Meson wave functions in 2-dim QCD
International Nuclear Information System (INIS)
Hildebrandt, S.; Visnjic, V.
1977-07-01
We consider the eigenvalue problem of 't Hooft for the meson spectrum in 2-dim QCD by defining some alternative formulations whose equivalence we prove. Hence we are able to prove that the spectrum is discrete and of finite multiplicity and to derive bounds (upper and lower) for the eigenvalues (ground state, with state and n → infinitely state). We prove that the functions are analytic and use this to carry out explicit numerical calculations of the wave functions for various values of the quark masses and to recalculate the meson spectrum. (orig.) [de
Electro- and chromomagnetism in the charm meson spectrum
Fritzsch, Harald
1977-01-01
How the D and F meson spectrum is influenced by the chromomagnetic and electromagnetic hyperfine interaction is discussed. In particular a relation between the hyperfine splitting of charmed mesons and the magnetic moments of the baryons is derived. It is found that M(F/sub + /*)-M(F/sub +/) approximately=100+or-8 MeV. (12 refs).
Electro- and chromomagnetism in the charm meson spectrum
International Nuclear Information System (INIS)
Fritzsch, H.
1977-01-01
How the D and F meson spectrum is influenced by the chromomagnetic and electomagnetic hyperfine interaction is discussed. In particular a relation between the hyperfine splitting of charmed mesons and the magnetic moments of the baryons is derived. M(Fsub(+)*)-M(Fsub(+)) approximately 100+-8 MeV. (Auth.)
Integral transform technique for meson wave functions
International Nuclear Information System (INIS)
Bakulev, A.P.; Mikhajlov, S.V.
1996-01-01
In a recent paper [1] we proposed a new approach for extracting the wave function of the π-meson φ π (x) and the masses and wave functions of its first resonances from the new QCD sum rules for nondiagonal correlators obtained in [2]. Here, we test our approach using an exactly solvable toy model as an illustrating example. We demonstrate the validity of the method and suggest a pure algebraic procedure for extracting the masses and wave functions relating to the case under investigation. We also explore the stability of the procedure under perturbations of the theoretical part of the sum rule. In application to the pion case, this results not only in the mass and wave function of the first resonance (π'), but also in the estimation of π''-mass. 17 refs., 11 figs
Investigation of Semileptonic {ital B} Meson Decays to {ital p} -Wave Charm Mesons
Energy Technology Data Exchange (ETDEWEB)
Anastassov, A.; Duboscq, J.E.; Fujino, D.; Gan, K.K.; Hart, T.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Spencer, M.B.; Sung, M.; Undrus, A.; Wanke, R.; Wolf, A.; Zoeller, M.M. [Ohio State University, Columbus, Ohio 43210 (United States); Nemati, B.; Richichi, S.J.; Ross, W.R.; Skubic, P. [University of Oklahoma, Norman, Oklahoma 73019 (United States); Bishai, M.; Fast, J.; Hinson, J.W.; Menon, N.; Miller, D.H.; Shibata, E.I.; Shipsey, I.P.; Yurko, M. [Purdue University, West Lafayette, Indiana 47907 (United States); Glenn, S.; Johnson, S.D.; Kwon, Y.; Roberts, S.; Thorndike, E.H. [University of Rochester, Rochester, New York 14627 (United States); Jessop, C.P.; Lingel, K.; Marsiske, H.; Perl, M.L.; Savinov, V.; Ugolini, D.; Wang, R.; Zhou, X. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States); Coan, T.E.; Fadeyev, V.; Korolkov, I.; Maravin, Y.; Narsky, I.; Shelkov, V.; Staeck, J.; Stroynowski, R.; Volobouev, I.; Ye, J. [Southern Methodist University, Dallas, Texas 75275 (United States); Artuso, M.; Efimov, A.; Goldberg, M.; He, D.; Kopp, S.; Moneti, G.C.; Mountain, R.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Xing, X. [Syracuse University, Syracuse, New York 13244 (United States); Bartelt, J.; Csorna, S.E.; Jain, V.; McLean, K.W.; Marka, S. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Godang, R.; Kinoshita, K.; Lai, I.C.; Pomianowski, P.; Schrenk, S. [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J. [Wayne State University, Detroit, Michigan 48202 (United States); Barish, B.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F. [California Institute of Technology, Pasadena, California 91125 (United States); Bliss, D.W.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V. and others
1998-05-01
We have studied semileptonic B meson decays with a p -wave charm meson in the final state using 3.29{times}10{sup 6} B{ovr B} events collected with the CLEOII detector at the Cornell Electron-Positron Storage Ring. We find a value for the exclusive semileptonic product branching fraction B(B{sup {minus}}{r_arrow}D{sup 0}{sub 1} {ell}{sup {minus}}{ovr {nu}}{sub {ell}}) B(D{sup 0}{sub 1}{r_arrow}D{sup {asterisk}+} {pi}{sup {minus}})=(0.373{plus_minus}0.085{plus_minus} 0.052{plus_minus}0.024){percent} and an upper limit for B(B{sup {minus}}{r_arrow}D{sup {asterisk}0}{sub 2} {ell}{sup {minus}}{ovr {nu}}{sub {ell}}) B(D{sup {asterisk}0}{sub 2}{r_arrow}D{sup {asterisk}+ }{pi}{sup {minus}}){lt}0.16{percent} (90{percent} C.L.). Furthermore, we present the first measurement of the q{sup 2} spectrum for B{sup {minus}}{r_arrow}D{sup 0}{sub 1}{ell}{sup {minus}} {ovr {nu}}{sub {ell}} . {copyright} {ital 1998} {ital The American Physical Society}
Rapidity resummation for B-meson wave functions
Directory of Open Access Journals (Sweden)
Shen Yue-Long
2014-01-01
Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.
Directional spectrum of ocean waves
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A; Gouveia, A; Nagarajan, R.
This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...
Impressions of the Meson Spectrum: Hybrids & Exotics, present and future
Energy Technology Data Exchange (ETDEWEB)
Pennington, Michael R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-25
It has long been expected that the spectrum of hadrons in QCD would be far richer and extensive than experiment has so far revealed. While there have been experimental hints of this richness for some time, it is really only in the last few years that dramatic progress has been seen in the exploration both experimentally and in calculations on the lattice. Precision studies enabled by new technology both with detectors and high performance computations are converging on an understanding of the spectrum in strong coupling QCD. These methodologies are laying the foundation for a decade of potential discovery that electro and photoproduction experiments at Jefferson Lab, which when combined with key results on B and charmonium decays from both e+e? and pp colliders, should turn mere impressions of the light meson spectrum into a high definition picture.
Molecular components in P-wave charmed-strange mesons
Ortega, Pablo G.
2016-10-26
Results obtained by various experiments show that the $D_{s0}^{\\ast}(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located below the $DK$ and $D^{\\ast}K$ thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the $c\\bar{s}$ ground states with quantum numbers $J^{P}=0^{+}$ ($D_{s0}^{\\ast}(2317)$) and $J^{P}=1^{+}$ ($D_{s1}(2460)$) due to their coupling with $S$-wave $D^{(\\ast)}K$ thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a modified version of the $^{3}P_{0}$ decay model. We observe that the coupling of the $0^{+}$ $(1^{+})$ mes...
Probing the P -wave charmonium decays of Bc meson
Rui, Zhou
2018-02-01
Motivated by the large number of Bc meson decay modes observed recently by several detectors at the LHC, we present a detailed analysis of the Bc meson decaying to the P -wave charmonium states and a light pseudoscalar (P ) or vector (V ) meson within the framework of perturbative QCD factorization. The P -wave charmonium distribution amplitudes are extracted from the n =2 , l =1 Schrödinger states for a Coulomb potential, which can be taken as the universal nonperturbative objects to analyze the hard exclusive processes with P -wave charmonium production. It is found that these decays have large branching ratios of the order of 10-5˜10-2 , which seem to be in the reach of future experiments. We also provide predictions for the polarization fractions and relative phases of Bc→(χc 1,χc 2,hc)V decays. It is expected that the longitudinal polarization amplitudes dominate the branching ratios according to the quark helicity analysis, and the magnitudes and phases of parallel polarization amplitude are approximately equal to the perpendicular ones. The obtained results are compared with available experimental data, our previous studies, and numbers from other approaches.
The static-light meson spectrum from twisted mass lattice QCD
International Nuclear Information System (INIS)
Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc
2008-10-01
We compute the static-light meson spectrum with N f =2 flavours of sea quarks using Wilson twisted mass lattice QCD. We consider five different values for the light quark mass corresponding to 300 MeV PS s mesons. (orig.)
Numerical solution of integral equations, describing mass spectrum of vector mesons
International Nuclear Information System (INIS)
Zhidkov, E.P.; Nikonov, E.G.; Sidorov, A.V.; Skachkov, N.B.; Khoromskij, B.N.
1988-01-01
The description of the numerical algorithm for solving quasipotential integral equation in impulse space is presented. The results of numerical computations of the vector meson mass spectrum and the leptonic decay width are given in comparison with the experimental data
The effect of meson wave function on heavy-quark fragmentation function
Energy Technology Data Exchange (ETDEWEB)
Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2016-05-15
We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)
Covariant trace formalism for heavy meson s-wave to p-wave transitions
International Nuclear Information System (INIS)
Balk, S.; Koerner, J.G.; Thompson, G.; Hussain, F.
1992-06-01
Heavy meson, s- to p-wave, weak transitions are studied in the context of the Heavy Quark Effective Theory using covariant meson wave functions. We use the trace formalism to evaluate the weak transitions. As expected from heavy quark symmetry, the eight transitions between s- and p-wave states are described in terms of only two universal form factors which are given in terms of explicit wave function overlap integrals. We present our results in terms of both invariant and helicity amplitudes. Using our helicity amplitude expressions we discuss rate formulae, helicity structure functions and joint angular decay distributions in the decays B-bar→D**(→(D,D*)+π)+W - (→l - ν l ). The heavy quark symmetry predictions for the one-pion transitions D**→(D,D*)+π are similarly worked out by using trace techniques. (author). 35 refs, 3 figs, 2 tabs
Spectrum-generating SU(4) in particle physics. II. Electromagnetic decays of vector mesons
International Nuclear Information System (INIS)
Bohm, A.; Teese, R.B.
1977-09-01
The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one theoretical assumption and given in terms of three reduced matrix elements. The implication of the experimental value GAMMA(rho → πγ) = (35 +- 10) keV for the form of the electromagnetic current operator is discussed
The meson spectrum between 1 and 2 GeV: Gluonic states and other exotica
International Nuclear Information System (INIS)
Chanowitz, M.S.
1990-01-01
Present understanding of the meson spectrum is reviewed, with special attention on the search for gluonic states. Experimental progress has resulted in several paradoxes indicating states outside the bar qq spectrum of the nonrelativistic quark model. 59 refs., 1 fig., 2 tabs
Study of the neutral meson spectrum near 1000 MeV
Energy Technology Data Exchange (ETDEWEB)
Leeper, R.J.
1975-12-01
The nonstrange neutral meson spectrum from 0.75 to 1.23 GeV/c was studied in the reaction negative pion plus proton goes to neutron plus missing mass at incident beam momenta of 1.98 and 2.41 GeV/c. Neutrons produced by beam interactions in the liquid hydrogen target were detected in the near forward direction in an array of plastic scintillation counters. The missing mass of the remaining particles produced in the final state was determined by a measurement of the neutron time-of-flight. In the case of genuine two-body processes, ..pi../sup -/p ..-->.. n + meson, the observed neutron corresponded to mesons produced forward in the center of mass system. Forward going secondary charge particles produced in the hydrogen target were detected and momentum analyzed by the Argonne Effective Mass Spectrometer. This allowed the isolation of several constrained final states. Arrays of scintillation detectors surrounding the target gave charged particle information and enabled the data to be differentiated into various topological subsamples. The well established ..omega../sup 0/ meson was detected. In addition, a sharp break in the ..pi../sup +/..pi../sup -/n mass spectrum and a rapid rise of the K/sup +/K/sup -/n spectrum just above threshold was observed. Both of these effects were associated with the S* meson. Finally, the absence of four previously observed narrow mesons is discussed.
S-wave spectroscopy and Hyperne splitting of Bc meson
International Nuclear Information System (INIS)
Shah, Manan; Bhavsar, Tanvi; Vinodkumar, P.C.
2017-01-01
B c meson is the only heavy meson with two open flavours. This system is also interesting because they cannot annihilate into gluons. The mass spectra and hyperfine splitting of the B c meson are investigated in the Dirac framework with the help of linear + constant potential. The spin-spin interactions are also included in the calculation of the pseudoscalar and vector meson masses. Our computed result for the B c meson are in very good agreement with experimental results as well as other available theoretical result. Decay properties are also interesting because it is expected that decay of B c meson occur in to neutral meson. We hope our theoretical results are helpful for future experimental observations
On wave functions of mesons involving the s-, c- and b-quarks
International Nuclear Information System (INIS)
Zhitnitskij, A.R.; Zhitnitskij, I.R.; Chernyak, V.L.
1983-01-01
The wave function components of pseudoscalar and vestor mesons which are antisymmertric with respect to permutation of the quark momenta are studied. The results are as follows: elt xsub(s)-xsub(u) > sub(K) approximately equal to 0.11 for the K meson, sub(K*) approximately equal to 0.15-C.20 for the K* meson, being a mean fraction of the longitudinal momentum transferred by the s(u) quark. The following estimates are obtained: / approximately equal to 0.20-0.25; / approximately equal to 0.8x10 -2 . The asymptotics of the K 0 -meson form factor and the etasub(c) → KK* decay width are found. Properties of the wave functions of mesons which contain a light and a heavy quark (D, B, ...) are considered. For the B 0 meson approximately equal to 0.10 is found. Arguments are given supporting nonenhancement of the amplitudes of the processes involving D mesons compared to similar K-meson amplitudes. A simple way is suggested to determine the asymptotic form of various wave functions
A chiral quark model for meson electroproduction in the S11 partial wave
International Nuclear Information System (INIS)
Golli, B.; Sirca, S.
2011-01-01
We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)
Mass spectrum of 1-+ exotic mesons from lattice QCD
International Nuclear Information System (INIS)
Cook, M. S.; Fiebig, H. R.
2006-01-01
Time correlation functions of a hybrid exotic meson operator, with J PC =1 -+ , generated in quenched lattice QCD are subjected to a (Bayesian) maximum entropy analysis. Five distinct spectral levels are uncovered. Their extrapolation into the physical pion mass region suggests a possible relationship to experimentally known states π 1 (1400) and π 1 (1600), and also to a state in the 2 GeV region carrying the same quantum numbers
The constituent quark model the spectrum of mesons
International Nuclear Information System (INIS)
Shojaei, M.R.; Rajabi, A.A.; Hasanabadi, H.
2007-01-01
Full text: We calculate exact solution of the Schroedinger equation analytically for a meson consisting of a quark and antiquark, considering the interaction potential between the particles as a combination of two potentials, a potential due to color charge and an oscillatory potential as confining potential. in this paper, first consider potential between quarks as a function of radios x, thus we assume this potential as a central potential. This potential is derived from that the central potential. This potential is derived from that the quark see itself under influence of another quark, in this case central potential is considered as: V(x)=ax 2 -c/x. Potential is obtained from interaction between a quark and an antiquary. The source of it is color charge and ax 2 potential plays confining potential. Because this potential shows oscillations of one quark to another quark in the distance x from it.. In addition to the above potentials we consider the spin-spin, spin - isospin and isospin - isospin interactions as perturbing potentials, and calculate the mass of the mesons for each potential separately finally using the equivalence of mass-energy we calculate the mass of the mesons
Heavy quark fragmentation functions for D-wave quarkonium and charmed beauty mesons
International Nuclear Information System (INIS)
Cheung, K.; Yuan, T.C.
1995-09-01
At the large transverse momentum region, the production of heavy-heavy bound-states such as charmonium, bottomonium, and anti bc mesons in high energy e + e - and hadronic collisions is dominated by parton fragmentation. The authors calculate the heavy quark fragmentation functions into the D-wave quarkonium and anti bc mesons to leading order in the strong coupling constant and in the non-relativistic expansion. In the anti bc meson case, one set of its D-wave states is expected to lie below the open flavor threshold. The total fragmentation probability for a anti b antiquark to split into the D-wave anti bc mesons is about 2 x 10 -5 , which implies that only 2% of the total pseudo-scalar ground state B c comes from the cascades of these orbitally excited states
Millimeter wave spectrum of nitromethane
Ilyushin, Vadim
2018-03-01
A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
International Nuclear Information System (INIS)
Manley, D. Mark
2016-01-01
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K"+ Λ.
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
Energy Technology Data Exchange (ETDEWEB)
Manley, D. Mark [Kent State Univ., Kent, OH (United States)
2016-09-08
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.
Possible retardation effects of quark confinement on the meson spectrum
International Nuclear Information System (INIS)
Qiao, C.; Huang, H.; Chao, K.
1996-01-01
The reduced Bethe-Salpeter equation with scalar confinement and vector gluon exchange is applied to quark-antiquark bound states. The so-called intrinsic flaw of the Salpeter equation with static scalar confinement is investigated. The notorious problem of narrow level spacings is found to be remedied by taking into consideration the retardation effect of scalar confinement. A good fit for the mass spectrum of both heavy and light quarkonium states is then obtained. copyright 1996 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Salgado, Carlos W. [Norfolk State University, Norfolk, VA (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weygand, Dennis P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-04-01
Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.
Experimental evidence for hadroproduction of exotic mesons
International Nuclear Information System (INIS)
G. S. Adams; T. Adams; Z. Bar-Yam; J. M. Bishop; V. A. Bodyagin; B. B. Brabson; D. S. Brown; N. M. Cason; S. U. Chung; R. R. Crittenden; J. P. Cummings; K. Danyo; S. Denisov; V. Dorofeev; J. P. Dowd; A. R. Dzierba; P. Eugenio; J. Gunter; R. W. Hackenburg; M. Hayek; E. I. Ivanov; I. Kachaev; W. Kern; E. King; O. L. Kodolova; V. L. Korotkikh; M. A. Kostin; J. Kuhn; R. Lindenbusch; V. Lipaev; J. M. LoSecco; J. J. Manak; J. Napolitano; M. Nozar; C. Olchanski; A. I. Ostrovidov; T. K. Pedlar; A. Popov; D. R. Rust; D. Ryabchikov; A. H. Sanjari; L. I. Sarycheva; E. Scott; K. K. Seth; N. Shenhav; W. D. Shephard; N. B. Sinev; J. A. Smith; P. T. Smith; D. L. Stienike; T. Sulanke; S. A. Taegar; S. Teige; D. R. Thompson; I. N. Vardanyan; D. P. Weygand; D. White; H. J. Willutzki; J. Wise; M. Witkowski; A. A. Yershov; D. Zhao
2001-01-01
New measurements of peripheral meson production are presented. The data confirm the existence of exotic mesons at 1.4 and 1.6 GeV/c2. The latter state dominates the eta'pi- decay spectrum. The data on eta pi+pi-pi- decay show large strength in several exotic (Jpc = 1- +) waves as well
Update on Heavy-Meson Spectrum Tests of the Oktay--Kronfeld Action
Energy Technology Data Exchange (ETDEWEB)
Bailey, Jon A. [Seoul Natl. U.; Jang, Yong-Chull [Seoul Natl. U.; Lee, Weonjong [Seoul Natl. U.; DeTar, Carleton [Utah U.; Kronfeld, Andreas S. [TUM-IAS, Munich; Oktay, Mehmet B. [Iowa U.
2016-01-18
We present updated results of a numerical improvement test with heavy-meson spectrum for the Oktay--Kronfeld (OK) action. The OK action is an extension of the Fermilab improvement program for massive Wilson fermions including all dimension-six and some dimension-seven bilinear terms. Improvement terms are truncated by HQET power counting at $\\mathrm{O}(\\Lambda^3/m_Q^3)$ for heavy-light systems, and by NRQCD power counting at $\\mathrm{O}(v^6)$ for quarkonium. They suffice for tree-level matching to QCD to the given order in the power-counting schemes. To assess the improvement, we generate new data with the OK and Fermilab action that covers both charm and bottom quark mass regions on a MILC coarse $(a \\approx 0.12~\\text{fm})$ $2+1$ flavor, asqtad-staggered ensemble. We update the analyses of the inconsistency quantity and the hyperfine splittings for the rest and kinetic masses. With one exception, the results clearly show that the OK action significantly reduces heavy-quark discretization effects in the meson spectrum. The exception is the hyperfine splitting of the heavy-light system near the $B_s$ meson mass, where statistics are too low to draw a firm conclusion, despite promising results.
Spectrum pooling in MnWave Networks
DEFF Research Database (Denmark)
Boccardi, Federico; Shokri-Ghadikolaei, Hossein; Fodor, Gabor
2016-01-01
Motivated by the specific characteristics of mmWave technologies, we discuss the possibility of an authorization regime that allows spectrum sharing between multiple operators, also referred to as spectrum pooling. In particular, considering user rate as the performance measure, we assess...
The spectrum of axisymmetric torsional Alfven waves
International Nuclear Information System (INIS)
Sy, W.N.
1977-03-01
The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)
Definition of mass spectrum of mesons taking into account relativistic character of interactions
International Nuclear Information System (INIS)
Dinejkhan, M.; Zhaugasheva, S.A.; Karimzhan, K.
2009-01-01
Taking into account relativistic and nonlocal character of interactions, the mass spectrum of the mesons consisting of the light-light and light-heavy quarks with orbital and radial excitations, is determined. Our result show that good agreement with the experimental data for the slope and the intercept of the Regge trajectory can be obtained, only taking into account the nonperturbative and the nonlocal character of interactions. Dependence of constituent mass of constituent particles on mass of a free state is certain. When quarks are light the difference of current and valent masses of quarks is greater than valent masses of quarks, and when quarks are heavy the difference of these masses is insignificant. One of alternative variants of the account of nonlocality is suggested for the definition of properties of hadrons at large distances. Dependence of constituent mass on the radius of confinement is studied
Meson spectroscopy, quark mixing and quantum chromodynamics
International Nuclear Information System (INIS)
Filippov, A.T.
1979-01-01
A semiphenomenological theory of mass spectrum for mesons, consisting of a quark-antiquark pair, is presented. Relativistic kinematical effects of the quark mass differences, the SU(3)-symmetry breaking in slopes of the Regge trajectories and in radially excited states are taken into account. The OZI-rule breaking is taken into account by means of the mixing matrix for the quark wave functions, whose form is suggested by the quantum chromodynamics. A simple extrapolation of expression, given by the quantum chromodynamics from the ''asymptotic freedom'' region to the ''infrared slavery'' region is proposed to describe the dependence of the mixing parameters on the meson masses. To calculate masses and mixing angles for pseudoscalar mesons a condition is proposed that the pion mass is minimal. In this situation the eta-meson mass is near the maximal value. The predictions of the theory for masses and mixing angles of the mesons are in good agreement with the experiment
Decays of B, Bs and Bc to D-wave heavy-light mesons
International Nuclear Information System (INIS)
Li, Qiang; Wang, Tianhong; Jiang, Yue; Yuan, Han; Zhou, Tian; Wang, Guo-Li
2017-01-01
We study the weak decays of anti B (s) and B c into D-wave heavy-light mesons, including J P = 2 - (D (s)2 , D (s)2 ' , B (s)2 , B (s)2 ' ) and 3 - (D * (s)3 , B * (s)3 ) states. The weak decay hadronic matrix elements are obtained based on the instantaneous Bethe-Salpeter method. The branching ratios for the anti B decays are B[ anti B → D 2 e anti ν e ] = 1.1 -0.3 +0.3 x 10 -3 , B[ anti B → D 2 ' e anti ν e ] = 4.1 -0.8 +0.9 x 10 -4 , and B[ anti B → D 3 * e anti ν e ] = 1.0 -0.2 +0.2 x 10 -3 , respectively. For the semi-electronic decays of anti B s to D s2 , D s2 ' , and D * s3 , the corresponding branching ratios are 1.7 -0.5 +0.5 x 10 -3 , 5.2 -1.5 +1.6 x 10 -4 , and 1.5 -0.4 +0.4 x 10 -3 , respectively. The branching ratios of the semi-electronic decays of B c to D-wave D mesons are in the order of 10 -5 . We also obtained the forward-backward asymmetry, angular spectra, and lepton momentum spectra. In particular the distribution of decay widths for the 2 - states D 2 and D 2 ' varying along with mixing angle are presented. (orig.)
Width of electromagnetic wave instability spectrum in tungsten plate
International Nuclear Information System (INIS)
Rinkevich, A.B.
1995-01-01
Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs
P-wave excited {B}_{c}^{* * } meson photoproduction at the LHeC
Kai, He; Huan-Yu, Bi; Ren-You, Zhang; Xiao-Zhou, Li; Wen-Gan, Ma
2018-05-01
As an important sequential work of the S-wave {B}c(* ) ({}1{S}0({}3{S}1) ) meson production at the large hadron electron collider (LHeC), we investigate the production of the P-wave excited {B}c* * states (1 P 1 and 3 P J with J = 0, 1, 2) via photoproduction mechanism within the framework of nonrelativistic QCD at the LHeC. Generally, the {e}-+P\\to γ +g\\to {B}c* * +b+\\bar{c} process is considered as the main production mechanism at an electron–proton collider due to the large luminosity of the gluon. However, according to our experience on the S-wave {B}c(* ) meson production at the LHeC, the extrinsic production mechanism, i.e., {e}-+P\\to γ +c\\to {B}c* * +b and {e}-+P\\to γ +\\bar{b} \\to {B}c* * +\\bar{c}, could also provide dominating contributions at low p T region. A careful treatment between these channels is performed and the results on total and differential cross sections, together with main uncertainties are discussed. Taking the quark masses m b = 4.90 ± 0.40 GeV and m c = 1.50 ± 0.20 GeV into account and summing up all the production channels, we expect to accumulate ({2.48}-1.75+3.55)× {10}4 {B}c* * ({}1{P}1), ({1.14}-0.82+1.49)× {10}4 {B}c* * ({}3{P}0),({2.38}-1.74+3.39)× {10}4 {B}c* * ({}3{P}1) and ({5.59}-3.93+7.84)× {10}4 {B}c* * ({}3{P}2) events at the \\sqrt{S}=1.30 {{T}}{{e}}{{V}} LHeC in one operation year with luminosity { \\mathcal L }={10}33 cm‑2 s‑1. With such sizable events, it is worth studying the properties of excited P-wave {B}c* * states at the LHeC.
International Nuclear Information System (INIS)
Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo
1999-01-01
We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)
Mesonic effects in nuclear physics
International Nuclear Information System (INIS)
Johnson, M.
1978-01-01
The relation between mesons and nucleons and the properties of nuclear matter, as presently understood, is considered in these lectures. Feynman diagrams, meson theoretical nucleon-nucleon interactions, mesonic components in nuclear wave functions, direct observation of mesonic components in NN scattering above the pion production threshold, nuclear matter theory, and pion condensation are treated. 120 references
Mass spectrum of vector mesons in the relativistic model of quasi-independent quarks
International Nuclear Information System (INIS)
Savrin, V.I.; Khrushchev, V.V.; Semenov, S.V.
1988-01-01
Mass values of mesons with J PC =1 -- built of u-, d-, s-, c-, b-quarks in S-states have been found with the help of numerical solutions of Dirac equation. The potential entering the equation consists of the scalar linear potential and the Coulomb vector one. The main contribution into spectra dependence on the radial quantum number for light quarks is shown to give the cnfinement scalar flavour independent potential: V c (r)=κ 2 r, at parameter value κ∼ 0.42 GeV. The calculated mass values are in agreement with ∼ 5% accuracy with the data for well established mesons
Wave directional spectrum from array measurements
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A; Sarma, Y; Menon, H.B.
Using the method of Esteva (1976, 1977), whcih assumes that at the frequency band the waves approach from just a single "mean" wave direction, wave direction has been consistently, accurately and unambiguously evaluated as a function of frequency...
International Nuclear Information System (INIS)
Bhatnagar, S.; Li, Shiyuan; Mahecha, J.
2011-01-01
We have employed the framework of Bethe–Salpeter equation under covariant instantaneous ansatz to calculate leptonic decay constants of unequal mass pseudoscalar mesons like π ± , K, D, D S and B, and radiative decay constants of neutral pseudoscalar mesons like π 0 and η c into two photons. In the Dirac structure of hadronic Bethe–Salpeter wave function, the covariants are incorporated from their complete set in accordance with a recently proposed power counting rule. The contribution of both leading order and next-to-leading order Dirac covariants to decay constants are studied. The results are found to improve and hence validating the power counting rule which provides a practical means of incorporating Dirac covariants in the Bethe–Salpeter wave function for a hadron. (author)
International Nuclear Information System (INIS)
Savron, V.I.; Skachkov, N.B.; Tyumenkov, G.Yu.
1982-01-01
A covariant three dimensional equation is derived for a wave function of a pseudoscalar particle, compoused of two equal mass quarks (quark and antiquark) with spins 1/2. This equation describes a relative motion of two quarks in π meson. An asymptotics of the solution of this equation is found in the momentum representation in the case of quarks interaction chosen in a form of a one gluon exchange amplitude [ru
The role of the generalized Phillips' spectrum in wave turbulence
International Nuclear Information System (INIS)
Newell, A.C.; Zakharov, V.E.
2008-01-01
We suggest the generalized Phillips' spectrum, which we define as that spectrum for which the statistical properties of wave turbulence inherit the symmetries of the original governing equations, is, in many circumstances, the spectrum which obtains in those regions of wavenumber space in which the Kolmogorov-Zakharov (KZ) spectra are no longer valid. This spectrum has many very special properties. We discuss its connection with the singularities which are associated with the whitecap events observed in windblown seas
Unified chiral analysis of the vector meson spectrum from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Wes Armour; Chris Allton; Derek Leinweber; Anthony Thomas; Ross Young
2005-10-13
The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of $M_\\rho$ in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.
Energy Technology Data Exchange (ETDEWEB)
Klose, V.
2007-11-29
This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B{yields}X{sub c}l{sub {nu}}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X,BRF}, and a constant {lambda}=0.65 GeV, n{sub X}{sup 2}=m{sub X}{sup 2}c{sup 4}-2{lambda}E{sub X,BRF}+{lambda}{sup 2}. The moments left angle n{sub X}{sup k} right angle with k=2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {upsilon}(4S) {yields} B anti B events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments left angle n{sub X}{sup k} right angle up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B{yields}X{sub c}l{sub {nu}} and moments of the photon-energy spectrum in decays B{yields} X{sub s}{gamma}, we determine the quark-mixing parameter vertical stroke V{sub cb} vertical stroke, the bottom and charm quark masses, the semileptonic branching fraction B(B{yields}X{sub c}l{sub {nu}}), and four non-perturbative heavy quark parameters. Using HQE
Energy Technology Data Exchange (ETDEWEB)
Klose, Verena [Dresden Univ. of Technology (Germany)
2011-08-12
This thesis presents first measurements of moments of the hadronic n_{X}^{2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → X_{c}ℓν. The variable n_{X}^{2} is a combination of the invariant mass of the charmed meson m_{X}, its energy in the B-meson rest-frame E_{X;BRF}, and a constant ~Λ = 0.65 GeV, n_{X}^{2} = m_{X}^{2}c^{4}-2~ΛE_{X,BRF} + ~Λ^{2}. The moments
Spin wave spectrum of magnetic nanotubes
International Nuclear Information System (INIS)
Gonzalez, A.L.; Landeros, P.; Nunez, Alvaro S.
2010-01-01
We investigate the spin wave spectra associated to a vortex domain wall confined within a ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain the dispersion relation, the density of states and dissipation induced life-times of the spin wave excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics behind the geometrical confinement of nobel magnetic textures.
Effect of discrete RF spectrum on fast wave current drive
International Nuclear Information System (INIS)
Okazaki, Takashi; Yoshioka, Ken; Sugihara, Masayoshi
1987-08-01
Effect of discrete RF spectrum has been studied for the fast wave current drive with the ion cyclotron range of frequency. Driven current and power densities decrease in this spectrum than in the continuous spectrum. However, there is a possibility to have the mechanism which allows electrons outside the resonance region to interact with the fast wave, taking into account the electron trapping by discrete RF spectrum. In the case of neglecting the electron trapping effect, driven current and power densities decrease up to 0.6 - 0.8 of those which are obtained for the continuous spectrum for the FER (Fusion Experimental Reactor). However, their driven current and power densities can be almost doubled in their magnitude for the discrete spectrum by taking into account the trapping effect. (author)
Meson and baryon spectrum for QCD with two light dynamical quarks
Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas
2010-08-01
We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 163×32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4), and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results for ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular, at small pion masses. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.
Meson and baryon spectrum for QCD with two light dynamical quarks
International Nuclear Information System (INIS)
Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schaefer, Andreas
2010-01-01
We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16 3 x32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4), and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results for ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular, at small pion masses. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.
A wave parameters and directional spectrum analysis for extreme winds
Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier
2013-01-01
In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefﬁcient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical compar...
Semileptonic decays of B{sub c} meson to S-wave charmonium states in the perturbative QCD approach
Energy Technology Data Exchange (ETDEWEB)
Rui, Zhou; Li, Hong; Wang, Guang-xin [North China University of Science and Technology, College of Sciences, Tangshan (China); Xiao, Ying [North China University of Science and Technology, College of Information Engineering, Tangshan (China)
2016-10-15
Inspired by the recent measurement of the ratio of B{sub c} branching fractions to J/ψπ{sup +} and J/ψμ{sup +}ν{sub μ} final states at the LHCb detector, we study the semileptonic decays of B{sub c} meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions B{sub c} → P,V, where P and V denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for the B{sub c} meson. It is found that the predicted branching ratios range from 10{sup -7} up to 10{sup -2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions (BR(B{sub c}{sup +}→J/Ψπ{sup +}))/(BR(B{sub c}{sup +}→J/Ψμ{sup +}ν{sub μ})) is in good agreement with the data. For B{sub c} → Vlν{sub l} decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments. (orig.)
Semileptonic decays of B_c meson to S-wave charmonium states in the perturbative QCD approach
International Nuclear Information System (INIS)
Rui, Zhou; Li, Hong; Wang, Guang-xin; Xiao, Ying
2016-01-01
Inspired by the recent measurement of the ratio of B_c branching fractions to J/ψπ"+ and J/ψμ"+ν_μ final states at the LHCb detector, we study the semileptonic decays of B_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions B_c → P,V, where P and V denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for the B_c meson. It is found that the predicted branching ratios range from 10"-"7 up to 10"-"2 and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions (BR(B_c"+→J/Ψπ"+))/(BR(B_c"+→J/Ψμ"+ν_μ)) is in good agreement with the data. For B_c → Vlν_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments. (orig.)
A multimodal wave spectrum-based approach for statistical downscaling of local wave climate
Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.
2017-01-01
Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.
B meson spectrum and decay constant from N{sub f}=2 simulations
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [Lab. de Physique Theorique, CNRS et Univ. Paris-Sud XI, 91 - Orsay (France); Bulava, John [DESY, Zeuthen (Germany). NIC; Della Morte, Michele [Mainz Univ. (DE), Inst. fuer Kernphysik] (and others)
2010-12-15
We report on the status of an ALPHA Collaboration project to extract quantities for B physics phenomenology from N{sub f}=2 lattice simulations. The framework is Heavy Quark Effective Theory (HQET) expanded up to the first order of the inverse b-quark mass. The couplings of the effective theory are determined by imposing matching conditions of observables computed in HQET with their counterpart computed in QCD. That program, based on N{sub f}=2 simulations in a small physical volume with Schroedinger functional boundary conditions, is now almost finished. On the other side the analysis of configurations selected from the CLS ensembles, in order to measure HQET hadronic matrix elements, has just started recently so that only results obtained at a single lattice spacing, a=0:07 fm, is discussed. We give our first results for the b-quark mass and for the B meson decay constant. (orig.)
Masses of S and P wave mesons and pseudoscalar decay constants ...
Indian Academy of Sciences (India)
interactions are perturbatively incorporated with the confinement energy to get the respective vector- pseudoscalar meson mass differences. Here we employ the same parametrization and model param- eters as used in a recent study of low-lying hadron masses and leptonic decay widths. The results are being compared ...
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Analytic moment method calculations of the drift wave spectrum
International Nuclear Information System (INIS)
Thayer, D.R.; Molvig, K.
1985-11-01
A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA
Millimetre Wave Rotational Spectrum of Glycolic Acid
Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.
2016-01-01
The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.
Wavenumber Spectrum of Intermediate-Scale Ocean Surface Waves
National Research Council Canada - National Science Library
Hwang, Paul A
2005-01-01
... (wavelengths between 0.02 and 6 m) under various sea-state conditions. The main result of the analysis is that the dependence of the dimensionless wave spectrum on the dimensionless wind friction velocity follows a power-law function...
Is the resonance C(1480) in the φπ0 mass spectrum a new meson?
International Nuclear Information System (INIS)
Achasov, N.N.; Kozhevnikov, A.A.
