WorldWideScience

Sample records for wave laser emissions

  1. Ripplon laser through stimulated emission mediated by water waves

    Science.gov (United States)

    Kaminski, Samuel; Martin, Leopoldo L.; Maayani, Shai; Carmon, Tal

    2016-12-01

    Lasers rely on stimulated electronic transition, a quantum phenomenon in the form of population inversion. In contrast, phonon masers depend on stimulated Raman scattering and are entirely classical. Here we extend Raman lasers to rely on capillary waves, which are unique to the liquid phase of matter and relate to the attraction between intimate fluid particles. We fabricate resonators that co-host capillary and optical modes, control them to operate at their non-resolved sideband and observe stimulated capillary scattering and the coherent excitation of capillary resonances at kilohertz rates (which can be heard in audio files recorded by us). By exchanging energy between electromagnetic and capillary waves, we bridge the interfacial tension phenomena at the liquid phase boundary to optics. This approach may impact optofluidics by allowing optical control, interrogation and cooling of water waves.

  2. Streak-photographic investigation of shock wave emission after laser-induced plasma formation in water

    Science.gov (United States)

    Noack, Joachim; Vogel, Alfred

    1995-05-01

    The shock wave emission after dielectric breakdown in water was investigated to assess potential shock wave effects in plasma mediated tissue ablation and intraocular photodisruption. Of particular interest was the dependence of shock wave pressure as a function of distance from the plasma for different laser pulse energies. We have generated plasmas in water with a Nd:YAG laser system delivering pulses of 6 ns duration. The pulses, with energies between 0.4 and 36 mJ (approximately equals 180 times threshold), were focused into a cuvette containing distilled water. The shock wave was visualized with streak photography combined with a schlieren technique. An important advantage of this technique is that the shock position as a function of time can directly be obtained from a single streak and hence a single event. Other methods (e.g. flash photography or passage time measurements between fixed locations) in contrast rely on reproducible events. Using the shock wave speed obtained from the streak images, shock wave peak pressures were calculated providing detailed information on the propagation of the shock. The shock peak pressure as a function of distance r from the optical axis was found to decrease faster than 1/r2 in regions up to distances of 100-150 micrometers . For larger distances it was found to be roughly proportional to 1/r. The scaling law for maximum shock pressure p, at a given distance was found to be proportional to the square root of the laser pulse energy E for distances of 50-200 micrometers from the optical axis.

  3. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.

    Science.gov (United States)

    Brujan, Emil-Alexandru

    2008-09-01

    The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.

  4. Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)

    2010-04-15

    A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.

  5. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  6. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    Science.gov (United States)

    2017-04-18

    cally authorized by the U.S. Government may violate any copyrights that exist in this work. Watt-level continuous- wave emission from a bi- functional ... wave bi- functional devices, opens the perspective of on-chip dual comb spectroscopy. Also for discrete sens- ing setups, one can switch to lasers...seas.harvard.edu Abstract Bi- functional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of

  7. Rear surface light emission measurements from laser-produced shock waves in clear and Al-coated polystyrene targets

    Science.gov (United States)

    McLean, E. A.; Deniz, A. V.; Schmitt, A. J.; Stamper, J. A.; Obenschain, S. P.; Lehecka, T.; Mostovych, A. N.; Seely, J.

    1999-08-01

    The Nike KrF laser, with its very uniform focal distributions, has been used at intensities near 10 14 W/cm 2 to launch shock waves in polystyrene targets. The rear surface visible light emission differed between clear polystyrene (CH) targets and targets with a thin (125 nm) Al coating on the rear side. The uncoated CH targets showed a relatively slowly rising emission followed by a sudden fall when the shock emerges, while the Al-coated targets showed a rapid rise in emission when the shock emerges followed by a slower fall, allowing an unambiguous determination of the time the shock arrived at the rear surface. A half-aluminized target allowed us to observe this difference in a single shot. The brightness temperature of both the aluminized targets and the non-aluminized targets was slightly below but close to rear surface temperature predictions of a hydrodynamic code. A discussion of preheat effects is given.

  8. Traveling wave laser system

    International Nuclear Information System (INIS)

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  9. Instantaneous wave emission model

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1970-12-01

    A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag

  10. Traveling wave laser system

    International Nuclear Information System (INIS)

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  11. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  12. Photomlxer for terahertz electromagnetic wave emission comprising quantum dots in a laser cavity

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photomixer for generating terahertz electromagnetic radiation in response to illumination by a time-modulated optical signal. The photomixer (300) comprises a carrier substrate (310) with a plurality of quantum dots arranged in an emission region (308) thereof...

  13. Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation

    Science.gov (United States)

    Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.

    2018-06-01

    The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.

  14. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    Science.gov (United States)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  15. Unified model of plasma formation, bubble generation and shock wave emission in water for fs to ns laser pulses (Conference Presentation)

    Science.gov (United States)

    Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred

    2017-03-01

    We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.

  16. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Dzierzega, K; Pokrzywka, B; Pellerin, S

    2004-01-01

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip

  17. Wave emission by resonance crossing

    International Nuclear Information System (INIS)

    Tracy, E.R.; Kaufman, A.N.; Liang, Y.

    1995-01-01

    The emission of collective waves by a moving charged particle in a nonuniform medium is discussed. Emission occurs in a nonuniform medium when the local dispersion relation of the collective wave is satisfied. This is a form of resonance crossing. Using the Weyl symbol calculus, a local expansion of the collective wave equation driven by the particle source is derived in the neighborhood of the crossing. The collective wave dispersion manifold and the gyroballistic wave dispersion manifold can be used as a pair of local coordinates in the neighborhood of the resonance crossing, which greatly simplifies the analysis. This change of representation is carried out using a metaplectic transform (a generalization of the fourier transform). The Wigner function of the emitted wave field is then computed in the new coordinates. The Wigner function is a phase space scalar, hence the numerical value is invariant under linear canonical transformations. This invariance is invoked to finally arrive at the Wigner function in the original (physical) coordinates. The wave-action and -energy emission rates are then computed from the Wigner function. copyright 1995 American Institute of Physics

  18. Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates.

    Science.gov (United States)

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C

    2017-04-01

    Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

  19. Saturation of Langmuir waves in laser-produced plasmas

    International Nuclear Information System (INIS)

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser

  20. Laser control of electron matter waves

    NARCIS (Netherlands)

    Jones, E.; Becker, M.; Luiten, O.J.; Batelaan, H.

    2016-01-01

    In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto-second and atto-second laser-induced electrons are emitted

  1. Study on guided waves in semiconductor lasers

    International Nuclear Information System (INIS)

    Pudensi, M.A.A.

    1980-01-01

    In This work we studied the guided waves in semiconductor lasers. In the first part we carried on the experimental measurements on lasers with stripe nonorthogonal to the mirrors. In the second part we developed a matrix method for the study of propagation and reflection of guided waves in lasers. (author) [pt

  2. Control of a laser front wave

    International Nuclear Information System (INIS)

    Akaoka, K.; Wakaida, I.

    1996-01-01

    We controlled the laser wave front through a laser beam simulation experiment propagating through medium. Thus, we confirmed that the RMS, defined as the quadratic mean of the laser beam wave front, dropped to the 1/3 - 1/6 of the pre-control value

  3. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  4. Conical Double Frequency Emission by Femtosecond Laser Pulses from DKDP

    International Nuclear Information System (INIS)

    Xi-Peng, Zhang; Hong-Bing, Jiang; Shan-Chun, Tang; Qi-Huang, Gong

    2009-01-01

    Conical double frequency emission is investigated by femtosecond laser pulses at a wavelength of 800 nm in a DKDP crystal. It is demonstrated that the sum frequency of incident wave and its scattering wave accounts for the conical double frequency emission. The gaps on the conical rings are observed and they are very sensitive to the propagation direction, and thus could be used to detect the small angle deviation of surface direction. (fundamental areas of phenomenology (including applications))

  5. Fundamental plasma emission involving ion sound waves

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L ± S → T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived. (author)

  6. Laser emission in Nd3+ doped barium–titanium–silicate microspheres under continuous and chopped wave pumping in a non-coupled pumping scheme

    International Nuclear Information System (INIS)

    Martín, L L; Pérez-Rodríguez, C; Martín, I R; Navarro-Urrios, D; Ferrarese-Lupi, F; Garrido, B; Montserrat, J; Dominguez, C; Capuj, N

    2013-01-01

    Laser action using non-coupled excitation and detection of microspheres made of Nd 3+ doped barium–titanium–silicate glass has been demonstrated and measured. The microspheres have also been successfully deposited over Si 3 N 4 strip waveguides with a SiO 2 separation layer, thus enabling the laser emission extraction onto a CMOS compatible photonic circuit. The dynamics of the lasing wavelength and intensity has been studied as a function of the pump power and interpreted in terms of thermal effects generated through non-radiative recombination of the excited ions. (paper)

  7. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kettler, T. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Skoczowsky, D. [PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{sup −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  8. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  9. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  10. Theoretical evaluation of a continues-wave Ho3+:BaY2F8 laser with mid-infrared emission

    Science.gov (United States)

    Rong, Kepeng; Cai, He; An, Guofei; Han, Juhong; Yu, Hang; Wang, Shunyan; Yu, Qiang; Wu, Peng; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-01-01

    In this paper, we build a theoretical model to study a continues-wave (CW) Ho3+:BaY2F8 laser by considering both energy transfer up-conversion (ETU) and cross relaxation (CR) processes. The influences of the pump power, reflectance of an output coupler (OC), and crystal length on the output features are systematically analyzed for an end-pumped configuration, respectively. We also investigate how the processes of ETU and CR in the energy-level system affect the output of a Ho3+:BaY2F8 laser by use of the kinetic evaluation. The simulation results show that the optical-to-optical efficiency can be promoted by adjusting the parameters such as the reflectance of an output coupler, crystal length, and pump power. It has been theoretically demonstrated that the threshold of a Ho3+:BaY2F8 laser is very high for the lasing operation in a CW mode.

  11. Laser-supported detonation waves and pulsed laser propulsion

    International Nuclear Information System (INIS)

    Kare, J.

    1990-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10 4 K, 10 2 atmospheres, 10 7 w/cm 2 ) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area

  12. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    Science.gov (United States)

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  13. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  14. Stabilized lasers for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Kwee, P; Seifert, F; Frede, M; Kracht, D; Puncken, O; Schulz, B; Veltkamp, C; Wagner, S; Wessels, P; Winkelmann, L; King, P; Savage, R L Jr

    2008-01-01

    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

  15. Optical emission from laser-produced chromium and magnesium ...

    Indian Academy of Sciences (India)

    Abstract. Parametric study of optical emission from two successive laser pulses pro- ... The hot laser-produced plasma radiates various types of emissions ..... lasers. The qualitative agreement of this analysis with our observations confirms.

  16. Induction of subterahertz surface waves on a metal wire by intense laser interaction with a foil

    Science.gov (United States)

    Teramoto, Kensuke; Inoue, Shunsuke; Tokita, Shigeki; Yasuhara, Ryo; Nakamiya, Yoshihide; Nagashima, Takeshi; Mori, Kazuaki; Hashida, Masaki; Sakabe, Shuji

    2018-02-01

    We have demonstrated that a pulsed electromagnetic wave (Sommerfeld wave) of subterahertz frequency and 11-MV/m field strength can be induced on a metal wire by the interaction of an intense femtosecond laser pule with an adjacent metal foil at a laser intensity of 8.5 × 1018W /c m2 . The polarity of the electric field of this surface wave is opposite to that obtained by the direct interaction of the laser with the wire. Numerical simulations suggest that an electromagnetic wave associated with electron emission from the foil induces the surface wave. A tungsten wire is placed normal to an aluminum foil with a gap so that the wire is not irradiated and damaged by the laser pulse, thus making it possible to generate surface waves on the wire repeatedly.

  17. GLINT. Gravitational-wave laser INterferometry triangle

    Science.gov (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  18. Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

    International Nuclear Information System (INIS)

    Abbott, B.; Babak, S.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Ajith, P.; Allen, B.; Aulbert, C.; Allen, G.; Amin, R.; Anderson, W. G.; Armor, P.; Arain, M. A.; Aso, Y.; Aston, S.; Aufmuth, P.; Bantilan, H.

    2008-01-01

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  19. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    Science.gov (United States)

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  20. Laser driven detonation waves above a solid target

    International Nuclear Information System (INIS)

    Emmony, D.C.

    1975-01-01

    The interaction of a TEA CO 2 laser pulse with a carbon target in an argon atmosphere (p approximately mmHg) is shown to produce a double detonation wave system. The laser driven detonation wave becomes the most important as the gas pressure is increased. Calculation of the energy in the detonation waves is in good agreement with the incident laser energy at different times during the main laser pulse and the long tail. The observation of the incident laser detonation wave accounts for the anomalous energies reported previously. (Auth.)

  1. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  2. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  3. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    Science.gov (United States)

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  4. Modes in light wave propagating in semiconductor laser

    Science.gov (United States)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  5. Electron emission from insulator surfaces by ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, M; Gravielle, M S, E-mail: mario@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Institutes de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2009-11-01

    Photoelectron emission from insulator surfaces induced by ultra-short laser pulses is studied within a time-dependent distorted wave method. The proposed approach combines the Volkov phase, which takes into account the laser interaction, with a simple representation of the unperturbed surface states, given by the Tight-binding method. The model is applied to evaluate the photoelectron emission from a LiF(001) surface, finding effects of interference produced by the crystal lattice.

  6. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  7. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  8. Resolution Enhancement of Scanning Laser Acoustic Microscope Using Transverse Wave

    International Nuclear Information System (INIS)

    Ko, D. S.; Park, J. S.; Kim, Y. H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Science the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM image in the transverse wave mode than that in the longitudinal wave mode

  9. Laser-heated emissive plasma probe.

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  10. Laser-heated emissive plasma probe

    International Nuclear Information System (INIS)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-01-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge

  11. Laser-heated emissive plasma probe

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808nm wavelength and an output power up to 50W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  12. Influence of acoustic waves on TEA CO2 laser performance

    CSIR Research Space (South Africa)

    Von Bergmann, H

    2007-01-01

    Full Text Available In this paper the author’s present results on the influence of acoustic waves on the output laser beam from high repetition rate TEA CO2 lasers. The authors show that acoustic waves generated inside the cavity lead to deterioration in beam quality...

  13. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  14. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  15. Confinement effects of shock waves on laser-induced plasma from a graphite target

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn [Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  16. Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO.

    Science.gov (United States)

    Zhao, Yongguang; Zhuang, Shidong; Xu, Xiaodong; Xu, Jun; Yu, Haohai; Wang, Zhengping; Xu, Xinguang

    2014-02-10

    Multi-wavelength emissions have been demonstrated in many disordered laser crystals. Improving the emission controllability is crucial for their practical applications. However, it is difficult because the closely adjacent laser components cannot be effectively adjusted by the traditional resonator design. In this paper, the anisotropy of laser emission in a monoclinic, disordered crystal Nd:LuYSiO(5) (Nd:LYSO) is reported for the first time. By selecting crystal orientation, high power laser emission with different wavelengths and polarizations were obtained. For X-cut sample, 1076 nm single-wavelength laser output reached 7.56 W, which will be a useful light source for detecting carbonyl-hemoglobin and nitrite after frequency doubling. For Y- and Z-cut samples, 1076, 1079 nm dual-wavelength laser output reached 10.3 W and 7.61 W, with parallel and orthogonal polarizations, respectively, which are convenient to be used as the generation sources of 0.78 THz wave by type-I or type-II difference frequency. The output characteristic is well explained by a theoretical analysis on the stimulated emission cross-section. The present work reveals that the intrinsic anisotropy in disordered laser crystal can be utilized to elevate the emission controllability. Accordantly, the material's application scopes can be extended.

  17. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  18. Soliton emission stimulated by sound wave or external field

    International Nuclear Information System (INIS)

    Malomed, B.A.

    1987-01-01

    Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated

  19. Optical wave microphone measurement during laser ablation of Si

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, Fumiaki, E-mail: mitsugi@cs.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan); Ide, Ryota; Ikegami, Tomoaki [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan); Nakamiya, Toshiyuki; Sonoda, Yoshito [Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku, Kumamoto, 862-8652 (Japan)

    2012-10-30

    Pulsed laser irradiation is used for surface treatment of a solid and ablation for particle formation in gas, liquid or supercritical phase media. When a pulsed laser is used to irradiate a solid, spatial refractive index variations (including photothermal expansion, shockwaves and particles) occur, which vary depending on the energy density of the pulsed laser. We focused on this phenomenon and applied an unique method for detection of refractive index variation using an optical wave microphone based on Fraunhofer diffraction. In this research, we analyzed the waveforms and frequencies of refractive index variations caused by pulsed laser irradiation of silicon in air and measured with an optical wave microphone.

  20. Laser Source for Atomic Gravity Wave Detector

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atom Interferometry (AI) Technology for Gravity Wave Measurements demonstrates new matter wave Interferometric sensor technology for precise detection and...

  1. A dye center laser pumped by emission from copper vapor and dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Loktyushin, A A; Chernyshev, A I; Soldatov, A N; Sukhanov, V B; Troitskiy, V O

    1983-01-01

    LiF:F2+ lasing is reported for the case of pumping by total emission with frequencies of 570.6 and 578.2 nanometers or by a single yellow copper vapor laser line and emission from an oxazene-17 dye laser excited by emission from a Cu laser. Lasing with a mean power level of 23 milliwatts with a maximum at 911 nanometers is obtained. The maximum efficiency was 3.4 percent with pumping of the dye centers by emission from the yellow Cu laser line. The lasing characteristics of the laser for all the types of pumping used are given.

  2. Laser amplitude stabilization for advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Strain, K A; Killow, C J

    2005-01-01

    We present results of experiments into the stabilization of the amplitude of Nd:YAG lasers for use in advanced gravitational wave detectors. By feeding back directly to the pump-diode driving current we achieved shot-noise-limited stabilization at frequencies up to several kHz with some residual noise at lower frequencies (sub ∼100 Hz). The method used is applicable to higher powered laser systems planned for advanced interferometric gravitational wave detectors

  3. Optical emission from laser-produced chromium and magnesium

    Indian Academy of Sciences (India)

    Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses ... Laser Plasma Division, Centre for Advanced Technology, Indore 452 013, India; Diagnostic Instrumentation and Analysis Laboratory, Mississippi State University, 205 Research Boulevard, Starkville, ...

  4. Amplified spontaneous emission in solar-pumped iodine laser

    Science.gov (United States)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  5. Unlimited electron acceleration in laser-driven plasma waves

    International Nuclear Information System (INIS)

    Katsouleas, T.; Dawson, J.M.

    1983-01-01

    It is shown that the limitation to the energy gain of 2(ω/ω/sub p/) 2 mc 2 of an electron in the laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of appropriate strength perpendicular to the plasma wave. This accelerates particles parallel to the phase fronts of the accelerating wave which keeps them in phase with it. Arbitrarily large energy is theoretically possible

  6. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  7. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio; Wang Bin; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Hatai, Keigo; Fukui, Akihiro; Arakawa, Yoshihiro

    2011-01-01

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n e and the electron temperature T e profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO 2 laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n e and T e were, respectively, about 2 x 10 24 m -3 and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measured properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n e at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.

  8. Stress wave emission: a bibliographical survey No 2

    International Nuclear Information System (INIS)

    Lucia, A.C.; Galli, M.

    1976-01-01

    This report gives an inventory of papers and publications which deal with stress wave emission (ultrasonic emission). This bibliography is up date until end of 1974. It contains also titles of papers published before 1973 but not contained in our first bibliographical report (EUR--5616e)

  9. Gravitational wave detection using laser interferometry beyond the standard quantum limit

    Science.gov (United States)

    Heurs, M.

    2018-05-01

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  10. Biological effects of laser-induced stress waves

    International Nuclear Information System (INIS)

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-01-01

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress

  11. Plasma wave amplitude measurement created by guided laser wakefield

    International Nuclear Information System (INIS)

    Wojda, Franck

    2010-01-01

    The interaction of an intense laser pulse of short duration with a plasma produces a plasma wave with large amplitude in its wake, which is associated with a longitudinal electric field. It can be used to accelerate relativistic electrons injected into the wave to energies in the GeV range over distances of the order of a few centimeters, short compared to acceleration lengths in conventional accelerators. The control of the electron beam characteristics during the acceleration process is fundamental for achieving a usable laser-plasma acceleration stage. The main result of this thesis is the creation and characterization of a plasma wave in a weakly nonlinear regime over a length of several centimeters. Capillary tubes are used to guide the laser beam over these distances, while maintaining a large enough intensity (∼ 10 17 W/cm 2 ). The guided laser beam ionizes the gas in the tube and creates the plasma wave. A diagnostic based on the modification of the laser pulse spectrum was used to determine the amplitude of the plasma wave along the tube. The amplitude of the plasma wave was studied as a function of gas filling pressure, length of the capillary and laser energy. Experimental results are compared; they are in excellent agreement with analytical results and modeling. They show that the electric field associated with the plasma wave is between 1 and 10 GV/m over a length of up to 8 cm. This work has demonstrated the ability to create a controlled plasma wave in a weakly nonlinear regime. (author)

  12. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  13. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO(4) crystal by direct femtosecond laser writing.

    Science.gov (United States)

    Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng

    2014-08-01

    We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.

  14. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  15. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  16. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    International Nuclear Information System (INIS)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T

    2007-01-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained

  17. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  18. Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators

    International Nuclear Information System (INIS)

    Corde, S; Thaury, C; Phuoc, K Ta; Lifschitz, A; Lambert, G; Lundh, O; Brijesh, P; Sebban, S; Rousse, A; Faure, J; Malka, V; Arantchuk, L

    2012-01-01

    Betatron x-ray emission in laser plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser–plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half. (paper)

  19. Emission study of alumina plasma produced by a KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, K., E-mail: kyahiaoui@cdta.dz [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Abdelli-Messaci, S.; Messaoud-Aberkane, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Kellou, H. [Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Allia, 16111 Bab-Ezzouar, Alger (Algeria)

    2014-03-01

    We report on the plasma emission formed from an α-alumina target when irradiated by laser into vacuum and through oxygen gas. Two diagnostic tools have been used: ICCD camera fast imaging and optical emission spectroscopy. The alumina plasma was induced by a KrF laser beam at a wavelength of 248 nm and pulse duration of 25 ns. The laser fluence was set to 8 J/cm{sup 2} and the oxygen pressure was varied from 0.01 to 5 mbar. By using the ICCD camera, two dimensional images of the plasma expansion were taken at different times. Depending on oxygen pressure and time delay, the expansion behavior of the plasma showed free expansion, plume splitting, shock wave formation, hydrodynamic instability and deceleration of the plume. Using optical emission spectroscopy, the plasma emission revealed the presence of neutral Al I, Al II, Al III into vacuum and under oxygen ambiance. The molecular emission of aluminum oxide (AlO) was detected only in oxygen ambiance. It should be noted that no oxygen lines were observed. Finally, the evolution of the electronic temperature along the normal axis from the target surface, into vacuum, was estimated using the Boltzmann plot method. - Highlights: • Ablated mass measurements of α-alumina target irradiated by a laser in nanosecond regime. • Optical emission spectroscopy of alumina plasma. • Fast imaging diagnostic of alumina plume using ICCD camera.

  20. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  1. Bursty emission of whistler waves in association with plasmoid collision

    Directory of Open Access Journals (Sweden)

    K. Fujimoto

    2017-07-01

    Full Text Available A new mechanism to generate whistler waves in the course of collisionless magnetic reconnection is proposed. It is found that intense whistler emissions occur in association with plasmoid collisions. The key processes are strong perpendicular heating of the electrons through a secondary magnetic reconnection during plasmoid collision and the subsequent compression of the ambient magnetic field, leading to whistler instability due to the electron temperature anisotropy. The emissions have a bursty nature, completing in a short time within the ion timescales, as has often been observed in the Earth's magnetosphere. The whistler waves can accelerate the electrons in the parallel direction, contributing to the generation of high-energy electrons. The present study suggests that the bursty emission of whistler waves could be an indicator of plasmoid collisions and the associated particle energization during collisionless magnetic reconnection.

  2. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate.

    Science.gov (United States)

    Hayashi, Takahiro; Ishihara, Ken

    2017-05-01

    Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ion temperature via laser scattering on ion Bernstein waves

    International Nuclear Information System (INIS)

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement

  4. Gravitational wave emission from the coalescence of white dwarfs

    International Nuclear Information System (INIS)

    Garcia-Berro, E; Loren-Aguilar, P; Isern, J; Pedemonte, A G; Guerrero, J; Lobo, J A

    2005-01-01

    We have computed the gravitational wave emission arising from the coalescence of several close white dwarf binary systems. In order to do so, we have followed the evolution of such systems using a smoothed particle hydrodynamics code. Here we present some of the results obtained so far, paying special attention to the detectability of the emitted gravitational waves. Within this context, we show which could be the impact of individual merging episodes for LISA

  5. Analysis of laser ablation: Contribution of ionization energy to the plasma and shock wave properties

    International Nuclear Information System (INIS)

    Wen, S.-B.; Mao Xianglei; Greif, Ralph; Russo, Richard E.

    2007-01-01

    By fitting simulation results with experimentally measured trajectories of the shock wave and the vapor/background gas contact surface, we found that inclusion of ionization energy in the analysis leads to a change in the evolution of the pressure, mass density, electron number density, and temperature of the vapor plume. The contribution of ionization energy to both the plasma and shock wave has been neglected in most studies of laser ablation. Compared to previous simulations, the densities, pressures, and temperatures are lower shortly after the laser pulse ( 50 ns). The predicted laser energy conversion ratio also showed about a 20% increase (from 35% to 45%) when the ionization energy is considered. The changes in the evolution of the physical quantities result from the retention of the ionization energy in the vapor plume, which is then gradually transformed to kinetic and thermal energies. When ionization energy is included in the simulation, the vapor plume attains higher expansion speeds and temperatures for a longer time after the laser pulse. The better determination of the temperature history of the vapor plume not only improves the understanding of the expansion process of the laser induced vapor plume but also is important for chemical analysis. The accurate temperature history provides supplementary information which enhances the accuracy of chemical analysis based on spectral emission measurements (e.g., laser induced breakdown spectroscopy)

  6. Laser-assisted electron emission from gated field-emitters

    CERN Document Server

    Ishizuka, H; Yokoo, K; Mimura, H; Shimawaki, H; Hosono, A

    2002-01-01

    Enhancement of electron emission by illumination of gated field-emitters was studied using a 100 mW cw YAG laser at a wavelength of 532 nm, intensities up to 10 sup 7 W/m sup 2 and mechanically chopped with a rise time of 4 mu s. When shining an array of 640 silicon emitters, the emission current responded quickly to on-off of the laser. The increase of the emission current was proportional to the basic emission current at low gate voltages, but it was saturated at approx 3 mu A as the basic current approached 100 mu A with the increase of gate voltage. The emission increase was proportional to the square root of laser power at low gate voltages and to the laser power at elevated gate voltages. For 1- and 3-tip silicon emitters, the rise and fall of the current due to on-off of the laser showed a significant time lag. The magnitude of emission increase was independent of the position of laser spot on the emitter base and reached 2 mu A at a basic current of 5 mu A without showing signs of saturation. The mech...

  7. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    Science.gov (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  8. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    Science.gov (United States)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  9. Resonant emission of electromagnetic waves by plasma solitons

    International Nuclear Information System (INIS)

    Mironov, V.A.; Sergeev, A.M.; Khimich, A.V.

    1988-01-01

    The ability of plasma-wave solitons to radiate electromagnetic waves at the frequency of the natural oscillations of the field is considered. It is shown that this radiation is the main energy dissipation channel for strong plasma turbulence in a magnetoactive plasma. An interpretation is proposed for the artificial radio emission produced when the ionosphere is acted upon by beams of strong electromagnetic waves. The use of this phenomenon for plasma turbulence, particularly in the outer-space plasma near the earth, is discussed

  10. Development of SMM wave laser scattering apparatus for the measurements of waves and turbulences in the tokamak plasma

    International Nuclear Information System (INIS)

    Saito, T.; Hamada, Y.; Yamashita, T.; Ikeda, M.; Nakamura, M.

