coupling is reached are proposed, and it is also demonstrated that non-uniform patterns, which evolve over time as a function of frequency difference, can be observed.

  11. Four-wave-mixing in the loss low submicrometer Ta₂O₅ channel waveguide.

    Science.gov (United States)

    Wu, Chung-Lun; Chiu, Yi-Jen; Chen, Cong-Long; Lin, Yuan-Yao; Chu, Ann-Kuo; Lee, Chao-Kuei

    2015-10-01

    A degenerate four-wave-mixing (FWM) operation in the Ta2O5 submicrometer channel waveguide has been successfully demonstrated. The propagation loss of 1.5  dB/cm and total insertion loss of 5.1 dB are realized in a 12.6 mm long waveguide with inverse taper structure. The wavelength and quadratic pumping power-dependent measurements on optical transmission confirm FWM performance and characterize the nonlinearity of waveguide. The conversion efficiency of -50  dB at coupled pump power of 40 mW is observed, suggesting that the nonlinear refractive index of Ta2O5 waveguide at 1550 nm is estimated to be 1×10(-14)  cm2/W. Our primary results indicate that the Ta2O5 submicrometer channel waveguide has great potential in developing nonlinear waveguide applications.

  12. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    2013-01-01

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....

  13. Spectral properties of photon pairs generated by spontaneous four wave mixing in inhomogeneous photonic crystal fibers

    CERN Document Server

    Cui, Liang; Zhao, Ningbo

    2012-01-01

    The photonic crystal fiber (PCF) is one of the excellent media for generating photon pairs via spontaneous four wave mixing. Here we study how the inhomogeneity of PCFs affect the spectral properties of photon pairs from both the theoretical and experimental aspects. The theoretical model shows that the photon pairs born in different place of the inhomogeneous PCF are coherently superposed, and a modulation in the broadened spectrum of phase matching function will appear, which prevents the realization of spectral factorable photon pairs. In particular, the inhomogeneity induced modulation can be examined by measuring the spectrum of individual signal or idler field when the asymmetric group velocity matching is approximately fulfilled. Our experiments are performed by tailoring the spectrum of pulsed pump to satisfy the specified phase matching condition. The observed spectra of individual signal photons, which are produced from different segments of the 1.9 m inhomogeneous PCF, agree with the theoretical pr...

  14. Two-Photon Correlation of Spontaneously Generated Broadband Four Wave Mixing

    CERN Document Server

    Vered, Rafi; Pe'er, Avi

    2011-01-01

    We precisely measure the time-energy correlation of broadband, spontaneously generated four waves mixing (FWM), and demonstrate novel time-frequency coupling effects. By pumping a photonic crystal fiber with narrowband picosecond pulses we generate FWM in a unique regime, where extremely broadband (>100nm), sidebands are generated that are incoherent, yet time-energy correlated. Although conceptually similar to parametric down conversion (PDC), the time-energy correlation in FWM is unique in its dependence on pump intensity due to self and cross phase modulation effects, yielding surprising spectral and temporal structure in the correlations. Specifically, a power dependent splitting of the correlation in both energy and time is observed at high power. While these effects are minute compared to the time duration and bandwidth of the FWM sidebands, they are well observed using sum frequency generation as a precise, ultrafast correlation detector. A theoretical model accounts for the results and highlights the ...

  15. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber.

    Science.gov (United States)

    Zhang, Ailing; Demokan, M S

    2005-09-15

    We demonstrate a 10 Gbit/s nonreturn-to-zero wavelength converter based on four-wave mixing in a 20 m highly nonlinear photonic crystal fiber. The tunable wavelength conversion bandwidth (3 dB) is about 100 nm. The conversion efficiency is -16 dB when the pump power is 22.5 dBm. Phase modulation was not used to suppress the stimulated Brillouin scattering; thus the linewidth of the converted wavelength remained very narrow. The eye diagrams show that there is no additional noise during wavelength conversion. The measured power penalty at a 10(-9) bit-error-rate level is about 0.7 dB.