1988-01-01
It is shown that the recently discovered resonance structure C (1480) in the φπ 0 mass spectrum of the reaction π - p → φπ 0 n can originate from the rare decay p' (1600) → φπ 0 arising as a result of the OZI-rule violation via intermediate processes p' (1600) → K * anti K+anti K * K → φπ 0 . The study of the reaction e + e - → p' (1600) → φπ 0 is the crucial test of this explanation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wunderlich, Y.; Afzal, F.; Thiel, A.; Beck, R. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)
2017-05-15
This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum L{sub max} needed to achieve a good fit is determined. Then, recent polarization measurements for γp → π{sup 0}p from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel γp → π{sup 0}p, those are the N(1680)(5)/(2){sup +} and Δ(1950)(7)/(2){sup +}, contributing to the F-waves. (orig.)
The gravitational wave spectrum from cosmological B-L breaking
International Nuclear Information System (INIS)
Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.
2013-05-01
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω GW h 2 ∝10 -13 -10 -8 , much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
The gravitational wave spectrum from cosmological B-L breaking
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)
2013-05-15
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
Energy Technology Data Exchange (ETDEWEB)
Vento, Vicente [Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica y Instituto de Fisica Corpuscular, Universidad de Valencia, Burjassot (Spain)
2016-01-15
Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at ∝1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar spectrum. (orig.)
International Nuclear Information System (INIS)
Haas, F.
2009-01-01
In addition to constituent q q(bar) pair configurations, four quark states or gluonic excitations like hybrids or glueballs are also expected to contribute to the mesonic spectrum. The most promising way to identify such states allowed by QCD is the search for J PC quantum number combinations which are forbidden in the constituent quark model. The fixed target COMPASS experiment at CERN offers the opportunity to search for such states in the light quark sector with an unprecedented statistics. First studies of diffractive reactions of 190 GeV/c ions were carried out by COMPASS during a pilot run in 2004. In a first analysis, the three charged pion final state was studied. A Partial Wave Analysis (PWA) with 42 waves including acceptance corrections through a phase-space Monte Carlo simulation of the spectrometer was performed. The exotic π1 (1600) meson with quantum numbers J PC 1 -+ has been clearly established in the ρ-π decay channel with a mass of 1660 ± 0.010(stat) MeV and a width of 0.269 ± 0.021(stat) MeV. The final state with 5 charged pions was also investigated. Results from that study will also be presented. The improved detectors performance in 2008 allows us to study besides these channels further diffractively and centrally produced resonances, neutral ones as well as charged ones. First results of the ongoing analysis of the 2008 data taking period, using a 190 GeV/c pion beam on a hydrogen target will be given. (author)
Partial wave analysis of the π-π-π+ and π-π0π0 systems and the search for a JPC=1-+ meson
International Nuclear Information System (INIS)
Dzierba, A.R.; Mitchell, R.; Scott, E.; Shepherd, M.R.; Smith, P.; Swat, M.; Teige, S.; Szczepaniak, A.P.; Denisov, S.P.; Dorofeev, V.; Kachaev, I.; Lipaev, V.; Popov, A.V.; Ryabchikov, D.I.; Bodyagin, V.A.; Demianov, A.
2006-01-01
A partial wave analysis (PWA) of the π - π - π + and π - π 0 π 0 systems produced in the reaction π - p→(3π) - p at 18 GeV/c was carried out using an isobar model assumption. This analysis is based on 3.0 M π - π 0 π 0 events and 2.6 M π - π - π + events and shows production of the a 1 (1260), a 2 (1320), π 2 (1670), and a 4 (2040) resonances. Results of detailed studies of the stability of partial wave fits are presented. An earlier analysis of 250 K π - π - π + events from the same experiment showed possible evidence for a J PC =1 -+ exotic meson with a mass of ∼1.6 GeV/c 2 decaying into ρπ. In this analysis of a higher statistics sample of the (3π) - system in two charged modes we find no evidence of an exotic meson
International Nuclear Information System (INIS)
Bhatnagar, S.; Mahecha, J.
2008-09-01
We have employed the framework of Bethe-Salpeter equation under Covariant Instantaneous Ansatz to calculate the leptonic decay constants of unequal mass pseudoscalar mesons. In the Dirac structure of BS wave function, the covariants are incorporated from their complete set in accordance with a recently proposed power counting rule, order-by-order in powers of inverse of meson mass. The decay constants are calculated incorporating both Leading Order (LO) as well as Next-to-leading Order (NLO) Dirac covariants. The contribution of both LO as well as NLO covariants to decay constants are studied in detail in this paper. The results are found to improve dramatically, and hence validating the power counting rule which also provides a practical means of incorporating Dirac covariants in the BS wave function of a hadron. (author)
Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.
Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro
2015-08-28
In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.
Supersymmetry across the light and heavy-light hadronic spectrum
Energy Technology Data Exchange (ETDEWEB)
Dosch, Hans Gunter [Institut fur Theoretische Physik, Heidelberg (Germany); de Teramond, Guy F. [Univ. de Costa Rica, San Pedro de Montes de Oca (Costa Rica); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-10-07
Relativistic light-front bound-state equations for mesons and baryons can be constructed in the chiral limit from the supercharges of a superconformal algebra which connect baryon and meson spectra. Quark masses break the conformal invariance, but the basic underlying supersymmetric mechanism, which transforms meson and baryon wave functions into each other, still holds and gives remarkable connections across the entire spectrum of light and heavy-light hadrons. As a result, we also briefly examine the consequences of extending the supersymmetric relations to double-heavy mesons and baryons.
Meson-meson scattering in lattice QED2+1
International Nuclear Information System (INIS)
Fiebig, H.R.; Woloshyn, R.M.
1993-01-01
Scattering phase shifts of a meson-meson system in staggered 3-dimensional lattice QED are computed. The main task of the simulation is to obtain a discrete set of two-body energy levels. These are extracted from a 4-point time correlation matrix and then used to obtain scattering phase shifts. The results for the l = 0 and l = 2 partial waves are consistent with short-range repulsion and intermediate-range attraction of the residual meson-meson interaction. (orig.)
The effect of instanton-induced interaction on P-wave meson spectra ...
Indian Academy of Sciences (India)
possible to reproduce the observed spectra as the tensor and spin-orbit terms of. OGEP are attractive, and hence naturally triplet states masses will be lower than the corresponding singlet states. Hence, to reproduce the full P-wave spectra it is essential to include the hyperfine interaction term of III to have a consistent. 76.
Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model
Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.
2018-03-01
The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.
International Nuclear Information System (INIS)
Hooft, G. t'; Isidori, G.; Maiani, L.; Polosa, A.D.; Riquer, V.
2008-01-01
We discuss the effect of the instanton induced, six-fermion effective Lagrangian on the decays of the lightest scalar mesons in the diquark-antidiquark picture. This addition allows for a remarkably good description of light scalar meson decays. The same effective Lagrangian produces a mixing of the lightest scalars with the positive parity qq-bar states. Comparing with previous work where the qq-bar mesons are identified with the nonet at 1200-1700 MeV, we find that the mixing required to fit the mass spectrum is in good agreement with the instanton coupling obtained from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy qq-bar states (dominating in the heavier mesons) emerges
Microstrip natural wave spectrum mathematical model using partial inversion method
International Nuclear Information System (INIS)
Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.
1995-01-01
It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types
The lightest hybrid meson supermultiplet in QCD
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef J
2011-10-01
We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.
Techniques in meson spectroscopy
International Nuclear Information System (INIS)
Longacre, R.S.
1991-01-01
This report contains lectures on the following topics: the quark model and beyond using quantum chromodynamics; analysis of formation reactions; energy dependence of the partial wave amplitudes; where the data for the t-matrix analysis comes from; and coupled channel analysis of isoscalar mesons
Static-light meson masses from twisted mass lattice QCD
International Nuclear Information System (INIS)
Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc
2008-08-01
We compute the static-light meson spectrum using two-flavor Wilson twisted mass lattice QCD. We have considered five different values for the light quark mass corresponding to 300 MeV PS S mesons. (orig.)
The meson spectroscopy program with CLAS12 at Jefferson Laboratory
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Alessandro [Univ. of Rome Tor Vergata (Italy)
2016-06-01
The study of the hadronic spectrum is one of the most powerful tools to investigate the mechanism at the basis of quark confinement within hadrons. A precise determination of the spectrum allows not only to assess the properties of the hadrons in their fundamental and excited states, but also to investigate the existence of states resulting from alternative configurations of quarks and gluons, such as the glue-balls, hybrid hadrons and many-quarks configurations. The study of the mesonic part of the spectrum can play a central role in this investigation thanks to the strong signature that the hybrid mesons are expected to have: the presence of explicit gluonic degrees of freedom in such states may result in JPC configurations not allowed for the standard q ¯ q states. From the experimental side the expected high-multiplicity decays of the hybrid mesons require an apparatus with high performances in terms of rate-capability, resolution and acceptance. The CLAS12 experiment (formally MesonEx) is one of new-generation experiments at Thomas Jefferson National Laboratory (JLAB) for which an unprecedented statistics of events, with fully reconstructed kinematics for large particle multiplicity decays, will be available. A wide scientific program that will start in 2016 has been deployed for meson spectrum investigation with the CLAS12 apparatus in Hall B at energies up to 11 GeV. One of the main parts of the program is based on the use of the Forward Tagger apparatus, which will allow CLAS12 experiment to extend the study of meson electro-production to the quasi-real photo-production kinematical region (very low Q2), where the production of hybrid mesons is expected to be favoured. The data analysis which is required to extract the signal from hybrid states should go beyond the standard partial wave analysis techniques and a new analysis framework is being set up through the international network Haspect. The Haspect Network gathers people involved into theoretical and
Radiative transitions in mesons within a non relativistic quark model
International Nuclear Information System (INIS)
Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.
2002-01-01
An exhaustive study of radiative transitions in mesons is performed in a non relativistic quark model. Three different types of mesons wave functions are tested. The effect of some usual approximations is commented. Overall agreement with experimental data is obtained
Effect of water depth on wind-wave frequency spectrum I. Spectral form
Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo
1996-06-01
Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.
On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere
Directory of Open Access Journals (Sweden)
I. P. Chunchuzov
2009-11-01
Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.
Position dependent spin wave spectrum in nanostrip magnonic waveguides
International Nuclear Information System (INIS)
Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun
2014-01-01
The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide
Samaitis, Vykintas; Mažeika, Liudas
2017-08-08
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain
International Nuclear Information System (INIS)
Dicello, J.F.; Zaider, M.; Bradbury, J.N.
1979-01-01
Technological improvements in accelerator design in the 1960's resulted in the capability to develop medium-energy proton accelerators with beam intensities of almost 1 mA. These beams are able to produce fluxes of secondary particles, including pions, muons, neutrinos, and neutrons, which are as much as 10,000 times as intense as those previously available. Those machines built for optimum meson production are commonly called meson factories. The characteristics of these facilities are reviewed, and the present programs in applied research, and some potential areas of future work are discussed
Spectrum of spin waves in cold polarized gases
Energy Technology Data Exchange (ETDEWEB)
Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-02-15
The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.
Exact wave packet decoherence dynamics in a discrete spectrum environment
International Nuclear Information System (INIS)
Tu, Matisse W Y; Zhang Weimin
2008-01-01
We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.
Production and decay rates of the iota meson
International Nuclear Information System (INIS)
Frank, M.; O'Donnell, P.J.; Toronto Univ., Ontario
1984-01-01
We correlate the results for the mass spectrum of low lying isoscalar-pseudoscalar mesons with the production decay rates from J/psi->γP, with P=eta 1 , eta' 1 , eta 2 and iota and study the radiative decays of the iota meson. We conclude that the iota meson has to be interpreted as having a strong gluonium component. (orig.)
Directory of Open Access Journals (Sweden)
Yichao Liu
2017-01-01
Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.
Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves
Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.
2009-12-01
The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.
Is a charmed axial-vector meson already found
International Nuclear Information System (INIS)
Matsuda, S.
1976-12-01
A calculation is presented of the production rate via e + e - annihilation for a charmed p-wave meson of Jsup(P) = 1 + , based on a non-relativistic quark model of charmed hadrons. The results strongly suggest that the charmed axial-vector meson should be found copiously in association with a ground-state charmed meson. (author)
Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity
Directory of Open Access Journals (Sweden)
S. Koshevaya
2005-01-01
Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.
Light Vector Mesons in the Nuclear Medium
Energy Technology Data Exchange (ETDEWEB)
Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen
2008-07-01
The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff
Evidence for a continuous spectrum of equatorial waves in the Indian Ocean
Eriksen, Charles C.
1980-06-01
Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m
Discussion of the 3P0 model applied to the decay of mesons into two mesons
International Nuclear Information System (INIS)
Bonnaz, R.; Silvestre-Brac, B.
1999-01-01
The 3 P 0 model for the decay of a meson into two mesons is revisited. In particular, the formalism is extended in order to deal with an arbitrary form for the creation vertex and with the exact meson wave functions. A careful analysis of both effects is performed and discussed. The model is then applied to a large class of transitions known experimentally. Two types of quark-antiquark potentials have been tested and compared. (author)
Search for radiative B meson decays
International Nuclear Information System (INIS)
Lesiak, T.; Muryn, B.; Nowak, G.; Antreasyan, D.; Irion, J.; McBride, P.; Strauch, K.; Bartels, H.W.; Bienlein, J.K.; Brockmueller, K.; Jakubowski, Z.; Karch, K.; Kloiber, T.; Koch, W.; Maschmann, W.; Meyer, H.; Skwarnicki, T.; Trost, H.J.; Voigt, A.; Wachs, K.; Zschorsch, P.; Besset, D.; Cabenda, R.; Cowan, R.; Bieler, C.; Graaf, K.; Heinsius, F.H.; Kiel, T.; Krueger, S.; Lekebusch, R.; Nernst, R.; Sievers, D.; Stock, V.; Strohbusch, U.; Bloom, E.D.; Clare, R.; Cooper, S.; Fairfield, K.; Fridman, A.; Gaiser, J.; Gelphman, D.; Godfrey, G.; Hofstadter, R.; Kirkbride, I.; Lee, R.; Leffler, S.; Litke, A.M.; Lockman, W.; Lowe, S.; Niczyporuk, B.; Pollock, B.; Schwarz, A.; Tompkins, J.; Van Uitert, B.; Wacker, K.; Brock, I.; Engler, A.; Kraemer, R.W.; Marlow, D.; Messing, F.; Prindle, D.; Renger, B.; Rippich, C.; Vogel, H.; Cavalli-Sforza, M.; Coyne, D.; Folger, G.; Glaser, G.; Kobel, M.; Lurz, B.; Schuette, J.; Volland, U.; Wegener, H.; Janssen, H.; Koenig, A.C.; Metzger, W.J.; Reidenbach, M.; Schotanus, J.; Walle, R.T. van de; Walk, W.; Keh, S.; Kilian, H.; Koenigsmann, K.; Scheer, M.; Schmitt, P.; Marsiske, H.; Peck, C.; Porter, F.C.; Ratoff, P.; Williams, D.A.
1991-07-01
The Crystal Ball detector at the ε + ε - storage ring DORIS-II has been used to search for radiative B meson decays, especially of the type b→sγ. No mono-energetic γ-lines have been found in the inclusive photon spectrum from Υ(4S) decays, and upper limits are obtained for radiative decays of B mesons to various strange mesons and to the D*. Integrating the photon spectrum over the corresponding energy range, we find BR(B→γX) -3 at 90% confidence level for the mass range 892 MeV≤M X ≤2045 MeV. (orig.)
Search for radiative B meson decays
International Nuclear Information System (INIS)
Lesiak, T.; Muryn, B.; Nowak, G.; Antreasyan, D.; Irion, J.; McBride, P.; Strauch, K.; Bartels, H.W.; Bienlein, J.K.; Brockmueller, K.; Jakubowski, Z.; Karch, K.; Kloiber, T.; Koch, W.; Maschmann, W.; Meyer, H.; Skwarnicki, T.; Trost, H.J.; Voigt, A.; Wachs, K.; Zschorsch, P.; Besset, D.; Cabenda, R.; Cowan, R.; Bieler, C.; Graaf, K.; Heinsius, F.H.; Kiel, T.; Krueger, S.; Lekebusch, R.; Nernst, R.; Sievers, D.; Stock, V.; Strohbusch, U.; Bloom, E.D.; Clare, R.; Cooper, S.; Fairfield, K.; Fridman, A.; Gaiser, J.; Gelphman, D.; Godfrey, G.; Hofstadter, R.; Kirkbride, I.; Lee, R.; Leffler, S.; Litke, A.M.; Lockman, W.; Lowe, S.; Niczyporuk, B.; Pollock, B.; Schwarz, A.; Tompkins, J.; Van Uitert, B.; Wacker, K.; Brock, I.; Engler, A.; Kraemer, R.W.; Marlow, D.; Messing, F.; Prindle, D.; Renger, B.; Rippich, C.; Vogel, H.; Cavalli-Sforza, M.; Coyne, D.; Folger, G.; Glaser, G.; Kobel, M.; Lurz, B.; Schuette, J.; Volland, U.; Wegener, H.; Janssen, H.; Koenig, A.C.; Metzger, W.J.; Reidenbach, M.; Schotanus, J.; Walle, R.T. van de; Walk, W.; Keh, S.; Kilian, H.; Koenigsmann, K.; Scheer, M.; Schmitt, P.; Marsiske, H.; Williams, D.A.
1992-01-01
The Crystal Ball detector at the e + e - storage ring DORIS-II has been used to search for radiative B meson decays, especially of the type b→sγ. No mono-energetic γ-lines have been found in the inclusive photon spectrum from Υ(4S) decays, and upper limits are obtained for radiative decays of B mesons to various strange mesons and to the D*. Integrating the photon spectrum over the corresponding energy range, we find BR(B→γX) -3 , at 90% confidence level for the mass range 892 MeV≤M X ≤2045 MeV. (orig.)
Negative meson capture in hydrogen
International Nuclear Information System (INIS)
Baird, T.J.
1977-01-01
The processes of deexcitation and capture of negative mesons and hadrons in atomic hydrogen are investigated. Only slow collisions in which the projectile-atom relative velocity is less than one atomic unit are considered, and the motion of the incident particle is treated classically. For each classical trajectory the probability of ionizing the hydrogen atom is determined, together with the energy spectrum of the emitted electron. Ionization probabilities are calculated using the time-dependent formulation of the perturbed stationary state method. Exact two-center electronic wave functions are used for both bound and continuum states. The total ionization cross section and electron energy spectrum have been calculated for negative muons, kaons and antiprotons at incident relative velocities between 0.04 and 1.0 atomic units. The electron energy spectrum has a sharp peak for electron kinetic energies on the order of 10 -3 Rydbergs. The ionization process thus favors the emission of very slow electrons. The cross section for ionization with capture of the incident particle was calculated for relative kinetic energies greater than 1.0 Rydberg. Since ionization was found to occur with the emission of electrons of nearly zero kinetic energy, the fraction of ionizing collisions which result in capture decreases very rapidly with projectile kinetic energy. The energy distributions of slowed down muons and hadrons were also computed. These distributions were used together with the capture cross section to determine the distribution of kinetic energies at which capture takes place. It was found that most captures occur for kinetic energies slightly less than 1.0 Rydbergs with relatively little capture at thermal energies. The captured particles therefore tend to go into very large and loosely found orbits with binding energies less than 0.1 Rydbergs
The 17/5 spectrum of the Kelvin-wave cascade
Kozik, Evgeny; Svistunov, Boris
2010-01-01
Direct numeric simulation of the Biot-Savart equation readily resolves the 17/5 spectrum of the Kelvin-wave cascade from the 11/3 spectrum of the non-local (in the wavenumber space) cascade scenario by L'vov and Nazarenko. This result is a clear-cut visualisation of the unphysical nature of the 11/3 solution, which was established earlier on the grounds of symmetry.
Reheating signature in the gravitational wave spectrum from self-ordering scalar fields
Energy Technology Data Exchange (ETDEWEB)
Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)
2016-02-01
We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.
Light Scalar Mesons in Central Production at COMPASS
Austregesilo, A.
2016-01-01
COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a $190\\,$GeV$/c$ positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.
Photoproduction of scalar mesons at CLAS
Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration
2013-10-01
A single gluon, which carries color charge, cannot exist independently outside a hadron. Lattice QCD calculations in pure SU(3), however, predict the existence of glueballs which are bound states of two or more gluons. In the real world, the challenge to identify glueballs experimentally is the fact they mix with meson states. The f0 (1500) is one of several candidates for the lightest glueball, with JPC =0++ . We investigate the presence of this particle in photoproduction by analyzing the reaction γp -->fJ p -->KS0KS0 p --> 2 (π+π-) p . This reaction was studied using data from the g12 experiment performed using the CLAS detector at Jefferson Lab. A preliminary partial wave analysis, performed on the KS0KS0 invariant mass spectrum, will be presented. These results update those presented for this reaction channel at previous conferences. This work is supported by grant from NSF.
MILLIMETER WAVE SPECTRUM AND ASTRONOMICAL SEARCH FOR VINYL FORMATE
Energy Technology Data Exchange (ETDEWEB)
Alonso, E. R.; Kolesniková, L.; Cabezas, C.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain); Tercero, B.; Cernicharo, J. [Grupo de Astrofísica Molecular, ICMM-CSIC, C/Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, F-35708 Rennes Cedex 7 (France)
2016-11-20
Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360 GHz and analyzed in terms of Watson’s semirigid rotor Hamiltonian. Two thousand six hundred transitions within J = 3–88 and K {sub a} = 0–28 were assigned to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided.
Spectrum of harmonic emission by inhomogeneous plasma in intense electromagnetic wave
International Nuclear Information System (INIS)
Kovalev, V.F.; Pustovalov, V.V.
1989-01-01
The spectrum and angular distribution of the harmonics of arbitrary index emitted by a cold, inhomogeneous electron plasma subjected to a p-polarized electromagnetic wave have been studied analytically. The results are shown in graphical form. The intensity of the wave was varied over a wide range. At energy flux densities of the electromagnetic wave at which the inverse effect of the higher harmonics on the lower harmonics becomes appreciable, it becomes possible to observe a decay of the absolute value of the complex amplitude of a harmonic with increasing harmonic index in vacuum which is substantially slower than that predicted by the theory for a weak nonlinearity
On the mesonic-exchange currents in the photomesic reactions
International Nuclear Information System (INIS)
Lazard, C.; Maric, Z.; Zivanovic, D.
1979-02-01
The γd→π 0 d reaction is analysed in the framework of the relativistic many-body theory with mesonic degrees of freedom explicitly present. It is shown that the mesonic correlations can be grouped into transition operators containing vertices of some elementary reactions between photon, nucleons and pions. The wave function corrections due to meson exchange currents are included in the transition operators and the S-matrix is obtained with the non relativistic deuteron wave function
Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He
International Nuclear Information System (INIS)
Roger, M.; Delrieu, J.M.
1981-08-01
The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff
Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings
Energy Technology Data Exchange (ETDEWEB)
Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko, E-mail: matsui.yuka@f.mbox.nagoya-u.ac.jp, E-mail: horiguchi.kouichirou@h.mbox.nagoya-u.ac.jp, E-mail: nitta.daisuke@g.mbox.nagoya-u.ac.jp, E-mail: kuroyanagi.sachiko@f.mbox.nagoya-u.ac.jp [Department of physics and astrophysics, Nagoya University, Nagoya, 464-8602 (Japan)
2016-11-01
Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.
Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings
International Nuclear Information System (INIS)
Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko
2016-01-01
Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.
Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak
International Nuclear Information System (INIS)
Martin, Y.; Hollenstein, C.
1989-01-01
The study of the scrape-off layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The scrape-off layer of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of this work is to present measurements on the influence of the Alfven wave spectrum on the scrape-off layer. These experiments have shown that the plasma boundary layer is strongly affected by the wave field, in particular the ion saturation current and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes, the Discrete Alfven Wave (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. In case of MHD mode activity, this behaviour changes for power exceeding 100 kW. The profiles of basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF (radio frequency) phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the coupling between RF power and typical edge parameters. (orig.)
Grube, Boris
2015-01-01
The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and thus allows to access a wide range of reactions. Light mesons are studied with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The spectrum of light mesons is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^+\\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new resonance-like signal, t...
Energy Technology Data Exchange (ETDEWEB)
Steffen Strauch
2009-10-01
This is a brief and selective discussion of meson photoproduction measurements with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Meson photo- production is being used as a tool for various investigations, including the spectroscopy of baryons and mesons and the search for vector-meson medium modifications.
Meson exchange corrections in deep inelastic scattering on deuteron
International Nuclear Information System (INIS)
Kaptari, L.P.; Titov, A.I.
1989-01-01
Starting with the general equations of motion of the nucleons interacting with the mesons the one-particle Schroedinger-like equation for the nucleon wave function and the deep inelastic scattering amplitude with the meson-exchange currents are obtained. Effective pion-, sigma-, and omega-meson exchanges are considered. It is found that the mesonic corrections only partially (about 60%) restore the energy sum rule breaking because of the nucleon off-mass-shell effects in nuclei. This results contradicts with the prediction based on the calculation of the energy sum rule limited by the second order of the nucleon-meson vertex and static approximation. 17 refs.; 3 figs
Parity violating nuclear force by meson mixing
International Nuclear Information System (INIS)
Iqbal, M.J.; Niskanen, J.A.
1990-01-01
We study a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W ± and Z exchange between the q bar q pair in the meson. Numerically its effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex and may partly be used to model this vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies
Scalar mesons and radiative vector meson decays
International Nuclear Information System (INIS)
Gokalp, A.; Ylmaz, O
2002-01-01
The light scalar mesons with vacuum quantum numbers J p =0 ++ have fundamental importance in understanding low energy QCD phenomenology and the symmetry breaking mechanisms in QCD. The nature and quark substructure of the best known scalar mesons, isoscalar σ(500), f0(980) and isovector a0(980) have been a subject of continuous controversy. The radioactive decay of neutral vector mesons ρ, w and φ into a single photon and a pair of neutral pseudoscalar mesons have been studied in order to obtain information on the nature of these scalar mesons. For such studies, it is essential that a reliable understanding of the mechanisms for these decays should be at hand. In this work, we investigate the particularly interesting mechanism of the exchange of scalar mesons for the radiative vector meson decays by analysing the experimental results such as measured decay rates and invariant mass spectra and compare them with the theoretical prediction of different reaction mechanisms
Quantum field theory approaches to meson structure
International Nuclear Information System (INIS)
Branz, Tanja
2011-01-01
Meson spectroscopy became one of the most interesting topics in particle physics in the last ten years. In particular, the discovery of new unexpected states in the charmonium spectrum which cannot be simply explained by the constituent quark model attracted the interest of many theoretical efforts. In the present thesis we discuss different meson structures ranging from light and heavy quark-antiquark states to bound states of hadrons-hadronic molecules. Here we consider the light scalar mesons f 0 (980) and a 0 (980) and the charmonium-like Y(3940), Y(4140) and Z ± (4430) states. In the discussion of the meson properties like mass spectrum, total and partial decay widths and production rates we introduce three different theoretical methods for the treatment and description of hadronic structure. For the study of bound states of mesons we apply a coupled channel approach which allows for the dynamical generation of meson-meson resonances. The decay properties of meson molecules are further on studied within a second model based on effective Lagrangians describing the interaction of the bound state and its constituents. Besides hadronic molecules the effective Lagrangian approach is also used to study the radiative and strong decay properties of ordinary quark-antiquark (q anti q) states. The AdS/QCD model forms the completion of the three theoretical methods introduced in the present thesis. This holographic model provides a completely different ansatz and is based on extra dimensions and string theory. Within this framework we calculate the mass spectrum of light and heavy mesons and their decay constants.
International Nuclear Information System (INIS)
Aistov, A.V.; Gavrilenko, V.G.
1996-01-01
The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak
International Nuclear Information System (INIS)
Martin, Y.; Hollenstein, Ch.
1988-01-01
The study of the Scrape-Off Layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The SOL of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of the present work is to present in detail the influence of the Alfven wave spectrum on the SOL. The experiments have shown that the plasma boundary layer is strongly affected by the RF, in particular the ion density, the electron temperature and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. This behaviour changes as a function of the power transmitted to the plasma through the antennae, especially we have found with MHD modes a change around 100 kW. The profiles of the basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the difference in coupling, for the continua and the eigenmodes, between the Alfven wave field and the scrape-off layer. (author) 5 figs., 6 refs
Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves
Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas
2018-04-01
We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.
Energy Technology Data Exchange (ETDEWEB)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
2016-03-25
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Waves on fluid-loaded shells and their resonance frequency spectrum
DEFF Research Database (Denmark)
Bao, X.L.; Uberall, H.; Raju, P.K.
2005-01-01
, or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...
The interpretation of the iota meson
International Nuclear Information System (INIS)
Frank, M.
1985-01-01
The authors analyze the iota (1440) meson in a non-relativistic quark model. The authors review the experimental data, then attempt to incorporate it in the mass spectrum and radiative decays of the low-lying pseudoscalar and vector mesons. Correlating these results with production decay rates from J/psi and the radiative decays of iota, the authors conclude that the iota has to be interpreted as having a strong gluonium component
Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves
International Nuclear Information System (INIS)
Zakhar'ev, B.N.; Chabanov, V.M.
1995-01-01
It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-04-01
Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.
Heavy and Heavy-Light Mesons in the Covariant Spectator Theory
Stadler, Alfred; Leitão, Sofia; Peña, M. T.; Biernat, Elmar P.
2018-05-01
The masses and vertex functions of heavy and heavy-light mesons, described as quark-antiquark bound states, are calculated with the Covariant Spectator Theory (CST). We use a kernel with an adjustable mixture of Lorentz scalar, pseudoscalar, and vector linear confining interaction, together with a one-gluon-exchange kernel. A series of fits to the heavy and heavy-light meson spectrum were calculated, and we discuss what conclusions can be drawn from it, especially about the Lorentz structure of the kernel. We also apply the Brodsky-Huang-Lepage prescription to express the CST wave functions for heavy quarkonia in terms of light-front variables. They agree remarkably well with light-front wave functions obtained in the Hamiltonian basis light-front quantization approach, even in excited states.
Semileptonic decays of B and D mesons in the light-front formalism
International Nuclear Information System (INIS)
Jaus, W.
1990-01-01
The light-front formalism is used to present a relativistic calculation of form factors for semileptonic D and B decays in the constituent quark model. The quark-antiquark wave functions of the mesons can be obtained, in principle, from an analysis of the meson spectrum, but are approximated in this work by harmonic-oscillator wave functions. The predictions of the model are consistent with the experimental data for B decays. The Kobayashi-Maskawa (KM) matrix element |V cs | is determined by a comparison of the experimental and theoretical rates for D 0 →K - e + ν, and is consistent with a unitary KM matrix for three families. The predictions for D→K * transitions are in conflict with the data
Control of the long period grating spectrum through low frequency flexural acoustic waves
International Nuclear Information System (INIS)
Oliveira, Roberson A; Possetti, Gustavo R C; Kamikawachi, Ricardo C; Fabris, José L; Muller, Marcia; Pohl, Alexandre A P; Marques, Carlos A F; Nogueira, Rogério N; Neves, Paulo T Jr; Cook, Kevin; Canning, John; Bavastri, C
2011-01-01
We have shown experimental results of the excitation of long period fiber gratings by means of flexural acoustic waves with a wavelength larger than the grating period, validated by numerical simulations. The effect of the acoustic wave on the grating is modeled with the method of assumed modes, which delivers the strain field inside the grating, then used as the input to the transfer matrix method, needed for calculating the grating spectrum. The experimental and numerical results are found to be in good agreement, even though only the strain-optic effects are taken into account
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
International Nuclear Information System (INIS)
Crater, Horace W.; Schiermeyer, James
2010-01-01
In a previous paper, Crater and Van Alstine applied the two-body Dirac equations of constraint dynamics to quark-antiquark bound states using a relativistic extention of the Adler-Piran potential and compared their spectral results to those from other approaches which also considered meson spectroscopy as a whole and not in parts. In this paper, we explore in more detail the differences and similarities in an important subset of those approaches, the quasipotential approach. In the earlier paper, the transformation properties of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four-vector, with the former accounting for the confining aspects of the overall potential, and the latter the short range portion. The static Adler-Piran potential was first given an invariant form and then apportioned between those two different types of potentials. Here, we make a change in this apportionment that leads to a substantial improvement in the resultant spectroscopy by including a timelike confining vector potential over and above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows this formalism to account for the isoscalar mesons η and η ' not included in the previous work. Continuing the comparisons of formalisms and spectral results made in the previous paper with other approaches to meson spectroscopy, we examine in this paper the quasipotential approach of Ebert, Faustov, and Galkin.
de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.
2018-02-01
We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1 neutron double ratio is enhanced relative to that in vacuum, while for the proton it is quenched, and agrees with an existing theoretical prediction.
Oscillations and waves in a spatially distributed system with a 1/f spectrum
Koverda, V. P.; Skokov, V. N.
2018-02-01
A spatially distributed system with a 1/f power spectrum is described by two nonlinear stochastic equations. Conditions for the formation of auto-oscillations have been found using numerical methods. The formation of a 1/f and 1/k spectrum simultaneously with the formation and motion of waves under the action of white noise has been demonstrated. The large extreme fluctuations with 1/f and 1/k spectra correspond to the maximum entropy, which points to the stability of such processes. It is shown that on the background of formation and motion of waves at an external periodic action there appears spatio-temporal stochastic resonance, at which one can observe the expansion of the region of periodic pulsations under the action of white noise.
DEFF Research Database (Denmark)
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe
2012-01-01
The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....
Grube, Boris
2016-11-29
The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^-\\pi^+$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. Novel analysis techniques have been...
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
Meson spectroscopy at the Serpukhov accelerator
International Nuclear Information System (INIS)
Prokoshkin, Yu.D.
1987-01-01
At present meson spectroscopy is a dominating direction of experimental studies at the IHEP accelerator. The main attention is paid to the search and study of exotic meson states. This report presents some new results obtained recently at the IHEP accelerator. First, observation is made of a narrow 1750 MeV meson decays into ηη. Above |t| ∼ 0.2 (GeV-c) 2 (t: a square of 4-momentum transferred to a neutron), a clear narrow peak appears in Mηη mass spectrum at a mass of 1750 MeV. Second, 2.22 GeV narrow meson decaying into η'η is described. At present only premature conclusions have been obtained in this area and the situation with ζ is not clear. Third, a study is made on new exotic tensor meson χ(1810) decaying into 4π deg and ηη channels. The decay M deg → 4π deg is a very promissing instrument in search for exotic mesons. Next, G(1590)-meson as a scalar glueball is discussed. BR(G → 4π deg) has a large value, an independent evidence of the exotic nature of G(1590)-meson. Experimental data obtained on all essential decay channels of G(1590)-meson allows to give a selfconsistent description of its production and decay as the scalar glueball, a particle with the dominating gluon component. The final two parts deal with exotic vector meson C(1480) decaying into ψπ deg and observation of D(1285) → ψγ decay. (Nogami, K.)
Montiel, F.; Squire, V. A.
2013-12-01
A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive
The Rainich problem for coupled gravitational and scalar meson fields
International Nuclear Information System (INIS)
Hyde, J.M.
1975-01-01
The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr
International Nuclear Information System (INIS)
Saikia, P.
1981-01-01
The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic
Observation of a New Narrow Axial-Vector Meson alpha(1)(1420)
Czech Academy of Sciences Publication Activity Database
Adolph, C.; Akhunzyanov, R.; Alexeev, M.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlák, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Chang, W.-C.; Chiosso, M.; Choi, I.; Chung, S. U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, E.; Hinterberger, F.; Horikawa, N.; d´Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jarý, V.; Jörg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.; Marchand, C.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W. D.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schmeing, S.; Schmidt, K.; Schlüter, T.; Selyunin, A.; Schmieden, H.; Schönning, K.; Schopferer, S.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Šulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2015-01-01
Roč. 115, č. 8 (2015), 082001:1-6 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : COMPASS * pion-nucleon scattering * hadron spectroscopy * light-meson spectrum * axial-vector mesons * exotic mesons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015
The light scalar mesons as tetraquarks
Directory of Open Access Journals (Sweden)
Gernot Eichmann
2016-02-01
Full Text Available We present a numerical solution of the four-quark Bethe–Salpeter equation for ground-state scalar tetraquarks with JPC=0++. We find that the four-body equation dynamically generates pseudoscalar-meson poles in the Bethe–Salpeter amplitude. The resulting tetraquarks are genuine four-quark states that are dominated by pseudoscalar meson–meson correlations. Diquark–antidiquark contributions are subleading because of their larger mass scale. In the light quark sector, the sensitivity of the tetraquark wave function to the pion poles leads to an isoscalar tetraquark mass Mσ∼350 MeV which is comparable to that of the σ/f0(500. The masses of its multiplet partners κ and a0/f0 follow a similar pattern. This provides support for a tetraquark interpretation of the light scalar meson nonet in terms of ‘meson molecules’.
Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors
International Nuclear Information System (INIS)
Lee, C.Y.