    1980-01-01

    The SMM wave laser scattering apparatus has been developed for the measurement of the waves and turbulences in the plasma. This apparatus will help greatly to clarify the physics of RF heating of the tokamak plasma. The present status of main parts of the apparatus, the SMM wave laser and the Schottky barrier diode mixer for the heterodyne receiver, are described. (author)

  11. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  12. Solar pumped continuous wave carbon dioxide laser

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  13. Emissions generated during laser cutting; safety precautions; Emissions produits lors du coupage au laser; mesures de securite

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Goede, M.; Puster, T.; Seebaum, D. [Laser Eentrum, Hanovre (Germany); Bach, F. [Institut fur Werkstoffkunde, Universite de Hanovre (Germany)

    1999-07-01

    The generation of particulate and gaseous emissions from metals and organic materials during CO{sub 2} and Nd:YAG laser cutting is described. The laser-generated air contaminants (LGAC's) are characterised in terms of their quantity, composition, and chemical complexity, and the emissions are assessed on an occupational medicine basis. The hazard potential of LGAC's are mentioned, and safety systems are discussed.

  14. Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Stuermer, E.; von Allmen, M.

    1978-01-01

    Drilling of highly reflective metals in an ambient atmosphere with single TEA-CO 2 -laser pulses of fluences between 300 and 6000 J/cm 2 is reported. The drilling process was investigated by measuring the time-resolved laser power reflected specularly from the targets during the interaction and by analyzing the craters produced. Experiments were performed in ambient air, argon, and helium. Target damage was found to be strongly influenced by a laser-supported detonation (LSD) wave in the ambient gas. If the laser fluence exceeded a material-dependent damage threshold (copper: 300 J/cm 2 ), drilling occurred, but the efficiency was inversely related to the duration of the LSD wave. Efficient material removal is possible if the LSD wave can be dissipated within a small fraction of the laser pulse duration. This was achieved by small-F-number focusing of TEM 00 laser pulses of 5-μs duration. Replacing the ambient air at the target by a gas of lower density results in a further significant reduction of LSD-wave lifetime, and a correlated increase of the drilling yield. On copper targets a maximum drilling yield of 10 -5 cm 3 /J was observed in ambient helium at a laser fluence of 1 kJ/cm 2

  15. Simple model for decay of laser generated shock waves

    International Nuclear Information System (INIS)

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  16. Dynamics of Laser-Driven Shock Waves in Solid Targets

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  17. Emission wavelength of multilayer distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron L. C.; Brøkner Christiansen, Mads

    2012-01-01

    Precise emission wavelength modeling is essential for understanding and optimization of distributed feedback (DFB) lasers. An analytical approach for determining the emission wavelength based on setting the propagation constant of the Bragg condition and solving for the resulting slab waveguide m...

  18. Phase velocity of nonlinear plasma waves in the laser beat-wave accelerator

    International Nuclear Information System (INIS)

    Spence, W.L.

    1985-01-01

    The suggested plasma-laser accelerator is an attempt to achieve a very high energy gradient by resonantly exciting a longitudinal wave traveling at close to the speed of light in cold plasma by means of the beat-wave generated by the transverse fields in two laser beams. Previous calculations to all orders in v/sub z/ have been done essentially from the laboratory frame point of view and have treated the plasma wave as having sharply defined phase velocity equal to the speed of light. However a high energy particle beam undergoing acceleration sees the plasma wave from a nearly light-like frame of reference and hence is very sensitive to small deviations in its phase velocity. Here the authors introduce a calculational scheme that includes all orders in v/sub z/ and in the plasma density, and additionally takes into account the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which they are able to in essence formally sum up all orders of forward Raman scattering. They find that the nonlinear plasma wave does not have simply a single phase velocity - it is really a superposition of many - but that the beat-wave which drives it is usefully described by a non-local effective phase velocity function

  19. Angle-dependent light emission from aligned multiwalled carbon nanotubes under CO2 laser irradiation

    International Nuclear Information System (INIS)

    Zhang, Y; Gong, T; Liu, W J; Wei, J Q; Zhang, X F; Wang, K L; Zhong, M L; Wu, D H

    2007-01-01

    This paper reports the light emission from aligned multiwalled carbon nanotubes (MWNTs) under continuous wave CO 2 laser (λ = 10.6 μm) irradiation. Results indicate that the light emission is dependent on the angle θ between the laser incident direction and the nanotube axis. The relative intensity of the light emission at certain wavelengths shows a Lorentzian feature when θ varies from 0 0 to 90 0 . The Lorentzian fitting curve displays a distinct tendency between shorter (λ 700 nm). A minimum intensity was observed at θ m close to 67 0 under shorter wavelength, whereas a maximum intensity was shown at θ m of about 60 0 at longer wavelength. These results show the anisotropic property of aligned MWNTs

  20. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    Science.gov (United States)

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  1. Generalized dispersive wave emission in nonlinear fiber optics.

    Science.gov (United States)

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  2. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    Science.gov (United States)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  3. Secondary emissions during fiber laser cutting of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A., E-mail: beatriz.mendes.lopez@gmail.com [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Assunção, E. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal); Pires, I. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Quintino, L. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal)

    2017-04-15

    The laser process has been studied for dismantling work for more than 10 years, however there is almost no data available concerning secondary emissions generated during the process. These emissions are inevitable during the laser cutting process and can have detrimental effects in human health and in the equipment. In terms of safety, for nuclear decommissioning, is crucial to point out ways of controlling the emissions of the process. This paper gives indications about the parameters to be used in order to reduce these secondary emissions and about the influence of these parameters on the particles size distribution. In general, for producing minimal dross and fume emissions the beam focus should be placed on the surface of the material. The higher percentage of secondary emissions which present higher diameter, increases approximately linearly with the stand-off distance and with the use of low air pressure.

  4. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  5. Spectroscopic analysis of coal plasma emission produced by laser ablation

    OpenAIRE

    Vera-Londoño, Liliana Patricia; Pérez-Taborda, Jaime Andrés; Riascos-Landázuri, Henry

    2016-01-01

    An analysis of plasma produced by laser ablation using 1,064 nm of laser radiation from a Q-switched Nd:YAG on coal mineral samples under air ambient, was performed. The emission of molecular band systems such as C2 Swan System , the First Negative System N2 (Band head at 501.53 nm) and different emission lines were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0.62 eV). The density and ...

  6. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  7. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry.

    Science.gov (United States)

    Keeley, James; Freeman, Joshua; Bertling, Karl; Lim, Yah L; Mohandas, Reshma A; Taimre, Thomas; Li, Lianhe H; Indjin, Dragan; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles; Dean, Paul

    2017-08-03

    The effects of optical feedback (OF) in lasers have been observed since the early days of laser development. While OF can result in undesirable and unpredictable operation in laser systems, it can also cause measurable perturbations to the operating parameters, which can be harnessed for metrological purposes. In this work we exploit this 'self-mixing' effect to infer the emission spectrum of a semiconductor laser using a laser-feedback interferometer, in which the terminal voltage of the laser is used to coherently sample the reinjected field. We demonstrate this approach using a terahertz frequency quantum cascade laser operating in both single- and multiple-longitudinal mode regimes, and are able to resolve spectral features not reliably resolved using traditional Fourier transform spectroscopy. We also investigate quantitatively the frequency perturbation of individual laser modes under OF, and find excellent agreement with predictions of the excess phase equation central to the theory of lasers under OF.

  8. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  9. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  10. Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample

    International Nuclear Information System (INIS)

    Marpaung, A.M.; Kurniawan, H.; Tjia, M.O.; Kagawa, K.

    2001-01-01

    An experimental study has been carried out on the dynamical process taking place in the plasma generated by a TEA CO 2 laser (400 mJ, 100 ns) on a zinc target when surrounded by helium gas of pressure ranging from 2 Torr to 1 atm. Plasma characteristics were examined in detail on the emission lines of Zn I 481.0 nm and He I 587.6 nm by means of an unique time-resolved spatial distribution technique in addition to an ordinary time-resolved emission measurement technique. The results reveal, for the first time, persistent shock wave characteristics in all cases throughout the entire pressure range considered. Further analysis of the data has clarified the distinct characteristics of laser plasmas generated in different ranges of gas pressure. It is concluded that three types of shock wave plasma can be identified; namely, a target shock wave plasma in the pressure range from 2 Torr to around 50 Torr; a coupling shock wave plasma in the pressure range from around 50 Torr to 200 Torr and a gas breakdown shock wave plasma in the pressure range from around 200 Torr to 1 atm. These distinct characteristics are found to be ascribable to the different extents of the gas breakdown process taking place at the different gas pressures. These results, obtained for a TEA CO 2 laser, will provide a useful basis for the analyses of plasmas induced by other lasers. (author)

  11. Formation and decay of laser-generated shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Romain, J.P.

    1982-01-01

    The process of formation and decay of laser-generated shock waves is described by a hydrodynamic model. Measurements of shock velocities are performed on copper foils for incident intensities between 3 x 10/sup 11/ and 3 x 10/sup 12/ W/cm/sup 2/, with the use of piezoelectric detectors. Maximum induced pressures are found between 0.5 and 1.2 Mbar in the intensity range considered. Analysis of the results with the shock-evolution model outlines the importance of the decay process of laser-generated shocks.

  12. Inverse free electron laser beat-wave accelerator research

    International Nuclear Information System (INIS)

    Marshall, T.C.; Bhattacharjee, A.

    1993-09-01

    A calculation on the stabilization of the sideband instability in the free electron laser (FEL) and inverse FEL (IFEL) was completed. The issue arises in connection with the use of a tapered (''variable-parameter'') undulator of extended length, such as might be used in an ''enhanced efficiency'' traveling-wave FEL or an IFEL accelerator. In addition, the FEL facility at Columbia was configured as a traveling wave amplifier for a 10-kW signal from a 24-GHz magnetron. The space charge field in the bunches of the FEL was measured. Completed work has been published

  13. Thermally excited proton spin-flip laser emission in tokamaks

    International Nuclear Information System (INIS)

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser

  14. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.

    2010-01-01

    Roč. 85, č. 5 (2010), s. 617-621 ISSN 0042-207X R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * ion temperature * centre-of-mass velocity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.048, year: 2010

  15. Standoff laser-induced thermal emission of explosives

    Science.gov (United States)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  16. Laser-generated acoustic wave studies on tattoo pigment

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  17. Electron Bernstein Wave Coupling and Emission Measurements on NSTX

    Czech Academy of Sciences Publication Activity Database

    Taylor, G.; Diem, S.J.; Caughman, J.; Efthimion, P.; Harvey, R.W.; LeBlanc, B.P.; Philips, C.K.; Preinhaelter, Josef; Urban, Jakub

    2006-01-01

    Roč. 51, č. 7 (2006), s. 177 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf

  18. Thermal Electron Bernstein Wave Emission Measurements on NST

    Czech Academy of Sciences Publication Activity Database

    Diem, S.J.; Taylor, G.; Efthimion, P.; LeBlanc, B.P.; Philips, C.K.; Caughman, J.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, Josef; Urban, Jakub

    2006-01-01

    Roč. 51, č. 7 (2006), s. 134 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf

  19. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    International Nuclear Information System (INIS)

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  20. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    Science.gov (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  1. LIGO: the Laser Interferometer Gravitational-Wave Observatory

    International Nuclear Information System (INIS)

    Abbott, B P; Abbott, R; Adhikari, R; Anderson, S B; Araya, M; Armandula, H; Aso, Y; Ballmer, S; Ajith, P; Allen, B; Aulbert, C; Allen, G; Amin, R S; Anderson, W G; Armor, P; Arain, M A; Aston, S; Aufmuth, P; Babak, S; Baker, P

    2009-01-01

    The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves (GWs) of astrophysical origin. Direct detection of GWs holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black holes and neutron stars and of uncovering unanticipated new astrophysics. LIGO, a joint Caltech-MIT project supported by the National Science Foundation, operates three multi-kilometer interferometers at two widely separated sites in the United States. These detectors are the result of decades of worldwide technology development, design, construction and commissioning. They are now operating at their design sensitivity, and are sensitive to gravitational wave strains smaller than one part in 10 21 . With this unprecedented sensitivity, the data are being analyzed to detect or place limits on GWs from a variety of potential astrophysical sources.

  2. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  3. Laser discrimination by stimulated emission of a phosphor

    Science.gov (United States)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  4. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  5. Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer

    International Nuclear Information System (INIS)

    Yokoyama, Shiyoshi; Nakahama, Tatsuo; Mashiko, Shinro

    2005-01-01

    We measured the amplified spontaneous emission and laser emission from high-gain media of laser-dye encapsulated dendrimers. A highly branched poly(amidoamine) (PAMAM-OH) dendrimer formed a guest-host complex with a conventional laser-dye (DCM), resulting in a high optical-gain. Of particular note was the appearance of a laser threshold, above which a super-narrowed laser spectrum was observed, although laser feedback was caused without any mirror cavity devices. The optical feedback was attributed to spatial confinement of the light due to gain guiding under optical excitation. The laser spectrum clearly indicated a resonant laser-mode with a spectrum linewidth of less than 0.1 nm. This order of spectrum narrowing is comparable to that seen in the laser emission from ordinary laser devices

  6. Characterization of X-ray emission from laser generated plasma

    Science.gov (United States)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  7. Characterization of X-ray emission from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Cannavò Antonino

    2018-01-01

    Full Text Available X-ray emission from laser generated plasma was studied at low (1010 W/cm2 and high (1018 W/cm2 intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  8. Multimode laser emission from free-standing cylindrical microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.

    2014-05-01

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.

  9. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  10. Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method

    International Nuclear Information System (INIS)

    Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.

    1994-01-01

    Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig

  11. Directional Emission from Dielectric Leaky-Wave Nanoantennas

    Science.gov (United States)

    Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan

    2017-07-01

    An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.

  12. Measurement of secondary emissions during laser cutting of steel equipments

    Energy Technology Data Exchange (ETDEWEB)

    Pilot, Guy [Institut de Radioprotection et de Surete Nucleaire, BP 68, 91192 Gif-sur-Yvette Cedex (France)], E-mail: guy.pilot@irsn.fr; Fauvel, Sylvain [Institut de Radioprotection et de Surete Nucleaire, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gosse, Xavier [AREVA NC, Centre de Marcoule, 30200 Bagnols-sur-Ceze Cedex (France); Dinechin, Guillaume de [Commissariat a l' Energie Atomique, DEN/DM2S/SEMT, Saclay, Bat. 611, 91191 Gif-sur-Yvette Cedex (France); Vernhet, Didier [Commissariat a l' Energie Atomique, DEN/VRH/UMODD, Centre de Valrho, BP 17171, 20207 Bagnols-sur-Ceze Cedex (France)

    2008-08-15

    In order to dismantle some equipments of an obsolete reprocessing plant in Marcoule, studies were carried out by IRSN (Institut de Radioprotection et de Surete Nucleaire)/DSU/SERAC in cooperation with CEA (power laser group) on the laser cutting of steel structures, on the request of AREVA NC/Marcoule (UP1 dismantling project manager) and CEA/UMODD (UP1 dismantling owner). These studies were aimed at: {center_dot}quantifying and characterizing the secondary emissions produced by Nd-YAG laser cutting of Uranus 65 steel pieces and examining the influence of different parameters, {center_dot}qualifying a prefiltration technique and particularly an electrostatic precipitator, {center_dot}comparing the Nd-YAG laser used with other cutting tools previously studied especially on aerosol production and aerosol size distribution.

  13. Laser shock wave consolidation of nanodiamond powders on aluminum 319

    Energy Technology Data Exchange (ETDEWEB)

    Molian, Pal [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu; Molian, Raathai; Nair, Rajeev [Laboratory for Lasers, MEMS, and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)

    2009-01-01

    A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm{sup -1} and 1600 cm{sup -1} respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 {mu}m and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kg{sub f}/mm{sup 2} (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (R{sub a}) in the range of 1.5-4 {mu}m depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.

  14. Single frequency Nd:YLF and Nd:YVO4 laser in the red emission

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2010-01-01

    All solid-state continuous-wave (cw) narrow emission linewidth and tunable red lasers are convenient alternative sources to bulky and expensive dye-lasers for high precision laser spectroscopy. Single-frequency operation of diode-pumped Nd:YLiF 4 and Nd:YVO 4 cw ring lasers were investigated in the 1.32 - 1.34μm range, together with their intracavity second-harmonic generation (SHG) to the red spectral range (0.65 - 0.67μm) using either BiB 3 O 6 (BiBO) or periodically-poled KTiOPO 4 (ppKTP) crystals. We report on such a single-end diode-pumped Nd:YVO 4 unidirectional red ring laser containing a type-I cut BiBO nonlinear crystal, yielding a record of 680 mW of single-longitudinal mode (SLM) red output power at 671.1nm without any intra-cavity etalon. For smooth SLM wavelength tuning over the full gain bandwidth (∼4 nm), a partially-coated (R = 40%) 100μm-thin etalon was found necessary, reducing the maximum SLM power (at 671.15 nm) to 380 mW. At 1342.5nm and with a T = 2% transmission output coupler, the laser provided an optimal 1.5W of single-frequency power. We demonstrate also optimal intracavity SHG of a Nd:YLF ring laser in the π- polarization (λ = 1321.5nm) using a ppKTP. The laser yielded 1.4 W of single frequency red power at 660.5 nm, as much as the maximum fundamental power that can be extracted from the resonator using an optimal output coupler. With a partially coated (R = 25%) thin etalon, the laser was tunable over Δλ∼ 1.6nm. (author)

  15. Could aerosol emissions be used for regional heat wave mitigation?

    Directory of Open Access Journals (Sweden)

    D. N. Bernstein

    2013-07-01

    Full Text Available Geoengineering applications by injection of sulfate aerosols into the stratosphere are under consideration as a measure of last resort to counter global warming. Here a potential regional-scale application to offset the impacts of heat waves is critically examined. Using the Weather Research and Forecasting model with fully coupled chemistry (WRF-Chem, the effect of regional-scale sulfate aerosol emission over California in each of two days of the July 2006 heat wave is used to quantify potential reductions in surface temperature as a function of emission rates in a layer at 12 km altitude. Local meteorological factors yield geographical differences in surface air temperature sensitivity. For emission rates of approximately 30 μg m−2 s−1 of sulfate aerosols (with standard WRF-Chem size distribution over the region, temperature decreases of around 7 °C result during the middle part of the day over the Central Valley, one of the areas hardest hit by the heat wave. Regions more ventilated with oceanic air such as Los Angeles have slightly smaller reductions. The length of the hottest part of the day is also reduced. Advection effects on the aerosol cloud must be more carefully forecast for smaller injection regions. Verification of the impacts could be done via measurements of differences in reflected and surface downward shortwave. Such regional geoengineering applications with specific near-term target effects but smaller cost and side effects could potentially provide a means of testing larger scale applications. However, design considerations for regional applications, such as a preference for injection at a level of relatively low wind speed, differ from those for global applications. The size of the required injections and the necessity of injection close to the target region raise substantial concerns. The evaluation of this regional-scale application is thus consistent with global model evaluations, emphasizing that mitigation via

  16. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    Science.gov (United States)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  17. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  18. Laser vibrometer measurement of guided wave modes in rail track

    CSIR Research Space (South Africa)

    Loveday, PW

    2014-11-01

    Full Text Available ) in the laboratory and on an operational rail track (with S-4 60-SAR profile) and example results are presented in this section. The measurements 5 were performed using a Polytec PSV-400-M2-20 high frequency scanning vibrometer 6 equipped with the VD-09 velocity...Hz on operational rail track and to identify the modes that are capable of 16 propagating large distances. 17 18 KEYWORDS: Semi-analytical finite element method; modes of guided wave 19 propagation; laser vibrometer measurement; rail track 20 PACs...

  19. Design and construction of wave guide CO2 laser

    International Nuclear Information System (INIS)

    Al-Ali, M.S.

    1989-01-01

    This thesis describes the design, construction and operation of a countinous wave (CW) CO2 waveguide laser with axial gas flow in which the multi-electrode technique was used to achieve uniform volume of ionized gas using two and four pairs of electrodes. Resonators of lengths ( 26 - 47.5 ) cm with inside diameter ( 3 - 4 ) mm were used with discharge taking place between four pairs of electordes 8.25 cm long each, in axial direction of the tube. The avearge flow at the tube outlet was ( 5 - 6.5 ) L/min at different gas pressures. ( 4 tabs., 74 figs., 58 refs. )

  20. On the fast gas ionization wave in an intense laser beam

    International Nuclear Information System (INIS)

    Fisher, V.I.

    1980-01-01

    The transfer of the adsorption zone of laser radiation along a beam is considered. It is shown that for a sufficiently strong laser beam intensity, q 0 >q tilde, the conditions of wave propagation differ principally from those known previously. In particular, the plasma temperature behind the wave front Tsup(*) decreases with the increase of q 0 , whereas the wave velocity D(q 0 ) grows faster than a linear function. The structure and laws of propagation of the ionization wave are determined

  1. Characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-11-01

    We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.

  2. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  3. Fatigue crack localization using laser nonliner wave modulation spectroscopy (LNWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peipei; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kundu, Tribikram [Dept. of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson (United States)

    2016-12-15

    Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference(MSPCD), which is extracted from the spectral plot, measures the degree of crack- induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

  4. Fatigue crack localization using laser nonlinear wave modulation spectroscopy (LNWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peipei; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kundu, Tribikram [Dept. of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson (United States)

    2014-12-15

    Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

  5. Anisotropic effects of terahertz emission from laser sparks in air

    International Nuclear Information System (INIS)

    Zharova, N. A.; Mironov, V. A.; Fadeev, D. A.

    2010-01-01

    Strong terahertz (THz) radiation can be generated by intense femtosecond laser pulses propagating in air. The excitation of transient current induced in the wake just behind the laser pulse is studied in detail using numerical simulations on the basis of Maxwell's equations for THz-band fields and hydrodynamic model for the plasma motion. It is shown that the thermal effects, anisotropic in character in the case of linear polarized laser field, can explain observed quadrupole-type THz radiation pattern in the experiment performed by Akhmedzhanov et al. [Radiophys. Quantum Electron. 52, 482 (2009)]. Taking into account the transverse structure of the plasma filament, our numerical code enables us to calculate the spatial distribution and temporal evolution of terahertz electron current, its spectrum, and angular emission pattern. It is shown that an expansion of full fields in terms of azimuthal modes is a useful tool for research of THz generation in many situations of practical interest.

  6. Internal wave emission from baroclinic jets: experimental results

    Science.gov (United States)

    Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe

    2016-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.

  7. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  8. Acoustic waves in transversely excited atmospheric CO2 laser discharges: effect on performance and reduction techniques

    CSIR Research Space (South Africa)

    von Bergmann, HM

    2008-08-01

    Full Text Available Results are presented on the influence of acoustic waves on the performance of high-repetition-rate TEA CO2 lasers. It is shown that acoustic waves generated inside the laser cavity lead to nonuniform discharges, resulting in a deterioration...

  9. THE FEATURES OF LASER EMISSION ENERGY DISTRIBUTION AT MATHEMATIC MODELING OF WORKING PROCESS

    Directory of Open Access Journals (Sweden)

    A. M. Avsiyevich

    2013-01-01

    Full Text Available The space laser emission energy distribution of different continuous operation settings depends from many factors, first on the settings design. For more accurate describing of multimode laser emission energy distribution intensity the experimental and theoretic model, which based on experimental laser emission distribution shift presentation with given accuracy rating in superposition basic function form, is proposed. This model provides the approximation error only 2,2 percent as compared with 24,6 % and 61 % for uniform and Gauss approximation accordingly. The proposed model usage lets more accurate take into consideration the laser emission and working surface interaction peculiarity, increases temperature fields calculation accuracy for mathematic modeling of laser treatment processes. The method of experimental laser emission energy distribution studying for given source and mathematic apparatus for calculation of laser emission energy distribution intensity parameters depended from the distance in radial direction on surface heating zone are shown.

  10. Resonant parametric interference effect in spontaneous bremsstrahlung of an electron in the field of a nucleus and two pulsed laser waves

    Science.gov (United States)

    Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.; Dubov, V. V.

    2018-04-01

    Electron-nucleus bremsstrahlung in the field of two moderately strong pulsed laser waves in the case of incommensurate frequencies is theoretically studied under resonant conditions. The process is studied in detail in a special kinematic region, where stimulated processes with correlated emission and absorption of photons of the first and second waves become predominant (parametric interference effect). The availability of this region is caused by interference of the first and second laser waves. The correspondence between the emission angle and the final-electron energy is established in this interference kinematic. In this case, the cross-sectional properties are determined by the multiphoton quantum interference parameter, which is proportional to the product of intensities of the first and second waves. The resonant differential cross section of electron-nucleus spontaneous bremsstrahlung with simultaneous registration of both emission angles of the spontaneous photon and the scattered electron can exceed by four or five orders of magnitude the corresponding cross section in the absence of an external field. It was shown for nonrelativistic electrons that the resonant cross section of the studied process in the field of two pulsed laser waves within the interference region in two order of magnitude may exceed corresponding cross sections at other scattering kinematics. The obtained results may be experimentally verified, for example, by scientific facilities at sources of pulsed laser radiation (such as SLAC, FAIR, XFEL, ELI).

  11. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  12. The energy and temporal characteristics of orthogonal polarized waves generated by a transversely-excited pulsed CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Bertel, I.M.; Churakov, V.V.; Petukhov, V.O.; Prokopov, A.P.; Trushin, S.A.; Voitovich, A.P.

    1980-01-01

    The competition of orthogonally-polarized waves with various differences in the wave Q-factors and active medium pressures is studied. The possibility of controlling the parameters of a pulsed CO/sub 2/ laser by changing the value of the amplitude anisotropy of the cavity is demonstrated. The duration of the emission pulse for one of two orthogonal polarizations was reduced by virtually 50%.

  13. Dark matter structures and emission of very long gravitational waves

    International Nuclear Information System (INIS)

    Bisnovatyi-Kogan, G.S.

    2005-01-01

    Formation of large structure in the Universe as a result of gravitational instability in cold dark matter is investigated in a simple analytical model. Collapse of the rotating spheroid is approximated by a system of ordinary differential equations describing its dynamics. The gravitational potential is approximated by the one of the uniform Maclaurin spheroid. Development of gravitational instability and collapse in the dark matter medium do not lead to any shock formation or radiation, but is characterized by non-collisional relaxation, which is accompanied by the mass and angular momentum losses. Phenomenological account of these processes is done in this model. Formation of the equilibrium configuration dynamics of collapse is investigated. A very long gravitational wave emission during the collapse is estimated, and their possible connection with the observed gravitational lenses is discussed

  14. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    International Nuclear Information System (INIS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-01-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd 3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho 3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb 3+ to Yb 3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar + laser, Kr + laser, Ti:sapphire laser, etc

  15. Atomic data of Ti II from laser produced Ti plasmas by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Refaie, A.I.; Farrag, A.A.; El Sharkawy, H.; El Sherbini, T.M.

    2005-06-01

    In the present study, the emission spectrum of titanium produced from laser induced plasma has been measured at different distances from the target. The Titanium target is irradiated by using the high power Q-switched Nd:YAG laser (λ=1064 nm) that generates energy 750 mJ/pulse of duration rate 6 ns and repetition rate 10 Hz in vacuum and at different distances. The variation of the distance from the target affects the measured plasma parameters, i.e. the electron density, the ion temperature and the velocity distribution. The electron density increases with the increase of the distance from the target. At a distance 0.6 mm from the target it decreases to 2.28·10 16 cm -3 . The temperature increases with the distance from the get until a distance of 1 mm, after that it decreases. It is found that the plasma velocity increases with the distance then it decreases again. Then, Energy levels and transition probabilities for 3d 2 4p →(3d 2 4s + 3d 3 ) lines have been determined by measurement of emission line intensities from an optically thin laser produced plasma of Ti II in vacuum. Calculations with intermediate coupling using Hartree-Fock wave functions have been carried out in order to place the experimental data on an absolute scale and also to evaluate the lifetimes. The plasma parameters in different regions of the plasma plume have been measured and used to obtain further transition probabilities. (author)

  16. Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1992-01-01

    Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail

  17. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    Science.gov (United States)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  18. The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmadjid, Syahrun Nur, E-mail: syahrun-madjid@yahoo.com; Lahna, Kurnia, E-mail: kurnialahna@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Aceh (Indonesia); Desiyana, Lydia Septa, E-mail: lydia-septa@yahoo.com [Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, Aceh (Indonesia)

    2016-03-11

    An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablated atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.