  16. Theory of Pulsed Four-Wave-Mixing in One-dimensional Silicon Photonic Crystal Slab Waveguides

    CERN Document Server

    Lavdas, Spyros

    2015-01-01

    We present a comprehensive theoretical analysis and computational study of four-wave mixing (FWM) of optical pulses co-propagating in one-dimensional silicon photonic crystal waveguides (Si-PhCWGs). Our theoretical analysis describes a very general set-up of the interacting optical pulses, namely we consider nondegenerate FWM in a configuration in which at each frequency there exists a superposition of guiding modes. We incorporate in our theoretical model all relevant linear optical effects, including waveguide loss, free-carrier (FC) dispersion and FC absorption, nonlinear optical effects such as self- and cross-phase modulation (SPM, XPM), two-photon absorption (TPA), and cross-absorption modulation (XAM), as well as the coupled dynamics of FCs and optical field. In particular, our theoretical analysis based on the coupled-mode theory provides rigorously derived formulae for linear dispersion coefficients of the guiding modes, linear coupling coefficients between these modes, as well as the nonlinear waveg...

  17. Degenerate four wave mixing in large mode area hybrid photonic crystal fibers.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Lægsgaard, Jesper

    2013-07-29

    Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions.

  18. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing

    CERN Document Server

    Almeida, Euclides

    2015-01-01

    Optimizing the shape of nanostructures and nano antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near infra-red to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear opti...

  19. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing

    Science.gov (United States)

    Almeida, Euclides; Prior, Yehiam

    2015-01-01

    Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell’s equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed. PMID:25974175

  20. Nonlinear Optical Imaging of Individual Carbon Nanotubes with Four-Wave-Mixing Microscopy

    Science.gov (United States)

    Kim, Hyunmin; Sheps, Tatyana; Collins, Philip G.; Potma, Eric O.

    2014-01-01

    Dual color four-wave-mixing (FWM) microscopy is used to spatially resolve the third-order optical response from individual carbon nanotubes. Good signal-to-noise is obtained from single-walled carbon nanotubes (SWNT) sitting on substrates, when the excitation beams are resonant with electronic transitions of the nanotube, by detecting the FWM response at the anti-Stokes frequency. Whereas the coherent anti-Stokes (CAS) signal is sensitive to both electronic and vibrational resonances of the material, it is shown that the signal from individual SWNTs is dominated by the electronic response. The CAS signal is strongly polarization dependent, with the highest signals found parallel with the enhanced electronic polarizibility along the long axis of the SWNT. PMID:19637886

  1. Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing

    CERN Document Server

    Kultavewuti, Pisek; Qian, Li; Pusino, Vincenzo; Sorel, Marc; Aitchison, J Stewart

    2016-01-01

    We demonstrate a source of correlated photon pairs which will have applications in future integrated quantum photonic circuits. The source utilizes spontaneous four-wave mixing (SFWM) in a dispersion-engineered nanowaveguide made of AlGaAs, which has merits of negligible two-photon absorption and low spontaneous Raman scattering (SpRS). We observe a coincidence-to-accidental (CAR) ratio up to 177, mainly limited by propagation losses. Experimental results agree well with theoretical predictions of the SFWM photon pair generation and the SpRS noise photon generation. We also study the effects from the SpRS, propagation losses, and waveguide lengths on the quality of our source.

  2. Degenerate four-wave mixing in a silica hollow bottle-like microresonator.

    Science.gov (United States)

    Yang, Yong; Ooka, Yuta; Thompson, Ruth M; Ward, Jonathan M; Chormaic, Síle Nic

    2016-02-01

    A hollow, bottle-like microresonator (BLMR) was fabricated from a microcapillary with a nearly parabolic profile. From simulations at 1.55 μm the fundamental bottle mode is shown to be in the anomalous dispersion regime, while the conventional whispering gallery mode, confined to the center of the BLMR, is in the normal dispersion regime. Therefore, we have experimentally shown that, for a BLMR with a diameter of 102 um, degenerate four-wave mixing can only be observed by judicious selection of the tapered fiber coupling position. Dispersion tuning in such a system is also briefly discussed theoretically. BLMRs are promising devices for the implementation of sparsely distributed, widely spanned frequency combs at the telecommunications C-band.

  3. Probing the acoustic vibrations of complex-shaped metal nanoparticles with four-wave mixing.

    Science.gov (United States)

    Wu, Jian; Xiang, Dao; Hajisalem, Ghazal; Lin, Fan-Cheng; Huang, Jer-Shing; Kuo, Chun-Hong; Gordon, Reuven

    2016-10-17

    We probe the acoustic vibrations of silver nanoprisms and gold nano-octahedrons in aqueous solution with four-wave mixing. The nonlinear optical response shows two acoustic vibrational modes: an in-plane mode of nanoprisms with vertexial expansion and contraction; an extensional mode of nano-octahedrons with longitudinal expansion and transverse contraction. The particles were also analyzed with electron microscopy and the acoustic resonance frequencies were then calculated by the finite element analysis, showing good agreement with experimental observations. The experimental mode frequencies also fit with theoretical approximations, which show an inverse dependence of the mode frequency on the edge length, for both nanoprisms and nano-octahedrons. This technique is promising for in situ monitoring of colloidal growth.