2004-01-01
Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the very important study of the collective excitations in these systems. One of the problem is still the exact form of the order parameter of unconventional superconductors. Among the possibilities there are extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states. I consider the mixed (1-γ)d x 2 -y 2 +iγd xy state in high temperature superconductors (HTSC) and derive for the first time a full set of equations for collective modes spectrum in mixed d-wave state with arbitrary admixture of d xy state. Obtained results allow to calculate the whole collective mode spectrum, which could be used for interpretation of the sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, they allow to estimate the extent of admixture of d xy state in a possible mixed state
Collective behaviour of linear perturbation waves observed through the energy density spectrum
Energy Technology Data Exchange (ETDEWEB)
Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: stefania.scarsoglio@polito.it [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)
2011-12-22
We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.
[A quick algorithm of dynamic spectrum photoelectric pulse wave detection based on LabVIEW].
Lin, Ling; Li, Na; Li, Gang
2010-02-01
Dynamic spectrum (DS) detection is attractive among the numerous noninvasive blood component detection methods because of the elimination of the main interference of the individual discrepancy and measure conditions. DS is a kind of spectrum extracted from the photoelectric pulse wave and closely relative to the artery blood. It can be used in a noninvasive blood component concentration examination. The key issues in DS detection are high detection precision and high operation speed. The precision of measure can be advanced by making use of over-sampling and lock-in amplifying on the pick-up of photoelectric pulse wave in DS detection. In the present paper, the theory expression formula of the over-sampling and lock-in amplifying method was deduced firstly. Then in order to overcome the problems of great data and excessive operation brought on by this technology, a quick algorithm based on LabVIEW and a method of using external C code applied in the pick-up of photoelectric pulse wave were presented. Experimental verification was conducted in the environment of LabVIEW. The results show that by the method pres ented, the speed of operation was promoted rapidly and the data memory was reduced largely.
Temperature-dependent cross sections for meson-meson nonresonant reactions in hadronic matter
International Nuclear Information System (INIS)
Zhang Yiping; Xu Xiaoming; Ge Huijun
2010-01-01
We present a potential of which the short-distance part is given by one gluon exchange plus perturbative one- and two-loop corrections and of which the large-distance part exhibits a temperature-dependent constant value. The Schroedinger equation with this temperature-dependent potential yields a temperature dependence of the mesonic quark-antiquark relative-motion wave function and of meson masses. The temperature dependence of the potential, the wave function and the meson masses brings about temperature dependence of cross sections for the nonresonant reactions ππ→ρρ for I=2, KK→K*K* for I=1, KK*→K*K* for I=1, πK→ρK* for I=3/2, πK*→ρK* for I=3/2, ρK→ρK* for I=3/2 and πK*→ρK for I=3/2. As the temperature increases, the rise or fall of peak cross sections is determined by the increased radii of initial mesons, the loosened bound states of final mesons, and the total-mass difference of the initial and final mesons. The temperature-dependent cross sections and meson masses are parametrized.
Search for gluonic excitations in light unconventional mesons
Energy Technology Data Exchange (ETDEWEB)
Paul Eugenio
2007-07-01
Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenologicalmodels for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.
International Nuclear Information System (INIS)
Skoblin, A.A.
1994-01-01
Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs
The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars
International Nuclear Information System (INIS)
Broeck, Chris van den
2005-01-01
Evidence for free precession has been observed in the radio signature of several pulsars. Freely precessing pulsars radiate gravitationally at frequencies near the rotation rate and twice the rotation rate, which for rotation frequencies greater than ∼10 Hz is in the LIGO band. In older work, the gravitational wave spectrum of a precessing neutron star has been evaluated to first order in a small precession angle. Here, we calculate the contributions to second order in the wobble angle, and we find that a new spectral line emerges. We show that for reasonable wobble angles, the second-order line may well be observable with the proposed advanced LIGO detectors for precessing neutron stars as far away as the galactic centre. Observation of the full second-order spectrum permits a direct measurement of the star's wobble angle, oblateness and deviation from axisymmetry, with the potential to significantly increase our understanding of neutron star structure
Real-Time Leaky Lamb Wave Spectrum Measurement and Its Application to NDE of Composites
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph
1999-01-01
Numerous analytical and theoretical studies of the behavior of leaky Lamb waves (LLW) in composite materials were documented in the literature. One of the key issues that are constraining the application of this method as a practical tool is the amount of data that needs to be acquired and the slow process that is involved with such experiments. Recently, a methodology that allows quasi real-time acquisition of LLW dispersion data was developed. At each angle of incidence the reflection spectrum is available in real time from the experimental setup and it can be used for rapid detection of the defects. This technique can be used to rapidly acquire the various plate wave modes along various angles of incidence for the characterization of the material elastic properties. The experimental method and data acquisition technique will be described in this paper. Experimental data was used to examine a series of flaws including porosity and delaminations and demonstrated the efficiency of the developed technique.
Similar Data Retrieval from Enormous Datasets on ELF/VLF Wave Spectrum Observed by Akebono
Directory of Open Access Journals (Sweden)
Y Kasahara
2010-02-01
Full Text Available As the total amount of data measured by scientific spacecraft is drastically increasing, it is necessary for researchers to develop new computation methods for efficient analysis of these enormous datasets. In the present study, we propose a new algorithm for similar data retrieval. We first discuss key descriptors that represent characteristics of the VLF/ELF waves observed by the Akebono spacecraft. Second, an algorithm for similar data retrieval is introduced. Finally, we demonstrate that the developed algorithm works well for the retrieval of the VLF spectrum with a small amount of CPU load.
International Nuclear Information System (INIS)
De Carolis, G.
2001-01-01
This paper concerns with the task of retrieving ocean wave spectra form imagery provided by space-borne SAR systems such as that on board ERS satellite. SAR imagery of surface wave fields travelling into open ocean and into thin sea ice covers composed of frazil and pancake icefields is considered. The major purpose is to gain insight on how the spectral changes can be related to sea ice properties of geophysical interest such as the thickness. Starting from SAR image cross spectra computed from Single Look Complex (SLC) SAR images, the ocean wave spectrum is retrieved using an inversion procedure based on the gradient descent algorithm. The capability of this method when applied to satellite SAR sensors is investigated. Interest in the SAR image cross spectrum exploitation is twofold: first, the directional properties of the ocean wave spectra are retained; second, external wave information needed to initialize the inversion procedure may be greatly reduced using only information included in the SAR image cross spectrum itself. The main drawback is that the wind waves spectrum could be partly lost and its spectral peak wave number underestimated. An ERS-SAR SLC image acquired on April 10, 1993 over the Greenland Sea was selected as test image. A pair of windows that include open-sea only and sea ice cover, respectively, were selected. The inversions were carried out using different guess wave spectra taken from SAR image cross spectra. Moreover, care was taken to properly handle negative values eventually occurring during the inversion runs. This results in a modification of the gradient descending the technique that is required if a non-negative solution of the wave spectrum is searched for. Results are discussed in view of the possibility of SAR data to detect ocean wave dispersion as a means for the retrieval of ice thickness
DEFF Research Database (Denmark)
Høgfeldt Hansen, Leif
2016-01-01
The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....
Energy Technology Data Exchange (ETDEWEB)
Rahmani, S.; Hassanabadi, H. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of)
2017-09-15
Employing generalized quantum isotonic oscillator potential we determine wave function for mesonic system in nonrelativistic formalism. Then we investigate branching ratios of leptonic decays for heavy-light mesons including a charm quark. Next, by applying the Isgur-Wise function we obtain branching ratios of semileptonic decays for mesons including a bottom quark. The weak decay of the B{sub c} meson is also analyzed to study the life time. Comparison with other available theoretical approaches is presented. (orig.)
Meson Spectroscopy in the Light Quark Sector
De Vita, R.
2014-03-01
Understanding the hadron spectrum is one of the fundamental issues in modern particle physics. We know that existing hadron configurations include baryons, made of three quarks, and mesons, made of quark-antiquark pairs. However most of the mass of the hadrons is not due to the mass of these elementary constituents but to their binding force. Studying the hadron spectrum is therefore a tool to understand one of the fundamental forces in nature, the strong force, and Quantum Chromo Dynamics (QCD), the theory that describes it. This investigation can provide an answer to fundamental questions as what is the origin of the mass of hadrons, what is the origin of quark confinement, what are the relevant degrees of freedom to describe these complex systems and how the transition between the elementary constituents, quarks and gluons, and baryons and mesons occurs. In this field a key tool is given by meson spectroscopy. Mesons, being made by a quark and an anti-quark, are the simplest quark bound system and therefore the ideal benchmark to study the interaction between quarks and understand what the role of gluons is. In this investigation, it is fundamental to precisely determine the spectrum and properties of mesons but also to search for possible unconventional states beyond the qbar q configuration as tetraquarks (qqoverline{qq}), hybrids (qbar qg) and glueballs. These states can be distinguished unambiguously from regular mesons when they have exotic quantum numbers, i.e. combinations of total angular momentum, spin and parity that are not allowed for qbar q states. These are called exotic quantum numbers and the corresponding states are referred to as exotics. The study of the meson spectrum and the search for exotics is among the goals of several experiments in the world that exploit different reaction processes, as e+e- annihilation, pbar p annihilation, pion scattering, proton-proton scattering and photo-production, to produce meson states. This intense effort is
Mesonic spectroscopy of Minimal Walking Technicolor
DEFF Research Database (Denmark)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino
2010-01-01
We investigate the structure and the novel emerging features of the mesonic non-singlet spectrum of the Minimal Walking Technicolor (MWT) theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD...
Study of clay behaviour around a heat source by frequency spectrum analysis of seismic waves
International Nuclear Information System (INIS)
Sloovere, P. de.
1993-01-01
Wave propagated into soft rock is not completely described by purely linear elastic theory. Through spectrum analysis of wave, one can see that several frequencies are selected by the ground. ME2i uses this method to check grouting, piles a.s.o. The Mol experiment (on Radioactive Waste Disposal) aims to prove that little changes into heated clay can be detected by 'frequential seismic'. A cross-hole investigation system has been installed and tests have been performed for two years with a shear-hammer named MARGOT built to work inside horizontal boreholes: - Before heating the tests show the same results every time: . main frequency at 330 hertz; . maximal frequency at 520 hertz; - During heating: . the rays at 330 and 520 hertz disappear; . The frequencies in the range 100 - 300 hertz are prevailing; - After heating spectra have again their original shape. These results show that the effect is clear around an heated zone. The next steps should be: - Interpretation with computer's codes treating of wave propagation into a viscoelastic body; - Experimentations: . at the opening of a new gallery; . on big samples; . on granites and salt. 9 refs., 4 appendices
International Nuclear Information System (INIS)
Yamazaki, T.; Nagamine, K.
1992-01-01
Unstable particles such as mesons and muons are now used in various research domains of physics, chemistry, engineering, and life sciences. This book is aimed at summarizing the present exploratory activities and giving future perspectives from a very broad scope. It contains 27 contributions in a wide range of subjects, such as μSR studies of superconductivities, magnetism, muon beam and μSr methodology, theoretical accounts of muon hyperfine interactions, muon catalyzed fusion processes, metastable exotic atoms, medical diagnostics, strangeness nuclear physics, mesons in nuclei, meson-related nuclear reactions and structure, and exotic decays of mesons
Hybrid mesons with auxiliary fields
International Nuclear Information System (INIS)
Buisseret, F.; Mathieu, V.
2006-01-01
Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the π 1 (1600) and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique (also known as the einbein field method) to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body q system with an excited flux tube, or a three-body qg system. We also compute the masses of the 1 -+ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models. (orig.)
Scattering amplitudes to all orders in meson exchange
International Nuclear Information System (INIS)
Silbar, R.R.; Mattis, M.P.
1990-01-01
As the number of colors in QCD, N C , becomes large, it is possible to sum up all meson-exchange contributions, however arbitrarily complicated, to meson-baryon and baryon-baryon scattering. A semi-classical structure for the two-flavor theory emerges, in close correspondence to vector-meson-augmented Skyrme models. In this limit, baryons act as extended static sources for the classical meson fields. This leads to non-linear differential equations for the classical meson fields which can be solved numerically for static radial (hedgehog-like) solutions. The non-linear terms in the equations of motion for the quantized meson fields can then be simplified, to leading order in 1/N C , by replacing all factors of the meson field but one by the previously-found classical field. This results in linear, Schroedinger-like equations, which are easily solved. For the meson-baryon case the solution can be subsequently analyzed to obtain the phase shifts for the scattering and, from these, the baryon resonance spectrum of the model. As the warm-up, we have carried out this calculation for the simple case of σ mesons only, finding sensible results. 8 refs., 3 figs
Recent Results from Photoproduction of Mesons in A2
Directory of Open Access Journals (Sweden)
Walford Natalie
2016-01-01
Full Text Available Recent experiments using the Crystal Ball/TAPS setup at the MAMI accelerator in Mainz, Germany continue to study the properties and the excitation spectrum of the nucleon with meson photoproduction. Electromagnetic excitations of the proton and neutron are essential for understanding their isospin decomposition. The electromagnetic coupling of photons to protons is different than that of neutrons in certain states. Hence, a complete partial wave analysis (PWA can assist in yielding more information about any reaction, but gains from polarization observables constraining the fits. Polarization observables play a crucial role as they are essential in disentangling the contributing resonant and non-resonant amplitudes, whereas cross-section data alone is not sufficient for separating resonances. Preliminary results of polarization observables (E, T, and F of η and double π production off a polarized neutron (dButanol target are shown with comparison to predictions of recent multipole analyses. These results will allow for developing the world database.
On meson resonances and chiral symmetry
International Nuclear Information System (INIS)
Lutz, M.F.M.
2003-07-01
We study meson resonances with quantum numbers J P = 1 + in terms of the chiral SU(3) Lagrangian. At leading order a parameter-free prediction is obtained for the scattering of Goldstone bosons off vector mesons with J P = 1 - once we insist on approximate crossing symmetry of the unitarized scattering amplitude. A resonance spectrum arises that is remarkably close to the empirical pattern. In particular, we find that the strangeness-zero resonances h 1 (1380), f 1 (1285) and b 1 (1235) are formed due to strong K anti K μ and K K μ channels. This leads to large coupling constants of those resonances to the latter states. (orig.)
The millimeter-wave spectrum of highly vibrationally excited SiO
International Nuclear Information System (INIS)
Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.
1991-01-01
The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs
Relic gravitational wave spectrum, the trans-Planckian physics and Horava-Lifshitz gravity
International Nuclear Information System (INIS)
Koh, Seoktae
2010-01-01
We calculate the spectrum of the relic gravitational wave due to the trans-Planckian effect in which the standard linear dispersion relations may be modified. Of the modified dispersion relations suggested in the literature which has investigated the trans-Planckian effect, we especially use the Corley-Jacobson dispersion relations. The Corley-Jacobson-type modified dispersion relations can be obtained from Horava-Lifshitz gravity which is non-relativistic and UV complete. Although it is not clear how the transitions from Horava-Lifshitz gravity in the UV regime to Einstein gravity in the IR limit occur, we assume that the Horava-Lifshitz gravity regime is followed by the inflationary phase in Einstein gravity.
Change of spin-wave spectrum arising from interaction of magnons
International Nuclear Information System (INIS)
Prozorova, L.A.; Smirnov, A.I.
1978-01-01
Variation of the proper frequency of magnons with a definite wave number k=k 1 is observed in the antiferromagnetic crystal CsMnF 3 by exciting the magnons with k=k 2 . Magnon excitation is performed parametrically by microwave pumping. The density of the parametrically excited magnons is of the order of 10 17 cm -3 . The relative variation of the proper frequency (magnon spectrum shift) is approximately 10 -5 . The variation in the proper frequency is recorded and measured on observation of transition processes in a system of parametrically excited magnons. The frequencies of magnons are 10.5 and 17.5 GHz (k 1 approximately k 2 approximately 10 5 cm -1 ) and sample temperature T=1.6 K. The amplitude of four-magnon interaction inducing the spectral shift is determined and found to be T 12 /2π approximately -10 -12 Hzxcm 3
Perturbative QCD effects in heavy meson decays
International Nuclear Information System (INIS)
Szezepaniak, A.; Henley, E.M.
1991-01-01
The amplitude for the exclusive nonleptonic decay of a heavy meson into two light pseudoscalar mesons is analyzed using the factorization formalism of perturbative QCD for exclusive reactions at large momentum transfer. We calculate the form factor b → u transition and compare it to the old quark model calculation and the new one based on the light cone formulation of the full quark model wave function. The new results we obtain are smaller by a factor of 2 - 3 as compared to the old value. (orig.)
Angular Momentum Content of the ρ Meson in Lattice QCD
International Nuclear Information System (INIS)
Glozman, Leonid Ya.; Lang, C. B.; Limmer, Markus
2009-01-01
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the 2S+1 L J basis one may extract a partial wave content of a meson. We present results for the ground state of the ρ meson using quenched simulations as well as simulations with n f =2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple 3 S 1 -wave composition of the ρ meson in the infrared, like in the SU(6) flavor-spin quark model.
Angular Momentum Content of the ρ Meson in Lattice QCD
Glozman, Leonid Ya.; Lang, C. B.; Limmer, Markus
2009-09-01
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the LJ2S+1 basis one may extract a partial wave content of a meson. We present results for the ground state of the ρ meson using quenched simulations as well as simulations with nf=2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple S13-wave composition of the ρ meson in the infrared, like in the SU(6) flavor-spin quark model.
Wave Equation for Operators with Discrete Spectrum and Irregular Propagation Speed
Ruzhansky, Michael; Tokmagambetov, Niyaz
2017-12-01
Given a Hilbert space H, we investigate the well-posedness of the Cauchy problem for the wave equation for operators with a discrete non-negative spectrum acting on H. We consider the cases when the time-dependent propagation speed is regular, Hölder, and distributional. We also consider cases when it is strictly positive (strictly hyperbolic case) and when it is non-negative (weakly hyperbolic case). When the propagation speed is a distribution, we introduce the notion of "very weak solutions" to the Cauchy problem. We show that the Cauchy problem for the wave equation with the distributional coefficient has a unique "very weak solution" in an appropriate sense, which coincides with classical or distributional solutions when the latter exist. Examples include the harmonic and anharmonic oscillators, the Landau Hamiltonian on {R^n}, uniformly elliptic operators of different orders on domains, Hörmander's sums of squares on compact Lie groups and compact manifolds, operators on manifolds with boundary, and many others.
Asymptotics of Heavy-Meson Form Factors
Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias
1997-01-01
Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...
Prospects for meson spectroscopy studies with anti P's at the AGS
International Nuclear Information System (INIS)
Dover, C.B.
1987-01-01
This paper contains viewgraphs on studies of meson spectroscopy. Investigated are the pion inclusive spectrum of proton-antiproton interactions, the spectrum of nucleon-antinucleon interactions, pion missing mass spectra and mechanisms for photon-photon interactions
Semileptonic decays of the Bc meson
International Nuclear Information System (INIS)
Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita
2009-01-01
We study the semileptonic transitions B c →η c ,J/Ψ,D,D*,B,B*,B s ,B s * in the leading order in the framework of a relativistic independent quark model based on a confining potential in the equally mixed scalar-vector harmonic form. We compute relevant weak form factors as overlap integrals of the meson-wave functions obtained in the relativistic independent quark model in the whole accessible kinematical range. We predict that the semileptonic transitions of the B c meson are mostly dominated by two Cabibbo-Kobayashi-Maskawa (CKM)-favored modes, B c →B s (B s *)eν, contributing about 77% of the total decay width, and its decays to vector meson final states take place in the predominantly transverse mode. Our predicted values for the total decay rates, branching ratios, polarization ratios, the forward-backward asymmetry factor, etc., are broadly in agreement with other model predictions.
Vector-meson dominance revisited
Directory of Open Access Journals (Sweden)
Terschlüsen Carla
2012-12-01
Full Text Available The interaction of mesons with electromagnetism is often well described by the concept of vector-meson dominance (VMD. However, there are also examples where VMD fails. A simple chiral Lagrangian for pions, rho and omega mesons is presented which can account for the respective agreement and disagreement between VMD and phenomenology in the sector of light mesons.
From meson- and photon-nucleon scattering to vector mesons in nuclear matter
International Nuclear Information System (INIS)
Wolf, Gy.; Lutz, M.F.M.; Friman, B.
2003-01-01
A relativistic and unitary approach to pion- and photon-nucleon scattering taking into account the πN, ρN, ωN, ηN, πΔ, KΛ and KΣ channels is presented. The scheme dynamically generates the s- and d-wave baryon resonances N(1535), N(1650), N(1520) and N(1700) and as well as Δ(1620) and Δ(1700) in terms of quasi-local two-body interaction terms. A fair description of the experimental data relevant to the properties of slow vector mesons in nuclear matter is obtained. The resulting s-wave ρ- and ω-meson-nucleon scattering amplitudes which define the leading density modification of the ρ- and ω-meson spectral functions in nuclear matter are presented. (author)
International Nuclear Information System (INIS)
Descamps, P.; Wassenhove, G. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Lister, J.B.; Marmillod, P.
1990-01-01
The use of the discrete Alfven wave spectrum to determine the current density profile and the effective mass density of the plasma in the TEXTOR tokamak is studied; the measurement, the validity of which is discussed, confirms independently the central q(r=0)<1 already obtained by polarimetry. (orig.)
International Nuclear Information System (INIS)
Sato, Masayasu; Yokomizo, Hideaki
1987-11-01
The electron cyclotron emission (ECE) is dominated from supra-thermal electron in discharge applying LH wave. We obtain informations of supra-thermal electron by applying the model of the relativistic anti-loss-cone distribution to ECE spectrum in the discharge. In this model, the emission perpendicular to the magnetic field are considered. The frequency range is considered to be well above the plasma and electron cyclotron frequencies, thus collective effects can be neglected. The electron distribution is assumed to be anisotropic in the velocity space and strongly extended in the direction parallel to the magnetic field, namely the relativistic anti-loss-cone distribution. The informations of supra-thermal electron are obtained by the following way. The temperature and density of the supra-thermal electron and the anti-loss-cone angle are obtained from the power spectrum of LH wave launched, the measured slope of the spectrum of ECE and the spectral radiance of ECE. (author)
Two-body spectra of pseudoscalar mesons with an O(a2)-improved lattice action using Wilson fermions
International Nuclear Information System (INIS)
Fiebig, H.R.; Mihaly, A.; Woloshyn, R.M.
1998-01-01
We extend our calculations with the second-order tree-level and tadpole improved next-nearest-neighbor action to meson-meson systems. Correlation matrices built from interpolating fields representing two pseudoscalar mesons (π-π) with relative momenta vector-p are diagonalized, and the mass spectrum is extracted. Link variable fuzzing and operator smearing at both sinks and sources is employed. Calculations are presented for two values of the hopping parameter. The spectrum is used to discuss the residual interaction in the meson-meson system. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fiebig, H.R. [FIU-University Park, Miami, FL (United States). Phys. Dept.; Markum, H.; Rabitsch, K. [Institut fuer Kernphysik, Technische Universitaet Wien, 1040 Vienna (Austria); Mihaly, A. [Department of Theoretical Physics, Lajos Kossuth University, 4010 Debrecen (Hungary); Woloshyn, R.M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)
1998-04-01
We extend our calculations with the second-order tree-level and tadpole improved next-nearest-neighbor action to meson-meson systems. Correlation matrices built from interpolating fields representing two pseudoscalar mesons ({pi}-{pi}) with relative momenta vector-p are diagonalized, and the mass spectrum is extracted. Link variable fuzzing and operator smearing at both sinks and sources is employed. Calculations are presented for two values of the hopping parameter. The spectrum is used to discuss the residual interaction in the meson-meson system. (orig.). 6 refs.
International Nuclear Information System (INIS)
Semay, Claude; Buisseret, Fabien; Silvestre-Brac, Bernard
2009-01-01
A hybrid meson is a quark-antiquark pair in which, contrary to ordinary mesons, the gluon field is in an excited state. In the framework of constituent models, the interaction potential is assumed to be the energy of an excited string. An approximate, but accurate, analytical solution of the Schroedinger equation with such a potential is presented. When applied to hybrid charmonia and bottomonia, towers of states are predicted in which the masses are a linear function of a harmonic oscillator band number for the quark-antiquark pair. Such a formula could be a reliable guide for the experimental detection of heavy hybrid mesons.
Latest results from meson photoproduction at ELSA and MAMI
Krusche, B.
2014-06-01
Photoproduction of mesons plays a key role for the investigation of the excitation spectrum of the nucleon and thus for our understanding of the strong interaction in the non-perturbative regime. In this contribution we discuss recent results from the experiments at the tagged photon beams of the electron accelerators ELSA in Bonn and MAMI in Mainz. They include the measurement of cross sections and (double) polarization observables for single meson production and production of meson pairs off free protons as well as of quasi-free nucleons bound in light nuclei (in particular the deuteron).
Scattering of vector mesons off nucleons
International Nuclear Information System (INIS)
Lutz, M.F.M.; Friman, B.; Wolf, G.
2001-12-01
We construct a relativistic and unitary approach to 'high' energy pion- and photon-nucleon reactions taking the πN, πΔ, ρN, ωN, ηN, K Λ, KΣ final states into account. Our scheme dynamically generates the s- and d-wave nucleon resonances N(1535), N(1650) and N(1520) and isobar resonances Δ(1620) and δ(1700) in terms of quasi-local interaction vertices. The description of photon-induced processes is based on a generalized vector-meson dominance assumption which directly relates the electromagnetic quasi-local 4-point interaction vertices to the corresponding vertices involving the ρ and ω fields. We obtain a satisfactory description of the elastic and inelastic pion- and photon-nucleon scattering data in the channels considered. The resulting s-wave ρ- and ω-nucleon scattering amplitudes are presented. Using these amplitudes we compute the leading density modification of the ρ and ω mass distributions in nuclear matter. We find a repulsive mass shift for the ω meson at small nuclear density but predict considerable strength in resonance-hole like ω-meson modes. Compared to previous calculations our result for the ρ-meson spectral function shows a significantly smaller in-medium effect. This reflects a not too large coupling strength of the N(1520) resonance to the ρN channel. (orig.)
International Nuclear Information System (INIS)
Butler, J.N.; Shukla, S.
1995-05-01
The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one
Using anti pp annihilation to find exotic mesons
International Nuclear Information System (INIS)
Sharpe, S.R.
1987-10-01
Present data suggests that a number of mesons have been found which cannot be accommodated in standard anti qq multiplets. Theory suggests that such exotic mesons should exist in the spectrum of Quantum Chromodynamics, but provides little guide to their properties. It is argued that a high luminosity, low energy anti pp machine would be a powerful tool with which to search for such exotics
Excited meson spectroscopy with two chirally improved quarks
Engel, G.; Lang, C. B.; Mohler, D.; Limmer, M.; Schäfer, A.
The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \\approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.
Application of heavy-light methods to B meson physics
International Nuclear Information System (INIS)
Eichten, E.; Hockney, G.; Thacker, H.B.
1989-01-01
The heavy-light method is applied to the study of the B meson spectrum, the pseudoscalar decay constant f B , the mixing (B) parameter, and exclusive semileptonic B meson decays. Preliminary results are discussed for f B and the B parameter at β = 5.7 and κ = 0.165 on a 12 3 x 24 lattice and at β = 5.9 and κ = 0.158 on a 16 3 x 32 lattice. 9 refs., 2 figs., 2 tabs
International Nuclear Information System (INIS)
Zhang Jiatai
1994-01-01
From the theory of stimulated Raman scattering (SRS) three wave interaction, a new method of detecting the electron temperature in laser-plasma is obtained. SRS spectrum obtained from Shenguang No. 12 Nd-laser experiments are analysed. Using the wave length of short wave cut off of SRS, the electron temperature in corona plasma region is calculated consistently. These results agree reasonable with X-ray spectrum experiments
Meson Spectroscopy from QCD - Project Results
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States)
2017-04-17
Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing in πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.
Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface
Palasantzas, George
1994-01-01
The propagation of a sound wave along a statistically rough solid-vacuum interface is investigated for the case of self-affine fractals. The wave-number relation ω=ω(k) is examined for the transverse polarized surface wave. The range of existence of this wave is analyzed as a function of the degree
SU(6), baryonic decays of B-mesons and CP
International Nuclear Information System (INIS)
Wu, D.
1990-01-01
In this paper the four fermion weak decay Hamiltonian is expressed in terms of quark-antiquark creation operators with specific spin orientations. Then the SU(6) symmetry of the strong interactions among light quarks is imposed to find 8 invariant decay amplitudes for two body charmful baryonic decays of the B-mesons, 3 S-waves, 4 P- waves and 1 D-wave. Λ c branching ratio and some exclusive branching ratios are calculated based on the assumption of two body dominance in baryonic decay modes. Results on two body mesonic decays are also given. Relation between the SU(6) scheme and the quark diagram scheme is discussed
SU(4) flavor symmetry breaking in D-meson couplings to light hadrons
Energy Technology Data Exchange (ETDEWEB)
Fontoura, C.E. [Instituto Tecnologico da Aeronautica, DCTA, Sao Jose dos Campos, SP (Brazil); Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Haidenbauer, J. [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Krein, G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-05-15
The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of {sup 3}P{sub 0} quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-meson couplings NNπ, NΛK and NΛ{sub c}D. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
He, Peng; Gao, Xinliang; Lu, Quanming; Wang, Shui, E-mail: gaoxl@mail.ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)
2016-08-10
The preferential heating of heavy ions in the solar corona and solar wind has been a long-standing hot topic. In this paper we use a one-dimensional hybrid simulation model to investigate the heating of He{sup 2+} particles during the parametric instabilities of parallel propagating Alfvén waves with an incoherent spectrum. The evolution of the parametric instabilities has two stages and involves the heavy ion heating during the entire evolution. In the first stage, the density fluctuations are generated by the modulation of the pump Alfvén waves with a spectrum, which then results in rapid coupling with the pump Alfvén waves and the cascade of the magnetic fluctuations. In the second stage, each pump Alfvén wave decays into a forward density mode and a backward daughter Alfvén mode, which is similar to that of a monochromatic pump Alfvén wave. In both stages the perpendicular heating of He{sup 2+} particles occurs. This is caused by the cyclotron resonance between He{sup 2+} particles and the high-frequency magnetic fluctuations, whereas the Landau resonance between He{sup 2+} particles and the density fluctuations leads to the parallel heating of He{sup 2+} particles. The influence of the drift velocity between the protons and the He{sup 2+} particles on the heating of He{sup 2+} particles is also discussed in this paper.
Mesons above the deconfining transition
International Nuclear Information System (INIS)
De Forcrand, P.; Garcia Perez, M.; Hashimoto, T.
1999-01-01
We analyze temporal and spatial meson correlators in quenched lattice QCD at T > 0. Above T c we find different masses and (spatial) 'screening masses', signals of plasma formation, and indication of persisting 'mesonic' excitations. (author)
Relativistic meson spectroscopy in momentum space
International Nuclear Information System (INIS)
Hersbach, H.
1994-01-01
In this paper a relativistic constituent-quark model based on the Ruijgrok--de Groot formalism is presented. The quark model is not defined in configuration space, but in momentum space. The complete meson spectrum, with the exception of the self-conjugate light unflavored mesons, is calculated. The potential used consists of a one-gluon exchange (OGE) part and a confining part. For the confining part a relativistic generalization of the linear plus constant potential was used, which is well defined in momentum space without introducing any singularities. For the OGE part several potentials were investigated. Retardations were included at all places. By the use of a fitting procedure involving 52 well-established mesons, but results were obtained for a potential consisting of a purely vector Richardson potential and a purely scalar confining potential. Reasonable results were also obtained for a modified Richardson potential. Most meson masses, with the exception of the π, the K, and the K 0 * , were found to be quite well described by the model
Instanton and tensor-force effects in the strong decays of mesons
International Nuclear Information System (INIS)
Bonnaz, R.; Silvestre-Brac, B.
2001-01-01
The strong decays of mesons are studied in the framework of the 3 P 0 model with a momentum-dependent vertex. The mesons wave functions are obtained from quark-antiquark potentials including a finite quark size, instanton effects, spin-orbit and tensor-force effects. Several prescriptions for treating the decays into three mesons are proposed and analyzed. Comparison to experimental data is presented in detail. (author)
Energy Technology Data Exchange (ETDEWEB)
Chao, Winston C. [NASA/Goddard Space Flight Center, Global Modeling and Assimilation Office, Mail Code 610.1, Greenbelt, MD (United States); Yang, Bo; Fu, Xiouhua [University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, International Pacific Research Center, Honolulu, HI (United States)
2009-11-15
The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called ''convectively coupled Kelvin (mixed Rossby-gravity) waves'' are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of ''convectively coupled Kelvin waves,'' which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, ''convectively coupled Kelvin waves'' do show anti-symmetric components, and ''convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)'' do show a hint of symmetric components. These results bolster a published proposal that these waves should be called ''chimeric Kelvin waves,'' ''chimeric mixed Rossby-gravity waves,'' etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves. (orig.)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
Comments on the Alfven wave spectrum as measured on the TCA tokamak
International Nuclear Information System (INIS)
Puri, S.
1986-06-01
The heating in the TCA tokamak is ascribed to a combination of compressional Alfven wave heating (CAW) and discrete Alfven wave (DAW) heating. In this communication we invoke an alternative plasma heating mechanism by the direct excitation of torsional Alfven waves (TAW) to account for the observed features of the TCA experiment. (orig./GG)
International Nuclear Information System (INIS)
Burden, C.J.
1998-01-01
Full text: Evidence for a meson with exotic quantum numbers J PC 1 -+ , the ρ(1405), has been observed at the AGS at Brookhaven and Crystal Barrel at CERN. This meson is exotic to the extent that its quantum numbers are not consistent with the generalised Pauli exclusion principle applied to the naive constituent quark model. In a fully relativistic field theoretic treatment, however, there is nothing in principle to preclude the existence of charge parity exotics. Using our earlier covariant Bethe-Salpeter model of light-quark mesons with no new parameter fitting we demonstrate the existence of a q - q-bar bound state with the quantum numbers of the ρ
International Nuclear Information System (INIS)
Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.
1980-01-01
The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed
Meson masses in electromagnetic fields with Wilson fermions
Bali, G. S.; Brandt, B. B.; Endrődi, G.; Gläßle, B.
2018-02-01
We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured ρ -meson condensation at strong magnetic fields. The continuum extrapolation was facilitated by adding a novel magnetic field-dependent improvement term to the additive quark mass renormalization. Without this term, sizable lattice artifacts that would deceptively indicate an unphysical rise of the connected neutral pion mass for strong magnetic fields are present. We also investigate the impact of these lattice artifacts on further observables like magnetic polarizabilities and discuss the magnetic field-induced mixing between ρ -mesons and pions. We also derive Ward-Takashi identities for QCD +QED both in the continuum formulation and for (order a -improved) Wilson fermions.
International Nuclear Information System (INIS)
Pennington, M.R.
1989-01-01
The search for I = 0 0 ++ mesons is described. The crucial role played by the states in the 1 GeV region is highlighted. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. The authors briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 references, 6 figures, 1 table
Vector meson decays in the chiral bag model
International Nuclear Information System (INIS)
Maxwell, O.V.; Jennings, B.K.
1985-01-01
Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)
PROPERTIES OF THE $omega$ MESON
Energy Technology Data Exchange (ETDEWEB)
Shafer, J. B.; Murray, J. J.; Ferro-Luzzi, M.; Huwe, D. O.
1963-06-15
Properties of the omega meson were studied from the reaction K/sup -/ + p yields LAMBDA + omega in a 72-in. hydrogen bubble chamber. The momentum of the K/sup -/ mesons was 1.2 to 1.75 Bev/c. The mass of the omega meson is found to be 782 Mev with a width, predominated by three-meson( pi ) decay mode, estimated to be less than 4 Mev. Branching ratios for omega -meson decay into pi /sup +/ pi /sup -/ pi /sup o/, pi /sup o/ gamma , pi /sup +/ i/ sup -/, and e/sup +/e/sup -o/ were determined. (R.E.U.)
Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires
Energy Technology Data Exchange (ETDEWEB)
Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)
2016-09-15
Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.
The charge form factor of pseudoscalar mesons in a relativistic constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others
1994-04-01
The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.
Energy Technology Data Exchange (ETDEWEB)
Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards
2003-07-22
We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.
Slope wavenumber spectrum models of capillary and capillary-gravity waves
Institute of Scientific and Technical Information of China (English)
贾永君; 张杰; 王岩峰
2010-01-01
Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...
A transverse lattice QCD model for mesons
Energy Technology Data Exchange (ETDEWEB)
Patel, Apoorva D.; Ratabole, Raghunath
2004-03-01
QCD is analysed with two light-front continuum dimensions and two transverse lattice dimensions. In the limit of large number of colours and strong transverse gauge coupling, the contributions of light-front and transverse directions factorise in the dynamics, and the theory can be analytically solved in a closed form. An integral equation is obtained, describing the properties of mesons, which generalises the 't Hooft equation by including spin degrees of freedom. The meson spectrum, light-front wavefunctions and form factors can be obtained by solving this equation numerically. These results would be a good starting point to model QCD observables which only weakly depend on transverse directions, e.g. deep inelastic scattering structure functions.
International Nuclear Information System (INIS)
Krupnov, A.F.; Tretyakov, M.Yu.; Leforestier, C.
2009-01-01
Attempts of experimental observations of the water dimer spectrum at equilibrium conditions have lasted for more than 40 years since the dimeric hypothesis for extra absorption, but have not yielded any positive confirmed result. In the present paper a new approach is considered: using a high-resolution millimeter-wave spectrum of the water dimer at equilibrium, calculated by a rigorous fully quantum method, we show the potential existence of discernible spectral series of discrete features of the water dimer, which correspond to J+1 1 symmetry, already observed in cold molecular beam experiments and having, therefore, well-defined positions. The intensity of spectral series and contrast to the remaining continuum-like spectrum of the dimer are calculated and compared with the monomer absorption. The suitability of two types of microwave spectrometers for observing these series is considered. The collisional line-width of millimeter lines of the dimer at equilibrium is estimated and the width of IR dimer bands is discussed. It is pointed out that the large width of IR dimer bands may pose difficulties for their reliable observation and conclusive separation from the rest of absorption in water vapor. This situation contrasts with the suggested approach of dimer detection in millimeter-waves.
Self-consistent meson mass spectrum
International Nuclear Information System (INIS)
Balazs, L.A.P.
1982-01-01
A dual-topological-unitarization (or dual-fragmentation) approach to the calculation of hadron masses is presented, in which the effect of planar ''sea''-quark loops is taken into account from the beginning. Using techniques based on analyticity and generalized ladder-graph dynamics, we first derive the approximate ''generic'' Regge-trajectory formula α(t) = max (S 1 +S 2 , S 3 +S 4 )-(1/2) +2alpha-circumflex'[s/sub a/ +(1/2)(t-summationm/sub i/ 2 )] for any given hadronic process 1+2→3+4, where S/sub i/ and m/sub i/ are the spins and masses of i = 1,2,3,4, and √s/sub a/ is the effective mass of the lowest nonvanishing contribution (a) exchanged in the crossed channel. By requiring a minimization of secondary (background, etc.) contributions to a, and demanding simultaneous consistency for entire sets of such processes, we are then able to calculate the masses of all the lowest pseudoscalar and vector qq-bar states with q = u,d,s and the Regge trajectories on which they lie. By making certain additional assumptions we are also able to do this with q = u,d,c and q = u,d,b. Our only arbitrary parameters are m/sub rho/, m/sub K/*, m/sub psi/, and m/sub Upsilon/, one of which merely serves to fix the energy scale. In contrast to many other approaches, a small m/sub π/ 2 /m/sub rho/ 2 ratio arises quite naturally in the present scheme
Discovery of omega meson, first neutral vector meson
International Nuclear Information System (INIS)
Anon.
1976-01-01
A personal account of the discovery of the ω meson is given by researcher B. Maglich. His account includes such topics as early and unsuccessful searches for a neutral vector meson (by himself and others), eventual discovery of the rho meson, the Goldhaber effect, and the observation and characterization of the ω meson. Explanatory physics notes on electromagnetic structure experiments and the determination of the quantum numbers of the ω meson are provided for nonspecialists. Also included are an outline of the relation between vector mesons and nuclear forces, a reprint of the Physical Review Letter on Evidence for a T = 0 three-pion resonance, and a scientific autobiography of the researcher. 14 figures, 1 table
Millimeter wave spectrum of bromomethyl radical, CH.sub.2./sub.Br
Czech Academy of Sciences Publication Activity Database
Bailleux, S.; Dréan, P.; Zelinger, Zdeněk; Civiš, Svatopluk; Ozeki, H.; Saito, S.
2005-01-01
Roč. 122, č. 13 (2005), 134302-1-6 ISSN 0021-9606 R&D Projects: GA AV ČR IAA1010110; GA MŠk OC 723.001; GA AV ČR 1ET400400410 Institutional research plan: CEZ:AV0Z40400503 Keywords : matrix infrared-spectrum * diode-laser spectroscopy * microwave spectrum * kinetics * ionization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.138, year: 2005
Study of the directional spectrum of ocean waves using array, buoy and radar measurements
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A.
Phase/time/path difference (PTPD) methods of Esteva [1977] and Borgman [1974] with two modifications, viz., true phase and coherence proposed in this thesis, have for the first time been successfully used for computing wave direction as a function...
Directional spectrum of ocean waves from array measurements using phase/time/path difference methods
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.
Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...
Light Meson Distribution Amplitudes
Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.
2010-01-01
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
International Nuclear Information System (INIS)
Oset, E.
1980-01-01
A short review of the topic of mesons in nuclei is exposed paying particular attention to the relationship between several mesonic processes. Special emphasis is put into the microscopic pictures that can ultimately relate all these processes with the elementary coupling of mesons to the nuclear hadronic components. The importance of the short range part of the nuclear interaction opens the doors to a more basic understanding in terms of the quark components of nucleons and isobars. (orig.)
Isgur-Wise function for heavy-light mesons in the D-dimensional potential model
International Nuclear Information System (INIS)
Roy, Sabyasachi; Choudhury, D K; Hazarika, B J
2012-01-01
We report the results of a wave function for mesons in D space-time dimension developed by considering the quark-antiquark potential of Nambu-Goto strings. With this wave function, we have studied the Isgur-Wise function for heavy-light mesons and its derivatives such as slope and curvature. The dimensional dependence of our results and a comparative study with the results of three-dimensional QCD are also reported.
Theoretical aspects of light meson spectroscopy
International Nuclear Information System (INIS)
Barnes, T.; Univ. of Tennessee, Knoxville, TN
1995-01-01
In this pedagogical review the authors discuss the theoretical understanding of light hadron spectroscopy in terms of QCD and the quark model. They begin with a summary of the known and surmised properties of QCD and confinement. Following this they review the nonrelativistic quark potential model for q anti q mesons and discuss the quarkonium spectrum and methods for identifying q anti q states. Finally, they review theoretical expectations for non-q anti q states (glueballs, hybrids and multiquark systems) and the status of experimental candidates for these states
Boson states in the reaction π-p → π-π-π+p with leading π+ meson at 25 GeV/c
International Nuclear Information System (INIS)
Antipov, Yu.M.; Baud, R.
1975-01-01
The reaction π - + p → p + π - + π - + π + at 25 GeV/c was studied in the mass region M sub(3π) >>= 1.8 GeV with leading π + in the final state. The mass spectrum of π 1 π - -system evidently shows peaks rho deg, f, g deg resonances and an enhancement in S'-region. It is shown that the g deg and π - mesons are mainly in A4 state J sub(P) = 3 + S-wave g degπ - like A1(sup(rhoπ)) and A3(sup(fπ))
Energy Technology Data Exchange (ETDEWEB)
Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)
2011-07-15
We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.
Rare B Meson Decays With Omega Mesons
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei; /Colorado U.
2006-04-24
Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed the decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.
MesonNet Workshop on Meson Transition Form Factors
Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S
2012-01-01
The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.
Charged-particle multiplicities in B-meson decay
International Nuclear Information System (INIS)
Alam, M.S.; Csorna, S.E.; Fridman, A.; Hicks, R.G.; Panvini, R.S.; Andrews, D.; Avery, P.; Berkelman, K.; Cabenda, R.; Cassel, D.G.; DeWire, J.W.; Ehrlich, R.; Ferguson, T.; Gilchriese, M.G.D.; Gittelman, B.; Hartill, D.L.; Herrup, D.; Herzlinger, M.; Holzner, S.; Kandaswamy, J.; Kreinick, D.L.; Mistry, N.B.; Morrow, F.; Nordberg, E.; Perchonok, R.; Plunkett, R.; Silverman, A.; Stein, P.C.; Stone, S.; Weber, D.; Wilcke, R.; Sadoff, A.J.; Bebek, C.; Haggerty, J.; Hempstead, M.; Izen, J.M.; Loomis, W.A.; MacKay, W.W.; Pipkin, F.M.; Rohlf, J.; Tanenbaum, W.; Wilson, R.; Chadwick, K.; Chauveau, J.; Ganci, P.; Gentile, T.; Kagan, H.; Kass, R.; Melissinos, A.C.; Olsen, S.L.; Poling, R.; Rosenfeld, C.; Rucinski, G.; Thorndike, E.H.; Green, J.; Sannes, F.; Skubic, P.; Snyder, A.; Stone, R.; Brody, A.; Chen, A.; Goldberg, M.; Horwitz, N.; Lipari, P.; Kooy, H.; Moneti, G.C.; Pistilli, P.
1982-01-01
The charged multiplicity has been measured at the UPSILON(4S) and a value of 5.75 +- 0.1 +- 0.2 has been obtained for the mean charged multiplicity in B-meson decay. Combining this result with the measurement of prompt letpons from B decay, the values 4.1 +- 0.35 +- 0.2 and 6.3 +- 0.2 +- 0.2 are found for the semileptonic and nonleptonic charged multiplicities, respectively. If b→c dominance is assumed for the weak decay of the B meson, then the semileptonic multiplicity is consistent with the recoil mass determined from the lepton momentum spectrum
Mesons from (non) Abelian T-dual backgrounds
Energy Technology Data Exchange (ETDEWEB)
Itsios, Georgios [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Department of Physics, University of Oviedo,Avda. Calvo Sotelo 18, 33007 Oviedo (Spain); Núñez, Carlos [Department of Physics, Swansea University,Swansea SA2 8PP (United Kingdom); Zoakos, Dimitrios [Centro de Física do Porto, Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal)
2017-01-03
In this work we study mesonic excitations in a Quantum Field Theory dual to the non Abelian T-dual of AdS{sub 5}×S{sup 5}, using a D6 brane probe on the Sfetsos-Thompson background. Before and after the duality, we observe interesting differences between the spectra and interpret them. The spectrum of masses and the interactions between mesonic excitations teach valuable lessons about the character of non-Abelian T-duality and its implications for Holography. The case of Abelian T-duality is also studied.
Radiative decays of the Upsilon(1S) meson
International Nuclear Information System (INIS)
Besson, D.Z.
1986-01-01
Using the CLEO detector at the Cornell Electron Storage Ring, the author is able to measure the QCD scaling parameter Λ/sub MS/ as well as the strong coupling constant α/sub s/ through a measurement of the direct photon energy spectrum resulting from decays of the Upsilon(1S) meson. The author finds fair agreement with previous work. In addition, the author sets limits on exclusive two-body radiative decays of the Upsilon(1S) meson and see no evidence for the type of such two-body decays which are observed in psi decays
Holographic picture of heavy vector meson melting
Energy Technology Data Exchange (ETDEWEB)
Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)
2016-11-15
The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)
Spectroscopic properties of the B meson
Directory of Open Access Journals (Sweden)
Devlani Nayneshkumar
2015-01-01
Full Text Available Investigation of the B(bq̄; q = u, d meson properties is carried out using variational method within phenomenological quark antiquark potential(coulomb plus power model using the Gaussian wave function. O(1/m correction to the potential energy term and relativistic corrections to the kinetic energy term of the hamiltonian are incorporated. Spin-orbit, spin-spin and tensor interactions are employed to obtain the mass spectra. Various other properties such as the decay constants, e1 and m1 transitions are also obtained
Chiral symmetry breaking and the spin content of the {rho} and {rho}{sup '} mesons
Energy Technology Data Exchange (ETDEWEB)
Glozman, L.Ya., E-mail: leonid.glozman@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Lang, C.B., E-mail: christian.lang@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Limmer, M., E-mail: markus.limmer@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria)
2011-11-03
Using interpolators with different SU(2){sub L}xSU(2){sub R} transformation properties we study the chiral symmetry and spin contents of the {rho} and {rho}{sup '} mesons in lattice simulations with dynamical quarks. A ratio of couplings of the q-bar {gamma}{sup i}{tau}q and q-bar {sigma}{sup 0}i{tau}q interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of {approx}1 fm. In the ground state {rho} meson the chiral symmetry is strongly broken with comparable contributions of both the (0,1)+(1,0) and (1/2,1/2){sub b} chiral representations with the former being the leading contribution. In contrast, in the {rho}{sup '} meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1/2,1/2){sub b}. Using a unitary transformation from the chiral basis to the {sup 2S+1}L{sub J} basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The {rho} meson is practically a {sup 3}S{sub 1} state with no obvious trace of a 'spin crisis'. The {rho}{sup '} meson has a sizeable contribution of the {sup 3}D{sub 1} wave, which implies that the {rho}{sup '} meson cannot be considered as a pure radial excitation of the {rho} meson.
Chiral symmetry breaking and the spin content of the ρ and ρ‧ mesons
Glozman, L. Ya.; Lang, C. B.; Limmer, M.
2011-11-01
Using interpolators with different SU(2)L × SU(2)R transformation properties we study the chiral symmetry and spin contents of the ρ and ρ‧ mesons in lattice simulations with dynamical quarks. A ratio of couplings of the qbarγi τq and qbarσ0i τq interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of ∼ 1 fm. In the ground state ρ meson the chiral symmetry is strongly broken with comparable contributions of both the (0 , 1) + (1 , 0) and (1 / 2 , 1 / 2) b chiral representations with the former being the leading contribution. In contrast, in the ρ‧ meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1 / 2 , 1 / 2) b. Using a unitary transformation from the chiral basis to the LJ2S+1 basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The ρ meson is practically a 3S1 state with no obvious trace of a "spin crisis". The ρ‧ meson has a sizeable contribution of the 3D1 wave, which implies that the ρ‧ meson cannot be considered as a pure radial excitation of the ρ meson.
Chiral symmetry breaking and the spin content of the ρ and ρ' mesons
International Nuclear Information System (INIS)
Glozman, L.Ya.; Lang, C.B.; Limmer, M.
2011-01-01
Using interpolators with different SU(2) L xSU(2) R transformation properties we study the chiral symmetry and spin contents of the ρ and ρ ' mesons in lattice simulations with dynamical quarks. A ratio of couplings of the q-bar γ i τq and q-bar σ 0i τq interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of ∼1 fm. In the ground state ρ meson the chiral symmetry is strongly broken with comparable contributions of both the (0,1)+(1,0) and (1/2,1/2) b chiral representations with the former being the leading contribution. In contrast, in the ρ ' meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1/2,1/2) b . Using a unitary transformation from the chiral basis to the 2S+1 L J basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The ρ meson is practically a 3 S 1 state with no obvious trace of a 'spin crisis'. The ρ ' meson has a sizeable contribution of the 3 D 1 wave, which implies that the ρ ' meson cannot be considered as a pure radial excitation of the ρ meson.
Dynamic retardation corrections to the mass spectrum of heavy quarkonia
International Nuclear Information System (INIS)
Kopalejshvili, T.; Rusetskij, A.
1996-01-01
In the framework of the Logunov-Tavkhelidze quasipotential approach the first-order retardation corrections to the heavy quarkonia mass spectrum are calculated with the use of the stationary wave boundary condition in the covariant kernel of the Bethe-Salpeter equation. As has been expected, these corrections turn out to be small for all low-lying heavy meson states and vanish in the heavy quark limit (m Q →∞). The comparison of the suggested approach to the calculation of retardation corrections with others, known in literature, is carried out. 22 refs., 1 tab
Directory of Open Access Journals (Sweden)
Y. Narita
2011-02-01
Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.
Exotic meson spectroscopy with CLAS
Energy Technology Data Exchange (ETDEWEB)
Adams, G.; Napolitano, J. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The identification and study of mesons with explicit gluonic degrees of freedom will provide major constraints on nonperturbative QCD and models thereof. CLAS will provide a unique opportunity for studying these resonances by measuring photoproduction of multi-meson final states.
Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling
Directory of Open Access Journals (Sweden)
V. Yu. Shustikov
2015-01-01
Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the
Strange mesonic transition form factor
International Nuclear Information System (INIS)
Goity, J.L.; Musolf, M.J.
1996-01-01
The strange-quark vector current ρ-to-π meson transition form factor is computed at one-loop order using strange meson intermediate states. A comparison is made with a φ-meson dominance model estimate. We find that one-loop contributions are comparable in magnitude to those predicted by φ-meson dominance. It is possible that the one-loop contribution can make the matrix element as large as those of the electromagnetic current mediating vector meson radiative decays. However, due to the quadratic dependence of the one-loop results on the hadronic form factor cutoff mass, a large uncertainty in the estimate of the loops is unavoidable. These results indicate that non-nucleonic strange quarks could contribute appreciable in moderate-parallel Q 2 parallel parity-violating electron-nucleus scattering measurements aimed at probing the strange-quark content of the nucleon. copyright 1996 The American Physical Society
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum
Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver
2014-01-01
Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349
Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.
Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver
2014-12-02
Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.
General characteristics of Bc-mesons. Production mechanisms and decays
International Nuclear Information System (INIS)
Gershtein, S.S.; Likhoded, A.K.; Slabospitsky, S.R.
1989-01-01
Using Martin potential, independent of b- and c-quark flavour, the mass spectrum of B c (bc-bar)-mesons and widths of electromagnetic transition between them are calculated. The estimations of the production cross section at e + e - colliders, in hadronic and neutrino interactions are obtained. A real possibility to observed B c mesons at LEP and also at hadron colliders (σ(B c )/σ(bb-bar)∼10 -3 ) has been pointed out. The importance of observing the annihilation decay channels of B c -mesons: B c →τν τ (Br(B c →τν τ )=1.5-2%), and B c →ΦD s , B C →DK etc, has been emphasized. 25 refs.; 16 figs.; 5 tabs
Zero sound velocity in π, ρ mesons at different temperatures
International Nuclear Information System (INIS)
Dey, J.; Dey, M.; Tomio, L.; Araujo, C.F. de Jr.
1994-07-01
Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T=T ν ≠ 0 and that the numerical value of this T ν depends on the nature of the meson. The average thermal energy of mesons go linearly with T near T ν , with much smaller slope for the pion. The T ν - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy ion collision at mid-rapidity. It would be interesting to check the presence of different T ν - s in present day finite T lattice theory. (author). 22 refs, 1 fig., 2 tabs
Meson production in two-photon interactions at LHC energies
Energy Technology Data Exchange (ETDEWEB)
Da Silva, D. T.; Goncalves, V. P.; Sauter, W. K. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Campus Universitario UFPel, CP 354, 96010-900, Capao do Leao-RS (Brazil)
2013-03-25
The LHC opens a new kinematical regime at high energy, where several questions related to the description of the high-energy regime of the Quantum Chromodynamics (QCD) remain without satisfactory answers. Some open questions are the search for non-q-bar q resonances, the determination of the spectrum of q-bar q states and the identification of states with anomalous {gamma}{gamma} couplings. A possible way to study these problems is the study of meson production in two-photon interactions. In this contribution we calculate the meson production in two-photon interactions at LHC energies considering proton - proton collisions and estimate the total cross section for the production of the mesons {pi}, a, f, {eta} and {chi}.
Meson spectra from two-body dirac equations with minimal interactions
International Nuclear Information System (INIS)
Crater, H.W.; Becker, R.L.; Wong, C.Y.
1991-01-01
Many authors have used two-body relativistic wave equations with spin in nonperturbative numerical quark model calculations of the meson spectrum. Usually, they adopt a truncation of the Bethe-Salpeter equation of QED and/or scalar. QED and replace the static Coulomb interactions of those field theories with a semiphenomenological Q bar Q potential whose insertion in the Breit terms give the corresponding spin corrections. However, the successes of these wave equations in QED have invariably depended on perturbative treatment of the terms in each beyond the Coulomb terms. There have been no successful nonperturbative numerical test of two-body quantum wave equations in QED, because in most equations the effective potentials beyond the Coulomb are singular and can only be treated perturbatively. This is a glaring omission that we rectify here for the case of the two-body Dirac equations of constraint dynamics. We show in this paper that a nonperturbative numerical treatment of these equations for QED yields the same spectral results as a perturbative treatment of them which in turn agrees with the standard spectral results for positronium and muonium. This establishes that the vector and scalar interaction structures of our equations accurately incorporate field theoretic interactions in a bone fide relativistic wave equation. The last portion of this work will report recent quark model calculations using these equations with the Adler-Piran static Q bar Q potential
Meson radiobiology and therapy
International Nuclear Information System (INIS)
Kilgerman, M.M.
1975-08-01
High-linear energy transfer radiation (neutrons, heavy ions, and pions) have a greater relative biological effectiveness than low-linear energy transfer radiation by depositing a high density of ionization in irradiated cells. This overcomes the protective effect of oxygen; decreases the variation in sensitivity among the several stages of the cell cycles; and, inhibits the repair of sublethal damage as compared to x-rays, gamma rays, electrons and protons. Negative pi mesons (pions), appear particularly suited for radiation therapy as their penetration and depth-dose profiles lend themselves to shaping the high dose area to the tumor size and location. Preliminary biological experiments with pions produced at the Los Alamos Meson Physics Facility studied cell survival at various radiation depths and cell cycle sensitivity. Histologic study of data from the first human experiments indicated severe tumor cell destruction by pions as compared to x-rays in treating malignant melanoma skin nodules, without increased effects on dermal elements. (U.S.)
International Nuclear Information System (INIS)
Crowe, K.M.
1992-01-01
The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p bar p annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report
International Nuclear Information System (INIS)
Liu, Lon-chang.
1989-01-01
Since the advent of pion factories, an impressive amount of information about the nuclear dynamics of the Δ(1232) pion- nucleon resonance has been obtained. The study of this isospin-3/2 resonance has greatly benefited from the fact that π/sup /minus//n and π + p systems are pure I = 3/2 states, which couple only to the Δ in the resonance region. Such isospin selectivity of the pion does not exist, however, for the I = 1/2 N* resonances because it is not possible to form a pure I = 1/2 state with a pion and a nucleon. Eta mesons have zero isospin. Consequently, the /eta/N systems are in a pure I = 1/2 state, and /eta/ can be used to tag those N* resonances to which it strongly couples. We will briefly review the πN interaction from the threshold region to c.m. energy √s ≅1600 MeV. We shall see how improved πN data can help the study of πN interactions. I shall discuss what new information about the hadronic interaction can be learned from the study of eta production in pp collisions. The behavior of eta meson in nuclei will be discussed. The interesting question of the quark structure of /eta/(549) and /eta/'(958) will also be discussed within the framework of a simple model. 19 refs., 13 figs
Hybrid mesons (Q anti Qg) in N anti N annihilation
International Nuclear Information System (INIS)
Dover, C.B.; Gutsche, T.; Faessler, A.
1993-09-01
N anti N annihilation reactions provide exciting possibilities to study mesonic resonances beyond the usual Q anti Q spectrum. Particularly the search for Q anti Qg mesons containing an explicit dynamical excitation of the gluon field is not promising, since hybrids are predicted to display unique features: exotic quantum numbers (J πC ) and dynamical selection rules for their decay modes. The authors have investigated the possibility of producing hybrids from p anti p atomic states in reactions of the type N anti N(L= 0,1) → π + Q anti Qg. Production rates for hybrid mesons are found to display a strong dependence on the quantum numbers and kinematical factors associated with the transition. The dependence on the orbital angular momentum L of the p anti p atomic state, accessible in p anti p annihilation at rest, would provide a striking signature for the production of hybrids. In estimating branching ratios for the formation of Q anti Qg hybrid mesons in N anti N annihilation reactions at rest, the authors have employed a microscopic model with constituent quarks and gluons in analogy to the annihilation model for the production of Q anti Q mesons
Delta, iota and other meson spectroscopies
International Nuclear Information System (INIS)
Lipkin, H.J.
1986-05-01
This talk is given from the point of view of an experimentalist. Meson spectroscopy in the 1 to 3 GeV region is interesting because experiments exploring this region, in particular radiative psi decay, have found a rich structure of resonances too complicated to unravel with any one experiment, and not easily interpreted with any one theoretical model. None of the theoretical calculations predicting all kinds of interesting and exotic objects in this region is very convincing or reliable. Additional input from anti pp annihilation can be very useful in helping to find the answers to the following open questions: what exactly is this spectrum, what are the masses and quantum numbers of the resonances, as determined from analysis of data without theoretical prejudices; how is this spectrum described by QCD, is there evidence for new kinds of states like glue-balls, hybrids, axions, Higgses or multiquark exotics, and is there any evidence for new physics beyond QCD. 20 refs
Kolesniková, L.; Alonso, J. L.; Bermúdez, C.; Alonso, E. R.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.
2016-01-01
Aims The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. Results The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 – 35 and Ka″=0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided. PMID:27721514
Kanai, Hiroshi; Jang, Yun-Seok; Chubachi, Noriyoshi; Tanahashi, Yoshikatsu
1994-05-01
This paper investigates the difference in the spectrum of sound radiated before and after the break of a phantom at a focal point of the piezoelectric extracorporeal shock wave lithotriptor (ESWL) in order to identify the break time or to examine whether a calculus exists exactly at the focal point or not. From the preliminary experiments using a piece of chalk as a phantom of a calculus to measure the sound radiated when impact is applied to the chalk by an impact hammer, it is found that the bending vibration component of the vibration is exhibited in the spectrum of sound. However, for small-sized chalk shorter than 3 cm, the peak frequency of the bending vibration is higher than 20 kHz. From the experiments using a piezoeletric ESWL, it is found that there is clear difference in the power spectra among the sound radiated before the break, that radiated just after the break in the breaking process, and that radiated when the chalk does not exist at the focal point of the ESWL. These characteristics will be effective for the examination of the existence of the calculus at the focal point.
Interference in Exclusive Vector Meson Production in Heavy-Ion Collisions
International Nuclear Information System (INIS)
Klein, Spencer R.; Nystrand, Joakim
2000-01-01
Vector mesons are produced copiously in peripheral relativistic heavy-ion collisions. Virtual photons from one ion can fluctuate into quark-antiquark pairs and scatter from the second ion, emerging as vector mesons. The emitter and target are indistinguishable, so emission from the two ions will interfere. Vector mesons have negative parity so the interference is destructive, reducing the production of mesons with small transverse momentum. The mesons are short lived, and decay before emission from the two ions can overlap. However, the decay-product wave functions overlap and interfere since they are produced in an entangled state, providing an example of the Einstein-Podolsky-Rosen paradox. (c) 2000 The American Physical Society
Xie, Ya-Ping; Chen, Xurong
2018-05-01
Photoproduction of vector mesons is computed with dipole model in proton-proton ultraperipheral collisions (UPCs) at the CERN Large Hadron Collider (LHC). The dipole model framework is employed in the calculations of vector mesons production in diffractive processes. Parameters of the bCGC model are refitted with the latest inclusive deep inelastic scattering experimental data. Employing the bCGC model and boosted Gaussian light-cone wave function for vector mesons, we obtain the prediction of rapidity distributions of J/ψ and ψ(2s) mesons in proton-proton ultraperipheral collisions at the LHC. The predictions give a good description of the experimental data of LHCb. Predictions of ϕ and ω mesons are also evaluated in this paper.
Properties of rho and eta mesons in nuclear matter
International Nuclear Information System (INIS)
Herrmann, M.; Sauermann, C.; Friman, B.L.; Technische Hochschule Darmstadt; Noerenberg, W.; Technische Hochschule Darmstadt
1993-10-01
The properties of ρ- and η-mesons in nuclear matter are studied within the scope of hadronic models. Unknown model parameters are obtained from fits to scattering data. - The treatment of the ρ-meson includes the coupling to two pions which, in matter, are strongly mixed with delta-particle-nucleon-hole states. The ρ-meson self-energy is evaluated in a current conserving approximation with in-medium pion propagators and vertex corrections. While the position of the original peak in the spectral function remains almost unchanged, its width grows rapidly with increasing density. Consequently, the ρ-meson strength function is strongly dispersed at high densities. Due to vertex corrections a new peak at a mass around 3m π emerges with increasing density, while the spectral function around the two-pion threshold is found to be smooth at all densities. The η-meson is strongly mixed with N * (1535)-particle-nucleon-hole states in nuclear matter. The corresponding dispersion relations with an upper and a lower branch look similar to those of the (π, ΔN -1 )-modes. However, since the N * is an S-wave resonance in the ηN-channel, the repulsion of the two branches survives at zero momentum. (orig.)
Charmed meson production at LHCb
International Nuclear Information System (INIS)
Müller, Dominik
2016-01-01
Measurements of charm meson production are important tests for QCD predictions and LHCb is uniquely suited to perform these measurements in the forward region. This paper summarises recent charm meson production measurements performed by LHCb of J/ψ and open charm mesons and the associated production of ϒ and open charm mesons. The J/ψ and open charm meson measurements are performed with data recorded in Run 2 of the Large Hadron Collider. With proton-proton collisions at √s = 13 TeV, these open a new regime in which QCD predictions for charm meson production may be precisely tested. Furthermore, ratios of cross-sections at different centre-of-mass energies benefit of cancellation of both experimental and theoretical uncertainties, providing a new sensitive test of the QCD calculations. Measurements of ϒ and open charm meson associated production are performed using √s = 7 TeV and √s = 8 TeV data and constitute the first observation of this production channel.
Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars
Energy Technology Data Exchange (ETDEWEB)
Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)
2012-03-01
In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.
Meson 2000 Conference Summary lite
International Nuclear Information System (INIS)
Barnes, T.
2000-01-01
This short contribution is a late MESON2000 conference summary. As appropriate for the 600th anniversary of the Jagiellonian University, it begins with a brief summary of the last 600 years of European history and its place in hadron physics. Next a ''physicist chirality'' order parameter PC is introduced. When applied to MESON2000 plenary speakers this order parameter illustrates the separation of hadron physicists into disjoint communities. The individual plenary talks in MESON2000 are next sorted according to the subconference associated with each of the 36 plenary speakers. Finally, I conclude with a previously unreported Feynman story regarding the use of models in hadron physics. (author)
Hard electroproduction of hybrid mesons
International Nuclear Information System (INIS)
Anikin, I.V.; LPT Universite Paris-Sud, Orsay; Szymanowski, L.; Teryaev, O.V.; ); Wallon, S.
2005-01-01
We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC = 1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as 1/Q 2 . This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in as and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. (author)
SU(N)-QCD2 meson equation in next-to-leading order
International Nuclear Information System (INIS)
Durgut, M.; Pak, N.K.
1982-08-01
We compute the 1/N corrections to the meson equation in the regular cut-off scheme. We illustrate that although the quark and gluon self energy and vertex corrections do not vanish explicitly as in the singular cut-off scheme, their contributions to the meson Bethe-Salpeter equation get cancelled within the whole set of contributing diagrams. We also argue that 0(1/N) corrections to the meson equation remove the massless boson from the spectrum in accordance with the Coleman theorem. (author)
Direct production of anti D0 mesons in neutrino-nucleon collisions
International Nuclear Information System (INIS)
Onipchuk, A.B.; Choban, E.A.
1992-01-01
The inclusive production of anti D 0 mesons in neutrino-nucleon collisions is studied from the viewpoint of the quasiparton mechanism. The ratio R anti D 0 υ = σ(υ μ N → μ - X)/σ(υ μ N → μ - X), the kinematic distributions averaged over the υ μ spectrum, and the average kinematic characteristics of the final μ - and anti D 0 mesons are calculated. The number of events with anti D 0 -meson production is estimated as a function of the number of inclusive events
Meson (photo- and) electro-production and the structure of nuclei at short distances
International Nuclear Information System (INIS)
Laget, J.M.
1985-09-01
The present status and the future prospects of the studies of very inelastic electronuclear reaction are reviewed, when both high energy and high momentum are transferred to the nucleus. Real and virtual mesons are tested on the same footing. Real meson production allows us to study the propagation of baryonic and mesonic resonances in nuclei and to put constraints on their interaction with the nucleon. Virtual meson creation is an alternative way to deal with exchange currents. The first lecture deals with the elementary operators, which describe meson photo- and electroproduction on free nucleons. The second one deals with real meson- photo- and electroproduction on few-body systems. Only the main features are discussed here and the last developments are presented. The third lecture deals with the coupling of the electromagnetic probe to the virtual meson in nuclei. The emphasis is put on the few-body systems, since their nuclear wave functions are known and since they are simple enough to allow for elaborate calculations. The case of heavy nuclei is also discussed. In the last lecture, I will try to look for evidence of the limits and the breakdown of the description of nuclei in terms of nucleons and mesons, and to forecast the new developments
Energy Technology Data Exchange (ETDEWEB)
Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Bhuyan, B.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Cheaib, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Heß, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va’vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Wu, S. L.
2017-04-01
Based on the full BABAR data sample of 466.5 million $B\\bar{B}$ pairs, we present measurements of the electron spectrum from semileptonic B meson decays. We fit the inclusive electron spectrum to distinguish Cabibbo-Kobayashi-Maskawa (CKM) suppressed B → X_{u}eν decays from the CKM-favored B → X_{c}eν decays, and from various other backgrounds, and determine the total semileptonic branching fraction B (B → Xeν) = ( 10.34 ± 0.04_{stat} ± 0.2 6_{syst})%, averaged over B^{±} and B^{0} mesons. We determine the spectrum and branching fraction for charmless B → X_{u}eν decays and extract the CKM element | V_{ub}| , by relying on four different QCD calculations based on the heavy quark expansion. While experimentally, the electron momentum region above 2.1 GeV / c is favored, because the background is relatively low, the uncertainties for the theoretical predictions are largest in the region near the kinematic endpoint. Detailed studies to assess the impact of these four predictions on the measurements of the electron spectrum, the branching fraction, and the extraction of the CKM matrix element |V_{ub}| are presented, with the lower limit on the electron momentum varied from 0.8 GeV / c to the kinematic endpoint. We determine |V_{ub}| using each of these different calculations and find, |V_{ub}| = ( 3.794 ± 0.107_{exp} $+ 0.292\\atop{ - 0.219 SF}$ $+ 0.078 \\atop{- 0.068 theory}$ ) × 10^{- 3} (De Fazio and Neubert), (4.563 ± 0.126_{exp} $+ 0.230\\atop {- 0.208 SF}$ $+ 0.162\\atop{- 0.163 theory}$ ) ×10^{-3} (Bosch, Lange, Neubert, and Paz), (3.959 ± 0.104_{exp} $+ 0.164\\atop{- 0.154 SF}$ $+ 0.042\\atop{ - 0.079 theory}$ ) × 10^{-3} (Gambino, Giordano, Ossola, and Uraltsev), (3.848 ± 0.108_{exp} $+ 0.084\\atop{ - 0.070 theory}$) × 10^{-3} (dressed gluon exponentiation), where the stated
Brookhaven: Hunting for unusual mesons
Energy Technology Data Exchange (ETDEWEB)
Dzierba, Alex R.
1990-12-15
After the overwhelming experimental evidence for the quark model came the notions of colour and confinement which explained why quarks should prefer to bind in 'colourless' systems - quark-antiquark (mesons) and three quarks (baryons)
Brookhaven: Hunting for unusual mesons
International Nuclear Information System (INIS)
Dzierba, Alex R.
1990-01-01
After the overwhelming experimental evidence for the quark model came the notions of colour and confinement which explained why quarks should prefer to bind in 'colourless' systems - quark-antiquark (mesons) and three quarks (baryons)
The contribution of pseudoscalar mesons to hyperfine structure of muonic hydrogen
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kochelev, N.I.; Martynenko, A.P.; Martynenko, F.A.; Faustov, R.N.
2017-01-01
In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of pseudoscalar mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The parametrization of the transition form factor of two photons into π, η mesons, based on the experimental data on the transition form factors and QCD asymptotics is used. Numerical estimates of the contributions to the hyperfine structure of the spectrum of the S and P levels are presented.
The contribution of pseudoscalar mesons to hyperfine structure of muonic hydrogen
Dorokhov, A. E.; Kochelev, N. I.; Martynenko, A. P.; Martynenko, F. A.; Faustov, R. N.
2017-01-01
In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of pseudoscalar mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The parametrization of the transition form factor of two photons into $\\pi$, $\\eta$ mesons, based on the experimental data on the transition form factors and QCD asymptotics is used. Numerical estimates of the contributions to the hyperfine structure of the spectrum of the S and P levels are pr...
Coherent production of ρ - mesons in charged current antineutrino-neon interactions in BEBC
Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Katz, U. F.; Klein, H.; Matsinos, E.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.
1987-09-01
Coherent production of ρ - mesons in charged current antineutrino interactions on neon nuclei is studied in the BEBC bubble chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25)·10-40 cm2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model.
Coherent production of ρ- mesons in charged current antineutrino-neon interactions in BEBC
International Nuclear Information System (INIS)
Marage, P.; Bertrand, D.; Sacton, J.; Aderholz, M.; Katz, U.F.; Schmitz, N.; Wittek, W.; Allport, P.; Varvell, K.; Wells, J.; Baton, J.P.; Kasper, P.; Neveu, M.; Clayton, E.F.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Cooper-Sarkar, A.M.; Guy, J.; Venus, W.; Klein, H.; Morrison, D.R.O.; Parker, M.A.; Wachsmuth, H.; Matsinos, E.; Simopoulou, E.; Vayaki, A.
1987-01-01
Coherent production of ρ - mesons in charged antineutrino interactions on neon nuclei is studied in the BEBC bubbler chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25).10 -40 cm 2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model. (orig.)
Measurement of wave number spectrums; Mesure des spectres de nombres d'onde
Energy Technology Data Exchange (ETDEWEB)
Perceval, F. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1969-03-01
To measure wave lengths in an ionized medium, the cross-correlation product of the signal collected by a fixed probe and that collected by a movable one exploring the medium, is carried out by an interferometer. In order to determine the various modes, we have made a device which computes the Fourier transform of the signal. The influence of the phase at the origin, of the damping of the signal and of the finite explored length has been studied in order to make a numerical calculation of the Fourier transform. (author) [French] Pour mesurer des longueurs d'onde dans un milieu ionise, nous effectuons a l'aide d'un interferometre un produit d'intercorrelation entre le signal collecte par une sonde fixe et celui d'une sonde mobile explorant le milieu. Afin de pouvoir determiner les differents modes constituant ces signaux, nous avons realise un dispositif qui effectue l'analyse de Fourier de tels enregistrements. L'influence de la phase a l'origine, de l'amortissement du signal et de la longueur finie d'exploration, a ete etudiee en vue du calcul numerique de la transformee de Fourier. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Anon.
1992-05-15
Using a nuclear reaction, the new tagged eta meson facility now operating at the French Saturne National Laboratory in Saclay produces eta mesons (together with recoil helium-3 nuclei) by proton bombardment of a deuterium target. The proton beam is extracted from the Saturne synchrotron at 893 MeV, stabilized to 80 keV. This is a scant 1.5 MeV above the reaction threshold and close to the energy where eta production peaks.
International Nuclear Information System (INIS)
Anon.
1992-01-01
Using a nuclear reaction, the new tagged eta meson facility now operating at the French Saturne National Laboratory in Saclay produces eta mesons (together with recoil helium-3 nuclei) by proton bombardment of a deuterium target. The proton beam is extracted from the Saturne synchrotron at 893 MeV, stabilized to 80 keV. This is a scant 1.5 MeV above the reaction threshold and close to the energy where eta production peaks
Measurements of the millimeter-wave spectrum of interstellar dust emission
Fischer, M. L.; Clapp, A.; Devlin, M.; Gundersen, J. O.; Lange, A. E.; Lubin, P. M.; Meinhold, P. R.; Richards, P. L.; Smoot, G. F.
1995-01-01
We report measurements of the differential brightness of interstellar dust emission near the Galactic plane and at high Galactic latitudes. The data were obtained as part of a program to measure anisotropy in the cosmic microwave background (CMB). The measurements were made with a 0.5 deg beam size and a 1.3 deg sinusoidal chop, in broad bands (Delta nu/nu approximately 0.3) centered near frequencies of 6, 9, and 12 cm(exp -1). A measurement made toward the Galactic plane, at longitude 1 = 23.7 deg, is compared with the contrast observed in the 100 micrometers IRAS data. Assuming the dust emission has a brightness I(sub nu) proportional to nu(sup n)B(sub nu)(T(sub d)), where B(sub nu) is the Planck function, a best fit yields n = 1.6 +/- 0.4, T(sub d) = 24 +/- 5 K. In a region near the star mu Pegasi (mu PEG l = 91 deg, b = -31 deg), the comparison of our data with the 100 micrometers IRAS data yields n = 1.4 +/- 0.4, and T(sub d) = 18 +/- 3 K. In a second region near the star gamma Ursa Minoris (GUM l = 108 deg, b = 41 deg), an upper limit is placed on contrast in dust emission. This upper limit is consistent with spectrum measured at mu PEG and the IRAS 100 micrometer emission contrast at GUM, which is approximately 8 times lower than mu PEG.
Mesonic and isobar modes in matter
International Nuclear Information System (INIS)
Riek, Felix C.
2007-01-01
Experiments with heavy ion collisions, like the ones performed at the GSI, are a tool to gain insight in the structure of matter. One key point needed to understand the experimental data is the theoretical description of the in medium properties of mesons and baryons. In this thesis we first developed a self-consistent description for the light vector mesons, ρ and ω, and the pion at finite temperature and in a baryon free environment. A generalisation of these calculations towards finite densities mandatorily needs a reliable description for the pion and the Δ(1232) resonance. Here we extended the approaches discussed in literature by the inclusion of vertex corrections and a selfconsistent and completely relativistic description. Within these models we were able to show that even at high temperatures the ρ-meson properties are not changed dramatically when temperature effects are considered only. In contrast to this the behaviour of the pion and the Δ-isobar is dramatically changed a finite density. The isobar mass-shift is given by an appropriate choice of the mean-fields. Therefore we can not draw a final conclusion about such shifts within our model. In order to do so more calculations, especially of the photo absorption on the nucleus, have to be performed. A further aspect of the calculations presented is that due to a consistent consideration of vertex corrections we were able to achieve a description of the Δ-resonance without the usually used soft formfactor. This is especially important for the in-medium calculations because only in this way we can guarantee that soft modes of the spectrum are treated consistently. The techniques developed within this thesis allow for a straight forward generalisation of the presented models with respect to the consideration of more resonances or couplings. Doing so the here obtained description of the in-medium properties of the considered particles can be refined. (orig.)
Mesonic and isobar modes in matter
Energy Technology Data Exchange (ETDEWEB)
Riek, Felix C.
2007-07-01
Experiments with heavy ion collisions, like the ones performed at the GSI, are a tool to gain insight in the structure of matter. One key point needed to understand the experimental data is the theoretical description of the in medium properties of mesons and baryons. In this thesis we first developed a self-consistent description for the light vector mesons, {rho} and {omega}, and the pion at finite temperature and in a baryon free environment. A generalisation of these calculations towards finite densities mandatorily needs a reliable description for the pion and the {delta}(1232) resonance. Here we extended the approaches discussed in literature by the inclusion of vertex corrections and a selfconsistent and completely relativistic description. Within these models we were able to show that even at high temperatures the {rho}-meson properties are not changed dramatically when temperature effects are considered only. In contrast to this the behaviour of the pion and the {delta}-isobar is dramatically changed a finite density. The isobar mass-shift is given by an appropriate choice of the mean-fields. Therefore we can not draw a final conclusion about such shifts within our model. In order to do so more calculations, especially of the photo absorption on the nucleus, have to be performed. A further aspect of the calculations presented is that due to a consistent consideration of vertex corrections we were able to achieve a description of the {delta}-resonance without the usually used soft formfactor. This is especially important for the in-medium calculations because only in this way we can guarantee that soft modes of the spectrum are treated consistently. The techniques developed within this thesis allow for a straight forward generalisation of the presented models with respect to the consideration of more resonances or couplings. Doing so the here obtained description of the in-medium properties of the considered particles can be refined. (orig.)
Exclusive photoproduction of vector mesons in proton-lead ultraperipheral collisions at the LHC
Xie, Ya-Ping; Chen, Xurong
2018-02-01
Rapidity distributions of vector mesons are computed in dipole model proton-lead ultraperipheral collisions (UPCs) at the CERN Larger Hadron Collider (LHC). The dipole model framework is implemented in the calculations of cross sections in the photon-hadron interaction. The bCGC model and Boosted Gaussian wave functions are employed in the scattering amplitude. We obtain predictions of rapidity distributions of J / ψ meson proton-lead ultraperipheral collisions. The predictions give a good description to the experimental data of ALICE. The rapidity distributions of ϕ, ω and ψ (2 s) mesons in proton-lead ultraperipheral collisions are also presented in this paper.
Strange, charmed and b-flavoured mesons in an effective power-law potential
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1981-01-01
We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons. (orig.)
Strange, charmed and b-flavoured mesons in an effective power-law potential
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics
1981-05-14
We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons.
On the Range of the Electrons in Meson Decay
Steinberger, J
1949-01-01
An experiment has been carried out both at Chicago and on Mt. Evans, Colorado, to determine the absorption of the electrons emitted in the decay of cosmic-ray mesons. Approximately 8000 counts have been obtained, using a hydrocarbon as the absorbing material. These data are used to deduce some features of the energy spectrum of the decay electrons. The resolution of the apparatus is calculated, taking the geometry, scattering, and radiation into account. The results indicate that the spectrum is either continuous, from 0 to about 55 Mev with an average energy ~32 Mev or consists of three or more discrete energies. No variation of the lifetime with the thickness of the absorber is observed. The experiment, therefore, offers some evidence in favor of the hypothesis that the µ-meson disintegrates into 3 light particles.
Light-Meson Spectroscopy at COMPASS
Krinner, Fabian
2017-01-01
The goal of the COMPASS experiment at CERN is to study the structure and spectroscopy of hadrons. The two-stage spectrometer has large acceptance and covers a wide kinematic range for charged as well as neutral particles allowing to access a wide range of reactions. Light mesons are studied with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of $190\\,\\text{GeV}/c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between $0.1$ and $1.0\\,(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^+\\pi^-$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow us to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. The findings are confirmed by the analysis of the $\\pi^-\\pi^0\\pi^...
Qanti-QG hermaphrodite mesons in the MIT bag model
International Nuclear Information System (INIS)
Barnes, T.; Close, F.E.; Viron, F. de
1982-10-01
It is suggested that hermaphrodite (qanti-qg) mesons could exist with rather light masses. The spectrum of the ground state nonets, Jsup(PC) = (0, 1, 2) -+ ; 1 -- is calculated in the MIT bag model including 0(αsub(s)) energy shifts. Hadronic transitions among these states are discussed, considering their possible production at LEAR and SPEAR and indicating some interesting decay signatures. (author)
'Relativistic' quark model for mesons with flavour-independent potential
International Nuclear Information System (INIS)
Kroesen, G.
1987-01-01
On the base of the Bethe-Salpeter equation in instantaneous approximation a unified model for the mass spectrum of the mesons was designed. The 'relativistic' structure of the Bethe-Salpeter equation allows a natural inclusion of the spin dependences and an extension of the model to small quark masses. The model contains as essential property two potential contributions where one represents the one-gluon exchange while the other represents the confinement potential. The annihilation of qanti q into gluons was not regarded. The spectrum and the amplitudes of the Bethe-Salpeter equation were solved approximatively in numerical way for the lowest states. The free parameters of the model were determined by a fit of the spectrum to a wellknown part of the meson spectrum. The results yield even at small quark masses a quantitatively good picture for all meson families. The result shows that the spectra of the heavy and light mesons can be described by a flavor-independent potential which contains 5 free parameters. Both the internal spin dependent structure and the absolute position of the families can so correctly be described. Especially the position of the D, D s , and B states and the position of the uanti u, danti d states can be simultaneously described by a constant C in the long-range part of the potential. The constant C is thereby essentially determined by the splitting between the Υ family and the B family repectively Ψ and D family. The 3 S 1- 3 D 1 respectively the 3 P 2 - 3 F 2 configuration mixing was regarded. The results show that this mixing is negligibly small. (orig./HSI) [de
Meson form factors and covariant three-dimensional formulation of the composite model
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.
1979-01-01
An apparatus is developed which allows within the relativistic quark model, to find explicit expressions for meson form factors in terms of the wave functions of two-quark system that obey the covariant two-particle quasipotential equation. The exact form of wave functions is obtained by passing to the relativistic configurational representation. As an example, the quark Coulomb interaction is considered
Shcherbakov, Alexandre S; Arellanes, Adan Omar
2017-12-01
During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.
Light-Meson Spectroscopy at Compass
Directory of Open Access Journals (Sweden)
Krinner Fabian
2017-01-01
The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer t to the target between 0.1 and 1.0 (GeV/c2. The flagship channel is the π−π+π− final state, for which Compass has recorded the currently world’s largest data sample. These data not only allow us to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new axial-vector signal, the a1(1420, with unusual properties. The findings are confirmed by the analysis of the π−π0π0 final state.
International Nuclear Information System (INIS)
Ali, A.
1991-07-01
This paper is organized as follows. First, we discuss the decay rates for b → (s,d) + γ in the lowest order (1 loop) and including the QCD corrections in the effective Hamiltonian method. The photon energy spectrum in the inclusive decays B → X s + γ is evaluated in this approach and the dominant background from the CC decays B → X c + γ is presented. Next, we discuss the calculations for the inclusive decays b → s + anti l (l = e,μ,ν), including the QCD corrections. Finally, we summarize rate estimates for the exclusive rare decays of the B-meson, B → K*γ, and B → (K,K*) anti l (l = e,μ,ν), as well as B o s,d → γγ and B o s,d → l + l - with (l = e,μ,r). (orig./HSI)
Directory of Open Access Journals (Sweden)
Volodymyr V. Kulish
2017-09-01
Conclusions. The obtained expressions for the spectrum of the values of the investigated spin waves’ wavenumbers can be used for a wider range of cases than the ones obtained in the previous papers dedicated to the investigated configurations of nanosystems. For a nanotube of the circular cross-section with small (compared to the inverse characteristic size of the nanotube cross-section values of the longitudinal wave number, the dependence of the latter on the transverse wave number is weak, as well as for the big longitudinal to transverse wavenumber component ratio. The obtained dependence is also represented graphically.
Unified Chiral models of mesons and baryons
International Nuclear Information System (INIS)
Mendez-Galain, R.; Ripka, G.
1990-01-01
Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed
Effective chiral restoration in the ρ' meson in lattice QCD
International Nuclear Information System (INIS)
Glozman, L. Ya.; Lang, C. B.; Limmer, Markus
2010-01-01
In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2) b . Its angular momentum content is approximately the 3 S 1 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with n f =2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ ' =ρ(1450) comes from (1/2,1/2) b , in contrast to the ρ. The ρ ' wave function contains a significant contribution of the 3 D 1 wave which is not consistent with the quark model prediction.
Effective chiral restoration in the ρ' meson in lattice QCD
Glozman, L. Ya.; Lang, C. B.; Limmer, Markus
2010-11-01
In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2)b. Its angular momentum content is approximately the S13 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with nf=2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ'=ρ(1450) comes from (1/2,1/2)b, in contrast to the ρ. The ρ' wave function contains a significant contribution of the D13 wave which is not consistent with the quark model prediction.
Search for rare B meson decays into Ds+ mesons
International Nuclear Information System (INIS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R.P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schroeder, H.; Schulz, H.D.; Walter, M.; Wurth, R.; Appuhn, R.D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Toepfer, D.; Walther, A.; Wegener, D.; Britton, D.I.; Charlesworth, C.E.K.; Edwards, K.W.; Hyatt, E.R.F.; Kapitza, H.; Krieger, P.; MacFarlane, D.B.; Patel, P.M.; Prentice, J.D.; Saull, P.R.B.; Tzamariudaki, K.; Van de Water, R.G.; Yoon, T.S.; Ressing, D.; Schmidtler, M.; Schneider, M.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.
1993-01-01
A search has been performed for rare B meson decays into D s + mesons arising from b→u transitions, W exchange modes, B + annihilation processes, and decays where the D s + is not produced via a W→c anti s quark pair coupling, using the ARGUS detector operating on the Y(4S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D s + l - correlations an upper limit of BR(B→D s + l - X)<1.2%(90% CL) is determined. (orig.)
From meson-baryon scattering to meson photoproduction
Energy Technology Data Exchange (ETDEWEB)
Mai, Maxim
2013-09-01
In the present work we investigate the properties of the lowest baryon resonances. The starting point of our analyses is the low-energy effective theory of quantum chromodynamics, called chiral perturbation theory. As such it describes the long-range observables in terms of the low-energy effects, while the high-energy effects are subsumed in the so-called low-energy constants. In the region of the aforesaid lowest baryon resonances any strict perturbative expansion fails and some resummation scheme is required. For this we employ the Bethe-Salpeter equation (BSE) which guarantees the exact unitarity of the S-matrix and allows to generate resonances dynamically, however, abandoning some other basic principles of quantum field theory as described in chapter 2. Restricting the driving term of this equation to local terms of the second chiral order, we derive an exact solution of the BSE for meson-baryon scattering in chapter 2. Without putting the interaction kernel on shell we preserve the exact correspondence of this solution to an infinite chain of Feynman diagrams. In chapter 4 we apply this ansatz for antikaon-nucleon scattering, trying to get a new insight into the nature of the subthreshold resonance, i.e. {Lambda}(1405). The properties of this resonance have been debated for decades and in recent years it has again attracted a lot of attention by theoreticians since this resonance can be dynamically generated from the so-called chiral unitary approaches. Moreover, the recent measurement of the energy shift and width of kaonic hydrogen in the SIDDHARTA experiment at DA{Phi}NE has provided a very tight constraint on K{sup -}p scattering length. Typically, these approaches predict a two pole structure of {Lambda}(1405), but the question is how precise one can determine the position of these poles relying on data at and above the anti KN threshold. Moreover, we apply our framework for the analysis of pion-nucleon scattering in chapter 3. There we show that the
Deep electroproduction of exotic hybrid mesons
International Nuclear Information System (INIS)
Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.
2004-01-01
We evaluate the leading order amplitude for the deep exclusive electroproduction of an exotic hybrid meson in the Bjorken regime. We show that, contrarily to naive expectation, this amplitude factorizes at the twist 2 level and thus scales like usual meson electroproduction when the virtual photon and the hybrid meson are longitudinally polarized. Exotic hybrid mesons may thus be studied in electroproduction experiments at JLAB, HERA (HERMES) or CERN (Compass)
Nature of the light scalar mesons
International Nuclear Information System (INIS)
Vijande, J.; Valcarce, A.; Fernandez, F.; Silvestre-Brac, B.
2005-01-01
Despite the apparent simplicity of meson spectroscopy, light scalar mesons cannot be accommodated in the usual qq structure. We study the description of the scalar mesons below 2 GeV in terms of the mixing of a chiral nonet of tetraquarks with conventional qq states. A strong diquark-antidiquark component is found for several states. The consideration of a glueball as dictated by quenched lattice QCD drives a coherent picture of the isoscalar mesons
Meson Correlators in Finite Temperature Lattice QCD
De Forcrand, Philippe; Hashimoto, T; Hioki, S; Matsufuru, H; Miyamura, O; Nakamura, A; Takaishi, T; Umeda, T; Stamatescu, I O; CERN. Geneva; Forcrand, Ph. de
2001-01-01
We analyze temporal and spatial meson correlators in quenched lattice QCD at T>0. Below T_c we observe little change in the meson properties as compared with T=0. Above T_c we observe new features: chiral symmetry restoration and signals of plasma formation, but also indication of persisting mesonic (metastable) states and different temporal and spatial masses in the mesonic channels. This suggests a complex picture of QGP in the region 1 - 1.5 T_c.
Extracting scattering phase shifts in higher partial waves from lattice QCD calculations
Energy Technology Data Exchange (ETDEWEB)
Luu, Thomas; Savage, Martin J.
2011-06-01
Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.
Production of excited charmed mesons at LEP
Abbaneo, D
2000-01-01
Studies od the production of orbitally excited charmed and charmed strange mesons in e+e- collisions, performed by the LEP collaborations are reviewed. Measurements of the production rates of orbitally excited charmed mesons in semileptonic b decays are presented. Searches for charmed meson radial excitations are also briefly discussed.
On Decays of B Mesons to a Strange Meson and an Eta or Eta' Meson at Babar
Energy Technology Data Exchange (ETDEWEB)
Hirschauer, James Francis [Univ. of Colorado, Boulder, CO (United States)
2009-01-01
We describe studies of the decays of B mesons to final states ηK*(892), ηK*_{0}(S-wave), ηK*_{2}(1430), and η'K based on data collected with the BABAR detector at the PEP-II asymmetric-energy e^{+}e^{-} collier at the Stanford Linear Accelerator Center. We measure branching fractions and charge asymmetries for the decays B → ηK*, where K* indicates a spin 0, 1, or 2 Kπ system, making first observations of decays to final states ηK^{0*}_{0}(S-wave), ηK^{+*}_{0} (S-wave), and ηK^{0*}_{2}(1430). We measure the time-dependent CP-violation parameters S and C for the decays B^{0} → η'K^{0}, observing CP violation in a charmless B decay with 5σ significance considering both statistical and systematic uncertainties.
Quarkonium Contribution to Meson Molecules
Energy Technology Data Exchange (ETDEWEB)
Cincioglu, E.; Yilmazer, A.U. [Ankara University, Department of Physics Engineering, Ankara (Turkey); Nieves, J. [Instituto de Fisica Corpuscular (IFIC) Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigacion de Paterna, Valencia (Spain); Ozpineci, A. [Middle East Technical University, Department of Physics, Ankara (Turkey)
2016-10-15
Starting from a molecular picture for the X(3872) resonance, this state and its J{sup PC} = 2{sup ++} heavy-quark spin symmetry partner [X{sub 2}(4012)] are analyzed within a model which incorporates possible mixings with 2P charmonium (c anti c) states. Since it is reasonable to expect the bare χ{sub c1}(2P) to be located above the D anti D{sup *} threshold, but relatively close to it, the presence of the charmonium state provides an effective attraction that will contribute to binding the X(3872), but it will not appear in the 2{sup ++} sector. Indeed in the latter sector, the χ{sub c2}(2P) should provide an effective small repulsion, because it is placed well below the D{sup *} anti D{sup *} threshold. We show how the 1{sup ++} and 2{sup ++} bare charmonium poles are modified due to the D{sup (*)} anti D{sup (*)} loop effects, and the first one is moved to the complex plane. The meson loops produce, besides some shifts in the masses of the charmonia, a finite width for the 1{sup ++} dressed charmonium state. On the other hand, X(3872) and X{sub 2}(4012) start developing some charmonium content, which is estimated by means of the compositeness Weinberg sum rule. It turns out that in the heavy-quark limit, there is only one coupling between the 2P charmonia and the D{sup (*)} anti D{sup (*)} pairs. We also show that, for reasonable values of this coupling, leading to X(3872) molecular probabilities of around 70-90 %, the X{sub 2} resonance destabilizes and disappears from the spectrum, becoming either a virtual state or one being located deep into the complex plane, with decreasing influence in the D{sup *} anti D{sup *} scattering line. Moreover, we also discuss how around 10-30 % charmonium probability in the X(3872) might explain the ratio of radiative decays of this resonance into ψ(2S)γ and J/ψγ. Finally, we qualitatively discuss within this scheme, the hidden bottom flavor sector, paying a special attention to the implications for the X{sub b} and X
International Nuclear Information System (INIS)
Pennington, M.R.
1988-09-01
The search of I = 0 0 ++ mesons is described. We highlight the crucial role played by the states in the 1 GeV region. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. We briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 refs., 6 figs., 1 tab
A search for unconventional mesons
International Nuclear Information System (INIS)
Turnau, J.
1984-01-01
Selected problems of the fixed target meson spectroscopy connected with the issue of unconventional states glueballs, hybrides and four-quarks are discussed. The experimental basis of the dissertation consists of some results of the WA3 experiment performed by ACCMOR collaboration (Π - p→(3Π) - p, K - p→K - Π + Π - p, Π - p→K s o K s o n) and of the S136 experiment performed by CCM collaborations (Π - p↑→Π + Π - n, Π - p↑→K + K - n). Mesons with spin parities J PC = 0 -+ , 0 ++ , 1 ++ and 2 ++ are discussed from the point of view of the phenomenology of unconventional states. (author)
Search for quasi bound η mesons
International Nuclear Information System (INIS)
Machner, H
2015-01-01
The search for a quasi bound η meson in atomic nuclei is reviewed. This tentative state is studied theoretically as well as experimentally. The theory starts from elastic η nucleon scattering which is derived from production data within some models. From this interaction the η nucleus interaction is derived. Model calculations predict binding energies and widths of the quasi bound state. Another method is to derive the η nucleus interaction from excitation functions of η production experiments. The s wave interaction is extracted from such data via final state interaction (FSI) theorem. We give the derivation of s wave amplitudes in partial wave expansion and in helicity amplitudes and their relation to observables. Different experiments extracting the FSI are discussed as are production experiments. So far only three experiments give evidence for the existence of the quasi bound state: a pion double charge exchange experiment, an effective mass measurement, and a transfer reaction at recoil free kinematics with observation of the decay of the state. (topical review)
B meson excitations with chirally improved light quarks
Energy Technology Data Exchange (ETDEWEB)
Burch, Tommy [University of Regensburg (Germany); University of Utah (United States); Chakrabarti, Dipanker [University of Regensburg (Germany); Swansea University (United Kingdom); Hagen, Christian; Maurer, Thilo; Schaefer, Andreas [University of Regensburg (Germany); Lang, Christian; Limmer, Markus [University of Graz (Austria)
2008-07-01
We present our latest results for the excitations of static-light mesons on both quenched and unquenched lattices, where the light quarks are simulated using the chirally improved (CI) lattice Dirac operator. To improve our results we use a new technique to estimate the light quark propagator. The b quark is treated as infinitely heavy, in the so-called static approximation. We are able to find several excited states reaching from S-waves up to D-waves for both B and B{sub s}.
Non-self-conjugate mesons in a potential model with vacuum-polarization corrections
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1980-01-01
We present a unified approach to the study of non-self-conjugate mesons including both light and heavy mesons in the framework of the vacuum-polarization-corrected flavor-independent potential. We have found that the quark-confining potential in the form of an almost equal admixture of vector and scalar parts successfully explains the S-wave hyperfine levels of the observed light and heavy mesons. Finally we calculate the electromagnetic mass differences of the heavy-quark mesons and obtain (K-bar* 0 -K* - )=3.79 MeV, (K-bar 0 -K - )=6 MeV, (D* + /sub c/-D* 0 /sub c/)=2.4 MeV, (D + /sub c/-D 0 /sub c/)=5.8 MeV, (D* 0 /sub b/-D* - /sub b/)=3.547 MeV, and (D 0 /sub b/-D - /sub b/)=3.558 MeV
A Study of Semileptonic $B$ Decays in Orbitally Excited $D$ Mesons at LHCb
Battista, Vincenzo
In this thesis, a study of semi-inclusive semileptonic $B$ decays in excited $D$ mesons has been presented; in particular, the analysis has been focused on orbitally excited $P$-wave $D^{**}$ mesons and on higher mass resonances found in the data sample. The theoretical framework to study inclusive semileptonic $B$ meson decays is the Operator Product Expansion (OPE) approach, while exclusive decay modes are described different models, such as the so-called ISGW2 and LLSW; on the other hand, excited $D$ mesons properties are predicted by the Heavy Quark Effective Theory (HQET). The final measurements has been perfomed on a data sample collected at LHCb experiment (Chapter 2) in the (2011-2012) data taking period, corresponding to a total integrated luminosity of $3 fb^{-1}$. This data sample has been subjected to two different selection stages, calibrated on a MonteCarlo (MC) sample: a pre-selection of $B \\to D^{*} \\mu \
Muoproduction of J/ψ-mesons and the gluon distribution in nucleons
International Nuclear Information System (INIS)
Jong, Maarten de.
1991-01-01
The cross sections for production of J/ψ-mesons in muon-scattering at hydrogen and deuterium have been measured at a muon-energy of 280 GeV in order to extract from these the momentum distribution of gluons in the nucleon. These cross sections turned out to be equal for protons and neutrons within the experimental error. In the framework of the colour singlet model the gluon distribution has been determined from the cross section for the inelastic production of J/ψ mesons. At small gluon impulses the distribution obtained resembles a brems-strahlung spectrum. This distribution decreases, according to a simple description (counting rules) at larger impulses. The same model however underestimates the cross section for elastic production of J/ψ-mesons seriously. It is found that in inelastic production of J/ψ-mesons both helicities of the meson occur equally. Also a correlation has been observed between the scattering plane and the plane in which the J/ψ meson decays. The production of J/ψ-mesons and ψ'-mesons has been investigated in muon scattering at concrete at the same incoming energy. The measured ratio of their cross sections agrees with the colour singlet model but disagrees with the simplified description which characterizes the 'photon-gluon fusion model'. The possible nuclear-mass dependence of the cross section for J/ψ-meson production has been investigated in interactions of muons with tin and carbon at an energy of 280 GeV. This possible dependence turns out to be absent which means that on the basis of the colour singlet model the distributions of the gluons in the nucleon are equal in tin and carbon. (author). 103 refs.; 60 figs.; 19 tabs
QCD bosonization and the meson effective action
International Nuclear Information System (INIS)
Praschifka, J.; Roberts, C.D.; Cahill, R.T.
1987-01-01
A bosonization of quantum chromodynamics (QCD) is employed to derive a meson effective action, thus providing a direct link between QCD and meson phenomenology. As an example of this approach expressions are obtained for the meson parameters associated with the analysis of ω→3π decay. The bosonization also directly motivates a divergence-free, global color-symmetry model for mesons, which is seen to be a generalization of various phenomenological models. Good estimates are obtained for the values of several of the meson parameters
Spin-zero mesons and current algebras
International Nuclear Information System (INIS)
Wellner, M.
1977-01-01
Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents
Search for Popcorn Mesons in Events with Two Charmed Baryons
Energy Technology Data Exchange (ETDEWEB)
Hartfiel, Brandon; /SLAC
2006-07-07
The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
Kotulla, M
2006-01-01
We discuss recent experimental results on the modification of hadron properties in a nuclear medium. Particular emphasis is placed on an $\\omega$ production experiment performed by the CBELSA/TAPS collaboration at the ELSA accelerator. The data shows a smaller $\\omega$ meson mass together with a significant increase of its width in the nuclear medium.
International Nuclear Information System (INIS)
Duong Van Phi; Duong Anh Duc
1992-12-01
The channels of the decay of Bottom mesons are deduced from a selection rule and the Lagrangians which are formed on the LxO(4) invariance and the principle of minimal structure. The estimation of the corresponding decay probabilities are considered. (author). 21 refs
Exclusive meson production at COMPASS
Pochodzalla, Josef; Moinester, Murray; Piller, Gunther; Sandacz, Andrzej; Vanderhaeghen, Marc; Pochodzalla, Josef; Mankiewicz, Lech; Moinester, Murray; Piller, Gunther; Sandacz, Andrzej; Vanderhaeghen, Marc
1999-01-01
We explore the feasibility to study exclusive meson production (EMP) in hard muon-proton scattering at the COMPASS experiment. These measurements constrain the off-forward parton distributions (OFPD's) of the proton, which are related to the quark orbital contribution to the proton spin.
Distribution amplitudes of vector mesons
Energy Technology Data Exchange (ETDEWEB)
Braun, V.M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Broemmel, D. [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2007-11-15
Results are presented for the lowest moment of the distribution amplitude for the K{sup *} vector meson. Both longitudinal and transverse moments are investigated. We use two flavours of O(a) improved Wilson fermions, together with a non-perturbative renormalisation of the matrix element. (orig.)
A light meson translatable template
International Nuclear Information System (INIS)
Allgower, C.E.; Peaslee, D.C.
2002-01-01
Recently surveyed (mass)2 values for I = 0, JPC = 2++ light mesons can be assembled into repeating patterns of 4 states, dubbed 'templates'. Within error, both internal and external template spacings approximate simple multiples of Δm2 ≅ 0.35 GeV2. Hopefully, this feature will be useful in predicting the positions of higher isoscalar 2++ states
The chiral and angular momentum content of the ρ-meson
International Nuclear Information System (INIS)
Glozman, L.Y.; Lang, C.B.; Limmer, M.
2010-01-01
It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo ρ-meson with a small admixture of the 3 D 1 partial wave, in agreement with the SU (6) flavor-spin symmetry. (author)
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
High-current proton accelerators-meson factories
International Nuclear Information System (INIS)
Dmitrievskij, V.P.
1979-01-01
A possibility of usage of accelerators of neutron as well as meson factories is considered. Parameters of linear and cyclic accelerators are given, which are employed as meson factories and as base for developing intense neutron generators. It is emphasized that the principal aim of developing neutron generators on the base of high current proton accelerators is production of intense neutron fluxes with a present energy spectrum. Production of tens-and-hundreds milliampere currents at the energy of 800-1000 MeV is considered at present for two types of accelerating facilities viz. linear accelerators under continuous operating conditions and cyclotrons with strong focusing. Quantitative evaluations of developing high-efficiency linear and cyclic accelerators are considered. The basic parameters of an ccelerating complex are given, viz. linear accelerator-injector and 800 MeV isochronous cyclotron. The main problems associated with their realization are listed [ru
B-meson spectroscopy in HQET at order 1/m
International Nuclear Information System (INIS)
Bernardoni, Fabio; Fritsch, Patrick; Univ. Autonoma de Madrid; Gerardin, Antoine; Univ. Blaise Pascal CNRS/IN2P3, Aubiere; Heitger, Jochen; Hippel, Georg von; Simma, Hubert
2015-05-01
We present a study of the B spectrum performed in the framework of Heavy Quark Effective Theory expanded to next-to-leading order in 1/m b and non-perturbative in the strong coupling. Our analyses have been performed on N f =2 lattice gauge field ensembles corresponding to three different lattice spacings and a wide range of pion masses. We obtain the B s -meson mass and hyperfine splittings of the B- and B s -mesons that are in good agreement with the experimental values and examine the mass difference m B s -m B as a further cross-check of our previous estimate of the b-quark mass. We also report on the mass splitting between the first excited state and the ground state in the B and B s systems.
The dipole representation of vector meson electroproduction beyond leading twist
International Nuclear Information System (INIS)
Besse, A.; Szymanowski, L.; Wallon, S.
2013-01-01
We link the recent computation beyond leading twist of the impact factor of the transition γ T ⁎ →ρ T performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura–Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the ρ-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura–Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.
Meson-baryon interactions in unitarized chiral perturbation theory
International Nuclear Information System (INIS)
Garcia Recio, G.; Nieves, J.; Ruiz Arriola, E.; Vicente Vacas, M.
2003-01-01
Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The s-wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), Λ(1405) and Λ(1670) resonances which compare well with accepted numbers
Meson-Meson molecules and compact four-quark states
International Nuclear Information System (INIS)
Vijande, J.; Valcarce, A.
2010-01-01
The physics of charm has become one of the best laboratories exposing the limitations of the naive constituent quark model and also giving hints into a more mature description of meson spectroscopy, beyond the simple quark-antiquark configurations. In this talk we review some recent studies of multiquark components in the charm sector and discuss in particular exotic and non-exotic four-quark systems.
Recent status of meson spectroscopy experiment
International Nuclear Information System (INIS)
Tsuru, Tsuneaki
1986-01-01
Recent meson spectroscopy experiments are reviewed centering on glueballs and it is insisted as follows. Something may lie near 750 MeV. Scalar glueball at 750 - 1000 MeV should be studied. The G(1590) is to be investigated. Multiquark states need to be studied to establish the scalar nonet. We have some tensor glueball candidates, θ, 3 g T 's and ζ, which are to be further examined. Pseudoscalar states include many interesting physics. Some puzzles were solved. However, many problems remain unsolved and new puzzles appeared. Whether the E and l are the same state or not, and whether the E/l is a glueball or not are the major interests at present. Systematical experimental and theoretical works are required. In an experimental field, radial excitations, especially a radial excitation of η', should be confirmed. In general higher statistics data are necessary to perform a complete partial wave analysis. A 1 ++ isoscalar member, a partner of D(1280), is missing and required to be confirmed as soon as possible. A confirmation of this state will serve to solve the E/l puzzle. The state will be probably an (santi s) state. 1 +- H', a partner of H(1190), is required to be confirmed. Multiquark states are to be investigated. ''Oddballs'' are to be challenged. Recent experiments require high statistics data enough to perform a model-independent partial wave analysis. The (qanti q) - (gg) mixing and hybrids are to be further studied in experimental and theoretical fields. (Nogami, K.)
The Chiral and Angular Momentum Content of the ρ-Meson
Glozman, L. Ya.; Lang, C. B.; Limmer, M.
2010-01-01
It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo simulation with n f = 2 dynamical light quarks the orbital angular momentum and spin content of the ρ-meson. We obtain in the infrared a simple 3 S 1 component as a leading component of the ρ-meson with a small admixture of the 3 D 1 partial wave, in agreement with the SU(6) flavor-spin symmetry.
Measurement of Charm Meson Lifetimes
International Nuclear Information System (INIS)
Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Chan, S.; Eigen, G.; Lipeles, E.; Schmidtler, M.; Shapiro, A.; Sun, W.M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Jaffe, D.E.; Masek, G.; Paar, H.P.; Potter, E.M.; Prell, S.; Sharma, V.; Asner, D.M.; Eppich, A.; Gronberg, J.; Hill, T.S.; Korte, C.M.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Tajima, H.; Behrens, B.H.; Ford, W.T.; Gritsan, A.; Krieg, H.; Roy, J.; Smith, J.G.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Dumas, D.J.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Hopman, P.I.; Katayama, N.; Kreinick, D.L.; Lee, T.; Liu, Y.; Meyer, T.O.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Thayer, J.G.; Thies, P.G.; Valant-Spaight, B.; Warburton, A.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Rubiera, A.I.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Browder, T.E.; Li, Y.; Rodriguez, J.L.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D
1999-01-01
We report measurements of the D 0 , D + , and D + s meson lifetimes using 3.7 fb -1 of e + e - annihilation data collected near the Υ(4S) resonance with the CLEO detector. The measured lifetimes of the D 0 , D + , and D + s mesons are 408.5±4.1 +3.5 -3.4 fs , 1033.6±22.1 +9.9 -12.7 fs , and 486.3±15.0 +4.9 -5.1 fs . The precision of these lifetimes are comparable to those of the best previous measurements, and the systematic errors are very different. In a single experiment we find that the ratio of the D + s and D 0 lifetimes is 1.19±0.04 . copyright 1999 The American Physical Society
International Nuclear Information System (INIS)
Henley, E.M.
1998-01-01
One never quite knows what to say in a summary. If you were at the sessions, you heard the same talks I did. Perhaps the purpose is to summarize the parallel sessions, but like you, I can only attend one of these sessions. In addition, the time is short, so that this cannot be a real summary. What I will present are impressions of the past two days, and these will certainly be colored by my own views. Thus at the outset, let me apologize for any and all omissions and distortions. I will cover primarily the plenary session talks, but will organize this summary along the following lines: 1. vector (V) mesons; 2. pseudoscalar mesons, and 3. other subjects, notably with electrons. This afternoon's talks are so close in time to this summary that I shall omit them. (author)
Pseudoscalar Meson Electroproduction and Transversity
International Nuclear Information System (INIS)
Goldstein, G.; Liuti, S.
2011-01-01
Exclusive meson leptoproduction from nucleons in the deeply virtual exchanged boson limit can be described by generalized parton distributions (GPDs). Including spin dependence in the description requires 8 independent quark-parton and gluon-parton functions. The chiral even subset of 4 quark-nucleon GPDs are related to nucleon form factors and to parton distribution functions. The chiral odd set of 4 quark-nucleon GPDs are related to transversity, the tensor charge, and other quantities related to transversity. Different meson or photon production processes access different combinations of GPDs. This is analyzed in terms of t-channel exchange quantum numbers, J PC and it is shown that pseudoscalar production can isolate chiral odd GPDs. There is a sensitive dependence in various cross sections and asymmetries on the tensor charge of the nucleon and other transversity parameters. In a second section, analyticity and completeness are shown to limit the partonic interpret ation of the GPDs in the ERBL region.
Nuclear physics brought about by the π-mesons studied from field theory and experiments
International Nuclear Information System (INIS)
Toki, Hiroshi
2012-01-01
In nuclei π-mesons are playing key role. At first the important interactions of π-mesons in light nuclei is explained mentioning that the π-meson exchange force is tensor force. It is pointed out that the importance of π-meson is observed even in the deuterons. By the progress of computations it is possible at present to calculate nuclei up to the mass number of twelve. It is explained then how to handle the π-mesons in heavy nuclei referring to the discovery of the halo of 11 Li and its analysis. Due to the pseudo scalar properties of the π-mesons, tensor force is the strong nucleon-nucleon interaction. It has been necessary to go through numbers of trials and errors to arrive at the discovery of the proper tensor force analysis. It is shown to be possible to handle them in the Tensor-Optimized Shell Model (TOSM) based on the variation method. The explanation of the Extended Brueckner Hartree-Fock (EBHF) method obtained by combining the TOSM with the mean field theory used in the heavy nuclei is given. EBHF theory has the structure including high momentum components in the 2p2h wave functions. Calculated equation of state of symmetric nuclear matter is shown as a function of density in which important contribution of the tensor force is observed. Properties of nuclear matter are discussed. (S. Funahashi)
International Nuclear Information System (INIS)
Rho, M.
1981-01-01
Quantum chromodynamics is believed to be candidate theory for the strong interactions and contains as its ingredients spinor quark fields and vector gluons, none of which can perhaps be ever liberated and detected in laboratories. A nucleus consists of nucleons bound by nuclear force which are however separately observable and which seem to preserve their identities even under extreme conditions. An intriguing question is: when compressed to high densities or heated to high temperature, at what point does a nuclear matter cease to be describable in terms of nucleon and meson degrees of freedom, but become a plasma of quarks and gluons; and how does this transition occur. This is not an idle question. If quarks and gluons are never to be observed isolated, then it may be that at low energies (or at low densities) they are not the right variables to do physics with. Instead hadrons must be. On the other hand, asymptotic freedom - the unique property of non-abelian gauge theories to which QCD belongs that quark-gluon and gluon-gluon interactions get weaker at short distances - tells us that at some large matter density the matter must necessarily be in the form of quark gas interacting only weakly. This means that a change in degrees of freedom must take place. We would like to know where this occurs and how. In this talk, I would like to address to this question by discussing first the large success we have had in understanding the role that mesons play in finite nuclei and nuclear matter and then attempting to correlate nucleon and meson degrees of freedom to quark-gluon degrees of freedom. In my opinion we are now at a stage where we feel fairly confident in our understanding of nucleon-meson structure of nuclei and nuclear matter and any further progress in deeper understanding of nuclear dynamics - and strong interactions - must come from QCD or its effective version, bags or strings. (orig.)
International Nuclear Information System (INIS)
Feldman, G.J.
1977-01-01
A review is given of the nonleptonic decays of D mesons. Included are measurements of the psi(3772), the accurate determination of D masses and their consequences, and inclusive measurements and tagged events. It is noted that the distinction between the above designated events is that in the former one detects a D decay and ignores the remainder of the event, while in the tagged events a D decay is detected and also the remainder of the event is studied. 39 references
Old tensor mesons in QCD sum rules
International Nuclear Information System (INIS)
Aliev, T.M.; Shifman, M.A.
1981-01-01
Tensor mesons f, A 2 and A 3 are analyzed within the framework of QCD sum rules. The effects of gluon and quark condensate is accounted for phenomenologically. Accurate estimates of meson masses and coupling constants of the lowest-lying states are obtained. It is shown that the masses are reproduced within theoretical uncertainty of about 80 MeV. The coupling of f meson to the corresponding quark current is determined. The results are in good aqreement with experimental data [ru
Single spin asymmetry for charm mesons
Energy Technology Data Exchange (ETDEWEB)
Dominguez Zacarias, G. [PIMAyC, Eje Central Lazaro Cardenas No. 152, Apdo. Postal 14-805, D.F. (Mexico); Herrera, G.; Mercado, J. [Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, D.F. (Mexico)
2007-08-15
We study single spin asymmetries of D{sup 0} and D{sup -} mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)
Single spin asymmetry for charm mesons
International Nuclear Information System (INIS)
Dominguez Zacarias, G.; Herrera, G.; Mercado, J.
2007-01-01
We study single spin asymmetries of D 0 and D - mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)
PQCD analysis of inclusive semileptonic decays of B mesons
International Nuclear Information System (INIS)
Li, H.; Yu, H.
1996-01-01
We develop the perturbative QCD formalism for inclusive semileptonic B meson decays, which includes Sudakov suppression from the resummation of large radiative corrections near the high end of charged lepton energy. Transverse degrees of freedom of partons are introduced to facilitate the factorization of B meson decays. Ambiguities appearing in the quark-level analysis are then avoided. A universal distribution function, arising from the nonperturbative Fermi motion of the b quark, is constructed according to the heavy quark effective field theory based operator product expansion, through which the mean and the width of the distribution function are related to hadronic matrix elements of local operators. Charged lepton spectra of the B→X ul ν decay are presented. We find 50% suppression near the end point of the spectrum. The overall suppression on the total decay rate is 8% for the free quark model, and is less than 7% for the use of smooth distribution functions. With our predictions, it is then possible to extract the Cabibbo-Kobayashi-Maskawa matrix element parallel V ub parallel from experimental data. We also discuss possible implications of our analysis when confronted with the rather small observed semileptonic branching ratio in B meson decays. copyright 1996 The American Physical Society
Vector mesons in meson-baryon scattering and large-N{sub c} quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Fuhrmann, Hans-Friedrich
2016-02-11
We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N{sub c} QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N{sub c} is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J{sup P}=(1)/(2){sup +})- and (J{sup P}=(3)/(2){sup +})-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N{sub c} QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N{sub c} the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N{sub c} was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non
Vector mesons in meson-baryon scattering and large-N_c quantum chromodynamics
International Nuclear Information System (INIS)
Fuhrmann, Hans-Friedrich
2016-01-01
We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N_c QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N_c is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J"P=(1)/(2)"+)- and (J"P=(3)/(2)"+)-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N_c QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N_c the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N_c was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non-vanishing spin. In particular we considered the vector
Higher twist effects in QCD description of light meson exclusive formfactors
International Nuclear Information System (INIS)
Gorskij, A.S.
1987-01-01
The general approach to a quantitative description of higher twist effects in hard exclusive processes in QCD is proposed. The consistent calculations in coordinate space and the choice of special gauges for quantum and classical gluon fields are essential ingradients of this method. The self consistent system of twist three wave functions for π-meson has been built
Anomalous decay and scattering processes of the meson
Kubis, Bastian; Plenter, Judith
2015-06-01
We amend a recent dispersive analysis of the anomalous decay process by the effects of the tensor meson, the lowest-lying resonance that can contribute in the system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous decay. There are nonnegligible consequences for the transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward-backward asymmetry, for the crossed process , which could be measured in Primakoff reactions in the future.
Semileptonic decays of the B{sub c} meson
Energy Technology Data Exchange (ETDEWEB)
Barik, N [Department of Physics, Utkal University, Bhubaneswar-751004 (India); Naimuddin, Sk [Department of Physics, Maharishi College of Natural Law, Bhubaneswar-751007 (India); Dash, P C [Department of Physics, Prananath Autonomous College, Khurda-752057 (India); Kar, Susmita [Department of Physics, North Orissa University, Baripada-757003 (India)
2009-10-01
We study the semileptonic transitions B{sub c}{yields}{eta}{sub c},J/{psi},D,D*,B,B*,B{sub s},B{sub s}* in the leading order in the framework of a relativistic independent quark model based on a confining potential in the equally mixed scalar-vector harmonic form. We compute relevant weak form factors as overlap integrals of the meson-wave functions obtained in the relativistic independent quark model in the whole accessible kinematical range. We predict that the semileptonic transitions of the B{sub c} meson are mostly dominated by two Cabibbo-Kobayashi-Maskawa (CKM)-favored modes, B{sub c}{yields}B{sub s}(B{sub s}*)e{nu}, contributing about 77% of the total decay width, and its decays to vector meson final states take place in the predominantly transverse mode. Our predicted values for the total decay rates, branching ratios, polarization ratios, the forward-backward asymmetry factor, etc., are broadly in agreement with other model predictions.
Light tetraquarks and mesons in a DSE/BSE approach
Energy Technology Data Exchange (ETDEWEB)
Heupel, Walter
2015-07-01
quark propagator and it's dressing functions. This enables one to derive closed expressions for the interaction kernel beyond the rainbow-ladder approximation. This technique is very general, and in principle applicable to any vertex that is given in terms of quark dressing functions. As an improvement over previous approaches this technique allows one to determine not only the masses of the bound-states but also their Bethe-Salpeter wave functions. As examples, this technique was applied to two type of vertices, the Ball-Chiu vertex and the Munczek vertex that both respect the constraints due to the vector Ward-Takahashi identity but contain additional structures related to spin-orbit forces. Upon solving the BSE for pseudo-scalar, scalar, vector and axial-vector mesons it was found that these structures alone are not sufficient to generate a physical spectrum of light mesons while keeping the pion properties intact.
International Nuclear Information System (INIS)
Bitukov, S.I.; Viktorov, V.A.; Golovkin, S.V.
1985-01-01
D(1285) and E(1420)-mesons production in charge-exchange reactions induced by π - and K - -mesons at 32.5 GeV/c has been studied. The measured cross sections allowed one to derive limitations for the mixing angle in the axial-vector meson nonet. This means that E(1420)-meson consists mainly of strange quarks. The invariant mass distribution for the kaon pair in D(1285) → K + K - π 0 decay with statistics by an order of magnitude higher than the available data was obtained. The differential spectrum dN/dmsub(Ksup(+)Ksub(-)) analysis carried out in the delta-dominance model shows that delta(980)-meson cannot be described as a Breit-Wigner resonance with small width. The effective width for delta-meson at the point of √s=1 GeV/c 2 GITAsub(delta) is greater than 180 MeV/c 2 . It points to a strong coupling of delta-meson to hadrons
Evidences for existence of a strange meson with the 1627 MeV/c2 mass
International Nuclear Information System (INIS)
Karnaukhov, V.M.; Moroz, V.I.; Coca, C.
1995-01-01
The narrow structure with Μ=(1627±4) MeV/c 2 and Γ=(12 -12 +14 ) MeV/c 2 is observable in π - p interactions at 16 GeV/c in 6 effective mass spectra of the Kmπ systems. In the summed spectrum the number of standard deviations in the structure region over the background is 10. A performed compilative analysis of paper results on the study of strange meson resonances in various experiments does not contradict indication for the existence of K(1627)-meson, a narrow enhancement is observed in the same mass region. (author). 21 refs., 4 figs
Meson Spectroscopy in Photo-production at CLAS
Nozar, Mina
2003-01-01
Photo-production of excited mesons in the 1-2 GeV mass range decaying via multi-pion or multi-kaon emission has been investigated at the TJNAF\\thanks{This work was supported by the U.S. Department of Energy and The U.S. National Science Foundation.} experiment E01-017 (g6c) in the $4.8-5.4$ GeV photon beam energy range. The main objective of the experiment is to extract resonance parameters of the produced states by way of a Partial Wave Analysis (PWA) technique. In this paper, we will focus ...
International Nuclear Information System (INIS)
Santos, Allan Xavier dos
2010-01-01
During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)
New results on mesons containing strange quarks
International Nuclear Information System (INIS)
Aston, D.; Awaji, N.; Bienz, T.
1987-01-01
Recent results of strange and strangeonium mesons are presented. The data come from a high sensitivity study (4.1 ev/nb) of K - p interactions at 11 GeV/c using the LASS spectrometer at SLAC. The complete leading orbitally-excited K* series up through J/sup P/ = 5 - and a substantial number of the expected underlying states are observed decaying into K - π + , anti K 3 0 π + π - , and K eta final states, and new measurements are made of their masses, widths, and branching ratios. Production of strangeonium states via hypercharge exchange is observed into K 3 0 K 3 0 , K - K + , and K 3 0 K +- π -+ final states. The leading orbitally-excited phi series through J/sup P/ = 3 - is clearly seen and evidence is presented for additional high spin structure in the 2.2 GeV/c 2 region. No f 2 (1720) is observed. The K 3 0 K +- π -+ spectrum is dominated by 1 + (K* anti K + anti K* K) production in the region below 1.6 GeV/c 2 . These results are compared with data on the same systems produced by different production mechanisms. 12 refs., 28 figs
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam
2017-01-01
directly in the encounter domain. The encounter domain is that observed from a ship when it advances in a seaway, whereas the absolute domain is that corresponding to making observations from a ﬁxed point in the inertial frame. Spectrum transformation can be uniquely carried out if the ship sails ”against...
Exotic hybrid mesons in hard electroproduction
International Nuclear Information System (INIS)
Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.
2005-01-01
We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC =1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e., as 1/Q 2 . This is due to the nonvanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy-momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in α S and we explore the consequences of fixing the renormalization scale ambiguity through the Brodsky-Lepage-Mackenzie (BLM) procedure. We study the particular case where the hybrid meson decays through a πη meson pair. We discuss the πη generalized distribution amplitude and then calculate the production amplitude for this process. We propose a forward-backward asymmetry in the production of π and η mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at very high energy, in the diffractive limit where a QCD Odderon exchange mechanism should dominate. The conclusion of our study is that hard electroproduction is a promising way to study exotic hybrid mesons, in particular, at JLAB, HERA (HERMES), or CERN (Compass)
Meson phase space density from interferometry
International Nuclear Information System (INIS)
Bertsch, G.F.
1993-01-01
The interferometric analysis of meson correlations a measure of the average phase space density of the mesons in the final state. The quantity is a useful indicator of the statistical properties of the systems, and it can be extracted with a minimum of model assumptions. Values obtained from recent measurements are consistent with the thermal value, but do not rule out superradiance effects
Sigma meson in heavy ion collision
International Nuclear Information System (INIS)
Cristian, Ivan; Fuchs, Christian
2004-01-01
We want to present a short theoretical prediction of the behaviour of the sigma meson in heavy ion collisions. It is considered that the sigma meson is a pion-pion correlation, resulting from the decay of the N*(1440) resonance. There will be presented some QMD simulations. (authors)
Experiments on eta-meson production
International Nuclear Information System (INIS)
Peng, J.C.
1985-01-01
Following a review of some highlights of eta-meson characteristics, the status of eta-meson production experiments is reviewed. The physics motivations and first results of two LAMPF experiments on (π,eta) reactions are discussed. Possible future experiments are also discussed. 42 refs., 12 figs., 4 tabs
Review of meson resonance radiative decays
International Nuclear Information System (INIS)
Thorndike, E.H.
1977-01-01
The radiative decays of meson resonances can be studied by three different approaches, it is noted. These are the meson-exchange, Primakoff effect, and the production of the desired resonance and subsequent observation of its decay. These approaches are criticized and examples of them are reviewed. Mass distributions are shown and branching ratios discussed. 21 references
Meson-nucleus potentials and the search for meson-nucleus bound states
Metag, V.; Nanova, M.; Paryev, E. Ya.
2017-11-01
Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.
Studies of Excited $D$ mesons in $B$ meson decays
AUTHOR|(CDS)2082679
This thesis documents the studies of several three-body B + meson decays, each with a charged charmed meson in the final state. All analyses presented use a data sample recorded by the LHCb detector in 2011 and 2012, corresponding to an integrated luminosity of 3.0 $fb^{-1}$ of $pp$ collision data. The $B^{+} \\to D^{-}K^{+}\\pi^{+}$ and $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay modes are observed for the first time. The branching fraction of the favoured $B^{+} \\to D^{-}K^{+}\\pi^{+}$ decay mode is measured relative to the topologically similar $B^{+} \\to D^{-}\\pi^{+}\\pi^{+}$ decay and the $B^{+} \\to D^{-}K^{+}\\pi^{+}$ final state is used as a normalisation channel for the suppressed $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay branching fraction measurement. Searches are performed for the quasi-two-body decays $B^{+} \\to D^{+}K^{*}(892)^{0}$ and $B^{+} \\to D_{2}^{*}(2460)^{0}K^{+}$, using the sample of $B^{+} \\to D^{+}K^{+}\\pi^{-}$ candidate decays. No significant signals are observed for either decay mode and upper limits a...
Central production of two-pseudoscalar meson systems at the COMPASS experiment at CERN
Energy Technology Data Exchange (ETDEWEB)
Austregesilo, Alexander
2014-10-20
COMPASS is a fixed-target experiment at the CERN SPS which recorded a data set with an incident proton beam impinging on a liquid hydrogen target in order to study the central production of light scalar mesons. We select events with two protons and two pseudo-scalar mesons in the final state and decompose their angular distribution in terms of partial-wave amplitudes. Fits to the mass-dependence of these amplitudes are used to determine the Breit-Wigner parameters of scalar resonances.
Vector mesons and chiral symmetry
International Nuclear Information System (INIS)
Ecker, G.
1989-01-01
The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)
Meson theory and nuclear matter
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
An attempt is made to justify the use of the concept of a 'mesic fluid' in connection with the structure of nuclear matter. A transformation is made of the usual symmetric pseudo-scalar meson theory to bring into evidence certain saturation properties, which provide a natural basis for the use of a 'self-consistent' field in the discussion of nuclear structure. Fluctuations about this semi-classical saturated state will give rise to residual interparticle forces within the nucleus, and are also briefly considered in relation to electromagnetic interactions. (author). 5 refs
[Meson spectroscopy and particle astrophysics
International Nuclear Information System (INIS)
LoSecco, J.M.
1993-07-01
Progress in the design and construction of a light meson spectroscopy experiment is reported. The experiment will run in 1993. Some non- accelerator, activities and plans for the future are also discussed. Results of a Brookhaven beam test with a subset of the final detector are described. The test has been quite promising both in the speed with which results have been obtained and in the quality of the data itself. The status of the CsI veto is reported The target region, in particular the CsI veto experiment is Notre Dame's primary hardware responsibility on this experiment
Temperature, chemical potential and the ρ meson
International Nuclear Information System (INIS)
Roberts, C. D.; Schmidt, S. M.
2000-01-01
Models of QCD must confront nonperturbative phenomena such as confinement, dynamical chiral symmetry breaking (DCSB) and the formation of bound states. In addition, a unified approach should describe the deconfinement and chiral symmetry restoring phase transition exhibited by strongly-interacting matter under extreme conditions of temperature and density. Nonperturbative Dyson-Schwinger equation (DSE) models provide insight into a wide range of zero temperature hadronic phenomena; e.g., non-hadronic electroweak interactions of light- and heavy-mesons, and diverse meson-meson and meson-nucleon form factors. This is the foundation for their application at nonzero-(T, μ). Herein the authors describe the calculation of the reconfinement and chiral symmetry restoring phase boundary, and the medium dependence of ρ-meson properties. They also introduce an extension to describe the time-evolution in the plasma of the quark's scalar and vector self energies based on a Vlasov equation
Experimental Status of Exotic Mesons and the GlueX Experiment
Energy Technology Data Exchange (ETDEWEB)
Daniel Carman
2006-10-22
One of the unanswered and most fundamental questions in physics regards the nature of the confinement mechanism of quarks and gluons in QCD. Exotic hybrid mesons manifest gluonic degrees of freedom and their spectroscopy will provide the data necessary to test assumptions in lattice QCD and the specific phenomenology leading to confinement. Within the past two decades a number of experiments have put forth tantalizing evidence for the existence of exotic hybrid mesons in the mass range below 2 GeV. This talk represents an overview of the available data and what has been learned. In looking toward the future, the GlueX experiment at Jefferson Laboratory represents a new initiative that will perform detailed spectroscopy of the light-quark meson spectrum. This experiment and its capabilities will be reviewed.
Hyperfine splitting of B mesons and Bs production at the Υ(5S)
International Nuclear Information System (INIS)
Lee-Franzini, J.; Heintz, U.; Lovelock, D.M.J.; Narain, M.; Schamberger, R.D.; Willins, J.; Yanagisawa, C.; Franzini, P.; Tuts, P.M.
1990-01-01
Using the Columbia University--Stony Brook (CUSB-II) detector we have studied the inclusive photon spectrum from 2.9x10 4 Υ(5S) decays. We observe a strong signal due to B * →Bγ decays. From this we obtain (i) the average B * -B mass difference, 46.7±0.4 MeV, (ii) the photon yield per Υ(5S) decay, left-angle γ/Υ(5S)right-angle=1.09±0.06, and (iii) the average velocity of the B * 's, left-angle β right-angle=0.156±0.010, for a mix of nonstrange (B) and strange (B s ) B * mesons from Υ(5S) decays. From the shape of the photon line, we find that both B and B s mesons are produced with nearly equal values for the hyperfine splitting of the B and B s meson systems
Discrete symmetries with neutral mesons
Bernabéu, José
2018-01-01
Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.
Confined quarks and the decays of ''old'' and ''new'' vector and tensor mesons
International Nuclear Information System (INIS)
Montvay, I.; Spitzer, J.
1977-06-01
The two-body strong decays of the vector and tensor mesons were calculated from the quark 100p coupling graph. The main assumptions of the model were: (i) confinement in the Minkowski-space of relative positions (and momenta); (ii) an effective quark mass approximation for quark propagation inside hadrons; and (iii) the quark diagram structure of hadrons interactions. In the calculations oscillator type (Gaussian) wave functions were used. The description of the decays of ''old'' (non-charmed) vector and tensor mesons leads to a consistent qualitative picture with small effective masses (about 300 MeV) and considerable differences in the size of the quark confinement region for different mesons. The ''new'' (charmed) particle decays and, therefore, the SU(3)-breaking were also considered. (Sz.N.Z.)
Meson Form Factors and Deep Exclusive Meson Production Experiments
Energy Technology Data Exchange (ETDEWEB)
Horn, Tanja [The Catholic Univ. of America, Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
Pion and kaon electroproduction data play a unique role in Nature and our understanding of them is essential for explaining hadron structure. Precision longitudinaltransverse separated pion and kaon cross sections are of particular interest. They allow for the extraction of meson form factors and validation of understanding of hard exclusive and semi-inclusive reactions (π+, K+, π0, γ) towards 3D hadron imaging and potential future flavor decomposition. We review recent data and present prospects for deep exclusive pion and kaon electroproduction at the 12 GeV Jefferson Lab including the prospects to use projected charged- and neutral pion data to further determine the spin, charge-parity and flavor of GPDs, including the helicity-flip GPDs.
The effect of meson exchange on the forward cross section for d(γ,p)n
International Nuclear Information System (INIS)
Jaus, W.; Woolcock, W.S.
1981-01-01
We have investigated the effect of meson exchange on the theoretical calculation of the cross section for the photodisintegration of the deuteron in the forward direction, in the hope of reducing the present large discrepancy between theory and experiment. Two recent papers reporting a significant reduction in the discrepancy were found to have a sign error; when pseudoscalar πNN coupling is used the effect of one-pion exchange is to increase the discrepancy. We have calculated the one-pion and two-pion exchange effects on the E1 transitions using pseudovector πNN coupling and the resulting correction is small and in the right direction. Thus, assuming the reliability of both theory and experiment, our calculation provides a strong argument in favour of using PV rather than PS πNN coupling in calculating meson exchange effects in nuclear processes. We have found that the effect of the exchange of rho- and ω-mesons is very small. Meson exchange effects change the normalization of the deuteron wave function and cause a further small reduction in the calculated cross section. Since the corrections to the M1 transitions are expected to be very small, it seems unlikely that meson exchange effects can account for the discrepancy between theory and experiment. (orig.)
Exclusive φ meson production in HERMES
International Nuclear Information System (INIS)
Golembiovskaya, Mayya
2014-03-01
In the present work exclusive φ meson leptoproduction at HERMES experiment in DESY was studied using the data collected at HERA accelerator in the period from 1998 till 2000 and from 2006 till 2007 years. In the analysis unpolarized and longitudinally polarized hydrogen and deuteron targets were used, the beam consisted of longitudinally polarized leptons. Via measurement of the angular and momentum distribution of the φ meson decay products 23 spin density matrix elements (SDMEs) for the φ meson were obtained. The number of SDMEs was defined by the experiment conditions, e.g. by the beam and target polarization directions. For the mentioned time period φ meson SDMEs were defined at HERMES for the first time. The quantities U 1 , U 2 and U 3 which can be used to check presence of unnatural parity exchange (UPE) mechanism in phi meson production were calculated from SDMEs. All the results were obtained in 3 kinematic bins of Q 2 , 4 kinematic bins of t' and for the integrated kinematics. No statistically significant difference between the results for hydrogen and deuteron targets was observed. The UPE quantities were found to be zero within 2 σ for the integrated kinematics, indicating negligible contribution of UPE for the φ meson production which is in agreement with theory predictions. The test of s-channel helicity conservation hypothesis via comparison of corresponding SDME values showed helicity conservation for the φ meson production.
Exotic hybrid mesons in hard electroproduction
Anikin, I V; Szymanowski, L; Teryaev, O V; Wallon, S
2005-01-01
We estimate the sizeable cross section for deep exclusive electroproduction of an exotic $J^{PC}=1^{-+}$ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as $1/Q^2$. This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in $\\alpha_{S}$ and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. We study the particular case where the hybrid meson decays through a $\\pi\\eta $ meson pair. We discuss the $\\pi\\eta$ generalized distribution amplitude and then calculate the production amplitude for this process. We propose a forward-backward asymmetry in the production of $\\pi$ and $\\eta$ mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at very ...
Exclusive φ meson production in HERMES
Energy Technology Data Exchange (ETDEWEB)
Golembiovskaya, Mayya
2014-03-15
In the present work exclusive φ meson leptoproduction at HERMES experiment in DESY was studied using the data collected at HERA accelerator in the period from 1998 till 2000 and from 2006 till 2007 years. In the analysis unpolarized and longitudinally polarized hydrogen and deuteron targets were used, the beam consisted of longitudinally polarized leptons. Via measurement of the angular and momentum distribution of the φ meson decay products 23 spin density matrix elements (SDMEs) for the φ meson were obtained. The number of SDMEs was defined by the experiment conditions, e.g. by the beam and target polarization directions. For the mentioned time period φ meson SDMEs were defined at HERMES for the first time. The quantities U{sub 1}, U{sub 2} and U{sub 3} which can be used to check presence of unnatural parity exchange (UPE) mechanism in phi meson production were calculated from SDMEs. All the results were obtained in 3 kinematic bins of Q{sup 2}, 4 kinematic bins of t' and for the integrated kinematics. No statistically significant difference between the results for hydrogen and deuteron targets was observed. The UPE quantities were found to be zero within 2 σ for the integrated kinematics, indicating negligible contribution of UPE for the φ meson production which is in agreement with theory predictions. The test of s-channel helicity conservation hypothesis via comparison of corresponding SDME values showed helicity conservation for the φ meson production.
Meson form factors and covariant three-dimensional formulation of composite model
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.
1978-01-01
An approach is developed which is applied in the framework of the relativistic quark model to obtain explicit expressions for meson form factors in terms of covariant wave functions of the two-quark system. These wave functions obey the two-particle quasipotential equation in which the relative motion of quarks is singled out in a covariant way. The exact form of the wave functions is found using the transition to the relativistic configurational representation with the help of the harmonic analysis on the Lorentz group instead of the usual Fourier expansion and then solving the relativistic difference equation thus obtained. The expressions found for form factors are transformed into the three-dimensional covariant form which is a direct geometrical relativistic generalization of analogous expressions of the nonrelativistic quantum mechanics and provides the decrease of the meson form factor by the Fsub(π)(t) approximately t -1 law as -t infinity, in the Coulomb field
Meson facility. Powerful new research tool
International Nuclear Information System (INIS)
Lobashev, V.M.; Tavkhelidze, A.N.
A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described
Radiative decay of light and heavy mesons
International Nuclear Information System (INIS)
Barik, N.; Dash, P.C.
1994-01-01
The M1 transition among the vector (V) and pseudoscalar (P) mesons in the light and heavy flavor sectors has been investigated in a potential model of independent quarks. Going beyond the static approximation, to add some momentum dependence due to the recoil effect in a more realistic calculation, we find an improvement in the results for the radiative decay of light flavored mesons. However, our prediction on the decay rates for the mesons (D * and B * ) in the heavy flavor sector remains unaffected and compares well with those of other model calculations
Single meson photoproduction and IR renormalons
International Nuclear Information System (INIS)
Agaev, S.S.
1996-10-01
Single pseudoscalar and vector mesons inclusive photoproduction γh → MX via higher twist mechanism is calculated using the QCD running coupling constant method. It is proved that in the context of this method a higher twist contribution to the photoproduction cross section cannot be normalized in terms of the meson electromagnetic form factor. The structure of infrared renormalon singularities of the higher twist subprocess cross section and the resumed expression (the Borel sum) for it are found. Comparisons are made with earlier results, as well as with leading twist cross section. Phenomenological effects of studied contributions for π, K, ρ-meson photoproduction are discussed. (author). 21 refs, 8 figs
Why do nucleons cling. [Meson theory
Energy Technology Data Exchange (ETDEWEB)
Kumar, N [Hindu Coll., Delhi (India)
1976-10-01
The nature of the forces which bind nucleons together within the nucleus of an atom have been discussed in detail. The characteristic properties of the nucleons, such as spin, interaction range etc. and the meson theory of nuclear forces are described. The present researches indicate that the force between two nucleons in a many-nucleon system is not very different from the force between two free nucleons. Researches related to the origin of nuclear forces based on the meson theory are now mainly concerned with the role played by the heavier mesons and the two pion exchanges in the middle region around 0.7 fm. (10/sup -13/ cm).
Fock exchange in meson theories of nuclei
International Nuclear Information System (INIS)
Bolsterli, M.
1986-01-01
The Fock exchange term in meson field theories of nuclear systems is shown to arise from a two-loop ground-state self-energy diagram. Evaluation of this diagram gives the relativistic or semirelativistic analog of the Fock exchange energy; it differs from the nucleon-nucleon Fock energy in including retardation effects. In finite meson-field theories of nuclear systems, the variational nature of the meson-field analog of the Hartree-Fock energy functional can be further elucidated. 4 refs
International Nuclear Information System (INIS)
Jansen, K.; Michael, C.; Urbach, C.
2008-04-01
We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N f =2 flavours of light quark, this is the so-called η 2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the η 2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses. (orig.)
Tetraquarks in the 1/N expansion and meson-meson resonances
Energy Technology Data Exchange (ETDEWEB)
Maiani, L. [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, P.le Aldo Moro 5, I-00185 Roma (Italy); Polosa, A.D. [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, P.le Aldo Moro 5, I-00185 Roma (Italy); CERN Theory Department, CH-1211 Geneva 23 (Switzerland); Riquer, V. [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, P.le Aldo Moro 5, I-00185 Roma (Italy)
2016-06-27
Diquarks are found to have the right degrees of freedom to describe the tetraquark poles in hidden-charm to open-charm meson-meson amplitudes. Compact tetraquarks result as intermediate states in non-planar diagrams of the 1/N expansion and the corresponding resonances are narrower than what estimated before. The proximity of tetraquarks to meson-thresholds has an apparent role in this analysis and, in the language of meson molecules, an halving rule in the counting of states is obtained.
Tetraquarks in the 1/N expansion and meson-meson resonances
International Nuclear Information System (INIS)
Maiani, L.; Polosa, A.D.; Riquer, V.
2016-01-01
Diquarks are found to have the right degrees of freedom to describe the tetraquark poles in hidden-charm to open-charm meson-meson amplitudes. Compact tetraquarks result as intermediate states in non-planar diagrams of the 1/N expansion and the corresponding resonances are narrower than what estimated before. The proximity of tetraquarks to meson-thresholds has an apparent role in this analysis and, in the language of meson molecules, an halving rule in the counting of states is obtained.
Energy Technology Data Exchange (ETDEWEB)
Leitão, Sofia, E-mail: sofia.leitao@tecnico.ulisboa.pt [CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Stadler, Alfred, E-mail: stadler@uevora.pt [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Peña, M.T., E-mail: teresa.pena@tecnico.ulisboa.pt [Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Biernat, Elmar P., E-mail: elmar.biernat@tecnico.ulisboa.pt [CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2017-01-10
The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.
International Nuclear Information System (INIS)
Balbashov, A.M.; Berezin, A.G.; Gufan, Yu.M.; Kolyadko, G.S.; Marchukov, P.Yu.; Rudashevskij, E.G.
1987-01-01
A pronounced energy gap of a nonmagnetoelastic origin is observed experimentally in the spectrum of the low-frequency (quasiferromagnetic) antiferromagnetic resonance branch during a second order spin-flip phase transition in an external magnetic field directed along the a axis of the rhombic weak ferromagnetic YFeO 3 . From the theory developed which takes into account the susceptibility along the antiferromagnetism axis and dissipation processes, it follows that beside the usual AFMR oscillatory branches there should also be a relaxation mode which is ''soft'' fo the given transition. The magnitude of the energy gaps, the values of the kinetic coefficients, Dzyaloshinsky field strengths and ratio of the longitudinal susceptibility to the transverse susceptibility are determined by analyzing the experimental data obtained in fields up to 130 kOe in the frequency range from 60 to 400 GHz at room temperature
International Nuclear Information System (INIS)
Roberts, W.; Silvestre-Brac, B.
1998-01-01
A recent model of hadron states is extended to include meson decays. We find that the overall success of the model is quite good. Possible improvements to the model are suggested. copyright 1997 The American Physical Society
Hybrid mesons: old prejudices and new spectroscopy
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.
1997-01-01
The models for hybrid mesons are discussed, in which the gluonic excitations manifest themselves as the vibrations of the quark-antiquark QCD string. The predictions for the spectra, decays and mixing with hadronic channels are presented. (orig.)
New physics effects from meson decays
Indian Academy of Sciences (India)
beyond the Standard Model from -meson decays, taking К-parity conserving and violating super- symmetry .... particular choice of the parameter space, can be much higher than the SM ones. .... CLEO has already given some food for thought.
Pion physics at the meson factories
International Nuclear Information System (INIS)
Nagle, D.E.; Johnson, M.B.; Measday, D.F.
1987-01-01
Pi meson probes have contributed much to our ideas about how neutrons and protons are distributed and move relative to each other in nuclei, and along with other probes, to our understanding of basic symmetries in particle physics
THE ETA-MESON PHOTOPRODUCTION ON PROTON
Czech Academy of Sciences Publication Activity Database
Donoval, Jan; Bydžovský, Petr
2011-01-01
Roč. 26, 3-4 (2011), s. 645-646 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Eta-meson photoproduction * form factors * nucleon resonances Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011
Meson-mass generation by instantons, 2
Energy Technology Data Exchange (ETDEWEB)
Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K
1979-05-01
In a previous work we discussed how pseudo-scalar mesons and scalar mesons acquire their masses by instantons in the colored gauge field. We considered there the two-flavor model with chiral U(2) x U(2) symmetry. In the present paper the same problem is discussed, including the chiral flavor U(3) x U(3) symmetry. An importance of non-local effects due to instantons is emphasized.
Oscillations of neutral B mesons systems
Boucrot, J.
1999-01-01
The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is
Quark-gluon mixing in scalar mesons
International Nuclear Information System (INIS)
Eremyan, Sh.S.; Nazaryan, A.E.
1986-01-01
Scalar mesons are considered within the quark-gluon mixing model. It is shown that there exists decouplet of scalar particles consisting of S* (975), ε (1400), S*' (1700), δ (980) and κ (1350) resonances. It has turned out that the long ago known S* (975)-resonance is a nearly pure glouball. A good description of all available experimental data on scalar meson decays is obtained
Bs mesons: semileptonic and nonleptonic decays
Directory of Open Access Journals (Sweden)
Albertus C.
2014-01-01
Full Text Available In this contribution we compute some nonleptonic and semileptonic decay widths of Bs mesons, working in the context of constituent quark models [1, 2]. For the case of semileptonic decays we consider reactions leading to kaons or different Jπ Ds mesons. The study of nonleptonic decays has been done in the factorisation approximation and includes the final states enclosed in Table 2.
Beautiful mesons from QCD spectral sum rules
International Nuclear Information System (INIS)
Narison, S.
1991-01-01
We discuss the beautiful meson from the point of view of the QCD spectral sum rules (QSSR). The bottom quark mass and the mixed light quark-gluon condensates are determined quite accurately. The decay constant f B is estimated and we present some arguments supporting this result. The decay constants and the masses of the other members of the beautiful meson family are predicted. (orig.)
Systematics of meson-Skyrmion scattering
International Nuclear Information System (INIS)
Mattis, M.P.
1986-02-01
The S-matrix characterizing the scattering of pions from nucleons is calculated in the context of skyrmion models of the nucleon. These are models in which the nucleon is considered a soliton in the field of pions. The spectrum of nucleon and delta resonances in the Skyrme model is calculated and found to be in overall good agreement with Nature. Model-independent sum rules between amplitudes in the same partial wave are derived and examined. An extension of the formalism to the case of three light flavors is presented. 31 refs., 26 figs., 6 tabs
Systematics of meson-Skyrmion scattering
Energy Technology Data Exchange (ETDEWEB)
Mattis, M.P.
1986-02-01
The S-matrix characterizing the scattering of pions from nucleons is calculated in the context of skyrmion models of the nucleon. These are models in which the nucleon is considered a soliton in the field of pions. The spectrum of nucleon and delta resonances in the Skyrme model is calculated and found to be in overall good agreement with Nature. Model-independent sum rules between amplitudes in the same partial wave are derived and examined. An extension of the formalism to the case of three light flavors is presented. 31 refs., 26 figs., 6 tabs.
Maris, Assimo
2017-11-01
The enhancing sensibility of radioastronomical observations allows for detec- tion of complex organic molecules (COMs) with increasing size. Observations performed by the Atacama Large Millimeter Array (ALMA) open up new oppor- tunities to reveal the COMs, at the same time, the huge amount of data collected and the extremely rich surveys represent a challenge for the astrochemistry community. Among all the detected molecules, the diols are object of chemical interest, because of their similarity with important biological building block molecules such as sugar alcohols. The simplest of them, ethylene glycol (EG), is one of the largest COMs detected in space thus far. Lines attributable to the most stable conformer of EG were detected in different environments and recently also the higher energy conformer has been observed both towards IRAS 16293-2422 and the Orion KL. Observations of 1, 2- and 1, 3-propanediol toward Sgr B2 (N-LMH) were attempted as part of the GBT Prebiotic Interstellar Molecule Sur- vey Legacy Project, but no transitions were detected. Although up to now, due the fact that the column densities of molecules tend to decrease with increasing molecular weight, no large diols have been observed in interstellar space, owing to the raising sensitivity of the radioastronomy observations, their future detection can not be excluded. In this context we report, for the first time, the laboratory millimeter spectrum of 1, 2-butanediol (BD) recorded in the 59.6-103.6 GHz frequency region (5.03-2.89 mm). BD (the ethylated form of EG) is a flexible molecule characterized by a great conformational complexity, thus at room condi- tions the population is distributed in a large number of species, leading to a very congested spectrum. This problem has been overcome exploiting the rotational and conformational cooling produced by the supersonic expansion technique. Six conformers of BD, including the global minimum, have been assigned yielding the rotational constants
International Nuclear Information System (INIS)
Czyzykiewicz, R.
2007-02-01
The analysing power measurements for the #vector#pp→ppη reaction studied in this dissertation are used in the determination of the reaction mechanism of the η meson production in nucleon-nucleon collisions. Measurements have been performed in the close-to-threshold energy region at beam momenta of p beam =2.010 and 2.085 GeV/c, corresponding to the excess energies of Q=10 and 36 MeV, respectively. The experiments were realised by means of a cooler synchrotron and storage ring COSY along with a cluster jet target. For registration of the reaction products the COSY-11 facility has been used. The identification of the η meson has been performed with the missing mass method. The results for the angular dependence of the analysing power combined with the hitherto determined isospin dependence of the total cross section for the η meson production in the nucleon-nucleon collisions, reveal a statistically significant indication that the excitation of the nucleon to the S 11 resonance, the process which intermediates the production of the η meson, is predominantly due to the exchange of a π meson between the colliding nucleons. The determined values of the analysing power at both excess energies are consistent with zero implying that the η meson is produced predominantly in the s-wave at both excess energies. (orig.)
Hadron mass spectrum in a lattice gauge theory
International Nuclear Information System (INIS)
Seo, Koichi
1978-01-01
We perform the strong coupling expansion in a lattice gauge theory and obtain the hadron mass spectrum. We develop a theory in the Hamiltonian formalism following Kogut and Susskind, but our treatment of quark fields is quite different from theirs. Thus our results largely differ from theirs. In our model and approximation, the pseudoscalar mesons have the same mass as the vectors. The baryon decuplet and the octet are also degenerate. The excited meson states are studied in detail. (auth.)
Electroproduction and photoproduction of vector mesons and generalized vector meson dominance
International Nuclear Information System (INIS)
Fraas, H.; Kuroda, M.
1977-05-01
Using generalized vector meson dominance, electro- and photoproduction of vector mesons is studied. The unnatural parity exchange part of ω(1.2) production is estimated to be about one fourth of that of ω-production. The off diagonal transition model suggests the suppression of diffractive rho(1.2) and ω(1.2) production. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Aleksan, Roy; Ali, Ahmed
1993-06-15
Since the discovery of the upsilon resonances in 1977 the physics of the fifth quark - beauty - has played a vital role in establishing and consolidating today's Standard Model of particle physics. In recent years, a wealth of data on B particle (containing the beauty quark) has emerged from the detectors ARGUS (at the DORIS ring, DESY, Hamburg) and CLEO (at the Cornell CESR ring) as well as from CERN's LEP electron-positron collider and the proton-antiproton colliders at CERN and Fermilab. But the most challenging goal of this physics is to explore the mystery of CP violation, so far only seen in neutral kaon decays. This subtle mechanism - a disregard for the combined symmetry of particle antiparticle switching and left-right reflection - possibly moulded the evolution of the Universe after the Big Bang, providing a world dominated by matter, rather than one where matter and antimatter play comparable roles. To fully explore CP violation in the laboratory needs a dedicated machine - a particle 'factory' - to mass produce B mesons. Only when this full picture of CP violation has been revealed will physicists finally be able to solve its mysteries. As well as major proposals in the US and Japan, several ideas have been launched in Europe. Over the years, many working groups have accumulated an impressive amount of data and knowledge on the physics as well as on the machine and detectors. The spearheads of experimental B physics are the ARGUS and CLEO collaborations. Highlights include the determination of the parameters of the (Cabibbo-Kobayashi-Maskawa, CKM) quark mixing matrix, testing the consistency of the Standard Model with six quarks and three leptons, and giving the first indirect hint that the as yet unseen sixth ('top') quark is very heavy, together with initial indications of how it should decay. Valuable complementary information has come from proton-antiproton collider data and particularly from the LEP experiments at the Z resonance. Experiments at
International Nuclear Information System (INIS)
Aleksan, Roy; Ali, Ahmed
1993-01-01
Since the discovery of the upsilon resonances in 1977 the physics of the fifth quark - beauty - has played a vital role in establishing and consolidating today's Standard Model of particle physics. In recent years, a wealth of data on B particle (containing the beauty quark) has emerged from the detectors ARGUS (at the DORIS ring, DESY, Hamburg) and CLEO (at the Cornell CESR ring) as well as from CERN's LEP electron-positron collider and the proton-antiproton colliders at CERN and Fermilab. But the most challenging goal of this physics is to explore the mystery of CP violation, so far only seen in neutral kaon decays. This subtle mechanism - a disregard for the combined symmetry of particle antiparticle switching and left-right reflection - possibly moulded the evolution of the Universe after the Big Bang, providing a world dominated by matter, rather than one where matter and antimatter play comparable roles. To fully explore CP violation in the laboratory needs a dedicated machine - a particle 'factory' - to mass produce B mesons. Only when this full picture of CP violation has been revealed will physicists finally be able to solve its mysteries. As well as major proposals in the US and Japan, several ideas have been launched in Europe. Over the years, many working groups have accumulated an impressive amount of data and knowledge on the physics as well as on the machine and detectors. The spearheads of experimental B physics are the ARGUS and CLEO collaborations. Highlights include the determination of the parameters of the (Cabibbo-Kobayashi-Maskawa, CKM) quark mixing matrix, testing the consistency of the Standard Model with six quarks and three leptons, and giving the first indirect hint that the as yet unseen sixth ('top') quark is very heavy, together with initial indications of how it should decay. Valuable complementary information has come from proton-antiproton collider data and particularly from the LEP experiments at the
International Nuclear Information System (INIS)
Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.
1981-01-01
Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17 0 to +7 0 . Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20 0 to near 90 0 . We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49 2 for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/
Meson exchange currents in nuclei; the triton beta decay as an example
International Nuclear Information System (INIS)
Jaus, W.
1976-01-01
The method used to reduce the four-dimensional Bethe-Salpeter equation to the three-dimensional Schroedinger equation, thus defining a potential in terms of the field theoretic interaction, can be generalized to define a consistent exchange by considering the relativistic interaction of a current with a bound state of nucleons. This covariant approach allows a unified treatment of exchange current effects, renormalization of the nuclear wave function due to meson exchange, relativistic corrections and negative energy contributions to the wave function and it is discussed in detail how these effects influence the Gamow-Teller matrix element for the decay 3 H→ 3 He + e + antiγ. One and two-meson exchange processes are calculated including nucleon resonances in intermediate states, and good agreement of theoretical and experimental predictions for the GT matrix element is found. (Auth.)
Effects of ρ-meson width on pion distributions in heavy-ion collisions
Directory of Open Access Journals (Sweden)
Pasi Huovinen
2017-06-01
Full Text Available The influence of the finite width of ρ meson on the pion momentum distribution is studied quantitatively in the framework of the S-matrix approach combined with a blast-wave model to describe particle emissions from an expanding fireball. We find that the proper treatment of resonances which accounts for their production dynamics encoded in data for partial wave scattering amplitudes can substantially modify spectra of daughter particles originating in their two body decays. In particular, it results in an enhancement of the low-pT pions from the decays of ρ mesons which improves the quantitative description of the pion spectra in heavy ion collisions obtained by the ALICE collaboration at the LHC energy.
Confirmation of the 1-+ meson exotics in the ηπ0 system
International Nuclear Information System (INIS)
Adams, G.S.; Adams, T.; Bar-Yam, Z.; Bishop, J.M.; Bodyagin, V.A.; Brown, D.S.; Cason, N.M.; Chung, S.U.; Cummings, J.P.; Demianov, A.I.; Danyo, K.; Dowd, J.P.; Eugenio, P.; Fan, X.L.; Gribushin, A.M.; Hackenburg, R.W.; Hayek, M.; Hu, J.; Ivanov, E.I.
2007-01-01
The exclusive reaction π - p→ηπ 0 n, η→π + π - π 0 at 18GeV/c has been studied with a partial wave analysis on a sample of 23 492 ηπ 0 n events from BNL experiment E852. A mass-dependent fit is consistent with a resonant hypothesis for the P + wave, thus providing evidence for a neutral exotic meson with J PC =1 -+ , a mass of 1257±20±25MeV/c 2 , and a width of 354±64±60MeV/c 2 . New interpretations of the meson exotics in neutral ηπ 0 system observed in E852 and Crystal Barrel experiments are discussed
Jabri, Atef; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.; Alekseev, E. A.; Kleiner, Isabelle; Tercero, Belén; Cernicharo, Jose
2017-06-01
Methyl formate CH_{3}OC(O)H is a relatively abundant component of the interstellar medium (ISM). Thus, we decided to study its sulfur derivatives as they can be reasonably proposed for detection in the ISM. In fact there is two relatively stable isomers for methyl thioformate, S-Methyl thioformate CH_{3}SC(O)H and O-Methyl thiofomate CH_{3}OC(S)H. Theoretical investigations on these molecules have been done recently by Senent et al.. Previous experimental investigations were performed only for the S-Methyl thioformate in the 10-41 GHz spectral range by Jones et al. and Caminati et al.. For the present study both isomers were synthesized and the millimeter wave spectrum was then recorded for the first time from 150 to 660 GHz with the Lille's spectrometer based on solid-state sources. The internal rotation effect on the millimeter wave spectra is not the same for these two molecules because the barrier height to internal rotation is relatively low for the S- isomer (V_{3} ≈ 140 \\wn) and rather high for the O- isomer (V_{3} ≈ 700 \\wn). Analysis of the ground and excited torsional states performed with the BELGI-C_{s} code will be presented and discussed. We will provide the search for methyl thioformate in different sources. E. Chruchwell, G. Winnewisser, A&A, 45, 229 (1975) M. L. Senent, C. Puzzarini, M. Hochlaf, R. Dominguez-Gomez, and M. Carvajal, J. Chem. Phys., 141, 104303 (2014) G. I. L. Jones, D. G. Lister, N. L. Owen, J. Mol. Spectrosc., 60, 348 (1976) W. Caminati, B. P. V. Eijck, D. G. Lister, J. Mol. Spectrosc., 90, 15 (1981) J. T. Hougen, I. Kleiner, and M. Godefroid, J. Mol. Spectrosc. 163, 559 (1994)
Rare decays of the B meson and QCD effects
International Nuclear Information System (INIS)
O'Donnell, P.J.
1987-01-01
The rare decay modes of the B meson might soon be able to test the standard model of weak interactions. In the event that the experimental searches now under way are not able to explore a significantly large enough range (say up to 240 GeV) these rare decays might be used to seek out a value for the top quark mass. The branching ratios for a number of decay processes (exclusive and inclusive) of the B meson are given. These are calculated in the standard model with three generations. A distribution of the μ/sup +/μ/sup -/ pairs is also given. This should distinguish between transverse and longitudinal production of the lepton pairs. The predictions for the inclusive decay branching ratios become precise when an independent determination is made of m/sub t/. However, it is necessary to incorporate the strong interaction effects in discussing exclusive decays. These can be incorporated as wave function overlaps and as corrections to the fundamental interaction vertices. Some recent calculations have included gluon loop corrections to the fundamental vertex with the result of a possible increase of about two orders of magnitude in the case of light top quark masses
The dipole representation of vector meson electroproduction beyond leading twist
Energy Technology Data Exchange (ETDEWEB)
Besse, A. [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); Szymanowski, L. [National Center for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S., E-mail: wallon@th.u-psud.fr [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); UPMC Univ. Paris 06, Faculte de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)
2013-02-01
We link the recent computation beyond leading twist of the impact factor of the transition {gamma}{sub T}{sup Low-Asterisk }{yields}{rho}{sub T} performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura-Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the {rho}-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura-Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.
Spectra of heavy-light mesons in a relativistic model
Energy Technology Data Exchange (ETDEWEB)
Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)
2017-05-15
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)
Schiraldi, Vito; Morello, Michael Joseph
In fisica delle particelle, con il termine di "oscillazione" si indica la trasformazione di una particella neutra nella sua antiparticella e viceversa, fenomeno dovuto al fatto che gli autostati di flavor non sono autostati della matrice di massa. Il Modello Standard delle interazioni fondamentali predice che l'oscillazione del mesone D^0 avvenga su tempi molto maggiori di una vita media, e appaia perciò come un effetto piccolo, inferiore al percento, in contrasto con il caso dei mesoni B^0 e B^0_s che oscillano con molta maggiore rapidità. Sperimentalmente, l'oscillazione dei mesoni D^0 è rimasta inosservata fino a tempi recenti: la prima evidenza sperimentale dell'esistenza di un effetto di oscillazione è stata ottenuta soltanto nella primavera del 2007 dagli esperimenti BaBar (SLAC, USA) e Belle (KEKB, Japan). Nell'agosto 2007 anche l’esperimento CDF (Fermilab, USA) ha presentato una evidenza simile, basata sull'analisi di una parte del campione di dati disponibile. La tesi descrive gli aspetti speri...
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Ratios of Vector and Pseudoscalar B Meson Decay Constants in the Light-Cone Quark Model
Dhiman, Nisha; Dahiya, Harleen
2018-05-01
We study the decay constants of pseudoscalar and vector B meson in the framework of light-cone quark model. We apply the variational method to the relativistic Hamiltonian with the Gaussian-type trial wave function to obtain the values of β (scale parameter). Then with the help of known values of constituent quark masses, we obtain the numerical results for the decay constants f_P and f_V, respectively. We compare our numerical results with the existing experimental data.
Search for semileptonic decays of photoproduced charmed mesons
International Nuclear Information System (INIS)
Coleman, R.N.
1977-01-01
In the broad band neutral beam at Fermilab, a search for photoproduction of charmed D mesons was done using photons of 100 to 300 GeV. The reaction considered was γ + Be → DantiD + X, leptons + ..., K 0 /sub s/nπ/sup +-/. No statistically significant evidence for D production is observed based on the K 0 /sub s/nπ/sup +-/ mass spectrum. The sensitivity of the search is commensurate with theoretical estimates of sigma(γp → DantiD + X) approximately 500 nb, however this is dependent on branching ratios and photoproduction models. Data are given on a similar search for semileptonic decays of charmed baryons. 48 references
Anomalous decay and scattering processes of the η meson
International Nuclear Information System (INIS)
Kubis, Bastian; Plenter, Judith
2015-01-01
We amend a recent dispersive analysis of the anomalous η decay process η → π + π - γ by the effects of the a2 tensor meson, the lowest-lying resonance that can contribute in the πη system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous η' decay. There are nonnegligible consequences for the η transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward.backward asymmetry, for the crossed process γπ - → π - η, which could be measured in Primakoff reactions in the future. (orig.)
Anomalous decay and scattering processes of the η meson
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian, E-mail: kubis@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115, Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, 53115, Bonn (Germany); Plenter, Judith [Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115, Bonn (Germany)
2015-06-25
We amend a recent dispersive analysis of the anomalous η decay process η→π{sup +}π{sup -}γ by the effects of the a{sub 2} tensor meson, the lowest-lying resonance that can contribute in the πη system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous η{sup ′} decay. There are nonnegligible consequences for the η transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward–backward asymmetry, for the crossed process γπ{sup -}→π{sup -}η, which could be measured in Primakoff reactions in the future.
Anomalous decay and scattering processes of the η meson
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Universitaet Bonn, Bethe Center for Theoretical Physics, Bonn (Germany); Plenter, Judith [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)
2015-06-15
We amend a recent dispersive analysis of the anomalous η decay process η → π{sup +}π{sup -}γ by the effects of the a2 tensor meson, the lowest-lying resonance that can contribute in the πη system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous η' decay. There are nonnegligible consequences for the η transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward.backward asymmetry, for the crossed process γπ{sup -} → π{sup -}η, which could be measured in Primakoff reactions in the future. (orig.)
Weak effects in the decay spectra of neutral pseudoscalar mesons
International Nuclear Information System (INIS)
Ragutt, B.; Schuelke, L.
1978-01-01
The effect of the neutral weak current on the decay mode of a neutral pseudoscalar meson (πsup(deg) or eta) into a photon and a lepton-antilepton pair has been calculated within the framework of the Weinberg-Salam model. A parity-violating contribution to the decay spectrum is found to be larger for the decay eta→γμ + μ - . In this case it can be of the order 10 -6 strongly depending on the value of the Weinberg angle and thus is still beyond the present experimental possibilities. However, a measurement of this effect would not only give a strong hint on the value of the Weinberg angle, but could also help to resolve the difficulties of the Weinberg-Salam model in atomic-physics experiments
Nekovee, Maziar; Rudd, Richard
2017-01-01
In this paper an overview is given of the current status of 5G industry standards, spectrum allocation and use cases, followed by initial investigations of new opportunities for spectrum sharing in 5G using cognitive radio techniques, considering both licensed and unlicensed scenarios. A particular attention is given to sharing millimeter-wave frequencies, which are of prominent importance for 5G.
CORNELL: CLEO discovers B meson penguins
International Nuclear Information System (INIS)
Anon.
1993-01-01
The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour
CORNELL: CLEO discovers B meson penguins
Energy Technology Data Exchange (ETDEWEB)
Anon.
1993-06-15
The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour.
Rare meson decays into very light neutralinos
Energy Technology Data Exchange (ETDEWEB)
Dreiner, H.K.; Grab, S. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics und Physikalisches Inst.; Koschade, D. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik; London Univ. (United Kingdom). Centre for Reserach in String Theory; Kraemer, M.; O' Leary, B. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik; Langenfeld, U. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2009-05-15
We investigate the bounds on the mass of the lightest neutralino from rare meson decays within the MSSM with and without minimal flavor violation. We present explicit formulae for the two-body decays of mesons into light neutralinos and perform the first complete calculation of the loop-induced decays of kaons to pions and light neutralinos and B mesons to kaons and light neutralinos. We find that the supersymmetric branching ratios are strongly suppressed within the MSSM with minimal flavor violation, and that no bounds on the neutralino mass can be inferred from experimental data, i.e. a massless neutralino is allowed. The branching ratios for kaon and B meson decays into light neutralinos may, however, be enhanced when one allows for non-minimal flavor violation. We find new constraints on the MSSM parameter space for such scenarios and discuss prospects for future kaon and B meson experiments. Finally, we comment on the search for light neutralinos in monojet signatures at the Tevatron and at the LHC. (orig.)
Charged track multiplicity in B meson decay
International Nuclear Information System (INIS)
Brandenburg, G.; Ershov, A.; Gao, Y. S.; Kim, D. Y.-J.; Wilson, R.; Browder, T. E.; Li, Y.; Rodriguez, J. L.; Yamamoto, H.; Bergfeld, T.
2000-01-01
We have used the CLEO II detector to study the multiplicity of charged particles in the decays of B mesons produced at the Υ(4S) resonance. Using a sample of 1.5x10 6 B meson pairs, we find the mean inclusive charged particle multiplicity to be 10.71±0.02 -0.15 +0.21 for the decay of the pair. This corresponds to a mean multiplicity of 5.36±0.01 -0.08 +0.11 for a single B meson. Using the same data sample, we have also extracted the mean multiplicities in semileptonic and nonleptonic decays. We measure a mean of 7.82±0.05 -0.19 +0.21 charged particles per BB(bar sign) decay when both mesons decay semileptonically. When neither B meson decays semileptonically, we measure a mean charged particle multiplicity of 11.62±0.04 -0.18 +0.24 per BB(bar sign) pair. (c) 2000 The American Physical Society
International Nuclear Information System (INIS)
Gonzalez, P.
2009-01-01
Screening effects from sea pairs on the quark-antiquark static potential are analyzed phenomenologically from the light-quark to the heavy-quark meson spectra. From the high excited light-quark meson spectrum, a universal form for the screened static potential is proposed. This potential is then successfully applied to heavy quarkonia. Our results suggest the assignment of X(4260) to the 4s state of charmonium and the possible existence of a 5s bottomonium resonance around 10748 MeV.
International Nuclear Information System (INIS)
Mamica, S; Krawczyk, M; Lévy, J-C S
2014-01-01
We use a microscopic theory taking into account the dipolar and nearest-neighbour exchange interactions for exploring spin-wave excitations in two-dimensional magnetic dots in the vortex state. Normal modes of different profiles are observed: azimuthal and radial modes, as well as fundamental (quasiuniform) and highly localized modes. We examine the dependence of the frequencies and profiles of these modes on the dipolar-to-exchange interaction ratio and the size of the dot. Special attention is paid to some particular modes, including the lowest mode in the spectrum and the evolution of its profile, and the fundamental mode, the frequency of which proves almost independent of the dipolar-to-exchange interaction ratio. We also provide a selective overview of the experimental, analytical and numerical results from the literature, where different profiles of the lowest mode are reported. We attribute this diversity to the competition between the dipolar and exchange interactions. Finally, we study the hybridization of the modes, show the multi-mode hybridization and explain the selection rules. (paper)
Central Production of Two-Pseudoscalar Meson Systems at the COMPASS Experiment at CERN
Austregesilo, Alexander; Mallot, Gerhard
The question of the existence of glueballs is one of the unsolved problems in modern particle physics and can be regarded as a stringent test for quantum chromodynamics. Especially the supernumerous states in the light scalar meson spectrum are candidates for the observation of mixing effects between $q\\bar q$ mesons and pure gluonic bound states. On the other hand, the existence and the properties of many resonances in this sector are disputed. The COMPASS experiment was proposed to make significant contributions to this field. COMPASS is a fixed-target experiment at the CERN SPS which focused on light-quark hadron spectroscopy during the data taking periods in 2008 and 2009. A world-leading data set was collected with a $190\\,\\mathrm{GeV}/c$ hadron beam impinging on a liquid hydrogen target in order to study, inter alia, the central production of glueball candidates in the light meson sector. Especially the double-Pomeron exchange mechanism is well suited for the production of mesons without valenc...
Meson-baryon components in the states of the baryon decuplet
Energy Technology Data Exchange (ETDEWEB)
Aceti, F.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Kavli Institute for Theoretical Physics China, Beijing (China); Dai, L.R. [Liaoning Normal University, Department of Physics, Dalian (China); Kavli Institute for Theoretical Physics China, Beijing (China); Geng, L.S. [Beihang University, School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Zhang, Y. [Liaoning Normal University, Department of Physics, Dalian (China)
2014-03-15
We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and resonant states to determine the weight of the meson-baryon component in the Δ(1232) resonance and the other members of the J{sup P} = (3)/(2){sup +} baryon decuplet. We obtain an appreciable weight of πN in the Δ(1232) wave function, of the order of 60%, which looks more natural when one recalls that experiments on deep inelastic and Drell Yan give a fraction of πN component of 34% for the nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights of the meson-baryon component decrease and they already show a dominant part for a genuine, non-meson-baryon, component in the wave function. We write a section to interpret the meaning of the Weinberg sum rule when it is extended to complex energies and another one for the case of an energy-dependent potential. (orig.)
Chiral symmetry breaking and confinement - solutions of relativistic wave equations
International Nuclear Information System (INIS)
Murugesan, P.
1983-01-01
In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it
Experimental investigations of production of glueballs and meson resonant states
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1987-01-01
The major efforts reported have been directed toward investigating glueballs and non-strange mesons. The g/sub T/(2050), g/sub T'/(2300), and g/sub T''/(2350) have been observed in the OZI forbidden reaction π - p → phi phi n. Their characteristics are explained within the context of quantum chromodynamics as being produced by 1 to 3 primary glueballs. It is proposed to increase the present statistics in order to reduce the effective partial wave analysis resolution, and to begin to study the high vertical bar t' vertical bar region. It is further planned to pursue coupled channel analysis of high precision π - p → K/sub s/ 0 K/sub s/ 0 n data and other relevant world data in the 2 ++ , 0 ++ , and 4 ++ channels. A program is planned to investigate K - p and p anti p interactions at 8 GeV/c
Goldstone pion and other mesons using a scalar confining interaction
International Nuclear Information System (INIS)
Gross, F.; Milana, J.
1994-01-01
A covariant wave equation for q bar q interactions with an interaction kernel composed of the sum of constant vector and linear scalar confining interactions is solved for states with two quarks with identical mass. The model includes an NJL-like mechanism which links the dynamical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and hence breaks chiral symmetry. Solutions for mesons composed of light quarks (π,ρ, and low lying excited states) and heavy quarks (ρ c , J/Ψ, and low lying excited states) are presented and discussed
Vector mesons on the light front
International Nuclear Information System (INIS)
Naito, K.; Maedan, S.; Itakura, K.
2004-01-01
We apply the light-front quantization to the Nambu-Jona-Lasinio model with the vector interaction, and compute vector meson's mass and light-cone wavefunction in the large N limit. Following the same procedure as in the previous analyses for scalar and pseudo-scalar mesons, we derive the bound-state equations of a qq-bar system in the vector channel. We include the lowest order effects of the vector interaction. The resulting transverse and longitudinal components of the bound-state equation look different from each other. But eventually after imposing an appropriate cutoff, one finds these two are identical, giving the same mass and the same (spin-independent) light-cone wavefunction. Mass of the vector meson decreases as one increases the strength of the vector interaction
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2002-01-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature
The vector meson with anomalous magnetic moment
International Nuclear Information System (INIS)
Boyarkin, O.M.
1976-01-01
The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S
2002-03-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
C(1480) meson and electromagnetic processes
International Nuclear Information System (INIS)
Landsberg, L.G.
1992-01-01
Possible processes of production of the vector meson C(1480) → var-phi π, a candidate for exotic states, in electromagnetic processes are considered [photoproduction, e + e - →C(1480) → var-phi π 0 , and the reaction of production of C(1480) in the Coulomb field of a nucleus]. It is shown that coherent Coulomb production of the C(1480) meson allows one to determine the absolute value of BR[C(1480) → var-phi π], which is essential for the interpretation of the nature of this hadron. Possibilities of observing C(1480) mesons in e + e - collisions at the var-phi factory DAΦNE are studied. 27 refs., 12 figs., 1 tab
Photoproduction of scalar mesons at medium energies
Energy Technology Data Exchange (ETDEWEB)
Da Silva, M. L. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-090, Pelotas, RS (Brazil); Machado, M. V. [High Energy Physics Phenomenology Group, GFPAE IF-UFRGS, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS (Brazil)
2013-03-25
In this work we will focus on photoproduction of mesons states a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710). The f{sub 0}(1500) and f{sub 0}(1710) mesons will be considered in distinct mixing possibilities and assuming that a{sub 0}(980) is member of the ground-state nonet. The theoretical formalism is the Regge approach with reggeized {rho} and {omega} exchange. The differential and integrated total cross section are computed for the cases of the mesons a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710) focusing the GlueX energy regime with photon energy E = 9 GeV.
Nuclear modification factor of D0 mesons in PbPb collisions at sqrt(s[NN]) = 5.02 TeV
Energy Technology Data Exchange (ETDEWEB)
Sirunyan, Albert M; et al.
2017-08-16
The transverse momentum (pt) spectrum of prompt D0 mesons and their antiparticles has been measured via the hadronic decay channels D0 to K- pi+ and D0-bar to K+ pi- in pp and PbPb collisions at a centre-of-mass energy of 5.02 TeV per nucleon pair with the CMS detector at the LHC. The measurement is performed in the D0 meson pt range of 2-100 GeV and in the rapidity range of abs(y)<1. The pp (PbPb) dataset used for this analysis corresponds to an integrated luminosity of 27.4 inverse picobarns (530 inverse microbarns). The measured D0 meson pt spectrum in pp collisions is well described by perturbative QCD calculations. The nuclear modification factor, comparing D0 meson yields in PbPb and pp collisions, was extracted for both minimum-bias and the 10% most central PbPb interactions. For central events, the D0 meson yield in the PbPb collisions is suppressed by a factor of 5-6 compared to the pp reference in the pt range of 6-10 GeV. For D0 mesons in the high-pt range of 60-100 GeV, a significantly smaller suppression is observed. The results are also compared to theoretical calculations.
Spin-1 diquark contributing to the formation of tetraquarks in light mesons
International Nuclear Information System (INIS)
Kim, Hungchong; Cheoun, Myung-Ki; Kim, K.S.
2017-01-01
We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (anti 3_c, anti 3_f). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, vertical stroke J,J_1_2,J_3_4 right angle = vertical stroke 000 right angle, where J is the spin of the tetraquark, J_1_2 the diquark spin, J_3_4 the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in (6_c, anti 3_f) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration vertical stroke J,J_1_2,J_3_4 right angle = vertical stroke 011 right angle. The two configurations, vertical stroke 000 right angle and vertical stroke 011 right angle, are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a_0(980), a_0(1450) or to K"*_0(800), K"*_0(1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J = 1, J = 2 with the spin configurations vertical stroke 111 right angle and vertical stroke 2011 right angle, and we discuss possible candidates in the physical spectrum. (orig.)
Spin-1 diquark contributing to the formation of tetraquarks in light mesons
Energy Technology Data Exchange (ETDEWEB)
Kim, Hungchong [Korea Aerospace University, Research Institute of Basic Science, Goyang (Korea, Republic of); Cheoun, Myung-Ki [Soongsil University, Department of Physics, Seoul (Korea, Republic of); Kim, K.S. [Korea Aerospace University, School of Liberal Arts and Science, Goyang (Korea, Republic of)
2017-03-15
We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (anti 3{sub c}, anti 3{sub f}). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, vertical stroke J,J{sub 12},J{sub 34} right angle = vertical stroke 000 right angle, where J is the spin of the tetraquark, J{sub 12} the diquark spin, J{sub 34} the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in (6{sub c}, anti 3{sub f}) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration vertical stroke J,J{sub 12},J{sub 34} right angle = vertical stroke 011 right angle. The two configurations, vertical stroke 000 right angle and vertical stroke 011 right angle, are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a{sub 0}(980), a{sub 0}(1450) or to K{sup *}{sub 0}(800), K{sup *}{sub 0}(1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J = 1, J = 2 with the spin configurations vertical stroke 111 right angle and vertical stroke 2011 right angle, and we discuss possible candidates in the physical spectrum. (orig.)
Tensor meson dominance and e+e--physics
International Nuclear Information System (INIS)
Genz, H.; Karlsruhe Univ.; Mallik, S.
1983-01-01
The phenomenological status of tensor meson dominance is reported. Some new results concerning hadronic decays of the 2 ++ -meson chi 2 (3.55) and the heavy lepton tau are also included. Considering experimental errors, tensor meson dominance is in agreement with experiment. (author)
Further evidence for magnetic charge from meson spectroscopy
International Nuclear Information System (INIS)
Akers, D.
1987-01-01
Recently evidence was presented for the existence of magnetic charge from Zeeman splitting in meson states. The model by Akers predicted the existence of a new eta meson at 1814 MeV with I/sup G/ (J/sup PC/) = O + (O -+ ). Experimental evidence for this new meson is cited and discussed
On some rare weak decays of vector mesons
International Nuclear Information System (INIS)
Kurdadze, L.M.; Silagadze, Z.K.
2000-01-01
Some semileptonic weak decays of vector mesons are considered in the framework of the most popular quark models. Two the most popular models go give more elaborated estimates for the vector meson semileptonic decay rates are used. Unfortunately the predicted branching ratios are too small to make a study of these decays realistic at meson factories under construction [ru
Photoproduction of scalar mesons using CLAS at JLab
Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration
2014-09-01
The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0 Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0> Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0 Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. NSF.
Semileptonic decays of B mesons into excited charm mesons: leading order and 1/mc contributions
International Nuclear Information System (INIS)
Mannel, T.
1994-01-01
We use the heavy quark effective theory to investigate the form factors that describe the semileptonic decays of a B meson into excited daughter mesons. For an excited daughter meson with charm, a single form factor is needed at leading order, while five form factors and two dimensionful constants are needed to order 1/m c in the heavy quark expansion. For non-charmed final states, a total of four form factors are needed at leading order. For the process B→D(*)Xlν, four form factors are also needed at leading order. (orig.)
Production and decay of the F-meson in e+e- annihilation at 10 GeV centre-of-mass energy
International Nuclear Information System (INIS)
Albrecht, H.; Binder, U.; Drews, G.; Harder, G.; Hasemann, H.; Philipp, A.; Schmidt-Parzefall, W.; Schroeder, H.; Schulz, H.D.; Selonke, F.; Wurth, R.; Drescher, A.; Graewe, B.; Hofmann, W.; Markees, A.; Matthiesen, U.; Scheck, H.; Spengler, J.; Wegener, D.; Edwards, K.W.; Yun, J.C.; Frisken, W.R.; Fukunaga, C.; Goddard, M.; Gilkinson, D.J.; Gingrich, D.M.; Kim, P.C.H.; Kutschke, R.; MacFarlane, D.B.; McKenna, J.A.; Orr, R.S.; Padley, P.; Prentice, J.D.; Seywerd, H.C.J.; Stacey, B.J.; Yoon, T.S.; Ammar, R.; Coppage, D.; Davis, R.; Kanekal, S.; Kwak, N.; Boeckmann, P.; Joensson, L.; Oku, Y.; Childers, R.; Darden, C.W.; Gennow, H.
1984-12-01
Using the ARGUS detector at DORIS, we have observed the production of Fsup(+-) mesons in e + e - annihilation at a centre of mass energy of 10 GeV through their subsequent decays into PHIπsup(+-) and PHIπ + π - πsup(+-). The values obtained for [R(e + e - -> F x). Branching Ratio] are (1.47 +- 0.32 +- 0.20)% and (1.63 +- 0.42 +- 0.41)% respectively. The observed mass is (1973.6 +- 2.6 +- 3.0) MeV/c 2 . The F momentum spectrum is as expected for the fragmentation of c quarks into charmed mesons, but is somewhat softer than for fragmentation into Dsup(*) mesons. The relevant angular distributions are consistent with a spin zero assignment of the F meson. (orig.)
Nonleptonic B decays involving tensor mesons
Energy Technology Data Exchange (ETDEWEB)
Lopez Castro, G. [Departamento de Fisica, Cinvestav del IPN, Apdo. Postal 14-740, 07000 Mexico, D.F. (Mexico); Munoz, J.H. [Departamento de Fisica, Cinvestav del IPN, Apdo. Postal 14-740, 07000 Mexico, D.F. (Mexico)]|[Departamento de Fisica, Universidad del Tolima, A.A. 546, Ibague (Colombia)
1997-05-01
Two-body nonleptonic decays of B mesons into PT and VT modes are calculated using the nonrelativistic quark model of Isgur {ital et al.} The predictions obtained for B{r_arrow}{pi}D{sub 2}{sup {asterisk}},{rho}D{sub 2}{sup {asterisk}} are a factor of 3{endash}5 below present experimental upper limits. Interesting patterns are obtained for ratios of B decays involving mesons with different spin excitations and their relevance for additional tests of forms factor models are briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}
Covariant, chirally symmetric, confining model of mesons
International Nuclear Information System (INIS)
Gross, F.; Milana, J.
1991-01-01
We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented
Hard production of exotic hybrid mesons
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.; Teryaev, O.V. [Bogoliubov Lab. of Theoretical Physics, JINR, Dubna (Russian Federation); Pire, B.; Anikin, I. [Ecole Polytechnique, CPHT, 91 - Palaiseau (France); Szymanowski, I. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Liege Univ. (Belgium); Anikin, I.; Wallon, S. [Paris-11 Univ., Lab. de Physique Theorique, 91 - Orsay (France)
2005-07-01
Exotic hybrid mesons H, with quantum numbers J{sup PC} = 1{sup -+} may be copiously produced in the hard exclusive processes {gamma}{sup *}(Q{sup 2}){gamma} {yields} H and {gamma}{sup *}(Q{sup 2})P(p) {yields} HP(p') because they have a leading twist distribution amplitude with a sizable coupling constant f{sub H}, which may be estimated through QCD sum rules. The reaction rates scale in the same way as the corresponding rates for usual mesons. (authors)
Isospin-violating mixing in meson nonets
International Nuclear Information System (INIS)
Isgur, N.
1979-01-01
Segregation into ideally mixed nonets results when the OZI-violating interaction which would mix u anti u, d anti d, and s anti s mesons into isospin and SU(3) eigenstates is much weaker than the s anti s-d anti d mass difference. We show that the d anti d-u anti u mass difference can begin to induce a similar segregation into d anti d and anti u mesons which leads to large isospin violations. An experimental example of such large isospin breaking (approx. 30%) which we predict has probably already been seen in f → K anti K. (orig.)
Dipole moments of the rho meson
International Nuclear Information System (INIS)
Hecht, M.B.; McKellar, B.H.P.
1997-04-01
The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison
International Nuclear Information System (INIS)
Safronov, A.N.
1983-01-01
A system of nonsingular integral equations is formulated for the calculation of hadron-hadron partial amplitudes in the low-and intermediate-energy range taking into account meson and quark-gluon degrees of freedom. The quark-gluon degrees of freedom are included in the framework of the composite-quark-bag model, and the meson degrees of freedom are treated by the methods of the relativistic quantum field theory. It is shown that including the quark-gluon degrees of freedom leads to suppression of meson exchange effects, mostly of heavy meson (rho, ω) exchanges. The method has been applied to the calculation of the 3 S 1 , 1 S 0 , 3 P 0 , 3 P 1 , and 1 P 1 phase shifts for the nucleon-nucleon scattering at the incident nucleon energies T=0-1050 MeV, as well as to the S-wave scattering lengths and effective radii
Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF
Energy Technology Data Exchange (ETDEWEB)
Godfrey, S. [Carleton Univ., Ottawa (Canada)
1994-04-01
The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Molina, Raquel [Univ. of Sao Paulo (Brazil); Hu, Bitao [George Washington Univ., Washington, DC (United States); Doering, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Alexandru, Andrei [George Washington Univ., Washington, DC (United States)
2018-04-01
Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. In addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.
Radiative decays of vector mesons in the chiral bag model
International Nuclear Information System (INIS)
Tabachenko, A.N.
1988-01-01
A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment
Role of vector mesons in pion electroproduction
International Nuclear Information System (INIS)
Uleshchenko, V.V.
2007-01-01
The talk is concerned with mechanisms of pion production in deeply inelastic scattering related to the interaction of virtual photon with the nucleon via an intermediate vector-meson state of the probe. A clear evidence of these mechanisms in the HERMES experimental data is revealed
meson properties and its leptonic radiative decays
Indian Academy of Sciences (India)
Now there is no one who doubt the color-singlet mechanism for double heavy meson production. Whereas the so-called color-octet mechanism still need to be tested, although it has been proposed for years and obtained a few experimental supports. Besides the reasons mentioned here precisely, the first observation of the ...
Vector mesons in strongly interacting matter
Indian Academy of Sciences (India)
E-mail: volker.metag@exp2.physik.uni-giessen.de. Abstract. .... constraints on hadronic spectral functions but cannot predict their detailed shape. Hadronic ..... nuclear medium, despite a cut on low momentum ω-mesons: pω ≤ 500 MeV/c. A.
Charmonium meson and hybrid radiative transitions
Energy Technology Data Exchange (ETDEWEB)
Guo, Peng [Indiana U., JLAB; Yépez-Martínez, Tochtli [Indiana U.; Szczepaniak, Adam P. [Indiana U., JLAB
2014-06-01
We consider the non-relativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe radiative transitions between conventional charmonium states and from the lowest multiplet of cc¯ hybrids to charmonium mesons. The results are compared to potential quark models and lattices calculations.
Skyrmions and vector mesons: a symmetric approach
International Nuclear Information System (INIS)
Caldi, D.G.
1984-01-01
We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references
QED effects in the pseudoscalar meson sector
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD (United Kingdom); Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, 650-0047 (Japan); Perlt, H. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Pleiter, D. [Jülich Supercomputer Centre, Forschungszentrum Jülich, Jülich, 52425 (Germany); Institut für Theoretische Physik, Universität Regensburg, Regensburg, 93040 (Germany); Rakow, P.E.L. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street , Liverpool, L69 3BX (United Kingdom); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, Hamburg, 22603 (Germany); Schiller, A. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Stokes, R. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Stüben, H. [Regionales Rechenzentrum, Universität Hamburg, Hamburg, 20146 (Germany); Young, R.D.; Zanotti, J.M. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Collaboration: the QCDSF and UKQCD collaboration
2016-04-15
In this paper we present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED, concentrating particularly on violations of isospin symmetry. We calculate the π{sup +}–π{sup 0} splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in http://arxiv.org/abs/1508.06401. In this paper we give more details of the techniques employed, discussing in particular the question of how much of the symmetry violation is due to QCD, arising from the different masses of the u and d quarks, and how much is due to QED, arising from the different charges of the quarks. This decomposition is not unique, it depends on the renormalisation scheme and scale. We suggest a renormalisation scheme in which Dashen’s theorem for neutral mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and discuss how the self-energies change when we transform to a scheme such as (MS)-bar , in which Dashen’s theorem for neutral mesons is violated.
International Nuclear Information System (INIS)
Duong Van Phi; Duong Anh Duc
1993-08-01
The decay channels of the D s -meson are deduced from a Selection Rule and a Lagrangian, formed on L*O(4) group invariance and on principle of minimal structure. A comparison of the results with experimental data is made. (author). 4 refs
Composite vector mesons and string models
International Nuclear Information System (INIS)
Mandelstam, S.
1985-01-01
The author discusses the general question of gauge mesons in extended supergravities, and whether such theories can produce the gauge mesons corresponding to a group at least as large as SU(3) x SU(2) x U(1). An exciting conjecture in this direction was made a few years ago by previous authors, who suggested that there might be composite SU(8) gauge mesons in a supergravity model known as the N=8 model. Until we have a consistent, renormalizable theory of supergravity we cannot really obtain any indication of the truth or falseness of that conjecture. One form of the Neveu-Schwarz string model has been shown to be a theory of supergravity; it is finite at the one-loop level and probably in any order of perturbation theory. The discussion is within the framework of this model. The author questions whether massive vector mesons can possibly lose their mass due to interactions. Arguments have been given on both sides of this question, and the author believes that this can occur under certain circumstances. Our conclusions is that the FNNS mechanism will create a gauge symmetry in addition to the rigid symmetry
Atomic capture of negative mesons in hydrogen
International Nuclear Information System (INIS)
Leon, M.
1979-01-01
After a brief description of the present state of theoretical understanding of atomic capture of negative mesons, a very simple model calculation of negative muon capture by the simplest atoms, hydrogen is described. Also the possibility of generalizing these results to more complicated atoms and even molecules is noted. 15 references
Anomalies in radiation decays of charmed mesons
International Nuclear Information System (INIS)
Kalinovskij, Yu.L.; Pervushin, V.N.; Sarikov, N.A.
1986-01-01
The amplitudes of the charmed meson decays D→0 - +0 - +γ and F→0 - +0 - +γ are calculated in the framework of the SU(4)xSU(4)-chiral Lagrangians with account for anomalies. It is shown that in this approach no E1-transition exists
Mesons in the Eguchi Kawai model
International Nuclear Information System (INIS)
Haan, O.
1985-09-01
Fermions in the fundamental representation of the SU(N) gauge group are incorporated into the Eguchi Kawai reduction scheme. The proof for the equivalence of reduced and extended theories is given. This equivalence can be used, to calculate chiral condensate and meson propagators from the fermion matrix of a partially reduced TEK model. (orig.)
On hadronic production of the Bc meson
International Nuclear Information System (INIS)
Chang Chaohsi; Chen Yuqi; Han Guoping; Jiang Hongtao
1994-08-01
Various approaches to the hadronic productions of the double heavy meson B c are investigated in this paper. The resultant cross sections obtained by the approaches are compared with in several aspects. One may see that the differences are quite substantial. The advantages and shortcomings of the approaches are discussed. (author). 17 refs, 4 figs
Vector mesons in strongly interacting matter
Indian Academy of Sciences (India)
Results on the light vector mesons ρ, , and , are summarized and compared. Almost all experiments report a softening of the spectral functions with increases in width depending on the density and temperature of the hadronic environment. No evidence for mass shifts is found in majority of the experiments. Remaining ...
Versatile secondary beam for the meson area
International Nuclear Information System (INIS)
Kirk, T.
1982-03-01
A new secondary beam design is outlined for the Meson M6 Beamline that combines versatility with economy. The beamline described will transport charged particles of either sign to 800 GeV/c and bring the beam to a focus in one of three potential experimental areas. The plan makes maximal use of existing civil construction
Meson degrees of freedom in nuclei
International Nuclear Information System (INIS)
Delorme, J.
1982-01-01
A review is presented of the successes and shortcomings of the theory of meson degrees of freedom in nuclei with special emphasis on recent progress and on the necessity to bridge the gap with the degrees of freedom of QCD theory. (orig.)
New physics effects from meson decays
Indian Academy of Sciences (India)
Abstract. In this talk, we point out some of the present and future possible signatures of physics beyond the Standard Model from -meson decays, taking -parity conserving and violating supersymmetry as illustrative examples. An expanded version is available on hep-ph archive.
Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature
International Nuclear Information System (INIS)
Evans, Nick; Threlfall, Ed
2008-01-01
We examine the mesonic thermal spectrum of the Sakai-Sugimoto model of holographic QCD by finding the quasinormal frequencies of the supergravity dual. If flavor is added using D8-D8 branes there exist embeddings where the D-brane world volume contains a black hole. For these embeddings (the high-temperature phase of the Sakai-Sugimoto model) we determine the quasinormal spectra of scalar and vector mesons arising from the world volume Dirac-Born-Infeld (DBI) action of the D-brane. We stress the importance of a coordinate change that makes the infalling quasinormal modes regular at the horizon allowing a simple numerical shooting technique. Finally we examine the effect of finite spatial momentum on quasinormal spectra
Meson Spectroscopy at CLAS and CLAS12: the present and the future
International Nuclear Information System (INIS)
De Vita, R.
2011-01-01
Mesons are the simplest quark bound system, being made by a quark and an anti-quark pair. Studying their structure and properties is a fundamental step to reach a deep understanding of QCD. For this purpose both the precise determination of the meson spectrum for conventional states and the search for states beyond the simple qq-bar configurations, as hybrids (qqg) or glueballs, are needed. Finding evidence for these unconventional states would help in understanding some of the open issues in hadronic physics, as how the quarks are confined within hadrons and what is the role of gluons. These topics are presently studied with the CLAS detector at Jefferson Lab and will be studied with the novel CLAS12 experiment after the 12 GeV upgrade of the facility. In my talk I will present the physics program that is presently in progress and the future perspectives.
Rho meson decay width in SU(2) gauge theories with 2 fundamental flavours
Janowski, Tadeusz; Pica, Claudio
2016-01-01
SU(2) gauge theories with two quark flavours in the fundamental representation are among the most promising theories of composite dynamics describing the electroweak sector. Three out of five Goldstone bosons in these models become the longitudinal components of the W and Z bosons giving them mass. Like in QCD, we expect a spectrum of excitations which appear as resonances in vector boson scattering, in particular the vector resonance corresponding to the rho-meson in QCD. In this talk I will present the preliminary results of the first calculation of the rho-meson decay width in this theory, which is analogous to rho to two pions decay calculation in QCD. The results presented were calculated in a moving frame with total momentum (0,0,1) on two ensembles. Future plans include using 3 moving frames on a larger set of ensembles to extract the resonance parameters more reliably and also take the chiral and continuum limits.
Meson resonances and glueballs: theoretical review and relevance to PP at LEAR
International Nuclear Information System (INIS)
Barnes, T.
1982-05-01
Some theoretical ideas about the meson spectrum are reviewed and lessons which may be learned about it in PP-bar annihilation are considered. Experimental questions which, if answered, would have the largest impact on the present understanding of quark and gluon interactions are noted. Conventional qq-bar mesons as treated in potential models, concentrating on the familiar cc-bar systems, are reviewed. The exciting possibility is discussed of detecting constituent gluons in PP-bar annihilations, in gg states - which may already have been detected in e + e - and PP-bar, as will be seen and in the exotic Jsup(PC) 'hermaphrodite' states qq-bar, for which there is currently no experimental evidence. (author)
P-wave meson production p+p→d+π+
International Nuclear Information System (INIS)
Green, A.M.; Niskanen, J.A.
1976-01-01
The total and differential cross sections for the reaction p+p→d+π + are calculated using an initial wavefunction containing Δ(1236) components generated from the incident protons by means of coupled differential equations. When the width of the Δ is introduced into the differential equations the resonance form of the reaction is obtained. It is found that the rhoNΔ coupling can be varied in wide limits without drastic changes in the cross section. (author)
Elastic meson-nucleon partial wave scattering analyses
International Nuclear Information System (INIS)
Arndt, R.A.
1986-01-01
Comprehensive analyses of π-n elastic scattering data below 1100 MeV(Tlab), and K+p scattering below 3 GeV/c(Plab) are discussed. Also discussed is a package of computer programs and data bases (scattering data, and solution files) through which users can ''explore'' these interactions in great detail; this package is known by the acronym SAID (for Scattering Analysis Interactive Dialin) and is accessible on VAX backup tapes, or by dialin to the VPI computers. The π-n, and k+p interactions will be described as seen through the SAID programs. A procedure will be described for generating an interpolating array from any of the solutions encoded in SAID; this array can then be used through a fortran callable subroutine (supplied as part of SAID) to give excellent amplitude reconstructions over a broad kinematic range
Micrononcasual Euclidean wave functions
International Nuclear Information System (INIS)
Enatsu, H.; Takenaka, A.; Okazaki, M.
1978-01-01
A theory which describes the internal attributes of hadrons in terms of space-time wave functions is presented. In order to develop the theory on the basis of a rather realistic model, covariant wave equations are first derived for the deuteron, in which the co-ordinates of the centre of mass of two nucleons can be defined unambiguously. Then the micro-noncasual behaviour of virtual mesons mediating between the two nucleons is expressed by means of wave functions depending only on the relative Euclidean co-ordinates with respect to the centre of mass of the two nucleons; the wave functions are assumed to obey the 0 4 and SU 2 x SU 2 groups. The properties of the wave functions under space inversion, time reversal and particle-antiparticle conjugation are investigated. It is found that the internal attributes of the mesons, such as spin, isospin, strangeness, intrinsic parity, charge parity and G-parity are explained consistently. The theory is applicable also to the case of baryons
QCD with two light dynamical chirally improved quarks: Mesons
Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas
2012-02-01
We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 163×32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis containing both Gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2 are considered. Strange quarks are treated within the partially quenched approximation. For kaons we investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain FK/Fπ=1.215(41). The results presented here include some ensembles from previous publications and the corresponding results supersede the previously published values.
Studies on inclusive meson resonance and particle production
International Nuclear Information System (INIS)
Saarikko, Heimo
1978-01-01
Production and decay of meson resonances are studied in medium energy meson-proton collisions. Strong evidence is found that hadronic collisions are dominated by resonance production. Especially the vector mesons have often large inclusive cross sections, typically of the order of few millibarns at the present energies. In all, a majority of pions and kaons appear to be decay products of resonances or other unstable particles. The detailed kinematics of the parent resonance's decays is found to play an important role in determining inclusive pion spectra. The squared transverse momentum distributions of hadrons heavier than the pion appear to have in common an exponential behaviour, with a universal slope for the esponential fall-off. The observed vector meson yields suggest that only a small fraction of the direct lepton production observed at large transverse momentum in nucleon-nucleon interactions is accounted for by the ''old'' vector mesons. An attempt has been made to separate out the central production and fragmentation components of the meson production. Both the central production and the fragmentation of the incoming meson are found to be important mechanisms in the non-strange meson production whereas the central production of strange meson resonances is rare at our energies. The ratios of the observed meson yields are found to be generally in good agreement with a simple quark-counting model. (author)
About oscillations in the system of K0 mesons
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
2011-01-01
This work considers K 0 -, K 0 bar - meson mixings and oscillations via K 1 0 , K 2 0 - meson states at strangeness violation by the weak interactions and K 1 0 -, K 2 0 - meson mixings and oscillations via K S -, K L - meson states at CP violation by the weak interactions without and with taking into account decay widths. We work in the framework of the masses mixing scheme. It is shown that K 1 0 -(K S -) meson states appear at big distances from the K 0 -mesons source after their decays (τ L ≥ τ S (τ 2 ≥τ 1 )) due to oscillations of residual K 2 0 (K L ) mesons and then again we see short-living K 1 0 (K S ) mesons. It is implied that K L ↔K S meson oscillations are absent. The case is also considered when at CP violation unitarity is violated, but orthogonality of K S , K L states remains. The general expressions for probabilities of meson oscillations (transitions) are given
Spin O decay angular distribution for interfering mesons in electroproduction
Energy Technology Data Exchange (ETDEWEB)
Funsten, H.; Gilfoyle, G.
1994-04-01
Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.
Directory of Open Access Journals (Sweden)
Kubis B.
2010-04-01
Full Text Available The pion mass diﬀerence generates a pronounced cusp in the π0 π0 invariant mass distribution of K+ → π0 π0 π+ decays. As originally pointed out by Cabibbo, an accurate measurement of the cusp may allow one to pin down the S-wave pion–pion scattering lengths to high precision. We present the non-relativistic eﬀective ﬁeld theory framework that permits to determine the structure of this cusp in a straightforward manner, including the eﬀects of radiative corrections. Applications of the same formalism to other decay channels, in particular η and η′ decays, are also discussed.
Workshop on mesons and mesonic states up to slightly above 1 GeV/c2
International Nuclear Information System (INIS)
Oelert, W.; Sefzick, T.
1991-04-01
The new accelerator COSY-Juelich will provide protons with momenta up to 3.3 GeV/c. Thus an effective mass slightly above 1 GeV/c 2 can be produced in the pp-interaction. Employing higher mass targets also heavier mesons can be observed. The production of single mesons and of mesonic states with and without strangeness can be investgated at COSY. The structure of some mesons in the mass range of 950 McV/c 2 to 1020 MeV/c 2 is still not well understood. While the Φ(1020) at the upper limit of this range is believed to be of rahter pure santi s nature the content of the η'(958) meson at the lower limit of this range is still under discussion. New results suggest that what is called the f o meson (former notation S*) consists in reality of two close and narrow states; one of them being a santi s - quarks configuration while the other should be a flavour singlet which couples to ππ and Kanti K with similar strengths. Also the discussion on possible gluonium candidates is still alive. It is speculated that some of these mesons - till now supposed to have widths of 30 to 50 MeV/c 2 - could rather be an overlay of structures with much smaller widths. Another features of resonances in this region is their partial decay into the Kanti K channel if their actual mass is large enough. Strong decays in Kanti K could be a signal of a Kanti K 'molecular' nature of the resonance. In particular the atomic K + K - structure should exist. In order to have review of the physics related to these problems there was a workshop held on: MESONS and MESONIC STATES up to slightly above 1 GeV/c 2 at the ZEL - Forschungszentrum - Juelich February 19 to 20, 1990. The following contains copies of the shown transparencies and short write-ups as far as available. (orig.)
Meson exchange and neutral weak currents
Energy Technology Data Exchange (ETDEWEB)
Beck, D.H. [Univ. of Illinois, Urbana, IL (United States)
1994-04-01
Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.
International Nuclear Information System (INIS)
Nutt, W.T.
1976-01-01
A meson-theoretic model of the intermediate range nucleon-nucleon potential is presented with emphasis placed on the two-pion exchange contribution. The Bethe-Salpeter equation is reduced, by the Blankenbecler-Sugar technique, to a Lippmann-Schwinger equation, from which an approximate nonlocal, energy-dependent potential is obtained. The nucleon-antinucleon pair contribution, which plagues meson-theoretical two-pion calculations, is suppressed by the complex poles of the one-nucleon Green's function. The importance of the retention of the explicit energy dependence of the potential is demonstrated by calculating the off-shell scattering matrices. The potential is presented in a linearized (in energy) form with the core region adjusted to produce a fit to low energy data
Oxygen enhancement ratio for negative pi mesons
International Nuclear Information System (INIS)
Hall, E.J.; Astor, M.
1979-01-01
Experiments were performed at the Los Alamos Meson Physics Facility (LAMPF) to determine the oxygen enhancement ratio (OER) for the clinically used beam of negative pi mesons. V79 Chinese hamster cells, cultured in vitro, were used as the biological test system; hypoxia was produced by metabolic depletion as a result of sealing 2 million cells in 1 ml glass ampules. The Bragg peak of the pion depth dose curve was spread out to cover 10 cm by using a dynamic range shifter. Cells were irradiated at the center of the spead out Bragg peak, where the dose/rate was 0.1 Gy/min over a 6 x 6 cm field. The OER obtained was 2.2, compared with 3.8 obtained for γ rays under the same conditions
Inclusive vector meson production and hadron structure
International Nuclear Information System (INIS)
Boeckmann, K.
1977-08-01
It is shown that J/PSI production in hadronic interactions is dominated by central production from sea quarks even at beam momenta as low as 40 GeV/c. All known experimental data on inclusive vector meson production support the hypothesis that cross sections obtained from meson-nucleon and nucleon-nucleon interactions have to be compared in the quark C.M. system. With the distinction of sea quark and valence quark interactions in the additive quark model a consistent description of inclusive rho, K*, PHI and J/PSI production in hadronic interactions. A natural connection of inclusive rho 0 production cross sections in anti pp, pp and πp interactions is obtained. (orig.) [de
Quasi-exotic open-flavor mesons
Energy Technology Data Exchange (ETDEWEB)
Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria)
2017-06-15
Meson states with exotic quantum numbers arise naturally in a covariant bound-state framework in QCD. We investigate the consequences of shifting quark masses such that the states are no longer restricted to certain C-parities, but only by J{sup P}. Then, a priori, one can no longer distinguish exotic or conventional states. In order to identify signatures of the different states to look for experimentally, we provide the behavior of masses, leptonic decay constants, and orbital-angular-momentum decomposition of such mesons, as well as the constellations in which they could be found. Most prominently, we consider the case of charged quasi-exotic excitations of the pion. (orig.)
Production of polarized vector mesons off nuclei
International Nuclear Information System (INIS)
Kopeliovich, B. Z.; Nemchik, J.; Schmidt, Ivan
2007-01-01
Using the light-cone QCD dipole formalism we investigate manifestations of color transparency (CT) and coherence length (CL) effects in electroproduction of longitudinally (L) and transversally (T) polarized vector mesons. Motivated by forthcoming data from the HERMES experiment we predict both the A and Q 2 dependence of the L/T ratios for ρ 0 mesons produced coherently and incoherently off nuclei. For an incoherent reaction the CT and CL effects add up and result in a monotonic A dependence of the L/T ratio at different values of Q 2 . In contrast, for a coherent process the contraction of the CL with Q 2 causes an effect opposite to that of CT and we expect quite a nontrivial A dependence
A neural network to identify neutral mesons
International Nuclear Information System (INIS)
Lefevre, F.; Lautridou, P.; Marques, M.; Matulewicz, T.; Ostendorf, R.; Schutz, Y.
1994-01-01
Both π 0 and η mesons decay long before they can reach a detector. They predominantly decay by emission of two photons, and are identified by constructing the invariant mass of the photons. Misidentified mesons result from ambiguity in associating photons. Our work tries to select which pair is the most likely to be a physical one rather than a chance one. We first designed a Hopfield neural net, but all the activities converged rapidly towards zero except the highest one. To improve the solution we slew down the computation in order to let the network explore several states and to impose activities to converge towards one for all selected pairs. This was achieved by adding links connecting each cell to itself. The network performance is all the more interesting that the solid angle covered by the detector is greater than 15%. (D.L.). 5 refs
LHCb: LHCb results on $B$ meson mixing
Eitschberger, U
2013-01-01
On the poster three LHCb results on B meson mixing using a datasample of 1 fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} =$ 7 TeV are presented. The B meson oscillation frequencies are measured as $\\Delta m_d = 0.5156 \\pm 0.0051 (\\text{stat}) \\pm 0.0033 (\\text{syst}) \\text{ps}^{-1}$ and $\\Delta m_s = 17.768 \\pm 0.023 (\\text{stat}) \\pm 0.006 (\\text{syst}) \\text{ps}^{-1}$. The CP violation observables in the decay channel $B^0 \\rightarrow J/\\psi K^0_S$ are determined as $S_{J/\\psi K^0_S} = 0.73 \\pm 0.07 (\\text{stat})\\pm 0.04 (\\text{syst})$ and $C_{J/\\psi K^0_S} = 0.03 \\pm 0.09 (\\text{stat})\\pm 0.01 (\\text{syst})$.
A Dependence of Charmed Meson Production
Energy Technology Data Exchange (ETDEWEB)
Alves, Gilvan Augusto [Rio de Janeiro, CBPF
1992-03-01
One report is presented of a recent direct measurement of the nucleon number (A) dependence of the production cross sections for the charmed mesons $D^0$ and $D^+$ using $\\pi^+_{-}$ and $K^+_{-}$ beams incident on a segmented target of Be, Al, Cu and W. The data derive from the experiment E769 - Hadroproductlon of Charm at Fermilab. The experimental apparatus is described together with the following analysis. Starting from a sample of -1500 D mesons in the range of $O< x_{f} <1$, the data are found to be well described by the parameterization $\\sigma_{A}$ = $\\sigma_{O}$ , with $\\alpha = 0.99 \\pm 0.03$. The $x_f$ dependence of $\\alpha$ is examined and the results obtained are compared with those of other .experiments and wl th -theoretical expectations based on perturbatlve QCD and on an EMC like model of nuclear shadowing
Exclusive vector meson production at HERA
Energy Technology Data Exchange (ETDEWEB)
Szuba, Dorota [Hamburg University, Hamburg (Germany); Collaboration: H1 Collaboration; ZEUS Collaboration
2013-04-15
The exclusive photoproduction of {Upsilon} has been studied with the ZEUS detector in ep collisions at HERA. The exponential slope, b, of the |t|-dependence of the cross section, where t is the squared four-momentum transfer at the proton vertex, has been measured. This constitutes the first measurement of the |t|-dependence of the {gamma}p{yields}{Upsilon}p cross section. The differential crosssections as a function of t at lower energies of {gamma}p centre-of-mass has been studied in exclusive diffractive photoproduction of J/{psi} mesons with the H1 detector. The exclusive electroproduction of two pions has been measured by the ZEUS experiment. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, assuming that the studied mass range includes the contributions of the {rho}, {rho} Prime and . {rho}'' vector-meson states.
Exclusive vector meson production at HERA
International Nuclear Information System (INIS)
Szuba, Dorota
2013-01-01
The exclusive photoproduction of Υ has been studied with the ZEUS detector in ep collisions at HERA. The exponential slope, b, of the |t|-dependence of the cross section, where t is the squared four-momentum transfer at the proton vertex, has been measured. This constitutes the first measurement of the |t|-dependence of the γp→Υp cross section. The differential crosssections as a function of t at lower energies of γp centre-of-mass has been studied in exclusive diffractive photoproduction of J/ψ mesons with the H1 detector. The exclusive electroproduction of two pions has been measured by the ZEUS experiment. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, assuming that the studied mass range includes the contributions of the ρ, ρ′ and . ρ'' vector-meson states.
Observation of a spin 4 neutral meson with 2 GeV mass decaying in π0π0
International Nuclear Information System (INIS)
Apel, W.D.; Augenstein, K.; Bertolucci, E.; Donskov, S.V.; Inyakin, A.V.; Kachanov, V. A.; Kittenberger, W.; Krasnokutsky, R.N.; Kruger, M.; Leder, G.
1975-01-01
The invariant mass spectrum of neutral meson states from π - p interactions at 40 GeV/c incident momentum has been investigated in a high statistics experiment performed at the 70 GeV IHEP accelerator. To detect the high energy photons coming from the produced neutral states, a hodoscope spectrometer with a computer on-line was used. A clear structure on the mass spectrum of dipions produced in the reaction π - p → π 0 π 0 n is observed at 2 GeV. The decay angular distributions show in this mass region the variation with mass typical of a state with a spin J = 4. The mass of the observed meson is found to be M (2020 +- 25) MeV and the estimate of the full width is (180 +- 50) MeV
Observation of a spin 4 neutral meson with 2 GeV mass decaying in $\\pi^{0} \\pi^{0}$
Apel, W D; Bertolucci, E.; Donskov, S.V.; Inyakin, A.V.; Kachanov, V.A.; Kittenberger, W.; Krasnokutsky, R.N.; Kruger, M.; Leder, G.; Lednev, A.A.; Mannelli, I.; Mikhailov, Yu.V.; Müller, H.; Pierazzini, G.M.; Prokoshkin, Yu.D.; Quaglia, M.; Schneider, H.; Scribano, A.; Sergiampietri, F.; Shuvalov, R.S.; Sigurdsson, G.; Steuer, M.; Vincelli, M.L.
1975-01-01
The invariant mass spectrum of neutral meson states from π−p interactions at 40 GeV/c incident momentum has been investigated in a high statistics experiment performed at the 70 GeV IHEP accelerator. To detect the high energy photons coming from the produced neutral states, a hodoscope spectrometer with a computer on-line was used. A clear structure on the mass spectrum of dipions produced in the reaction π−p→π°π°n is observed at 2 GeV. The decay angular distributions show in this mass region the variation with mass typical of a state with a spin J = 4. The mass of the observed meson is found to be M = (2020±30)MeV and the estimate of the full width is (180±60) MeV.
Meson spectroscopy experiment at KEK - E/iota puzzle
International Nuclear Information System (INIS)
Tsuru, Tsuneaki
1985-01-01
Physics interests at the KEK (National Laboratory for High Energy Physics) are (1) search for exotic mesons such as glueballs (gg), meiktons (q anti q g) and multiquark states (q sup(2 - )q 2 ), (2) search for missing ordinary mesons (q anti q) and confirmation of unestablished mesons, and (3) new informations of quark contents of mesons, mixing angles of SU(3) singlet-octet and tests of conservations law. Special interest is in search for exotics such as glueballs and meiktons. (2) is a so-called meson spectroscopy experiment. This is important not only in itself but also in identifying newly discovered states as exotics because exotics have often same quantum numbers as ordinary mesons. Contents are the following: glueballs and E/iota puzzles, spectrometer system, experiments, performance of the spectrometer, physics outputs, E/iota puzzles and πI experiment, future plans. (Mori, K.)
Production ratio of pseudoscalar to vector mesons
International Nuclear Information System (INIS)
Chliapnikov, P.V.; Uvarov, V.A.
1990-01-01
The P/V ratio of directly produced pseudoscalar (P) to vector (V) mesons is analysed using the data on the K S 0 and K * (892) total inclusive cross sections in pp, π + p and K ± p reactions. The indication for a change of P/V from a value of about 1 at low energies, where the fragmentation processes dominate, to a value of 1/3, suggested by spin-statistics, at high energies is discussed. (orig.)
Exclusive ω meson production at COMPASS
Directory of Open Access Journals (Sweden)
Nowak Wolf-Dieter
2016-01-01
Full Text Available Exclusive ω meson production is studied by the COMPASS Collaboration using the CERN 160 GeV/c muon beam and a transversely polarised proton target. Single-spin and double-spin asymmetries are measured, some of which are sensitive to the Generalised Parton Distributions E that are related to quark orbital angular momenta. The results, which are sensitive also to the pion-pole contribution to the production mechanism, are compared to the predictions of a phenomenological model.
Euclidean fields: vector mesons and photons
International Nuclear Information System (INIS)
Loffelholz, J.
1979-01-01
Free transverse vector fields of mass >= 0 are studied. The model is related to the usual free vector meson and electromagnetic quantum field theories by extension of the field operators from transverse to arbitrary test functions. The one-particle states in transverse gauge and their localization are described. Reflexion positivity is proved and derived are free Feynman-Kac-Nelson formulas. An Euclidean approach to a photon field in a spherical world using dilatation covariance and inversions is given
Particle states of a quantized meson field
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A simple non-linear field theory is considered as the model for a recently proposed classical field theory of mesons and their particle sources. Quantization may be made according to canonical procedures; the problem is to show the existence of quantum states corresponding with the particle-like solutions of the classical field equations. A plausible way to do this is suggested. (author). 5 refs
Updating experimental results on light meson spectroscopy
International Nuclear Information System (INIS)
Diekmann, B.
1991-06-01
A recollection and summary is given on the understanding of light qanti q (q = u,d,s) mesons under the regime of the qanti q potential turning from a coulombic behaviour to a 'confining' one. In the second part the experimental knowledge obtained in the last years is updated: e + e - experiments, fixed target experiments with hadrons (kaons) and photons and panti p annihilations at LEAR discovered unknown objects and added new constraints on known but not fully understood states. (orig.)
LAMPF: the meson factory. A LASL monograph
Energy Technology Data Exchange (ETDEWEB)
Allred, J.C.
1977-08-01
A general and simplified introduction to the entire concept of LAMPF is given in terms of its experimental capabilities. Parts of the current experimental program are used as illustrative examples. Topics discussed include: (1) the evolution of the meson factory; (2) accelerator construction; (3) strong focusing; (4) accelerator innovations at LAMPF; (5) photons and pions; (6) muons as nuclear probes; (7) nuclear chemistry; (8) radiobiology and medical applications; (9) radioisotope production; (10) materials testing; and (11) LAMPF management and users group. (PMA)
International Nuclear Information System (INIS)
Chan Hongmo; Tsou Sheungtsun
1991-12-01
In expectation of imminent results from the new hyperon beam experiment at CERN concerning the exotic U-meson at 3.1 GeV, we propose a detailed program of experimental tests to check the suggestion that U is a qqq-barq-bar ''M-diquonium'' state. Apart from some very characteristic decay modes, the U is expected to occur together with several analogous states with various quantum numbers to which it is intimately related. (author)
Non-conventional mesons at PANDA
International Nuclear Information System (INIS)
Giacosa, Francesco
2015-01-01
Non-conventional mesons, such as glueballs and tetraquarks, will be in the focus of the PANDA experiment at the FAIR facility. In this lecture we recall the basic properties of QCD and describe some features of unconventional states. We focus on the search of the not-yet discovered glueballs and the use of the extended Linear Sigma Model for this purpose, and on the already discovered but not-yet understood X, Y, Z states. (paper)
Bubble chamber: D meson production and decay
1978-01-01
This event shows real particle tracks from the Big European Bubble Chamber (BEBC), which was used to observe neutrino and hadron beams between 1973 and 1984 from the PS and SPS accelerators. In this event a neutrino interacts with a proton producing an excited D meson. A labeled diagram is seen on the right as the particles spiral in the magnetic field of the detector.
B meson physics and related new physics
International Nuclear Information System (INIS)
Tanimoto, Morimitsu
1988-01-01
We have surveyed the some models focusing on the mixings, the CP violation and the rare decay in the B meson system. The ARGUS data of the B d 0 -B-bar d 0 mixing gives us some constraints as to parameters of these models. Especially, we have investigated the composite scale in detail using the ARGUS data of the B d 0 -B-bar d 0 mixing and obtained some interesting results. (author)
LAMPF: the meson factory. A LASL monograph
International Nuclear Information System (INIS)
Allred, J.C.
1977-08-01
A general and simplified introduction to the entire concept of LAMPF is given in terms of its experimental capabilities. Parts of the current experimental program are used as illustrative examples. Topics discussed include: (1) the evolution of the meson factory; (2) accelerator construction; (3) strong focusing; (4) accelerator innovations at LAMPF; (5) photons and pions; (6) muons as nuclear probes; (7) nuclear chemistry; (8) radiobiology and medical applications; (9) radioisotope production; (10) materials testing; and (11) LAMPF management and users group