  19. The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

    International Nuclear Information System (INIS)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Desiyana, Lydia Septa

    2016-01-01

    An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablated atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.

  20. Emission of a propagation invariant flat-top beam from a microchip laser

    International Nuclear Information System (INIS)

    Naidoo, Darryl; Harfouche, A.; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2016-01-01

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  1. Emission of a propagation invariant flat-top beam from a microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, Darryl [Council for Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Pretoria 0001 (South Africa); Harfouche, A. [Faculté de Physique, Université des Sciences et de la Technologie Houari Boumédiène, B.P. no 32, El Alia, 16111 Algiers (Algeria); Fromager, Michael; Ait-Ameur, Kamel [Centre de Recherche sur les Ions, les Matériaux et la Photonique, Unité Mixte de Recherche de Recherche 6252, Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Caen Basse Normandie, Ecole Nationale Supérieure des Ingénieurs de Caen, Boulevard Maréchal Juin, F14050 Caen (France); Forbes, Andrew, E-mail: andrew.forbes@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa)

    2016-02-15

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  2. First results on a laser-heated emissive probe

    International Nuclear Information System (INIS)

    Madani, R.; Klinger, T.; Ionita, C.; Schrittwieser, R.

    2004-01-01

    The floating potential V(fl,em) of a probe, emitting a sufficiently high electron current, yields a fairly accurate approximation of Φ(pl). This is an advantage in comparison to the conventional Langmuir probe where, after determination of the electron temperature T e , the plasma potential can only be derived indirectly from the formula Φ(pl) = V(fl) + α*T e , where α is a function of the ratio of the electron to the ion saturation currents (α is around 2.4 in a magnetized hydrogen plasma). In addition, an emissive probe also works if there are electron drifts or beams in the plasma. Emissive probes are usually realised by small directly heated loops of W-wire. Drawbacks of this design are the limited lifetime, the low electron emissivity of W and the voltage drop across the wire. We have developed a new type of emissive probe, which is heated by an infrared high-power diode laser with a maximum output power of 50 W. The probe consists of a small cylinder of LaB 6 . The probe was inserted into the edge region of the VINETA helicon discharge plasma. Basic features of emissive probes were checked. (authors)

  3. Parametric Excitations of Fast Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Shvets, G.; Fisch, N.J.

    2001-01-01

    Short- and long-wavelength plasma waves can become strongly coupled in the presence of two counter-propagating laser pump pulses detuned by twice the cold plasma frequency. What makes this four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in the more obvious co-propagating geometry

  4. Comparison of photosensitivity in germanium doped silica fibers using 244 nm and 266 nm continuous wave lasers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo; Varming, Poul; Liu, B.

    2001-01-01

    Diode pumped continuous-wave UV lasers offer an interesting alternative to frequency doubled argon-ion lasers. We report the first photosensitivity comparison using these lasers on deuterium loaded standard telecommunication fibers and unloaded experimental fibers....

  5. Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances

    National Research Council Canada - National Science Library

    Yang, C.S; Brown, E; Hommerich, U; Trivedi, S. B; Snyder, A. P; Samuels, A. C

    2006-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been established as a powerful method for identifying trace elemental contaminants by analyzing the atomic spectral emission lines that result subsequent to plasmas generated by laser power...

  6. Toward jet injection by continuous-wave laser cavitation

    Science.gov (United States)

    Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben

    2017-10-01

    This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ˜1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general.

  7. Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls

    International Nuclear Information System (INIS)

    Gardelle, J.; Modin, P.; Donohue, J. T.

    2012-01-01

    An experiment at microwave frequencies confirms the recent prediction that a Smith-Purcell [S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)] free-electron laser equipped with sidewalls can emit radiation at the frequency of the surface wave. The power output is considerably greater than for the previously observed emission at the second harmonic, in agreement with three-dimensional simulations. The dependence of frequency on beam energy and emission angle is in good agreement with three-dimensional theory and simulations. Provided that a reduction in scale can be achieved, a path is open to coherent Smith-Purcell radiation at terahertz frequency.

  8. The study of waves, instabilities, and turbulence using Thomson scattering in laser plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1995-01-01

    Much basic work in plasma physics has been devoted to the study of wave properties in plasmas, one of the nonlinear development of driven waves, and of the instabilities in which such waves may participate. The use of laser-plasma techniques has allowed one to extend such studies into new regimes. Such techniques and their results are the subject here. Once one chooses a physical problem within this subject area, it is now possible to design a laser-plasma experiment that is optimized for the study of that problem. The plasma can be designed to have a variety of density and flow-velocity profiles, the damping of ion acoustic waves and of electron plasma waves can be independently controlled, and the waves can be driven weakly or strongly. By using Nd-glass lasers and their harmonics one can non-invasively drive and diagnose the waves, using separate laser beams to produce the plasma, drive the waves, and diagnose their properties. The author uses as examples some recent work with his collaborators, including the first experimental detection of ion plasma waves and the first direct observation of the plasma wave driven by the acoustic decay of laser light

  9. A physical model for laser metal vapour interactions and laser supported detonation waves

    International Nuclear Information System (INIS)

    Liu Chenghai; Pei Wenbing; Yan Jun; Fan Furu

    1990-05-01

    A physical model for laser metal-vapour interactions has been developed in this paper. The model developed by authors has been used to study numerically the Laser Supported Detonation Waves (LSDWs) in vapour in front of metal targets, and some good results about LSDWs, such as ignition mechanism, threshold, propagation law and so on, have been obtained numerically with the model. In the model developed, a assumption for non-equilibrium between electrons and ions has been taken, and the target vapour has been discribed with two-temperature hydrodynamic equations of electrons and ions in the Euler space. The ionization-equilibrium assumption has been taken, and the Saha equations have been solved. The laser energy is absorbed due to inverse bremsstrahlung. Energy exchange between electrons and ions is by Coulomb scattering, and energy exchange between electrons and neutral particles is by way of electron-neutral elastic scattering. Electron and ion (including neutral particle) thermal conductions are taken respectively. The LSDWs threshold obtained is in agreement with experement reasonably, and a power law between LSDWs threshold and laser pulse duration, I th ∞τ p -1/2 , has been obtained. Some useful results about the LSDWs shield effects have also been obtained. In the developping phase of LSDWs, the optical thickness of front of LSDWs may reach 5 ∼ 10 in order of magnitude. It is shown that the LSDWs are able to play a very strong shield role

  10. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  11. Crystal growth, spectroscopic characterization, and continuous wave laser operation of Nd3+-doped LiLuF4 crystal

    Science.gov (United States)

    Zhao, C. C.; Hang, Y.; Zhang, L. H.; He, X. M.; Yin, J. G.; Li, R.; Yu, T.; Chen, W. B.

    2011-04-01

    Nd3+-doped LiLuF4 single crystal with high optical quality was grown by Czochralski technique. The segregation coefficient of Nd3+ in LiLuF4 crystal was determined by the inductively coupled plasma atomic emission spectrometry method. Polarized absorption and fluorescence spectra were investigated. The peak absorption cross section at 792 nm and peak emission cross section at 1053 nm are 6.94×10-20 and 7.60×10-20 cm2, respectively. With a laser-diode as the pump source, a maximum 6.22 W continuous-wave laser output at 1053 nm has been obtained with a slope efficiency of 37.2% with respect to the pump power.

  12. Electron emission from laser irradiating target normal sheath acceleration (TNSA)

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, Mariapompea

    2016-01-01

    Roč. 171, 9-10 (2016), s. 754-765 ISSN 1042-0150. [12th Workshop on European Collaboration for Higher Education and Research in Nuclear Engineering and Radiological Protection. Bologna, Catania, Milan, 30.05.2016-01.06.2016] R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : electron emission from plasma * TNSA * TOF * SiC * plastic scintillator * Thomson parabola spectrometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.443, year: 2016

  13. A Study on non-contact measurements of laser-generated lamb waves

    International Nuclear Information System (INIS)

    Jang, Tae Seong; Lee, Jung Ju; Lee, Seung Seok

    2002-01-01

    Generation and detection of Lamb waves offer an effective non-destructive testing technique that will detect defects quickly and reliably. Lamb waves are generated in a thin plate by Q-switched Nd:YAG pulsed laser. Symmetric and antisymmetric Lamb modes in low-frequency-thickness regime are excited by illuminating a thin plate with an array of laser-generated line sources. The propagation of laser-generated Lamb waves is detected by measuring the out-of-plane displacements in a non-contact manner using the fiber optic Sagnac interferometer and all commercial adaptive reference-beam interferometer. The characteristics of laser-generated Lamb wave due to its frequency are investigated. Fundamental understanding of laser-generated Lamb modes is presented.

  14. Optical wave microphone measurements of laser ablation of copper in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, Fumiaki, E-mail: mitsugi@cs.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Ikegami, Tomoaki [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nakamiya, Toshiyuki; Sonoda, Yoshito [Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku, Kumamoto 862-8652 (Japan)

    2013-11-29

    Laser ablation plasma in a supercritical fluid has attracted much attention recently due to its usefulness in forming nanoparticles. Observation of the dynamic behavior of the supercritical fluid after laser irradiation of a solid is necessary for real-time monitoring and control of laser ablation. In this study, we utilized an optical wave microphone to monitor pulsed laser irradiation of a solid in a supercritical fluid. The optical wave microphone works based on Fraunhofer diffraction of phase modulation of light by changes in refractive index. We hereby report on our measurements for pulsed laser irradiation of a Cu target in supercritical carbon dioxide using an optical wave microphone. Photothermal acoustic waves which generated after single pulsed laser irradiation of a Cu target were detectable in supercritical carbon dioxide. The speed of sound around the critical point of supercritical carbon dioxide was clearly slower than that in gas. The optical wave microphone detected a signal during laser ablation of Cu in supercritical carbon dioxide that was caused by shockwave degeneration. - Highlights: • Photothermal acoustic wave in supercritical fluid was observed. • Sound speed around the critical point was slower than that in gas. • Optical wave microphone detected degeneration of a shockwave. • Ablation threshold of a solid in supercritical fluid can be estimated. • Generation of the second shockwave in supercritical phase was suggested.

  15. Dismantling of Evaporators by Laser Cutting Measurement of Secondary Emissions

    International Nuclear Information System (INIS)

    Pilot, Guy; Fauvel, Sylvain; Gosse, Xavier; De Dinechin, Guillaume

    2006-01-01

    In order to dismantle the evaporators of an obsolete reprocessing plant in Marcoule, studies were carried out by IRSN (Institut de Radioprotection et de Surete Nucleaire) / DSU/SERAC in cooperation with CEA (power laser group) on the laser cutting of steel structures, on the request of COGEMA (now AREVA NC) /Marcoule (UP1 dismantling project manager) and CEA/UMODD (UP1 dismantling owner). The aim of these studies was: - to quantify and to characterize the secondary emissions produced by Nd-YAG laser cutting of Uranus 65 steel pieces representative of UP1 evaporator elements and to examine the influence of different parameters, - to qualify a pre-filtration technique and particularly an electrostatic precipitator, - to compare the Nd-YAG used with other cutting tools previously studied. The experiments, which took place in a 35 m 3 ventilated cutting cell, allow to underline the following points: for the Uranus 65 steel, the sedimented dross, the deposits on the walls of the cutting cell and the aerosols drawn in the ventilation exhaust duct (∼ 275 m 3 /h), represent respectively between 92% and 99%, between 0.01% and 0.25% and between 1% and 8% of the total collected mass, the attached slag varies much from one configuration to the other and can sometimes amount to a relatively important fraction of the total mass, the kerves vary from 2 mm up to 7 mm for the Uranus 65 steel plates (thickness: 13.8 mm for the single plate and 12.8 + 3.5 mm for the double plate), the exhausted aerosol mass per cut length (g/m) decreases with the cutting speed, varies neither with the stand-off nor with the gas pressure, is dependent upon the gas nature (for the double plate), increases with the laser power, is strongly affected by the nature of the steel (stainless steel or mild steel) and is independent upon the plate position, the size distribution of aerosols is multimodal with a main mode often around 0.45 μm, the electrostatic precipitator has been a satisfactory prefilter

  16. POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2017-01-01

    Full Text Available Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone. 

  17. The numerical simulation of Lamb wave propagation in laser welding of stainless steel

    Science.gov (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-12-01

    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  18. Theory and experiments on the generation of spontaneous emission using a plasma wave undulator

    International Nuclear Information System (INIS)

    Williams, R.L.; Clayton, C.E.; Joshi, C.; Katsouleas, T.; Mori, W.B.; Slater, J.

    1990-01-01

    This paper reports that, the authors are studying the feasibility of using relativistically moving plasma waves as short wavelength undulators for possible FEL and Compton scattering applications at UCLA. The remarkable property of such waves is that the wiggler parameter a w = eA/mc 2 can be on the order 0.1 while their wavelength λ w can be submillimeter. Such waves can be excited by either an intense electron bunch going through a plasma (plasma wake field) or a short but intense laser pulse going through the plasma (laser wake field). A variation of the laser wake field scheme is the plasm beat wave excitation. Here a moderately intense laser pulse containing two frequencies excites the plasm wave resonantly. Using a laser pulse containing 10.27 μm and 9.6 μm lines of the Co 2 laser that is approximately 400 ps (FWHM) and 200 GW of power, we were able to measure a w times the length product of 0.013 cm in our experiments. If a length of 0.75 cm i assumed, this implies an a w of 0.17 for a λ w ∼156 μm. Injection of an electron beam across such a plasma wave proved not to be feasible in these experiments, because the θ-pinch plasma source contained significant trapped magnetic fields. We are currently developing a field free plasma source which will permit transverse electron injection

  19. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm.

    Science.gov (United States)

    Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf

    2007-10-15

    A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.

  20. Investigation of field emission properties of laser irradiated tungsten

    International Nuclear Information System (INIS)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Jalil, Sohail Abdul; Rafique, Muhammad Shahid

    2018-01-01

    Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm 2 . Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I-V characteristics and plotting corresponding electric field (E) versus emission current density (J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/μm, 1300 to 3490 and 107 to 350 μA/cm 2 , respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences. (orig.)

  1. Health effects of laser printer emissions: a controlled exposure study.

    Science.gov (United States)

    Karrasch, S; Simon, M; Herbig, B; Langner, J; Seeger, S; Kronseder, A; Peters, S; Dietrich-Gümperlein, G; Schierl, R; Nowak, D; Jörres, R A

    2017-07-01

    Ultrafine particles emitted from laser printers are suspected to elicit adverse health effects. We performed 75-minute exposures to emissions of laser printing devices (LPDs) in a standardized, randomized, cross-over manner in 23 healthy subjects, 14 mild, stable asthmatics, and 15 persons reporting symptoms associated with LPD emissions. Low-level exposures (LLE) ranged at the particle background (3000 cm -3 ) and high-level exposures (HLE) at 100 000 cm -3 . Examinations before and after exposures included spirometry, body plethysmography, transfer factors for CO and NO (TLCO, TLNO), bronchial and alveolar NO, cytokines in serum and nasal secretions (IL-1β, IL-5, IL-6, IL-8, GM-CSF, IFNγ, TNFα), serum ECP, and IgE. Across all participants, no statistically significant changes occurred for lung mechanics and NO. There was a decrease in volume-related TLNO that was more pronounced in HLE, but the difference to LLE was not significant. ECP and IgE increased in the same way after exposures. Nasal IL-6 showed a higher increase after LLE. There was no coherent pattern regarding the responses in the participant subgroups or single sets of variables. In conclusion, the experimental acute responses to short but very high-level LPD exposures were small and did not indicate clinically relevant effects compared to low particle number concentrations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The measurement of capillary waves on a weldpool formed by a Nd:YAG laser

    International Nuclear Information System (INIS)

    Deam, R.T.; Brandt, M.; Harris, J.

    2002-01-01

    Experiments were performed using an on-line pyrometer to measure the capillary waves on a weldpool formed by a Nd: YAG laser. The surface temperature measurements taken from the weldpool revealed strong temporal fluctuations. Fourier transform of the pyrometer data revealed distinct peaks, consistent with calculated resonant frequencies for capillary surface waves on the weldpool formed by the laser. The possibility of using on-line measurement of surface temperature fluctuations to control weldpool depth in laser welds is discussed. The work forms part of an on-going programme to develop closed loop control for laser processing at Swinburne University

  3. Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser

    Science.gov (United States)

    Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.

    2018-05-01

    Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.

  4. Laser-supported ionization wave in under-dense gases and foams

    International Nuclear Information System (INIS)

    Gus'kov, S. Yu.; Limpouch, J.; Nicolaie, Ph.; Tikhonchuk, V. T.

    2011-01-01

    Propagation of laser-supported ionization wave in homogeneous and porous materials with a mean density less than the critical plasma density is studied theoretically in the one-dimensional geometry. It is shown that the velocity of the ionization wave in a foam is significantly decreased in comparison with the similar wave in a homogeneous fully ionized plasma of the same density. That difference is attributed to the ionization and hydro-homogenization processes forming an under-critical density environment in the front of ionization wave. The rate of energy transfer from laser to plasma is found to be in a good agreement with available experimental data.

  5. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  6. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atom Interferometry (AI) Technology for Gravity Wave Measurements demonstrates new matter wave Interferometric sensor technology for precise detection and...

  7. Ultra-Low Noise Quad Photoreceiver for Space Based Laser Interferometric Gravity Wave Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravity wave detection using space-based long-baseline laser interferometric sensors imposes stringent noise requirements on the system components, including the...

  8. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  9. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  10. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  11. Laser Induced Shock Waves and Vaporization in Biological System and Material Science

    National Research Council Canada - National Science Library

    Gerstman, Bernard S

    2008-01-01

    .... We have developed a computational model that allows the calculation of damage resulting from a laser pulse of any duration or energy due to temperature rise, explosive bubble formation, and shock wave production...

  12. Traveling wave model for laser-guided discharges

    International Nuclear Information System (INIS)

    Lampe, Martin; Fernsler, Richard F.; Slinker, Steven P.; Gordon, Daniel F.

    2010-01-01

    We present an easily solvable 1D traveling wave model for laser-guided discharges. By assuming constant propagation speed u, the hydro/electrodynamic/chemistry equations are reduced to ordinary differential equations in retarded time τ. Negative discharges are shown to propagate only if u>μE b , where μ is electron mobility and E b is the breakdown field; positive discharges propagate only if the channel preconductance exceeds ∼6x10 -11 m/Ω. The axial electric field E is shown to spike up to several times E b and then relax to ∼E b for as long as the gas remains cold. In this streamer region, the channel conductance, current, and potential all increase linearly with τ. The transition to the leader stage, where E is much smaller, occurs in two steps: excitation of vibrational and low-lying electronic states, then gas heating. The propagation range decreases as a function of initial radius and (for given maximum voltage) of the voltage rise rate. Expansion of the hot channel is shown to increase the range.

  13. Millimeter wave free electron laser amplifiers: Experiments and designs

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Bensen, D.M.; Destler, W.W.; Granatstein, V.L.; Lantham, P.E.; Levush, B.; Rodgers, J.

    1991-01-01

    Free electron laser amplifies are investigated as sources of high- average-power (1 MW) millimeter to submillimeter wave radiation (200 GHz - 600 GHz) for application to electron cyclotron resonance heating of magnetically confined fusion plasmas. As a stepping-stone to higher frequencies and cw operation a pulsed amplifier (τ pulse ≅ 80 ns) at 98 GHz is being developed. Status is reported on this experiment which investigates linear gain amplification with use of sheet electron beam (transverse cross section = 0.1 cm x 2.0 cm, V beam = 440 keV, I beam ≅ 10 A) and short-period wiggler (ell w = 0.96 cm) and with expected output of 140 W. Predictions of gain and efficiency from a 1-D universal formulation are presented. Beam propagation results, with wiggler focusing as a means of sheet beam confinement in both transverse dimensions, through the 54 cm (56 period) pulsed electromagnet wiggler are discussed. Peak wiggler fields of 5.1 kG on-axis have been achieved

  14. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.; Majid, Mohammed Abdul; Afandy, Rami; Aljabr, Ahmad

    2016-01-01

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III

  15. Shift and broadening of emission lines in Nd :YAG laser crystal ...

    Indian Academy of Sciences (India)

    1Department of Optics and Laser Engineering, Estahban Branch, Islamic Azad ... Nd3+:YAG crystal; heat generation; three-level emission lines; four-level emission ... Modelling of high-power solid-state lasers requires precise knowledge of ...

  16. The amplitude modulation of laser diode emission with antireflection piezo films on mirrors

    International Nuclear Information System (INIS)

    Abrarov, S.M.; Karimov, Kh.S.; Akhmedov, Kh.M.

    2001-01-01

    Present article is devoted to amplitude modulation of laser diode emission with antireflection piezo films on mirrors. The modulator based on laser diode and the emission amplitude modulation of which is performed by electric field impact on antireflection piezo films applied on mirrors was studied.

  17. Heat wave propagation in a thin film irradiated by ultra-short laser pulses

    International Nuclear Information System (INIS)

    Yoo, Jae Gwon; Kim, Cheol Jung; Lim, C. H.

    2004-01-01

    A thermal wave solution of a hyperbolic heat conduction equation in a thin film is developed on the basis of the Green's function formalism. Numerical computations are carried out to investigate the temperature response and the propagation of the thermal wave inside a thin film due to a heat pulse generated by ultra-short laser pulses with various laser pulse durations and thickness of the film

  18. Emission of ultrashort electromagnetic pulses from electron bunches formed and accelerated by laser beams with tilted amplitude fronts

    International Nuclear Information System (INIS)

    Galkin, A.L.; Korobkin, V.V.; Romanovsky, M.Yu.; Shiryaev, O.B.; Trofimov, V.A.

    2013-01-01

    The dynamics of an electron in a standing wave generated by a pair of counterpropagating linearly polarized relativistically intense laser pulses and the emission of electromagnetic radiation by the electron are analyzed. The pulses are assumed to have tilted amplitude fronts and asymmetric focal spots. The analysis of the dynamics is performed by solving numerically the Newton equation with the corresponding Lorentz force, and the emission of radiation is simulated based on the Lienard-Wiechert potentials. The electrons are accelerated by the direct action of the standing wave field and are shown to form a small short bunch. For relativistic intensities, the energies gained by the electrons reach several GeV. It is demonstrated that the radiation emitted by the electrons in the bunch is a single electromagnetic pulse confined to a narrow solid angle and having an attosecond duration. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  20. Magnon Accumulation by Clocked Laser Excitation as Source of Long-Range Spin Waves in Transparent Magnetic Films

    Directory of Open Access Journals (Sweden)

    M. Jäckl

    2017-04-01

    Full Text Available Optical tools are promising for spin-wave generation because of the possibilities of ultrafast manipulation and local excitation. However, a single laser pulse can inject spin waves (SWs only with a broad frequency spectrum, resulting in short propagation distances and low wave amplitudes. Here, we excite a magnetic garnet film by a train of fs-laser pulses with a 1-GHz repetition rate so that the pulse separation is shorter than the decay time of magnetic modes, which allows us to achieve a collective impact on the magnetization and establish a quasistationary source of spin waves, namely, a coherent accumulation of magnons (“magnon cloud”. This approach has several appealing features: (i The magnon source is tunable, (ii the SW amplitude can be significantly enhanced, (iii the SW spectrum is quite narrow, providing long-distance propagation, (iv the periodic pumping results in an almost constant-in-time SW amplitude for the distances larger than 20  μm away from the source, and (v the SW emission shows pronounced directionality. These results expand the capabilities of ultrafast coherent optical control of magnetization and pave the way for applications in data processing, including the quantum regime. The quasistationary magnon accumulation might also be of interest for applications in magnon Bose-Einstein condensates.

  1. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  2. Amplified spontaneous emissions in a high-gain laser amplifier

    International Nuclear Information System (INIS)

    Osada, Hidenori; Gamo, Hideya.

    1978-01-01

    The gain and line-narrowing of the amplified spontaneous emissions(ASE) in a partially homogeneous high-gain Xe 3.51 μm laser amplifier were studied theoretically and experimentally with emphasis of saturation effect. The unidirectionally travelling ASE was generated by conveniently using optical isolators and used as a broadband radiation source. It has properties of 10 μW/mm 2 in intensity with fluctuation of less than 1% in 5 hours, 43.5 MHz of the linewidth and 1.0 x 10 -3 radians of beam divergence. The measured saturation intensity was 4.85 μW/mm 2 and a small signal gain was 0.1 cm -1 . The theoretical prediction of the line-narrowing shows reasonablly good agreement with the measured one. (author)

  3. A diode-end-pumped Nd:GYSGG continuous wave laser at 1104 nm

    International Nuclear Information System (INIS)

    Shen, B J; Kang, H X; Zhang, C G; Chen, P; Gao, R L; Liang, J; Gao, H J; Zhang, Q L; Sun, D L; Yin, S T; Luo, J Q

    2013-01-01

    The continuous wave (CW) laser performance of Nd:GYSGG at 1104 nm is investigated for the first time, to our knowledge. A CW laser output power of 4.7 W is obtained when the pump power of the 808 nm fiber coupled laser diode is 19.1 W, corresponding to a conversion efficiency of 24.6% and slope efficiency of 37%. (paper)

  4. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  5. Searching for Fast Radio Bursts with the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)

    Science.gov (United States)

    Fisher, Ryan Patrick; Hughey, Brennan; Howell, Eric; LIGO Collaboration

    2018-01-01

    Although Fast Radio Bursts (FRB) are being detected with increasing frequency, their progenitor systems are still mostly a mystery. We present the plan to conduct targeted searches for gravitational-wave counterparts to these FRB events in the data from the first and second observing runs of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).

  6. The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses

    Science.gov (United States)

    Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.

    2016-08-01

    The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.

  7. Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal

    Science.gov (United States)

    Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun

    2018-02-01

    We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.

  8. Second harmonic electromagnetic emission via Langmuir wave coalescence

    International Nuclear Information System (INIS)

    Willes, A.J.; Robinson, P.A.; Melrose, D.B.

    1996-01-01

    The coalescence of Langmuir waves to produce electromagnetic waves at twice the plasma frequency is considered. A simplified expression for the rate of production of second harmonic electromagnetic waves is obtained for a broad class of Langmuir spectra. In addition, two different analytic approximations are considered. The validity of the commonly used head-on approximation is explored, in which the two coalescing Langmuir waves are assumed to approach from opposite directions. This approximation breaks down at low Langmuir wavenumbers, and for narrow Langmuir wave spectra. A second, more general, approximation is introduced, called the narrow-spectrum approximation, which requires narrow spectral widths of the Langmuir spectra. The advantages of this approximation are that it does not break down at low Langmuir wavenumbers, and that it remains valid for relatively broad Langmuir wave spectra. Finally, the applicability of these approximations in treating harmonic radiation in type III solar radio bursts is discussed. copyright 1996 American Institute of Physics

  9. Bistable polarization switching in a continuous wave ruby laser

    Science.gov (United States)

    Lawandy, N. M.; Afzal, R. Sohrab

    1988-01-01

    Bistability in the output power, polarization state, and mode volume of an argon-ion laser pumped single mode ruby laser at 6943 A has been observed. The laser operates in a radially confined mode which exhibits hysteresis and bistability only when the pump polarization is parallel to the c-axis.

  10. Laser driven shock wave experiments for equation of state studies at megabar pressures

    CERN Document Server

    Pant, H C; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 mu m wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments.

  11. Second-order interference of two independent and tunable single-mode continuous-wave lasers

    International Nuclear Information System (INIS)

    Liu Jianbin; Chen Hui; Zheng Huaibin; Xu Zhuo; Wei Dong; Zhou Yu; Gao Hong; Li Fu-Li

    2016-01-01

    The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by employing two-photon interference in Feynman’s path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra. (paper)

  12. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    Science.gov (United States)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  13. Energetic, spectral, and temporal characteristics of a two-wave CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Bertel' , I.M.; Petukhov, V.O.; Prokopov, A.P.; Tochitskii, S.Ya.; Churakov, V.V.

    1987-09-01

    This work studies the energetic and temporal parameters of a pulsed two-wave TEA CO/sub 2/ laser's radiation and the means for controlling these parameters. Obtaining the two-wave generation regime in CO/sub 2/ lasers uses, as is known, spatial splitting of the radiation, different variants of operating diffraction gratings, and placing a cell with selectively absorbing gas in the resonator. To realize the simultaneous two-wave generation regime in the present work, a double-resonant scheme is used with mutually orthogonal polarizers to spatially separate the radiation.

  14. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  15. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  16. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation and their refractive index determination

    International Nuclear Information System (INIS)

    Bogomolov, G.D.; Jeong, Uk Young; Zhizhin, G.N.; Nikitin, A.K.; Zavyalov, V.V.; Kazakevich, G.M.; Lee, Byung Cheol

    2005-01-01

    First experiments for observation of surface electromagnetic waves (SEW) in the terahertz spectral range generated on dense aluminum films covering the optical quality glass plates are presented in this paper. Coherent radiation of the new free-electron laser covering the frequency range from 30 to 100cm -1 was used. The interference technique employing SEW propagation in the part of one shoulder of the asymmetric interferometer was applied. From the interference pattern the real part of SEW's effective refractive index ae ' was determined for the two laser emission wavelengths: at λ=150μm-ae ' =1+5x10 -5 , at λ=110μm-ae ' =1+8x10 -4 . High sensitivity of the interference patterns to overlayers made of Ge and Si with thickness of 100nm was demonstrated as well

  17. X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses

    Science.gov (United States)

    Alkhimova, M. A.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Pikuz, S. A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A. S.; Sagisaka, S.; Dover, N. P.; Kondo, Ko; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S. V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.

    2018-01-01

    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ˜ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.2×1021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.

  18. Shift and broadening of emission lines in Nd 3: YAG laser crystal ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Shift and broadening of emission lines in Nd3+:YAG laser crystal influenced by input energy. POURMAND SEYED EBRAHIM REZAEI ... Keywords. Nd3+:YAG crystal; heat generation; three-level emission lines; four-level emission lines; input energy.

  19. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  20. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  1. Influence of plasma shock wave on the morphology of laser drilling in different environments

    Science.gov (United States)

    Zhai, Zhaoyang; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Huizhu

    2017-05-01

    Nanosecond pulse laser was used to study nickel-based alloy drilling and compare processing results of microholes in air environment and water environment. Through analysis and comparison, it's found that environmental medium had obvious influence on morphology of laser drilling. High-speed camera was used to shoot plasma morphology during laser drilling process, theoretical formula was used to calculate boundary dimension of plasma and shock wave velocity, and finally parameters were substituted into computational fluid dynamics simulation software to obtain solutions. Obtained analysis results could intuitively explain different morphological features and forming reasons between laser drilling in air environment and water environment in the experiment from angle of plasma shock waves. By comparing simulation results and experimental results, it could help to get an understanding of formation mechanism of microhole morphology, thus providing basis for further improving process optimization of laser drilling quality.

  2. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.

    2016-01-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, which was discovered by the LIGO/Virgo Collaboration. The omnidirectional view...... in the 75 keV-2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW ... of the gravitational wave source, based on the available predictions for prompt electromagnetic emission....

  3. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  4. Gravitational wave emission from a bounded source: A treatment in the full nonlinear regime

    International Nuclear Information System (INIS)

    Oliveiral, H.P. de; Damiao Soares, I.

    2004-03-01

    The dynamics of a bounded gravitational collapsing configuration emitting gravitational waves is studied. The exterior spacetime is described by Robinson-Trautman geometries and have the Schwarzschild black hole as its final gravitational configuration, when the gravitational wave emission ceases. The full nonlinear regime is examined by using the Galerkin method that allows us to reduce the equations governing the dynamics to a finite-dimensional dynamical system, after a proper truncation procedure. Gravitational wave emission patterns from given initial configurations are exhibited for several phases of the collapse and the mass-loss ratio that characterizes the amount of mass extracted by the gravitational wave emission is evaluated. We obtain that the smaller initial mass M init of the configuration, the more rapidly the Schwarzschild solution is attained and a larger fraction of M init is lost in the process of gravitational wave emission. Within all our numerical experiments, the distribution of the mass fraction extracted by gravitational wave emission is shown to satisfy the distribution law of nonextensive statistics and this result is independent of the initial configurations considered. (author)

  5. Influence of cathode emission uniformity on microwave generation in relativistic backward wave oscillator

    Science.gov (United States)

    Wu, Ping; Sun, Jun; Teng, Yan

    2017-12-01

    The emission uniformity of explosive emission cathodes is important to the operation of high power microwave generators. Although this concept seems to be widely accepted, the concrete influence of cathode emission uniformity on microwave generation has not been researched in detail and many conclusions on this matter are ambiguous due to the lack of solid evidence. This paper makes an effort to research this issue with particle-in-cell simulations about an X-band relativistic backward wave oscillator. To keep the diode impedance unchanged, an emission model in which each emission cell is artificially assigned a specific current density is adopted. The emission non-uniformity is simulated in three ways: spaced emission, large-area no-emission, and local enhanced emission. The simulation results uncover three phenomena: first, no significant influence is found for the cathode emission uniformity on the microwave starting time as long as no obvious mode competition is excited by emission non-uniformity; second, bad emission uniformity may bring about reduction of microwave power, but this may not happen when the emission non-uniformity is just localized to a few discrete strong emission points; third, under specific circumstances, the emission non-uniformity may lead to the excitation of mode competition, which can significantly delay the starting time and lower the microwave power.

  6. Ultrafast streak and framing technique for the observation of laser driven shock waves in transparent solid targets

    International Nuclear Information System (INIS)

    Van Kessel, C.G.M.; Sachsenmaier, P.; Sigel, R.

    1975-01-01

    Shock waves driven by laser ablation in plane transparent plexiglass and solid hydrogen targets have been observed with streak and framing techniques using a high speed image converter camera, and a dye laser as a light source. The framing pictures have been made by mode locking the dye laser and using a wide streak slit. In both materials a growing hemispherical shock wave is observed with the maximum velocity at the onset of laser radiation. (author)

  7. Study of x-ray emission enhancement via high contrast femtosecond laser interacting with solid foil

    International Nuclear Information System (INIS)

    Chen, Liming; Kando, Masaki; Bulanov, S.V.; Koga, James K.; Tajima, Toshiki; Xu M.H.; Yuan X.H.; Li Y.T.; Dong Q.L.; Zhang J.

    2007-01-01

    We studied the hard x-ray emission and the Kα x-ray conversion efficiency (η K ) produced by 60 fs high contrast frequency doubled Ti: sapphire laser pulse focused on Cu foil target. Cu Kα photon emission obtained with second harmonic laser pulse is more intense than the case of fundamental laser pulse. The Cu η K shows strong dependence on laser nonlinearly skewed pulse shape and reaches the maximum value 4x10 -4 with 100 fs negatively skewed pulse. It shows the electron spectrum shaping contribute to the increase of η K . (author)

  8. Cw hyper-Raman laser and four-wave mixing in atomic sodium

    Science.gov (United States)

    Klug, M.; Kablukov, S. I.; Wellegehausen, B.

    2005-01-01

    Continuous wave hyper-Raman (HR) generation in a ring cavity on the 6s → 4p transition at 1640 nm in sodium is realized for the first time by two-photon excitation of atomic sodium on the 3s → 6s transition with a continuous wave (cw) dye laser at 590 nm and a single frequency argon ion laser at 514 nm. It is shown, that the direction and efficiency of HR lasing depends on the propagation direction of the pump waves and their frequencies. More than 30% HR gain is measured at 250 mW of pump laser powers for counter-propagating pump waves and a medium length of 90 mm. For much shorter interaction lengths and corresponding focussing of the pump waves a dramatic increase of the gain is predicted. For co-propagating pump waves, in addition, generation of 330 nm radiation on the 4p → 3s transition by a four-wave mixing (FWM) process is observed. Dependencies of HR and parametric four-wave generation have been investigated and will be discussed.

  9. Measurements of laser generated soft X-ray emission from irradiated gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D. [University of Michigan, 2455 Hayward St., Ann Arbor, Michigan 48109 (United States); Frank, Y.; Raicher, E.; Fraenkel, M. [Soreq Nuclear Research Center, Yavne (Israel)

    2016-11-15

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  10. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ganse, Urs; Kilian, Patrick; Spanier, Felix [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Wuerzburg (Germany); Vainio, Rami, E-mail: uganse@astro.uni-wuerzburg.de [Department of Physics, University of Helsinki, Helsinki (Finland)

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  11. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    International Nuclear Information System (INIS)

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-01-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  12. Shock wave generation in laser ablation studied using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Eynas; Gren, Per; Sjoedahl, Mikael [Division of Experimental Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)], E-mail: eynas.amer@ltu.se, E-mail: per.gren@ltu.se, E-mail: mikael.sjodahl@ltu.se

    2008-11-07

    Pulsed digital holographic interferometry has been used to study the shock wave induced by a Q-switched Nd-YAG laser ({lambda} = 1064 nm and pulse duration 12 ns) on a polycrystalline boron nitride (PCBN) ceramic target under atmospheric air pressure. A special setup based on using two synchronized wavelengths from the same laser for processing and measurement simultaneously has been introduced. Collimated laser light ({lambda} = 532 nm) passed through the volume along the target and digital holograms were recorded for different time delays after processing starts. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave generated by the process. The location of the induced shock wave front was observed for different focusing and time delays. The amount of released energy, i.e. the part of the incident energy of the laser pulse that is eventually converted to a shock wave has been estimated using the point explosion model. The released energy is normalized by the incident laser pulse energy and the energy conversion efficiency between the laser pulse and PCBN target has been calculated at different power densities. The results show that the energy conversion efficiency seems to be constant around 80% at high power densities.

  13. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength

    OpenAIRE

    Savochkin, I. V.; J?ckl, M.; Belotelov, V. I.; Akimov, I. A.; Kozhaev, M. A.; Sylgacheva, D. A.; Chernov, A. I.; Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Yakovlev, D. R.; Zvezdin, A. K.; Bayer, M.

    2017-01-01

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with ...

  14. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    International Nuclear Information System (INIS)

    Gan, Li; Mousen, Cheng; Xiaokang, Li

    2014-01-01

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter

  15. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)

    2014-03-15

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.

  16. High-order harmonics from bow wave caustics driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    2012-01-01

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  17. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.

    Science.gov (United States)

    Levi, Jessica R; Veerappan, Anna; Chen, Bo; Mirkov, Mirko; Sierra, Ray; Spiegel, Jeffrey H

    2011-01-01

    To evaluate acute and delayed laser effects of subdermal lipolysis and collagen deposition using an in vivo pig model and to compare histologic findings in fatty tissue after continuous wave diode (CW) vs pulsed laser treatment. Three CW lasers (980, 1370, and 1470 nm) and 3 pulsed lasers (1064, 1320, and 1440 nm) were used to treat 4 Göttingen minipigs. Following administration of Klein tumescent solution, a laser cannula was inserted at the top of a 10 × 2.5-cm rectangle and was passed subdermally to create separate laser "tunnels." Temperatures at the surface and at intervals of 4-mm to 20-mm depths were recorded immediately after exposure and were correlated with skin injury. Full-thickness cutaneous biopsy specimens were obtained at 1 day, 1 week, and 1 month after exposure and were stained with hematoxylin-eosin and trichrome stain. Qualitative and semiquantitative histopathologic evaluations were performed with attention to vascular damage, lipolysis, and collagen deposition. Skin surface damage occurred at temperatures exceeding 46°C. Histologic examination at 1 day after exposure showed hemorrhage, fibrous collagen fiber coagulation, and adipocyte damage. Adipocytes surrounded by histiocytes, a marker of lipolysis, were present at 1 week and 1 month after exposure. Collagen deposition in subdermal fatty tissue and in reticular dermis of some specimens was noted at 1 week and had increased at 1 month. Tissue treated with CW laser at 1470 nm demonstrated greater hemorrhage and more histiocytes at damage sites than tissue treated with pulsed laser at 1440 nm. There was a trend toward more collagen deposition with pulsed lasers than with CW lasers, but this was not statistically significant. Histopathologic comparison between results of CW laser at 980 nm vs pulsed laser at 1064 nm showed the same trend. Hemorrhage differences may result from pulse duration variations. A theoretical calculation estimating temperature rise in vessels supported this

  18. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    Science.gov (United States)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  19. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  20. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza

    2015-01-01

    into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has......We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  1. Effect of a target on the stimulated emission of microsecond CO2-laser pulses

    Science.gov (United States)

    Baranov, V. Iu.; Dolgov, V. A.; Maliuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The paper reports a change in the pulse shape of a TEA CO2 laser with an unstable cavity under the interaction between the laser radiation and a metal surface in the presence of a breakdown plasma. It is shown that a continuous change in the phase difference between the wave reflected in the cavity and the principal cavity wave gives rise to changes in the pulse shape and the appearance of power fluctuations. The possible effect of these phenomena on the laser treatment of materials is considered.

  2. Frequency lock of a dye laser emission on iron atomic line top

    International Nuclear Information System (INIS)

    Durand, P.

    1995-03-01

    The aim of this thesis is to realize a frequency lock of a dye laser emission on iron atomic line top. To reach that goal, the author first presents the calculation of atomic vapour density by means of laser absorption ratio measure and studies the dye laser working. It is then necessary to find a device giving the required precision on the frequency of the absorption line choosen. It is obtained thanks to the atomic line reconstitution by optogalvanic effect which gives the reference. Besides, the author presents the necessity of a laser emission power regulation which is obtained thanks to a device including an acoustic and optic modulator. A reliable and accurate captor is choosen and adjusted testing various hollow cathode lamps. The method to obtain the frequency lock of laser emission on iron atomic line top is described. (TEC). 18 refs., 64 figs

  3. Continuous wave and tunable laser operation of Yb3+ in disordered NaLa(MoO4)2

    Science.gov (United States)

    Rico, M.; Liu, J.; Cano-Torres, J. M.; García-Cortés, A.; Cascales, C.; Zaldo, C.; Griebner, U.; Petrov, V.

    2005-09-01

    Continuous-wave Yb3+ laser operation is studied in single crystals of disordered NaLa(MoO4)2 at room temperature. The sample used was grown by the Czochralski technique and incorporates an Yb ion density of 3.1×1020 cm-3. The effect of the Yb concentration on some of the crystal properties is described as well as the spectroscopic Yb3+ properties at 5 K. Maximum slope efficiencies of about 40% for π and 38% for σ polarization were obtained under Ti:sapphire laser pumping near 976 nm, respectively. The maximum output power for the π polarization was 400 mW at 1039.5 nm, the threshold in this case amounted to 240 mW (absorbed pump power). The laser emission was tunable between 1016 and 1064 nm with a Lyot filter. Lasing was also realized by pumping with a fiber-coupled diode laser module. Maximum output power of 900 mW at 1035 nm was achieved in this case for the π polarization and the threshold was 280 mW. The results, in terms of output power and tunability, are superior in comparison to all previous reports on Yb-doped disordered double tungstate or molybdate crystals and represent a significant improvement in comparison to earlier experiments with low-doped Yb:NaLa(MoO4)2.

  4. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  5. Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission.

    Science.gov (United States)

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David

    2014-04-15

    An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.

  6. Electron emission from a double-layer metal under femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuchang; Li, Suyu; Jiang, Yuanfei; Chen, Anmin, E-mail: amchen@jlu.edu.cn; Ding, Dajun; Jin, Mingxing, E-mail: mxjin@jlu.edu.cn

    2015-01-01

    In this paper we theoretically investigate electron emission during femtosecond laser ablation of single-layer metal (copper) and double-layer structures. The double-layer structure is composed of a surface layer (copper) and a substrate layer (gold or chromium). The calculated results indicate that the double-layer structure brings a change to the electron emission from the copper surface. Compared with the ablation of a single-layer, a double-layer structure may be helpful to decrease the relaxation time of the electron temperature, and optimize the electron emission by diminishing the tailing phenomenon under the same absorbed laser fluence. With the increase of the absorbed laser fluence, the effect of optimization becomes significant. This study provides a way to optimize the electron emission which can be beneficial to generate laser induced ultrafast electron pulse sources.

  7. Emission spectrum of an electric-discharge ClF laser

    International Nuclear Information System (INIS)

    Deryugin, A A; Razhev, A M; Kochetov, Igor' V

    1998-01-01

    Experiments revealed a complex structure of the emission spectrum of an electric-discharge ClF laser, corresponding to the D'-A' transitions with a maximum near 285 nm. The vibrational bands in the emission spectrum overlapped at the base in the range 282-286 nm because of a high pressure in the gaseous active medium. Theoretical calculations were made and an interpretation was provided of the vibrational structure of the emission spectrum of the ClF molecules. The emission spectrum of the electric-discharge ClF laser was shown to consist of the 0-4, 0-5, 0-6, 1-6, 1-7, and 2-8 bands of the D'-A' transition. A total efficiency of 0.1% was achieved for the first time for the ClF laser and lasing was observed in a gaseous He - F 2 -BCl 3 active medium. (lasers, active media)

  8. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  9. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    Science.gov (United States)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  10. Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm

    Science.gov (United States)

    Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian

    2018-05-01

    We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.

  11. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    Science.gov (United States)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  12. Formation of black hole and emission of gravitational waves.

    Science.gov (United States)

    Nakamura, Takashi

    2006-12-01

    Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed.

  13. Plasma wave detection in laser spectroscopy and gas chromatography

    International Nuclear Information System (INIS)

    Franzke, J.; Irmer, A. von; Veza, D.; Niemax, K.

    1995-01-01

    Frequency changes of plasma oscillations in low-pressure discharges are used for sensitive detection of atomic or molecular trace gases. Analyte selectivity can be either obtained by resonant laser excitation or by gas chromatography

  14. Laser-generated shock-wave experiments in metals above 1 TPa

    International Nuclear Information System (INIS)

    Trainor, R.J.; Shaner, J.W.; Auerbach, J.M.; Phillion, D.W.

    1978-01-01

    Some initial experiments are described which form part of a new program aimed at significantly extending the range of high pressures and densities which may be explored in laboratory equation-of-state (EOS) experiments. These experiments will utilize high-energy lasers, such as those employed in the Laser Fusion Program at Lawrence Livermore Laboratory (LLL), to generate intense shock waves in materials of interest

  15. Electron plasma waves in CO/sub 2/ laser plasma interactions

    International Nuclear Information System (INIS)

    Baldis, H.A.; Villeneuve, D.M.; Walsh, C.J.

    1984-01-01

    During the past few years, the use of Thomson scattering in CO/sub 2/ laser produced plasmas has permitted the identification and study of electron plasma waves and ion waves, driven by various instabilities in the plasma corona, such as Stimulated Raman Scattering (SRS), two plasmon decay, and Stimulated Brillouin Scattering (SBS). Since these instabilities may coexist in the plasma, the density fluctuations associated with one wave may influence the behaviour of one or more of the other instabilities. The authors discuss the experimental evidence of such effects and, in particular, the consequences of a recent experiment in which the ion waves driven by SBS were observed to adversely affect the production of the electron plasma waves driven by SRS. In that experiment, a strong correlation was observed between the onset of SBS and the disappearance of the electron plasma waves driven by SRS at low densities (n/sub e/ n/sub e/ > 0.05 n/sub c/)

  16. Traveling waves in a free-electron laser with an electromagnetic wiggler

    International Nuclear Information System (INIS)

    Olumi, Mohsen; Maraghechi, B; Rouhani, M H

    2011-01-01

    The propagation of electromagnetic traveling wave in a free-electron laser (FEL) with an electromagnetic wiggler is investigated using the relativistic fluid-Maxwell formulation. By adapting the traveling-wave ansatz, three coupled, nonlinear ordinary differential equations are obtained describing the nonlinear propagation of the coupled wave. These equations may be used to study saturation in FELs. By linearizing the nonlinear equations dispersion relations for the traveling wave are obtained. Numerical solution of the small-signal traveling dispersion relation reveals the coupling of radiation to both slow and fast space-charge waves. It is shown that the traveling wave, which is not a normal mode in a laboratory frame, becomes a normal mode in terms of a transformed variable.

  17. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Fibre lasers; optical microcavities; whispering gallery modes. ... A blueshift in the mode structure was observed with decrease in fibre diameter leading to wide range tunability of the laser emission. ... International School of Photonics, Cochin University of Science & Technology, Cochin 682 022, India ...

  18. Scaling of x-ray emission and ion velocity in laser produced Cu ...

    Indian Academy of Sciences (India)

    Laser plasma; x-ray emission; conversion efficiency; ion velocities. ... fits from this kind of optimization studies are in the fields of x-ray lithography, x-ray lasers etc. .... formula between the x-ray conversion rate versus different parameters of the ...

  19. Evidence for laser emission from the TICT exciplex of coumarin dyes

    International Nuclear Information System (INIS)

    Masilamani, V.

    1987-06-01

    This paper gives confirming evidence for the possibility of super radiant laser emission from the Twisted Internal Charge Transfer (TICT) conformation in exicted state complexation with the solvent, of coumarin family of laser dyes. (author). 6 refs, 1 fig., 2 tabs

  20. Laser-driven shock-wave propagation in pure and layered targets

    International Nuclear Information System (INIS)

    Salzmann, D.; Eliezer, S.; Krumbein, A.D.; Gitter, L.

    1983-01-01

    The propagation properties of laser-driven shock waves in pure and layered polyethylene and aluminum slab targets are studied for a set of laser intensities and pulse widths. The laser-plasma simulations were carried out by means of our one-dimensional Lagrangian hydrodynamic code. It is shown that the various parts of a laser-driven compression wave undergo different thermodynamic trajectories: The shock front portion is on the Hugoniot curve whereas the rear part is closer to an adiabat. It is found that the shock front is accelerated into the cold material till troughly-equal0.8tau (where tau is the laser pulse width) and only later is a constant velocity propagation attained. The scaling laws obtained for the pressure and temperature of the compression wave in pure targets are in good agreement with those published in other works. In layered targets, high compression and pressure were found to occur at the interface of CH 2 on Al targets due to impedance mismatch but were not found when the layers were reversed. The persistence time of the high pressure on the interface in the CH 2 on Al case is long enough relative to the characteristic times of the plasma to have an appreciable influence on the shock-wave propagation into the aluminum layer. This high pressure and compression on the interface can be optimized by adjusting the CH 2 layer thickness

  1. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  2. Direct Emissivity Measurements of Painted Metals for Improved Temperature Estimation During Laser Damage Testing

    Science.gov (United States)

    2014-03-27

    policy or position of the United States Air Force, the Department of Defense, or the United States Government . This material is declared a work of the...U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-14-M-43 DIRECT EMISSIVITY MEASUREMENTS OF PAINTED METALS FOR...Source The laser probe in use for this test is a Daylight Solutions Unicorn II quantum cascade laser operating at 3.77 µm. According to the laser

  3. Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2017-01-01

    Roč. 29, č. 1 (2017), s. 1-10, č. článku 012009. ISSN 1042-346X R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser welding * plasma plume * light emissions * autocorrelation analysis * weld depth Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.492, year: 2016

  4. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-12-01

    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  5. Numerical study of laser-induced blast wave coupled with unsteady ionization processes

    International Nuclear Information System (INIS)

    Ogino, Y; Ohnishi, N; Sawada, K

    2008-01-01

    We present the results of the numerical simulation of laser-induced blast wave coupled with rate equations to clarify the unsteady property of ionization processes during pulse heating. From comparison with quasi-steady computations, the plasma region expands more widely, which is sustained by the inverse-bremsstrahlung since an ionization equilibrium does not establish at the front of the plasma region. The delayed relaxation leads to the rapid expansion of the driving plasma and enhances the energy conversion efficiency from a pulse heating laser to the blast wave

  6. Status of advanced ground-based laser interferometers for gravitational-wave detection

    International Nuclear Information System (INIS)

    Dooley, K L; Akutsu, T; Dwyer, S; Puppo, P

    2015-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA. (paper)

  7. Status of advanced ground-based laser interferometers for gravitational-wave detection

    Science.gov (United States)

    Dooley, K. L.; Akutsu, T.; Dwyer, S.; Puppo, P.

    2015-05-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA.

  8. Experimental realization of millimeter-wave amplification by a sheet beam free electron laser

    International Nuclear Information System (INIS)

    Zhang, Z.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Rodgers, J.; Cheng, S.

    1994-01-01

    We report an observation of millimeter-wave (94 GHz) amplification in a sheet beam, short period, planar wiggler, free electron laser amplifier. The observed gain is about 5 dB for a 530 keV, 4 A beam through a 54 cm wiggler. Wave energy absorption was also observed when the beam energy is off-resonance. Experimental results are in good agreement with numerical simulation. This amplifier configuration has potential for producing equally high output power but at relatively low voltage compared with longer period free electron lasers

  9. Relativistic solitary waves modulating long laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sanchez-Arriaga, G; Siminos, E; Lefebvre, E

    2011-01-01

    This paper discusses the existence of solitary electromagnetic waves trapped in a self-generated Langmuir wave and embedded in an infinitely long circularly polarized electromagnetic wave propagating through a plasma. From a mathematical point of view they are exact solutions of the one-dimensional relativistic cold fluid plasma model with nonvanishing boundary conditions. Under the assumption of travelling wave solutions with velocity V and vector potential frequency ω, the fluid model is reduced to a Hamiltonian system. The solitary waves are homoclinic (grey solitons) or heteroclinic (dark solitons) orbits to fixed points. Using a dynamical systems description of the Hamiltonian system and a spectral method, we identify a large variety of solitary waves, including asymmetric ones, discuss their disappearance for certain parameter values and classify them according to (i) grey or dark character, (ii) the number of humps of the vector potential envelope and (iii) their symmetries. The solutions come in continuous families in the parametric V-ω plane and extend up to velocities that approach the speed of light. The stability of certain types of grey solitary waves is investigated with the aid of particle-in-cell simulations that demonstrate their propagation for a few tens of the inverse of the plasma frequency.

  10. Scalable patterning using laser-induced shock waves

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Kholikov, Khomidkhodza; Li, Peizhen; Ottman, Claire; Sanford, Dylan; Thomas, Zachary; San, Omer; Karaca, Haluk E.; Er, Ali O.

    2018-04-01

    An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the surface. Scanning electron microscope and optical microscope images show that various patterns were obtained on the surface with high fidelity. One-dimensional profile analysis indicates that the depth of the patterned sample initially increases with the laser energy and later levels off. Our simulations of laser irradiation process also confirm that high temperature and high pressure could be generated when the laser energy density of 2 J/cm2 is used.

  11. Research of the elastic waves generated by a pulse laser. Excitation mechanism of elastic waves and application to nondestructive testing; Pulse laser de reikishita danseiha ni kansuru kenkyu. Danseiha reiki no mechanism to hihakai kensa eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering

    1994-07-20

    A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.

  12. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    Science.gov (United States)

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.

  13. Atomic collisions in the presence of laser radiation - Time dependence and the asymptotic wave function

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1982-01-01

    A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.

  14. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhixu; Zheng, Kezhi [State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Yao, Chuanfei; Wang, Shunbin; Qin, Guanshi, E-mail: qings@jlu.edu.cn; Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xiong, Liangming; Luo, Jie; Lv, Dajuan [State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company, Wuhan 430073 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468–8511 (Japan)

    2016-04-28

    We report enhanced upconversion (UC) fluorescence in Tm{sup 3+} doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ∼1050 to ∼2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the {sup 3}H{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ∼4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  15. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  16. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation ... pling, wherein the real part represents diffusive coupling ... knowledge, this is the first time that cosh-Gaussian pro-.

  17. Equatorial noise emissions with quasiperiodic modulation of wave intensity

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Santolík, Ondřej; Hrbáčková, Zuzana; Pickett, J. S.; Cornilleau-Wehrlin, N.

    2015-01-01

    Roč. 120, č. 4 (2015), s. 2649-2661 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH11122 Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves * quasiperiodic modulation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020816/full

  18. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  19. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers

    Science.gov (United States)

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2012-11-01

    We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.

  20. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Gennady Shvets; Nathaniel J. Fisch; Alexander Pukhov

    2001-01-01

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined

  1. Optical phase locking of two infrared continuous wave lasers separated by 100 THz

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du-Burck, F.; Hrabina, Jan; Lours, M.; Chea, E.; Acef, O.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 2936-2939 ISSN 0146-9592 R&D Projects: GA ČR GPP102/11/P820; GA MŠk ED0017/01/01; GA MŠk EE2.4.31.0016; GA MŠk(CZ) LO1212; GA MŠk(CZ) 7AMB14FR040 Institutional support: RVO:68081731 Keywords : Continuous wave lasers * Frequency allocation * Harmonic generation * Laser optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.292, year: 2014

  2. Maximum gravitational-wave energy emissible in magnetar flares

    Science.gov (United States)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (˜1049erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc.MNRAA40035-8711 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 1048-1049erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  3. Maximum gravitational-wave energy emissible in magnetar flares

    International Nuclear Information System (INIS)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-01-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (∼10 49 erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10 48 -10 49 erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  4. Electron Bernstein wave emission from an overdense reversed field pinch plasma

    International Nuclear Information System (INIS)

    Chattopadhyay, P.K.; Anderson, J.K.; Biewer, T.M.; Craig, D.; Forest, C.B.; Harvey, R.W.; Smirnov, A.P.

    2002-01-01

    Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ω pe ∼3ω ce ) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point

  5. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-01-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 ± 1.3%, emissivity reduction 8.2 ± 1.4%, and local suppression 68.5 ± 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10 -5 rad s -1 .

  6. Detection of Fatigue Damage by Using Frequency Attenuation of a Laser Ultrasonic Longitudinal Wave

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    The measurement of fatigue damage in nuclear power plant components is very important to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Ultrasound testing method has a variety of elastic waves, such as a longitudinal wave, a shear wave, a surface wave and a lamb wave. Also we can use various analysis methods, such as a velocity variation and a signal attenuation. Laser ultrasonic testing has attracted attention as a non-contact testing technique. This system consists of a pulse laser to remotely generate ultrasound and a laser interferometer to remotely measure the surface displacement due to the generated ultrasound. This noncontact testing technique has the following advantages over the conventional piezoelectric transducers. Firstly, the inspection system can be remotely operated for a structure in hostile environments, such as in high radioactivity, high temperatures and narrow spaces. Secondly, we can obtain lots of information from the received ultrasonic waveforms because the laser ultrasonic technique does not require fluid couplant which disturbs the ultrasonic waveforms. Thirdly, laser ultrasound has a wideband spectrum and a high spatial resolution. Therefore, the laser ultrasound provides more accurate information for a testing material and has potential for the detection of fatigue damage in various metals composing a nuclear power plant

  7. Applications of Light Amplification by Stimulated Emission of Radiation (Lasers) for Restorative Dentistry

    Science.gov (United States)

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Ajlal, Syed

    2016-01-01

    Light amplification by stimulated emission of radiation (laser) has been used widely in a range of biomedical and dental applications in recent years. In the field of restorative dentistry, various kinds of lasers have been developed for diagnostic (e.g. caries detection) and operative applications (e.g. tooth ablation, cavity preparation, restorations, bleaching). The main benefits for laser applications are patient comfort, pain relief and better results for specific applications. Major concerns for using dental lasers frequently are high cost, need for specialized training and sensitivity of the technique, thereby compromising its usefulness particularly in developing countries. The main aim of this paper is to evaluate and summarize the applications of lasers in restorative dentistry, including a comparison of the applications of lasers for major restorative dental procedures and conventional clinical approaches. A remarkable increase in the use of lasers for dental application is expected in the near future. PMID:26642047

  8. Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth's plasmapause

    Science.gov (United States)

    Pickett, J. S.; Grison, B.; Omura, Y.; Engebretson, M. J.; Dandouras, I.; Masson, A.; Adrian, M. L.; Santolík, O.; Décréau, P. M. E.; Cornilleau-Wehrlin, N.; Constantinescu, D.

    2010-05-01

    The Cluster spacecraft were favorably positioned on the nightside near the equatorial plasmapause of Earth at L ˜ 4.3 on 30 March 2002 to observe electromagnetic ion cyclotron (EMIC) rising tone emissions in association with Pc1 waves at 1.5 Hz. The EMIC rising tone emissions were found to be left-hand, circularly polarized, dispersive, and propagating away from the equator. Their burstiness and dispersion of ˜30s/Hz rising out of the 1.5 Hz Pc1 waves are consistent with their identification as EMIC triggered chorus emissions, the first to be reported through in situ observations near the plasmapause. Along with the expected H+ ring current ions seen at higher energies (>300 eV), lower energy ions (300 eV and less) were observed during the most intense EMIC triggered emission events. Nonlinear wave-particle interactions via cyclotron resonance between the ˜2-10 keV H+ ions with temperature anisotropy and the linearly-amplified Pc1 waves are suggested as a possible generation mechanism for the EMIC triggered emissions.

  9. K-α emission form medium and high-Z materials irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Limpouch, J.; Klimo, O.; Zhavoronkov, N.; Andreev, A.A.

    2006-01-01

    Complete test of publication follows. Fast electrons are created at the target surface during the interaction of high intensity ultra short laser pulses with solids. Fast electrons penetrate deep into the target where they generate K-α and Bremsstrahlung radiation. Generated high brightness K-α pulses offer the prospect of creating a cheap and compact X-ray source, posing a promising alternative to synchrotron radiation, e.g. in medical application and in material science. With an increase in laser intensity, efficient X-ray emission in the multi-keV range with pulse duration shorter than few picoseconds is expected. This short incoherent but monochromatic X-ray emission synchronized with laser pulses may be used for time-resolved measurements. Acceleration of fast electrons, their transport and K-α photon generation and emission from the target surface in both forward and backward directions are studied here numerically. The results are compared to recent experiments studying K-α emission from the front and rear surface of copper foil targets of various thicknesses and for various parameters of the laser plasma interaction. One-dimensional PIC simulations coupled with 3D time-resolved Monte Carlo simulations show that account of ionization processes and of density profile formed by laser ASE emission is essential for reliable explanation of experimental data. While sub-relativistic intensities are optimum for laser energy transformation into K-α emission for medium-Z targets, relativistic laser intensities have to be used for hard X-ray generation in high-Z materials. The cross-section for K-α shell ionization of high-Z elements by electrons increases or remains approximately constant within a factor of two at relativistic electron energies up to electron energies in the 100-MeV range. Moreover, the splitting ratio of K-α photon emission to Auger electron emission is favorable for high-Z materials, and thus efficient K-α emission is possible. In our

  10. Guided Wave Sensing In a Carbon Steel Pipe Using a Laser Vibrometer System

    Science.gov (United States)

    Ruíz Toledo, Abelardo; Salazar Soler, Jordi; Chávez Domínguez, Juan Antonio; García Hernández, Miguel Jesús; Turó Peroy, Antoni

    2010-05-01

    Non-Destructive Evaluation (NDE) techniques have achieved a great development during the last decades as a valuable tool for material characterization, manufacturing control and structural integrity tests. Among these tools, the guided wave technology has been rapidly extended because it reduces inspection time and costs compared to the ordinary point by point testing in large structures, as well as because of the possibility of inspecting under insulation and coating conditions. This fast development has motivated the creation of several inspection and material characterization systems including different technologies which can be combined with this technique. Different measurements systems based on laser techniques have been presented in order to inspect pipes, plates and diverse structures. Many of them are experimental systems of high cost and complexity which combine the employment of a laser for generation of waves in the structure and an interferometer for detection. Some of them employ air-coupled ultrasound generation transducers, with high losses in air and which demand high energy for exciting waves in materials of high stiffness. The combined employment of a commercial vibrometer system for Lamb wave sensing in plates has been successfully shown in the literature. In this paper we present a measurement system based on the combined employment of a piezoelectric wedge transducer and a laser vibrometer to sense guided acoustic waves in carbon steel pipes. The measurement system here presented is mainly compounded of an angular wedge transducer, employed to generate the guided wave and a commercial laser vibrometer used in the detection process. The wedge transducer is excited by means of a signal function generator whose output signal has been amplified with a power signal amplifier. A high precision positioning system is employed to place the laser beam at different points through the pipe surface. The signal detected by the laser vibrometer system is

  11. Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Bravo, Ángel; Delgado, Tomás; Lucena, Patricia; Laserna, J. Javier, E-mail: laserna@uma.es

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) of organic materials is based on the analysis of atomic and ionic emission lines and on a few molecular bands, the most important being the CN violet system and the C{sub 2} Swan system. This paper is focused in molecular emission of LIBS plasmas based on the CN (B{sup 2}Σ–X{sup 2}Σ) band, one of the strongest emissions appearing in all carbon materials when analyzed in air atmosphere. An analysis of this band with sufficient spectral resolution provides a great deal of information on the molecule, which has revealed that valuable information can be obtained from the plume chemistry and dynamics affecting the excitation mechanisms of the molecules. The vibrational emission of this molecular band has been investigated to establish the dependence of this emission on the molecular structure of the materials. The paper shows that excitation/emission phenomena of molecular species observed in the plume depend strongly on the time interval selected and on the irradiance deposited on the sample surface. Precise time resolved LIBS measurements are needed for the observation of distinctive CN emission. For the organic compounds studied, larger differences in the behavior of the vibrational emission occur at early stages after plasma ignition. Since molecular emission is generally more complex than that involving atomic emission, local plasma conditions as well as plume chemistry may induce changes in vibrational emission of molecules. As a consequence, alterations in the distribution of the emissions occur in terms of relative intensities, being sensitive to the molecular structure of every single material. - Highlights: • Vibrational emission of CN species in laser-induced plasmas has been investigated. • Distribution of vibrational emission of CN has been found to be time dependent. • Laser irradiance affects the vibrational distribution of the CN molecules. • Plume chemistry controls the excitation mechanisms of CN

  12. Supersonic Ionization Wave Driven by Radiation Transport in a Short-Pulse Laser-Produced Plasma

    International Nuclear Information System (INIS)

    Ditmire, T.; Gumbrell, E.T.; Smith, R.A.; Mountford, L.; Hutchinson, M.H.

    1996-01-01

    Through the use of an ultrashort (2ps) optical probe, we have time resolved the propagation of an ionization wave into solid fused silica. This ionization wave results when a plasma is created by the intense irradiation of a solid target with a 2ps laser pulse. We find that the velocity of the ionization wave is consistent with radiation driven thermal transport, exceeding the velocity expected from simple electron thermal conduction by nearly an order of magnitude. copyright 1996 The American Physical Society

  13. Supersonic propagation of ionization waves in an underdense, laser-produced plasma

    International Nuclear Information System (INIS)

    Constantin, C.; Back, C.A.; Fournier, K.B.; Gregori, G.; Landen, O.L.; Glenzer, S.H.; Dewald, E.L.; Miller, M.C.

    2005-01-01

    A laser-driven supersonic ionization wave propagating through a millimeter-scale plasma of subcritical density up to 2-3 keV electron temperatures was observed. Propagation velocities initially ten times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a two-dimensional radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat-wave propagation

  14. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  15. Visible laser induced positive ion emissions from NaCl nanoparticles prepared by droplet rapid drying

    International Nuclear Information System (INIS)

    Sun, Mao-Xu; Guo, Deng-Zhu; Xing, Ying-Jie; Zhang, Geng-Min

    2012-01-01

    Highlights: ► NaCl nanoparticles were firstly prepared by heat induced explosion on silicon wafer. ► We found that laser induced ion emissions from NaCl nanoparticles are more prominent. ► We found that water adsorption can efficiently enhance laser induced ion emissions. ► The ultra-photothermal effect in NaCl nanoparticles was observed and explained. - Abstract: A novel convenient way for the formation of sodium chloride (NaCl) nanoparticles on silicon wafer is proposed by using a droplet rapid drying method. The laser induced positive ion emissions from NaCl nanoparticles with and without water treatment is demonstrated by using a laser desorption/ionization time-of-flight mass spectrometer, with laser intensity well below the plasma formation threshold. It is found that the positive ion emissions from NaCl nanoparticles are obviously higher than that from microsize NaCl particles under soft 532 nm laser irradiations, and water adsorption can efficiently enhance the ion emissions from NaCl nanoparticles. The initial kinetic energies of the emitted ions are estimated as 16–17 eV. The synergy of the ultra-thermal effect in nanomaterials, the defect-mediated multiphoton processes, and the existence of intermediate states in NaCl-water interfaces are suggested as the mechanisms.

  16. Study of laser plasma emission from doped targets

    Czech Academy of Sciences Publication Activity Database

    Velardi, L.; Krása, Josef; Velyhan, Andriy; Nassisi, V.

    2012-01-01

    Roč. 83, č. 2 (2012), , "02B911-1"-"02B911-3" ISSN 0034-6748 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : copper * excimer lasers * ion mobility * krypton compounds * laser ablation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.602, year: 2012

  17. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Natalucci, L.

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo Collaboration. The omnidirectional view of the INTEGRAL...... MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW gravitational wave...

  18. Intense plasma wave emissions associated with Saturn's moon Rhea

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Gurnett, D. A.; Jones, G. H.; Schippers, P.; Crary, F. J.; Leisner, J. S.; Hospodarsky, G. B.; Kurth, W. S.; Russell, C. T.; Dougherty, M. K.

    2011-01-01

    Roč. 38, - (2011), L19204/1-L19204/7 ISSN 0094-8276 R&D Projects: GA ČR GAP205/10/2279; GA MŠk(CZ) ME10001; GA MŠk(CZ) LH11122 Institutional research plan: CEZ:AV0Z30420517 Keywords : III RADIO-BURSTS * LANGMUIR-WAVES * ICY MOON * CASSINI * ELECTRONS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.792, year: 2011 http://www.agu.org/pubs/crossref/2011/2011GL049219.shtml

  19. TUMOR-GROWTH DELAY BY LASER-GENERATED SHOCK-WAVES

    NARCIS (Netherlands)

    de Reijke, T. M.; Schamhart, D. H.; Kurth, K. H.; Löwik, C. W.; Donkers, L. H.; Sterenborg, H. J.

    1994-01-01

    The antiproliferative effect of laser-generated shock waves (L-SW) was investigated on a human renal cell carcinoma, RC-8, grown subcutaneously in the nu/nu mouse. The RC-8 is characterized by the syndrome of humoral hypercalcemia of malignancy (HHM) associated with profound cachexia, increase of

  20. Wireless guided wave and impedance measurement using laser and piezoelectric transducers

    International Nuclear Information System (INIS)

    Park, Hyun-Jun; Sohn, Hoon; Yun, Chung-Bang; Chung, Joseph; Lee, Michael M S

    2012-01-01

    Guided-wave- and impedance-based structural health monitoring (SHM) techniques have gained much attention due to their high sensitivity to small defects. One of the popular devices commonly used for guided wave and impedance measurements is a lead zirconate titanate (PZT) transducer. This study proposes a new wireless scheme where the power and data required for PZT excitation and sensing are transmitted via laser. First, a modulated laser beam is wirelessly transmitted to the photodiode connected to a PZT on a structure. Then, the photodiode converts the laser light into an electric signal, and it is applied to the PZT for excitation. The corresponding responses, impedance at the same PZT or guided waves at another PZT, are measured, re-converted into laser light, and wirelessly transmitted back to the other photodiode located in the data interrogator for signal processing. The feasibility of the proposed wireless guided wave and impedance measurement schemes has been examined through circuit analyses and experimentally investigated in a laboratory setup. (paper)

  1. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  2. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  3. Terahertz emission and electromagnetic waves in single crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} structures

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Raphael; Rudau, Fabian; Gross, Boris; Judd, Thomas; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen, Tuebingen (Germany); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Tsujimoto, Manabu [Kyoto University, Kyoto (Japan); Ji, Min; Huang, Ya; Zhou, Xianjing; An, Deyue; Wang, Huabing [National Institute for Materials Science, Tsukuba (Japan); Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Wu, Peihang [Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan)

    2015-07-01

    Josephson Junctions (JJs) offer a natural way to convert a dc voltage into high-frequency electromagnetic radiation. In the high-Tc superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO), JJs form intrinsically, allowing to fabricate stacks of hundreds of junctions easily. Emission can occur at relatively low bias currents but also at larger input power with frequencies from 0.4 to 1 THz. At high bias, a hot spot forms, affecting both the intensity and the linewidth of the radiation. BSCCO mesas are believed to work as a cavity for electromagnetic standing waves, synchronizing all the junctions in the stack. We investigated THz emission and hotspot formation using a combination of transport measurements, electromagnetic wave detection via a superconducting receiver and low temperature scanning laser microscopy.

  4. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  5. Effects of Medium Characteristics on Laser RCS of Airplane with E-Wave Polarization

    Directory of Open Access Journals (Sweden)

    Hosam El-Ocla

    2015-01-01

    Full Text Available Plane wave incidence should be postulated to have an authentic target detection. Practically, the plane wave is incapable usually of keeping its power in the far field especially when propagating through an inhomogeneous medium. Consequently, we assume an incident beam wave with a finite width around the target. In this work, we calculate numerically a laser radar cross section (LRCS of conducting targets having smooth cross sections with inflection points such as airplane in random media. Effects of fluctuations intensity of random media on the LRCS performance are studied in this paper. E-wave polarization (E-wave incidence is considered while the mean target size is approximately twice the wavelength.

  6. Relativistic reversal of the ponderomotive force in a standing laser wave

    International Nuclear Information System (INIS)

    Pokrovsky, A.L.; Kaplan, A.E.

    2005-01-01

    Effect of relativistic reversal of the ponderomotive force (PF), reported earlier for a collinear configuration of electron and laser standing wave [A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett., 95, 053601 (2005)], is studied here theoretically for various types of polarizations of the laser beam. We demonstrated that the collinear configuration, in which the laser wave is linearly polarized with electric field E-vector parallel to the initial electron momentum p-vector 0 , is the optimal configuration for the relativistic reversal. In that case, the transverse PF reverses its direction when the incident momentum is p 0 =mc. The reversal effect vanishes in the cases of circular and linear with E-vector perpendicular p-vector 0 polarizations. We have discovered, however, that the counter-rotating circularly polarized standing waves develop attraction and repulsion areas along the axis of laser, in the laser field whose intensity is homogeneous in that axis, i.e., has no field gradient

  7. Efficacy observation on multiple wave length laser for diabetic retinopathy and central retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Tao Tian

    2014-07-01

    Full Text Available AIM:To observe the efficacy of the multiple wave length laser in treating diabetic retinopathy combined with central retinal vein occlusion. METHODS:Totally 95 cases(100 eyeswith diabetic retinopathy combined with central retinal vein occlusion were treated by multiple wave length laser. Krypton yellow laser was used for macular edema in focal photocoagulation and diffuse photocoagulation. For peripheral retina, krypton green or krypton red laser were used. Visual acuity, slit-lamp biomicroscopy, ophthalmoscopy and fundus fluorescein angiography were performed preoperatively and postoperatively. The patients were followed up for 12 to 48wk. In this study, change in visual acuity and macular edema were observed in both groups, and statistical analysis was performed. RESULTS:The effective rate was 61.2% in diffuse macular edema group and 86.3% in focal macular edema group. The general effective rate of later was higher than the former, while the treatment effect had significant statistical difference(PCONCLUSION: Multiple wave length laser is an effective and safe way to treat diabetic macular edema of diabetic retinopathy combined with central retinal vein occlusion,which is worth widely applying in clinical practice.

  8. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    Science.gov (United States)

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  9. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    Science.gov (United States)

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  10. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  11. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  12. Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse

    International Nuclear Information System (INIS)

    Fukumi, A.; Nishiuchi, M.; Daido, H.; Li, Z.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Hayashi, Y.; Mori, M.; Bulanov, S.V.; Esirkepov, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Nakamura, S.

    2005-01-01

    A study of proton emission from a 3-μm-thick Ta foil target irradiated by p-, s-, and circularly polarized laser pulses with respect to the target plane has been carried out. Protons with energies up to 880 keV were observed in the target normal direction under the irradiation by the p-polarized laser pulse, which yielded the highest efficiency for proton emission. In contrast, s- and circularly polarized laser pulses gave the maximum energies of 610 and 680 keV, respectively. The difference in the maximum energy between the p- and s-polarized cases was associated with the difference between the sheath fields estimated from electron spectra

  13. Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas

    Science.gov (United States)

    Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John

    2014-10-01

    When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  14. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  15. Laser driven shock wave experiments for equation of state studies at megabar pressures

    International Nuclear Information System (INIS)

    Pant, H C; Shukla, M; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 μm wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments

  16. Spatio-temporal evolution of magnetosonic wave in the laser plasma interaction

    International Nuclear Information System (INIS)

    Sharma, R. P.; Singh, Ram Kishor; Sharma, Swati; Tiwary, Prem Pyari; Modi, K. V.; Satsangi, V. R.

    2015-01-01

    This paper presents a theoretical model for the transient response of nonlinear coupling between magnetosonic wave and ion acoustic wave in the overdense plasma. Filamentation of magnetosonic wave has been considered to be responsible for magnetic turbulence during the laser plasma interaction. The ion acoustic wave gets excited due to the ponderomotive force exerted by magnetosonic wave and this ion acoustic wave in turn generates perturbation in the background density in the form of spatial density harmonics. Numerical simulation has been carried out for dimensionless coupled equations of magnetosonic wave and ion acoustic wave; and the results show quite complex localized structures that grow with time. The power spectrum has also been studied which shows that the spectral index follows an approximate scaling of the order of ∼k −2.4 at smaller scales. The data obtained from numerical simulation are used in semi analytical model to better understand the mechanism of nonlinear evolution of magnetosonic wave. The results indicate considerable randomness in the spatial structure of the magnetic field profile which gives sufficient indication of turbulence

  17. Spatio-temporal evolution of magnetosonic wave in the laser plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, Swati, E-mail: swati.sharma704@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Tiwary, Prem Pyari, E-mail: prempyari@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Department of Physics and Computer Science, Dayal Bagh Educational Institute(Deemed University), DayalBagh, Agra 282005 (India); Modi, K. V., E-mail: kvmodi.iitd@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India); Satsangi, V. R. [Department of Physics and Computer Science, Dayal Bagh Educational Institute(Deemed University), DayalBagh, Agra 282005 (India)

    2015-05-15

    This paper presents a theoretical model for the transient response of nonlinear coupling between magnetosonic wave and ion acoustic wave in the overdense plasma. Filamentation of magnetosonic wave has been considered to be responsible for magnetic turbulence during the laser plasma interaction. The ion acoustic wave gets excited due to the ponderomotive force exerted by magnetosonic wave and this ion acoustic wave in turn generates perturbation in the background density in the form of spatial density harmonics. Numerical simulation has been carried out for dimensionless coupled equations of magnetosonic wave and ion acoustic wave; and the results show quite complex localized structures that grow with time. The power spectrum has also been studied which shows that the spectral index follows an approximate scaling of the order of ∼k{sup −2.4} at smaller scales. The data obtained from numerical simulation are used in semi analytical model to better understand the mechanism of nonlinear evolution of magnetosonic wave. The results indicate considerable randomness in the spatial structure of the magnetic field profile which gives sufficient indication of turbulence.

  18. Scanning laser vibrometer measurement of guided waves in rails

    CSIR Research Space (South Africa)

    Loveday, PW

    2012-04-01

    Full Text Available Guided wave based inspection and monitoring systems for railway tracks operate at frequencies where as many as 40 modes of propagation may exist. During the development of such systems it is advantageous to be able to measure the amplitude...

  19. Virgo: a laser interferometer to detect gravitational waves

    NARCIS (Netherlands)

    Accadia, T.; van den Brand, J.F.J.; Bulten, H.J.; Ketel, T.J.; van der Voet, H.; Mul, F.A.; Rabeling, D.S.

    2012-01-01

    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the

  20. Propagation of bulk longitudinal waves in thin films using laser ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Young [Dept. of Mechanical Engineering, Dong-eui University, Busan (Korea, Republic of)

    2016-08-15

    This paper presents the investigation of the propagation behavior of bulk longitudinal waves generated by an ultrafast laser system in thin films. A train of femtosecond laser pulses was focused onto the surface of a 150-nm thick metallic (chromium or aluminum) film on a silicon substrate to excite elastic waves, and the change in thermoreflectance at the spot was monitored to detect the arrival of echoes from the film/substrate interface. The experimental results show that the film material characteristics such as the wave velocity and Young's modulus can be evaluated through curve-fitting in numerical solutions. The material properties of nanoscale thin films are difficult to measure using conventional techniques. Therefore, this research provides an effective method for the nondestructive characterization of nanomaterials.

  1. Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation

    International Nuclear Information System (INIS)

    Tanabe, M.; Nishimura, H.; Fujioka, S.; Nagai, K.; Iwamae, A.; Ohnishi, N.; Fournier, K.B.; Girard, F.; Primout, M.; Villette, B.; Tobin, M.; Mima, K.

    2008-01-01

    We have observed supersonic heat wave propagation in a low-density aerogel target (ρ ∼ 3.2 mg/cc) irradiated at the intensity of 4 x 10 14 W/cm 2 . The heat wave propagation was measured with a time-resolved x-ray imaging diagnostics, and the results were compared with simulations made with the two-dimensional radiation-hydrodynamic code, RAICHO. Propagation velocity of the ionization front gradually decreased as the wave propagates into the target. The reason of decrease is due to increase of laser absorption region as the front propagates and interplay of hydrodynamic motion and reflection of laser propagation. These features are well reported with the simulation

  2. Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Hyeok; Jeon, Jun Young; Kim, Du Hwan; Park, Gyuhae [Chonnam Nat’l Univ., Gwangju (Korea, Republic of); Kang, To; Han, Soon Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

  3. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    International Nuclear Information System (INIS)

    Fang, J; Hong, Y J; Li, Q; Huang, H

    2011-01-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  4. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.

    Science.gov (United States)

    Mickadeit, Fritz K; Berniolles, Sandrine; Kemp, Helen R; Tong, William G

    2004-03-15

    Nonlinear laser wave mixing in a common graphite furnace atomizer is presented as a zeptomole-level, sub-Doppler, high-resolution atomic absorption spectrophotometric method. A nonplanar three-dimensional wave-mixing optical setup is used to generate the signal beam in its own space. Signal collection is efficient and convenient using a template-based optical alignment. The graphite furnace atomizer offers advantages including fast and convenient introduction of solid, liquid, or gas analytes, clean atomization environment, and minimum background noise. Taking advantage of the unique features of the wave-mixing optical method and those of the graphite furnace atomizer, one can obtain both excellent spectral resolution and detection sensitivity. A preliminary concentration detection limit of 0.07 parts-per-quadrillion and a preliminary mass detection limit of 0.7 ag or 8 zmol are determined for rubidium using a compact laser diode as the excitation source.

  5. Time-space distribution of laser-induced plasma parameters and its influence on emission spectra of the laser plumes

    International Nuclear Information System (INIS)

    Ershov-Pavlov, E.A.; Katsalap, K.Yu.; Stepanov, K.L.; Stankevich, Yu.A.

    2008-01-01

    A physical model is developed accounting for dynamics and radiation of plasma plumes induced by nanosecond laser pulses on surface of solid samples. The model has been applied to simulate emission spectra of the laser erosion plasma at the elemental analysis of metals using single- and double-pulse excitation modes. Dynamics of the sample heating and expansion of the erosion products are accounted for by the thermal conductivity and gas dynamic equations, respectively, supposing axial symmetry. Using the resulting time-space distributions of the plasma parameters, emission spectra of the laser plumes are evaluated by solving the radiation transfer equation. Particle concentration in consecutive ionization stages is described by the Saha equation in the Debye approximation. The population of excited levels is determined according to Boltzmann distribution. Local characteristics determining spectral emission and absorption coefficients are obtained point-by-point along an observation line. Voigt spectral line profiles are considered with main broadening mechanisms taken into account. The plasma dynamics and plume emission spectra have been studied experimentally and by the model. A Q-switched Nd:YAG laser at 1064 nm wavelength has been used to irradiate Al sample with the pulses of 15 ns and 50 mJ duration and energy, respectively. It has resulted in maximum power density of 0.8 MW/cm 2 on the sample surface. The laser plume emission spectra have been recorded at a side-on observation. Problems of the spectra contrast and of the elemental analysis efficiency are considered relying on a comparative study of the measurement and simulation results at the both excitation modes

  6. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  7. Gravitational Waves versus X and Gamma Ray Emission in a Short Gamma-Ray Burst

    OpenAIRE

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, Remo

    2012-01-01

    The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst, GRB 090227B, allows to give an estimate of the gravitational waves versus the X and Gamma-ray emission in a short gamma-ray burst.

  8. Two-dimensional studies of electron Bernstein Wave Emission in MAST

    NARCIS (Netherlands)

    Shevchenko, V.F.; Bock, de M.F.M.; Freethy, S. J.; Saveliev, A. N.; Vann, R.G.L.

    2011-01-01

    Angular scanning of electron Bernstein wave emission (EBE) has been conducted in MAST. From EBE measurements over a range of viewing angles, the angular position and orientation of the B-X-O mode conversion (MC) window can be estimated, giving the pitch angle of the magnetic field in the MC layer.

  9. Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime

    Science.gov (United States)

    Kucherik, A. O.; Kutrovskaya, S. V.; Arakelyan, S. M.; Ryabchikov, Y. V.; Al-Kattan, A.; Kabashin, A. V.; Itina, T. E.

    2016-03-01

    Gold nanoparticles (Au NPs) attract particular attention because of their unique size-dependent chemical, physicochemical and optical properties and, hence, their potential applications in catalysis, nanoelectronics, photovoltaics and medicine. In particular, laser-produced colloidal nanoparticles are not only biocompatible, but also reveal unique chemical properties. Different laser systems can be used for synthesis of these colloids, varying from continuous wave (CW) to ultra-short femtosecond lasers. The choice of an optimum laser system is still a challenge in application development. To bring more light at this issue, we investigate an influence of laser parameters on nanoparticle formation from a gold target immersed in deionized water. First, an optical diagnostics of laser-induced hydrodynamic processes taking place near the gold surface is performed. Then, gold nanoparticle colloids with average particle sizes smaller than 10 nm and a very narrow dispersion are shown to be formed by CW laser ablation. The obtained results are compared with the ones obtained by using the second harmonics and with previous results obtained by using femtosecond laser systems.

  10. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    International Nuclear Information System (INIS)

    Kido, H; Takahashi, M; Tani, J; Abe, N; Tsukamoto, M

    2011-01-01

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 μm in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10 5 Ωcm to 3.2x10 -1 Ωcm at 56 W, 2.8x10 -1 Ωcm at 91 W, and 2.0x10 -1 Ωcm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10 17 cm -3 at 56 W, 7.2x10 17 cm -3 at 91 W, and 1.9x10 18 cm -3 at 126 W.

  11. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kido, H; Takahashi, M; Tani, J [Electronic Materials Research Division, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Abe, N; Tsukamoto, M, E-mail: kido@omtri.or.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-05-15

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 {mu}m in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10{sup 5} {Omega}cm to 3.2x10{sup -1} {Omega}cm at 56 W, 2.8x10{sup -1} {Omega}cm at 91 W, and 2.0x10{sup -1} {Omega}cm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10{sup 17} cm{sup -3} at 56 W, 7.2x10{sup 17} cm{sup -3} at 91 W, and 1.9x10{sup 18} cm{sup -3} at 126 W.

  12. Diode-pumped continuous-wave blue laser operation of Nd:GGG at 467.0, 467.7, and 468.5 nm

    International Nuclear Information System (INIS)

    Xu, B; Camy, P; Doualan, J L; Braud, A; Moncorgé, R; Cai, Z P; Brenier, A

    2012-01-01

    Intra-cavity frequency doubling of continuous-wave (CW) laser emission on the quasi-three level ( 4 F 3/2 → 4 I 9/2 ) laser transition of Nd 3+ in Nd:GGG is reported by using a three-mirror folded resonator. The thermal lens experienced by the optically-pumped Nd:GGG laser crystal is measured as a function of the absorbed pump power and compared to that found, in the same conditions, in the case of Nd:YAG. Results are interpreted by using a simple model accounting for the absorbed pump power and the thermo-mechanical properties of each laser crystal. Diode-pumped blue laser operation is achieved, for the first time, at 467.0 and 468.5 nm with output powers of 230 and 450 mW, respectively. Simultaneous laser operation resulting both from frequency-doubling and frequency summing at the three 467.1, 467.7, and 468.1 nm laser wavelengths is also obtained with a total output power of 60 mW

  13. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    Science.gov (United States)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick

  14. Blackbody Emission from Laser Breakdown in High-Pressure Gases

    Science.gov (United States)

    Bataller, A.; Plateau, G. R.; Kappus, B.; Putterman, S.

    2014-08-01

    Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities—in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.

  15. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  16. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  17. Experimental development of a millimeter wave free electron laser

    International Nuclear Information System (INIS)

    Radack, D.J.; Bidwell, S.W.; Antonsen, T.M. Jr.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Rodgers, J.; Zhang, Z.X.

    1990-01-01

    A 1 MW (cw), millimeter wave FEL (λ 3 ∼ 0.5 mm)is currently under development with an application for heating fusion plasmas. Two salient features of the FEL are the use of a short-period wiggler ell w ≤ 10 mm electromagnet and a mildly relativistic (E beam ≤ 1 MeV) sheet electron beam. The FEL has been designed to operate in the high-gain regime and uses a tapered wiggler. The wiggler provides beam focusing as well as the magnetostatic pump wave. The effectiveness of wiggler focusing is being investigated. Planned experiments will address the critical issues of beam interception and stable single-mode operation. 12 refs., 1 tab

  18. Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dingke, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Chen, Shijian, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com; Huang, Yingzhou; Zhang, Zhen [School of Physics, Chongqing University, Chongqing 401331 (China); Wang, Yanping; Ma, Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-01-14

    Optical losses associated with the metallic contacts necessary for charge injection are an obstacle to the development of electrically pumped organic lasers. In this work, we show that it is possible to overcome these losses by introducing surface plasmons (SPs) in a distributed feedback laser to enhance the lasing emission. We perform a detailed study of the SPs influence on the lasing emission. We experimentally show that enhanced lasing emission has been successfully achieved in the presence of a metal electrode. The laser emission is strongly dependent on the thickness of Ag layer. By optimizing the thickness of Ag layer, surface-plasmon-enhanced lasing emission has been achieved with much reduced thresholds and higher intensity. When the thickness of the Ag layer increases to 50 nm, the device exhibits ten-fold emission intensity and a fifth of excitation threshold comparing with Ag-free one. The finite-difference time-domain (FDTD) results show that large field intensity is built at the 4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran:/poly(9-vinylcarbazole)Ag interface, which could lead to a strong coupling between lasing and SPs, and consequently a much enhanced laser emission at the photon energy of around 2.02 eV (615 nm). Our FDTD simulations gave an explanation of the effects of the SPs on lasing operation in the periodic structures. The use of SPs would lead to a new class of highly efficient solid-state laser sources and provide a new path to achieve electrically pumped organic lasers.

  19. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Science.gov (United States)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  20. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    Directory of Open Access Journals (Sweden)

    A. Castellano

    2017-06-01

    Full Text Available We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001 substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm−2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  1. Electronic defect levels in continuous wave laser annealed silicon metal oxide semiconductor devices

    Science.gov (United States)

    Cervera, M.; Garcia, B. J.; Martinez, J.; Garrido, J.; Piqueras, J.

    1988-09-01

    The effect of laser treatment on the bulk and interface states of the Si-SiO2 structure has been investigated. The annealing was performed prior to the gate metallization using a continuous wave Ar+ laser. For low laser powers the interface state density seems to decrease slightly in comparison with untreated samples. However, for the highest irradiating laser powers a new bulk level at 0.41 eV above the valence band with concentrations up to 1015 cm-3 arises probably due to the electrical activation of the oxygen diluted in the Czochralski silicon. Later postmetallization annealings reduce the interface state density to values in the 1010 cm-2 eV-1 range but leave the concentration of the 0.41-eV center nearly unchanged.

  2. Continuous-wave ceramic Nd:YAG laser at 1123 nm

    International Nuclear Information System (INIS)

    Zhang, S S; Wang, Q P; Zhang, X Y; Cong, Z H; Fan, S Z; Liu, Z J; Sun, W J

    2009-01-01

    Ceramic Nd:YAG (cNd:YAG) materials are employed to generate 1123-nm laser. A fiber-coupled continuous-wave (CW) 808-nm diode laser is used as the pumping source. With an incident diode power of 26.1 W, a CW output power of up to 10.8 W is obtained with a 10-mm-long ceramic Nd:YAG rod (1.0 at.%-Nd-doped). The conversion efficiency from diode power to 1123-nm laser power is 41.4%. The laser performance of another 10-mm-long cNd:YAG rod with a Nd-doping concentration of 0.6 at.% is studied as a comparison

  3. Photonic synthesis of continuous‐wave millimeter‐wave signals using a passively mode‐locked laser diode and selective optical filtering

    DEFF Research Database (Denmark)

    Acedo, P.; Carpintero, G.; Criado, A.R.

    2012-01-01

    We report a photonic synthesis scheme for continuous wave millimeter‐wave signal generation using a single passively mode‐locked laser diode (PMLLD), optical filtering and photomixing in a fast photodiode.The phase noise of the photonically synthesized signals is evaluated and inherits...

  4. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  5. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  6. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    Science.gov (United States)

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  7. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

    Science.gov (United States)

    Gramajo, A. A.; Della Picca, R.; López, S. D.; Arbó, D. G.

    2018-03-01

    A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky’s theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  8. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    International Nuclear Information System (INIS)

    Diot, G; Walaszek, H; Kouadri-David, A; Guégan, S; Flifla, J

    2014-01-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave

  9. Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction

    Science.gov (United States)

    Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan

    2017-10-01

    Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins

    International Nuclear Information System (INIS)

    Ecault, Romain; Touchard, Fabienne; Boustie, Michel; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Voillaume, Hubert

    2015-01-01

    In this work, original shock experiments are presented. Laser-induced shock and shear wave propagations have been observed in an epoxy resin, in the case of femtosecond laser irradiation. A specific time-resolved shadowgraphy setup has been developed using the photoelasticimetry principle to enhance the shear wave observation. Shear waves have been observed in epoxy resin after laser irradiation. Their propagation has been quantified in comparison with the main shock propagation. A discussion, hinging on numerical results, is finally given to improve understanding of the phenomenon. (paper)

  11. Comparative study of acute lateral skin damage during radio wave and laser exposure

    Directory of Open Access Journals (Sweden)

    Dubensky V.V.

    2017-09-01

    Full Text Available The purpose was to study the depth and nature of the zones of thermal damage to the skin under radio wave and laser skin dissection during experiment. Material and Methods. The model of acute thermal damage was full-liner skin wounds of 20 nonlinear rats that were divided into 2 groups and operated by different methods. In the 1st group, the incisions were made by the apparatus of radio wave surgery (Surgitron DF S5, in the 2nd group the animals were operated with a laser surgical apparatus. The magnitude and structure of the lateral thermal damage was evaluated when analyzing the biopsy material. Results. During the study of experimental wounds, the extent of carbonation in the first group (operated with Surgitron DF S5 was 11.56±3.056 urn, coagulation necrosis 116.5±26.78 urn, and the hyper-thermiazone 148.42±60.171 urn. In the group of animals operated with a laser apparatus, the carbonization zone was 22.58±6.62 urn, the coagulation necrosis zone was 331.1±79.08 urn, and the hyperthermia extent was 376.2±53.27 urn. Conclusion. A comparative study of lateral skin damage in radio wave and laser skin dissection revealed a deeper thermal change in the skin and an increase in the extent of thermally altered structures under laser action: the carbonization zone was larger than for radio waves by 11.02 urn, coagulation necrosis by 214.6 urn, and the hyperthermia zone by 227.78 urn.

  12. Space- and time-resolved diagnostics of soft x-ray emission from laser plasmas

    International Nuclear Information System (INIS)

    Richardson, M.C.; Jaanimagi, P.A.; Chen, H.

    1988-01-01

    The analysis of soft x-ray emission from plasmas created by intense short-wavelength laser radiation can provide much useful information on the density, temperature and ionization distribution of the plasma. Until recently, limitations of sensitivity and the availability of suitable x-ray optical elements have restricted studies of soft x-ray emission from laser plasmas. In this paper, the authors describe novel instrumentation which provides high sensitivity in the soft x-ray spectrum with spatial and temporal resolution in the micron and picosecond ranges respectively. These systems exploit advances made in soft x-ray optic and electro-optic technology. Their application in current studies of laser fusion, x-ray lasers, and high density atomic physics are discussed

  13. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  14. Sub-wavelength patterning of organic monolayers via nonlinear processing with continuous-wave lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Mareike; Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultaet fuer Chemie, Universitaet Duisburg-Essen, 45117 Essen (Germany); CeNIDE-Center for Nanointegration Duisburg-Essen, 47048 Duisburg (Germany); NETZ-NanoEnergieTechnikZentrum, 47048 Duisburg (Germany)

    2010-12-15

    In recent years, nonlinear processing with continuous-wave lasers has been demonstrated to be a facile means of rapid nanopatterning of organic monolayers down to the sub-100 nm range. In this study, we report on laser patterning of thiol-based organic monolayers with sub-wavelength resolution. Au-coated silicon substrates are functionalized with 1-hexadecanethiol. Irradiation with a focused beam of an Ar{sup +} laser operating at {lambda}=514 nm allows one to locally remove the monolayer. Subsequently, the patterns are transferred into the Au film via selective etching in a ferri-/ferrocyanide solution. Despite a 1/e{sup 2} spot diameter of about 2.8 {mu}m, structures with lateral dimensions down to 250 nm are fabricated. The underlying nonlinear dependence of the patterning process on laser intensity is traced back to the interplay between the laser-induced transient local temperature rise and the thermally activated desorption of the thiol molecules. A simple thermokinetic analysis of the data allows us to determine the effective kinetic parameters. These results complement our previous work on photothermal laser patterning of ultrathin organic coatings, such as silane-based organic monolayers, organo/silicon interfaces and supported membranes. A general introduction to nonlinear laser processing of organic monolayers is presented.

  15. Laser Cutting of Carbon Fiber Reinforced Plastics - Investigation of Hazardous Process Emissions

    Science.gov (United States)

    Walter, Juergen; Hustedt, Michael; Staehr, Richard; Kaierle, Stefan; Jaeschke, Peter; Suttmann, Oliver; Overmeyer, Ludger

    Carbon fiber reinforced plastics (CFRP) show high potential for use in lightweight applications not only in aircraft design, but also in the automotive or wind energy industry. However, processing of CFRP is complex and expensive due to their outstanding mechanical properties. One possibility to manufacture CFRP structures flexibly at acceptable process speeds is high-power laser cutting. Though showing various advantages such as contactless energy transfer, this process is connected to potentially hazardous emission of respirable dust and organic gases. Moreover, the emitted particles may be fibrous, thus requiring particular attention. Here, a systematic analysis of the hazardous substances emitted during laser cutting of CFRP with thermoplastic and thermosetting matrix is presented. The objective is to evaluate emission rates for the total particulate and gaseous fractions as well as for different organic key components. Furthermore, the influence of the laser process conditions shall be assessed, and first proposals to handle the emissions adequately are made.

  16. Strong shock wave and areal mass oscillations associated with impulsive loading of planar laser targets

    International Nuclear Information System (INIS)

    Velikovich, A.L.; Schmitt, A.J.; Metzler, N.; Gardner, J.H.

    2003-01-01

    When a rippled surface of a planar target is irradiated with a short (subnanosecond) laser pulse, the shock wave launched into the target and the mass distribution of the shocked plasma will oscillate. These oscillations are found to be surprisingly strong compared, for example, to the case when the laser radiation is not turned off but rather keeps pushing the shock wave into the target. Being stronger than the areal mass oscillations due to ablative Richtmyer-Meshkov instability and feedout in planar targets, which have recently been observed at the Naval Research Laboratory (NRL) [Aglitskiy et al., Phys. Plasmas 9, 2264 (2002)], these oscillations should therefore be directly observable with the same diagnostic technique. Irradiation of a target with a short laser pulse represents a particular case of an impulsive loading, a fast release of finite energy in a thin layer near the surface of a target. Renewed interest to the impulsive loading in the area of direct-drive laser fusion is due to the recent proposals of using a short pulse prior to the drive pulse to make the target more resistant to laser imprint and Rayleigh-Taylor growth. Impulsive loading produces a shock wave that propagates into the target and is immediately followed by an expansion wave, which gradually reduces the shock strength. If the irradiated surface is rippled, then, while the shock wave propagates through the target, its modulation amplitude grows, exceeding the initial ripple amplitude by a factor of 2 or more. The oscillating areal mass reaches the peak values that exceed the initial mass modulation amplitude (density times ripple height) by a factor of 5-7 or more, and reverses its phase several times after the laser pulse is over. The oscillatory growth is more pronounced in fluids with higher shock compressibility and is probably related to the Vishniac's instability of a blast wave. Frequency of the oscillations is determined by the speed of sound in the shocked material, and

  17. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  18. Emission characteristics of laser and superluminescent diodes with a gradient-index waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, A.E.; Garmash, I.A.; Goldobin, I.S.; Eliukhin, V.A.; Pak, G.T.

    1987-05-01

    A study is made of the emission characteristics of laser and superluminescent diodes with gradient-index waveguides based on Al(x)Ga(1-x)As solid solutions, operating in the CW mode at room temperature. The coupling coefficients for a single-mode fiber are 25 and 18 percent for laser and superluminescent diodes, respectively, when an interface device consisting of three microlenses is used. 6 references.

  19. Direct isotope ratio measurement of uranium metal by emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Pietsch, W.; Petit, A.; Briand, A.

    1995-01-01

    The method of Optical Emission Spectrometry on a Laser-Produced Plasma (OES/LPP) at reduced pressure has been studied for the determination of the uranium isotope ratio ( 235 U/ 238 U). Spectral profiles of the investigated transition U-II 424.437 nm show the possibility to obtain an isotopic spectral resolution in a laser-produced plasma under exactly defined experimental conditions. Spectroscopic data and results are presented. (author)

  20. Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser

    Czech Academy of Sciences Publication Activity Database

    Dzelzainis, T.W.J.; Chalupský, Jaromír; Fajardo, M.; Fäustlin, R.; Heimann, P.A.; Hájková, Věra; Juha, Libor; Jurek, Karel; Khattak, F.Y.; Kozlová, Michaela; Krzywinski, J.; Lee, R. W.; Nagler, B.; Nelson, A.J.; Rosmej, F.B.; Soberierski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S.M.; Wark, J. S.; Whitcher, T.; Riley, D.

    2010-01-01

    Roč. 6, č. 1 (2010), 109-112 ISSN 1574-1818 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100521 Keywords : XUV emission spectroscopy * free-electron laser * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.206, year: 2010

  1. Numerical Analysis on Thermal Non-Equilibrium Process of Laser-Supported Detonation Wave in Axisymmetric Nozzle

    International Nuclear Information System (INIS)

    Shiraishi, Hiroyuki

    2008-01-01

    Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO 2 gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method, TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified

  2. 532 nm continuous wave mode-locked Nd:GdVO4 laser with SESAM

    International Nuclear Information System (INIS)

    Li, L; Liu, J; Liu, M; Liu, S; Chen, F; Wang, W; Wang, Y

    2009-01-01

    We obtain continuous wave mode-locked Nd:GdVO 4 -KTP laser with a SESAM. This is the first report of CW mode-locked Nd:GdVO 4 -KTP laser with a SESAM to our knowledge. 396 mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM

  3. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    Science.gov (United States)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  4. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    Science.gov (United States)

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  5. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  6. Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region

    International Nuclear Information System (INIS)

    Schubert, G.; Walterscheid, R.L.; Hickey, M.P.

    1991-01-01

    The theory of gravity wave-driven fluctuations in the OH nightglow from an extended source region is generalized to account for effects of eddy kinematic viscosity v and eddy thermal diffusivity κ. In the nondiffusive case, the amplitudes and phases of vertically integrated normalized intensity (δI)/(bar I) and temperature (δT 1 )/(bar T 1 ) perturbations and vertically integrated Krassovsky's ratio (η) as functions of period are influenced by the upper limit of vertical integration of the extended source, especially at long periods when vertical wavelengths γ v are small. The effects, which include oscillations in (δT)/(bar I), (δT 1 )/(bar T 1 ), and (η), particularly at long periods, are due to constructive and destructive interference of nightglow signals from vertically separated levels of the OH emitting region that occur when γ v is comparable to or smaller than the thickness of the main emission region. The sensitivity of these ratios to the upper limit of vertical integration occurs because of the relatively small rate of decay of the intensity of OH emission with height above the peak emission level and the exponential growth with altitude of nondissipative gravity waves. Because eddy diffusion increases γ v , especially at long periods, and reduces wave growth with height compared with the case v = κ = 0, inclusion of eddy diffusion removes the sensitivity of (η) and the other ratios ot the maximum height of vertical integration. It is essential to account for both eddy diffusion and emission from the entire vertically extended emission region to correctly predict (η), (δI)/(bar I), and (δT 1 )/(bar T 1 ) at long gravity wave periods

  7. Laser-driven Mach waves for gigabar-range shock experiments

    Science.gov (United States)

    Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-10-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Welding induced residual stress evaluation using laser-generated Rayleigh waves

    Science.gov (United States)

    Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles

    2018-04-01

    Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.

  9. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Hidetoshi Nakanishi

    2015-11-01

    Full Text Available A laser terahertz emission microscope (LTEM can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL, photoluminescence (PL, and laser beam induced current (LBIC, as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  10. X ray emission: a tool and a probe for laser - clusters interaction; L'emission X: un outil et une sonde pour l'interaction laser - agregats

    Energy Technology Data Exchange (ETDEWEB)

    Prigent, Ch

    2004-12-01

    In intense laser-cluster interaction, the experimental results show a strong energetic coupling between radiation and matter. We have measured absolute X-ray yields and charge state distributions under well control conditions as a function of physical parameters governing the interaction; namely laser intensity, pulse duration, wavelength or polarization state of the laser light, the size and the species of the clusters (Ar, Kr, Xe). We have highlighted, for the first time, an intensity threshold in the X-ray production very low ({approx} 2.10{sup 14} W/cm{sup 2} for a pulse duration of 300 fs) which can results from an effect of the dynamical polarisation of clusters in an intense electric field. A weak dependence with the wavelength (400 nm / 800 nm) on the absolute X-ray yields has been found. Moreover, we have observed a saturation of the X-ray emission probability below a critical cluster size. (author)

  11. Evidence for four- and three-wave interactions in solar type III radio emissions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2013-08-01

    of the oppositely propagating up- and down-shifted daughter Langmuir waves excited by the OTSI probably is the emission mechanism of the second harmonic radiation, and (3 the Langmuir collapse follows the route of OTSI in some of the type III radio bursts.

  12. Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Ju, L; Grass, S; Zhao, C; Degallaix, J; Blair, D G

    2006-01-01

    High frequency parametric instabilities in optical cavities are radiation pressure induced interactions between test mass mechanical modes and cavity optical modes. The parametric gain depends on the cavity power and the quality factor of the test mass internal modes (usually in ultrasonic frequency range), as well as the overlap integral for the mechanical and optical modes. In advanced laser interferometers which require high optical power and very low acoustic loss test masses, parametric instabilities could prevent interferometer operation if not suppressed. Here we review the problem of parametric instabilities in advanced detector configurations for different combinations of sapphire and fused silica test masses, and compare three methods for control or suppression of parametric instabilities-thermal tuning, surface damping and active feedback

  13. Decay of a laser generated shock wave in an aluminium target

    International Nuclear Information System (INIS)

    Werdiger, M.

    1993-09-01

    When a shock wave arrives at the near surface of a solid material, a radical and fast change occurs in the reflection properties of the material. The phenomenon is used in the present work in order to develop a new way to measure the transit time of a shock wave in a target. A 10 milliwatt He:Ne laser is directed toward the rear surface of the target. The reflected beam arrives at a photo-diode with a fast rise time of 150 psec which detects the instant of the change in the reflection. This technique, called 'continuous back lightning', is used in experiments with aluminium foil thickness in the range of 40μm ≤x≥ 1000μm. The shock wave is induced by a laser pulse of an intensity of 3*10 13 W/cm 2 . The results show two main physical regimes: in the first one 40μ ≤x≥ 210μm, there is a constant shock wave velocity which in our experiments was measured to be (12.81±0.67)km/s. In the second range of the thickness where 300μm there is a decay of the shock velocity. For x ≥ 210μm the geometry is one dimensional for our experimental conditions, while for x ≥ 300μm the 1-D geometry changes to 2 dimensional (2-D) geometry. The 2-D shock wave decay asymptotically (x→∞ to an acoustic wave. shock wave is described by a pressure scaling as x -n (n is a positive constant). The phenomenological equation of the state is taken to be P=A**u s + B*u s 2 +Bu s , where P is the pressure, u s - the shock velocity, A and B are constants. Applying our experimental results to the solution of the differential equation in this model A*x 2 ± B*x=C*x -n yields a value of n in the range 3.16 ≤n≥ 3.51. This pressure scaling law agrees with the self-similar solution of a concentrated impact on a surface between two media. This situation is well simulated by the laser deposition energy on a metal surface. In the experiment a 5% accuracy is achieved. Such a good accuracy has not been achieved so far in a laser induced shock-wave measurements in solids. (author). 52 refs

  14. The matter-wave laser interferometer gravitation antenna (MIGA: New perspectives for fundamental physics and geosciences

    Directory of Open Access Journals (Sweden)

    Canuel B.

    2014-01-01

    Full Text Available We are building a hybrid detector of new concept that couples laser and matter-wave interferometry to study sub Hertz variations of the strain tensor of space-time and gravitation. Using a set of atomic interferometers simultaneously manipulated by the resonant optical field of a 200 m cavity, the MIGA instrument will allow the monitoring of the evolution of the gravitational field at unprecedented sensitivity, which will be exploited both for geophysical studies and for Gravitational Waves (GWs detection. This new infrastructure will be embedded into the LSBB underground laboratory, ideally located away from major anthropogenic disturbances and benefitting from very low background noise.

  15. Initial experiment of focusing wiggler of MM wave Free Electron Laser on LAX-1

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Maebara, Sunao; Watanabe, Akihiko; Kishimoto, Yasuaki; Nagashima, Takashi; Maeda, Hikosuke; Shiho, Makoto; Oda, Hisako; Kawasaki, Sunao.

    1991-03-01

    Initial results of Free Electron laser (FEL) Experiment in the mm wave region are presented. The experiment is carried out using a induction linac system (LAX-1: Large current Accelerator Experiment) of E b = 1 MeV, Ib = 1 ∼ 3 kA. The wiggler of FEL is composed of the curved surface magnets arrays (focusing wiggler), which is found to be effective for a transport of low energy and high current beam through the wiggler. The superradiance of the mm wave region (30 GHz ∼ 40 GHz) is observed. The growth rate of this radiation is 0.42 dB/cm. (author)

  16. The gravitational wave emission from white dwarf interactions in globular clusters

    International Nuclear Information System (INIS)

    Loren-Aguilar, P; Garcia-Berro, E; Lobo, J A; Isern, J

    2009-01-01

    In the dense central regions of globular clusters close encounters of two white dwarfs are relatively frequent. The estimated frequency is one or more strong encounters per star in the lifetime of the cluster. Such encounters should be then potential sources of gravitational wave radiation. Thus, it is foreseeable that these collisions could be either individually detected by LISA or they could contribute significantly to the background noise of the detector. We compute the pattern of gravitational wave emission from these encounters for a sufficiently broad range of system parameters, namely the masses, the relative velocities and the distances of the two white dwarfs involved in the encounter.

  17. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    Science.gov (United States)

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  18. Laser-Based Diagnostic Measurements of Low Emissions Combustor Concepts

    Science.gov (United States)

    Hicks, Yolanda R.

    2011-01-01

    This presentation provides a summary of primarily laser-based measurement techniques we use at NASA Glenn Research Center to characterize fuel injection, fuel/air mixing, and combustion. The report highlights using Planar Laser-Induced Fluorescence, Particle Image Velocimetry, and Phase Doppler Interferometry to obtain fuel injector patternation, fuel and air velocities, and fuel drop sizes and turbulence intensities during combustion. We also present a brief comparison between combustors burning standard JP-8 Jet fuel and an alternative fuels. For this comparison, we used flame chemiluminescence and high speed imaging.

  19. Amplified spontaneous emission of an end-pumped cesium vapor laser

    International Nuclear Information System (INIS)

    An, Guofei; Wang, You; Cai, He; Han, Juhong; Wang, Shunyan; Rong, Kepeng; Yu, Hang; Xue, Liangping; Zhang, Wei; Wang, Hongyuan; Zhou, Jie

    2017-01-01

    Diode pumped alkali lasers (DPALs) provide a significant potential for construction of high-powered lasers. A series of models have been established to analyze the DPAL’s kinetic process and most of them are based on the algorithms in which the amplified spontaneous emission (ASE) effect has not been considered. However, ASE is harmful in realization of a high-powered DPAL since the gain is very high. Usually, ASE becomes serious when the volume of the gain medium is large and the pump power is high. Basically, the conclusions we obtained in this study can be extended to other kinds of laser configurations. (paper)

  20. Laser annealed HWCVD and PECVD thin silicon films. Electron field emission

    International Nuclear Information System (INIS)

    O'Neill, K.A.; Shaikh, M.Z.; Lyttle, G.; Anthony, S.; Fan, Y.C.; Persheyev, S.K.; Rose, M.J.

    2006-01-01

    Electron Field Emission (FE) properties of various laser annealed thin silicon films on different substrates were investigated. HWCVD microcrystalline and PECVD amorphous silicon films were irradiated with Nd : YAG and XeCl Excimer lasers at varying energy densities. Encouraging FE results were mainly from XeCl Excimer laser processed PECVD and HWCVD films on metal backplanes. FE measurements were complemented by the study of film surface morphology. Geometric field enhancement factors from surface measurements and Fowler-Nordheim Theory (FNT) were compared. FE properties of the films were also found to be particularly influenced by the backplane material

  1. Stimulated emission in a solid-state ring laser with an SBS mirror

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, M.S.; Bel' diugin, I.M.; Zolotarev, M.V.; Krymskii, M.I.; Oshkin, S.P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror. 5 refs.

  2. Stimulated emission in a solid-state ring laser with an SBS mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Krymskii, M. I.; Oshkin, S. P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror.

  3. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  4. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  5. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  6. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    Science.gov (United States)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  7. Detection of a Surface-Breaking Crack by Using the Surface Wave of a Laser Ultrasound

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    A laser ultrasonic system is a non-contact inspection device with a high spatial resolution and a wide-band spectrum. Also it provides absolute measurements of the moving distance and can be applied to the hard-to access locations with curved or rough surfaces like a nuclear power plant. Several laser ultrasonic techniques are applied for the detection of micro cracks in a nuclear power plant. Also, laser ultrasonic techniques are used to measure the grain size of materials and to detect cracks in railroads and aircrafts. Though the laser ultrasonic inspection system is widely applicable, it is comparatively expensive and it provides a low signal-to-noise ratio when compared to the conventional piezoelectric transducers. Many studies have been carried out to improve the system performance. One of the widely used measurement devices of a ultrasound is the Confocal Fabry-Perot Interferometer(CFPI) with a dynamic stabilizer. The dynamic stabilizer improves the stability of the CFPI by adaptively maintaining the optimum working status at the measuring time of the CFPI. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. We have fabricated a laser ultrasonic inspection system on an optical table by using a pulse laser, a CFPI with a dynamic stabilizer and a computer. The computer acquires the laser ultrasound by using a high speed A/D converter with a sampling rate of 1000 MHz. The dynamic stabilizer stabilizes the CFPI by adaptively maintaining it at an optimum status when the laser ultrasound is generated. The computer processes the ultrasonic signal in real time to extract the depth information of a surface-breaking crack. We extracted the depth information from the peak-to-valley values in the time domain and also from the center frequencies of the spectrum in the frequency domain

  8. Emission spectrochemical analysis

    International Nuclear Information System (INIS)

    Rives, R.D.; Bruks, R.R.

    1983-01-01

    The emission spectrochemical method of analysis based on the fact that atoms of elements can be excited in the electric arc or in the laser beam and will emit radiation with characteristic wave lengths is considered. The review contains the data on spectrochemical analysis, of liquids geological materials, scheme of laser microprobe. The main characteristics of emission spectroscopy, atomic absorption spectroscopy and X-ray fluorescent analysis, are aeneralized

  9. Acoustic wave emission for enhanced oil recovery (WAVE.O.R.)

    Energy Technology Data Exchange (ETDEWEB)

    Reichmann, S.; Amro, M. [TU Bergakademie, Freiberg (Germany); Giese, R.; Jaksch, K.; Krauss, F.; Krueger, K.; Jurczyk, A. [Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ, Potsdam (Germany)

    2016-09-15

    In the project WAVE.O.R the potential of acoustic waves to enhance oil recovery was reviewed. The project focused on laboratory experiments of the oil displacement in sandstone cores under acoustic stimulation. Additionally, the Seismic Prediction While Drilling (SPWD) borehole device prototype was set up for a feasibility field test. The laboratory experiments showed that, depending on the stimulation frequency, acoustic stimulation allows for an enhanced oil recovery. For single frequency stimulation a mean increase of 3 % pore volumes was observed at distinguished frequencies. A cyclic stimulation, where two of these frequencies were combined, an increase of 5% pore volume was observed. The SPWD borehole device was tested and adjusted during feasibility tests in the GFZ underground laboratory in the research and education mine ''Reiche Zeche'' of the TU Bergakademie Freiberg and in the GFZ KTB-Deep Laboratory in Windischeschenbach. The first successful test of the device under realistic conditions was performed at the test site ''Piana di Toppo'' of the OGS Trieste, Italy.

  10. Acoustic wave emission for enhanced oil recovery (WAVE.O.R.)

    International Nuclear Information System (INIS)

    Reichmann, S.; Amro, M.; Giese, R.; Jaksch, K.; Krauss, F.; Krueger, K.; Jurczyk, A.

    2016-09-01

    In the project WAVE.O.R the potential of acoustic waves to enhance oil recovery was reviewed. The project focused on laboratory experiments of the oil displacement in sandstone cores under acoustic stimulation. Additionally, the Seismic Prediction While Drilling (SPWD) borehole device prototype was set up for a feasibility field test. The laboratory experiments showed that, depending on the stimulation frequency, acoustic stimulation allows for an enhanced oil recovery. For single frequency stimulation a mean increase of 3 % pore volumes was observed at distinguished frequencies. A cyclic stimulation, where two of these frequencies were combined, an increase of 5% pore volume was observed. The SPWD borehole device was tested and adjusted during feasibility tests in the GFZ underground laboratory in the research and education mine ''Reiche Zeche'' of the TU Bergakademie Freiberg and in the GFZ KTB-Deep Laboratory in Windischeschenbach. The first successful test of the device under realistic conditions was performed at the test site ''Piana di Toppo'' of the OGS Trieste, Italy.

  11. Proton emission from laser-generated plasmas at different intensities

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Margarone, Daniele

    2012-01-01

    Roč. 57, č. 2 (2012), s. 237-240 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA). Warsaw, 12.09.2011-16.09.2011] Institutional support: RVO:68378271 Keywords : laser-generated plasma * hydrogenated targets * proton acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012

  12. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    Science.gov (United States)

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  13. Orientation dependent emission properties of columnar quantum dash laser structures

    NARCIS (Netherlands)

    Hein, S.; Podemski, P.; Sek, G.; Misiewicz, J.; Ridha, P.; Fiore, A.; Patriarche, G.; Höfling, S.; Forchel, A.

    2009-01-01

    InAs columnar quantum dash (CQDash) structures on (100) InP have been realized by gas source molecular beam epitaxy for stacking numbers of up to 24. Laser devices show low threshold current densities between 0.73 and 3.5 kA/ cm2, dependent on the CQDash orientation within the cavity.

  14. Spectral analysis of the process emission during laser welding of AISI 304 stainless steel with disk and Nd:YAG laser

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2009-01-01

    Optical emissions from the laser welding process can be obtained relatively easy in real-time. Such emissions come from the melt pool, keyhole, or plume during welding. Therefore it is very beneficial to establish a clear relation between characteristics of these emissions and the resulting weld

  15. CdS thin films prepared by continuous wave Nd:YAG laser

    Science.gov (United States)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  16. High power millimeter-wave free electron laser based on recirculating electrostatic accelerator

    International Nuclear Information System (INIS)

    Lee, Byung-Cheol; Kim, Sun-Kook; Jeong, Young-Uk; Cho, Sung-Oh; Lee, Jongmin

    1995-01-01

    Progress in the development of a high power, millimeter-wave free electron laser driven by a recirculating electrostatic accelerator is reported. The energy and the current of electron beam are 430 keV and 2 A, respectively. The expected average output power is above 10 kW at the wavelength of 3-10 mm. Minimizing of the beam loss is a key issue for CW operation of the FEL with high efficiency. (author)

  17. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers

    OpenAIRE

    Mullavey, Adam J.; Slagmolen, Bram J. J.; Miller, John; Evans, Matthew; Fritschel, Peter; Sigg, Daniel; Waldman, Sam J.; Shaddock, Daniel A.; McClelland, David E.

    2011-01-01

    Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities’ lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully...

  18. Experimental investigations of driven Alfven wave resonances in a tokamak plasma using carbon dioxide laser interferometry

    International Nuclear Information System (INIS)

    Evans, T.E.

    1984-09-01

    The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma

  19. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  20. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    OpenAIRE

    Riccardo Cucini; Andrea Battistoni; Filippo Bencivenga; Alessandro Gessini; Riccardo Mincigrucci; Erika Giangrisostomi; Emiliano Principi; Flavio Capotondi; Emanuele Pedersoli; Michele Manfredda; Maya Kiskinova; Claudio Masciovecchio

    2015-01-01

    Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first resu...

  1. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    International Nuclear Information System (INIS)

    Saikia, P.

    1981-01-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic

  2. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  3. Crack Detection in Single-Crystalline Silicon Wafer Using Laser Generated Lamb Wave

    Directory of Open Access Journals (Sweden)

    Min-Kyoo Song

    2013-01-01

    Full Text Available In the semiconductor industry, with increasing requirements for high performance, high capacity, high reliability, and compact components, the crack has been one of the most critical issues in accordance with the growing requirement of the wafer-thinning in recent years. Previous researchers presented the crack detection on the silicon wafers with the air-coupled ultrasonic method successfully. However, the high impedance mismatching will be the problem in the industrial field. In this paper, in order to detect the crack, we propose a laser generated Lamb wave method which is not only noncontact, but also reliable for the measurement. The laser-ultrasonic generator and the laser-interferometer are used as a transmitter and a receiver, respectively. We firstly verified the identification of S0 and A0 lamb wave modes and then conducted the crack detection under the thermoelastic regime. The experimental results showed that S0 and A0 modes of lamb wave were clearly generated and detected, and in the case of the crack detection, the estimated crack size by 6 dB drop method was almost equal to the actual crack size. So, the proposed method is expected to make it possible to detect the crack in the silicon wafer in the industrial fields.

  4. Characteristics of laser-induced shock wave injury to the inner ear of rats

    Science.gov (United States)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  5. Thermal wave propagation in the pulsed laser irradiation of media with thermal memory

    International Nuclear Information System (INIS)

    Galovic, S.; Kostoski, D.; Stamboliev, G.; Suljovrujic, E.

    2002-01-01

    Complete text of publication follows. If a sample is exposed to the influence of laser radiation part of its energy is absorbed and converted in heat. The heat generated in this way is transferred through the sample as heat waves, resulting in various effects (so called photothermal effects). A large number of nondestructive diagnostic methods are based on recording of these effects. It is necessary to create a good model in order to understand and correctly describe the measured results of heat transfer in different media. In a certain number of materials and structures, such as complex biological materials, polymers, metals excited by very short laser pulses etc., the property of thermal memory has been experimentally observed. Starting with the hyperbolic equation that describes heat transfer processes of such media, in this paper has been developed a model of laser-excited heat waves propagation in order to enable application of photothermal techniques in characterization of these media. The cases of optically opaque and transparent samples are considered. The influence of various backings on photothermal waves has also been analyzed. The results are compared to the previous models

  6. Characteristics of laser-induced shock wave injury to the inner ear of rats.

    Science.gov (United States)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  7. Fiber fuse behavior in kW-level continuous-wave double-clad field laser

    International Nuclear Information System (INIS)

    Sun Jun-Yi; Xiao Qi-Rong; Li Dan; Wang Xue-Jiao; Zhang Hai-Tao; Gong Ma-Li; Yan Ping

    2016-01-01

    In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. (paper)

  8. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    Science.gov (United States)

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  9. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  10. On the neutron diffraction in a crystal in the field of a standing laser wave

    International Nuclear Information System (INIS)

    Grigoryan, K.K.; Hayrapetyan, A.G.; Petrosyan, R.G.

    2010-01-01

    The possibility of high-energy neutron diffraction in a crystal is shown by applying the solution of time-dependent Schroedinger equation for a neutron in the field of a standing laser wave. The scattering picture is examined within the framework of non-stationary S-matrix theory, where the neutron-laser field interaction is considered exactly and the neutron-crystal interaction is considered as a perturbation described by Fermi pseudopotential (Farri representation). The neutron-crystal interaction is elastic, and the neutron-laser field interaction has both inelastic and elastic behaviors which results in the observation of an analogous to the Kapitza-Dirac effect for neutrons. The neutron scattering probability is calculated and the analysis of the results are adduced. Both inelastic and elastic diffraction conditions are obtained and the formation of a 'sublattice' is illustrated in the process of neutron-photon-phonon elastic interaction.

  11. A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser

    International Nuclear Information System (INIS)

    Carroll, David L; Verdeyen, Joseph T

    2013-01-01

    The exciplex pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, with and without ethane, by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). The blue satellites of the alkali D 2 lines provide an advantageous pathway for optically pumping atomic alkali lasers on the principal series (resonance) transitions with broad linewidth (>2 nm) semiconductor diode lasers. The development of a simple theoretical analysis of continuous-wave XPAL systems is presented along with predictions as a function of temperature and pump intensity. The model predicts that an optical-to-optical efficiency in the range of 40-50% can be achieved for XPAL.

  12. Nonlinear dynamic effects in a two-wave CO2 laser

    International Nuclear Information System (INIS)

    Gorobets, V A; Kozlov, K V; Kuntsevich, B F; Petukhov, V O

    1999-01-01

    Theoretical and experimental investigations were made of nonlinear dynamic regimes of the operation of a two-wave CO 2 laser with cw excitation in an electric discharge and loss modulation in one of the channels. Nonlinear amplitude - frequency characteristics of each of the laser channels have two low-frequency resonance spikes, associated with forced linear oscillations of two coupled oscillators, and high-frequency spikes, corresponding to doubling of the period of the output radiation oscillations. At low loss-modulation frequencies the intensity oscillations of the output radiation in the coupled channels are in antiphase, whereas at high modulation frequencies the dynamics is cophasal. Nonlinear dynamic effects, such as doubling of the period and of the repetition frequency of the pulses and chaotic oscillations of the output radiation intensity, are observed for certain system parameters. (control of laser radiation parameters)

  13. Solid waves and acoustic emission first phase: Problems direct and inverse and equations elasto dynamics fields

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2002-07-01

    The present work is the first of a series of three memoirs briefs, destinadas to revise the classic theoretical foundations that allow to understand the generation,la diffusion and the detection of the elastic waves in those been accustomed to from the point of view of the mechanics of the means continuos. The study is faced in the mark of the non destructive rehearsals, emphasizing aspects related with the rehearsals based on the acoustic emission of the material defects

  14. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-01-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  15. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    International Nuclear Information System (INIS)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-01-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansion and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.

  16. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-03-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  17. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  18. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films

    Science.gov (United States)

    Sokolowski-Tinten, Klaus; Ziegler, Wolfgang; von der Linde, Dietrich; Siegal, Michael P.; Overmyer, D. L.

    2005-03-01

    Short-pulse-laser-induced damage and ablation of thin films of amorphous, diamond-like carbon have been investigated. Material removal and damage are caused by fracture of the film and ejection of large fragments. The fragments exhibit a delayed, intense and broadband emission of microsecond duration. Both fracture and emission are attributed to the laser-initiated relaxation of the high internal stresses of the pulse laser deposition-grown films.

  19. Resonators for magnetohydrodynamic waves in the solar corona: The effect of modulation of radio emission

    International Nuclear Information System (INIS)

    Zaitsev, V.V.; Stepanov, A.V.

    1982-01-01

    It is shown that the existence of a minimum of the Alfven speed in the corona at a height of approx.1R/sub sun/ follows from the characteristics of type II radio bursts. The region of a reduced Alfven speed is a resonator for a fast magnetosonic (FMS) waves. The eigenmodes of the resonator are determined. The period of the fundamental mode has the order of several minutes. In the resonator FMS waves can be excited at the Cherenkov resonance by streams of energetic ions. Modulations of metal solar radio emission with a period of several minutes is explained by the effect of the propagation of radio waves through an oscillating magnetohydrodynamic (MHD) resonator

  20. EUV emission stimulated by use of dual laser pulses from continus liquid microjet targets

    Science.gov (United States)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Sasaki, Wataru; Kubodera, Shoichi

    2004-11-01

    A continuous water-jet or water-jet mixed with LiF with several tens μm diameter was formed in a vacuum chamber through a small capillary nozzle. Usage of two laser pulses is an efficient way to produce EUV emission, since a density and temperature of a plasma formed by the first laser pulse are regulated by the second laser pulse. By adjusting the delay of the second pulse, one could maximize the EUV emission. A subpicosecond Ti:Sapphire laser at a wavelength of 800 nm produced a maximum energy around 30 mJ. The beam was divided by a Michelson interferometer, which produced two laser pulses with energies of 5 mJ. The pulse duration was adjusted around 300 fs (FWHM). Both beams were focused on a micro-jet using a lens with a focal length of 15 cm. The delay time between the two pulses was varied from 100 to 800 ps by use of an optical delay line. Clear enhancement of the EUV emission yield was observed when the delay between the two pulses was around 500 ps. The experimentally observed delay agrees reasonably well with that of a plasma to expand to its critical density of 10^21 cm-3.

  1. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.

    2016-12-29

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III-V semiconductor quantum wells. The group III-V semiconductor can include AlSb, AlAs, Aln, AlP, BN, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, and InP, and group III-V ternary semiconductors alloys such as AlxGai.xAs. The methods can results in a blue shifting of about 20 meV to 350 meV, which can be used for example to make group III-V semiconductor quantum well laser diodes with an emission that is orange or yellow. Methods of making semiconductor quantum well laser diodes and semiconductor quantum well laser diodes made therefrom are also provided.

  2. Collective emission of matter-wave jets from driven Bose-Einstein condensates.

    Science.gov (United States)

    Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng

    2017-11-16

    Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.

  3. Molecular emissions from laser--solid-target interactions

    International Nuclear Information System (INIS)

    Greig, J.R.

    1977-01-01

    When a high-power Nd/glass laser pulse is incident on a polyethylene target, a bright plasma plume is created. Subsequently, a cloud of un-ionized gas is formed which contains 10--100 times the amount of material in the plasma plume. This gas cloud is cold (expansion velocity approx.10 5 cm/sec) and dense (n> or approx. =10 19 ). It is shown to contain diatomic molecules of carbon C 2 by heating the core of the cloud with the pulse from a 1-kJ TEA CO 2 laser. Then, the C 2 molecules in the cold outer regions of the cloud are seen in absorption on the light emitted by the hot core

  4. Electron dynamics in RF sources with a laser controlled emission

    CERN Document Server

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  5. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  6. Calculating the parameters of a synchronisation zone of the frequencies of counterpropagating waves of a laser gyro

    International Nuclear Information System (INIS)

    Bondarenko, Evgenii A

    2011-01-01

    Based on the analysis of a well-known system of equations describing the dynamics of a two-isotope laser gyro with an equal-Q resonator under conditions of its fine-tuning to the centre of the emission line and balanced currents in the discharge arms, we have derived the formulas for calculating the parameters of the synchronisation zone for the frequencies of counterpropagating electromagnetic waves generated in the device. The formulas make it possible to calculate the coordinates on the axis of the angular velocity of the left and right boundaries of the synchronisation zone, the coordinate of its centre and half-width. It follows from the analysis that, in the general case of the asymmetric linear coupling between the counterpropagating waves via backscattering, absorption, and transmission of radiation from the mirrors of the gyro, the left and right boundaries of the synchronisation zone are located at different distances with respect to the origin of coordinates, so that the centre of the region is displaced along the axis of the angular velocity. The analysis of the formulas also implies that the shift of the centre of the synchronisation zone and its half-width decrease with increasing medium gain.

  7. Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions

    Science.gov (United States)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2004-02-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gas-dynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm 3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results are used to empirically establish the equation of states of water, gelatin or agar cell which will work as alternatives of human tissues.

  8. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  9. Picosecond laser krypton plasma emission in water window spectral range.

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Müller, M.; Mann, K.; Pánek, D.; Parkman, T.

    2017-01-01

    Roč. 24, č. 12 (2017), č. článku 123301. ISSN 1070-664X R&D Projects: GA MŠk LG15013 Institutional support: RVO:61389021 Keywords : laser plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016 http://aip.scitation.org/doi/10.1063/1.4998533

  10. Superradiant laser emission from rhodamine 6G and rhodamine B using a coaxial flashpump.

    Science.gov (United States)

    Mumola, P. B.

    1972-01-01

    Superradiant laser emission has been observed from ethanol solutions of rhodamine 6G and rhodamine B using a coaxial flashlamp pump. The dependence of input threshold energy on dye concentration is examined. The possibility of exciting other dyes to superradiance is discussed.

  11. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  12. Optimization of soft x-ray line emission from laser-produced carbon ...

    Indian Academy of Sciences (India)

    Intense XUV soft x-ray emission from laser-produced plasma sources is currently ... absorption edges of oxygen and carbon respectively) is particularly attractive as it permits ... ability of the target element producing intense discrete lines in the water .... ficient due to Pert [17] and dielectronic recombination coefficient due to ...

  13. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  14. Psychological and cognitive effects of laser printer emissions: A controlled exposure study.

    Science.gov (United States)

    Herbig, B; Jörres, R A; Schierl, R; Simon, M; Langner, J; Seeger, S; Nowak, D; Karrasch, S

    2018-01-01

    The possible impact of ultrafine particles from laser printers on human health is controversially discussed although there are persons reporting substantial symptoms in relation to these emissions. A randomized, single-blinded, cross-over experimental design with two exposure conditions (high-level and low-level exposure) was conducted with 23 healthy subjects, 14 subjects with mild asthma, and 15 persons reporting symptoms associated with laser printer emissions. To separate physiological and psychological effects, a secondary physiologically based categorization of susceptibility to particle effects was used. In line with results from physiological and biochemical assessments, we found no coherent, differential, or clinically relevant effects of different exposure conditions on subjective complaints and cognitive performance in terms of attention, short-term memory, and psychomotor performance. However, results regarding the psychological characteristics of participants and their situational perception confirm differences between the participants groups: Subjects reporting symptoms associated with laser printer emissions showed a higher psychological susceptibility for adverse reactions in line with previous results on persons with multiple chemical sensitivity or idiopathic environmental intolerance. In conclusion, acute psychological and cognitive effects of laser printer emissions were small and could be attributed only to different participant groups but not to differences in exposure conditions in terms of particle number concentrations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Fast ion emission from the plasma produced by the PALS laser system

    Czech Academy of Sciences Publication Activity Database

    Wolowski, J.; Badziak, J.; Boody, F. P.; Hora, H.; Hnatowicz, Vladimír; Jungwirth, Karel; Krása, Josef; Láska, Leoš; Parys, P.; Peřina, Vratislav; Pfeifer, Miroslav; Rohlena, Karel; Ryc, L.; Ullschmied, Jiří; Woryna, E.

    2002-01-01

    Roč. 44, - (2002), s. 1277-1283 ISSN 0741-3335 Institutional research plan: CEZ:AV0Z1048901 Keywords : emission * plasma produced * PALS laser system ? Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.121, year: 2002

  16. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    International Nuclear Information System (INIS)

    Kim, Young Chul; Ahn, Seong Joon; Kim, Ho Seob; Kim, Dae-Wook; Ahn, Seungjoon

    2011-01-01

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  17. Design of the miniaturized free electron laser module as an efficient source of the THz waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Chul [Department of Optometry, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Ahn, Seong Joon [Department of I and C Engineering, Sun Moon University, Tangjeong-myeon, Asan-si, Chungnam 336-708 (Korea, Republic of); Kim, Ho Seob; Kim, Dae-Wook [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Ahn, Seungjoon, E-mail: sjan@sunmoon.ac.kr [Department of Information Display, Sun Moon University, 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of)

    2011-10-21

    Since the tremendous potential of the THz wave for the bio-technological applications has been found, there has been a lot of interest paid to development of the THz-wave sources. The miniaturized free electron laser (FEL) module based on the microcolumn can be a very convenient THz wave emitter because of its compactness. In this work, we tried to design the miniaturized FEL module to achieve the optimized electron beam (e-beam) trajectory in the module by using 3D simulation tool. We found that the accelerator bias, the length and radius of the limiting aperture were important parameters to obtain the strong and parallel e-beam. We have also proposed the ring-type grids to get more symmetrical behavior of the e-beam in the wiggler.

  18. The elimination of pump depletion in laser-plasma beat-wave accelerators

    International Nuclear Information System (INIS)

    Ma Jinxiu; Xu Zhizhan

    1988-01-01

    The pump depletion is a severe problem which hinders the laser-plasma beat-wave accelerator concept from being practical. Starting with the weak relativistic equation of beat-wave excitation of electron plasma waves, the authors have derived the condition for eliminating the pump depletion in the fame moving with the light pulse for arbitrary pulse shapes. It is shown that the depletion can be eliminated by a phase jump of π at the center of the pump pulse and by the appropriated choice of initial plasma density detuning. The numerical calculation have yielded the dependence of the initial detuning on the pump intensity for square pump pulses, and have supported the methods used in this paper

  19. Lunar Laser-Ranging Detection of Light-Speed Anisotropy and Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2010-04-01

    Full Text Available The Apache Point Lunar Laser-ranging Operation (APOLLO, in NM, can detect photon bounces from retroreflectors on the moon surface to 0.1ns timing resolution. This facility enables not only the detection of light speed anisotropy, which defines a local preferred frame of reference - only in that frame is the speed of light isotropic, but also fluctuations/turbulence (gravitational waves in the flow of the dynamical 3-space relative to local systems/observers. So the APOLLO facility can act as an effective "gravitational wave" detector. A recently published small data set from November 5, 2007, is analysed to characterise both the average anisotropy velocity and the wave/turbulence effects. The results are consistent with some 13 previous detections, with the last and most accurate being from the spacecraft earth-flyby Doppler-shift NASA data.

  20. Deciphering inflation with gravitational waves: Cosmic microwave background polarization vs direct detection with laser interferometers

    International Nuclear Information System (INIS)

    Smith, Tristan L.; Peiris, Hiranya V.; Cooray, Asantha

    2006-01-01

    A detection of the primordial gravitational wave background is considered to be the 'smoking-gun' evidence for inflation. While superhorizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tensor-to-scalar amplitude ratio greater than 0.01 are detected by the CMB, then a direct-detection experiment with a sensitivity consistent with current concept studies should be pursued vigorously. If no primordial tensors are detected by the CMB, a direct-detection experiment to understand the simplest form of inflation must have a sensitivity improved by two to 3 orders of magnitude over current plans

  1. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  2. An experimental investigation on the properties of laser-induced plasma emission spectra

    International Nuclear Information System (INIS)

    Tang Xiaoshuan; Li Chunyan; Ji Xuehan; Feng Eryin; Cui Zhifeng

    2004-01-01

    The authors have measured the time-resolved emission spectra produced by Nd: YAG laser induced Al plasma with different kinds of buffer gas (He, Ar, N 2 and Air). The dependence of emission spectra line intensity and Stark broadening on the time delay, kinds and pressure of buffer gas are studied. The results show that the atomic emission line intensity reaches maximum at 3 μs time delay, the Stark broadening increases with increasing the pressure of buffer gas, and decreases with increasing time delay. The Stark broadening in Ar buffer gas is largest among the four different kinds of buffer gas. (author)

  3. Robust random number generation using steady-state emission of gain-switched laser diodes

    International Nuclear Information System (INIS)

    Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.

    2014-01-01

    We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.

  4. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    Science.gov (United States)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  5. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  6. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    Popp, Antonia

    2011-01-01

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10 18 cm -3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  7. Temporal feature of X-ray laser plasma observed from 3ω0/2, 2ω0 harmonic emission

    International Nuclear Information System (INIS)

    Li Wenhong; Mei Qiyong; Zhao Xuewei; Chen Yuting; Chunyu Shutai

    1995-01-01

    Temporal feature of X-ray laser plasma density was observed from 3ω 0 /2, 2ω 0 harmonic emission in the experiments. The temporal feature of 3ω 0 /2 harmonic emission of the germanium film is much different from that of the slab germanium target. The production of x-ray laser is closely related to 3ω 0 /2 harmonic emission in the slab germanium targets

  8. Gravitational wave generation by interaction of high power lasers with matter using shock waves

    Czech Academy of Sciences Publication Activity Database

    Kadlecová, Hedvika; Klimo, Ondřej; Weber, Stefan A.; Korn, Georg

    2017-01-01

    Roč. 71, č. 4 (2017), 1-10, č. článku 89. ISSN 1434-6060 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : plasma physics * gravitational wave generation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.288, year: 2016

  9. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Batha, S.H.

    1998-01-01

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 microm), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities

  10. Emission spectrum and relaxation kinetics of SO2 induced by 266 nm laser.

    Science.gov (United States)

    Zhang, Guiyin; Zhang, Lianshui; Jin, Yidong

    2010-09-15

    Laser induced fluorescence (LIF) emission spectrum of SO(2) in the range of 270.0-470.0 nm has been obtained with the quadruple harmonic output (266 nm) of a pulsed Nd:YAG laser as excitation source. The spectrum is composed of a continuous envelope in the short wavelength side, while it shows the character of banded structure superimposed on a continuous one in the long wavelength region. Fluorescence emission from the hybrid states of A(1)A(2)+B(1)B(1) and X(1)A(1)+B(1)B(1) forms the continuous envelope and phosphorescence emission from the triplet state a(3)B(1) forms the banded progression. It is also found that direct emission from laser excited states is very weak. The primary portion of the emission is from the energy levels populated by collision relaxation or collision induced intersystem crossing process. The harmonic frequencies and inharmonic coefficients of the symmetric stretching vibration and the bending vibration of X(1)A(1) state are derived from the ascription of the phosphorescence progression. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Ultraviolet laser-induced fluorescence detection strategies in capillary electrophoresis: determination of naphthalene sulphonates in river water.

    NARCIS (Netherlands)

    Kok, S.J.; Isberg, I.C.K.; Gooijer, C.; Brinkman, U.A.T.; Velthorst, N.H.

    1998-01-01

    Various UV-laser-induced fluorescence detection strategies for capillary electrophoresis (CE) are compared, i.e. two UV-laser systems (a pulsed laser providing up to 25 mW of tunable emission, applied at 280, 290 and 325 nm, and a continuous wave (cw) laser providing up to 100 mW of 257 nm emission)

  12. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    Energy Technology Data Exchange (ETDEWEB)

    Tellis, Nathaniel K.; Marcy, Geoffrey W., E-mail: Nate.tellis@gmail.com [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  13. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    Science.gov (United States)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  14. Infrared emission from a polycyclic aromatic hydrocarbon (PAH) excited by ultraviolet laser

    International Nuclear Information System (INIS)

    Cherchneff, I.; Barker, J.R.

    1989-01-01

    The infrared fluorescence spectrum from the C-H stretch modes of vibrationally excited azulene (C10H8), a PAH was measured in the laboratory. PAHs are candidates as carriers of the unidentified infrared emission bands that are observed in many astronomical objects associated with dust and ultraviolet light. In the present experiment, gas phase azulene was excited with light from a 308 nm pulsed laser, and the infrared emission spectrum was time-resolved and wavelength-resolved. Moreover, the infrared absorption spectrum of gas phase azulene was obtained using an FTIR spectrometer. The laboratory emission spectrum resembles observed infrared emission spectra from the interstellar medium, providing support for the hypothesis that PAHs are the responsible carriers. The azulene C-H stretch emission spectrum is more asymmetric than the absorption spectrum, probably due to anharmonicity of levels higher than nu = 1. 36 refs

  15. Propagation characteristics of laser-induced stress wave in deep tissue for gene transfer

    International Nuclear Information System (INIS)

    Ando, Takahiro; Sato, Shunichi; Takano, Shinta; Ashida, Hiroshi; Obara, Minoru

    2009-01-01

    Propagation characteristics of laser-induced stress waves (LISWs) in tissue and their correlation with properties of gene transfection were investigated for targeted deep-tissue gene therapy. LISWs were generated by irradiating a laser-absorbing material with 532-nm Q-switched Nd:YAG laser pulses; a transparent plastic sheet was attached on the absorbing material for plasma confinement. Temporal pressure profiles of LISWs that were propagated through different thickness tissues were measured with a needle-type hydrophone and propagation of LISWs in water was visualized by shadowgraph technique. The measurements showed that at a laser fluence of 1.2 J/cm 2 with a laser spot diameter of 3 mm, flat wavefront was maintained for up to 5 mm in depth and peak pressure P decreased with increasing tissue thickness d; P was proportional to d -0.54 . Rat dorsal skin was injected with plasmid DNA coding for reporter gene, on which different numbers of excised skin(s) was/were placed, and LISWs were applied from the top of the skins. Efficient gene expression was observed in the skin under the 3 mm thick stacked skins, suggesting that deep-located tissue such as muscle can be transfected by transcutaneous application of LISWs.

  16. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  17. Study of laser-driven shock wave propagation in Plexiglas targets

    International Nuclear Information System (INIS)

    Dhareshwar, L.J.; Naik, P.A.; Pant, H.C.; Kaushik, T.C.

    1992-01-01

    An experimental study of laser-driven shock wave propagation in a transparent material such as Plexiglas using a high-speed optical shadowgraphy technique is presented in this paper. A Nd: glass laser was used to produce laser intensity in the range 10 12 -10 14 W/cm 2 on the target. Optical shadowgrams of the propagating shock front were recorded with a second-harmonic (0.53-μm) optical probe beam. Shock pressures were measured at various laser intensities, and the scaling was found to agree with the theoretically predicted value. Shock pressure values have also been obtained from a one-dimensional Lagrangian hydrodynamic simulation, and they match well with experimental results. Shadowgrams of shock fronts produced by nonuniform spatial laser beam irradiation profiles have shown complete smoothing when targets with a thin coating of a material of high atomic number such as gold were used. Shock pressures in such coated targets are also found to be considerably higher compared with those in uncoated targets. (Author)

  18. Brain blood flow studies with single photon emission computed tomography in patients with plateau waves

    International Nuclear Information System (INIS)

    Hayashi, Minoru; Kobayashi, Hidenori; Kawano, Hirokazu; Handa, Yuji; Noguchi, Yoshiyuki; Shirasaki, Naoki; Hirose, Satoshi

    1986-01-01

    The authors studied brain blood flow with single photon emission computed tomography (SPECT) in two patients with plateau waves. The intracranial pressure and blood pressure were also monitored continuously in these patients. They included one patient with brain-tumor (rt. sphenoid ridge meningioma) and another with hydrocephalus after subarachnoid hemorrhage due to rupture of lt. internal carotid aneurysm. The intracranial pressure was monitored through an indwelling ventricular catheter attached to a pressure transducer. The blood pressure was recorded through an intraarterial catheter placed in the dorsalis pedis artery. Brain blood flow was studied with Headtome SET-011 (manufactured by Shimazu Co., Ltd.). For this flow measurement study, an intravenous injection of Xenon-133 of about 30 mCi was given via an antecubital vein. The position of the slice for the SPECT was selected so as to obtain information not only from the cerebral hemisphere but also from the brain stem : a cross section 25 deg over the orbito-meatal line, passing through the inferior aspect of the frontal horn, the basal ganglia, the lower recessus of the third ventricle and the brain stem. The results indicated that, in the cerebral hemisphere, plateau waves were accompanied by a decrease in blood flow, whereas, in the brain stem, the blood flow showed little change during plateau waves as compared with the interval phase between two plateau waves. These observations may explain why there is no rise in the blood pressure and why patients are often alert during plateau waves. (author)

  19. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  20. Frequency domain and wavelet analysis of the laser-induced plasma shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Miloš, E-mail: milosb@ff.bg.ac.rs; Nikolić, Zoran

    2015-08-01

    In addition to optical emission, another trace of interest that laser-induced plasma provides is a form of acoustic feedback. The acoustic emission (AE) signals were obtained using both microphone and piezo transducers. This kind of optoacoustic signals have some distinct features resembling the short, burst-like sounds, that may differ significantly depending mainly on the sample exposed and irradiance applied. Experiments were performed on atmospheric pressure by irradiating various metallic samples. The recorded waveforms were examined and numerically processed. Single-shot acoustical spectra have shown significant potential of providing valuable supplementary information regarding plasma propagation dynamics. Moreover, the general approach suggests the possibility of making the whole measurement system cost-effective and portable. - Highlights: • We report acoustical waveform, and acoustical spectroscopy measurements and analysis in a laser-induced plasma of a different metals in air. • Both piezo and microphone transducer were used. • The acoustical spectra of the emission were obtained when the sample (and plasma) were enclosed in experimental chamber. • The acquired acoustical spectra are time-integrated and the frequency peaks were sharp and relatively isolated. • Finally, both time and frequency resolved wavelet spectrogram present a novel method of observing laser-induced plasma behavior.

  1. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yiwen; Miao, Hsin-Yuan; Zhang Mei; Liang, Richard; Zhang, Chuck; Wang, Ben [High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310 (United States); Lin, Ryan Jiyao, E-mail: kenymiao@thu.edu.tw, E-mail: mzhang@eng.fsu.edu [Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm{sup -2}, which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  2. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    Science.gov (United States)

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  4. Pulsed-laser-activated impulse response encoder: Sensitive detection of surface elastic waves on biomimetic microsized gel spheres

    Science.gov (United States)

    Yasukuni, Ryohei; Fukushima, Ryosuke; Iino, Takanori; Hosokawa, Yoichiroh

    2017-11-01

    A femtosecond-laser-induced impulsive force was applied to microsized calcium alginate (CaAlg) gel spheres as an external force to excite elastic waves. To evaluate elasticity, atomic force microscopy (AFM) was applied to detect vibration propagation. The sphere size dependence of the vibration was well reproduced by finite element method (FEM) simulation for pressure waves and surface acoustic waves. The obtained results indicate that the pulsed-laser-activated impulse response encoder (PLAIRE) enables the sensitive detection of elasticities, not only on inside but also on the surface.

  5. Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2014-01-01

    Dual frequency capacitively coupled discharges are widely used during fabrication of modern-day integrated circuits, because of low cost and robust uniformity over broad areas. At low pressure, stochastic or collisionless electron heating is important in such discharges. The stochastic heating occurs adjacent to the sheath edge due to energy transfer from the oscillating high voltage electron sheath to electrons. The present research discusses evidence of wave emission from the sheath in such discharges, with a frequency near the electron plasma frequency. These waves are damped very promptly as they propagate away from the sheath towards the bulk plasma, by Landau damping or some related mechanism. In this work, the occurrence of strong wave phenomena during the expanding and collapsing phase of the low frequency sheath has been investigated. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. The characteristics of waves in the dual-frequency case are entirely different from the single-frequency case studied in earlier works. The existence of a field reversal phenomenon, occurring several times within a lower frequency period in the proximity of the sheath is also reported. Electron trapping near to the field reversal regions also occurs many times during a lower frequency period. The emission of waves is associated with these field reversal regions. It is observed that the field reversal and electron trapping effects appear under conditions typical of many recent experiments, and are consequently of much greater practical interest than similar effects in single frequency discharges, which occur only under extreme conditions that are not usually realized in experiments. (paper)

  6. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    Science.gov (United States)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  7. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C; Lopes, N C

    2009-01-01

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v f of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a 0 ≅ 1), 0.815 μm laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n e = 1.3 x 10 19 cm -3 ) showed no measurable changes in v f over 1.3 mm (and no accelerated electrons), a high-density plasma (n e = 5 x 10 19 cm -3 ) generated accelerated electrons and showed a continuous change in v f as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v f evolution are discussed.

  8. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    International Nuclear Information System (INIS)

    Cheng, Y; Xu, X D; Xiao, X D; Li, D Z; Zhao, C C; Zhou, S M; Xin, Z; Yang, X B; Xu, J

    2009-01-01

    Laser crystal Nd:CaNb 2 O 6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd 3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb 2 O 6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10 -20 cm 2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10 -20 cm 2 . We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb 2 O 6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime

  9. Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped CaNb2O6 crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Xin, Z.; Yang, X. B.; Xiao, X. D.; Li, D. Z.; Zhao, C. C.; Xu, J.; Zhou, S. M.

    2009-10-01

    Laser crystal Nd:CaNb2O6 with excellent quality has been grown by Czochralski technique. The effective segregation coefficient of Nd3+ was studied by X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Nd:CaNb2O6 were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10-20 cm2 with a broad FWHM of 7 nm at 808 nm for E ∥ a light polarization. The emission cross section at 1062 nm is 9.87×10-20 cm2. We report what we believe to be the first demonstration of the continuous-wave Nd:CaNb2O6 laser operation under diode pumping. Output power of 1.86 W at 1062 nm was obtained with a slope efficiency of 19% in the CW regime.

  10. Cutting performances with new industrial continuous wave ND:YAG high power lasers

    International Nuclear Information System (INIS)

    Chagnot, C.; Dinechin, G. de; Canneau, G.

    2010-01-01

    Dismantling is a great challenge for nuclear companies which are facing with the cleaning of former nuclear sites. Among the available cutting processes is the multi-kilowatts laser whose power is transmitted through optical fibers. Unlike other cutting processes such as the plasma arc cutting process or the oxy-cutting process, the laser process can be easily implemented by robotic equipments. The mechanised robotic arm carries a laser cutting head to perform, with remote-controlled equipments, the cutting operation. The present study deals with the performances which can be reached with high power continuous wave ND:YAG lasers. The cutting tests were carried out up to 8 kW. The laser power was delivered through a specific power supply chain: a 0.4 mm fiber was transporting the power from the laser to a first interface (coupler) then a second 0.6 mm fiber was bringing the laser power to the cutting head. This solution allowed a power delivery chain whose length could be as high as 100 + 20/50 m. Another advantage of this kind of power supply is that the first fiber can be set in a non-contaminated environment whereas the second fiber lies in the contaminated area. The cutting head used for these tests was a specific tool developed for this laser dismantling work: it is a laser cutting head cooled by pressurized air. This tool was developed with the requirement to be able to sustain a laser power of 14 kW. The pressurized air used to cool the head is also used as cutting gas. The cutting capability was about 10 mm by kW. At the power of 8 kW, austenitic steel plates of thickness 100 mm were cut. These performances were reached with the cut started on the plate's edge. If the cut started in the middle of the plate, the cutting performances were not so high: 8 kW became the power to drill and to cut plates of thickness 40 mm.

  11. Shock waves and cavitation bubbles in water and isooctane generated by Nd:YAG laser: experimental and theoretical results

    Science.gov (United States)

    Muller, Milos; Garen, Walter; Koch, Sandra; Marsik, Frantisek; Neu, Walter; Saburov, Eduado

    2004-04-01

    Temporal evolution of laser generated cavitation bubbles and shock waves were studied. Q-switched Nd-Yag laser pulses at 1064 nm are focused into the liquid. An Imager 3 CCD camera with multi exposure mode allows recording of 10 images with minimal exposure delay of 100 ns and minimal exposure time of 100 ns. Illumination is provided by xenon flash lamp for single exposure (shock wave recording) and by halogen lamp for multi exposure mode (bubble recording). Distilled water and a retrograde fluid, isooctane, have been under investigation to identify the differences in the cavitation process and shock wave propagation. The calculation of the shock wave velocities in water and isooctane are based on image recording at constant exposure time of 100 ns and using laser differential interferometry. Strong differences of bubble oscillation were observed in water and isooctane. Gilmore's model is used for numerical simulation of bubble dynamics.

  12. Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves

    Science.gov (United States)

    Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.

    2018-03-01

    Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.

  13. Dual fluorescence and laser emissions from fluorescein-Na and eosin-B

    International Nuclear Information System (INIS)

    Math, N.N.; Naik, L.R.; Suresh, H.M.; Inamdar, S.R.

    2006-01-01

    Dual laser emissions were observed from fluorescein-Na and eosin-B in ethanolic solutions individually in the concentration range from 10 -2 to 10 -3 mol dm -3 under N 2 laser excitation. The first compound was found to lase at two distinct regions with wavelength maxima around 540, 550 nm, while the second one around 558, 574 nm. Steady-state absorption, fluorescence excitation, fluorescence polarization, fluorescence emission and decays of the dyes in various solvents under varying conditions of excitation and detection systems were carried out to identify the nature of the emitting species responsible for laser emissions in two distinct regions. Both the dyes exhibited concentration and excitation wavelength dependence of fluorescence and the effects were found to be more pronounced in binary solution. The fluorescence decays of dyes were monoexponential in ethanol, while in some other solvents used, the decays showed biexponential behavior. The absorption and excitation studies using thin layers of solutions revealed the formation of dimers with the dye concentration around 1x10 -3 mol dm -3 . Fluorescence polarization and decay studies confirmed the presence of dimers. The two laser bands observed in the shorter and longer wavelengths were respectively ascribed to monomeric and dimeric species

  14. Dual fluorescence and laser emissions from fluorescein-Na and eosin-B

    Energy Technology Data Exchange (ETDEWEB)

    Math, N.N. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India)]. E-mail: nnm31@rediffmail.com; Naik, L.R. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India); Suresh, H.M. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India); Inamdar, S.R. [Laser Spectroscopy (DRDO/KU) Programme, Department of Physics, Karnatak University, Dharwad 580 003 (India)

    2006-12-15

    Dual laser emissions were observed from fluorescein-Na and eosin-B in ethanolic solutions individually in the concentration range from 10{sup -2} to 10{sup -3} mol dm{sup -3} under N{sub 2} laser excitation. The first compound was found to lase at two distinct regions with wavelength maxima around 540, 550 nm, while the second one around 558, 574 nm. Steady-state absorption, fluorescence excitation, fluorescence polarization, fluorescence emission and decays of the dyes in various solvents under varying conditions of excitation and detection systems were carried out to identify the nature of the emitting species responsible for laser emissions in two distinct regions. Both the dyes exhibited concentration and excitation wavelength dependence of fluorescence and the effects were found to be more pronounced in binary solution. The fluorescence decays of dyes were monoexponential in ethanol, while in some other solvents used, the decays showed biexponential behavior. The absorption and excitation studies using thin layers of solutions revealed the formation of dimers with the dye concentration around 1x10{sup -3} mol dm{sup -3}. Fluorescence polarization and decay studies confirmed the presence of dimers. The two laser bands observed in the shorter and longer wavelengths were respectively ascribed to monomeric and dimeric species.

  15. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  16. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  17. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    Directory of Open Access Journals (Sweden)

    Hyeonju Yu

    2016-05-01

    Full Text Available To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel thickness of 10∼800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR. Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  18. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  19. Aspects of electron acoustic wave physics in laser backscatter from plasmas

    International Nuclear Information System (INIS)

    Sircombe, N J; Arber, T D; Dendy, R O

    2006-01-01

    Recent experimental results from the Trident laser confirm the importance of kinetic effects in determining laser reflectivities at high intensities. Examples observed include scattering from low frequency electron acoustic waves (EAWs) and the first few stages of a cascade towards turbulence through the Langmuir decay instability. Interpretive and predictive computational capability in this area is assisted by the development of Vlasov codes, which offer high velocity space resolution in high energy regions of particle phase space and do not require analytical pre-processing of the fundamental equations. A direct Vlasov solver, capable of resolving these kinetic processes, is used here to address fundamental aspects of the existence and stability of the electron acoustic wave, together with its collective scattering properties. These simulations are extended to realistic laser and plasma parameters characteristic of single hot-spot experiments. Results are in qualitative agreement with experiments displaying both stimulated Raman and stimulated electron acoustic scattering. The amplitude of simulated EAWs is greater than that observed experimentally and is accompanied by a higher phase velocity. These minor differences can be attributed to the limitations of a one-dimensional collisionless model

  20. Modeling of terahertz radiation emission from a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2017-05-15

    In this article, we report the generation of terahertz (THz) radiation using the interaction of a laser-modulated relativistic electron beam (REB) with a surface plasma wave. Two laser beams propagating through the modulator interact with the REB, leading to velocity modulation of the beam. This results in pre-bunching of the REB. The pre-bunched beam travels through the drift space, where the velocity modulation translates into density modulation. The density-modulated beam, on interacting with the surface plasma pump wave, acquires an oscillatory velocity that couples with the modulated beam density to give rise to a nonlinear current density which acts as an antenna to give THz radiation. By optimizing the parameters of the beam and the wiggler, we obtain power of the order of 10{sup -4} using the current scheme. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  2. Interaction of Supernova Blast Waves with Interstellar Clouds: Experiments on the Omega Laser

    International Nuclear Information System (INIS)

    Klein, R.I.; Robey, H.F.; Perry, T.S.; Kane, J.O.; Greenough, J.A.; Marinak, M.M.

    2001-01-01

    The interaction of strong shock waves, such as those generated by the explosion of supernovae with interstellar clouds, is a problem of fundamental importance in understanding the evolution and the dynamics of the interstellar medium (ISM) as it is disrupted by shock waves. The physics of this essential interaction is critical to understanding the evolution of the ISM, the mixing of interstellar clouds with the ISM and the viability of this mechanism for triggered star formation. Here we present the results of a series of new OMEGA laser experiments investigating the evolution of a high density sphere embedded in a low density medium after the interaction of a strong shock wave, thereby emulating the supernova shock-cloud interaction. The interaction is viewed from two orthogonal directions enabling visualization of the both the initial distortion of the sphere into a vortex ring as well as the onset of an azimuthal instability that ultimately results in the three-dimensional breakup of the ring. These studies augment previous studies [1,2] on the NOVA laser by enabling the full three-dimensional topology of the interaction to be understood. We show that the experimental results for the vortex ring are in remarkable agreement with the incompressible theory of Widnall [3]. Implications for mixing in the ISM are discussed

  3. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  4. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    Science.gov (United States)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  5. Harmonic Dark Pulse Emission in Erbium-Doped Fiber Laser

    International Nuclear Information System (INIS)

    Zian, Cheak Tiu; Arman, Zarei; Sin, Jin Tan; Harith, Ahmad; Sulaiman, Wadi Harun

    2015-01-01

    A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5"t"h order harmonic by increasing the pump power with an appropriate polarization controller orientation. The fundamental repetition rate of 20 kHz is obtained at the pump power of 29 mW. The highest pulse energy of 42.6 nJ is obtained at the fundamental repetition rate. The operating frequency of the dark pulse trains shifts to 2"n"d, 3"r"d, 4"t"h and 5"t"h harmonic as the pump powers are increased to 34 mW, 50 mW, 59 mW and 137 mW, respectively. (paper)

  6. Sensitivity of Heterointerfaces on Emission Wavelength in Quantum Cascade Lasers

    Science.gov (United States)

    2016-10-31

    thickness. To correct the composition, a secondary flow of the Al precursor was added during MOVPE growth to increase Al content in QCLs. The resulting...diluted 200 ppm in H2) was used as the n-type dopant. The growth temperature was 625 °C as measured by emissivity corrected optical pyrometrey. AlInAs and...Muraki, S. Fukatsu, Y. Shiraki, and R. Ito , "Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in

  7. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    International Nuclear Information System (INIS)

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-01-01

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  8. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    Science.gov (United States)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  9. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (current and temperature ranges.

  10. Laser-Bioplasma Interaction: Excitation and Suppression of the Brain Waves by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies

    Science.gov (United States)

    Stefan, V. Alexander; IAPS-team Team

    2017-10-01

    The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.

  11. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Fukui Science Education Academy, Takagi Chuou 2 choume, Fukui 910-0804 (Japan); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia)

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  12. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    Science.gov (United States)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  13. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  14. Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y. [Laser Distance Spectrometry, 9 Mota Gur St., Petah Tikva 49514 (Israel); Forni, O. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2014-08-01

    Fluorine and chlorine do not produce atomic and ionic line spectra of sufficient intensity to permit their detection by laser-induced breakdown spectroscopy. They do, however, combine with alkali-earths and other elements to form molecules whose spectra may be easily identified, enabling detection in ambient conditions with much higher sensitivity than using F I and Cl I atomic lines. - Highlights: • We studied laser induced breakdown spectra of halogens with alkali-earth elements. • Emission and temporal behavior of CaF and CaCl molecules were determined. • Sensitivity of F and Cl detection by molecules and atoms was compared.

  15. Ion cyclotron emission calculations using a 2D full wave numerical code

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-01-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code 2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included

  16. New Electron Cyclotron Emission Diagnostic Based Upon the Electron Bernstein Wave

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Hosea, J.C.; Kaita, R.; Majeski, R.; Taylor, G.

    1999-01-01

    Most magnetically confined plasma devices cannot take advantage of standard Electron Cyclotron Emission (ECE) diagnostics to measure temperature. They either operate at high density relative to their magnetic field or they do not have sufficient density and temperature to reach the blackbody condition. The standard ECE technique measures the electromagnetic waves emanating from the plasma. Here we propose to measure electron Bernstein waves (EBW) to ascertain the local electron temperature in these plasmas. The optical thickness of EBW is extremely high because it is an electrostatic wave with a large k(subscript i). One can reach the blackbody condition with a plasma density approximately equal to 10(superscript 11) cm(superscript -3) and electron temperature approximately equal to 1 eV. This makes it attractive to most plasma devices. One serious issue with using EBW is the wave accessibility. EBW may be accessible by either direct coupling or mode conversion through an extremely narrow layer (approximately 1-2 mm) in low field devices

  17. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    Science.gov (United States)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  18. Transmission characteristics of the kinematics of the laser-plasma shock wave in air in compton scattering

    International Nuclear Information System (INIS)

    Hao Dongshan; Xie Hongjun

    2006-01-01

    By comparing the kinematical equation of a shock wave in free air, the study of transmission characteristics of the laser plasma shock wave in Compton scattering is presented. The results show that the attenuation course of the kinematics of he laser plasma shock wave is related not only with the explosion fountainhead and the characteristics of the explosion course, total energy release, air elastic, but also with multi-photon nonlinear Compton scattering. Because of the scattering the initial radius of the shock wave increases, the attenuation course shortens, the energy metastasis efficiency rises. The results of the numerical analysis and the actual values of the shock waves in air by a way intense explosion are very tallying. (authors)

  19. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  20. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    International Nuclear Information System (INIS)

    Vera, L P; Pérez, J A; Riascos, H

    2014-01-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C 2 Swan System (d 3 Π g →a 3 Π u ), the First Negative System N 2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C 2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x10 18 cm −3 respectively.