  4. Optical Stark effect in the four-wave mixing and stimulated Raman spectra of N2

    Science.gov (United States)

    Moosmuller, H.; She, C. Y.; Huo, Winifred M.

    1989-01-01

    The influence of the optical Stark effect on spectral line shapes in four-wave-mixing Raman spectroscopy (FWMRS) and stimulated Raman spectroscopy (SRS) is investigated experimentally and theoretically. Using an experimental setup capable of rapid alternation between the simultaneous measurement of coherent Stokes Raman spectroscopy and inverse Raman spectroscopy at low and high intensities, together with a sophisticated frequency reference scheme, it was possible to perform a rather direct comparison between Stark-broadened and non-Stark-broadened spectra of both classes of Raman spectroscopies. The results demonstrate that SRS spectra show more Stark shift and broadening than their FWMRS counterparts. A discrepancy with theoretical results is pointed out, and an attempt is made to explain it.

  5. Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing.

    Science.gov (United States)

    Kultavewuti, Pisek; Zhu, Eric Y; Qian, Li; Pusino, Vincenzo; Sorel, Marc; Stewart Aitchison, J

    2016-02-22

    We demonstrate a source of correlated photon pairs which will have applications in future integrated quantum photonic circuits. The source utilizes spontaneous four-wave mixing (SFWM) in a dispersion-engineered nanowaveguide made of AlGaAs, which has merits of negligible two-photon absorption and low spontaneous Raman scattering (SpRS). We observe a coincidence-to-accidental (CAR) ratio up to 177, mainly limited by propagation losses. Experimental results agree well with theoretical predictions of the SFWM photon pair generation and the SpRS noise photon generation. We also study the effects from the SpRS, propagation losses, and waveguide lengths on the quality of our source.

  6. Phase matched parametric amplification via four-wave mixing in optical microfibers.

    Science.gov (United States)

    Abdul Khudus, Muhammad I M; De Lucia, Francesco; Corbari, Costantino; Lee, Timothy; Horak, Peter; Sazio, Pier; Brambilla, Gilberto

    2016-02-15

    Four-wave mixing (FWM) based parametric amplification in optical microfibers (OMFs) is demonstrated over a wavelength range of over 1000 nm by exploiting their tailorable dispersion characteristics to achieve phase matching. Simulations indicate that for any set of wavelengths satisfying the FWM energy conservation condition there are two diameters at which phase matching in the fundamental mode can occur. Experiments with a high-power pulsed source working in conjunction with a periodically poled silica fiber (PPSF), producing both fundamental and second harmonic signals, are undertaken to investigate the possibility of FWM parametric amplification in OMFs. Large increases of idler output power at the third harmonic wavelength were recorded for diameters close to the two phase matching diameters. A total amplification of more than 25 dB from the initial signal was observed in a 6 mm long optical microfiber, after accounting for the thermal drift of the PPSF and other losses in the system.

  7. Degenerate four-wave-mixing in a silica hollow bottle-like microresonator

    CERN Document Server

    Yang, Yong; Thompson, Ruth; Ward, Jonathan; Chormaic, Síle Nic

    2015-01-01

    A hollow bottle-like microresonator (BLMR) with ultra-high quality factor is fabricated from a microcapillary with nearly parabolic profile. At 1.55 $\\mu m$ pumping, degenerate four-wave mixing can be observed for a BLMR of diameter 102 $\\mu$m. The parabolic profile of the BLMR guarantees a nearly zero waveguide dispersion, which is theoretically discussed in detail. From the simulation, at 1.55 $\\mu$m wavelength in such a BLMR, the fundamental bottle mode is in the anomalous dispersion regime, whilst the ordinary whispering gallery mode (WGM) confined at the center of the BLMR is in the normal dispersion regime. Experimentally, no degenerate FWM is observed for the WGM selected by positioning the coupling tapered fiber in the same BLMR. Furthermore, dispersion tuning is briefly discussed. As the work predicted, the BLMR shows promise for the implementation of sparsely distributed, widely spanned frequency combs at the telecommunication wavelength.

  8. Cascaded four-wave mixing for broadband tunable laser sideband generation.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Wang, Liang; Fang, Chong

    2013-06-01

    We demonstrate the versatile broadband wavelength tunability of frequency upconverted multicolor cascaded four-wave-mixing (CFWM) signals spanning the continuous wavelength range from UV to near IR in a thin type-I BBO crystal using 35 fs, 800 nm fundamental and chirped IR supercontinuum white light pulses. Two sets of spatially dispersed CFWM laser sidebands are concomitantly generated from two incident pulses as well as their second-harmonic-generation and sum-frequency-generation pulses in a crossing geometry. The tunable cascaded signals with ultrabroad bandwidth can be readily achieved via spatially rotating the BBO crystal to different phase-matching conditions and temporally varying the time delay between the two incident near-IR pulses.

  9. Output Rate of Atomic Four-Wave Mixing in Two-Component Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; LI Wei-Bing; PENG Ju-Cun

    2004-01-01

    In this letter, following the proposal of Heurich et al. [Phys. Rev. A63 (2001) 033605], we analyze and discuss output rate of atomic four-wave mixing in the two-component Bose-Einstein condensate under the condition of the steady state. The results show that the magnitude of the signal beam increases with the increase of the intensity of the probe beam, up to a saturated value, then it decreases as the probe beam increases. The influence of the interaction range on the signal beam is also predicted. In particular, it is worth while pointing out that in contrast to the previous solutions, our obtained analytical solutions are of very simple and explicit forms, which open the door for further investigating the related physical mechanisms.

  10. Four-wave mixing of Nd3+-doped crystals and glasses

    Science.gov (United States)

    Powell, Richard C.; Payne, Stephen A.; Chase, L. L.; Wilke, G. D.

    1990-05-01

    Degenerate four-wave-mixing measurements have been performed on a wide variety of Nd3+-doped oxide and fluoride glasses and crystals. Crossed beams from a cw argon-ion laser were used to excite the Nd3+ ions directly and establish population gratings. Absolute measurements of the signal strengths were made, and their magnitudes were found to be sensitively influenced by the composition of the host. A theoretical model was developed to interpret the results, and it was found that the dominant contribution to the signal is associated with the difference in polarizability of the Nd3+ ions in the metastable state versus the ground state. The magnitude of the observed change in the polarizability indicates that the 4f-->5d transitions are responsible for this effect, and as a result, the value of the radial integral sensitively affects the calculated polarizability change.

  11. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing.

    Science.gov (United States)

    Almeida, Euclides; Prior, Yehiam

    2015-05-14

    Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell's equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed.

  12. Microwave photonic notch filter with complex coefficient based on four wave mixing

    Science.gov (United States)

    Xu, Dong; Cao, Ye; Tong, Zheng-rong; Yang, Jing-peng

    2016-11-01

    A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing (FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber (HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of microwave photonic filter (MPF). The complex coefficient is generated by using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and phase modulation sidebands. The results show that this filter can be changed from bandpass filter to notch filter by controlling the FD-OP. The center frequency of the notch filter can be continuously tuned from 5.853 GHz to 29.311 GHz with free spectral range ( FSR) of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.

  13. Carboxylate platform: the MixAlco process part 2: process economics.

    Science.gov (United States)

    Granda, Cesar B; Holtzapple, Mark T; Luce, Gary; Searcy, Katherine; Mamrosh, Darryl L

    2009-05-01

    The MixAlco process employs a mixed culture of acid-forming microorganisms to convert biomass to carboxylate salts, which are concentrated via vapor-compression evaporation and subsequently chemically converted to other chemical and fuel products. To make alcohols, hydrogen is required, which can be supplied from a number of processes, including gasifying biomass, separation from fermentor gases, methane reforming, or electrolysis. Using zeolite catalysts, the alcohols can be oligomerized into hydrocarbons, such as gasoline. A 40-tonne/h plant processing municipal solid waste ($45/tonne tipping fee) and using hydrogen from a pipeline or refinery ($2.00/kg H(2)) can sell alcohols for $1.13/gal or gasoline for $1.75/gal with a 15% return on investment ($0.61/gal of alcohol or $0.99/gal of gasoline for cash costs only). The capital cost is $1.95/annual gallon of mixed alcohols. An 800-tonne/h plant processing high-yield biomass ($60/tonne) and gasifying fermentation residues and waste biomass to hydrogen ($1.42/kg H(2)) can sell alcohols for $1.33/gal or gasoline for $2.04/gal with a 15% return on investment ($1.08/gal of alcohol or $1.68/gal of gasoline for cash costs only). The capital cost for the alcohol and gasification plants at 800 tonne/h is $1.45/annual gallon of mixed alcohols.

  14. Kinetic Temperature and Electron Density Measurement in an Inductively Coupled Plasma Torch using Degenerate Four-Wave Mixing

    Science.gov (United States)

    Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.

    2008-01-01

    Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.

  15. Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers.

    Science.gov (United States)

    Velázquez-Ibarra, Lorena; Díez, Antonio; Silvestre, Enrique; Andrés, Miguel V

    2016-06-01

    We present an experimental study of parametric four-wave mixing generation in photonic crystal fibers that have been infiltrated with ethanol. A silica photonic crystal fiber was designed to have the proper dispersion properties after ethanol infiltration for the generation of widely spaced four-wave mixing (FWM) bands under 1064 nm pumping. We demonstrate that the FWM bands can be tuned in a wide wavelength range through the thermo-optic effect. Band shifts of 175 and over 500 nm for the signal and idler bands, respectively, are reported. The reported results can be of interest in many applications, such as CARS microscopy.

  16. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  17. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    Science.gov (United States)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  18. Factors influencing ice formation and growth in simulations of a mixed-phase wave cloud

    Directory of Open Access Journals (Sweden)

    C. Dearden

    2012-10-01

    Full Text Available In this paper, numerical simulations of an orographically induced wave cloud sampled in-situ during the ICE-L (Ice in Clouds Experiment - Layer clouds field campaign are performed and compared directly against the available observations along various straight and level flight paths. The simulations are based on a detailed mixed-phase bin microphysics model embedded within a 1-D column framework with the latest parameterizations for heterogeneous ice nucleation and an adaptive treatment of ice crystal growth based on the evolution of crystal habit. The study focuses on the second of two clouds sampled on 16th November 2007, the in-situ data from which exhibits some interesting and more complex microphysics than other flights from the campaign. The model is used to demonstrate the importance of both heterogeneous and homogeneous nucleation in explaining the in-situ observations of ice crystal concentration and habit, and how the ability to isolate the influence of both nucleation mechanisms helps when quantifying active IN concentrations. The aspect ratio and density of the simulated ice crystals is shown to evolve in a manner consistent with the in-situ observations along the flight track, particularly during the transition from the mixed-phase region of the cloud to the ice tail dominated by homogeneous nucleation. Some additional model runs are also performed to explore how changes in IN concentration and the value of the deposition coefficient for ice affect the competition between heterogeneous and homogeneous ice formation in the wave cloud, where the Factorial Method is used to isolate and quantify the effect of such non-linear interactions. The findings from this analysis show that the effect on homogeneous freezing rates is small, suggesting that any competition between the microphysical variables is largely overshadowed by the strong dynamical forcing of the cloud in the early stages of ice formation.

  19. Tunneling conductance in quantum wire/insulator/d_(x~2-y~2)+id_(xy) mixed wave superconductor junctions

    Institute of Scientific and Technical Information of China (English)

    Wei Jian-Wen

    2009-01-01

    Using the extended Blonder-Tinkham-Klapwijk(BTK)theory, this paper calculates the tunnelling conductance in quantum wire/insulator/d_(x~2-y~2)+id_(xy) mixed wave superconductor(q/I/d_(x~2-y~2)+id_(xy))junctions That is different from the case in d-and p-wave superconductor junctions. When the angle α between a-axis of the d_(x~2-y~2) wave superconductor and the interface normal is π/4, there follows a rather distinctive tunnelling conductance. The zero-bias conductance peak(ZBCP)may or may not appear in the tunnelling conductance. Both the interface potential z and the quasi-particle lifetime factor [F]are smaller, there is no ZBCP. Otherwise, the ZBCP will appear. The position otbias conductance peak(BCP)depends strongly on the amplitude ratio of two components for d_(x~2-y~2)+id_(xy) mixed wave. The low and narrow ZBCP may coexist with the BCP in the tunnelling conductance. Using those features in the tunnelling conductance of q/I/d_(x~2-y~2)+id_(xy) junctions, it can distinguish d_(x~2-y~2)+id_(xy) mixed wave superconductor from d-and p-wave one.

  20. Broadband Enhancement of Optical Frequency Comb Using Cascaded Four-Wave Mixing in Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Tawfig Eltaif

    2017-01-01

    Full Text Available A cascaded intensity modulator (IM and phase modulator (PM are used to modulate a continuous-wave (CW laser and generate an optical frequency comb (OFC. Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM in photonic crystal fiber (PCF. Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively.