WorldWideScience

Sample records for wave information studies

  1. Evaluation Statistics Computed for the Wave Information Studies (WIS)

    Science.gov (United States)

    2016-07-01

    the numerical wave model ( SWAN ) for wave simulation in the Black Sea. Continental Shelf Research 50–51: 80–99. Alves, J.-H. G. M., S...York Harbor Entrance. The time series plots, shown in the left column of Figure 1, compare time series of the modeled ( black line) and observed (red...Hmo on the horizontal axis. Within these plots, the diagonal black line is the best fit line, and the closer a dot lies to the best fit line,

  2. Wave theory of information

    CERN Document Server

    Franceschetti, Massimo

    2017-01-01

    Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical informat...

  3. Finnish physicians' stress related to information systems keeps increasing: a longitudinal three-wave survey study.

    Science.gov (United States)

    Heponiemi, Tarja; Hyppönen, Hannele; Vehko, Tuulikki; Kujala, Sari; Aalto, Anna-Mari; Vänskä, Jukka; Elovainio, Marko

    2017-10-17

    Poorly functioning, time-consuming, and inadequate information systems are among the most important work-related psychosocial factors causing stress in physicians. The present study examined the trend in the perceived stress that was related to information systems (SRIS) among Finnish physicians during a nine-year follow-up. In addition, we examined the associations of gender, age, employment sector, specialization status, leadership position, on-call burden, and time pressure with SRIS change and levels. A longitudinal design with three survey data collection waves (2006, 2010 and 2015) based on a random sample of Finnish physicians in 2006 was used. The study sample included 1095 physicians (62.3% women, mean age 54.4 years) who provided data on SRIS in every wave. GLM repeated measures analyses were used to examine the associations between independent variables and the SRIS trend during the years 2006, 2010, and 2015. SRIS increased during the study period. The estimated marginal mean of SRIS in 2006 was 2.80 (95% CI = 2.68-2.92) and the mean increase was 0.46 (95% CI = 0.30-0.61) points from 2006 to 2010 and 0.25 (95% CI = 0.11-0.39) points from 2010 to 2015. Moreover, our results show that the increase was most pronounced in primary care, whereas in hospitals SRIS did not increase between 2010 and 2015. SRIS increased more among those in a leadership position. On-call duties and high time-pressures were associated with higher SRIS levels during all waves. Changing, difficult, and poorly functioning information systems (IS) are a prominent source of stress among Finnish physicians and this perceived stress continues to increase. Organizations should implement arrangements to ease stress stemming from IS especially for those with a high workload and on-call or leadership duties. To decrease IS-related stress, it would be important to study in more detail the main IS factors that contribute to SRIS. Earlier studies indicate that the usability and stability

  4. Spatiotemporal Wave Patterns: Information Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail Rabinovich; Lev Tsimring

    2006-01-20

    Pattern formation has traditionally been studied in non-equilibrium physics from the viewpoint of describing the basic structures and their interactions. While this is still an important area of research, the emphasis in the last few years has shifted towards analysis of specific properties of patterns in various complex media. For example, diverse and unexpected phenomena occur in neuro-like media that are characterized by highly non-trivial local dynamics. We carried out an active research program on analysis of spatio-temporal patterns in various physical systems (convection, oscillating fluid layer, soap film), as well as in neuro-like media, with an emphasis on informational aspects of the dynamics. Nonlinear nonequilibrium media and their discrete analogs have a unique ability to represent, memorize, and process the information contained in spatio-temporal patterns. Recent neurophysiological experiments demonstrated a certain universality of spatio-temporal representation of information by neural ensembles. Information processing is also revealed in the spatio-temporal dynamics of cellular patterns in nonequilibrium media. It is extremely important for many applications to study the informational aspects of these dynamics, including the origins and mechanisms of information generation, propagation and storage. Some of our results are: the discovery of self-organization of periodically oscillatory patterns in chaotic heterogeneous media; the analysis of the propagation of the information along a chaotic media as function of the entropy of the signal; the analysis of wave propagation in discrete non-equilibrium media with autocatalytic properties, which simulates the calcium dynamics in cellular membranes. Based on biological experiments we suggest the mechanism by which the spatial sensory information is transferred into the spatio-temporal code in the neural media. We also found a new mechanism of self-pinning in cellular structures and the related phenomenon

  5. Black Hole Information Problem and Wave Bursts

    Science.gov (United States)

    Gogberashvili, Merab; Pantskhava, Lasha

    2018-06-01

    By reexamination of the boundary conditions of wave equation on a black hole horizon it is found not harmonic, but real-valued exponentially time-dependent solutions. This means that quantum particles probably do not cross the Schwarzschild horizon, but are absorbed and some are reflected by it, what potentially can solve the famous black hole information paradox. To study this strong gravitational lensing we are introducing an effective negative cosmological constant between the Schwarzschild and photon spheres. It is shown that the reflected particles can obtain their additional energy in this effective AdS space and could explain properties of some unusually strong signals, like LIGO events, gamma ray and fast radio bursts.

  6. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current...

  7. Studies on spin waves

    International Nuclear Information System (INIS)

    Prets, A.

    1998-07-01

    In the present Ph. D. thesis we are considering a special form of scaling limits, namely the hydrodynamic limit. Such limits are considered to explain macroscopic behavior of matter by means of microscopic dynamic laws. In this procedure a rescaling of space and time plays a central role. The limit will be formulated in a quantum mechanical way. Within this framework we study derivations of the Landau Lifshitz equation for ferromagnets. This equation is a macroscopic equation of motion for the magnetization vector and results into the theory of spin waves. Since we have no exact knowledge of the Heisenberg operator's time evolution no definitive statement an how to regain the Landau Lifshitz equation from the microscopic dynamics can be given. In contrast to the Heisenberg operator, for an Ising type interaction inside a ferromagnet one is able to recover macroscopically a solution of a linearized Landau Lifschitz equation. (author)

  8. Formal and Informal Learning and First-Year Psychology Students' Development of Scientific Thinking: A Two-Wave Panel Study.

    Science.gov (United States)

    Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.

  9. Formal and Informal Learning and First-Year Psychology Students’ Development of Scientific Thinking: A Two-Wave Panel Study

    Science.gov (United States)

    Soyyılmaz, Demet; Griffin, Laura M.; Martín, Miguel H.; Kucharský, Šimon; Peycheva, Ekaterina D.; Vaupotič, Nina; Edelsbrunner, Peter A.

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students’ development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students’ need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students’ learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students’ scientific thinking. PMID:28239363

  10. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    International Nuclear Information System (INIS)

    Erofeev, V. I.

    2015-01-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena

  11. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  12. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  13. Information properties of a hologram of mutually conjugate waves

    International Nuclear Information System (INIS)

    Rubanov, A.S.; Serebryakova, L.M.

    1995-01-01

    A theoretical study of information properties of a correlation response to a fragment of an image of a thin referenceless hologram of mutually conjugate waves that is recorded with a phase-conjugating (PC) mirror is reported. It is shown that this hologram reconstructs a full image in reflected light and can be used as an associative storage device and as a selective PC mirror. 7 refs., 1 fig

  14. Identity Processes and Parent-Child and Sibling Relationships in Adolescence : A Five-Wave Multi-Informant Longitudinal Study

    NARCIS (Netherlands)

    Crocetti, Elisabetta; Branje, Susan; Rubini, Monica; Koot, Hans M.; Meeus, Wim

    The purpose of this study was to examine reciprocal associations between identity processes (commitment, in-depth exploration, and reconsideration of commitment) and dimensions (support, negative interaction, and power) of maternal, paternal, and sibling relationships. A total of 497 Dutch families

  15. Identity Processes and Parent–Child and Sibling Relationships in Adolescence : A Five-Wave Multi-Informant Longitudinal Study

    NARCIS (Netherlands)

    Crocetti, Elisabetta; Branje, Susan J. T.; Rubini, Monica; Koot, Hans M.; Meeus, Wim H J

    2017-01-01

    The purpose of this study was to examine reciprocal associations between identity processes (commitment, in-depth exploration, and reconsideration of commitment) and dimensions (support, negative interaction, and power) of maternal, paternal, and sibling relationships. A total of 497 Dutch families

  16. Identity processes and parent-child and sibling relationships in adolescence : A five-wave multi-informant longitudinal study

    NARCIS (Netherlands)

    Crocetti, E; Branje, S; Rubini, M; Koot, H; Meeus, W.H.J.

    2017-01-01

    The purpose of this study was to examine reciprocal associations between identity processes (commitment, in-depth exploration, and reconsideration of commitment) and dimensions (support, negative interaction, and power) of maternal, paternal, and sibling relationships. A total of 497 Dutch families

  17. Information processing in patterned magnetic nanostructures with edge spin waves.

    Science.gov (United States)

    Lara, Antonio; Robledo Moreno, Javier; Guslienko, Konstantin Y; Aliev, Farkhad G

    2017-07-17

    Low dissipation data processing with spins is one of the promising directions for future information and communication technologies. Despite a significant progress, the available magnonic devices are not broadband yet and have restricted capabilities to redirect spin waves. Here we propose a breakthrough approach to spin wave manipulation in patterned magnetic nanostructures with unmatched characteristics, which exploits a spin wave analogue to edge waves propagating along a water-wall boundary. Using theory, micromagnetic simulations and experiment we investigate spin waves propagating along the edges in magnetic structures, under an in-plane DC magnetic field inclined with respect to the edge. The proposed edge spin waves overcome important challenges faced by previous technologies such as the manipulation of the spin wave propagation direction, and they substantially improve the capability of transmitting information at frequencies exceeding 10 GHz. The concept of the edge spin waves allows to design a broad of logic devices such as splitters, interferometers, or edge spin wave transistors with unprecedented characteristics and a potentially strong impact on information technologies.

  18. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  19. Sea Bed Sand Waves Studied To Help Pipeline Planners

    NARCIS (Netherlands)

    van der Mark, C.F.; de Koning, M.F.; Blom, Astrid; Hulscher, Suzanne J.M.H.; Stolk, A.

    2008-01-01

    The article cites a study that offers information on the variability of sand wave characteristics in the North Sea. The sand waves variability includes a statement that pipelines may start vibrating due to turbulence generated under the free span and navigational channels often need to be dredged

  20. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria

  1. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  2. Study on guided waves in semiconductor lasers

    International Nuclear Information System (INIS)

    Pudensi, M.A.A.

    1980-01-01

    In This work we studied the guided waves in semiconductor lasers. In the first part we carried on the experimental measurements on lasers with stripe nonorthogonal to the mirrors. In the second part we developed a matrix method for the study of propagation and reflection of guided waves in lasers. (author) [pt

  3. The Dynamic Interplay among Maternal Empathy, Quality of Mother-Adolescent Relationship, and Adolescent Antisocial Behaviors: New Insights from a Six-Wave Longitudinal Multi-Informant Study.

    Directory of Open Access Journals (Sweden)

    Elisabetta Crocetti

    Full Text Available Adolescents' behavior is often a matter of concern, given their increased likelihood of enacting antisocial behaviors, which cause disruptions in the social order and are potentially harmful for the adolescents themselves and for the people around them. In this six-wave longitudinal study we sought to examine the interplay among maternal empathy, multiple indicators of mother-adolescent relationship quality (i.e., balanced relatedness, conflict, and support, and adolescent antisocial behaviors rated both by adolescents and their mothers. Participants for the current study were 497 Dutch adolescents (56.9% males followed from age 13 to 18, and their mothers. A series of cross-lagged panel models revealed reciprocal associations between maternal empathy and mother-adolescent relationship quality and between mother-adolescent relationship quality and adolescent antisocial behaviors. Interestingly, we also found some indirect effects of adolescent antisocial behaviors on maternal empathy mediated by mother-adolescent relationship quality. Overall, this study further highlights a process of reciprocal influences within mother-adolescent dyads.

  4. The Dynamic Interplay among Maternal Empathy, Quality of Mother-Adolescent Relationship, and Adolescent Antisocial Behaviors: New Insights from a Six-Wave Longitudinal Multi-Informant Study

    Science.gov (United States)

    Crocetti, Elisabetta; Moscatelli, Silvia; Van der Graaff, Jolien; Keijsers, Loes; van Lier, Pol; Koot, Hans M.; Rubini, Monica; Meeus, Wim; Branje, Susan

    2016-01-01

    Adolescents’ behavior is often a matter of concern, given their increased likelihood of enacting antisocial behaviors, which cause disruptions in the social order and are potentially harmful for the adolescents themselves and for the people around them. In this six-wave longitudinal study we sought to examine the interplay among maternal empathy, multiple indicators of mother-adolescent relationship quality (i.e., balanced relatedness, conflict, and support), and adolescent antisocial behaviors rated both by adolescents and their mothers. Participants for the current study were 497 Dutch adolescents (56.9% males) followed from age 13 to 18, and their mothers. A series of cross-lagged panel models revealed reciprocal associations between maternal empathy and mother-adolescent relationship quality and between mother-adolescent relationship quality and adolescent antisocial behaviors. Interestingly, we also found some indirect effects of adolescent antisocial behaviors on maternal empathy mediated by mother-adolescent relationship quality. Overall, this study further highlights a process of reciprocal influences within mother-adolescent dyads. PMID:26990191

  5. Atlantic Coast Hindcast, Shallow-Water, Significant Wave Information.

    Science.gov (United States)

    1983-01-01

    AULICS LAB N E JENSEN JAN 83 UNCLASSIFIED W SRF 21NL mEEohhohhhmhEE EhhhEmmhhmhEEEE 1111 .0= 128 llI Ir111-1 11111.6 MICROCOPY RESOLUTION TEST CHART...six data products: 1. Geographical variation in the wave climate :, 2. Twenty-year percent occurrence tables: (Continued) DD EUnclassified SECUmTY...PAOCleWff DO& MIew0O I]1 Preface In late 1976, a study to produce a wave climate for U. S. coastal waters was initiated at the U. S. Army Engineer

  6. Information-Based Warfare: A Third Wave Perspective

    National Research Council Canada - National Science Library

    Komar, David

    1995-01-01

    .... The most advanced wave, the Third Wave, creates wealth through knowledge. Consistent with the Tofflers' model, economies of Third Wave societies are becoming more and more dependent upon knowledge...

  7. Information society studies

    CERN Document Server

    Duff, Alistair S

    2013-01-01

    We are often told that we are ""living in an information society"" or that we are ""information workers."" But what exactly do these claims mean, and how might they be verified? In this important methodological study, Alistair S. Duff cuts through the rhetoric to get to the bottom of the ""information society thesis."" Wide-ranging in coverage, this study will be of interest to scholars in information science, communication and media studies and social theory. It is a key text for the newly-unified specialism of information society studies, and an indispensable guide to the future of this disc

  8. NASA's Gravitational - Wave Mission Concept Study

    Science.gov (United States)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  9. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    Science.gov (United States)

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  10. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  11. Alfven wave studies on a tokamak

    International Nuclear Information System (INIS)

    Kortbawi, D.

    1987-10-01

    The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made

  12. Stimulating Informal Learning Activities Through Perceptions of Performance Appraisal Quality and Human Resource Management System Strength: A Two-Wave Study

    NARCIS (Netherlands)

    Bednall, T.; Sanders, K.; Runhaar, P.R.

    2014-01-01

    Employees' participation in informal learning activities benefits their workplace performance, and ultimately their long-term career development. While research has identified several individual- and organizational-level factors that promote participation, to date, the role of human resource

  13. Quantum information processing with a travelling wave of light

    Science.gov (United States)

    Serikawa, Takahiro; Shiozawa, Yu; Ogawa, Hisashi; Takanashi, Naoto; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.

  14. External wave-launcher study. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The rationale for liquid dielectrically-loaded external wave-guide launchers is discussed. The arguments are strongly indicative that a liquid dielectric-filled waveguide system could be a practical technique for launching ICRH power into a fusion reactor. A detailed summary of the work performed in the study is presented

  15. Study on the Forecast of Ground Motion Parameters from Real Time Earthquake Information Based on Wave Form Data at the Front Site

    OpenAIRE

    萩原, 由訓; 源栄, 正人; 三辻, 和弥; 野畑, 有秀; Yoshinori, HAGIWARA; Masato, MOTOSAKA; Kazuya, MITSUJI; Arihide, NOBATA; (株)大林組 技術研究所; 東北大学大学院工学研究科; 山形大学地域教育文化学部生活総合学科生活環境科学コース; (株)大林組 技術研究所; Obayashi Corporation Technical Research Institute; Graduate School of Eng., Tohoku University; Faculty of Education, Art and Science, Yamagata University

    2011-01-01

    The Japan Meteorological Agency(JMA) provides Earthquake Early Warnings(EEW) for advanced users from August 1, 2006. Advanced EEW users can forecaste seismic ground motion (example: Seismic Intensity, Peak Ground Acceleration) from information of the earthquake in EEW. But there are limits to the accuracy and the earliness of the forecasting. This paper describes regression equation to decrease the error and to increase rapidity of the forecast of ground motion parameters from Real Time Earth...

  16. Photovoltaics information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  17. Managing Information Uncertainty in Wave Height Modeling for the Offshore Structural Analysis through Random Set

    Directory of Open Access Journals (Sweden)

    Keqin Yan

    2017-01-01

    Full Text Available This chapter presents a reliability study for an offshore jacket structure with emphasis on the features of nonconventional modeling. Firstly, a random set model is formulated for modeling the random waves in an ocean site. Then, a jacket structure is investigated in a pushover analysis to identify the critical wave direction and key structural elements. This is based on the ultimate base shear strength. The selected probabilistic models are adopted for the important structural members and the wave direction is specified in the weakest direction of the structure for a conservative safety analysis. The wave height model is processed in a P-box format when it is used in the numerical analysis. The models are applied to find the bounds of the failure probabilities for the jacket structure. The propagation of this wave model to the uncertainty in results is investigated in both an interval analysis and Monte Carlo simulation. The results are compared in context of information content and numerical accuracy. Further, the failure probability bounds are compared with the conventional probabilistic approach.

  18. ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION

    International Nuclear Information System (INIS)

    Pankow, Chris; Sampson, Laura; Perri, Leah; Chase, Eve; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki

    2017-01-01

    The detection of electromagnetic counterparts to gravitational waves (GWs) has great promise for the investigation of many scientific questions. While it is well known that certain orientation parameters can reduce uncertainty in other related parameters, it was also hoped that the detection of an electromagnetic signal in conjunction with a GW could augment the measurement precision of the mass and spin from the gravitational signal itself. That is, knowledge of the sky location, inclination, and redshift of a binary could break degeneracies between these extrinsic, coordinate-dependent parameters and the physical parameters that are intrinsic to the binary. In this paper, we investigate this issue by assuming perfect knowledge of extrinsic parameters, and assessing the maximal impact of this knowledge on our ability to extract intrinsic parameters. We recover similar gains in extrinsic recovery to earlier work; however, we find only modest improvements in a few intrinsic parameters—namely the primary component’s spin. We thus conclude that, even in the best case, the use of additional information from electromagnetic observations does not improve the measurement of the intrinsic parameters significantly.

  19. ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION

    Energy Technology Data Exchange (ETDEWEB)

    Pankow, Chris; Sampson, Laura; Perri, Leah; Chase, Eve; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2017-01-10

    The detection of electromagnetic counterparts to gravitational waves (GWs) has great promise for the investigation of many scientific questions. While it is well known that certain orientation parameters can reduce uncertainty in other related parameters, it was also hoped that the detection of an electromagnetic signal in conjunction with a GW could augment the measurement precision of the mass and spin from the gravitational signal itself. That is, knowledge of the sky location, inclination, and redshift of a binary could break degeneracies between these extrinsic, coordinate-dependent parameters and the physical parameters that are intrinsic to the binary. In this paper, we investigate this issue by assuming perfect knowledge of extrinsic parameters, and assessing the maximal impact of this knowledge on our ability to extract intrinsic parameters. We recover similar gains in extrinsic recovery to earlier work; however, we find only modest improvements in a few intrinsic parameters—namely the primary component’s spin. We thus conclude that, even in the best case, the use of additional information from electromagnetic observations does not improve the measurement of the intrinsic parameters significantly.

  20. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir [Space Physics Group, Institute of Geophysics, University of Tehran (Iran, Islamic Republic of); Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp [Department of Geophysics, Graduate School of Science, Tohoku University (Japan)

    2016-07-15

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  1. Analytical study of dissipative solitary waves

    Energy Technology Data Exchange (ETDEWEB)

    Dini, Fatemeh [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Emamzadeh, Mehdi Molaie [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Bobin, Jean Louis [Universite Pierre et Marie Curie, Paris (France); Amrollahi, Reza [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sodagar, Majid [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Khoshnegar, Milad [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of)

    2008-02-15

    In this paper, the analytical solution to a new class of nonlinear solitons is presented with cubic nonlinearity, subject to a dissipation term arising as a result of a first-order derivative with respect to time, in the weakly nonlinear regime. Exact solutions are found using the combination of the perturbation and Green's function methods up to the third order. We present an example and discuss the asymptotic behavior of the Green's function. The dissipative solitary equation is also studied in the phase space in the non-dissipative and dissipative forms. Bounded and unbounded solutions of this equation are characterized, yielding an energy conversation law for non-dissipative waves. Applications of the model include weakly nonlinear solutions of terahertz Josephson plasma waves in layered superconductors and ablative Rayleigh-Taylor instability.

  2. Incorporating information from source simulations into searches for gravitational-wave bursts

    International Nuclear Information System (INIS)

    Brady, Patrick R; Ray-Majumder, Saikat

    2004-01-01

    The detection of gravitational waves from astrophysical sources of gravitational waves is a realistic goal for the current generation of interferometric gravitational-wave detectors. Short duration bursts of gravitational waves from core-collapse supernovae or mergers of binary black holes may bring a wealth of astronomical and astrophysical information. The weakness of the waves and the rarity of the events urges the development of optimal methods to detect the waves. The waves from these sources are not generally known well enough to use matched filtering however; this drives the need to develop new ways to exploit source simulation information in both detection and information extraction. We present an algorithmic approach to using catalogues of gravitational-wave signals developed through numerical simulation, or otherwise, to enhance our ability to detect these waves. As more detailed simulations become available, it is straightforward to incorporate the new information into the search method. This approach may also be useful when trying to extract information from a gravitational-wave observation by allowing direct comparison between the observation and simulations

  3. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  4. Second Information Technology in Education Study: SITES 2006 Technical Report

    Science.gov (United States)

    Carstens, Ralph, Ed.; Pelgrum, Willem J., Ed.

    2009-01-01

    The International Association for the Evaluation of Educational Achievement (IEA) has been conducting comparative studies for 50 years. SITES 2006 is the fifth wave of surveys related to information and communication technology (ICT), a wave that IEA started with its Computers in Education Study (two studies with data collection in 1989 and 1992),…

  5. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  6. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    Directory of Open Access Journals (Sweden)

    Jong-In Lee

    2014-01-01

    Full Text Available This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees, and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  7. Supplementary report: millimeter wave study program

    International Nuclear Information System (INIS)

    Jory, H.R.; Symons, R.S.

    1976-02-01

    This report describes work done during the months of December 1975 and January 1976, following the writing of the final report on the millimeter wave study program for generation of 100 kW or more power at 120 GHz. The work has been directed to three areas for application to gyrotron devices, small signal analysis, electron beam simulation, and microwave measurements on cavity coupling. A small signal analysis is presented, which allows determination of beam loading in cavities. The results are similar to previous published work, but contain a higher order relativistic correction. The electron beam simulations include two magnetron type guns and one based on electrostatic lenses

  8. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  9. Wave number determination of Pc 1-2 mantle waves considering He++ ions: A Cluster study

    Science.gov (United States)

    Grison, B.; Escoubet, C. P.; Santolík, O.; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.

    2014-09-01

    The present case study concerns narrowband electromagnetic emission detected in the distant cusp region simultaneously with upgoing plasma flows. The wave properties match the usual properties of the Pc 1-2 mantle waves: small angle between the wave vector and the magnetic field line, left-hand polarization, and propagation toward the ionosphere. We report here the first direct wave vector measurement of these waves (about 1.2 × 10- 2 rad/km) through multi spacecraft analysis using the three magnetic components and, at the same time, through single spacecraft analysis based on the refractive index analysis using the three magnetic components and two electric components. The refractive index analysis offers a simple way to estimate wave numbers in this frequency range. Numerical calculations are performed under the observed plasma conditions. The obtained results show that the ion distribution functions are unstable to ion cyclotron instability at the observed wave vector value, due to the large ion temperature anisotropy. We thus show that these electromagnetic ion cyclotron (EMIC) waves are amplified in the distant cusp region. The Poynting flux of the waves is counterstreaming with respect to the plasma flow. This sense of propagation is consistent with the time necessary to amplify the emissions to the observed level. We point out the role of the wave damping at the He++ gyrofrequency to explain that such waves cannot be observed from the ground at the cusp foot print location.

  10. A case study of gravity waves in noctilucent clouds

    Directory of Open Access Journals (Sweden)

    P. Dalin

    2004-06-01

    Full Text Available We present a case study of a noctilucent cloud (NLC display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.

  11. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  12. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  13. Computational and theoretical study of the wave-particle interaction of protons and waves

    Directory of Open Access Journals (Sweden)

    P. S. Moya

    2012-09-01

    Full Text Available We study the wave-particle interaction and the evolution of electromagnetic waves propagating through a plasma composed of electrons and protons, using two approaches. First, a quasilinear kinetic theory has been developed to study the energy transfer between waves and particles, with the subsequent acceleration and heating of protons. Second, a one-dimensional hybrid numerical simulation has been performed, with and without including an expanding-box model that emulates the spherical expansion of the solar wind, to investigate the fully nonlinear evolution of this wave-particle interaction. Numerical results of both approaches show that there is an anisotropic evolution of proton temperature.

  14. A test-bed modeling study for wave resource assessment

    Science.gov (United States)

    Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.

    2016-02-01

    Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.

  15. Toward 3D structural information from quantitative electron exit wave analysis

    International Nuclear Information System (INIS)

    Borisenko, Konstantin B; Moldovan, Grigore; Kirkland, Angus I; Wang, Amy; Van Dyck, Dirk; Chen, Fu-Rong

    2012-01-01

    Simulations show that using a new direct imaging detector and accurate exit wave restoration algorithms allows nearly quantitative restoration of electron exit wave phase, which can be regarded as only qualitative for conventional indirect imaging cameras. This opens up a possibility of extracting accurate information on 3D atomic structure of the sample even from a single projection.

  16. Inquiry learning: Students' perception of light wave phenomena in an informal environment

    Science.gov (United States)

    Ford, Ken

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging lenses, concave and convex mirrors in an informal science setting. The sample used in the study consisted of 40 subjects (15 males and 25 females) in a college program at a University located in the Southern region of the United States. The participants were selected using a convenient sampling process from a population enrolled in a pre-calculus class and a physics class. The participants were engaged in pretest on light wave phenomena using the Inquiry Laboratory Light Island exhibit. After the pretest, the participants were engaged in activities, where they reflected white light off the surface of concave and convex mirrors, refracted white light through converging and diverging lens, and passed white light through a prism. They also made observations of the behavior and characteristics of light from the patterns that it created. After three weeks, the participants were given the Inquiry Laboratory Light Island exhibit posttest. The findings of the study indicated that the means yielded a higher average for the participants' posttest scores. The t-Test results were statistically significant, which confirmed that the concepts of light wave phenomena were perceived and learned by the participants. The Inquiry Laboratory survey questions analyzed using the chi-square test suggested that participants were in agreement with the concepts about light. In addition, Cramer's phi and Cramer's V suggested a moderate relationship and association between the genders of the participants on the concepts of light wave phenomena. Furthermore, the interview and observation protocol processes confirmed that students perceived and learned the

  17. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  18. Genre theory in information studies

    CERN Document Server

    Andersen, Jack

    2015-01-01

    This book highlights the important role genre theory plays within information studies. It illustrates how modern genre studies inform and enrich the study of information, and conversely how the study of information makes its own independent contributions to the study of genre.

  19. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  20. Plane shock wave studies of geologic media

    International Nuclear Information System (INIS)

    Anderson, G.D.; Larson, D.B.

    1977-01-01

    Plane shock wave experiments have been conducted on eight geologic materials in an effort to determine the importance of time-dependent mechanical behavior. Of the eight rocks studied, only Westerly granite and nugget sandstone appear to show time independence. In the slightly porous materials (1-5 percent), Blair dolomite and sodium chloride, and in the highly porous (15 to 40 percent) rock, Mt. Helen tuff and Indiana limestone, time-dependent behavior is associated with the time required to close the available porosity. In water-saturated rocks the time dependence arises because the water that is present shows no indication of transformation to the higher pressure ice phases, thus suggesting the possibility that a metastable form of water exists under dynamic conditions

  1. 2001 Industry Studies: Information

    Science.gov (United States)

    2001-01-01

    increasingly demand communications, computers, and software for use in the Internet , intranets, and extranets. Information technology (IT) - enabled...As the number of Internet users increases, so does the demand for the rapid deployment of information and telecommunication technologies . The key...proliferation has become uncontrollable. Only then will the US maintain the lead in the IT market . 13 ESSAYS ON MAJOR ISSUES ISSUE: THE INFORMATION TECHNOLOGY

  2. Wave refraction studies off Agonda beach (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumar, V.; Pathak, M.C.; Kotnala, K.L.

    Analysis of wave refraction and longshore current has been carried out for a narrow strip off the shores of Agonda (Goa, India). Zones with high wave energy and rip currents have been demarcated. It is found from the analysis that the southern part...

  3. Asymmetry of wind waves studied in a laboratory tank

    Directory of Open Access Journals (Sweden)

    I. A. Leykin

    1995-01-01

    Full Text Available Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves. At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976. The phase shift between o. harmonics is found and shown to increase with the asymmetry of the waves.

  4. Asymmetry of wind waves studied in a laboratory tank

    Science.gov (United States)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  5. Wave farm impact on the beach profile: A case study

    OpenAIRE

    Abanades, J; Greaves, D; Iglesias, G

    2014-01-01

    If wave energy is to become a fully-fledged renewable, its environmental impacts must be fully understood. The objective of the present work is to examine the impact of a wave farm on the beach profile through a case study. The methodology is based on two coupled numerical models: a nearshore wave propagation model and a morphodynamic model, which are run in two scenarios, both with and without the wave farm. Wave data from a nearby coastal buoy are used to prescribe the boundary conditions. ...

  6. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and reduce...... loads in extreme wave conditions. This A-shaped floating structure absorbs the energy in the waves through a multitude of rotors, the shape of which is based on the renowned Salter’s Duck. These rotors pivot around a common axle, one for each leg of the structure, to which the rotors transfer...... the absorbed wave energy and which is connected to a common power take off system (one for each leg). The study investigates the performance of the device in a large range of wave states and estimates the performance in terms of mechanical power available to the power take off system of the WEPTOS WEC for two...

  7. Experimental and Numerical Studies on Wave Breaking Characteristics over a Fringing Reef under Monochromatic Wave Conditions

    Directory of Open Access Journals (Sweden)

    Jong-In Lee

    2014-01-01

    Full Text Available Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r2>0.8 the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A0/h0<0.07 in this study. However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification.

  8. Reliability Study of Energy Harvesting from Sea Waves by Piezoelectric Patches Consideraing Random JONSWAP Wave Theory

    Directory of Open Access Journals (Sweden)

    M. Ettefagh

    2018-03-01

    Full Text Available One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.  

  9. Studies on the parametric decay of waves in fusion plasmas

    International Nuclear Information System (INIS)

    Paettikangas, T.

    1992-08-01

    Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)

  10. Neutron wave optics studied with ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.

    1984-01-01

    The author discusses experiments demonstrating or utilizing the wave properties of neutrons with wavelengths of about 100 nm. In particular the 'UCN gravity diffractometer' and the gravity spectrometer NESSIE (Neutronen-Schwerkraft-Spectrometrie) are illustrated. (Auth.)

  11. Computational study on full-wave inversion based on the elastic wave-equation; Dansei hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)

    1997-05-27

    Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.

  12. Studies of African wave disturbances with the GISS GCM

    Science.gov (United States)

    Druyan, Leonard M.; Hall, Timothy M.

    1994-01-01

    Simulations made with the general circulation model of the NASA/Goddard Institute for Space Studies (GISS GCM) run at 4 deg latitude by 5 deg longitude horizontal resolution are analyzed to determine the model's representation of African wave disturbances. Waves detected in the model's lower troposphere over northern Africa during the summer monsoon season exhibit realistic wavelengths of about 2200 km. However, power spectra of the meridional wind show that the waves propagate westward too slowly, with periods of 5-10 days, about twice the observed values. This sluggishness is most pronounced during August, consistent with simulated 600-mb zonal winds that are only about half the observed speeds of the midtropospheric jet. The modeled wave amplitudes are strongest over West Africa during the first half of the summer but decrease dramatically by September, contrary to observational evidence. Maximum amplitudes occur at realistic latitudes, 12 deg - 20 deg N, but not as observed near the Atlantic coast. Spectral analyses suggest some wave modulation of precipitation in the 5-8 day band, and compositing shows that precipitation is slightly enhanced east of the wave trough, coincident with southerly winds. Extrema of low-level convergence west of the wave troughs, coinciding with northerly winds, were not preferred areas for simulated precipitation, probably because of the drying effect of this advection, as waves were generally north of the humid zone. The documentation of African wave disturbances in the GISS GCM is a first step toward considering wave influences in future GCM studies of Sahel drought.

  13. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  14. Wave-processing of long-scale information by neuronal chains.

    Directory of Open Access Journals (Sweden)

    José Antonio Villacorta-Atienza

    Full Text Available Investigation of mechanisms of information handling in neural assemblies involved in computational and cognitive tasks is a challenging problem. Synergetic cooperation of neurons in time domain, through synchronization of firing of multiple spatially distant neurons, has been widely spread as the main paradigm. Complementary, the brain may also employ information coding and processing in spatial dimension. Then, the result of computation depends also on the spatial distribution of long-scale information. The latter bi-dimensional alternative is notably less explored in the literature. Here, we propose and theoretically illustrate a concept of spatiotemporal representation and processing of long-scale information in laminar neural structures. We argue that relevant information may be hidden in self-sustained traveling waves of neuronal activity and then their nonlinear interaction yields efficient wave-processing of spatiotemporal information. Using as a testbed a chain of FitzHugh-Nagumo neurons, we show that the wave-processing can be achieved by incorporating into the single-neuron dynamics an additional voltage-gated membrane current. This local mechanism provides a chain of such neurons with new emergent network properties. In particular, nonlinear waves as a carrier of long-scale information exhibit a variety of functionally different regimes of interaction: from complete or asymmetric annihilation to transparent crossing. Thus neuronal chains can work as computational units performing different operations over spatiotemporal information. Exploiting complexity resonance these composite units can discard stimuli of too high or too low frequencies, while selectively compress those in the natural frequency range. We also show how neuronal chains can contextually interpret raw wave information. The same stimulus can be processed differently or identically according to the context set by a periodic wave train injected at the opposite end of the

  15. Solar information user priority study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.

    1980-05-01

    This report identifies for each solar technology those members or potential members of the solar community who, either currently or in the future, will require solar information. In addition, it rates each user's relative need for information within the next three years. This information will be used as input for subsequent studies that will identify specific user needs information. These studies, in turn, will be the basis for information product and data base development for the Solar Energy Information Data Bank (SEIDB). In addition, they will be input for the Technical Information Dissemination (TID) Program.

  16. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  17. Uncertainty relations for information entropy in wave mechanics

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Pittsburgh Univ., Pa.; Mycielski, J.

    1975-01-01

    New uncertainty relations in quantum mechanics are derived. They express restrictions imposed by quantum theory on probability distributions of canonically conjugate variables in terms of corresponding information entropies. The Heisenberg uncertainty relation follows from those inequalities and so does the Gross-Nelson inequality. (orig.) [de

  18. Data quality studies of enhanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    McIver, Jessica

    2012-01-01

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contain a high rate of noise transients from the environment, the detector hardware and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches. (paper)

  19. Millimeter wave studies of circumstellar chemistry

    Science.gov (United States)

    Tenenbaum, Emily Dale

    2010-06-01

    Millimeter wave studies of molecules in circumstellar envelopes and a planetary nebula have been conducted. Using the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO) on Mt. Graham, a comparative spectral survey from 215-285 GHz was carried out of the carbon-rich asymptotic giant branch star IRC +10216 and the oxygen-rich supergiant VY Canis Majoris. A total of 858 emission lines were observed in both objects, arising from 40 different molecules. In VY Canis Majoris, AlO, AlOH, and PO were detected for the first time in interstellar space. In IRC +10216, PH3 was detected for the first time beyond the solar system, and C3O, and CH2NH were found for the first time in a circumstellar envelope. Additionally, in the evolved planetary nebula, the Helix, H2CO, C2H, and cyclic-C3H2 were observed using the SMT and the Kitt Peak 12 m telescopes. The presence of these three molecules in the Helix suggests that relatively complex chemistry occurs in planetary nebulae, despite the harsh ultraviolet field. Overall, the research on molecules in circumstellar and planetary nebulae furthers our understanding of the nature of the material that is fed back into the interstellar medium from evolved stars. Besides telescope work, laboratory research was also conducted -- the rotational spectrum of ZnCl was measured and its bond length and rotational constants were determined. Lastly, in partial fulfillment of a graduate certificate in entrepreneurial chemistry, the commercial applications of terahertz spectroscopy were explored through literature research.

  20. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagtion

    International Nuclear Information System (INIS)

    Matda, Y.; Crawford, F.W.

    1974-12-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described. (auth)

  1. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    E) during the period 2004–2007 are analyzed to study the dominant waves present in the 80–100 km altitude region of the atmosphere. The nocturnal intensity variations of different airglow emissions are observed using scanning temperature controlled filter photometers. Waves having period lying between 2 and 12 hours ...

  2. Wave Analysis Study for the Punta Catalina Jetty, Dominican Republic

    DEFF Research Database (Denmark)

    Røge, Mads Sønderstrup; Andersen, Thomas Lykke; Burcharth, Hans Falk

    This report deals with a two-dimensional test study to identify the largest significant wave height, the maximum wave height and the largest crest level along the Punta Catalina jetty in the Dominican Republic. The scale used for the model tests was 1:50. Unless otherwise specified all values given...

  3. Experimental Study of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study on the power conversion capabilities and structural loads of the WEPTOS wave energy converter. The investigation focuses mainly at identifying the performance of the WEPTOS prototype in a wide range of production wave states...... and at the mooring forces and structural bending moments in extreme wave conditions, in order to estimate the performance and structural loads of larger WEPTOS machines being located at various offshore locations of interest. The following aspects were the main subjects of investigation: Performance of the prototype...... under a constant and linear PTO loading, the opening angle of the device, the effect of alterations to the wave conditions, and mooring forces and structural bending moments in production and extreme wave states. During the study, a highly realistic scale model was supplied by the client, WEPTOS, which...

  4. Research Centre for the Study of the Rogue Waves

    Science.gov (United States)

    Shamin, Roman

    2013-04-01

    In 2012, in Sakhalin (Russia) was established Research Center for the Study of the Rogue Waves. This center unites many known scientists, who study rogue waves. The center is founded by the following scientific organizations: - The Institute of Marine Geology and Geophysics of FEB RAS - The Far Eastern Federal University - Special Research Bureau for Automation of Marine Researches of FEB RAS - The Institute of Applied Physics of RAS - Shirshov Institute of Oceanology of RAS Heads this center Dr. Roman V. Shamin (Russia). Topics projects: - Probability of emergence of rogue waves - Finding of the sites of the Ocean most dangerous from the point of view of rogue waves - Assessment of risk of dangerous impact of rogue waves - and many others... Our Center is open for new participants from all countries. Our Centre have web-site: roguewaves.ru For contacts: center@roguewaves.ru (Dr. Roman Shamin)

  5. For information: Geneva University - The search for gravitational waves. Physical motivations and experimental perspectives

    CERN Multimedia

    2005-01-01

    UNIVERSITE DE GENEVE ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet - 1211 GENEVE 4 Tél : (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 11 May PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium The search for gravitational waves. Physical motivations and experimental perspectives by Prof. Michele Maggiore / DPT-UniGe I will give an overview of gravitational-wave physics, addressing two main questions: What are the physical motivations for gravitational-wave research, both from the point of view of astrophysics and of high-energy physics. Present status and future perspectives of gravitational-wave experiments. Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: A. Cervera Villanueva

  6. Samaru Journal of Information Studies

    African Journals Online (AJOL)

    The Samaru Journal of Information Studies addresses issues in the field of library science, information science and related fields including but not limited to, ... Information generation, access and utilization by rural dwellers for sustainable community development in Kwara State, Nigeria · EMAIL FREE FULL TEXT EMAIL ...

  7. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  8. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  9. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    International Nuclear Information System (INIS)

    Hantao Ji; William Fox; David Pace; Rappaport, H.L.

    2004-01-01

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed

  10. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  11. Studies on fast wave current drive in the JAERI tokamaks

    International Nuclear Information System (INIS)

    Kimura, H.; Yamamoto, T.; Fujii, T.; Kawashima, H.; Tamai, H.; Saigusa, M.; Imai, T.; Hamamatsu, K.; Fukuyama, A.

    1991-01-01

    Fast wave electron heating experiment (FWEH) on JFT-2M and JT-60 and analysis of fast wave current drive (FWCD) ability on JT-60U are presented. In the JFT-2M, absorption of fast waves have been investigated by using a phased four-loop antenna array. The absorption of the fast waves has been studied for various plasma parameters by using combination of other additional heating methods such as electron cyclotron heating (ECH) and ion cyclotron heating. It is shown that the absorption efficiency estimated from various methods well correlates with one calculated theoretically in single pass damping. Interaction of the fast waves with fast electrons in combination with ECH has been examined through the measurement of non-thermal electron cyclotron emission (ECE). The observed ECE during FWEH is well explained by the theoretical model, which indicates generation of the appreciable energetic fast electrons by the fast waves. New four-loop array antennas have been employed to improve the absorption of unidirectionally-propagating waves. Characteristics of antenna loading resistance can be reproduced by a coupling calculation code. In JT-60, FWEH experiment in combination with lower hybrid current drive was performed. Power absorption efficiency of fast wave is substantially improved in combination with LHCD of relatively low power for both phasing modes. Bulk electron heating is observed with high-k // mode and coupling with fast electron is confirmed in hard X-ray emission with low-k // mode. The results are consistent with theoretical prediction based on 1.D full wave code. Synergetic effects between FWEH and LHCD are found. Coupling calculation indicates that eight-loop antenna is favourable for keeping high directivity in the required N // -range. Current drive efficiency is calculated with 1-D full wave code including trapped particle effects and higher harmonic ion cyclotron damping

  12. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Crawford, F.W.

    1975-01-01

    An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories

  13. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application ...

  14. Wave-Structure Interactions on Point Absorbers - an experimental study

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller

    used in the case studies is a pitching point absorber (Wavestar). The central part of the thesis deals with the challenges, choices, and experi- ences gained during the Ph.D. The more in-depth technical details and results are presented in peer-reviewed publications and technical reports. The chal...... that combines waves and current in a meaningful way. The method needs to be inexpensive, easy to implement and reduce the turbulence without distorting the incident waves in a detrimental way....

  15. A new wave-current online information system for oil spill contingency planning (WAVCIS)

    International Nuclear Information System (INIS)

    Stone, G.W.

    2001-01-01

    A Wave Current Information System (WAVCIS) for coastal Louisiana was presented. WAVCIS is an online oceanographic and meteorological observing system that provides many benefits to oil spill contingency planning. The system provides wave information such as wave height, period, direction of propagation, water level, surge, water column velocity profiles and meteorological conditions on a near real time basis. The information is gathered from several stations along Louisiana's coast in the Gulf of Mexico and is transmitted via cellular satellite telephone to a base station at Louisiana State University where it is then made available on the Internet. The database provides information regarding emergency response decision tools for agencies faced with decision making during storm threats or during coordination of an oil spill response operation. It also provides information needed for assisting operations support for offshore industries, commerce and trade. In addition, it can be used to obtain input boundary conditions for numerical modelling of surface and underwater oil and gas or mixtures of oil and gas. It was concluded that WAVCIS provides several benefits, including better cursory assessment of oil spill migration, precision numerical modeling of casts for oil spill trajectories, an important archived data set to assess trajectory modeling, and real-time environmental conditions for vessel operators using dispersants and in situ burning methods. 3 refs., 17 figs

  16. Review on Available Information on Waves in the DanWEC Area

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The Danish Wave Energy Centre (DanWEC) has been established in 2009 because of participated desire to market the trial wave energy projects which are already in Hanstholm and others to come. The DanWEC is a part of Hanstholm harbour in the North-West of Denmark. The Center will contribute...... at creating a local base for knowledge, education and possibly a workplace which will be leased out to trial projects. It is therefore likely that different developers will deploy their wave energy devices during the next years in this location and therefore detailed knowledge on a number of environmental...... studies at Hanstholm location. The report should function as an assessment of the existing documents and present knowledge on wave conditions and data at the DanWEC location. The present report has been prepared under the project No. 834101 “DanWEC Vaekstforum 2011”, task 1: “Collection and presentation...

  17. COMPARISON STUDY OF EXPERIMENTS AND PREDICTIONS OF WAVE KINEMATICS FOR ROGUE WAVE

    Directory of Open Access Journals (Sweden)

    Hae Jin Choi

    2018-01-01

    Full Text Available To investigate the wave kinematics under the rogue wave crest, a series of experiments were performed in 2-D wave tank with the application of PIV technique to measure the velocities under the free surface. Three different prediction methods of linear extrapolation, Wheeler stretching, and modified stretching were applied to estimate water wave kinematics and compared with PIV experimental results under the highest wave crest of irregular wave trains satisfying with rogue wave criteria. Also, the cut-off frequency dependence for three prediction methods was investigated with varying spectral peak frequencies to estimate wave kinematics including velocities and accelerations in horizontal and vertical directions. It was suggested that the cut-off frequency for the reasonable prediction of the wave kinematics under the rogue wave crest could be chosen three times of spectral peak wave frequency for the linear extrapolation and higher frequency than four times of spectral peak wave frequency for Wheeler stretching and modified stretching method.

  18. Splitting of quantum information in travelling wave fields using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)

    2011-02-28

    In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.

  19. Studies of hydromagnetic waves and oscillations in plasmas

    International Nuclear Information System (INIS)

    Sawley, M.L.

    1980-10-01

    Small amplitude magnetoacoustic oscillations in a partially ionized, non-uniform, current carrying plasma column of finite beta are considered. The linearized magnetohydrodynamic equations are used to develop a theory describing both free and forced magnetoacoustic oscillations. The results of numerical calculations are given for the specific case of diffuse pinch equilibrium configurations. In an experimental study the amplitude of the oscillating axial magnetic flux is determined for several frequencies in the vicinity of the first magnetoacoustic resonance. Accurate determination of the plasma density profile is shown to be possible. Finite-amplitude effects on the propagation of axisymmetric hydromagnetic waves are examined. A nonlinear theory is developed which describes the second-order perturbation that accompanies the primary wave. The influence of Hall currents and the presence of neutral atoms on the second-order fields is treated. In an investigation on the propagation of torsional waves the observed second-order fields are shown to exhibit good quantitative agreement with theoretical calculations for moderate primary wave amplitudes. The re-ionization of the plasma by a torsional wave is investigated. A theoretical description is given of the nonlinear excitation of magnetoacoustic oscillations by means of an oscillating axial current

  20. Project of experimental study on plasma waves and plasma turbulence

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1990-09-01

    The objective of this project is to perform experiments with wave phenomena on plasmas. Particular attention will be given to Langmuir and whistler waves due to its relations with several phenomena occuring on space and laboratory plasmas. The new concepts of particle acceleration with electromagnetic waves, the auroral phenomena on the polar regions and the charged particle precipitation to the atmosphere through anomalies of the earth magnetic field are examples where these waves have an important role. In this project we intend to study the propagation of these waves in a quiescent plasma machine. This machine is able to produce a plasma with density and temperature with values similar to what is met in the ionosphere. This project will be a part of the activities of the basic plasma group of the INPE's Associated Plasma Laboratory (LAP). It will have the collaboration of the departments of Aeronomy and Geophysics also from INPE, and the collaboration of the Plasma and Gas Physics Laboratory from University of Paris - South, in France. (author)

  1. Study of nonlinear waves described by the cubic Schroedinger equation

    International Nuclear Information System (INIS)

    Walstead, A.E.

    1980-01-01

    The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables

  2. Study of nonlinear waves described by the cubic Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Walstead, A.E.

    1980-03-12

    The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.

  3. Continuing studies of the plasma beat wave accelerator

    International Nuclear Information System (INIS)

    Joshi, C.

    1990-01-01

    This is a proposal for the release of third year funds for the ''Plasma Beat Wave Accelerator'' program (PBWA) at UCLA under the direction of Professor C. Joshi. This report is also a summary of progress on this project since March 1990; i.e., the date of the last report to the DOE. Once again we note that although the program is for historical reasons called the Plasma Beat Wave Accelerator Program, our group is active in all areas of applications of lasers and plasmas in future high energy accelerators. These are as follows: heat gradient plasma structures; excited by plasma beat wave technique; laser wake field technique; and plasma wake field technique. Development of a photoinjector-driven, 20 MeV linac; and theoretical studies of the plasma lens and use of plasmas at the final focus

  4. Report on feasibility study of the Clam Wave Energy Device

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    The main emphasis of the feasibility study has been towards producing an acceptable spine design for the Clam wave energy converter. Concrete and steel designs based on a mathematical model of the waveloading have been produced. Progress is also reported in the design of a bellows for a low-pressure air power transmission system. A narrow wave tank and scale model have been constructed in order to carry out a test programme on various aspects of the device's construction and performance.

  5. Experimental study on a wide range of wave and current conditions of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the results of an experimental study that was performed on small scale model that was a replication of the full-scale Weptos WEC intended for DanWEC. The tests were performed in the circular basin at FloWave at Edinburgh University in October 2014. The laboratory facilities h...... the capabilities to have simultaneously currents and waves from any possible direction and also to produce advanced wave specifications....

  6. Experimental Study on a Rotor for WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...

  7. Beat-wave accelerator studies at the Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1985-01-01

    The study carried out in 1982-83 at the Rutherford Appleton Laboratory to examine how one might use the beat-wave principle to construct a useful high energy accelerator is reviewed, and comments are made on later developments. A number of problems are evident to which solutions cannot at present be foreseen. (author)

  8. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  9. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.

    Science.gov (United States)

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi

    2008-11-01

    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  10. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  11. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Choiniere, Michael [University of Maine; Thiagarajan, Krish P. [University of Maine

    2017-08-01

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. This ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.

  12. Remote pipeline assessment and condition monitoring using low-frequency axisymmetric waves: a theoretical study of torsional wave motion

    Science.gov (United States)

    Muggleton, J. M.; Rustighi, E.; Gao, Y.

    2016-09-01

    Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.

  13. Brain blood flow studies with single photon emission computed tomography in patients with plateau waves

    International Nuclear Information System (INIS)

    Hayashi, Minoru; Kobayashi, Hidenori; Kawano, Hirokazu; Handa, Yuji; Noguchi, Yoshiyuki; Shirasaki, Naoki; Hirose, Satoshi

    1986-01-01

    The authors studied brain blood flow with single photon emission computed tomography (SPECT) in two patients with plateau waves. The intracranial pressure and blood pressure were also monitored continuously in these patients. They included one patient with brain-tumor (rt. sphenoid ridge meningioma) and another with hydrocephalus after subarachnoid hemorrhage due to rupture of lt. internal carotid aneurysm. The intracranial pressure was monitored through an indwelling ventricular catheter attached to a pressure transducer. The blood pressure was recorded through an intraarterial catheter placed in the dorsalis pedis artery. Brain blood flow was studied with Headtome SET-011 (manufactured by Shimazu Co., Ltd.). For this flow measurement study, an intravenous injection of Xenon-133 of about 30 mCi was given via an antecubital vein. The position of the slice for the SPECT was selected so as to obtain information not only from the cerebral hemisphere but also from the brain stem : a cross section 25 deg over the orbito-meatal line, passing through the inferior aspect of the frontal horn, the basal ganglia, the lower recessus of the third ventricle and the brain stem. The results indicated that, in the cerebral hemisphere, plateau waves were accompanied by a decrease in blood flow, whereas, in the brain stem, the blood flow showed little change during plateau waves as compared with the interval phase between two plateau waves. These observations may explain why there is no rise in the blood pressure and why patients are often alert during plateau waves. (author)

  14. Estimation of Delta Wave by Mutual Information of Heartbeat During Sleep

    Science.gov (United States)

    Kurihara, Yosuke; Watanabe, Kajiro; Kobayashi, Kazuyuki; Tanaka, Hiroshi

    The quality of sleep is evaluated based on the sleep stages judged by R-K method or the manual of American Academy of Sleep Medicine. The brainwaves, eye movements, and chin EMG of sleeping subjects are used for the judgment. These methods above, however, require some electrodes to be attached to the head and the face to obtain the brainwaves, eye movements, and chin EMG, thus making the measurements troublesome to be held on a daily basis. If non-invasive measurements of brainwaves, eye movements, and chin EMG are feasible, or their equivalent data can be estimated through other bio-signals, the monitoring of the quality of daily sleeps, which influences the health condition, will be easy. In this paper, we discuss the appearance rate of delta wave occurrences, which is deeply related with the depth of sleep, can be estimated based on the average amount of mutual information calculated by pulse wave signals and body movements measured non-invasively by the pneumatic method. As a result, the root mean square error between the appearance rate of delta wave occurrences measured with a polysomnography and the estimated delta pulse was 14.93%.

  15. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    of the physical and biochemical conditions in plant cells. As model system, we use a H(2)O(2) signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits......Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  16. Information Management in Communication Studies

    OpenAIRE

    Alemany, Dolores

    2011-01-01

    An introduction to the concept of Information Management. Its close relation to other disciplines, the tasks it covers and its impact in Information Society. Digital citizens and Information Literacy.

  17. A Wave Glider for Studies of Biofouling and Ocean Productivity

    Science.gov (United States)

    2017-11-07

    Report: A Wave Glider for Studies of Biofouling and Ocean Productivity The views, opinions and/or findings contained in this report are those of the...Biofouling and Ocean Productivity Report Term: 0-Other Email: john.breier@utrgv.edu Distribution Statement: 1-Approved for public release; distribution is...sensors, and engineered test surfaces was procured to study controls on ocean productivity , plankton distribution, larval settling, and biofouling. We

  18. Study of elastic waves with a camouflage explosion

    Energy Technology Data Exchange (ETDEWEB)

    Dunin, S.Z.; Nagornov, O.V.; Popov, E.A.

    1982-01-01

    Examination is made of the problem concerning the study of elastic waves with an explosion in a porous medium with consideration given to the effect of dilation. Investigation is made of the character of the study of elastic energy at various moments. An analysis is made of the spectral properties of the investigated seismic signal, the effect of strong parameters of the medium, porosity, and the coefficient of dilation on the magnitude of elastic energy, which is emitted during an explosion.

  19. Converted waves in a shallow marine environment : Experimental and modeling studies

    NARCIS (Netherlands)

    El Allouche, N.; Drijkoningen, G.G.; Versteeg, W.; Ghose, R.

    2011-01-01

    Seismic waves converted from compressional to shear mode in the shallow subsurface can be useful not only for obtaining shear-wave velocity information but also for improved processing of deeper reflection data. These waves generated at deep seas have been used successfully in hydrocarbon

  20. Experimental study on the wave loads on a rotor of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    Experimental tests have been performed to investigate the wave load on the rotor in design wave conditions. These wave loads should give an indication of the required structural strength around the rotors as well as for other equipment such as the bearings. During the lab tests, the wave loads have...... been measured for the following configurations: • Head and beam seas (wave coming from the front and the side) • For three different submergence levels • For three different dispositions of the rotor (free to rotate, and fixed at 50° and 90°) Based on this results, an estimation of the maximum wave...... loads has been made on the maximum wave loads at the DanWEC test site....

  1. Computational study on full-wave inversion based on the acoustic wave-equation; Onkyoha hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.

  2. Quiescent plasma machine for beam-plasma interaction and wave studies

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1994-01-01

    A quiescent double plasma machine for beam-plasma interaction wave studies is described. A detailed description of several plasma diagnostics used for plasma and wave excitation detection is given. A beam-plasma wave dispersion relation is used to compare theoretical values with the experimentally measured Langmuir wave frequencies and wavelengths. (author). 14 refs, 10 figs

  3. Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions

    Directory of Open Access Journals (Sweden)

    G. Emmanouil

    2007-03-01

    Full Text Available An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas.

  4. Experimental Study of Irregular Waves on a Gravel Beach

    Science.gov (United States)

    Hu, Nai-Ren; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng

    2017-04-01

    In the east coast of Taiwan, the sort grain size more belongs to cobble or gravel, which is physically distinct compared to the sandy beach in the west coast of Taiwan. Although gravel beaches can dissipate more of wave energy, gravel beaches were eroded and coastal road were damaged especially during typhoons. The purpose of this study is to investigate the geomorphological response of gravel beach due to irregular waves. This experiment was carry out in a 21m long, 50 cm wide, 70 cm high wave tank at Tainan Hydraulics Laboratory, National Cheng-Kung University, Taiwan. To simulate of the geometry in the east coast of Taiwan, a physical model with 1/36 scale-down was used, in which the seawall was 10cm built upon a 1:10 slope and gravel grains with D50 being 3.87 mm was nourished in front of the seawall. In terms of typhoon-scale wave condition, irregular waves with scale-down conditions were generated for 600 s for each scenarios and, three different water levels with respect to the gravel beach are designed. Application of laser combined with image processing to produce 3D topographic map, the erosion zone and accretion zone would be found. The resulting morphological change of gravel beach will be measured using an integrated laser and image processing tool to have 3D topographic maps. It is expected to have more understanding about under what conditions the gravel coasts suffer the least damage. In particular, the relation between erosion rates of gravel beach, the angle of gravel slope and the length of the plane on the gravel slope will be achieved

  5. Mathematical preliminaries for a study of waves in a plasma

    International Nuclear Information System (INIS)

    Trocheris, M.

    1965-01-01

    This report contains the detailed proofs of mathematical results which are used in a study of the linear and 'quasi-linear' approximation for 'electrostatic' waves in a uniform plasma. Certain classes of functions of a complex variable, which are analytic in a strip parallel to the real axis, are defined and studied. In particular, properties of convergence of a sequence and of continuity with respect to a parameter are established for functions remaining inside one such class. The results are used to prove an existence theorem for the simplest equation in the quasi-linear theory of plasma waves. A number of elementary lemmas are used in the text and proved in an appendix. (author) [fr

  6. A numerical study of the wave shoaling effect on wind-wave momentum flux

    Science.gov (United States)

    Hao, Xuanting; Shen, Lian

    2017-11-01

    Momentum transfer between wind and waves is crucial to many physical processes in air-sea interactions. For decades, there has been a number of observational evidence that the surface roughness in the nearshore region is notably higher than in the open sea. In order to explain the mechanism behind this important phenomenon, in particular the wave shoaling effect on surface roughness, we conduct a series of numerical experiments using the wind-wave module of WOW (Wave-Ocean-Wind), a high-fidelity computational framework developed in house. We use prescribed monochromatic waves with linear shoaling effect incorporated, while the wind field is simulated using wall-resolved large-eddy simulation. A comparison between a shallow water wave case and deep water wave cases shows remarkably stronger wave effects on the wind for the former. Detailed analyses show that the increased surface roughness is closely associated with the increased form drag that is mainly due to the reduced wave age in wave shoaling.

  7. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    International Nuclear Information System (INIS)

    Li, Ronny X; Luo, Jianwen; Shahmirzadi, Danial; Konofagou, Elisa E; Balaram, Sandhya K; Chaudhry, Farooq A

    2013-01-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r 2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s −1 , respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p 2 in the AAA subjects was significantly lower (p 2 ) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms and other vascular pathologies that regionally alter the arterial wall mechanics. (paper)

  8. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  9. Study on crack scattering in aluminum plates with Lamb wave frequency–wavenumber analysis

    International Nuclear Information System (INIS)

    Yu, Lingyu; Tian, Zhenhua; Leckey, Cara A C

    2013-01-01

    The multimodal characteristic of Lamb waves makes the interpretation of Lamb wave signals difficult in either the time or frequency domain. In this work, we present our study of Lamb wave propagation characterization and crack scattering using frequency–wavenumber analysis. The aim is to investigate three dimensional (3D) Lamb wave behavior in the presence of crack damage via the application of frequency–wavenumber analysis. The analysis techniques are demonstrated using simulation examples of an aluminum plate with a through-thickness crack. Both in-plane and out-of-plane components are acquired through a 3D elastodynamic finite integration technique (EFIT), while the out-of-plane component is also experimentally obtained using a scanning laser Doppler vibrometer for verification purposes. The time–space wavefield is then transformed to the frequency–wavenumber domain by a two dimensional (2D) Fourier transform and the out-of-plane EFIT results are compared to experimental measurements. The experimental and simulated results are found to be in close agreement. The frequency–wavenumber representation of in-plane and out-of-plane components shows clear distinction among various Lamb wave modes that are present. However, spatial information is lost during this 2D transformation. A short space 2D Fourier transform is therefore adopted to obtain the frequency–wavenumber spectra at various spatial locations, resulting in a space–frequency–wavenumber representation of the signal. The space–frequency–wavenumber analysis has shown its potential for indicating crack presence. (paper)

  10. Theoretical study on the first kind of density wave instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Zuying, Gao; Jincai, Li; Baocheng, Xu; Zuoyi, Zhang; Cheng, Gao [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The present paper summarizes the theoretical studies carried out by INET (Institute of Nuclear Energy Technology) of Tsinghua University on the first kind of density wave instabilities (DWIs) of natural circulation systems. The analysis methods of DWI and mathematical models of drift flux are presented. Based on the general excess entropy production criterion of non-equilibrium thermodynamics, an energy principle of DWI is established. (author). 10 refs, 16 figs.

  11. Experimental study of blockage of monochromatic waves by counter currents

    NARCIS (Netherlands)

    Suastika, I.K.

    1999-01-01

    Blockage of waves by a current can occur if waves are propagating on a spatially varying opposing current in which the velocity is increasing in the wave propagation direction. The ongoing waves become shorter and steeper while they are propagating against the current. Blocking occurs at the

  12. Study of Ion Acoustic Wave Damping through Green's Functions

    DEFF Research Database (Denmark)

    Hsuan, H.C.S.; Jensen, Vagn Orla

    1973-01-01

    Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....

  13. Study on evaluation methods for Rayleigh wave dispersion characteristic

    Science.gov (United States)

    Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.

    2005-01-01

    The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.

  14. Novel device (AirWave) to assess endotracheal tube migration: a pilot study.

    Science.gov (United States)

    Nacheli, Gustavo Cumbo; Sharma, Manish; Wang, Xiaofeng; Gupta, Amit; Guzman, Jorge A; Tonelli, Adriano R

    2013-08-01

    Little is known about endotracheal tube (ETT) migration during routine care among critically ill patients. AirWave is a novel device that uses sonar waves to measure ETT migration and obstructions in real time. The aim of the present study is to assess the accuracy of the AirWave to evaluate ETT migration. In addition, we determined the degree of variation in ETT position and tested whether more pronounced migration occurs in specific clinical scenarios. After institutional review board approval, we included mechanically ventilated patients from February 2012 to May 2012. A chest radiography (CXR) was obtained at baseline and 24 hours when clinically indicated. The ETT distance at the lips was recorded at baseline and every 4 hours. The AirWave system continuously recorded ETT position changes from baseline, and luminal obstructions. A total of 42 patients (age: 61 [SD ±13] years, men: 52%) were recruited. A total of 19 patients had measurements of ETT migration at 24 hours by the 3 methodologies used in this study. The mean (SD) of the ETT migration at 24 hours was +0.04 (1.2), -0.42 (0.7) and +0.34 (1.81) cm when measured by portable CXR, ETT distance at the teeth and AirWave device, respectively. Bland-Altman analysis of tube migration at 24 hours comparing the AirWave with CXR readings showed a bias of 0.1 cm with 95% limit of agreement of -3.8 and +4.3 cm. Comparison of tube migration at 24 hours determined by AirWave with ETT distance at the lips revealed a bias of -0.4 with 95% limit of agreement -3.7 to +3 cm, similar to the values observed between CXR and ETT distance at the lips (bias of -0.3 cm, 95% limit of agreement of -3.4 to +2.8 cm). Factors associated with ETT migration at 24 hours were ETT size and initial measurement from ETT tip to carina by portable CXR. AirWave detected in eight patients some degree of ETT obstruction (30% ± 9.6%) that resolved with prompt ETT catheter suction. The AirWave may provide useful information regarding ETT

  15. Experimental study of the fast wave propagation in TFR

    International Nuclear Information System (INIS)

    1981-02-01

    Several experiments (PLT, DIVA, ERASMUS, TFR) have shown that the heating mechanism of ICRF is dominated in Tokamaks by the presence of the ion-ion hybrid layer. The first experimental evidence of this effect came from propagation studies: a very strong damping was observed on magnetic probes since the hybrid layer was inside the plasma. Comparison with simple models which do not take into account boundary conditions have been undertaken. Recently a new theoretical model has been developped. Based on a plane, inhomogeneous, bounded plasma, it shows that the radial structure of the fast wave and hence the loading impedance of the launching coil depends on the position of the hybrid layer with respect to the plasma boundaries. This result is obtained by solving the wave equation, in the cold plasma approximation. We present here, a serie of experiments, performed in TFR. It confirms the validity of that model underlining thus the importance of radial eigenmodes, when the wave conversion layer is inside the plasma

  16. Wave study of compound eyes for efficient infrared detection

    Science.gov (United States)

    Kilinc, Takiyettin Oytun; Hayran, Zeki; Kocer, Hasan; Kurt, Hamza

    2017-08-01

    Improving sensitivity in the infrared spectrum is a challenging task. Detecting infrared light over a wide bandwidth and at low power consumption is very important. Novel solutions can be acquired by mimicking biological eyes such as compound eye with many individual lenses inspired from the nature. The nature provides many ingenious approaches of sensing and detecting the surrounding environment. Even though compound eye consists of small optical units, it can detect wide-angle electromagnetic waves and it has high transmission and low reflection loss. Insects have eyes that are superior compared to human eyes (single-aperture eyes) in terms of compactness, robustness, wider field of view, higher sensitivity of light intensity and being cheap vision systems. All these desired properties are accompanied by an important drawback: lower spatial resolution. The first step to investigate the feasibility of bio-inspired optics in photodetectors is to perform light interaction with the optical system that gather light and detect it. The most common method used in natural vision systems is the ray analysis. Light wave characteristics are not taken into consideration in such analyses, such as the amount of energy at the focal point or photoreceptor site, the losses caused by reflection at the interfaces and absorption cannot be investigated. In this study, we present a bio-inspired optical detection system investigated by wave analysis. We numerically model the wave analysis based on Maxwell equations from the viewpoint of efficient light detection and revealing the light propagation after intercepting the first interface of the eye towards the photoreceptor site.

  17. A particular inverse problem for Schroedinger discrete equation in two and higher dimensions under apriori information of wave functions

    International Nuclear Information System (INIS)

    Pavlus, M.

    1997-01-01

    The entire potential and the rest of wave functions are determined in parallelepiped domain if the entire discrete spectrum and the apriori information about the wave functions on one side of parallelepiped are given. Formulation for solving the Schroedinger discrete equation in two and higher dimensions is proposed and new formulas are derived for their solution. Two examples for a 2D case and one example for a 3D case are demonstrated

  18. CFD study of the overtopping discharge of the Wave Dragon wave energy converter

    DEFF Research Database (Denmark)

    Eskilsson, K.; Palm, J.; Kofoed, Jens Peter

    2015-01-01

    incompressible Euler/Navier-Stokes solver in the OpenFOAM® framework. We present simulations of: (i) a complete sea state for different crest heights, and (ii) regular waves for different wave conditions and crest heights. The simulations compare reasonably well with the experimental data, albeit the irregular...

  19. Parametric study of guided waves dispersion curves for composite plates

    Science.gov (United States)

    Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien

    2018-02-01

    Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.

  20. Overcoming Uncertainty with Help From Citizens: ISeeChange Case Studies on Urban Flooding, Indoor Heat waves, and Drought to Inform Resilience Efforts, Hazard Mitigation, and Long-term Planning

    Science.gov (United States)

    Drapkin, J. K.; Wagner, L.

    2017-12-01

    When it comes to the impacts of weather and climate, the granular local data and context needed to inform infrastructure decisions, hazard mitigation efforts, and long-term planning can't be scraped from satellites, remote sensing, or radar data. This is particularly the case with respect to the heat inside people's homes, local street flooding, and landscapes historically unaccustomed to drought conditions. ISeeChange is developing tools that empower citizens, scientists, city planners, journalists, and local community groups to collaborate and iteratively fill-in crucial data gaps as conditions change in real time. ISeeChange connects the public with national media, scientists, and data tools that support community dialogue and enable collaborative science and journalism investigations about our changing environment. ISeeChange's app and platform serve as the center of several on- the-ground community pilot initiatives in cities around the country addressing urban heat, flooding, and drought. Results from ISeeChange investigations suggest that indoor temperatures in Harlem are 7-8 degrees hotter than outdoor temperatures at night; some residents in New Orleans may be experiencing the impacts of 5-year-floods on a more regular basis, and droughts don't look or behave the same in different regions, such as New England. Our presentation will focus on pilots in New Orleans, Harlem, and New England, which demonstrate how diverse teams are producing actionable science to inform the design of resilience efforts like real-time indoor heat notification systems, green infrastructure projects to manage stormwater and flooding, and a photographic index of drought.

  1. Studies on the propagation of relativistic plasma waves in high density plasmas produced by hypersonic ionizing shock waves

    International Nuclear Information System (INIS)

    Williams, R.L.; Johnson, J.A. III

    1993-01-01

    The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed

  2. Comparative study on spreading function for directional wave spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    -dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...

  3. A systematic study of wave conditions and sediment transport near Mormugao harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, M.P.M.

    Wave conditions and the nature of sediment transport in the Mormugao Harbour area have been evaluated in view of the proposed development project of this harbour It has been found from this study that generally high waves will be experienced...

  4. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, Simon

    2011-07-01

    On March 13th, 2006, the Div. of Electricity at Uppsala Univ. deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that

  5. Qualitative Studies in Information Systems

    DEFF Research Database (Denmark)

    Sarker, Suprateek; Xiao, Xiao; Beaulieu, Tanya

    2013-01-01

    The authors discuss a review of qualitative papers on information systems (IS) published in various journals between 2001 and 2012. They explain trends related to qualitative research in the chosen journals and the key anatomical components of a qualitative research manuscript, including...

  6. Studying Lorentz-violating electromagnetic waves in confined media

    International Nuclear Information System (INIS)

    Viana, Davidson R.; Gomes, Andre H.; Fonseca, Jakson M.; Moura-Melo, Winder A.

    2009-01-01

    Full text. Planck energy scale is still far beyond current possibilities. A question of interest is whether the Lorentz symmetry remains valid at these extremely high energies, whose answer certainly would be useful whenever building grand unified theories, in which general relativity is consistently accommodated. Here, we study a reminiscent of this possible symmetry violation, incorporated in the body of the so-called Standard Model Extension (SME). More precisely, we deal with the pure (Abelian) gauge sector, so that we have a modified classical electromagnetism in (3+1) dimensions, whose Lagrangian include a term proportional to a (constant) background tensor that breaks the Lorentz symmetry, but respecting CPT. Our attention is devoted to the wave-like solutions constrained to propagate inside confined media, like waveguides and resonant cavities. Our preliminary findings indicate that Lorentz-breaking implies in modifications of the standard results which are proportional to the (very small) violating parameters, but could be largely enhanced by diminishing the size of the confined media. Under study is the case of a toroidal cavity where the electromagnetic field should respect the additional requirement of being single-valued in the (toroidal) angular variable. Perhaps, such an extra feature combined with the usual boundary conditions could lead us to large effects of this violation, somewhat similar to those predicted for CPT- and Lorentz-odd electromagnetic waves constrained to propagate along a hollow conductor waveguide. (author)

  7. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    Science.gov (United States)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  8. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  9. Methotrexate information booklet study 2008.

    LENUS (Irish Health Repository)

    Mohammad, A

    2012-02-01

    INTRODUCTION: I n order to assess the value of using the methotrexate information booklet, we conducted a single blind prospective controlled trial of the patients attending two rheumatology services. METHODS: The active-arm (n=40) used the MTX information booklet for the patients\\' education and the control-arm (n=38) did not. Patients\\' interviews were conducted over a 6-month period using an MTX-questionnaire. RESULTS: The entire active-arm patients (100%) were taking folic-acid and 32 (80%) knew the reason why they were taking folic-acid vs. [30 (79%) and 10 (26%) in the control-arm]. In the active-arm 35 (88%) knew the reason for their monthly blood tests vs. 18 (47%) in the control-arm. The entire active-arm was aware of the need for contraception use and MTX-side effects vs. 23 (60%) and 15 (40%) in the control-arm respectively. CONCLUSIONS: The use of the MTX information booklet in our cohort improved their understanding of the treatment.

  10. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli.

    Science.gov (United States)

    Hama, Noriyuki; Kawai, Minako; Ito, Shin-Ichi; Hirota, Akihiko

    2018-02-14

    Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates on the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different inter-stimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves; 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus; and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two solely induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs.

  11. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    De Bakker, A. T M; Tissier, M.F.S.; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  12. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  13. Infragravity-wave dynamics in a barred coastal region, a numerical study

    NARCIS (Netherlands)

    Rijnsdorp, Dirk P.; Ruessink, Gerben; Zijlema, Marcel

    2015-01-01

    This paper presents a comprehensive numerical study into the infragravity-wave dynamics at a field site, characterized by a gently sloping barred beach. The nonhydrostatic wave-flow model SWASH was used to simulate the local wavefield for a range of wave conditions (including mild and storm

  14. Numerical study of traveling-wave solutions for the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Kalisch, Henrik; Lenells, Jonatan

    2005-01-01

    We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied

  15. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1) Bands

    Science.gov (United States)

    Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, J.

    2001-06-01

    As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1) bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E). These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1) airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  16. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1 Bands

    Directory of Open Access Journals (Sweden)

    Young-In Won

    2001-06-01

    Full Text Available As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1 bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E. These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1 airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  17. Applied Epistemology and Understanding in Information Studies

    Science.gov (United States)

    Gorichanaz, Tim

    2017-01-01

    Introduction: Applied epistemology allows information studies to benefit from developments in philosophy. In information studies, epistemic concepts are rarely considered in detail. This paper offers a review of several epistemic concepts, focusing on understanding, as a call for further work in applied epistemology in information studies. Method:…

  18. Studies on Charge Variation and Waves in Dusty Plasmas

    Science.gov (United States)

    Kausik, Siddhartha Sankar

    Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move

  19. Studies on anti-tumor effect of electromagnetic waves

    International Nuclear Information System (INIS)

    Kadota, Ikuhito; Wakabayashi, Toshio; Ogoshi, Kyoji; Kamijo, Akemi

    1995-01-01

    Hyperthermia have treated cancer with thermal effect of electromagnetic waves for biological systems, but the expected effect is not shown. Also non-thermal effect of electromagnetic waves is out of consideration. If irradiation conditions of electromagnetic waves with non-thermal anti-tumor effect are obtained, we can expect newly spread in cancer therapy. We had in vivo experiments that electromagnetic waves were irradiated to mice. In some irradiation conditions, the non-thermal anti-tumor effect of electromagnetic waves showed. In order to specify the irradiation conditions, we had in vitro experiments. We found that activity ratio of tumor cells which was measured by MTT method depended on irradiation time and power of electromagnetic waves. These results are useful for the cancer therapy. (author)

  20. Wave number determination of Pc 1–2 mantle waves considering He++ ions: A Cluster study

    Czech Academy of Sciences Publication Activity Database

    Grison, Benjamin; Escoubet, C. P.; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.

    2014-01-01

    Roč. 119, č. 9 (2014), s. 7601-7614 ISSN 2169-9380 R&D Projects: GA MŠk 7E12026; GA ČR(CZ) GPP209/11/P848; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : EMIC * refractive index * wave number * k-filtering * Pc 1–2 mantle wave * distant cusp Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.426, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/2013JA019719/abstract

  1. Clinical management and burden of bipolar disorder: a multinational longitudinal study (WAVE-bd Study

    Directory of Open Access Journals (Sweden)

    Moreno-Manzanaro Miriam

    2011-04-01

    Full Text Available Abstract Background Studies in bipolar disorder (BD to date are limited in their ability to provide a whole-disease perspective - their scope has generally been confined to a single disease phase and/or a specific treatment. Moreover, most clinical trials have focused on the manic phase of disease, and not on depression, which is associated with the greatest disease burden. There are few longitudinal studies covering both types of patients with BD (I and II and the whole course of the disease, regardless of patients' symptomatology. Therefore, the Wide AmbispectiVE study of the clinical management and burden of Bipolar Disorder (WAVE-bd (NCT01062607 aims to provide reliable information on the management of patients with BD in daily clinical practice. It also seeks to determine factors influencing clinical outcomes and resource use in relation to the management of BD. Methods WAVE-bd is a multinational, multicentre, non-interventional, longitudinal study. Approximately 3000 patients diagnosed with BD type I or II with at least one mood event in the preceding 12 months were recruited at centres in Austria, Belgium, Brazil, France, Germany, Portugal, Romania, Turkey, Ukraine and Venezuela. Site selection methodology aimed to provide a balanced cross-section of patients cared for by different types of providers of medical aid (e.g. academic hospitals, private practices in each country. Target recruitment percentages were derived either from scientific publications or from expert panels in each participating country. The minimum follow-up period will be 12 months, with a maximum of 27 months, taking into account the retrospective and the prospective parts of the study. Data on demographics, diagnosis, medical history, clinical management, clinical and functional outcomes (CGI-BP and FAST scales, adherence to treatment (DAI-10 scale and Medication Possession Ratio, quality of life (EQ-5D scale, healthcare resources, and caregiver burden (BAS scale

  2. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini

    2014-01-01

    Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite diff...

  3. Assessing the first wave of epidemiological studies of nanomaterial workers

    International Nuclear Information System (INIS)

    Liou, Saou-Hsing; Tsai, Candace S. J.; Pelclova, Daniela; Schubauer-Berigan, Mary K.; Schulte, Paul A.

    2015-01-01

    The results of early animal studies of engineered nanomaterials (ENMs) and air pollution epidemiology suggest that it is important to assess the health of ENM workers. Initial epidemiological studies of workers’ exposure to ENMs (<100 nm) are reviewed and characterized for their study designs, findings, and limitations. Of the 15 studies, 11 were cross-sectional, 4 were longitudinal (1 was both cross-sectional and longitudinal in design), and 1 was a descriptive pilot study. Generally, the studies used biologic markers as the dependent variables. All 11 cross-sectional studies showed a positive relationship between various biomarkers and ENM exposures. Three of the four longitudinal studies showed a negative relationship; the fourth showed positive findings after a 1-year follow-up. Each study considered exposure to ENMs as the independent variable. Exposure was assessed by mass concentration in 10 studies and by particle count in six studies. Six of them assessed both mass and particle concentrations. Some of the studies had limited exposure data because of inadequate exposure assessment. Generally, exposure levels were not very high in comparison to those in human inhalation chamber studies, but there were some exceptions. Most studies involved a small sample size, from 2 to 258 exposed workers. These studies represent the first wave of epidemiological studies of ENM workers. They are limited by small numbers of participants, inconsistent (and in some cases inadequate) exposure assessments, generally low exposures, and short intervals between exposure and effect. Still, these studies are a foundation for future work; they provide insight into where ENM workers are experiencing potentially adverse effects that might be related to ENM exposures

  4. Assessing the first wave of epidemiological studies of nanomaterial workers

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing, E-mail: shliou@nhri.org.tw [National Health Research Institutes, National Institute of Environmental Health Sciences (China); Tsai, Candace S. J. [Colorado State University, Department of Environmental and Radiological Health Science (United States); Pelclova, Daniela [Charles University in Prague, Department of Occupational Medicine, First Faculty of Medicine (Czech Republic); Schubauer-Berigan, Mary K.; Schulte, Paul A. [National Institute for Occupational Safety and Health (United States)

    2015-10-15

    The results of early animal studies of engineered nanomaterials (ENMs) and air pollution epidemiology suggest that it is important to assess the health of ENM workers. Initial epidemiological studies of workers’ exposure to ENMs (<100 nm) are reviewed and characterized for their study designs, findings, and limitations. Of the 15 studies, 11 were cross-sectional, 4 were longitudinal (1 was both cross-sectional and longitudinal in design), and 1 was a descriptive pilot study. Generally, the studies used biologic markers as the dependent variables. All 11 cross-sectional studies showed a positive relationship between various biomarkers and ENM exposures. Three of the four longitudinal studies showed a negative relationship; the fourth showed positive findings after a 1-year follow-up. Each study considered exposure to ENMs as the independent variable. Exposure was assessed by mass concentration in 10 studies and by particle count in six studies. Six of them assessed both mass and particle concentrations. Some of the studies had limited exposure data because of inadequate exposure assessment. Generally, exposure levels were not very high in comparison to those in human inhalation chamber studies, but there were some exceptions. Most studies involved a small sample size, from 2 to 258 exposed workers. These studies represent the first wave of epidemiological studies of ENM workers. They are limited by small numbers of participants, inconsistent (and in some cases inadequate) exposure assessments, generally low exposures, and short intervals between exposure and effect. Still, these studies are a foundation for future work; they provide insight into where ENM workers are experiencing potentially adverse effects that might be related to ENM exposures.

  5. Study of a coronagraphic mask using evanescent waves.

    Science.gov (United States)

    Buisset, Christophe; Rabbia, Yves; Lepine, Thierry; Alagao, Mary-Angelie; Ducrot, Elsa; Poshyachinda, Saran; Soonthornthum, Boonrucksar

    2017-04-03

    The evanescent wave coronagraph (EvWaCo) is a specific kind of band-limited coronagraph using the frustrated total internal reflection phenomenon to produce the coronagraphic effect (removing starlight from the image plane in order to make the stellar environment detectable). In this paper, we present a theoretical and experimental study of the EvWaCo coronagraphic mask. First, we calculate the theoretical transmission and we show that this mask is partially achromatic. Then, we present the experimental results obtained in unpolarized light at the wavelength λ≈900 nm and relative spectral bandwidth Δλ/λ≈6%. In particular, we show that the coronagraph provides a contrast down to a few 10-6 at an angular distance of about ten Airy radii.

  6. Studies of drift waves in a toroidal heliac

    International Nuclear Information System (INIS)

    Shi, X.H.; Blackwell, B.D.; Hamberger, S.M.

    1989-01-01

    Low frequency, coherent density fluctuations have been studied for three typical magnetic configurations in the helical axis stellarator SHEILA using Langmuir probe techniques. The parametric dependence, the threshold magnetic field, the frequency spectrum and the spatial structure of the fluctuations are measured experimentally. Mode analyses are made in a magnetic coordinate system. Both the mode numbers thus obtained and the smallness of the directly measured values of the wavenumber along the magnetic field lines indicate a close correspondence between the helicity of the fluctuations and the field lines. These experimental results are consistent with a collisional drift wave model, derived from a linearized two-fluid theory, related to the heliac geometry. Density reduction associated with the fluctuations is clearly observed and is consistent with rough estimates of the cross-filed particle flux due to the fluctuations. 17 refs., 18 figs., 1 tab

  7. Quantum wave packet study of D+OF reaction

    International Nuclear Information System (INIS)

    Kurban, M.; Karabulut, E.; Tutuk, R.; Goektas, F.

    2010-01-01

    The quantum dynamics of the D+OF reaction on the adiabatic potential energy surface of the ground 1 3 A ' state has been studied by using a time-dependent quantum real wave packet method. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been calculated by J-shifting the J = 0 results by means of capture model. Then, the integral cross sections and initial state selected rate constants have been calculated. The initial state-selected reaction probabilities and reaction cross section show threshold but not manifest any resonances and the initial state selected rate constants are sensitive to the temperature.

  8. A Numerical Study on the Excitation of Guided Waves in Rectangular Plates Using Multiple Point Sources

    Directory of Open Access Journals (Sweden)

    Wenbo Duan

    2017-12-01

    Full Text Available Ultrasonic guided waves are widely used to inspect and monitor the structural integrity of plates and plate-like structures, such as ship hulls and large storage-tank floors. Recently, ultrasonic guided waves have also been used to remove ice and fouling from ship hulls, wind-turbine blades and aeroplane wings. In these applications, the strength of the sound source must be high for scanning a large area, or to break the bond between ice, fouling and plate substrate. More than one transducer may be used to achieve maximum sound power output. However, multiple sources can interact with each other, and form a sound field in the structure with local constructive and destructive regions. Destructive regions are weak regions and shall be avoided. When multiple transducers are used it is important that they are arranged in a particular way so that the desired wave modes can be excited to cover the whole structure. The objective of this paper is to provide a theoretical basis for generating particular wave mode patterns in finite-width rectangular plates whose length is assumed to be infinitely long with respect to its width and thickness. The wave modes have displacements in both width and thickness directions, and are thus different from the classical Lamb-type wave modes. A two-dimensional semi-analytical finite element (SAFE method was used to study dispersion characteristics and mode shapes in the plate up to ultrasonic frequencies. The modal analysis provided information on the generation of modes suitable for a particular application. The number of point sources and direction of loading for the excitation of a few representative modes was investigated. Based on the SAFE analysis, a standard finite element modelling package, Abaqus, was used to excite the designed modes in a three-dimensional plate. The generated wave patterns in Abaqus were then compared with mode shapes predicted in the SAFE model. Good agreement was observed between the

  9. Studying Design Engineers Use Of Information Systems

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Studying information usage by design engineers involves considering technical, social, cognitive and volitional factors. This makes it challenging, especially for researchers without a cognitive psychology background. This paper presents a summary of key findings in researching information use...

  10. Wave analysis at frictional interface: A case wise study

    Science.gov (United States)

    Srivastava, Akanksha; Chattopadhyay, Amares; Singh, Pooja; Singh, Abhishek Kumar

    2018-03-01

    The present article deals with the propagation of a Stoneley wave and with the reflection as well as refraction of an incident P -wave at the frictional bonded interface between an initially stressed isotropic viscoelastic semi-infinite superstratum and an initially stressed isotropic substratum as case I and case II, respectively. The complex form of the velocity equation has been derived in closed form for the propagation of a Stoneley wave in the said structure. The real and imaginary parts of the complex form of the velocity equation correspond to the phase velocity and damped velocity of the Stoneley wave. Phase and damped velocity have been analysed against the angular frequency. The expressions of the amplitude ratios of the reflected and refracted waves are deduced analytically. The variation of the amplitude ratios is examined against the angle of incidence of the P -wave. The influence of frictional boundary parameters, initial stress, viscoelastic parameters on the phase and damped velocities of the Stoneley wave and the amplitude ratios of the reflected as well as refracted P - and SV -wave have been revealed graphically through numerical results.

  11. TIPS Evaluation Project Retrospective Study: Wave 1 and 2.

    Science.gov (United States)

    Hubbard, Susan M.; Mulvey, Kevin P.

    2003-01-01

    Measured substance abuse treatment professionals' knowledge, attitudes, and practices regarding the Treatment Improvement Protocol (TIP) series and the 28 TIPs. Results for 3,267 respondents in wave 1 and 1,028 in wave 2 indicate that almost half of all professionals were aware of the TIPs. Attitudes toward TIPs were positive, but professionals…

  12. Study of blast wave overpressures using the computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    M. L. COSTA NETO

    Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.

  13. Pc5 waves generated by substorm injection: a case study

    Directory of Open Access Journals (Sweden)

    N. A. Zolotukhina

    2008-07-01

    Full Text Available We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset detected the wave generated by an electron cloud, and GOES 10 (west of the onset detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.

  14. Extracting continuum information from Ψ(t) in time-dependent wave-packet calculations

    International Nuclear Information System (INIS)

    Madsen, L. B.; Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Fernandez, J.

    2007-01-01

    The theory of measurement projection operators in grid-based time-dependent wave-packet calculations involving electronic continua in atoms and molecules is discussed. A hierarchy of projection operators relevant in their individual restricted configuration spaces is presented. At asymptotically large distances from the scattering or interaction center the projection operators involve plane waves only. To reach this asymptotic regime, however, large propagation times and large boxes may be required. At somewhat smaller distances from the scattering center, the projection operators are expressed in terms of analytical single-center Coulomb scattering waves with incoming wave boundary conditions. If propagation of the wave packet to these asymptotic regimes is impeded, the projection operators involve the exact scattering states which are not readily available in the wave-packet calculation and hence must be supplied by an additional, typically very demanding, calculation. The present approach suggests an exact way of analyzing the timely problem of the one-electron continuum in nonperturbative calculations. A key feature is that the propagated wave packet includes every interaction of the full Hamiltonian. The practicality of the proposed method is illustrated by the nontrivial example of strong-field ionization of the molecular hydrogen ion. Finally, the extension of the presented ideas to single and double ionization of two-electron systems is discussed

  15. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information

    Directory of Open Access Journals (Sweden)

    Mathias Becquaert

    2018-05-01

    Full Text Available This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1 between the components inside the side information and (2 between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  16. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2013-06-01

    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  17. Experimental study of the formation of steep waves and breakers

    Directory of Open Access Journals (Sweden)

    Stanis³aw R. Massel

    2001-09-01

    Full Text Available Breaking waves (whitecaps are one of the most important and least understood processes associated with the evolution of the surface gravity wave field in the open sea. This process is the principal means by which energy and momentum are transferred away from a developing sea. However, an estimation of the frequency of breaking waves or the fraction of sea surface covered by whitecaps and the amount of dissipated energy induced by breaking is very difficult to carry out under real sea conditions. A controlled experiment, funded by the European Commission under the Improving Human Potential Access Infrastructures programme, was carried out in the Ocean Basin Laboratory at MARINTEK, Trondheim (Norway. Simulation of random waves of the prescribed spectra by wave makers provided a very realistic pattern of the sea surface. The number of breaking waves was estimated by photographing the sea surface and recording the noise caused by the breaking waves. The experimental data will serve for calibration of the theoretical models of the sea surface fraction related to the whitecaps.

  18. Wave Energy, Lever Operated Pivoting Float LOPF Study

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg...... University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed...... for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency...

  19. General solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on general solar energy. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 13 groups of respondents are analyzed in this report: Loan Officers, Real Estate Appraisers, Tax Assessors, Insurers, Lawyers, Utility Representatives, Public Interest Group Representatives, Information and Agricultural Representatives, Public Interest Group Representatives, Information and Agricultural Specialists at State Cooperative Extension Service Offices, and State Energy Office Representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  20. Ocean energy researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on ocean energy systems. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Only high-priority groups were examined. Results from 2 groups of researchers are analyzed in this report: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  1. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  2. Comparative Study between Slow Shock Wave Lithotripsy and Fast Shock Wave Lithotripsy in the Management of Renal Stone

    Directory of Open Access Journals (Sweden)

    AKM Zamanul Islam Bhuiyan

    2013-01-01

    Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A

  3. Signal information available for plume source tracking with and without surface waves and learning by undergraduates assisting with the research

    Science.gov (United States)

    Wiley, Megan Beth

    Autonomous vehicles have had limited success in locating point sources of pollutants, chemicals, and other passive scalars. However, animals such as stomatopods, a mantis shrimp, track odor plumes easily for food, mates, and habitat. Laboratory experiments using Planar Laser Induced Fluorescence measured odor concentration downstream of a diffusive source with and without live stomatopods to investigate their source-tracking strategies in unidirectional and "wave-affected" (surface waves with a mean current) flows. Despite the dearth of signal, extreme temporal variation, and meandering plume centerline, the stomatopods were able to locate the source, especially in the wave-affected flow. Differences in the two plumes far from the source (>160 cm) appeared to help the animals in the wave-affected flow position themselves closer to the source (fluid mechanics, and there was little evidence of learning by participation in the RAship. One RA's conceptions of turbulence did change, but a group workshop seemed to support this learning more than the RAship. The documented conceptions could aid in curriculum design, since situating new information within current knowledge seems to deepen learning outcomes. The RAs' conceptions varied widely with some overlap of ideas. The interviews also showed that most RAs did not discuss molecular diffusion as part of the mixing process and some remembered information from course demonstrations, but applied them inappropriately to the interview questions.

  4. Concept Study of Foundation Systems for Wave Energy Converters

    DEFF Research Database (Denmark)

    Molina, Salvador Devant; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Analysis of possible foundation solution for Wave Energy Converters (WEC) is presented by investigating and optimizing novel foundation systems recently developed for offshore wind turbines. Gravity based, pile and bucket foundations are innovative foundation systems that are analyzed. Concept...

  5. The study of waves, instabilities, and turbulence using Thomson scattering in laser plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1995-01-01

    Much basic work in plasma physics has been devoted to the study of wave properties in plasmas, one of the nonlinear development of driven waves, and of the instabilities in which such waves may participate. The use of laser-plasma techniques has allowed one to extend such studies into new regimes. Such techniques and their results are the subject here. Once one chooses a physical problem within this subject area, it is now possible to design a laser-plasma experiment that is optimized for the study of that problem. The plasma can be designed to have a variety of density and flow-velocity profiles, the damping of ion acoustic waves and of electron plasma waves can be independently controlled, and the waves can be driven weakly or strongly. By using Nd-glass lasers and their harmonics one can non-invasively drive and diagnose the waves, using separate laser beams to produce the plasma, drive the waves, and diagnose their properties. The author uses as examples some recent work with his collaborators, including the first experimental detection of ion plasma waves and the first direct observation of the plasma wave driven by the acoustic decay of laser light

  6. Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2010-01-01

    We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.

  7. A photoelastic study of the effects of an impulsive seismic wave on a nuclear containment vessel

    International Nuclear Information System (INIS)

    Burger, C.P.

    1981-01-01

    A dynamic photoelastic study of the progressive movement of a dilatational P-wave into a model of a nuclear containment vessel,is studied. The reflections at the dome abutments are observed and the strong flexural wave that deforms the dome itself is studied with photoelasticity and with dynamic strain gage procedures. (E.G.) [pt

  8. Wave energy, lever operated pivoting float LOPF study

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.

    2012-11-01

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency, produce 610 MWh/y (609.497 kWh/y) with an average power output of 69.6 kW, which requires a generator capacity of 700 kW. It is expected the generator efficiency can be increased to 90% in the future. More specific calculations (from EnergiNet) show that with one generator of 695 kW the expected power production is 585 MWh/y; with a generator of 250 kW and 100 kW, the expected power production is 481 MWh/y and 182 MWh/y respectively. In addition there are several areas for future improvements for increased power production. (Author)

  9. Solar thermal electric power information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  10. Wind energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  11. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Lomonosov, Alexey M. [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); General Physics Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  12. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    Science.gov (United States)

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  13. Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae

    International Nuclear Information System (INIS)

    Casentini, Claudio

    2016-01-01

    Type II SNe, also called Core-collapse SuperNovae have a neutrino (v) emission, as confirmed by SN 1987A, and are also potential sources of gravitational waves. Neutrinos and gravitational waves from these sources reach Earth almost contemporaneously and without relevant interaction with stellar matter and interstellar medium. The upcoming advanced gravitational interferometers would be sensitive enough to detect gravitational waves signals from close galactic Core-collapse SuperNovae events. Nevertheless, significant uncertainties on theoretical models of emission remain. A joint search of coincident low energy neutrinos and gravitational waves events from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent SuperNovae. Recently a project for a joint search involving gravitational wave interferometers and neutrino detectors has started. We discuss the benefits of a joint search and the status of the search project. (paper)

  14. Experimental Study of a Multi Level Overtopping Wave Power Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Hald, Tue; Frigaard, Peter Bak

    2002-01-01

    Results of experimental investigations of a floating wave energy device called Power Pyramid is presented. The Power Pyramid utilizes reservoirs in multiple levels when capturing wave overtopping and converting it into electrical energy. The effect of capturing the overtopping in multiple levels,......, using 5 levels introduces practical problems, and is most probably not economically feasible. It is concluded that it is reasonable to use 2 levels (maybe 3), which can increase the efficiency by 25-40 % compared to using a single level.......Results of experimental investigations of a floating wave energy device called Power Pyramid is presented. The Power Pyramid utilizes reservoirs in multiple levels when capturing wave overtopping and converting it into electrical energy. The effect of capturing the overtopping in multiple levels......, compared to only one level, has been evaluated experimentally. From the experimental results, and the performed optimizations based on these, it has been found that the efficiency of a wave power device of the overtopping type can be increased by as much as 76 % by using 5 levels instead of 1. However...

  15. Passive solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1980-11-01

    The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  16. Studying Electromechanical Wave Propagation and Transport Delays in Power Systems

    Science.gov (United States)

    Dasgupta, Kalyan; Kulkarni, A. M.; Soman, Shreevardhan

    2013-05-01

    Abstract: In this paper, we make an attempt to describe the phenomenon of wave propagation when a disturbance is introduced in an electromechanical system. The focus is mainly on generator trips in a power system. Ordering of the generators is first done using a sensitivity matrix. Thereafter, orthogonal decomposition of the ordered generators is done to group them based on their participation in different modes. Finally, we find the velocity of propagation of the wave and the transport delay associated with it using the ESPRIT method. The analysis done on generators from the eastern and western regions of India.1

  17. Feasibility study of the plasma electron density measurement by electromagnetic radiation from the laser-driven plasma wave

    International Nuclear Information System (INIS)

    Jang, D G; Kim, J J; Suk, H; Hur, M S

    2012-01-01

    When an intense laser beam is focused in a plasma, a plasma wake wave is generated and the oscillatary motion of the plasma electrons produces a strong electromagnetic wave by a Cherenkov-like process. Spectrum of the genetated electromagnetic wave has dependence on the plasma density. In this paper, we propose to use the emitted electromagnetic radiation for plasma diagnostic, which may provide an accurate information for local electron densities of the plasma and will be very useful for three-dimensional plasma density profiles by changing the focal point location of the laser beam. Two-dimensional (2-D) particle-in-cell (PIC) simulation is used to study the correlation between the spectrum of the emitted radiation and plasma density, and the results demonstrate that this method is promising for the electron density measurement in the plasma.

  18. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  19. Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heeung; Lee, Jaesun; Cho, Younho [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In this study, the Lamb wave mixing technique, which is basised on advanced research on the nonlinear bulk wave mixing technique, is applied for corrosion detection. To demonstrate the validity of the Lamb wave mixing technique, an experiment was performed with normal and corroded specimens. Comparison group in an experimentation are selected to mode and frequency with dominant in-plane displacement and out-of-plane displacement of Lamb waves. The results showed that the Lamb wave mixing technique can monitor corrosion defects, and it has a trend similar to that of the conventional Lamb wave technique. It was confirmed that the dominant displacement and mode matching the theory were generated. Flaw detectability is determined depending on displacement ratio instead of using the measurement method and mode selection.

  20. A Study on Techniques for Focusing Circumferential Array Guided Waves for Long Range Inspection of Pipes

    International Nuclear Information System (INIS)

    Kang, To; Kim, Hak Joon; Song, Sung Jin; Cho, Young Do; Lee, Dong Hoon; Cho, Hyun Joon

    2009-01-01

    Ultrasonic guided waves have been widely utilized for long range inspection of structures. Especially, development of array guided waves techniques and its application for long range gas pipe lines(length of from hundreds meters to few km) were getting increased. In this study, focusing algorithm for array guided waves was developed in order to improve long range inspectability and accuracy of the array guided waves techniques for long range inspection of gas pipes, and performance of the developed techniques was verified by experiments using the developed array guided wave system. As a result, S/N ratio of array guided wave signals obtained with the focusing algorithm was increased higher than that of signals without focusing algorithm

  1. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.

  2. Extraction of 3D Information from Circular Array Measurements for Auralization with Wave Field Synthesis

    NARCIS (Netherlands)

    De Vries, D.; Hörchens, L.; Grond, P.

    2007-01-01

    The state of the art of wave field synthesis (WFS) systems is that they can reproduce sound sources and secondary (mirror image) sources with natural spaciousness in a horizontal plane, and thus perform satisfactory 2D auralization of an enclosed space, based on multitrace impulse response data

  3. Solar energy storage researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  4. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  5. Experimental study of electronic electrostatic waves detected in the terrestrial magnetosphere by the satellite GEOS 2

    International Nuclear Information System (INIS)

    Canu, P.

    1982-09-01

    After reviewing the general characteristics of electrostator waves a brief resume is given of the observations made up to the present moment. The GEOS satellite and the ''wave'' experiment are described, as well as the method and results of the statistical study of the strong electrostatic wave observed. Creating mechanisms of diffuse auroras are discussed. In a later chapter a new method of using the relaxation probe is presented as well as the results it gives on the mode of propagation of waves in the neighbourhood of the FUH frequency [fr

  6. Model Study of Wave Overtopping of Marine Structure for a Wide Range of Geometric Parameters

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2000-01-01

    The objective of the study described in this paper is to enable estimation of wave overtopping rates for slopes/ramps given by a wide range of geometric parameters when subjected to varying wave conditions. To achieve this a great number of model tests are carried out in a wave tank using irregul...... 2-D waves. On the basis of the first part of these tests an exponential overtopping expression for a linear slope, including the effect of limited draught and varying slope angle, is presented. The plans for further tests with other slope geometries are described....

  7. Internet Resources of Consumer Health Information Studies

    Directory of Open Access Journals (Sweden)

    Yu-Tzuon Chou

    2004-09-01

    Full Text Available Health and medical care has always been an important issue. Recently, there has been a rapid increase in consumer health awareness. Therefore, Consumer Health Information has been vastlyemphasized, which results in the development of associated websites. According to an investigation in Taiwan, there are 1,820 different health and medical related websites in 2002. However, due to the lack of regulations, some of these websites’ information contents may be faulty and may confuse users or potentially be harmful. The purpose of this article is to advise consumers how to differentiate between correct and incorrect information in the Health Information websites. The present study analyzes the strengths and weaknesses of some Taiwan’s consumer health websites by comparing their structures, contents and other information with those provided by "the Top Ten Most Useful Health Information Websites" of the USA. [Article content in Chinese

  8. Wind waves in the Black Sea: results of a hindcast study

    Science.gov (United States)

    Arkhipkin, V. S.; Gippius, F. N.; Koltermann, K. P.; Surkova, G. V.

    2014-11-01

    In this study we describe the wind wave fields in the Black Sea. The general aims of the work were the estimation of statistical wave parameters and the assessment of interannual and seasonal wave parameter variability. The domain of this study was the entire Black Sea. Wave parameters were calculated by means of the SWAN wave model on a 5 × 5 km rectangular grid. Initial conditions (wind speed and direction) for the period between 1949 and 2010 were derived from the NCEP/NCAR reanalysis. According to our calculations the average significant wave height on the Black Sea does not exceed 0.7 m. Areas of most significant heavy sea are the southwestern and the northeastern parts of the sea as expressed in the spatial distribution of significant wave heights, wave lengths and periods. Besides, long-term annual variations of wave parameters were estimated. Thus, linear trends of the annual total duration of storms and of their quantity are nearly stable over the hindcast period. However, an intensification of storm activity is observed in the 1960s-1970s.

  9. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  10. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  11. Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    ..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics

  12. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  13. Study on the Performance of the “Pendulor” Wave Energy Converter in an Array Configuration

    Directory of Open Access Journals (Sweden)

    Sudath Prasanna Gunawardane

    2016-04-01

    Full Text Available For over three decades the “Pendulor” wave energy device has had a significant influence in this field, triggering several research endeavours. It includes a top-hinged flap propelled by the standing waves produced in a caisson with a back wall on the leeward side. However, one of the main disadvantages which impedes its progress is the enormous expense involved in the construction of the custom made typical caisson structure, about a little more than one-quarter of the wave length. In this study, the influence of such design parameters on the performance of the device is investigated, via numerical modelling for a device arranged in an array configuration, for irregular waves. The potential wave theory is applied to derive the frequency-dependent hydrodynamic parameters by making a distinction in the fluid domain into a separate sea side and lee side. The Cummins equation was utilised for the development of the time domain equation of motion while the transfer function estimation methods were used to solve the convolution integrals. Finally, the device was tested numerically for irregular wave conditions for a 50 kW class unit. It was observed that in irregular wave operating conditions, the caisson chamber length could be reduced by 40% of the value estimated for the regular waves. Besides, the device demonstrated around 80% capture efficiency for irregular waves thus allowing provision for avoiding the employment of any active control.

  14. Some studies on wave refraction in relation to beach erosion along the Kerala coast

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.K.; Hariharan, V.; Varadachari, V.V.R.

    Using the British admirality bathymetric charts off the west coast of India and employing the graphical method of constructing wave refraction diagrams, an attempt is made to study behaviour of the short-period waves (4, 5 and 6 seconds) which...

  15. Wave Energy Potential in the Eastern Mediterranean Levantine Basin. An Integrated 10-year Study

    Science.gov (United States)

    2014-01-01

    SUBTITLE Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... Cardone CV, Ewing JA, et al. The WAM model e a third generation ocean wave prediction model. J Phys Oceanogr 1988;18(12):1775e810. [70] Varinou M

  16. Studies on waves and turbulence in natural plasmas and in laboratory plasmas

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1990-09-01

    The project for studying plasma waves and plasma turbulence submitted to CAPES to be included in the CAPES/COFECUB international cooperation agreement is presented. The project will be carry out in cooperation with Paris University aiming to simulate in laboratory wave-particle interaction phenomena occuring in space plasma. (M.C.K.)

  17. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    Science.gov (United States)

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  18. Study of equatorial Kelvin waves using the MST radar and radiosonde observations

    Directory of Open Access Journals (Sweden)

    P. Kishore

    2005-06-01

    Full Text Available In this paper an attempt has been made to study equatorial Kelvin waves using a high power coherent VHF radar located at Gadanki (13.5° N, 79.2° E, a tropical station in the Indian sub-continent. Simultaneous radiosonde observations taken from a nearby meteorological station located in Chennai (13.04° N, 80.17° E were also used to see the coherence in the observed structures. These data sets were analyzed to study the mean winds and equatorial waves in the troposphere and lower stratosphere. Equatorial waves with different periodicities were identified. In the present study, particular attention has been given to the fast Kelvin wave (6.5-day and slow Kelvin wave (16-day. Mean zonal wind structures were similar at both locations. The fast Kelvin wave amplitudes were somewhat similar in both observations and the maximum amplitude is about 8m/s. The phase profiles indicated a slow downward progression. The slow Kelvin wave (16-day amplitudes shown by the radiosonde measurements are a little larger than the radar derived amplitudes. The phase profiles showed downward phase progression and it translates into a vertical wavelength of ~10-12km. The radar and radiosonde derived amplitudes of fast and slow Kelvin waves are larger at altitudes near the tropopause (15-17km, where the mean wind attains westward maximum.

  19. A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures

    International Nuclear Information System (INIS)

    Cho, Youn Ho; Lee, Chong Myoung

    2008-01-01

    In this study, we have developed a program which can calculate phase and group velocities, attenuation and wave structures of each mode in multi-layered plates. The wave structures of each mode are obtained, varying material properties and number of layers. The key in the success of guided wave NDE is how to optimize the mode selection scheme by minimizing energy loss when a structure is in contact with liquid. In this study, the normalized out-of-plane displacements at the surface of a free plate are used to predict the variation of modal attenuation and verily the correlation between attenuation and wave structure. It turns out that the guided wave attenuation can be efficiently obtain from the out-of-plane displacement variation of a free wave guide alleviating such mathematical difficulties in extracting complex roots for the eigenvalue problem of a liquid loaded wave guide. Through this study, the concert to optimize guided wave mode selection is accomplished to enhance sensitivity and efficiency in nondestructive evaluation for multi-layered structures.

  20. Laser-generated acoustic wave studies on tattoo pigment

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  1. A case study on dune response to infragravity waves

    Science.gov (United States)

    Li, Wenshan; Wang, Hui; Li, Huan; Wu, Shuangquan; Li, Cheng

    2017-08-01

    A series of numerical simulations were conducted using the process-based model XBeach to investigate dune response under normal and getting rid of infragravity wave conditions with different slopes. Erosion volume upside the dune toe and dune top recession are set as indicators for dune vulnerability as well as defence capacity for its front-beach. Results show that both dune erosion volume and dune top recession decrease with gentler dune slopes. Of all the simulation cases, dune with a face slope of 1/1 lost most sand and supplied most sand for lower-bed. The presence of infragravity waves is validated to be crucial to dune vulnerability. The dune erosion volume is shown to decrease by 44.5%∼61.5% and the dune top recession decreased by 0%∼45.5% correspondingly, in the case that infragravity motion is not taken into account during simulation for different dune slopes.

  2. An Experimental and analytical study on the bubble-to-slug flow regime transition based on the void wave instability

    International Nuclear Information System (INIS)

    Song, Chul Hwa

    1995-02-01

    An experimental and analytical work is performed to investigate the relation between the developing phenomena in bubble flow and the propagation phenomena of void waves. For this purpose, the structural developments in bubble flow and the propagation property of void waves are measured over a broad range of flow conditions including the bubble-to-slug flow regime transition (BSFRT) region. And a linear stability analysis is performed, based on the two-fluid model, to establish the analytical model on the wave propagation parameters, and the predictability of the model is validated by comparing analytical results with experimental observations. In the experimental work, an impedance void meter is developed to measure the void fraction, and a series of test are performed by varying the bubble size in order to investigate the bubble size effect on the bubble flow structures for various flow conditions. Statistical signal processing techniques are applied to void signals in order to objectively identify the changing modes of bubble flow structures and to estimate the wave propagation properties. The impedance void meter developed in this study showed very good temporal and spatial resolutions enough to identify the developing phenomena in bubble flow structures and to investigate the void wave propagations, and the void distribution effect could be minimized by electrically shielding the guard electrodes. It was also designed so that the inherent errors due to the phase shifts between channels be negligible. Various features occurred in the transitional process of bubble flow could be objectively identified by introducing some statistical parameters evaluated from void signals. Two distinct modes of structural development in bubble flow were observed in the transitional process, and they are found to be much influenced by the initial bubble size. And the mechanism to govern BSFRT could be characterized by two ways depending on the developing modes of bubble flow

  3. Transient Stress Waves in Study of Coconut Physical Properties

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Dvořáková, Pavla

    2010-01-01

    Roč. 34, č. 1 (2010), s. 19-25 ISSN 0732-8818 R&D Projects: GA AV ČR IAA201990701 Institutional research plan: CEZ:AV0Z20760514 Keywords : stress waves * double-pulse holography * coconut * exploding wires Subject RIV: BI - Acoustics Impact factor: 0.505, year: 2010 http://www3.interscience.wiley.com/cgi-bin/fulltext/121567342/PDFSTART

  4. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  5. Feasibility study on diagnosis of material damage using bulk wave mixing technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Seok; Cho, Youn Ho [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

  6. Statistical study of waves distribution in the inner magnetosphere using geomagnetic indices and solar wind parameters

    Science.gov (United States)

    Aryan, H.; Yearby, K.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.

    2013-12-01

    The interaction of gyroresonant wave particles with chorus waves largely determine the dynamics of the Earth's radiation belts that effects the acceleration and loss of radiation belt electrons. The common approach is to present model waves distribution in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However it is known that solar wind parameters such as bulk velocity (V) and density (n) are more effective in the control of high energy fluxes at the geostationary orbit. Therefore in the present study the set of parameters of the wave distribution is expanded to include the solar wind parameters in addition to the geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of Cluster STAFF-SA, Double Star TC1 and OMNI data in order to present a combined model of wave magnetic field intensities for the chorus waves as a function of magnetic local time (MLT), L-shell (L*), geomagnetic activity, and solar wind velocity and density. Generally, the largest wave intensities are observed during average solar wind velocities (3006cm-3. On the other hand the wave intensity is lower and limited between 06:00 to 18:00 MLT for V700kms-1.

  7. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  8. Studies of midlatitude mesospheric temperature variability and its relationship to gravity waves, tides, and planetary waves

    Science.gov (United States)

    Beissner, Kenneth C.

    1997-10-01

    Temperature observations of the middle atmosphere have been carried out from September 1993 through July 1995 using a Rayleigh backscatter lidar located at Utah State University (42oN, 111oW). Data have been analyzed to obtain absolute temperature profiles from 40 to 90 km. Various sources of error were reviewed in order to ensure the quality of the measurements. This included conducting a detailed examination of the data reduction procedure, integration methods, and averaging techniques, eliminating errors of 1-3%. The temperature structure climatology has been compared with several other mid-latitude data sets, including those from the French lidars, the SME spacecraft, the sodium lidars at Ft. Collins and Urbana, the MSISe90 model, and a high- latitude composite set from Andenes, Norway. In general, good agreement occurs at mid-latitudes, but areas of disagreement do exist. Among these, the Utah temperatures are significantly warmer than the MSISe90 temperatures above approximately 80 km, they are lower below 80 km than any of the others in summer, they show major year- to-year variability in the winter profiles, and they differ from the sodium lidar data at the altitudes where the temperature profiles should overlap. Also, comparisons between observations and a physics based global circulation model, the TIME-GCM, were conducted for a mid-latitude site. A photo-chemical model was developed to predict airglow intensity of OH based on output from the TIME-GCM. Many discrepancies between the model and observations were found, including a modeled summer mesopause too high, a stronger summer inversion not normally observed by lidar, a fall-spring asymmetry in the OH winds and lidar temperatures but not reproduced in the TIME-GCM equinoctial periods, larger winter seasonal wind tide than observed by the FPI, and a failure of the model to reverse the summertime mesospheric jet. It is our conclusion these discrepancies are due to a gravity wave parameterization in the

  9. Information content in frequency-dependent, multi-offset GPR data for layered media reconstruction using full-wave inversion

    Science.gov (United States)

    De Coster, Albéric; Phuong Tran, Anh; Lambot, Sébastien

    2014-05-01

    Water lost through leaks can represent high percentages of the total production in water supply systems and constitutes an important issue. Leak detection can be tackled with various techniques such as the ground-penetrating radar (GPR). Based on this technology, various procedures have been elaborated to characterize a leak and its evolution. In this study, we focus on a new full-wave radar modelling approach for near-field conditions, which takes into account the antenna effects as well as the interactions between the antenna(s) and the medium through frequency-dependent global transmission and reflection coefficients. This approach is applied to layered media for which 3-D Green's functions can be calculated. The model allows for a quantitative estimation of the properties of multilayered media by using full-wave inversion. This method, however, proves to be limited to provide users with an on-demand assessment as it is generally computationally demanding and time consuming, depending on the medium configuration as well as the number of unknown parameters to retrieve. In that respect, we propose two leads in order to enhance the parameter retrieval step. The first one consists in analyzing the impact of the reduction of the number of frequencies on the information content. For both numerical and laboratory experiments, this operation has been achieved by investigating the response surface topography of objective functions arising from the comparison between measured and modelled data. The second one involves the numerical implementation of multistatic antenna configurations with constant and variable offsets in the model. These two kinds of analyses are then combined in numerical experiments to observe the conjugated effect of the number of frequencies and the offset configuration. To perform the numerical analyses, synthetic Green's functions were simulated for different multilayered medium configurations. The results show that an antenna offset increase leads

  10. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    Science.gov (United States)

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  11. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    Science.gov (United States)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  12. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies, co...

  13. Power of theta waves in the EEG of human subjects increases during recall of haptic information.

    Science.gov (United States)

    Grunwald, M; Weiss, T; Krause, W; Beyer, L; Rost, R; Gutberlet, I; Gertz, H J

    1999-02-05

    Several studies have reported a functional relationship between spectral power within the theta-band of the EEG (theta-power) and memory load while processing visual or semantic information. We investigated theta power during the processing of different complex haptic stimuli using a delayed recall design. The haptic explorations consisted of palpating the structure of twelve sunken reliefs with closed eyes. Subjects had to reproduce each relief by drawing it 10 s after the end of the exploration. The relationship between mean theta power and mean exploration time was analysed using a regression model. A linear relationship was found between the exploration time and theta power over fronto-central regions (Fp1, Fp2, F3, F7, F8, Fz, C3) directly before the recall of the relief. This result is interpreted in favour of the hypothesis that fronto-central theta power of the EEG correlates with the load of working memory independent of stimulus modality.

  14. Surfing for hip replacements: has the "internet tidal wave" led to better quality information.

    Science.gov (United States)

    Nassiri, Mujtaba; Bruce-Brand, Robert A; O'Neill, Francis; Chenouri, Shojaeddin; Curtin, Paul T

    2014-07-01

    This study aimed to determine the quality of information available on the internet regarding Total Hip Replacement (THR). The unique websites identified were categorised by type and assessed using the DISCERN score, the Journal of the American Medical Association (JAMA) benchmark criteria, and a novel (THR)-specific content score. The presence of the Health On the Net (HON) code, a reported quality assurance marker, was noted. Commercial websites predominate. Governmental & Non-Profit Organizations websites attained the highest DISCERN score. Sites that bore the HONcode seal obtained significantly higher DISCERN and THR content scores than those without the certification. Physicians should recommend the HONcode seal to their patients as a reliable indicator of website quality or, better yet, refer patients to sites they have personally reviewed. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Various continuum approaches for studying shock wave structure in carbon dioxide

    Science.gov (United States)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  16. A Study on the Guided Wave Mode Conversion using Self-calibrating Technique

    International Nuclear Information System (INIS)

    Park, Jung Chul; Cho, Youn Ho

    2000-01-01

    The guided wave mode conversion phenomena were investigated for the NDE of a plate-like structure with thickness variation. The ratios of reflection and transmission (R/T) were measured via the self-calibrating procedure which allows us to obtain experimental guided wave data in a more reliable way regardless of the coupling uncertainty between transducer and specimen. The results on R/T could be used to determine the thickness reduction of the structure. It was shown that not only the incident modes but also the converted ones need to be considered in the self-calibrating guided wave inspection to extract a reasonable correlation between experimental data and the thickness variation. Through this study, the potential of guided wave inspection as a quantitative NDE technique was explored based on the combined concept of self-calibration and multi-mode conversion in guided wave scattering problems

  17. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  18. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  19. Large Blast and Thermal Simulator Reflected Wave Eliminator Study

    Science.gov (United States)

    1990-03-01

    it delays the passage of this wave through the test section until after the test is complete. The required length of extra duct depends on the strength...tube axis, which acts like an additional contraction effect since Se = Sj/[Cqsin(aj)]. Tii extra area is illustrated best by plotting (Se-Ae)/Ac versus...34Simulation de Choc et de Soaffie. Comimpensateur d’Ondes de Detente de Bouche pour tube a Choc de 2400 mm de diametre de Veine. Description, Compte- Renda

  20. Studies of High-Frequency Seismic Wave Propagation.

    Science.gov (United States)

    1991-03-29

    e.g., events 88079026 and 881322211). Waveform variation from depth to depth for individual earthquakes is considerably greater in Ssto ,- component...a). Fig. 6. (P, Sfa., Ssto , ) particle motion-based coordinate system, where 0 is the azimuth (E of N) of the P-wave first motion, 0 is the emergence...are aligned on the maximum cross-correlation of 0.05 s (20 samples) of the Sfan com- ponent. Fig. 9. 300-m Sfa t -component (solid) and Ssto -component

  1. Elastic properties of amorphous thin films studied by Rayleigh waves

    International Nuclear Information System (INIS)

    Schwarz, R.B.; Rubin, J.B.

    1993-01-01

    Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni 1-x Zr x (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration

  2. Control-Informed Geometric Optimization of Wave Energy Converters: The Impact of Device Motion and Force Constraints

    Directory of Open Access Journals (Sweden)

    Paula B. Garcia-Rosa

    2015-12-01

    Full Text Available The energy cost for producing electricity via wave energy converters (WECs is still not competitive with other renewable energy sources, especially wind energy. It is well known that energy maximising control plays an important role to improve the performance of WECs, allowing the energy conversion to be performed as economically as possible. The control strategies are usually subsequently employed on a device that was designed and optimized in the absence of control for the prevailing sea conditions in a particular location. If an optimal unconstrained control strategy, such as pseudo-spectral optimal control (PSOC, is adopted, an overall optimized system can be obtained no matter whether the control design is incorporated at the geometry optimization stage or not. Nonetheless, strategies, such as latching control (LC, must be incorporated at the optimization design stage of the WEC geometry if an overall optimized system is to be realised. In this paper, the impact of device motion and force constraints in the design of control-informed optimized WEC geometries is addressed. The aim is to verify to what extent the constraints modify the connection between the control and the optimal device design. Intuitively, one might expect that if the constraints are very tight, the optimal device shape is the same regardless of incorporating or not the constrained control at the geometry optimization stage. However, this paper tests the hypothesis that the imposition of constraints will limit the control influence on the optimal device shape. PSOC, LC and passive control (PC are considered in this study. In addition, constrained versions of LC and PC are presented.

  3. Simulation studies of plasma waves in the electron foreshock - The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.

  4. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  5. An Experimental Study on the Impact of Different-frequency Elastic Waves on Water Retention Curve

    Science.gov (United States)

    Deng, J. H.; Dai, J. Y.; Lee, J. W.; Lo, W. C.

    2017-12-01

    ABSTEACTOver the past few decades, theoretical and experimental studies on the connection between elastic wave attributes and the physical properties of a fluid-bearing porous medium have attracted the attention of many scholars in fields of porous medium flow and hydrogeology. It has been previously determined that the transmission of elastic waves in a porous medium containing two immiscible fluids will have an effect on the water retention curve, but it has not been found that the water retention curve will be affected by the frequency of elastic vibration waves or whether the effect on the soil is temporary or permanent. This research is based on a sand box test in which the soil is divided into three layers (a lower, middle, and upper layer). In this case, we discuss different impacts on the water retention curve during the drying process under sound waves (elastic waves) subject to three frequencies (150Hz, 300Hz, and 450Hz), respectively. The change in the water retention curve before and after the effect is then discussed. In addition, how sound waves affect the water retention curve at different depths is also observed. According to the experimental results, we discover that sound waves can cause soil either to expand or to contract. When the soil is induced to expand due to sound waves, it can contract naturally and return to the condition it was in before the influence of the sound waves. On the contrary, when the soil is induced to contract, it is unable to return to its initial condition. Due to the results discussed above, it is suggested that sound waves causing soil to expand have a temporary impact while those causing soil to contract have a permanent impact. In addition, our experimental results show how sound waves affect the water retention curve at different depths. The degree of soil expansion and contraction caused by the sound waves will differ at various soil depths. Nevertheless, the expanding or contracting of soil is only subject to the

  6. Study on a particle separator using ultrasonic wave

    International Nuclear Information System (INIS)

    Lee, Young Seop; Kwon, Jae Hwa; Seo, Dae Chul; Yun, Dong Jin

    2005-01-01

    This paper presents the theory, design and evaluation of a smart device for the enhanced separation of particles mixed in fluid. The smart device takes advantage of the ultrasonic standing wave, which was generated by the operation of a piezoceramic PZT patch installed in the smart device. The details of the device design including the electro-acoustical modelling for separation and PZT transducer are described at the first. Based on this design, the separation device was fabricated and evaluated. In the experiments, an optical camera with a zoom lense was used to monitor the position of interested particles within the separation channel layer in the device. The electric impedance of the PZT patch bonded on the separation device was measured. The device shows a strong levitation and separation force against 50m diameter particles mixed with water at the separation channel in the device. Experimental results also showed that the device can work at both heavy and light sand particles mixed with water due to the generated standing wave field in the separation channel.

  7. Ground-satellite study of wave-particle correlations

    International Nuclear Information System (INIS)

    Park, C.G.; Lin, C.S.; Parks, G.K.

    1981-01-01

    Very low frequency (VLF) waves recorded at Siple, Antarctica (Lapprox.4; 84 0 W, geographic), are compared with low-energy ( 0 W, near the outer edge of the nominal ''viewing area'' of the Siple VLF receiver, which is estimated to be Lapprox.2-6 and +- 20 0 longitude. The results reveal two distinct types of chorus observed at Siple. One type is closely correlated with enhanced fluxes of >5-keV electrons detected at the synchronous altitude, and its generation region is inferred to be outside the plasmapause. The chorus upper cutoff frequency increases with time in a characteristic manner, consistent with the expected adiabatic motion of injected electrons in cyclotron resonance with the waves. The second type of chorus, which we refer to as ''plasmaspheric chorus,'' occurs inside the plasmapause, has no apparent relationship to particle injection at the synchronous altitude and shows clear evidence of being triggered by whistlers, power line radiation, and other signals. The two different types of chorus are readily distinguishable in frequency-time spectrograms

  8. Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    NARCIS (Netherlands)

    Ruis, H.G.M.; Gruijthuijsen, van K.; Venema, P.; Linden, van der E.

    2007-01-01

    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special

  9. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  10. Wind waves on the Black Sea: results of a hindcast study

    Science.gov (United States)

    Arkhipkin, V. S.; Gippius, F. N.; Koltermann, K. P.; Surkova, G. V.

    2014-02-01

    In this study we describe the wind waves fields on the Black Sea. The general aims of the work were the estimation of statistical wave parameters and the assessment of interannual and seasonal storm variability. The domain of this study was the entire Black Sea. Wave parameters were calculated by means of the SWAN wave model on a 5 km × 5 km rectangular grid. Initial conditions (wind speed and direction) for the period between 1948 and 2010 were derived from the NCEP/NCAR reanalysis. In our calculations the average significant wave height on the Black Sea does not exceed 0.7 m. Areas of most significant storminess are the south-western and the north-eastern corners as expressed in the spatial distribution of wave heights, wave lengths and periods. Besides that, long-term annual variations of storminess were estimated. Thus, linear trends of the annual total duration of storms and of their quantity are nearly stable over the reanalysis period. However, an intensification of storm activity is observed in the 1960s-1970s.

  11. Experimental and numerical study of guided wave propagation in a thin metamaterial plate

    International Nuclear Information System (INIS)

    Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T.

    2011-01-01

    In this Letter, both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. Through the numerical simulation, a new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. Experiments were conducted to validate the numerical design. In the experiment, piezoelectric transducers were used to generate and receive guided wave signals. The results show that the numerical predictions are in very good agreement with the experimental measurements. Specifically, the connection between the local resonance in the thin plate and its wave attenuation mechanism was discussed. -- Highlights: → Both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. → A new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. → Experiments were conducted to validate the numerical design. → The connection between the local resonance in the thin plate and its wave attenuation mechanism was investigated.

  12. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...

  13. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    Science.gov (United States)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  14. Alfven wave heating studies in Tokapole II tokamak

    International Nuclear Information System (INIS)

    Kortbawi, D.; Witherspoon, F.D.; Zhu, S.Y.; Casavant, T.; Sprott, J.C.; Prager, S.C.

    1984-01-01

    In earlier experiments at low power on the Tokapole II tokamak using the internal divertor rings as a launching structure the authors have observed a resonance with properties consistent with those expected for a shear Alfven wave. With these encouraging results, a second phase of experiments has begun where, eventually, 4 discrete antennas, located ≅180 0 apart in both the toroidal and poloidal directions and phased to establish proper mode numbers are driven from a 1 MW source. A prototype antenna has been installed and tested. It is a 2 turn Faraday shielded loop extending 54 0 along a toroidal arc. This orientation was chosen for the antenna currents based on the earlier experiments and the simple MHD result that the component of the wage magnetic field perpendicular to the equilibrium field is most strongly divergent. To test this the antenna can be rotated +.45 0 . It can also be inserted radially up to 6 cm

  15. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    Institute of Scientific and Technical Information of China (English)

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  16. Studying the Effects of Mobile Phone Waves on Electro Cardiogram Parameters of Students in Zahedan University of Medical Sciences

    OpenAIRE

    Komeili, Gholamreza; Nabizadeh Sarabandi, Sima

    2012-01-01

    Background The increasing use of mobile phones in recent years has caused concerns about the effects of electromagnetic waves of mobile phonesonhuman biological processes. Objectives This study was conducted in order to survey the effects of mobile electromagnetic waves on electro cardiogram parameters as heart rate, TP segment, PR interval, Time of QRS and T waves, and voltage of R wave. Patients and Methods In this quasi experimental study, 40 students, of Zahedan medical science University...

  17. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

    Directory of Open Access Journals (Sweden)

    Ron Karl Hoeke

    2015-09-01

    Full Text Available Wind-wave contributions to tropical cyclone (TC-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR, particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

  18. Parametric study of two-body floating-point wave absorber

    Science.gov (United States)

    Amiri, Atena; Panahi, Roozbeh; Radfar, Soheil

    2016-03-01

    In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.

  19. Study of Lamb Waves for Non-Destructive Testing Behind Screens

    Science.gov (United States)

    Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )

    2018-01-01

    The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.

  20. A Study on Parametric Wave Estimation Based on Measured Ship Motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Iseki, Toshio

    2011-01-01

    The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics of the param......The paper studies parametric wave estimation based on the ‘wave buoy analogy’, and data and results obtained from the training ship Shioji-maru are compared with estimates of the sea states obtained from other measurements and observations. Furthermore, the estimating characteristics...... of the parametric model are discussed by considering the results of a similar estimation concept based on Bayesian modelling. The purpose of the latter comparison is not to favour the one estimation approach to the other but rather to highlight some of the advantages and disadvantages of the two approaches....

  1. Study of dense-plasma properties using very high-frequency electromagnetic waves (light waves)

    International Nuclear Information System (INIS)

    Gormezano, C.

    1966-06-01

    A study is made of methods based on the use of lasers for measuring the electronic density and temperature of dense plasmas (N e > 10 15 e/cm 3 ): - an interferometric method using a gas laser, based on the. properties of the Perot-Fabry cavities; - a method making use of the 90 deg C scattering produced by the plasma on light emitted by a ruby laser. These methods have been applied to various dense plasmas: - high-frequency plasma torch; - azimuth compression; - plasma bursts produced by focussing a laser beam on a metal target. The measurements have also been carried out using conventional methods of diagnosis. It has thus been possible to measure densities of between 5.10 15 and 10 19 e/cm 3 and temperatures of between 3 and 10 eV. These different-methods are then compared, (author) [fr

  2. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)

    Energy Technology Data Exchange (ETDEWEB)

    Blakeslee, Samuel Norman [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Inst. for Advanced Technology and Public Policy; Toman, William I. [Protean Wave Energy Ltd., Los Osos, CA (United States); Williams, Richard B. [Leidos Maritime Solutions, Reston, VA (United States); Davy, Douglas M. [CH2M, Sacramento, CA (United States); West, Anna [Kearns and West, Inc., San Francisco, CA (United States); Connet, Randy M. [Omega Power Engineers, LLC, Anaheim, CA (United States); Thompson, Janet [Kearns and West, Inc., San Francisco, CA (United States); Dolan, Dale [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Baltimore, Craig [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Jacobson, Paul [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Potter, Chris [California Natural Resources Agency, Sacramento, CA (United States); Dooher, Brendan [Pacific Gas and Electric Company, San Francisco, CA (United States); Wendt, Dean [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Sheppard, Colin [Humboldt State Univ., Arcata, CA (United States); Harris, Andrew [Humboldt State Univ., Arcata, CA (United States); Lawson, W. Graham [Power Delivery Consultants, Inc., Albany, NY (United States)

    2017-07-31

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro siting considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed

  3. The quasi-two-day wave studied using the Northern Hemisphere SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    S. B. Malinga

    2007-08-01

    Full Text Available Data from the Super Dual Radar Network (SuperDARN radars for 2002 were used to study the behaviour of the quasi-two-day wave (QTDW in the Northern Hemisphere auroral zone. The period of the QTDW is observed to vary in the range of ~42–56 h, with the most dominant period being ~48 h and secondary peaks at ~42- and ~52-h. The spectral power shows a seasonal variation with a peak power (max~70 in summer. The power shows variations of several days and there is also evidence of changes in wave strength with longitude. The 42-h and the 48-h components tend to be strongly correlated in summer. The onset of enhanced wave activity tends to coincide with the westward acceleration of the zonal mean flow and occurs at a time of strong southward meridional flow. The most frequent instantaneous hourly period is in the 40 to 50 h period band, in line with the simultaneous dominance of the 42-h and the 48-h components. The wave numbers are less variable and are around −2 to −4 during times of strong wave activity. For a period of ~48 h, the zonal wave number is about −3 to −4, using a negative value to indicate westward propagating waves. The 42-h and the 52-h components cover a wider band in the −4 to 1 range. The wide zonal wave number spectrum in our results may account for the observed longitudinal variation in the spectral power of the wave.

  4. A Retrospective Study of the Characteristics and Clinical Significance of A-Waves in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Jia Fang

    2017-09-01

    Full Text Available A-wave was observed in patients with motor neuron disease (1. However, data on the characteristics and clinical significance of A-waves in patients with amyotrophic lateral sclerosis (ALS have been scarce. The F-wave studies of 83 patients with ALS and 63 normal participants which were conducted previously at the Department of Neurology in Peking Union Medical College Hospital were retrospectively reviewed to determine the occurrence of A-waves in ALS. A-waves occurred more frequently in ALS patients than in normal controls. For the median and peroneal nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were comparable between the ALS patients and normal controls. For the ulnar and tibial nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were significantly increased in the ALS patients compared with those of the normal participants. Disease progression rate was slower in the ALS patients with A-waves (0.73 ± 0.99 than that in the ALS patients without A-waves (0.87 ± 0.55, P = 0.007. No correlations were found between the amplitudes of F-waves with A-waves and those of A-waves in the ulnar nerves (r = 0.423, P = 0.149. No correlations were found between the persistence of F-waves with A-waves and the persistence of A-waves in the ulnar nerves as well (r = 0.219, P = 0.473. The occurrence of A-waves may indicate dysfunction of lower motor neurons and possibly imply a relatively slower degenerative process.

  5. Variability of ULF wave power at the magnetopause: a study at low latitude with Cluster data

    Science.gov (United States)

    Cornilleau-Wehrlin, N.; Grison, B.; Belmont, G.; Rezeau, L.; Chanteur, G.; Robert, P.; Canu, P.

    2012-04-01

    Strong ULF wave activity has been observed at magnetopause crossings since a long time. Those turbulent-like waves are possible contributors to particle penetration from the Solar Wind to the Magnetosphere through the magnetopause. Statistical studies have been performed to understand under which conditions the ULF wave power is the most intense and thus the waves can be the most efficient for particle transport from one region to the other. Clearly the solar wind pressure organizes the data, the stronger the pressure, the higher the ULF power (Attié et al 2008). Double STAR-Cluster comparison has shown that ULF wave power is stronger at low latitude than at high latitude (Cornilleau-Wehrlin et al, 2008). The different studies performed have not, up to now, shown a stronger power in the vicinity of local noon. Nevertheless under identical activity conditions, the variability of this power, even at a given location in latitude and local time is very high. The present work intends at understanding this variability by means of the multi spacecraft mission Cluster. The data used are from spring 2008, while Cluster was crossing the magnetopause at low latitude, in particularly quite Solar Wind conditions. The first region of interest of this study is the sub-solar point vicinity where the long wavelength surface wave effects are most unlikely.

  6. Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath

    Science.gov (United States)

    Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun

    2018-01-01

    There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.

  7. A study on ultrasonic inspection of long steel pipes using lamb waves

    International Nuclear Information System (INIS)

    Park, Moon Ho

    1996-02-01

    An ultrasonic inspection technique with use of Lamb waves was evaluated to detect and determine the exact location of flaws present in long steel pipes. Since multiple modes of Lamb waves are generated in the inspected pipes due to their dispersive characteristics, selection of a specific Lamb wave mode is very important for inspection of flaws. Experimental studies of flaw detectability with use of each Lamb wave mode, namely, A 0 , S 0 , A 1 , and S 1 mode and their ultrasonic attenuation characteristics were conducted. Experimental results showed that A 0 mode is the most effective for detection and exact determination of the location of flaws. A lucite wedge containing water column that generates the A 0 Lamb wave mode was developed and used in the present inspection study. It was found that the ultrasonic beam divergence after its wrapping around once the inspected pipe interferes with exact determination of the location of flaws and that maximum reflection signals are obtained when the transducer is located axially offset from the straight line with the position of the flaw. The present study showed feasibility of ultrasonic inspection with use of Lamb waves for detection of flaws in several meters long insulated or inaccessible steel pipes

  8. Numerical and experimental study on atmospheric pressure ionization waves propagating through a U-shape channel

    International Nuclear Information System (INIS)

    Yan, Wen; Xia, Yang; Bi, Zhenhua; Song, Ying; Liu, Dongping; Wang, Dezhen; Sosnin, Eduard A; Skakun, Victor S

    2017-01-01

    A 2D computational study of ionization waves propagating in U-shape channels at atmospheric pressure was performed, with emphasis on the effect of voltage polarity and the curvature of the bend. The discharge was ignited by a HV needle electrode inside the channel, and power was applied in the form of a trapezoidal pulse lasting 2 µ s. We have shown that behavior of ionization waves propagating in U-shape channels was quite different with that in straight tubes. For positive polarity of applied voltage, the ionization waves tended to propagate along one side of walls rather than filling the channel. The propagation velocity of ionization waves predicted by the simulation was in good agreement with the experiment results; the velocity was first increasing rapidly in the vicinity of the needle tip and then decreasing with the increment of propagation distance. Then we have studied the influence of voltage polarity on discharge characteristics. For negative polarity, the ionization waves tended to propagate along the opposite side of the wall, while the discharge was more diffusive and volume-filling compared with the positive case. It was found that the propagation velocity for the negative ionization wave was higher than that for the positive one. Meanwhile, the propagation of the negative ionization wave depended less on the pre-ionization level than the positive ionization wave. Finally, the effect of the radius of curvature was studied. Simulations have shown that the propagation speeds were sensitive to the radii of the curvature of the channels for both polarities. Higher radii of curvature tended to have higher speed and longer length of plasma. The simulation results were supported by experimental observations under similar discharge conditions. (paper)

  9. Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs

    Science.gov (United States)

    An, Y.; Liu, Q.

    2017-12-01

    The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper

  10. Heritability of Tpeak-Tend Interval and T-wave Amplitude: A Twin Study

    DEFF Research Database (Denmark)

    Haarmark, Christian; Kyvik, Kirsten O; Vedel-Larsen, Esben

    2011-01-01

    BACKGROUND: -Tpeak-Tend interval (TpTe) and T-wave amplitude (Tamp) carry diagnostic and prognostic information regarding cardiac morbidity and mortality. Heart rate and QT interval are known to be heritable traits. The heritability of T-wave morphology parameters such as TpTe and Tamp is unknown...... interval, QTpeak and QTend interval) were measured and averaged over three consecutive beats in lead V5. TpTe was calculated as the QTend and QTpeak interval difference. Heritability was assessed using structural equation models adjusting for age, gender and BMI. All models were reducible to a model...... of additive genetics and unique environment. All variables had considerable genetic components. Adjusted heritability estimates were: TpTe 46%, Tamp lead V1 34%, Tamp lead V5 47%, RR interval 55%, QT interval 67% and QTcB 42%. CONCLUSIONS: -RR interval, QT-interval, T-wave amplitude and Tpeak-Tend interval...

  11. Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects

    International Nuclear Information System (INIS)

    Vallisneri, Michele

    2008-01-01

    The Fisher-matrix formalism is used routinely in the literature on gravitational-wave detection to characterize the parameter-estimation performance of gravitational-wave measurements, given parametrized models of the waveforms, and assuming detector noise of known colored Gaussian distribution. Unfortunately, the Fisher matrix can be a poor predictor of the amount of information obtained from typical observations, especially for waveforms with several parameters and relatively low expected signal-to-noise ratios (SNR), or for waveforms depending weakly on one or more parameters, when their priors are not taken into proper consideration. In this paper I discuss these pitfalls; show how they occur, even for relatively strong signals, with a commonly used template family for binary-inspiral waveforms; and describe practical recipes to recognize them and cope with them. Specifically, I answer the following questions: (i) What is the significance of (quasi-)singular Fisher matrices, and how must we deal with them? (ii) When is it necessary to take into account prior probability distributions for the source parameters? (iii) When is the signal-to-noise ratio high enough to believe the Fisher-matrix result? In addition, I provide general expressions for the higher-order, beyond-Fisher-matrix terms in the 1/SNR expansions for the expected parameter accuracies

  12. A study of the coherence length of ULF waves in the earth's foreshock

    Science.gov (United States)

    Le, G.; Russell, C. T.

    1990-01-01

    High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.

  13. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems

    International Nuclear Information System (INIS)

    Wang, Ken Kang-Hsin; Ye Zhen

    2003-01-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems

  14. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    Science.gov (United States)

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  15. Study on spectral features of terahertz wave propagating in the air

    Science.gov (United States)

    Kang, Shengwu

    2018-03-01

    Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.

  16. Deep Space Network information system architecture study

    Science.gov (United States)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  17. Synchronization of propagating spin-wave modes in a double-contact spin-torque oscillator: A micromagnetic study

    International Nuclear Information System (INIS)

    Puliafito, V.; Consolo, G.; Lopez-Diaz, L.; Azzerboni, B.

    2014-01-01

    This work tackles theoretical investigations on the synchronization of spin-wave modes generated by spin-transfer-torque in a double nano-contact geometry. The interaction mechanisms between the resulting oscillators are analyzed in the case of propagating modes which are excited via a normal-to-plane magnetic bias field. To characterize the underlying physical mechanisms, a multi-domain analysis is performed. It makes use of an equivalent electrical circuit, to deduce the output electrical power, and of micromagnetic simulations, through which information on the frequency spectra and on the spatial distribution of the wavefront of the emitted spin-waves is extracted. This study provides further and intriguing insights into the physical mechanisms giving rise to synchronization of spin-torque oscillators

  18. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    Science.gov (United States)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  19. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  20. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  1. Numerical and experimental study of disturbance wave development in vertical two-phase annular flow

    Science.gov (United States)

    Hewitt, Geoffrey; Yang, Junfeng; Zhao, Yujie; Markides, Christos; Matar, Omar

    2013-11-01

    The annular flow regime is characterized by the presence of a thin, wavy liquid film driven along the wall by the shear stress exerted by the gas phase. Under certain liquid film Reynolds numbers, large disturbance waves are observed to traverse the interface, whose length is typically on the order of 20 mm and whose height is typically on the order of 5 times the thickness of the thin (substrate) layer between the waves. Experimental wok has been conducted to study the disturbance wave onset by probing the local film thickness for different Reynolds numbers. It is observed the disturbance waves grow gradually from wavy initiation and form the ring-like structure. To predict the wavy flow field observed in the experiment, 3D CFD simulations are performed using different low Reynolds number turbulence models and Large Eddy Simulation. Modeling results confirm that there is recirculation within the waves, and that they as a packet of turbulence traveling over a laminar substrate film. We also predict the coalescence and the break-up of waves leading to liquid droplet entrainment into the gas core. Skolkovo Foundation, UNIHEAT project.

  2. Study of Perturbations on High Mach Number Blast Waves in Various Gasses

    Science.gov (United States)

    Edens, A.; Adams, R.; Rambo, P.; Shores, J.; Smith, I.; Atherton, B.; Ditmire, T.

    2006-10-01

    We have performed a series of experiments examining the properties of high Mach number blast waves. Experiments were conducted on the Z-Beamlet^1 laser at Sandia National Laboratories. We created blast waves in the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid targets immersed in gas. Our experiments studied the validity of theories forwarded by Vishniac and Ryu^2-4 to explain the dynamics of perturbations on astrophysical blast waves. These experiments consisted of an examination of the evolution of perturbations of known primary mode number induced on the surface of blast waves by means of regularly spaced wire arrays. The temporal evolution of the amplitude of the induced perturbations relative to the mean radius of the blast wave was fit to a power law in time. Measurements were taken for a number of different mode numbers and background gasses and the results show qualitative agreement with previously published theories for the hydrodynamics of thin shell blast wave. The results for perturbations on nitrogen gas have been recently published^5. .^1 P. K. Rambo, I. C. Smith, J. L. Porter, et al., Applied Optics 44, 2421 (2005). ^2 D. Ryu and E. T. Vishniac, Astrophysical Journal 313, 820 (1987). ^3 D. Ryu and E. T. Vishniac, Astrophysical Journal 368, 411 (1991). ^4 E. T. Vishniac, Astrophysical Journal 274, 152 (1983). ^5 A. D. Edens, T. Ditmire, J. F. Hansen, et al., Physical Review Letters 95 (2005).

  3. Properties, propagation, and excitation of EMIC waves observed by MMS: A case study

    Science.gov (United States)

    Zhang, J.; Boardsen, S. A.; Coffey, V. N.; Chandler, M. O.; Saikin, A.; Mello, E. M.; Russell, C. T.; Torbert, R. B.; Fuselier, S. A.; Giles, B. L.; Gershman, D. J.

    2017-12-01

    Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He+-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8º - -30.3º). Energetic (> 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km-1, 372.9 km/s, and 1242.9 km, respectively. We will discuss the characteristics of the wave and particle measurements and their significance in this locale.

  4. CISA Certified Information Systems Auditor : study guide

    CERN Document Server

    Cannon, David L

    2011-01-01

    The industry-leading study guide for the CISA exam, fully updated. More than 27,000 IT professionals take the Certified Information Systems Auditor exam each year. SC Magazine lists the CISA as the top certification for security professionals. Compliances, regulations, and best practices for IS auditing are updated twice a year, and this is the most up-to-date book available to prepare aspiring CISAs for the next exam.: CISAs are among the five highest-paid IT security professionals; more than 27,000 take the exam each year and the numbers are growing; Standards are updated twice a year, and t

  5. Studying Regional Wave Source Time Functions Using the Empirical Green's Function Method: Application to Central Asia

    Science.gov (United States)

    Xie, J.; Schaff, D. P.; Chen, Y.; Schult, F.

    2013-12-01

    Reliably estimated source time functions (STFs) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection and discrimination, and minimization of parameter trade-off in attenuation studies. We have searched for candidate pairs of larger and small earthquakes in and around China that share the same focal mechanism but significantly differ in magnitudes, so that the empirical Green's function (EGF) method can be applied to study the STFs of the larger events. We conducted about a million deconvolutions using waveforms from 925 earthquakes, and screened the deconvolved traces to exclude those that are from event pairs that involved different mechanisms. Only 2,700 traces passed this screening and could be further analyzed using the EGF method. We have developed a series of codes for speeding up the final EGF analysis by implementing automations and user-graphic interface procedures. The codes have been fully tested with a subset of screened data and we are currently applying them to all the screened data. We will present a large number of deconvolved STFs retrieved using various phases (Lg, Pn, Sn and Pg and coda) with information on any directivities, any possible dependence of pulse durations on the wave types, on scaling relations for the pulse durations and event sizes, and on the estimated source static stress drops.

  6. On the Present State of Information Society Studies.

    Science.gov (United States)

    Duff, Alistair S.

    2001-01-01

    Assesses the present condition of the emerging specialism of information society studies. Topics include the information economy; information technology; the information explosion; the Japanese version of information society; information society as social democracy; sociology and information science; scholarly journals; and the need for…

  7. Seafloor Geodesy usi­ng Wave Gliders to study Earthquake and Tsunami Hazards at Subduction Zones

    Science.gov (United States)

    Sathiakumar, S.; Barbot, S.; Hill, E.; Peng, D.; Zerucha, J.; Suhaimee, S.; Chia, G.; Salamena, G. G.; Syahailatua, A.

    2016-12-01

    Land-based GNSS networks are now in place to monitor most subduction zones of the world. These provide valuable information about the amount of­ geodetic strain accumulated in the region, which in turn gives insight into the seismic potential. However, it is usually impossible to resolve activity on the megathrust near the trench using land-based GNSS data alone, given typical signal-to-noise ratios. Ship-based seafloor geodesy is being used today to fill this observation gap. However, surveys using ships are very expensive, tedious and impractical due to the large areas to be covered. Instead of discrete missions using ships, continuous monitoring of the seafloor using autonomous marine robots would aid in understanding the tectonic setting of the seafloor better at a potentially lower cost, as well as help in designing better warning systems. Thus, we are developing seafloor geodesy capabilities using Wave Gliders, a new class of wave-propelled, persistent marine autonomous vehicle using a combination of acoustic and GNSS technologies. We use GNSS/INS to position the platform, and acoustic ranging to locate the seafloor. The GNSS/INS system to be integrated with the Wave Gliders has stringent requirements of low power, light weight, and high accuracy. All these factors are equally important due to limited power and space in the Wave Gliders and the need for highly accurate and precise measurements. With this hardware setup, a limiting factor is the accuracy of measurement of the sound velocity in the water column. We plan to obtain precise positioning of seafloor by exploring a measurement setup that minimizes uncertainties in sound velocity. This will be achieved by making fine-resolution measurements of the two-way travel time of the acoustic waves underwater using the Wave Gliders, and performing statistical signal processing on this data to obtain more reliable sound velocity measurement. This enhanced seafloor geodetic technique using Wave Gliders should

  8. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  9. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  10. Technical and economic feasibility study of a Frond type wave power generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This report describes the first stage of the development of a Frond type wave generator by the Engineering Business (EB) in collaboration with the University of Lancaster Engineering Department. The EB Frond concept is a sea-bed reacting, surging machine consisting of a near-surface collector mounted on an arm pivoted near the seabed. The study had six main elements (investigation, physical and mathematical modelling, site characterisation, design review and cost study). The investigation phase involved a study of wave properties and behaviour, while physical models were tested in a wave tank. A mathematical model was developed and used to assess the design's power output. The characteristics of a suitable site for EB Frond generators were determined and the process of identifying possible sites for a demonstrator machine was begun. The mechanical and system arrangement of the design were evaluated and modified. The effects of varying the installation's input parameters (e.g. wave environment factors) were examined using an energy cost model whose output is energy production and cost. It was concluded that the Frond principle was technically viable though there were some remaining engineering and other application problems. Cost modelling suggested that the EB Frond system had potential for long-term commercial prospects. The report recommends the construction and testing of an intermediate scale model with more realistic wave conditions.

  11. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  12. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  13. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    International Nuclear Information System (INIS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  14. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  15. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    Science.gov (United States)

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Algebraic method for constructing singular steady solitary waves: a case study

    Science.gov (United States)

    Clamond, Didier; Dutykh, Denys; Galligo, André

    2016-07-01

    This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equation with surface tension, because it provides a tractable model that, at the same time, is not too simple, so interest in the method can be emphasized. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of physics. In capillary-gravity regime, there are two kinds of localized infinitely smooth travelling wave solutions-solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, then the `zoology' of solutions becomes much richer, and the main goal of this study is to provide a complete classification of such singular localized solutions using the methods of the effective algebraic geometry.

  17. Numerical Simulations of Kinetic Alfvén Waves to Study Spectral ...

    Indian Academy of Sciences (India)

    Numerical Simulations of Kinetic Alfvén Waves to Study Spectral. Index in Solar Wind Turbulence and Particle Heating. R. P. Sharma. ∗. & H. D. Singh. Center for Energy Studies, Indian Institute of Technology, Delhi 110 016, India. ∗ e-mail: rpsharma@ces.iitd.ernet.in. Abstract. We present numerical simulations of the ...

  18. Experimental study on waves propagation over a coarse-grained sloping beach

    Science.gov (United States)

    Hsu, Tai-Wen; Lai, Jian-Wu

    2013-04-01

    This study investigates velocity fields of wave propagation over a coarse-grained sloping beach using laboratory experiments. The experiment was conducted in a wave flume of 25 m long, 0.5 m wide and 0.6 m high in which a coarse-grained sloping 1:5 beach was placed with two layers ball. The glass ball is D=7.9 cm and the center to center distance of each ball is 8.0 cm. The test section for observing wave and flow fields is located at the middle part of the flume. A piston type wave maker driven by an electromechanical hydraulic serve system is installed at the end of the flume. The intrinsic permeability Kp and turbulent drag coefficient Cf were obtained from steady flow water-head experiments. The flow velocity was measured by the particle image velocimeter (PIV) and digital image process (DIP) techniques. Eleven fields of view (FOVS) were integrated into a complete representation including the outer, surf and swash zone. Details of the definition sketch of the coarse-grained sloping beach model as well as experimental setup are referred to Lai et al. (2008). A high resolution of CCD camera was used to capture the images which was calibrated by the direct linear transform (DCT) algorithm proposed by Abed El-Aziz and Kar-Ara (1971). The water surface between the interface of air and water at each time step are calculated by Otsu' (1978) detect algorithm. The comparison shows that the water surface elevation observed by integrated image agrees well with that of Otsu' detection results. For the flow field measurement, each image pair was cross correlated with 32X32 pixel inter rogation window and a half overlap between adjacent windows. The repeatability and synchronization are the key elements for both wave motion and PIV technique. The wave profiles and flow field were compared during several wave periods to ensure that they can be reproduced by the present system. The water depth is kept as a constant of h=32 cm. The incident wave conditions are set to be wave

  19. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  20. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.; Tao, Ye; Vaulin, Ruslan; Wang, Xiaoge

    2013-09-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitational-wave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high enough rate such that accidental coincidence across multiple detectors is non-negligible. These “glitches” can easily be mistaken for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational waves. We apply machine-learning algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Noise sources may produce artifacts in these auxiliary channels as well as the gravitational-wave channel. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well suited. We demonstrate the feasibility and applicability of three different MLAs: artificial neural networks, support vector machines, and random forests. These classifiers identify and remove a substantial fraction of the glitches present in two different data sets: four weeks of LIGO’s fourth science run and one week of LIGO’s sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth-science-run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar performance to the benchmark algorithm, the ordered veto list, which is optimized to detect pairwise correlations between transients in LIGO auxiliary channels and glitches in the gravitational-wave data. This suggests that most of the useful information currently extracted from the auxiliary channels is already described

  1. A preliminary study of shear wave elastography for the evaluation of unilateral palpable undescended testes

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Ayse Kalyoncu, E-mail: Aysekucar@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Alis, Deniz, E-mail: denizalis@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Samanci, Cesur, E-mail: cesursamanci@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Aslan, Mine, E-mail: mineus_77@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Habibi, Hatice Arioz, E-mail: arioz.hatice@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Dikici, Atilla Suleyman, E-mail: drsuleymandikici@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Namdar, Yesim, E-mail: namdaryesim@gmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey); Gultekin, Mehmet Hamza, E-mail: mhamzagultekin@hotmail.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Urology, KMPasa, Istanbul, 34098 (Turkey); Onal, Bulent, E-mail: bulonal@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Urology, KMPasa, Istanbul, 34098 (Turkey); Adaletli, Ibrahim, E-mail: iadaletli@yahoo.com [Istanbul University, Cerrahpasa Faculty of Medicine, Department of Radiology, KMPasa, Istanbul, 34098 (Turkey)

    2017-01-15

    Highlights: • Testicular biopsy is no longer recommended in the management of undescended testes. • SWE yields valuable quantitative information about the histological properties tissues by assessing stiffness. • Mean stiffness values of undescended testes were significantly higher than those of the contralateral descended testes. • SWE seems to be a useful sonographic technique to assess damage to the undescended testis. • SWE might replace testicular biopsy in the management of undescended testes. - Abstract: Objectives: We sought to compare unilateral palpable undescended testes and contralateral descended testes using shear wave elastography (SWE) to show potential quantitative differences in elasticity patterns, which might reflect the histologic features. Methods: Approval for this prospective study was obtained from the local ethics committee. A total of 29 patients (mean age, 7.52 years; range, 1–18 years) with unilateral palpable undescended testes and contralateral descended testes were examined by greyscale ultrasonography and SWE between February 2015 and April 2016. The volume and the elasticity of each testicle were the main factors evaluated. Results: There was no difference between undescended testes and contralateral descended testes in terms of volume. However, a significant difference was evident in SWE-derived quantitative data. Conclusions: SWE seems to be a useful sonographic technique to predict histologic features of the undescended testicle, which might replace testicular biopsy in modern management of the undescended testis.

  2. A performance study on a direct drive hydro turbine for wave energy converter

    International Nuclear Information System (INIS)

    Choi, Young Do; Kim, Chang Goo; Kim, You Taek; Lee, Young Ho; Song, Jung Il

    2010-01-01

    Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power systems to capture the energy of ocean waves have been developed. However, a suitable turbine type is not yet normalized because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for a wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in cases with and without wave conditions. Most of the output power is generated at the runner passage of Stage 2. Relatively larger amount of the decreased tangential velocity at Stage 2 produces more angular momentum than that at Stage 1 and thus, the larger angular momentum at the Stage 2 makes a greater contribution to the generation of total output power in comparison with that at Stage 1. Large vortex existing in the upper-left region of the runner passage forms a large recirculation region in the runner passage, and the recirculating flow consumes the output power at Region 2

  3. Detailed study of electron plasma waves upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Etcheto, J.; Faucheux, M.

    1984-01-01

    A detailed study of electron plasma waves observed upstream of the earth's bow shock and of their relationships to the position of the satellite in the foreshock and to the electron measurements has been carried out. The wave characteristics depend on the position in the electron foreshock: a narrow-bnd (a few percent) and intense (a few millivolts per meter) noise is observed at the plasma frequency at the edge of the foreshock while the spectrum widens (Δf/fapprox. =0.3) at the same time as the power decreases (hundreds of microvolts per meter) deeper (a few earth radii) inside the foreshock. Signals below the plasma frequency are also observed. These waves are polarized along the magnetic field, with long wavelengths below and at the plasma frequency and short wavelengths above it. They appear as short bursts, the duration of which depends on the frequency: longer close to the plasma frequency (50 ms), they shorten with increasing separation from the plasma frequency, the usual duration being 15 ms. While the correlation of the wave characteristics with the reflected electrons is good as the satellite moves inside the foreshock, no evolution is found with the distance to the bow shock, neither for the noise nor for the particles. These results are discussed in the frame of various mechanisms which have been proposed to explain these upstream waves but no satisfactory agreement is found with any of them

  4. Study of guided wave transmission through complex junction in sodium cooled reactor

    International Nuclear Information System (INIS)

    Elie, Q.; Le Bourdais, F.; Jezzine, K.; Baronian, V.

    2015-01-01

    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presented in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)

  5. Study of electromagnetic wave scattering by periodic density irregularities in plasma

    International Nuclear Information System (INIS)

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-01-01

    A quasi-particle approach is used to formulate wave propagation and scattering in a periodically structured plasma. The theory is then applied to study the effect of bottomside sinusoidal (BSS) irregularities on the propagation of beacon satellites signals through the ionosphere. In this approach, the radio wave is treated as a distribution of quasi-particles described by a Wigner distribution function governed by a transport equation. The irregularities providing the collisional effect are modeled as a two dimensional density modulation on a uniform background plasma. The present work generalizes the previous work by including the spectral bandwidth (Δk/k) effect of the spatially periodic irregularities on the transionospheric signal propagation. The collision of quasi-particles with the irregularities modifies the quasi-particle distribution and give rise to the wave scattering phenomenon. The multiple scattering process is generally considered in this deterministic analysis of radio wave scattering off the ionospheric density irregularities. The analysis shows that this two dimensional density grating effectively modulates the intensity of the beacon satellite signals. This spatial modulation of the wave intensity is converted into time modulation due to the drift of the ionospheric irregularities, which then results in the scintillation of the beacon satellite signals

  6. Studies of instabilities and waves in a mirror confined hot electron plasma

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1989-01-01

    The stability of hot electron plasmas is studied. The hot electron component can stabilize the low frequency drift wave and the interchange mode driven by the plasma, which depends only on α=N h /N i , the density ratio of the hot electrons to the plasma ions, but not on the beta value and the annular structure of the hot electrons. Stabilization of the drift wave occurs for α > 40%, and that of the interchange mode for α > 5%, which allows the prediction that the interchange mode can be suppressed in hot electron plasma experiments. The experiments have been conducted in a simple mirror machine. It is observed that the plasma drives a drift wave at 40 kHz and an interchange mode at about 100 kHz. The fluctuation amplitude of the drift wave is much higher than that of the interchange mode. The hot electrons reduce the density gradient, the fluctuation amplitude and the radial loss of the plasma. On the other hand, the hot electrons drive the interchange mode and drift wave in the ion cyclotron frequency region. The effects of a cold plasma on hot electron perturbations are discussed. (author). 10 refs, 6 figs

  7. Parametric study of nonlinear electrostatic waves in two-dimensional quantum dusty plasmas

    International Nuclear Information System (INIS)

    Ali, S; Moslem, W M; Kourakis, I; Shukla, P K

    2008-01-01

    The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted

  8. A performance study on a direct drive hydro turbine for wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Do [Mokpo National University, Muan (Korea, Republic of); Kim, Chang Goo; Kim, You Taek; Lee, Young Ho [Korea Maritime University, Busan (Korea, Republic of); Song, Jung Il [Changwon National University, Changwon (Korea, Republic of)

    2010-11-15

    Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil-fueled power plants as a countermeasure against global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power systems to capture the energy of ocean waves have been developed. However, a suitable turbine type is not yet normalized because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for a wave power plant. Experiment and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that the DDT obtains fairly good turbine efficiency in cases with and without wave conditions. Most of the output power is generated at the runner passage of Stage 2. Relatively larger amount of the decreased tangential velocity at Stage 2 produces more angular momentum than that at Stage 1 and thus, the larger angular momentum at the Stage 2 makes a greater contribution to the generation of total output power in comparison with that at Stage 1. Large vortex existing in the upper-left region of the runner passage forms a large recirculation region in the runner passage, and the recirculating flow consumes the output power at Region 2

  9. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  10. A study on early microstructural changes in the rabbit gallbladder induced by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eun Oak [Hong-Sung Koryo Hospital, Hongsung (Korea, Republic of); Shim, Hyung Jin; Kim, Kun Sang; Ryo, Dae Sik; Choi, Yun Sun; Song, In Sup; Kim, Young Koo [College of Medicine, Chung Ang University, Seoul (Korea, Republic of)

    1994-05-15

    In order to evaluate microstructural changes after shock wave exposure, gross, light microscopic and transmission electron microscopic findings were analyzed with rabbit gallbladders. A preliminary study(2 rabbits) was performed to determine the dosage intensity of shock waves needed to inflict damage, using a EDAP LT 01 piezoelectric extracorporeal shock wave lothotriptor. The Gallbladders of three different groups of rabbits were given shock waves of various intensity. A storage value of 100, 50, 25 at rate of 20/sec under 80% power were given to group I (4 rabbits), group II (4 rabbits), and group III (3 rabbits), respectively. The rabbits were sacrificed 6-12 hours later. The observed pathologic changes in the transmission electron microscopy were vaculization of cytoplasm and swelling of epithelial cells with dilatation and structural alteration of intracellular organelles, especially endoplasmic reticulum. Cell membrane rupture and necrosis were observed at the markedly affected area. The structural changes of intracellular organelles were minimally found at a storage value of 25. However, above pathologic changes with dilatation and structural alterations of endoplasmic reticulums were more profound at value of 100. Early histologic changes induced by shocked waves are dose dependent and findings of cellular damage caused by ESWL might be explained as above.

  11. A study on early microstructural changes in the rabbit kidney induced by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Soo [Sung Ae Hospital, Seoul (Korea, Republic of); Shim, Hyung Jin; Kim, Kun Sang; Song, In Sup; Lee, Yong Chul; Song, Kei Yong [College of Medicine, Chung Ang University, Seoul (Korea, Republic of)

    1993-07-15

    Many reports have been published on the tissue damage of a shock wave with respect to histopathological changes in light microscopy and various imaging modalities. However, the studies on the electron microscopic findings and cause of renal functional change such as parenchymal obstructive pattern following extracorporeal shock wave lithotripsy (ESWL) have not been elucidated. In order to evaluate the microstructural changes after shock wave exposure, gross, light microscopic and transmission electron microscopic findings were analyzed with rabbit kidneys. Preliminary study (n=2) was performed to determine the dosage intensity of shock waves to inflict damage, using a EDAP LT 01 piezoelectric extracorporeal shock wave lithotriptor. A shock wave of various intensities were given to the left kidneys of 3 different groups of rabbits. Storage of value of 100, 50, 25 at rate of 20/sec under 87% power were given to group I (n=4), group II (n=4), and group III (n=3) respectively. The right kidneys were preserved as the control group. The rabbits were killed 6-12 hour later. In gross, there were a few subcapsular hemorrhage foci and mild congestion of corticomedullary junction without a large hematoma formation. No significant differences were noted between each group. Light microscopic findings were mainly hydropic changes in the proximal convoluted tubules and congestion without significant necrotic changes. The observed pathologic changes in the transmission electron microscopy were vacuolization of cytoplasm with swelling of epithelial cells especially porximal convoluted tubules. There were also tubular obstruction due to swelling and desquamation of epithelial cells into tubular lumen. The structural changes of intracellular organelles were not found at storage values of 25 and 50. But dilatation and structural alterations of endoplasmic reticulums were noted at value of 100 with cell membrane rupture. The findings of this study suggest that tubular obstructions with

  12. Co-located wind-wave farm synergies (Operation and Maintenance): A case study

    International Nuclear Information System (INIS)

    Astariz, S.; Perez-Collazo, C.; Abanades, J.; Iglesias, G.

    2015-01-01

    Highlights: • The shielding effect of WECs located around the wind farm is analysed. • The height wave reductions achieved by 15 different layouts are compared. • The increase in the accessibility to the wind turbines is quantified. • Alpha Ventus offshore wind farm is considered as baseline scenario. • High-resolution numerical modelling (SWAN) and real sea conditions are used. - Abstract: Operation and maintenance can jeopardise the financial viability of an offshore wind energy project due to the cost of downtime, repairs and, above all, the inevitable uncertainties. The variability of wave climate can impede or hinder emergency repairs when a failure occurs, and the resulting delays imply additional costs which ultimately reduce the competitiveness of offshore wind energy as an alternative to fossil fuels. Co-located wind turbines and Wave Energy Converters (WECs) are proposed in this paper as a novel solution: the reduction of the significant wave height brought about by the WECs along the periphery of the wind farm results in a milder wave climate within the farm. This reduction, also called shadow effect, enlarges weather windows for Operation and Maintenance (O and M). The objective of this paper is to investigate the increase in the accessibility time to the turbines and to optimise the layout for the co-located wind-wave farm in order to maximise this time. The investigation is carried out through a case study: Alpha Ventus, an operating offshore wind farm. To maximise the reduction of wave height in the turbine area no fewer than 15 layouts are tested using high-resolution numerical modelling, and a sensitivity analysis is conducted. The results show that, thanks to the wave energy extraction by the WECs, weather windows (access time) can increase very significantly – over 80%. This substantial effect, together with other benefits from the combination of wave and offshore wind power in a co-located farm (common electrical infrastructures

  13. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  14. A study of shock-associated magnetohydrodynamic waves in the solar wind

    Science.gov (United States)

    Spangler, Steven R.

    1992-01-01

    Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.

  15. Parametric study of electromagnetic waves propagating in absorbing curved S ducts

    Science.gov (United States)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.

  16. Study of the method to estimate the hydraulic characteristics in rock masses by using elastic wave

    International Nuclear Information System (INIS)

    Katsu, Kenta; Ohnishi, Yuzo; Nishiyama, Satoshi; Yano, Takao; Ando, Kenichi; Yoshimura, Kimitaka

    2008-01-01

    In the area of radioactive waste repository, estimating radionuclide migration through the rock mass is an important factor for assessment of the repository. The purpose of this study is to develop a method to estimate hydraulic characteristics of rock masses by using elastic wave velocity dispersion. This method is based on dynamics poroelastic relations such as Biot and BISQ theories. These theories indicate relations between velocity dispersion and hydraulic characteristics. In order to verify the validity of these theories in crystalline rocks, we performed laboratory experiments. The results of experiments show the dependency of elastic wave velocity on its frequency. To test the applicability of this method to real rock masses, we performed in-situ experiment for tuff rock masses. The results of in-situ experiment show the possibility as a practical method to estimate the hydraulic characteristics by using elastic wave velocity dispersion. (author)

  17. Study of a high-order-mode gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Tsai, C. Y.; Kao, S. H.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2010-01-01

    Physics and performance issues of a TE 01 -mode gyrotron traveling-wave amplifier are studied in theory. For a high order mode, absolute instabilities on neighboring modes at the fundamental and higher cyclotron harmonic frequencies impose severe constraints to the device capability. Methods for their stabilization are outlined, on the basis of which the performance characteristics are examined in a multidimensional parameter space under the marginal stability criterion. The results demonstrate the viability of a high-order-mode traveling-wave amplifier and provide a roadmap for design tradeoffs among power, bandwidth, and efficiency. General trends are observed and illustrated with specific examples.

  18. Laser driven shock wave experiments for equation of state studies at megabar pressures

    CERN Document Server

    Pant, H C; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 mu m wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments.

  19. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  20. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    Science.gov (United States)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  1. Syndromic surveillance and heat wave morbidity: a pilot study based on emergency departments in France

    Directory of Open Access Journals (Sweden)

    Filleul Laurent

    2009-02-01

    Full Text Available Abstract Background The health impacts of heat waves are serious and have prompted the development of heat wave response plans. Even when they are efficient, these plans are developed to limit the health effects of heat waves. This study was designed to determine relevant indicators related to health effects of heat waves and to evaluate the ability of a syndromic surveillance system to monitor variations in the activity of emergency departments over time. The study uses data collected during the summer 2006 when a new heat wave occurred in France. Methods Data recorded from 49 emergency departments since July 2004, were transmitted daily via the Internet to the French Institute for Public Health Surveillance. Items collected on patients included diagnosis (ICD10 codes, outcome, and age. Statistical t-tests were used to compare, for several health conditions, the daily averages of patients within different age groups and periods (whether 'on alert' or 'off alert'. Results A limited number of adverse health conditions occurred more frequently during hot period: dehydration, hyperthermia, malaise, hyponatremia, renal colic, and renal failure. Over all health conditions, the total number of patients per day remained equal between the 'on alert' and 'off alert' periods (4,557.7/day vs. 4,511.2/day, but the number of elderly patients increased significantly during the 'on alert' period relative to the 'off alert' period (476.7/day vs. 446.2/day p Conclusion Our results show the interest to monitor specific indicators during hot periods and to focus surveillance efforts on the elderly. Syndromic surveillance allowed the collection of data in real time and the subsequent optimization of the response by public health agencies. This method of surveillance should therefore be considered as an essential part of efforts to prevent the health effects of heat waves.

  2. Studies on arterial stiffness and wave reflections in hypertension.

    Science.gov (United States)

    Safar, Michel E; Levy, Bernard I

    2015-01-01

    Patho-physiological and pharmacological studies have consistently noticed that, with the exception of subjects with end-stage renal disease, total intravascular blood volume is not increased in patients with chronic hypertension. Because the mean circulatory pressure is enhanced in such subjects, it was postulated that the compliance of the cardiovascular system could be abnormally low in this particular population. This simple observation has influenced a great part of our experimental and clinical research directed toward subjects with hypertension and their relationship with the compliance of the vascular system. These works started between 1970 and 1980 by methodological investigations and validations followed by analysis of clinical situations that showed that venous and mostly arterial stiffness were significantly increased in hypertensive patients independently of blood pressure level. During the same time, we assessed the role of endothelium on the large arterial wall mechanical properties in normotensive and hypertensive rats. Thereafter more specific directions have been developed, affecting large arteries structure and function and arterial wall remodeling, including their consequences on central and peripheral hemodynamics. In parallel, epidemiological studies identified the pulsatile hemodynamic parameters as major independent predictors of cardiovascular risks. The consequences of these alterations on clinical pharmacology and therapeutics in hypertension are analyzed in detail. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Numerical study of the time evolution of a wave packet in quantum mechanics

    International Nuclear Information System (INIS)

    Segura, J.; Fernandez de Cordoba, P.

    1993-01-01

    We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)

  4. Financial problems and delinquency in adolescents and young adults : a 6-year three-wave study

    NARCIS (Netherlands)

    Hoeve, M.; Jak, S.; Stams, G.J.J.M.; Meeuws, W.H.J.

    2016-01-01

    The present study examined the link between financial problems and delinquency in adolescents and young adults (N = 1,258). Using three measurement waves that covered a time span of 6 years, we conducted cross-lagged panel analyses. Overall, we found evidence that financial problems increase the

  5. NUMERICAL STUDY OF ELECTROMAGNETIC WAVES GENERATED BY A PROTOTYPE DIELECTRIC LOGGING TOOL

    Science.gov (United States)

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency- wavenumber method. When the propagation velocity in the borehole was greater than th...

  6. Study of the rates of dissemination of elastic waves with diffraction transformation of seismic recordings. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, A.N.; Bulatov, M.G.

    1982-01-01

    An algorithm is proposed for determining effective velocities in the process of diffraction transformation of seismic waves. It is based on summation with conjugate recordings. Results of the study of velocities are indicated in materials of Sakhalin. A difference is noted in the procedures for computing effective velocities in the OGT method and diffraction transformation.

  7. Financial problems and delinquency in adolescents and young adults : A 6-year three-wave study

    NARCIS (Netherlands)

    Hoeve, Machteld; Jak, Suzanne; Stams, Geert Jan J. M.; Meeus, W.H.J.

    2016-01-01

    The present study examined the link between financial problems and delinquency in adolescents and young adults (N = 1,258). Using three measurement waves that covered a time span of 6 years, we conducted cross-lagged panel analyses. Overall, we found evidence that financial problems increase the

  8. Financial Problems and Delinquency in Adolescents and Young Adults : A 6-Year Three-Wave Study

    NARCIS (Netherlands)

    Hoeve, Machteld; Jak, Suzanne; Stams, Geert Jan J M; Meeus, Wim H J|info:eu-repo/dai/nl/070442215

    2016-01-01

    The present study examined the link between financial problems and delinquency in adolescents and young adults (N = 1,258). Using three measurement waves that covered a time span of 6 years, we conducted cross-lagged panel analyses. Overall, we found evidence that financial problems increase the

  9. The New Wave of Childhood Studies: Breaking the Grip of Bio-Social Dualism?

    Science.gov (United States)

    Ryan, Kevin William

    2012-01-01

    The article takes as its starting point a new wave of researchers who use concepts such as "hybridity" and "multiplicity" in a bid to move the study of childhood beyond the strictures of what Lee and Motzkau call "bio-social dualism", whereby the division between the "natural child" of developmental psychology and the "social child" of…

  10. Well-being, personal succes and business performance among entrepreneurs : A two-wave study

    NARCIS (Netherlands)

    Dijkhuizen, J; Gorgievski, M; van Veldhoven, M.J.P.M.; Schalk, R.

    2018-01-01

    This two-wave longitudinal study among 121 entrepreneurs in The Netherlands investigated bi-directional relationships between entrepreneurs’ well-being and performance. Results of Smart PLS analyses showed positive well-being at Time 1 (work engagement; life satisfaction; and job satisfaction)

  11. Characterization of enhanced interferometric gravitational-wave detectors and studies of numeric simulations for compact-binary coalescences

    Science.gov (United States)

    Pekowsky, Larne

    Gravitational waves are a consequence of the general theory of relativity. Direct detection of such waves will provide a wealth of information about physics, astronomy, and cosmology. A worldwide effort is currently underway to make the first direct detection of gravitational waves. The global network of detectors includes the Laser Interferometer Gravitational-wave Observatory (LIGO), which recently completed its sixth science run. A particularly promising source of gravitational waves is a binary system consisting of two neutron stars and/or black holes. As the objects orbit each other they emit gravitational radiation, lose energy, and spiral inwards. This produces a characteristic "chirp" signal for which we can search in the LIGO data. Currently this is done using matched-filter techniques, which correlate the detector data against analytic models of the emitted gravitational waves. Several choices must be made in constructing a search for signals from such binary coalescences. Any discrepancy between the signals and the models used will reduce the effectiveness of the matched filter. However, the analytic models are based on approximations which are not valid through the entire evolution of the binary. In recent years numerical relativity has had impressive success in simulating the final phases of the coalescence of binary black holes. While numerical relativity is too computationally expensive to use directly in the search, this progress has made it possible to perform realistic tests of the LIGO searches. The results of such tests can be used to improve the efficiency of searches. Conversely, noise in the LIGO and Virgo detectors can reduce the efficiency. This must be addressed by characterizing the quality of the data from the detectors, and removing from the analysis times that will be detrimental to the search. In this thesis we utilize recent results from numerical relativity to study both the degree to which analytic models match realistic waveforms

  12. A study on an object transport system using ultrasonic wave excitation

    International Nuclear Information System (INIS)

    Jeong, Sang Hwa; Kim, Gwang Ho; Choi, Suk Bong; Park, Jun Ho; Cha, Kyoung Rae

    2007-01-01

    The development of information and telecommunication industries leads to the development of semiconductor and optical industries. In recent years, the demand of optical components is growing due to the demand of faster network. On the other hand, conventional transport systems are not adequate for transporting precision optical components and semiconductors. Because the conveyor belt can damage precision optical components with contact force and a magnetic system would destroy the inner structure of semiconductor with magnetic field, a new system for transporting optical components and semiconductors is required. One of the alternatives to the existing systems is a transport system using ultrasonic wave excitation since it can transport precision components such as semiconductors and optical components without damage. In this paper, a transport system using 2-mode ultrasonic wave excitation was developed for transporting optical components and semiconductor, and its performance was evaluated. The relationship between transporting characteristics and flexural beam shapes were evaluated

  13. Preliminary study of internal wave effects to chlorophyll distribution in the Lombok Strait and adjacent areas

    Science.gov (United States)

    Arvelyna, Yessy; Oshima, Masaki

    2005-01-01

    This paper studies the effect of internal wave in the Lombok Strait to chlorophyll distribution in the surrounded areas using ERS SAR, ASTER, SeaWiFS and AVHRR-NOAA images data during 1996-2004 periods. The observation results shows that the internal waves were propagated to the south and the north of strait and mostly occurred during transitional season from dry to wet and wet season (rainy season) between September to December when the layers are strongly stratified. Wavelet transform of image using Meyer wavelet analysis is applied for internal wave detection in ERS SAR and ASTER images, for symmetric extension of data at the image boundaries, to prevent discontinuities by a periodic wrapping of data in fast algorithm and space-saving code. Internal wave created elongated pattern in detail and approximation of image from level 2 to 5 and retained value between 2-4.59 times compared to sea surface, provided accuracy in classification over than 80%. In segmentation process, the Canny edge detector is applied on the approximation image at level two to derive internal wave signature in image. The proposed method can extract the internal wave signature, maintain the continuity of crest line while reduce small strikes from noise. The segmentation result, i.e. the length between crest and trough, is used to compute the internal wave induced current using Korteweg-de Vries (KdV) equation. On ERS SAR data contains surface signature of internal wave (2001/8/20), we calculated that internal wave propagation speed was 1.2 m/s and internal wave induced current was 0.56 m/s, respectively. From the observation of ERS SAR and SeaWiFS images data, we found out that the distribution of maximum chlorophyll area at southern coastline off Bali Island when strong internal wave induced current occurred in south of the Lombok Strait was distributed further to westward, i.e. from 9.25°-10.25°LS, 115°-116.25°SE to 8.8°-10.7°LS, 114.5°-116°SE, and surface chlorophyll concentration

  14. Information Brokers: Case Studies of Successful Ventures.

    Science.gov (United States)

    Holland Johnson, Alice Jane

    This guide is intended for librarians planning to start an information brokerage, whether as an entrepreneur or as a member of a document delivery group in a library. The guide identifies specific skills and relevant characteristics required to establish a successful information brokerage firm and describes a model to assist readers in the process…

  15. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    Science.gov (United States)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  16. Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar

    Science.gov (United States)

    van der A, Dominic A.; van der Zanden, Joep; O'Donoghue, Tom; Hurther, David; Cáceres, Iván.; McLelland, Stuart J.; Ribberink, Jan S.

    2017-04-01

    A large-scale wave flume experiment has been carried out involving a T = 4 s regular wave with H = 0.85 m wave height plunging over a fixed barred beach profile. Velocity profiles were measured at 12 locations along the breaker bar using LDA and ADV. A strong undertow is generated reaching magnitudes of 0.8 m/s on the shoreward side of the breaker bar. A circulation pattern occurs between the breaking area and the inner surf zone. Time-averaged turbulent kinetic energy (TKE) is largest in the breaking area on the shoreward side of the bar where the plunging jet penetrates the water column. At this location, and on the bar crest, TKE generated at the water surface in the breaking process reaches the bottom boundary layer. In the breaking area, TKE does not reduce to zero within a wave cycle which leads to a high level of "residual" turbulence and therefore lower temporal variation in TKE compared to previous studies of breaking waves on plane beach slopes. It is argued that this residual turbulence results from the breaker bar-trough geometry, which enables larger length scales and time scales of breaking-generated vortices and which enhances turbulence production within the water column compared to plane beaches. Transport of TKE is dominated by the undertow-related flux, whereas the wave-related and turbulent fluxes are approximately an order of magnitude smaller. Turbulence production and dissipation are largest in the breaker zone and of similar magnitude, but in the shoaling zone and inner surf zone production is negligible and dissipation dominates.

  17. Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study

    KAUST Repository

    Borja, Francisco J.

    2013-01-01

    Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.

  18. Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study

    KAUST Repository

    Borja, Francisco J.

    2013-07-01

    Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.

  19. Grey literature in library and information studies

    CERN Document Server

    Schopfel, Joachim

    2010-01-01

    The further rise of electronic publishing has come to change the scale and diversity of grey literature facing librarians and other information practitioners. This compiled work brings together research and authorship over the past decade dealing with both the supply and demand sides of grey literature. While this book is written with students and instructors of Colleges and Schools of Library and Information Science in mind, it likewise serves as a reader for information professionals working in any and all like knowledge-based communities

  20. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  1. The study on nondestructive evaluation for a tubular structure by the lamb-type guided wave wedge

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Park, Jung Chul

    1998-01-01

    The study on the cylindrical guided wave was carried out to investigate its feasibility for nondestructive evaluation of tubular structures such as heat exchanger tubings of power industries and various pipings of chemical plants. The concept of wedge design and incident angle selection to optimize guided wave generation is presented based on the dispersion theory and the snell's law for the cylindrical guided wave. The brass tubes with artificial defects in the circumferential or axial direction were used for detect defection experiments. It was found that guided wave sensitivity for detecting an axial defect can be remarkably improved by using non-axisymmetrically launched guided waves. Through this study, it is expected that the guided wave can be successfully applied to tubular structure inspections as an more advanced and efficient NDE technique than a conventional point-by-point technique.

  2. Second year interim report on Edinburgh Wave Power Project 'Study of mechanisms for extracting power from sea waves'

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, D C; Richmond, D J.E.; Salter, S H; Taylor, J R.M.

    1976-09-01

    This report is concerned mainly with the measurement of backbone forces on a string of floating duck converters. The results from experiments on single models in a narrow wave tank are presented showing surge and leave forces on cylinders and ducks of various dimensions.

  3. Networking and Information Technology Workforce Study: Final Report

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This report presents the results of a study of the global Networking and Information Technology NIT workforce undertaken for the Networking and Information...

  4. Samaru Journal of Information Studies: Submissions

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... and trends in the areas of Library and information science, academic, school, ... Contributors should submit a copy of the article typed using Microsoft Word, ...

  5. Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere: a CLUSTER case study

    Directory of Open Access Journals (Sweden)

    S. Schäfer

    2007-05-01

    Full Text Available Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfvén waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 RE, the azimuthal wave number m≈30, temporal evolution, and energy transport in the detected ULF pulsations.

  6. Extracorporeal shock wave lithotripsy for gallbladder stones - an experimental and clinical study -

    International Nuclear Information System (INIS)

    Kim, Kun Sang; Park, Sil Moo; Lee, Jung Hyo; Kim, Young Goo; Song, Kounn Sik; Lee, Kwan Seh; Lee, Jong Beum; Kim, Sang Joon; Chang, Sun Taik

    1988-01-01

    Although many alternative treatment technics have been proposed recently for gallstone to substitute cholecystectomy, the extracorporeal shock wave lithotripsy (ESWL) for gallbladder stones has rarely been tried. We have carried out a series of experiments to evaluate how effective the ESWL for gallbladder stones in and how safe this procedure is. At first, in vitro shock were application was carried out to 10 gallbladder stones which were obtained from human gallbladder. Secondly, gallbladder stones were implanted to canine gallbladder and treated with shock wave. Lastly, a total of 41 volunteers with confirmed gallbladder stones were treated with shock wave and combined oral administration of ursodeoxycholic acid. In the in vitro experiment, all of the 10 gallstones were fragmented with variable firing rates and duration. In animal experiment, the implanted stones were successfully fragmented and the organs included in the pathway of shock wave were proved to be intact histologically. In human study, complete disappearance of gallstones was noted in 78.6% of patients with single radiolucent gallbladder stones, smaller than 2.5cm in the longest diameter. Two patients underwent cholecystectomy after ESWL due to sudden colic attack. One patient had experienced an episode of mild transient obstructive jaundice. It may be concluded that the ESWL for gallbladder stones is an effective and safe method of treatment of gallbladder stones in the selected cases, for example, small radiolucent stones, and the further study is needed to establish improved technology of the ESWL for gallbladder stones.

  7. Extracorporeal shock wave lithotripsy for gallbladder stones - an experimental and clinical study -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Park, Sil Moo; Lee, Jung Hyo; Kim, Young Goo; Song, Kounn Sik; Lee, Kwan Seh; Lee, Jong Beum; Kim, Sang Joon; Chang, Sun Taik [Chung-Ang University College of Medicine, Seoul (Korea, Republic of)

    1988-08-15

    Although many alternative treatment technics have been proposed recently for gallstone to substitute cholecystectomy, the extracorporeal shock wave lithotripsy (ESWL) for gallbladder stones has rarely been tried. We have carried out a series of experiments to evaluate how effective the ESWL for gallbladder stones in and how safe this procedure is. At first, in vitro shock were application was carried out to 10 gallbladder stones which were obtained from human gallbladder. Secondly, gallbladder stones were implanted to canine gallbladder and treated with shock wave. Lastly, a total of 41 volunteers with confirmed gallbladder stones were treated with shock wave and combined oral administration of ursodeoxycholic acid. In the in vitro experiment, all of the 10 gallstones were fragmented with variable firing rates and duration. In animal experiment, the implanted stones were successfully fragmented and the organs included in the pathway of shock wave were proved to be intact histologically. In human study, complete disappearance of gallstones was noted in 78.6% of patients with single radiolucent gallbladder stones, smaller than 2.5cm in the longest diameter. Two patients underwent cholecystectomy after ESWL due to sudden colic attack. One patient had experienced an episode of mild transient obstructive jaundice. It may be concluded that the ESWL for gallbladder stones is an effective and safe method of treatment of gallbladder stones in the selected cases, for example, small radiolucent stones, and the further study is needed to establish improved technology of the ESWL for gallbladder stones.

  8. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  9. Partial Stator Overlap in a Linear Generator for Wave Power: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Anna E. Frost

    2017-11-01

    Full Text Available This paper presents a study on how the power absorption and damping in a linear generator for wave energy conversion are affected by partial overlap between stator and translator. The theoretical study shows that the electrical power as well as the damping coefficient change quadratically with partial stator overlap, if inductance, friction and iron losses are assumed independent of partial stator overlap or can be neglected. Results from onshore experiments on a linear generator for wave energy conversion cannot reject the quadratic relationship. Measurements were done on the inductance of the linear generator and no dependence on partial stator overlap could be found. Simulations of the wave energy converter’s operation in high waves show that entirely neglecting partial stator overlap will overestimate the energy yield and underestimate the peak forces in the line between the buoy and the generator. The difference between assuming a linear relationship instead of a quadratic relationship is visible but small in the energy yield in the simulation. Since the theoretical deduction suggests a quadratic relationship, this is advisable to use during modeling. However, a linear assumption could be seen as an acceptable simplification when modeling since other relationships can be computationally costly.

  10. Information management system study results. Volume 1: IMS study results

    Science.gov (United States)

    1971-01-01

    The information management system (IMS) special emphasis task was performed as an adjunct to the modular space station study, with the objective of providing extended depth of analysis and design in selected key areas of the information management system. Specific objectives included: (1) in-depth studies of IMS requirements and design approaches; (2) design and fabricate breadboard hardware for demonstration and verification of design concepts; (3) provide a technological base to identify potential design problems and influence long range planning (4) develop hardware and techniques to permit long duration, low cost, manned space operations; (5) support SR&T areas where techniques or equipment are considered inadequate; and (6) permit an overall understanding of the IMS as an integrated component of the space station.

  11. Final report for Fundamental study of long-short interfacial wave interactions with application for flow regime development

    CERN Document Server

    McCready, M

    2000-01-01

    The long waves that cause slugs almost always form more slowly than short waves, and linear stability always predicts that the growth rate for long waves is much less than that for short waves. However, at many conditions above neutral stability, long waves dominate the wave field. Three different studies were undertaken as part of the funded work: (1) linear interaction for unsteady flows; (2) wave evolution in oil-water channel flows; (3) retrograde stability and subcritical bifurcations. The oil-water system was used as a surrogate for gas-liquid systems because the gas phase is usually turbulent, and this complication is thus avoided although the phenomena involved are similar. The following overall conclusions about flow regime development were reached: (a) Oscillations in pressure and flow rate, due to interfacial waves or a malfunctioning pump, can cause significant growth rate changes in short waves within narrow FR-equency ranges, but probably do not have a large effect on long waves and thus regime ...

  12. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    Science.gov (United States)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  13. Study of parametric instabilities during the Alcator C lower hybrid wave heating experiments

    International Nuclear Information System (INIS)

    Takase, Y.

    1983-10-01

    Parametric excitation of ion-cyclotron quasi-modes (ω/sub R/ approx. = nω/sub ci/) and ion-sound quasi-modes (ω/sub R/ approx. = k/sub parallel to/v/sub ti/) during lower hybrid wave heating of tokamak plasmas have been studied in detail. Such instabilities may significantly modify the incident wavenumber spectrum near the plasma edge. Convective losses for these instabilities are high if well-defined resonance cones exist, but they are significantly reduced if the resonance cones spread and fill the plasma volume (or some region of it). These instabilities preferentially excite lower hybrid waves with larger values of n/sub parallel to/ than themselves possess, and the new waves tend to be absorbed near the outer layers of the plasma. Parametric instabilities during lower hybrid heating of Alcator C plasmas have been investigated using rf probes (to study tilde phi and tilde n/sub i/) and CO 2 scattering technique (to study tilde n/sub e/). At lower densities (anti n/sub e/ less than or equal to 0.5 x 10 14 cm -3 ) where waves observed in the plasma interior using CO 2 scattering appear to be localized, parametric decay is very weak. Both ion-sound and ion-cyclotron parametric decay processes have been observed at higher densities (anti n greater than or equal to 1.5 x 10 14 cm -3 ) where waves appear to be unlocalized. Finally, at still higher densities (anti n /sub e/ greater than or equal to 2 x 10 4 cm -3 ) pump depletion has been observed. Above these densities heating and current drive efficiencies are expected to degrade significantly

  14. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    was suggested to be due to enhanced planetary wave activity in the Southern Hemisphere and a surprising degree of inter-hemispheric coupling. The winter program was designed to study the upward propagation and penetration of mountain waves from northern Scandinavia into the MLT at a site favored for such penetration. As the major response was expected to be downstream (east of Norway, these motions were measured with similar rocket sequences to those used in the summer campaign, but this time at Esrange. However, a major polar stratospheric warming just prior to the rocket launch window induced small or reversed stratospheric zonal winds, which prevented mountain wave penetration into the mesosphere. Instead, mountain waves encountered critical levels at lower altitudes and the observed wave structure in the mesosphere originated from other sources. For example, a large-amplitude semidiurnal tide was observed in the mesosphere on 28 and 29 January, and appears to have contributed to significant instability and small-scale structures at higher altitudes. The resulting energy deposition was found to be competitive with summertime values. Hence, our MaCWAVE measurements as a whole are the first to characterize influences in the MLT region of planetary wave activity and related stratospheric warmings during both winter and summer.

  15. Wave Loadings on Seawave Slot-Cone Generator (SSG) at Kvitsøy Island

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Frigaard, Peter; Kofoed, Jens Peter

    This report presents results from a new research study performed to derive information on wave loadings acting on Wave Energy Convert (WEC) Seawave Slot-Cone Generator (SSG) exposed to extreme wave conditions. The SSG concept is based on the principle of overtopping and stores the wave energy...

  16. Effects of body mass index on gastric slow wave: a magnetogastrographic study

    International Nuclear Information System (INIS)

    Somarajan, S; Cassilly, S; Obioha, C; Bradshaw, L A; Richards, W O

    2014-01-01

    We measured gastric slow wave activity simultaneously with magnetogastrogram (MGG), mucosal electromyogram (EMG) and electrogastrogram (EGG) in human subjects with varying body mass index (BMI) before and after a meal. In order to investigate the effect of BMI on gastric slow wave parameters, each subject's BMI was calculated and divided into two groups: subjects with BMI ≤ 27 and BMI > 27. Signals were processed with Fourier spectral analysis and second-order blind identification (SOBI) techniques. Our results showed that increased BMI does not affect signal characteristics such as frequency and amplitude of EMG and MGG. Comparison of the postprandial EGG power, on the other hand, showed a statistically significant reduction in subjects with BMI > 27 compared with BMI ≤ 27. In addition to the frequency and amplitude, the use of SOBI-computed propagation maps from MGG data allowed us to visualize the propagating slow wave and compute the propagation velocity in both BMI groups. No significant change in velocity with increasing BMI or meal was observed in our study. In conclusion, multichannel MGG provides an assessment of frequency, amplitude and propagation velocity of the slow wave in subjects with differing BMI categories and was observed to be independent of BMI. (paper)

  17. Review of 5kW wave energy LOPF buoy design study and test

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The purpose of this project was to document the mechanical power production against a target power curve of a 5kW grid connected wave energy buoy in Nissum Bredning at Helligsø. This test site is typically used for open sea testing of scale 1:10 devices in irregular waves. In order to better adapt...... to the moderate wave height, the buoy was down sized by a factor of 3 and a new lower target power curve for the buoy was agreed to. Downsizing the project also had the advantage that it is more cost effective and fast to experiment with small wave energy devices than with big devices, at an early development...... stage, in line with the TRL and four phases development (proof of concept, design and feasibility study, field trials and half or full‐scale trials) promoted by AAU and supported by the marine renewable energy sector. To complement this, the IEC 114 standards define 3 stages of testing (1=small scale...

  18. Shock wave generation in laser ablation studied using pulsed digital holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Eynas; Gren, Per; Sjoedahl, Mikael [Division of Experimental Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)], E-mail: eynas.amer@ltu.se, E-mail: per.gren@ltu.se, E-mail: mikael.sjodahl@ltu.se

    2008-11-07

    Pulsed digital holographic interferometry has been used to study the shock wave induced by a Q-switched Nd-YAG laser ({lambda} = 1064 nm and pulse duration 12 ns) on a polycrystalline boron nitride (PCBN) ceramic target under atmospheric air pressure. A special setup based on using two synchronized wavelengths from the same laser for processing and measurement simultaneously has been introduced. Collimated laser light ({lambda} = 532 nm) passed through the volume along the target and digital holograms were recorded for different time delays after processing starts. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave generated by the process. The location of the induced shock wave front was observed for different focusing and time delays. The amount of released energy, i.e. the part of the incident energy of the laser pulse that is eventually converted to a shock wave has been estimated using the point explosion model. The released energy is normalized by the incident laser pulse energy and the energy conversion efficiency between the laser pulse and PCBN target has been calculated at different power densities. The results show that the energy conversion efficiency seems to be constant around 80% at high power densities.

  19. Studies of renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) by diagnostic imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yukihiko; Machida, Toyohei; Tashiro, Kazuya; Wada, Tetsuro; Mochizuki, Atsushi; Torii, Shinichiro; Yoshigoe, Fukuo; Kawashima, Yoshio; Asano, Koji (Jikei Univ., Tokyo (Japan). School of Medicine)

    1989-05-01

    Renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) were studied by diagnostic imaging methods. The subjects were 25 patients with renal stones, and EDAP LT-01 (piezoelectric system) was used for the equipment of ESWL. The examination by MRI, X-ray CT and /sup 99m/Tc-DMSA scintigraphy using SPECT were performed before and after ESWL. To the 24 kidneys of 12 adult dogs, shock waves were fired in order to examine the experimental renal parenchymal impairments. After the treatment with ESWL, renal abnormal findings were obtained with MRI in 6 patients out of 11 (54.5%), with X-ray CT in 1 patient out of 12 (8.3%), and with the /sup 99m/Tc-DMSA renal scintigraphy in 4 patients out of 6 (66.7%). In the inspections with X-ray CT and renal scintigraphy conducted in 4 weeks, it was noted that the conditions of patients were recovered to the states before ESWL was performed. Using the therapeutic doses of shock wave for humans, the renal parenchymal impairments in the kidney in dogs were normalized in 7 days. Although it has been considered that the degree of renal parenchymal impairments with ESWL treatment may be influenced by the kind of the equipment, frequency of shock waves and their strength, the extent of impairments were rather mild, and it was presumed that the impairments might be recovered on the images in 3 to 4 weeks at the latest. (author).

  20. Studies of renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) by diagnostic imaging methods

    International Nuclear Information System (INIS)

    Ohishi, Yukihiko; Machida, Toyohei; Tashiro, Kazuya; Wada, Tetsuro; Mochizuki, Atsushi; Torii, Shinichiro; Yoshigoe, Fukuo; Kawashima, Yoshio; Asano, Koji

    1989-01-01

    Renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) were studied by diagnostic imaging methods. The subjects were 25 patients with renal stones, and EDAP LT-01 (piezoelectric system) was used for the equipment of ESWL. The examination by MRI, X-ray CT and 99m Tc-DMSA scintigraphy using SPECT were performed before and after ESWL. To the 24 kidneys of 12 adult dogs, shock waves were fired in order to examine the experimental renal parenchymal impairments. After the treatment with ESWL, renal abnormal findings were obtained with MRI in 6 patients out of 11 (54.5%), with X-ray CT in 1 patient out of 12 (8.3%), and with the 99m Tc-DMSA renal scintigraphy in 4 patients out of 6 (66.7%). In the inspections with X-ray CT and renal scintigraphy conducted in 4 weeks, it was noted that the conditions of patients were recovered to the states before ESWL was performed. Using the therapeutic doses of shock wave for humans, the renal parenchymal impairments in the kidney in dogs were normalized in 7 days. Although it has been considered that the degree of renal parenchymal impairments with ESWL treatment may be influenced by the kind of the equipment, frequency of shock waves and their strength, the extent of impairments were rather mild, and it was presumed that the impairments might be recovered on the images in 3 to 4 weeks at the latest. (author)

  1. Statistical study of chorus wave distributions in the inner magnetosphere using Ae and solar wind parameters

    Science.gov (United States)

    Aryan, Homayon; Yearby, Keith; Balikhin, Michael; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Boynton, Richard

    2014-08-01

    Energetic electrons within the Earth's radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. The common approach is to present model wave distributions in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However, it has been shown that only around 50% of geomagnetic storms increase flux of relativistic electrons at geostationary orbit while 20% causes a decrease and the remaining 30% has relatively no effect. This emphasizes the importance of including solar wind parameters such as bulk velocity (V), density (n), flow pressure (P), and the vertical interplanetary magnetic field component (Bz) that are known to be predominately effective in the control of high energy fluxes at the geostationary orbit. Therefore, in the present study the set of parameters of the wave distributions is expanded to include the solar wind parameters in addition to the geomagnetic activity. The present study examines almost 4 years (1 January 2004 to 29 September 2007) of Spatio-Temporal Analysis of Field Fluctuation data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of wave magnetic field intensities for the chorus waves as a function of magnetic local time, L shell (L), magnetic latitude (λm), geomagnetic activity, and solar wind parameters. Generally, the results indicate that the intensity of chorus emission is not only dependent upon geomagnetic activity but also dependent on solar wind parameters with velocity and southward interplanetary magnetic field Bs (Bz < 0), evidently the most influential solar wind parameters. The largest peak chorus intensities in the order of 50 pT are observed during active conditions, high solar wind velocities, low solar wind densities, high

  2. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    period October 14 - November 6, 2009 almost continuously. Antenna of 6 resistance wave gauges (a pentagon with one center gauge) is used to gain information on wave directions. Wave conditions vary from perfect still to storms with significant wave heights up to Hs = 1.7 meters and wind speeds 15m/s. Measurements with frequency 10Hz for dominant frequencies 0.1 - 0.2Hz fixed 40 freak wave events (criterium H/Hs > 2) and showed no dependence on Hs definitely. Data processing within frequency quasi-spectra approach and directional spectra reconstructions found pronounced features of essentially three-dimensional anomalous waves. All the events are associated with dramatic widening of instant frequency spectra in the range fp - f5w and stronger directional spreading. On the contrary, the classic Benjamin-Feir modulations show no definite links with the events and can be likely treated as dynamically neutral part of wave field. The apparent contradiction with the recent study (Saprykina, Dulov, Kuznetsov, Smolov, 2010) based on the same data collection can be explained partially by features of data processing. Physical roots of the inconsistency should be detailed in further studies. The work was supported by the Russian government contract 11.G34.31.0035 (signed 25 November 2010), Russian Foundation for Basic Research grant 11-05-01114-a, Ukrainian State Agency of Science, Innovations and Information under Contract M/412-2011 and ONR grant N000141010991. Authors gratefully acknowledge continuing support of these foundations.

  3. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    Science.gov (United States)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  4. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    Science.gov (United States)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  5. Transnationality or Globality? The Korean Wave and Methodological Challenges in Media and Cultural studies

    OpenAIRE

    Kang, Jaeho

    2017-01-01

    Making the case for a new media/cultural studies that takes a transregional, transcultural and transdisciplinary approach, this contribution notes how the global popularity of Korean Wave has highlighted the limitations of methods rooted in notions of national identities. Studies have challenged western hegemony of knowledge production and are suggestive of new academic communities beyond Eurocentric nation states that may be both multinational and multicultural.This contribution however warn...

  6. New specimen design for studying the growth of small fatigue cracks with surface acoustic waves

    Science.gov (United States)

    London, Blair

    1985-08-01

    The study of small surface fatigue cracks in AISI 4140 quenched and tempered steel by a nondestructive surface acoustic wave technique is summarized. A novel cantilevered bending, plate-type fatigue specimen is described that is compatible with the acoustic method. Small cracks are initiated from a 25-μm deep surface pit produced by an electrospark machine. The importance of studying these cracks which closely approximate naturally occurring fatigue cracks is briefly discussed.

  7. Theoretical and experimental study of the hybrid wave coupling in Tore Supra and Jet by multijunction antennas

    International Nuclear Information System (INIS)

    Litaudon, X.

    1990-06-01

    The hybrid or slow electron plasma waves propagation and coupling are investigated in a toroidal magnetic confinement configuration such as found in Tokamaks. The main characteristics of the antenna, formed of several waveguides displaced in the toroidal direction, are studied. The equations of the hybrid waves linear propagation are solved for a plane geometrical configuration and in an inhomogeneous plasma. The optimization of the hybrid wave couplers of Tore Supra and Jet is carried out by means of the SWAN code. The results of the experiments performed on Tore Supra are analyzed. The investigation shows that the wave coupling depends on the edge plasma properties [fr

  8. Household characteristics for older adults and study background from SAGE Ghana Wave 1

    Directory of Open Access Journals (Sweden)

    Richard B. Biritwum

    2013-06-01

    Full Text Available Background: Globally, the population aged 60 years and older is projected to reach 22% by 2050. In sub-Saharan Africa, this figure is projected to exceed 8%, while in Ghana, the older adult population will reach 12% by 2050. The living arrangements and household characteristics are fundamental determinants of the health and well-being of this population, data sources about which are increasingly available. Methods: The World Health Organization's Study on global AGEing and adult health (SAGE Wave 1 was conducted in China, Ghana, India, Russian Federation, Mexico, and South Africa between 2007 and 2010. SAGE Ghana Wave 1 was implemented in 2007/08 using face-to-face interviews in a nationally representative sample of persons aged 50-plus, along with a smaller cohort aged 18–49 years for comparison purposes. Household information included a household roster including questions about health insurance coverage for all household members, household and sociodemographic characteristics, status of the dwelling, and economic situation. Re-interviews were done in a random 10% of the sample and proxy interviews done where necessary. Verbal autopsies were conducted for deaths occurring in older adult household members in the 24 months prior to interview. Results: The total household population was 27,270 from 5,178 households. The overall household response rate was 86% and household cooperation rate was 98%. Thirty-four percent of household members were under 15 years of age while 8.3% were aged 65-plus years. Households with more than 11 members were more common in rural areas (57.2% and in the highest income quintile (30.6%. Household members with no formal education formed 24.7% of the sample, with Northern and Upper East regions reaching more than 50%. Only 26.8% of the household members had insurance coverage. Households with hard floors ranged from 25.7% in Upper West to 97.7% in Ashanti region. Overall, 84.9% of the households had access to

  9. Household characteristics for older adults and study background from SAGE Ghana Wave 1.

    Science.gov (United States)

    Biritwum, Richard B; Mensah, George; Minicuci, Nadia; Yawson, Alfred E; Naidoo, Nirmala; Chatterji, Somnath; Kowal, Paul

    2013-06-11

    Globally, the population aged 60 years and older is projected to reach 22% by 2050. In sub-Saharan Africa, this figure is projected to exceed 8%, while in Ghana, the older adult population will reach 12% by 2050. The living arrangements and household characteristics are fundamental determinants of the health and well-being of this population, data sources about which are increasingly available. The World Health Organization's Study on global AGEing and adult health (SAGE) Wave 1 was conducted in China, Ghana, India, Russian Federation, Mexico, and South Africa between 2007 and 2010. SAGE Ghana Wave 1 was implemented in 2007/08 using face-to-face interviews in a nationally representative sample of persons aged 50-plus, along with a smaller cohort aged 18-49 years for comparison purposes. Household information included a household roster including questions about health insurance coverage for all household members, household and sociodemographic characteristics, status of the dwelling, and economic situation. Re-interviews were done in a random 10% of the sample and proxy interviews done where necessary. Verbal autopsies were conducted for deaths occurring in older adult household members in the 24 months prior to interview. The total household population was 27,270 from 5,178 households. The overall household response rate was 86% and household cooperation rate was 98%. Thirty-four percent of household members were under 15 years of age while 8.3% were aged 65-plus years. Households with more than 11 members were more common in rural areas (57.2%) and in the highest income quintile (30.6%). Household members with no formal education formed 24.7% of the sample, with Northern and Upper East regions reaching more than 50%. Only 26.8% of the household members had insurance coverage. Households with hard floors ranged from 25.7% in Upper West to 97.7% in Ashanti region. Overall, 84.9% of the households had access to improved sources of drinking water, with the lowest at

  10. Study on geo-information modelling

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana

    2006-01-01

    Roč. 5, č. 5 (2006), s. 1108-1113 ISSN 1109-2777 Institutional research plan: CEZ:AV0Z10750506 Keywords : control GIS * geo-information modelling * uncertainty * spatial temporal approach Web Services Subject RIV: BC - Control Systems Theory

  11. Unmanned Underwater Vehicle (UUV) Information Study

    Science.gov (United States)

    2014-11-28

    radioactive contamination in the marine environment (by German BSH, Federal Maritime and Hydrographic Agency) and similar systems have also been...submarines, polutants , marine life, etc.) we expect to make during the mission • Combine various information from sensors that provide complex reports

  12. Shock wave, fluid instability and implosion studies with a kinetic particle approach

    Science.gov (United States)

    Sagert, Irina; Even, Wesley P.; Strother, Terrance T.

    2016-10-01

    Many problems in laboratory plasma physics are subject to flows that move between the continuum and the kinetic regime. The correct description of these flows is crucial in order to capture their impact on the system's dynamical evolution. Examples are capsule implosions in inertial confinement fusion (ICF). Although their dynamics is predominantly shaped by shock waves and fluid instabilities, non-equilibrium flows in form of deuterium/tritium ions have been shown to play a significant role. We present recent studies with our Monte Carlo kinetic particle code that is designed to capture continuum and kinetic flows in large physical systems with possible applications in ICF studies. Discussed results will include standard shock wave and fluid instability tests and simulations that are adapted towards future ICF studies with comparisons to hydrodynamic simulations. This work used the Wolf TriLAB Capacity Cluster at LANL. I.S. acknowledges support through a Director's fellowship (20150741PRD3) from Los Alamos National Laboratory.

  13. Metaheuristic optimization approaches to predict shear-wave velocity from conventional well logs in sandstone and carbonate case studies

    Science.gov (United States)

    Emami Niri, Mohammad; Amiri Kolajoobi, Rasool; Khodaiy Arbat, Mohammad; Shahbazi Raz, Mahdi

    2018-06-01

    Seismic wave velocities, along with petrophysical data, provide valuable information during the exploration and development stages of oil and gas fields. The compressional-wave velocity (VP ) is acquired using conventional acoustic logging tools in many drilled wells. But the shear-wave velocity (VS ) is recorded using advanced logging tools only in a limited number of wells, mainly because of the high operational costs. In addition, laboratory measurements of seismic velocities on core samples are expensive and time consuming. So, alternative methods are often used to estimate VS . Heretofore, several empirical correlations that predict VS by using well logging measurements and petrophysical data such as VP , porosity and density are proposed. However, these empirical relations can only be used in limited cases. The use of intelligent systems and optimization algorithms are inexpensive, fast and efficient approaches for predicting VS. In this study, in addition to the widely used Greenberg–Castagna empirical method, we implement three relatively recently developed metaheuristic algorithms to construct linear and nonlinear models for predicting VS : teaching–learning based optimization, imperialist competitive and artificial bee colony algorithms. We demonstrate the applicability and performance of these algorithms to predict Vs using conventional well logs in two field data examples, a sandstone formation from an offshore oil field and a carbonate formation from an onshore oil field. We compared the estimated VS using each of the employed metaheuristic approaches with observed VS and also with those predicted by Greenberg–Castagna relations. The results indicate that, for both sandstone and carbonate case studies, all three implemented metaheuristic algorithms are more efficient and reliable than the empirical correlation to predict VS . The results also demonstrate that in both sandstone and carbonate case studies, the performance of an artificial bee

  14. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    International Nuclear Information System (INIS)

    Lee, Jaesun; Cho, Younho; Achenbach, Jan D.

    2016-01-01

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation

  15. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesun; Cho, Younho [Pusan National Univ., Pusan (Korea, Republic of); Achenbach, Jan D. [Northwestern Univ., Everston (United States)

    2016-07-15

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation.

  16. Case studies: Managing nuclear information in Colombia

    International Nuclear Information System (INIS)

    Oviedo, L.G.

    2004-01-01

    The advances in the managing of nuclear information in Colombia are present, this has allowed recapturing the activities starting from 1999 contributing the INIS the results of the investigations related with the AIEA mission, for benefit of the international scientific community. Thanks to the support of the directive and to my own managing, year after year the efforts are reflected, through a constant increase of the records to the INIS, like in the participation in the RRIAN in Latin America. (author)

  17. Final Summary: Genre Theory in Information Studies

    DEFF Research Database (Denmark)

    Andersen, Jack

    2015-01-01

    Purpose This chapter offers a re-description of knowledge organization in light of genre and activity theory. Knowledge organization needs a new description in order to account for those activities and practices constituting and causing concrete knowledge organization activity. Genre and activity...... informing and shaping concrete forms of knowledge organization activity. With this, we are able to understand how knowledge organization activity also contributes to construct genre and activity systems and not only aid them....

  18. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    reflected waves. With use of developed algorithms of head wave conversion in time sections a work of studying of refracting boundaries in Siberia have been executed. Except for the research by method of refracting waves, the conversion of head waves in time sections, applied to seismograms of reflected wave method, allows to obtain information about refracting horizons in upper part of section in addition to reflecting horizons data. Recovery method of wave field coherent components is the basis of the engineering seismology on the level of accuracy and detail. In seismic microzoning resonance frequency of the upper part of section are determined on the basis of this method. Maps of oscillation amplification and result accuracy are constructed for each of the frequencies. The same method makes it possible to study standing wave field in buildings and constructions with high accuracy and detail, realizing diagnostics of their physical state on set of natural frequencies and form of self-oscillations, examined with high detail. The method of standing waves permits to estimate a seismic stability of structure on new accuracy level.

  19. Application of Machine Learning Algorithms to the Study of Noise Artifacts in Gravitational-Wave Data

    Science.gov (United States)

    Biswas, Rahul; Blackburn, Lindy L.; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Young-Min, Kim; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; hide

    2014-01-01

    The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitationalwave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Terrestrial noise sources may manifest characteristic disturbances in these auxiliary channels, inducing non-trivial correlations with glitches in the gravitational-wave data. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Support Vector Machines, and Random Forests. These classifiers identify and remove a substantial fraction of the glitches present in two very different data sets: four weeks of LIGO's fourth science run and one week of LIGO's sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth science run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar limiting performance, suggesting that most of the useful information currently contained in the auxiliary channel parameters we extract

  20. Contribution to the study of standing wave bi-periodical accelerating structures for electrons

    International Nuclear Information System (INIS)

    Fuhrmann, Celso

    1985-01-01

    Experimental results on bi-periodic standing wave accelerating structures are presented. These structures which are characterized by a high effective shunt impedance, are designed for standing wave, high duty cycle electron accelerators. Two types of structures are studied: the on-axis coupled structure and the coaxial coupled structure. The expressions for the dispersion relation, coupling coefficients, phase and group velocity are derived from a coupled resonator model. An experimental method to eliminate the stop-band is put forward. The influence of the coupling slots on the dispersion curves is studied experimentally. The effective shunt impedance and the transit time factor are measured by the field perturbation techniques. Measured parameters are compared with SUPERFISH theoretical calculations. The field perturbation technique is also applied to measure the transverse shunt impedance of the dipole modes which are responsible for the beam breakup phenomenon. (author) [fr

  1. Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves

    International Nuclear Information System (INIS)

    Liewer, P.C.; Decyk, V.K.; Dawson, J.M.; Lembege, B.

    1991-01-01

    Linear and nonlinear electron damping of the whistler precursor wave train to low Mach number quasi-perpendicular oblique shocks is studied using a one-dimensional electromagnetic plasma simulation code with particle electrons and ions. In some parameter regimes, electrons are observed to trap along the magnetic field lines in the potential of the whistler precursor wave train. This trapping can lead to significant electron heating in front of the shock for β e (∼10% or less). Use of the 64-processor Caltech/JPL Mark IIIfp hypercube concurrent computer has enables us to make long runs using realistic mass ratios (m i /m e = 1,600) in the full particle in-cell code and thus simulate shock parameter regimes and phenomena not previously studied numerically

  2. A study on the impulse wave discharged from the exit of a right-angle pipe bend

    International Nuclear Information System (INIS)

    Lee, D. H.; Hur, S. C.; Kweon, Y. H.; Kim, H. D.

    2001-01-01

    The current study addresses experimental and computational work of impulse wave discharged from the exit of two kinds of right-angle pipe bends, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.02 to 1.20 is employed to obtain the impulse wave propagating outside the exit of the pipe bends. A Schlieren optical system visualizes the impulse wave discharged from the exit of the pipe bends at an instant. The experimental data of the magnitude of the impulse wave and its propagating directivity are analyzed to characterize the impulse waves discharged from the exit of the pipe bends and compared with those discharged from a straight pipe. Computational results well predict the experimented dynamic behaviors of the impulse wave. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulse wave and its directivity toward to the pipe axis, compared with the straight pipe and right-angle smooth bend. It is believed that the right-angle miter bend pipe can play a role of a passive control against the impulse wave

  3. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Baarholm, Rolf Jarle

    2001-07-01

    The main objective of this thesis has been to study the phenomenon of water impact underneath the decks of offshore platforms due to propagating waves. The emphasis has been on the impact loads. Two theoretical methods based on two-dimensional potential theory have been developed, a Wagner based method (WBM) and a nonlinear boundary element method (BEM). A procedure to account for three-dimensional effects is suggested. The deck is assumed to be rigid. Initial studies of the importance of hydroelasticity for wave loads on an existing deck structure have been performed. For a given design wave, the local structural responses were found to behave quasi-static. Global structural response has not been studied. In the Wagner based method gravity is neglected and a linear spatial distribution of the relative impact velocity along the deck is assumed. The resulting boundary value problem is solved analytically for each time step. A numerical scheme for stepping the wetted deck area in time is presented. The nonlinear boundary element method includes gravity, and the exact impact velocity is considered. The incident wave velocity potential is given a priori, and a boundary value problem for the perturbation velocity potential associated with the impact is defined. The boundary value problem is solved for each time step by applying Green's second identity. The exact boundary conditions are imposed on the exact boundaries. A Kutta condition is introduced as the fluid flow reaches the downstream end of the deck. At present, the BEM is only applicable for fixed platform decks. To validate the theories, experiments have been carried out in a wave flume. The experiments were performed in two-dimensional flow condition with a fixed horizontal deck at different vertical levels above the mean free surface. The vertical force on the deck and the wetting of the deck were the primary parameters measured. Only regular propagating waves were applied. When a wave hits the deck, the

  4. A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E China

    Directory of Open Access Journals (Sweden)

    S. D. Zhang

    2005-03-01

    Full Text Available Several works concerning the dynamical and thermal structures and inertial gravity wave activities in the troposphere and lower stratosphere (TLS from the radiosonde observation have been reported before, but these works were concentrated on either equatorial or polar regions. In this paper, background atmosphere and gravity wave activities in the TLS over Wuhan (30° N, 114° E (a medium latitudinal region were statistically studied by using the data from radiosonde observations on a twice daily basis at 08:00 and 20:00 LT in the period between 2000 and 2002. The monthly-averaged temperature and horizontal winds exhibit the essential dynamic and thermal structures of the background atmosphere. For avoiding the extreme values of background winds and temperature in the height range of 11-18km, we studied gravity waves, respectively, in two separate height regions, one is from ground surface to 10km (lower part, and the other is within 18-25km (upper part. In total, 791 and 1165 quasi-monochromatic inertial gravity waves were extracted from our data set for the lower and upper parts, respectively. The gravity wave parameters (intrinsic frequencies, amplitudes, wavelengths, intrinsic phase velocities and wave energies are calculated and statistically studied. The statistical results revealed that in the lower part, there were 49.4% of gravity waves propagating upward, and the percentage was 76.4% in the upper part. Moreover, the average wave amplitudes and energies are less than those at the lower latitudinal regions, which indicates that the gravity wave parameters have a latitudinal dependence. The correlated temporal evolution of the monthly-averaged wave energies in the lower and upper parts and a subsequent quantitative analysis strongly suggested that at the observation site, dynamical instability (strong wind shear induced by the tropospheric jet is the main excitation source of inertial gravity waves in the TLS.

  5. P wave analysis indices in young healthy men: data from the digital electrocardiographic study in Hellenic Air Force Servicemen (DEHAS).

    Science.gov (United States)

    Gialafos, Elias J; Dilaveris, Polychronis E; Synetos, Andreas G; Tsolakidis, George F; Papaioannou, Theodoros G; Andrikopoulos, George K; Richter, Dimitris J; Triposkiadis, Filippos; Gialafos, John E

    2003-01-01

    P wave analysis from the 12-lead ECG is a recent contribution of noninvasive electrocardiology. P wave analysis indices (maximum and minimum P wave duration, P wave dispersion [Pdis = Pmax-Pmin], adjusted P wave dispersion [APdis = Pdis/square root of measured leads], summated P wave duration [Psum], standard deviation of P wave duration [Psd], mean P wave duration [Pmean]) can predict atrial arrhythmias. However, the definitions of all these indices are based on few studies. The aim of this analysis was to define normal values of these indices and the examine possible associations between P wave indices and clinical variables. The study included 1,353 healthy men, 24 +/- 3 years of age, who answered a questionnaire and underwent a detailed physical examination and a digitized 12-lead surface ECG. All P wave indices were analyzed by two independent investigators. Mean values of the ECG indices were: Pmax: 96 +/- 11 ms, Pmin: 57 +/- 9 ms, Pdis: 38 +/- 10 ms, Psum: 924 +/- 96 ms, Psd: 12 +/- 3, APdis: 11 +/- 3 ms, and Pmean: 77 +/- 8 ms. Age was significantly related with Pmax (r = 0.277, P < 0.01), Pmin (r = 0.255, P < 0.001), Psum (r = 0.074, P < 0.01), and Pmean (r = 0.074, P < 0.01). All ECG indices were significantly associated with the R-R interval, and among each other. This study defined normal indices of wave duration and correlations among them. These markers may play an important predictive role in patients with atrial conduction abnormalities.

  6. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, Orso [General Atomics, San Diego, California 92121 (United States); Volpe, Francesco A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  7. Visual and refractive outcomes of LASIK with the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-q excimer lasers: a prospective, contralateral study.

    Science.gov (United States)

    Mearza, Ali A; Muhtaseb, Mohammed; Aslanides, Ioannis M

    2008-11-01

    To compare the safety, efficacy, and predictability of LASIK with the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-Q excimer laser platforms. This prospective study comprised 44 eyes of 22 consecutive patients who were treated with LASIK using the Moria M2 microkeratome. One eye was treated with the SCHWIND ESIRIS laser and the fellow eye treated with the WaveLight ALLEGRETTO WAVE Eye-Q laser. All eyes operated with the SCHWIND ESIRIS were treated with standard aspheric ablation, whereas the eyes operated with the WaveLight ALLEGRETTO WAVE Eye-Q received treatment with three different ablation types according to the common practice at our clinic. Outcome measures were uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction, and proximity to target refraction at 6-month follow-up. At 6 months postoperative, mean decimal UCVA was 0.96+/-0.22 (range: 0.3 to 1.2) for ESIRIS eyes and 0.98+/-0.17 (range: 0.6 to 1.2) for ALLEGRETTO eyes (P=.57). Mean postoperative spherical equivalent refraction was -0.02+/-0.28 diopters (D) (range: -0.75 to +0.75 D) for ESIRIS eyes and 0.11+/-0.91 D (range: -1.00 to +3.88 D) for ALLEGRETTO eyes (P=.49). Of the ESIRIS eyes, 20/22 (91%) were within +/-1.00 D of target refraction and 20/22 (91%) were within +/-0.50 D of target refraction. Of the ALLEGRETTO eyes, 20/22 (91%) and 19/22 (86%) were within +/-1.00 D and +/-0.50 D, respectively, of target refraction. No patient lost > or =2 lines of BSCVA in either group. No differences were seen in safety and efficacy outcome parameters between the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-Q excimer lasers when used according to a previously established treatment algorithm at our clinic in the treatment of refractive error.

  8. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study

    DEFF Research Database (Denmark)

    Varga, Edina T; Terney, Daniella; Atkins, Mary D

    2011-01-01

    Cathodal transcranial direct current stimulation (tDCS) decreases cortical excitability. The purpose of the study was to investigate whether cathodal tDCS could interrupt the continuous epileptiform activity. Five patients with focal, refractory continuous spikes and waves during slow sleep were...... recruited. Cathodal tDCS and sham stimulation were applied to the epileptic focus, before sleep (1 mA; 20 min). Cathodal tDCS did not reduce the spike-index in any of the patients....

  9. A study of the radar backscattering from the breaking of wind waves on the sea

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Yurovskij, Yu.Yu.; Malinovskij, V.V.

    2011-01-01

    The results of a field study of the relationship between radar backscattering parameters and geometrical characteristics of the wind wave breaking are presented. The radar cross-section of a whitecap is found to be proportional to the breaking crest length. It is shown that the accounting for a change of the non-Bragg scattering in the presence of an oil slick on the sea surface allows one to interpret experimental data correctly.

  10. Source study of local coalfield events using the modal synthesis of shear and surface waves

    Energy Technology Data Exchange (ETDEWEB)

    MacBeth, C.D.; Redmayne, D.W.

    1989-10-01

    Results from the BGS LOWNET array from the Midlothian coalfield in Scotland have been studied. Vertical component seismograms have been analysed using a waveform matching technique based on the modal summation method for constructing synthetic seismograms. Results of the analysis are applied to S and surface wave portions of the seismogram. Effects of different earth structures, source depths, source orientation, and type of event, rockburst or triggered earthquake 2-3 km from the mine workings, can be evaluated.

  11. Application of the Analog Method to Modelling Heat Waves: A Case Study with Power Transformers

    Science.gov (United States)

    2017-04-21

    UNCLASSIFIED Massachusetts Institute of Technology Lincoln Laboratory APPLICATION OF THE ANALOG METHOD TO MODELLING HEAT WAVES: A CASE STUDY WITH...18 2 Calibration and validation statistics with the use of five atmospheric vari- ables to construct analogue diagnostics for JJA of transformer T2...electrical grid as a series of nodes (transformers) and edges (transmission lines) so that basic mathematical anal- ysis can be performed. The mathematics

  12. Theoretical Studies of TE-Wave Propagation as a Diagnostic for Electron Cloud

    International Nuclear Information System (INIS)

    Penn, Gregory E.; Vay, Jean-Luc

    2010-01-01

    The propagation of TE waves is sensitive to the presence of an electron cloud primarily through phase shifts generated by the altered dielectric function, but can also lead to polarization changes and other effects, especially in the presence of magnetic fields. These effects are studied theoretically and also through simulations using WARP. Examples are shown related to CesrTA parameters, and used to observe different regimes of operation as well as to validate estimates of the phase shift.

  13. Studies on eletron scattering by hydrogen atoms through of a correlationed wave function

    International Nuclear Information System (INIS)

    Jacchieri, S.G.

    1982-01-01

    A correlationed wave function dependent of two adjustable parameters ( α e β), aiming describe a system formed by an electron and a hydrogen atom is studied. Some elastic differential cross-sections for several values of α and β parameters, scattering angle of 2 0 to 140 0 and energies of 50 eV and 680 eV are presented. (M.J.C.) [pt

  14. Study on possible explosive reactions of sodium nitrate-bitumen mixtures initiated by a shock wave

    International Nuclear Information System (INIS)

    Savornin, J.; Vasseur, C.

    1986-01-01

    Potential hazards of the mixture sodium nitrate-bitumen obtained by embedding in bitumen liquid radioactive effluents concentrated by evaporation are studied in case of accidental shock wave. A theoretical evaluation based on thermodynamical data show a low probability, nevertheless different from zero. No explosion occurred in tests realized in severe conditions. In conclusion there is no risk of detonation of large quantity of bitumen-nitrates stored in 200-liter drum in radioactive waste storage [fr

  15. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    Science.gov (United States)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  16. INFORMATION SYSTEMS (IS AND INNOVATION: BIBLIOMETRIC STUDY

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Pereira

    2016-04-01

    Full Text Available Information Systems (IS and innovation are two issues currently discussed. The purpose of this articleis to verify the completeness of the literature with regard to the treatment of these two topics together. With this purpose, a bibliometric research was conducted using bases in ISI Web of Science, Scopus and Scielo. 134 articles were analyzed and generated some results, such as: predominance of publications from Brazil and the United States of America; higher recurrence of the Enterprise Resource Planning citation (ERP in comparison to other tools; and predominance of practical researches, which apply concepts from the literature in real situations.

  17. Numerical study of wave propagation around an underground cavity: acoustic case

    Science.gov (United States)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  18. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    Science.gov (United States)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  19. Comparative study of acute lateral skin damage during radio wave and laser exposure

    Directory of Open Access Journals (Sweden)

    Dubensky V.V.

    2017-09-01

    Full Text Available The purpose was to study the depth and nature of the zones of thermal damage to the skin under radio wave and laser skin dissection during experiment. Material and Methods. The model of acute thermal damage was full-liner skin wounds of 20 nonlinear rats that were divided into 2 groups and operated by different methods. In the 1st group, the incisions were made by the apparatus of radio wave surgery (Surgitron DF S5, in the 2nd group the animals were operated with a laser surgical apparatus. The magnitude and structure of the lateral thermal damage was evaluated when analyzing the biopsy material. Results. During the study of experimental wounds, the extent of carbonation in the first group (operated with Surgitron DF S5 was 11.56±3.056 urn, coagulation necrosis 116.5±26.78 urn, and the hyper-thermiazone 148.42±60.171 urn. In the group of animals operated with a laser apparatus, the carbonization zone was 22.58±6.62 urn, the coagulation necrosis zone was 331.1±79.08 urn, and the hyperthermia extent was 376.2±53.27 urn. Conclusion. A comparative study of lateral skin damage in radio wave and laser skin dissection revealed a deeper thermal change in the skin and an increase in the extent of thermally altered structures under laser action: the carbonization zone was larger than for radio waves by 11.02 urn, coagulation necrosis by 214.6 urn, and the hyperthermia zone by 227.78 urn.

  20. Increased Risk of New-Onset Hypertension After Shock Wave Lithotripsy in Urolithiasis: A Nationwide Cohort Study.

    Science.gov (United States)

    Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong

    2017-10-01

    Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.

  1. Informed consent: a socio-legal study.

    Science.gov (United States)

    Rathor, M Y; Rani, Mohammad Fauzi Abdul; Shah, Azarisman Mohammad; Akter, Sheikh Fariuddin

    2011-12-01

    Informed consent [IC] is a recognized socio-legal obligation for the medical profession. The doctrine of IC involves the law, which aims to ensure the lawfulness of health assistance and tends to reflect the concept of autonomy of the person requiring and requesting medical and/or surgical treatment. Recent changes in the health care delivery system and the complex sociological settings, in which it is practiced, have resulted in an increase in judicial activity and medical negligence lawsuits for physicians. While IC is a well-established practice, it often fails to meet its stated purpose. In the common law, the standard of medical care to disclose risks has been laid down by the Bolam test- a familiar concept to most physicians, but it has been challenged recently in many jurisdictions. This paper aims to discuss some important judgments in cases of alleged medical negligence so as to familiarize doctors regarding their socio-legal obligations. We also propose to discuss some factors that influence the quality of IC in clinical practice. Literature review. The law of medical consent has been undergoing changes in recent years. Case law appears to be evolving towards a more patient centered standard of disclosure. Patient's expectations are higher and they are aware of the power of exercising their rights. Failure to obtain IC is one of the common allegations in medical malpractice suits. The medical professionals need to change their mindset and avoid claims of negligence by providing information that is "reasonable" in the eyes of the court.

  2. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    Science.gov (United States)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    harbour protection, and installed at -10m depth (length=300 m) may produce about 2.7 GWh/y with a total costs of about 12,000,000 €, where only the 50% of the amount are the costs of the SSG device. Obviously the environmental impact of the two solutions is quite different. Aim of this study is to provide a multicriteria decision support framework to evaluate the best WEC typology and location in the perspective of the environmental cost-benefit analysis. The general environmental aspects generated by wave power projects will be described. Colonisation patterns and biofouling will be discussed with particular reference to changes of the seabed and alterations due to new substrates. In addition, impacts for fish, fishery and marine mammals will be also considered. We suggest that wave power projects should be evaluated also on the basis of their environmental impacts in the perspective of the Strategic Environmental Assessment (SEA) analysis, as implemented by the European Commission (SEA Directive 2001/42/EC). The early incorporation of the environmental aspects involved in the evaluation of wave power projects will give the opportunity for early mitigations or design modifications, most likely making wave projects more acceptable in the long run and more suitable for the marine environment.

  3. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  4. Multi-configurational explicitly correlated wave functions for the study of confined many electron atoms

    International Nuclear Information System (INIS)

    Sarsa, A; Buendía, E; Gálvez, F J

    2016-01-01

    Explicitly correlated wave functions to study confined atoms under impenetrable spherical walls have been obtained. Configuration mixing and a correlation factor are included in the variational ansatz. The behaviors of the ground state and some low-lying excited states of He, Be, B and C atoms with the confinement size are analyzed. Level crossing with confinement is found for some cases. This effect is analyzed in terms of the single particle energy of the occupied orbitals. The multi-configuration parameterized optimized effective potential method is employed with a cut-off factor to account for Dirichlet boundary conditions. The variational Monte Carlo method is used to deal with explicitly correlated wave functions. (paper)

  5. Feasibility study on the guided wave technique for condenser tube in NPP

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Young Ho; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, W. G.

    2004-01-01

    The condenser tube is examined by the eddy current test (ECT) method to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the feasibility of applying the guided wave technique to condenser tube in NPP

  6. Laser driven shock wave experiments for equation of state studies at megabar pressures

    International Nuclear Information System (INIS)

    Pant, H C; Shukla, M; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 μm wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments

  7. Writing case studies in information systems research

    NARCIS (Netherlands)

    van der Blonk, H.C.

    Case study research can be reported in different ways. This paper explores the various ways in which researchers may choose to write down their case studies and then introduces a subsequent typology of writing case studies. The typology is based on a 2 x 2 matrix, resulting in four forms of writing

  8. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco); LMPG, Ecole supérieure de technologie, Université Hassan de Casablanca, Casablanca (Morocco); Moubah, R.; El Bahoui, A.; Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco)

    2017-04-15

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t{sub Fe}). The change of magnetization as a function of temperature is well depicted by a T{sup 3/2} law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  9. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  10. Parametric Study of Defect Detection in Pipes with Bend Using Guided Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Jack Tan Jin

    2016-01-01

    Full Text Available The propagation behaviour of guided ultrasonic waves in a steel pipe with welded bend is studied by finite element simulation. The effectiveness of the longitudinal L(0,2 and torsional T(0,1 guided waves in detecting circumferential cut near the weld is investigated. In order to identify the presence of the defect, the reflection strength due to the cut is studied. The geometry of the weld is constructed based on common V-bevel butt joints and the anisotropy of the 316L stainless steel weld is included to correctly predict the scattering of ultrasonic waves. The finite element model is built to allow high accuracy. Detection of small circumferential cut (up to 60° circumferential extent can be achieved with longitudinal L(0,2 mode. Detection of moderate to large circumferential cut can be achieved by torsional T(0,1 or longitudinal L(0,2 modes, with T(0,1 mode preferred due to its less mode conversion to higher order modes.

  11. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    Science.gov (United States)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  12. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    International Nuclear Information System (INIS)

    Salhi, H.; Moubah, R.; El Bahoui, A.; Lassri, H.

    2017-01-01

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t Fe ). The change of magnetization as a function of temperature is well depicted by a T 3/2 law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  13. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  14. Physical Model Study of Wave Action in New Thomsen Harbor, Sitka, Alaska

    Science.gov (United States)

    2008-02-01

    approached from the southwest. DISCLAIMER: The contents of this report are not to be used for advertising , publication, or promotional purposes...Wave height and period for irregular wave conditions refer to Hm0 and Tp, respectively. For mono- chromatic waves, wave height is the actual height...sec, respectively. Plotted along with the Group 12 results are corresponding tests from Group 13 that used mono- chromatic waves. Looking only at

  15. Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation

    International Nuclear Information System (INIS)

    Martínez, Arturo; Alcaraz, Raúl; Rieta, José J

    2012-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, increasing the risk of stroke and all-cause mortality. Its mechanisms are poorly understood, thus leading to different theories and controversial interpretation of its behavior. In this respect, it is unknown why AF is self-terminating in certain individuals, which is called paroxysmal AF (PAF), and not in others. Within the context of biomedical signal analysis, predicting the onset of PAF with a reasonable advance has been a clinical challenge in recent years. By predicting arrhythmia onset, the loss of normal sinus rhythm could be addressed by means of preventive treatments, thus minimizing risks for the patients and improving their quality of life. Traditionally, the study of PAF onset has been undertaken through a variety of features characterizing P-wave spatial diversity from the standard 12-lead electrocardiogram (ECG) or from signal-averaged ECGs. However, the variability of features from the P-wave time course before PAF onset has not been exploited yet. This work introduces a new alternative to assess time diversity of the P-wave features from single-lead ECG recordings. Furthermore, the method is able to assess the risk of arrhythmia 1 h before its onset, which is a relevant advance in order to provide clinically useful PAF risk predictors. Results were in agreement with the electrophysiological changes taking place in the atria. Hence, P-wave features presented an increasing variability as PAF onset approximates, thus suggesting intermittently disturbed conduction in the atrial tissue. In addition, high PAF risk prediction accuracy, greater than 90%, has been reached in the two considered scenarios, i.e. discrimination between healthy individuals and PAF patients and between patients far from PAF and close to PAF onset. Nonetheless, more long-term studies have to be analyzed and validated in future works. (paper)

  16. Is Tamsulosin Effective after Shock Wave Lithotripsy for Pediatric Renal Stones? A Randomized, Controlled Study.

    Science.gov (United States)

    Shahat, Ahmed; Elderwy, Ahmad; Safwat, Ahmed S; Abdelkawi, Islam F; Reda, Ahmed; Abdelsalam, Yasser; Sayed, Mohamed; Hammouda, Hisham

    2016-04-01

    We assessed the effect of tamsulosin as an adjunctive therapy after shock wave lithotripsy for pediatric single renal pelvic stones. A total of 120 children with a unilateral single renal pelvic stone were included in a prospective randomized, controlled study. All children were randomized to 2 equal groups. Group 1 received tamsulosin (0.01 mg/kg once daily) as adjunctive therapy after shock wave lithotripsy in addition to paracetamol while group 2 received paracetamol only. Stone clearance was defined as no renal stone fragments or fragments less than 3 mm and no pelvicalyceal system dilatation. Our study included 69 boys and 51 girls with a median age of 3.5 years and a median stone size of 1.2 cm. There was no statistically significant difference between groups 1 and 2 in stone or patient criteria. Of the children 99 (82.5%) achieved stone clearance after the first session, including 50 in group 1 and 49 in group 2. All children in each group were cleared of stones after the second session. The overall complication rate was 14.2%. There was no statistically significant difference between single session stone clearance rates (p = 0.81) and complications rates (p = 0.432) in either group. On multivariate analysis using logistic regression smaller stone size (p = 0.016) and radiopaque stones (p = 0.019) were the only predictors of stone clearance at a single shock wave lithotripsy session. Tamsulosin therapy did not affect stone clearance (p = 0.649). Tamsulosin does not seem to improve renal stone clearance. Smaller and radiopaque renal stones have more chance of clearance after shock wave lithotripsy for pediatric single renal pelvic stones. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. A study on the effect of gas flow rate on the wave characteristics in two-phase gas-liquid annular flow

    International Nuclear Information System (INIS)

    Han Huawei; Zhu Zhenfeng; Gabriel, Kamiel

    2006-01-01

    Interfacial waves play a very important role in the mass, momentum and energy transport phenomena in annular flow. In this paper, film thickness time-trace measurements for air-water annular flow were collected in a small vertical tube using a parallel wire probe. Using the data, a typical disturbance wave shape was obtained and wave properties (e.g., width, height, speed and roughness) were presented. The liquid mass flux ranged from 100 to 200 kg/m 2 s and the gas mass flux ranged from 18 to 47 kg/m 2 s. Disturbance wave characteristics were defined and the effects of changing the gas flow rate on the wave spacing, wave width, wave peak height and wave base height were studied. An average velocity model for the wave and base regions has been developed to determine the wave velocity. The investigation method could be further extended to annular-mist flow which frequently occurs in boiling water reactors

  18. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  19. A Simple Wave Driver

    Science.gov (United States)

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  20. Identifying Threshold Concepts for Information Literacy: A Delphi Study

    Directory of Open Access Journals (Sweden)

    Lori Townsend

    2016-06-01

    Full Text Available This study used the Delphi method to engage expert practitioners on the topic of threshold concepts for information literacy. A panel of experts considered two questions. First, is the threshold concept approach useful for information literacy instruction? The panel unanimously agreed that the threshold concept approach holds potential for information literacy instruction. Second, what are the threshold concepts for information literacy instruction? The panel proposed and discussed over fifty potential threshold concepts, finally settling on six information literacy threshold concepts.

  1. Critical Theory and Information Studies: A Marcusean Infusion

    Science.gov (United States)

    Pyati, Ajit K.

    2006-01-01

    In the field of library and information science, also known as information studies, critical theory is often not included in debates about the discipline's theoretical foundations. This paper argues that the critical theory of Herbert Marcuse, in particular, has a significant contribution to make to the field of information studies. Marcuse's…

  2. Waves and turbulences studies in plasmas: ten years of research on quiescent plasmas at the Brazilian Space Research National Institute

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1991-01-01

    Quiescent plasmas generated by thermionic discharges and surface confined by multipole magnetic fields have been used in basic plasma research since 1973. The first machine was developed at UCLA (USA) to produce an uniform plasma for beam and waves studies in large cross section plasmas. A double quiescent plasma machine was constructed at the plasma laboratory of INPE in 1981, it began its operation producing linear ion-acoustic waves in an Argon plasma. Later on non linear ion acoustic waves and solitons were studied in plasma containing several species of negative and positive ions. The anomalous particle transport across multipole magnetic fields were also investigated. An anomalous resistivity associated with an ion acoustic turbulence is responsible for the formation of a small amplitude double-layer. The existence of a bootstrap mechanism is shown experimentally. Today, the main interest is toward the generation of Langmuir waves in non uniform plasmas. An experimental study on Langmuir wave generation using a grid system is been carried on. A magnetized quiescent plasma device for studies of whistle wave generation is been constructed. This machine will make possible future studies on several wave modes of magnetized plasmas. (author). 31 refs, 16 figs

  3. Multitasking information behavior, information task switching and anxiety: An exploratory study

    International Nuclear Information System (INIS)

    Alexopoulou, Peggy; Kotsopoulou, Anastasia

    2015-01-01

    Multitasking information behavior involves multiple forms of information searching such as library and Web search. Few researchers, however, have explored multitasking information behavior and information task switching in libraries in conjunction with psychological variables. This study explored this behavior in terms of anxiety under time pressure. This was an exploratory case study. Participant searched information for three unrelated everyday life information topics during a library visit, in a timeframe of one hour. The data collection tools used were: diary, observation, interview, and the State-Trait Anxiety Inventory test. Participant took the Trait-anxiety test before the library visit to measure anxiety level as a personal characteristic. She also took State-anxiety test before, during and after the library visit to measure anxiety levels regarding the information seeking behavior. The results suggested that participant had high levels of anxiety at the beginning of the multitasking information behavior. The reason for that was the concern about the performance as well as the identification of the right resources. During the multitasking information behavior, participant still had anxiety to find the right information. The levels of anxiety, however, were less due to library’s good organized structure. At the end of the information seeking process, the levels of anxiety dropped significant and therefore calm and safety returned. Finally, participant searched information for topics that were more important and for which she had prior knowledge When people, under time pressure, have access to well organized information, the levels of anxiety might decrease

  4. Multitasking information behavior, information task switching and anxiety: An exploratory study

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulou, Peggy, E-mail: p.alexopoulou@lboro.ac.uk, E-mail: an-kotsopoulou@yahoo.com; Kotsopoulou, Anastasia, E-mail: p.alexopoulou@lboro.ac.uk, E-mail: an-kotsopoulou@yahoo.com [City Unity College, Thiseos 15-17, Athens, 105 62 (Greece)

    2015-02-09

    Multitasking information behavior involves multiple forms of information searching such as library and Web search. Few researchers, however, have explored multitasking information behavior and information task switching in libraries in conjunction with psychological variables. This study explored this behavior in terms of anxiety under time pressure. This was an exploratory case study. Participant searched information for three unrelated everyday life information topics during a library visit, in a timeframe of one hour. The data collection tools used were: diary, observation, interview, and the State-Trait Anxiety Inventory test. Participant took the Trait-anxiety test before the library visit to measure anxiety level as a personal characteristic. She also took State-anxiety test before, during and after the library visit to measure anxiety levels regarding the information seeking behavior. The results suggested that participant had high levels of anxiety at the beginning of the multitasking information behavior. The reason for that was the concern about the performance as well as the identification of the right resources. During the multitasking information behavior, participant still had anxiety to find the right information. The levels of anxiety, however, were less due to library’s good organized structure. At the end of the information seeking process, the levels of anxiety dropped significant and therefore calm and safety returned. Finally, participant searched information for topics that were more important and for which she had prior knowledge When people, under time pressure, have access to well organized information, the levels of anxiety might decrease.

  5. Multitasking information behavior, information task switching and anxiety: An exploratory study

    Science.gov (United States)

    Alexopoulou, Peggy; Kotsopoulou, Anastasia

    2015-02-01

    Multitasking information behavior involves multiple forms of information searching such as library and Web search. Few researchers, however, have explored multitasking information behavior and information task switching in libraries in conjunction with psychological variables. This study explored this behavior in terms of anxiety under time pressure. This was an exploratory case study. Participant searched information for three unrelated everyday life information topics during a library visit, in a timeframe of one hour. The data collection tools used were: diary, observation, interview, and the State-Trait Anxiety Inventory test. Participant took the Trait-anxiety test before the library visit to measure anxiety level as a personal characteristic. She also took State-anxiety test before, during and after the library visit to measure anxiety levels regarding the information seeking behavior. The results suggested that participant had high levels of anxiety at the beginning of the multitasking information behavior. The reason for that was the concern about the performance as well as the identification of the right resources. During the multitasking information behavior, participant still had anxiety to find the right information. The levels of anxiety, however, were less due to library's good organized structure. At the end of the information seeking process, the levels of anxiety dropped significant and therefore calm and safety returned. Finally, participant searched information for topics that were more important and for which she had prior knowledge When people, under time pressure, have access to well organized information, the levels of anxiety might decrease.

  6. 78 FR 55068 - Request for Information To Inform the Title III Evaluation and Research Studies Agenda

    Science.gov (United States)

    2013-09-09

    ... III Evaluation and Research Studies Agenda AGENCY: Office of English Language Acquisition, Language... priorities for future evaluation and research studies needed to inform effective instruction, assessment, and... we seek to gather information on the evaluation and research studies needs of the field, which may...

  7. Numerical study on air turbines with enhanced techniques for OWC wave energy conversion

    Science.gov (United States)

    Cui, Ying; Hyun, Beom-Soo; Kim, Kilwon

    2017-10-01

    In recent years, the oscillating water column (OWC) wave energy converter, which can capture wave energy from the ocean, has been widely applied all over the world. As the essential part of the OWC system, the impulse and Wells turbines are capable of converting the low pressure pneumatic energy into the mechanical shaft power. As an enhanced technique, the design of endplate or ring attached to the blade tip is investigated numerically in this paper. 3D numerical models based on a CFD-software FLUENT 12.0 are established and validated by the corresponding experimental results from the reports of Setoguchi et al. (2004) and Takao et al. (2001). Then the flow fields and non-dimensional evaluating coefficients are calculated and analyzed under steady conditions. Results show that the efficiency of impulse turbine with ring can reach up to 0.49 when ϕ=1, which is 4% higher than that in the cases for the endplate-type and the original one. And the ring-type Wells turbine with fixed guide vanes shows the best performance with the maximal efficiency of 0.55, which is 22% higher than that of the original one. In addition, the quasi-steady analysis is used to calculate the mean efficiency and output-work of a wave cycle under sinusoidal flow condition. Taking all together, this study provides support for structural optimization of impulse turbine and Wells turbine in the future.

  8. Facilitated ion transfer of protonated primary organic amines studied by square wave voltammetry and chronoamperometry

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, E. [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Ortuño, J.A. [Departamento de Química Analítica, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Molina, A., E-mail: amolina@um.es [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Serna, C. [Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia 30100 (Spain); Karimian, F. [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2014-05-01

    Highlights: • Facilitated ion transfer of organic protonated amines is studied. • Cyclic square wave voltammetry is used as main technique. • Complexation constants and standard ion transfer potentials are determined. • Diffusion coefficients in the organic and aqueous phases are determined. • The goodness of square wave voltammetry as analytical tool is shown. - Abstract: The transfer of the protonated forms of heptylamine, octylamine, decylamine, procaine and procainamide facilitated by dibenzo-18-crown-6 from water to a solvent polymeric membrane has been investigated by using cyclic square wave voltammetry. The experimental voltammograms obtained are in good agreement with theoretical predictions. The values of the standard ion transfer potential, complexation constant and diffusion coefficient in water have been obtained from these experiments, and have been used to draw some conclusions about the lipophilicity of these species and the relative stability of the organic ammonium complexes with dibenzo-18-crown-6. The results have been compared with those provided by linear sweep voltammetry. Calibration graphs were obtained with both techniques. An interesting chronoamperometric method for the determination of the diffusion coefficient of the target ion in the membrane has been developed and applied to all these protonated amines.

  9. The impact of thermal wave characteristics on thermal dose distribution during thermal therapy: A numerical study

    International Nuclear Information System (INIS)

    Shih, T.-C.; Kou, H.-S.; Liauh, C.-T.; Lin, W.-L.

    2005-01-01

    The aim of this study was to investigate the effects of the propagation speed of a thermal wave in terms of the thermal relaxation time on the temperature/thermal dose distributions in living tissue during thermal therapies. The temperature field in tissue was solved by the finite difference method, and the thermal dose was calculated from the formulation proposed by Sapareto and Dewey [Int. J. Radiat. Oncol. Biol. Phys. 10, 787-800 (1984)]. Under the same total deposited energy, for a rapid heating process the time lagging behavior of the peak temperature became pronounced and the level of the peak temperature was decreased with increasing the thermal relaxation time. When the heating duration was longer than the thermal relaxation time of tissues, there was no significant difference between the thermal dose distributions with/without considering the effect of the thermal relaxation time. In other words, when the heating duration is comparable to or shorter than the thermal relaxation time of tissue, the results of the wave bioheat transfer equation (WBHTE) are fully different from that of the Pennes' bioheat transfer equation (PBHTE). Besides, for a rapid heating process the dimension of thermal lesion was still significantly affected by perfusion, because this is what is predicted by the WBHTE but not by the PBHTE, i.e., the wave feature of the temperature field cannot fully be predicted by the PBHTE

  10. A statistical study of ionopause perturbation and associated boundary wave formation at Venus.

    Science.gov (United States)

    Chong, G. S.; Pope, S. A.; Walker, S. N.; Zhang, T.; Balikhin, M. A.

    2017-12-01

    In contrast to Earth, Venus does not possess an intrinsic magnetic field. Hence the interaction between solar wind and Venus is significantly different when compared to Earth, even though these two planets were once considered similar. Within the induced magnetosphere and ionosphere of Venus, previous studies have shown the existence of ionospheric boundary waves. These structures may play an important role in the atmospheric evolution of Venus. By using Venus Express data, the crossings of the ionopause boundary are determined based on the observations of photoelectrons during 2011. Pulses of dropouts in the electron energy spectrometer were observed in 92 events, which suggests potential perturbations of the boundary. Minimum variance analysis of the 1Hz magnetic field data for the perturbations is conducted and used to confirm the occurrence of the boundary waves. Statistical analysis shows that they were propagating mainly in the ±VSO-Y direction in the polar north terminator region. The generation mechanisms of boundary waves and their evolution into the potential nonlinear regime are discussed and analysed.

  11. Numerical study of radial stepwise fuel load reshuffling traveling wave reactor

    International Nuclear Information System (INIS)

    Zhang Dalin; Zheng Meiyin; Tian Wenxi; Qiu Suizheng; Su Guanghui

    2015-01-01

    Traveling wave reactor is a new conceptual fast breeder reactor, which can adopt natural uranium, depleted uranium and thorium directly to realize the self sustainable breeding and burning to achieve very high fuel utilization fraction. Based on the mechanism of traveling wave reactor, a concept of radial stepwise fuel load reshuffling traveling wave reactor was proposed for realistic application. It was combined with the typical design of sodium-cooled fast reactors, with which the asymptotic characteristics of the inwards stepwise fuel load reshuffling were studied numerically in two-dimension. The calculated results show that the asymptotic k_e_f_f parabolically varies with the reshuffling cycle length, while the burnup increases linearly. The highest burnup satisfying the reactor critical condition is 38%. The power peak shifts from the fuel discharging zone (core centre) to the fuel uploading zone (core periphery) and correspondingly the power peaking factor decreases along with the reshuffling cycle length. In addition, at the high burnup case the axial power distribution close to the core centre displays the M-shaped deformation. (authors)

  12. Extracorporeal shock wave lithotripsy of intrahepatic stones with piezoelectric lithotriptor: in vitro study

    International Nuclear Information System (INIS)

    Choi, Byung Ihn; Yoon, Chong Hyun; Park, Yong Hyun; Han, Joon Koo; Yoon, Yong Bum; Shin, Yong Moon; Kim, Jin Q; Kim, Chu Wan; Han, Man Chung

    1992-01-01

    This study was designed to investigate effectiveness of fragmentation during lithotripsy using 103 intrahepatic stones collected from 10 patients, who had previously undergone biliary surgery. The size of each stone was measured and sonography was performed for the evaluation of the sonographic type of the stones. In vitro lithotripsy was performed on individual stones using piezoelectric lithotriptor to evaluate the fragmentation rate and average number of shock waves for fragmentation. Chemical analysis of each stone was done to determine chemical composition including calcium, bilirubin, and cholesterol. The size of the stones was from 5 mm to 20 mm in diameter. Sonographic type I (echo of whole stone with posterior acoustic shadow) was 68, and type II (are-like strong surface echo of stone with clear posterior acoustic shadow) was 35 in number. The majority (78%) of stones in group I (5-9 mm in diameter) showed sonographic type I characteristics, and 62% of stones in group 3 (larger than 15 mm in diameter) showed sonographic type II characteristics. There was a positive correlation between the size and sonographic type of stones. Fragmentation rates of stones were 100% in group I, 71.9% in group 2 (10-15 mm in diameter), 43.8% in group 3, respectively. Fragmentation rates of stones with sonographic type I and II were 91.2%, 65.7%, respectively. The average number of shock waves for partial and complete fragmentation was 2753 ± 4937 and 6219 ± 10133, respectively. There was a positive correlation between the number of shock waves for fragmentation and diameter of stones (r = 0.618, ρ < 0.05). There was no correlation between the number of shock waves for fragmentation and chemical composition of stones. In conclusion, the most important variable determining the degree of fragmentation of intrahepatic stones using ESWL is not their chemical composition but their size and sonographic characteristics

  13. Experimental study of interfacial wave on a liquid film in vertical annular flow

    International Nuclear Information System (INIS)

    Hazuku, T.; Fukamachi, N.; Takamasa, T.; Matsumoto, Y.

    2003-01-01

    In this study, a precise database of microscopic interfacial wave-structure for annular flow developing in a vertical pipe was obtained using a new measuring technique with a laser focus displacement meter. Adiabatic upward annular air-water flow experiments were conducted using a 3-m-long, 11- mm-ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart, in the pipe. The axial distances from the inlet (L) normalized by the pipe diameter (D) varied over L/D = 50 to 250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from Reg = 31,800 to 98,300 for the gas phase and Ref = 1,050 to 9,430 for the liquid phase. Using this new technique, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The results revealed that the maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreases of film thickness and passing frequency, existed until the pipe exit, which means that the flow might never reach a fully developed condition. Minimum thickness of the film decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman's three-layer model. Correlation is proposed for the minimum film thickness obtained in regard to interfacial shear stress and the Reynolds number of the liquid. This correlation expresses the minimum film thickness obtained from the experiment within a 5% deviation

  14. THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew; Williams, Gabriel; Larson, Shane L.

    2010-01-01

    Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength of the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number (∼11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.

  15. Extracorporeal shock wave lithotripsy of intrahepatic stones with piezoelectric lithotriptor: in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ihn; Yoon, Chong Hyun; Park, Yong Hyun; Han, Joon Koo; Yoon, Yong Bum; Shin, Yong Moon; Kim, Jin Q; Kim, Chu Wan; Han, Man Chung [Seoul National University, College of Medicine, Seoul (Korea, Republic of)

    1992-05-15

    This study was designed to investigate effectiveness of fragmentation during lithotripsy using 103 intrahepatic stones collected from 10 patients, who had previously undergone biliary surgery. The size of each stone was measured and sonography was performed for the evaluation of the sonographic type of the stones. In vitro lithotripsy was performed on individual stones using piezoelectric lithotriptor to evaluate the fragmentation rate and average number of shock waves for fragmentation. Chemical analysis of each stone was done to determine chemical composition including calcium, bilirubin, and cholesterol. The size of the stones was from 5 mm to 20 mm in diameter. Sonographic type I (echo of whole stone with posterior acoustic shadow) was 68, and type II (are-like strong surface echo of stone with clear posterior acoustic shadow) was 35 in number. The majority (78%) of stones in group I (5-9 mm in diameter) showed sonographic type I characteristics, and 62% of stones in group 3 (larger than 15 mm in diameter) showed sonographic type II characteristics. There was a positive correlation between the size and sonographic type of stones. Fragmentation rates of stones were 100% in group I, 71.9% in group 2 (10-15 mm in diameter), 43.8% in group 3, respectively. Fragmentation rates of stones with sonographic type I and II were 91.2%, 65.7%, respectively. The average number of shock waves for partial and complete fragmentation was 2753 {+-} 4937 and 6219 {+-} 10133, respectively. There was a positive correlation between the number of shock waves for fragmentation and diameter of stones (r = 0.618, {rho} < 0.05). There was no correlation between the number of shock waves for fragmentation and chemical composition of stones. In conclusion, the most important variable determining the degree of fragmentation of intrahepatic stones using ESWL is not their chemical composition but their size and sonographic characteristics.

  16. Planning Study Hospital, Cape Town The Hospital Information at ...

    African Journals Online (AJOL)

    Tile HOspital Information Plan- ning Study ... Hospital, and based on. the Business Systems Plan- ... technology can be of considerable benefit in dealing with these issues. .... coherenr, flexible information systems with a minimum of data.

  17. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  18. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America

    International Nuclear Information System (INIS)

    Dalton, G.J.; Alcorn, R.; Lewis, T.

    2010-01-01

    The performance and economic viability of the Pelamis wave energy converter (WEC) has been investigated over a 20 year project time period using 2007 wave energy data from various global locations: Ireland, Portugal, USA and Canada. Previous reports assessing the Pelamis quote a disparate range of financial returns for the Pelamis, necessitating a comparative standardised assessment of wave energy economic indicators. An Excel model (NAVITAS) was created for this purpose which estimated the annual energy output of Pelamis for each location using wave height (H s ) and period (T z ) data, and produced financial results dependant on various input parameters. The economic indicators used for the analysis were cost of electricity (COE), net present value (NPV) and internal rate of return (IRR), modelled at a tariff rate of EUR0.20/kWh. Analysis of the wave energy data showed that the highest annual energy output (AEO) and capacity for the Pelamis was the Irish site, as expected. Portugal returned lower AOE similar to the lesser North American sites. Monthly energy output was highest in the winter, and was particularly evident in the Irish location. Moreover, the difference between the winter wave energy input and the Pelamis energy output for Ireland was also significant as indicated by the capture width, suggesting that Pelamis design was not efficiently capturing all the wave energy states present during that period. Modelling of COE for the various case study locations showed large variation in returns, depending on the number of WEC modelled and the initial cost input and learning curve. COE was highest when modelling single WEC in comparison to multiples, as well as when using 2004 initial costs in comparison to 2008 costs (at which time price of materials peaked). Ireland returned the lowest COE of EUR0.05/kWh modelling over 100 WEC at 2004 cost of materials, and EUR0.15/kWh at 2008 prices. Although favourable COE were recorded from some of the modelled scenarios

  19. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    International Nuclear Information System (INIS)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of the thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system (ρ,ξ) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number α as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions

  20. Information Assurance in Saudi Organizations - An Empirical Study

    Science.gov (United States)

    Nabi, Syed Irfan; Mirza, Abdulrahman A.; Alghathbar, Khaled

    This paper presents selective results of a survey conducted to find out the much needed insight into the status of information security in Saudi Arabian organizations. The purpose of this research is to give the state of information assurance in the Kingdom and to better understand the prevalent ground realities. The survey covered technical aspects of information security, risk management and information assurance management. The results provide deep insights in to the existing level of information assurance in various sectors that can be helpful in better understanding the intricate details of the prevalent information security in the Kingdom. Also, the results can be very useful for information assurance policy makers in the government as well as private sector organizations. There are few empirical studies on information assurance governance available in literature, especially about the Middle East and Saudi Arabia, therefore, the results are invaluable for information security researchers in improving the understanding of information assurance in this region and the Kingdom.

  1. Coastal flooding: impact of waves on storm surge during extremes – a case study for the German Bight

    Directory of Open Access Journals (Sweden)

    J. Staneva

    2016-11-01

    Full Text Available This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave–current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.

  2. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    Science.gov (United States)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  3. Experimental study on p-wave neutron strength functions for light nuclei

    International Nuclear Information System (INIS)

    Koester, L.; Waschkowski, W.; Meier, J.; Rau, G.; Salehi, M.

    1988-01-01

    Broad energy distributions in fast neutron beams have been achieved by appropriate filtering of the 236 U fission radiation provided from the RENT converter facility at the FRM research reactor. Transmission measurements in such beams result in average cross sections to which resonance reactions and shape elastic scattering contribute. We used a silicon (124.5 cm) filtered beam with a median energy of 143 keV (width 20 keV) and beams with 1.3 MeV (0.55 to 3 MeV) and 2.1 MeV (1 to 5.5 MeV) obtained through different filter combinations of lead and polyethylene. The relative high energies and the broad spectra made it possible to determine experimentally the contributions of s- and p-wave resonance reactions to the average cross section even for light nuclei. Using the three different beams we determined the average cross sections for the elements in the mass region A = 9 to 65. Analysing the measured cross sections by means of the R matrix formalism provided a complete set of p-wave strength functions and distant level parameters. Moreover, single particle shell effects in the cross sections were observed. In conclusion we obtained information on the 2P and the 3S size resonances and about the validity of the optical model for neutron reactions with light nuclei. (orig.)

  4. Strengthening the morphological study of informal settlements

    NARCIS (Netherlands)

    McCartney, S.; Krishnamurthy, S.

    Methods of articulating the morphological structure of slums can have considerable potential in better planning for site-specific design or policy responses for these areas in the contemporary city. Although urban morphology traditionally studies landscapes as stratified residues with distinct

  5. Study of Faculty and Information Technology, 2014

    Science.gov (United States)

    Dahlstrom, Eden; Brooks, D. Christopher

    2014-01-01

    In this inaugural year of the faculty technology study, EDUCAUSE Center for Analysis and Research (ECAR) partnered with 151 college/university sites yielding responses from 17,451 faculty respondents across 13 countries. The findings are exploratory in nature, as they cover new ground to help us tell a more comprehensive story about technology…

  6. Critical Surveillance Studies in the Information Society

    Directory of Open Access Journals (Sweden)

    Thomas Allmer

    2011-11-01

    Full Text Available The overall aim of this paper is to clarify how we can theorize and systemize economic surveillance. Surveillance studies scholars like David Lyon stress that economic surveillance such as monitoring consumers or the workplace are central aspects of surveillance societies. The approach that is advanced in this work recognizes the importance of the role of the economy in contemporary surveillance societies. The paper at hand constructs theoretically founded typologies in order to systemize the existing literature of surveillance studies and to analyze examples of surveillance. Therefore, it mainly is a theoretical approach combined with illustrative examples. This contribution contains a systematic discussion of the state of the art of surveillance and clarifies how different notions treat economic aspects of surveillance. In this work it is argued that the existing literature is insufficient for studying economic surveillance. In contrast, a typology of surveillance in the modern economy, which is based on foundations of a political economy approach, allows providing a systematic analysis of economic surveillance on the basis of current developments on the Internet. Finally, some political recommendations are drawn in order to overcome economic surveillance. This contribution can be fruitful for scholars who want to undertake a systematic analysis of surveillance in the modern economy and who want to study the field of surveillance critically.

  7. The statistical study of Chorus waves using the Double star TC1 data

    Science.gov (United States)

    Yearby, K.; Aryan, H.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.

    2013-12-01

    The Double star satellite was launched on 29 December 2003 into an equatorial elliptical orbit with a perigee of 570km and an apogee of 78970km and an inclination of 28.5°. The satellite operated until 14 October 2007. The Double star TC1 data provides extensive coverage of the inner magnetosphere regions in the range of L shells >1.1L*, and a wide range of latitudes. This study presents a detailed statistical study of the Chorus waves during 4 years of the Double star operation.

  8. Theoretical study of ghost imaging with cold atomic waves under the condition of partial coherence

    International Nuclear Information System (INIS)

    Chen, Jun; Liu, Yun-Xian

    2014-01-01

    A matter wave ghost imaging mechanism is proposed and demonstrated theoretically. This mechanism is based on the Talbot-Lau effect. Periodic gratings of matter wave density, which appear as a result of interference of atoms diffracted by pulses of an optical standing wave, are utilized to produce the reference wave and the signal wave simultaneously for the ghost imaging. An advantage of this mechanism is that during the imaging process, the beam-splitter is not needed, which highly simplifies the experimental setup and makes the ghost imaging possible in the field of matter wave

  9. Sense and readability: participant information sheets for research studies.

    Science.gov (United States)

    Ennis, Liam; Wykes, Til

    2016-02-01

    Informed consent in research is partly achieved through the use of information sheets. There is a perception however that these information sheets are long and complex. The recommended reading level for patient information is grade 6, or 11-12 years old. To investigate whether the readability of participant information sheets has changed over time, whether particular study characteristics are related to poorer readability and whether readability and other study characteristics are related to successful study recruitment. Method: We obtained 522 information sheets from the UK National Institute for Health Research Clinical Research Network: Mental Health portfolio database and study principal investigators. Readability was assessed with the Flesch reading index and the Grade level test. Information sheets increased in length over the study period. The mean grade level across all information sheets was 9.8, or 15-16 years old. A high level of patient involvement was associated with more recruitment success and studies involving pharmaceutical or device interventions were the least successful. The complexity of information sheets had little bearing on successful recruitment. Information sheets are far more complex than the recommended reading level of grade 6 for patient information. The disparity may be exacerbated by an increasing focus on legal content. Researchers would benefit from clear guidance from ethics committees on writing succinctly and accessibly and how to balance the competing legal issues with the ability of participants to understand what a study entails. © The Royal College of Psychiatrists 2016.

  10. Sample Size in Qualitative Interview Studies: Guided by Information Power.

    Science.gov (United States)

    Malterud, Kirsti; Siersma, Volkert Dirk; Guassora, Ann Dorrit

    2015-11-27

    Sample sizes must be ascertained in qualitative studies like in quantitative studies but not by the same means. The prevailing concept for sample size in qualitative studies is "saturation." Saturation is closely tied to a specific methodology, and the term is inconsistently applied. We propose the concept "information power" to guide adequate sample size for qualitative studies. Information power indicates that the more information the sample holds, relevant for the actual study, the lower amount of participants is needed. We suggest that the size of a sample with sufficient information power depends on (a) the aim of the study, (b) sample specificity, (c) use of established theory, (d) quality of dialogue, and (e) analysis strategy. We present a model where these elements of information and their relevant dimensions are related to information power. Application of this model in the planning and during data collection of a qualitative study is discussed. © The Author(s) 2015.

  11. Information seeking habits of information and knowledge management students: A University of Johannesburg case study

    Directory of Open Access Journals (Sweden)

    Cornelius J.P. Niemand

    2010-10-01

    Full Text Available According to Uçak (2007:697, ‘it is important to explore the information behaviours of the students who are being educated in the field of information management since the role they are going to play in establishing connections between information sources and users is crucial’. This study focuses on the identification of the information seeking behaviour of students in the department of Information and Knowledge Management at the University of Johannesburg, South Africa. The research is based on research conducted at the Hacettep University in Ankara, Turkey.

  12. Studying the effects of mobile phone waves on electro cardiogram parameters of students in zahedan university of medical sciences.

    Science.gov (United States)

    Komeili, Gholamreza; Nabizadeh Sarabandi, Sima

    2012-01-01

    The increasing use of mobile phones in recent years has caused concerns about the effects of electromagnetic waves of mobile phonesonhuman biological processes. This study was conducted in order to survey the effects of mobile electromagnetic waves on electro cardiogram parameters as heart rate, TP segment, PR interval, Time of QRS and T waves, and voltage of R wave. In this quasi experimental study, 40 students, of Zahedan medical science University, 20 boys and 20 girls, who had referred to the laboratory of physiology were selected. At first a normal electro cardiogram in lead I was recorded for each of the subjects for 20 seconds. Then a mobile phone was placed near their body and while mobile was ringing and talking two other electrocardiograms were recording for 20 seconds. Electro cardiograms were recorded with power lab device and analyzed by chart 5 software. Finally an ANOVA was employed to analyze the data through the SPSS 17, followed by a Tukey test. There was significant difference between heart rate during talking in comparison with heart rate during ringing and resting in both genders. There was a significant decrease of resting TP segment in comparison with TP segment during ringing and talking in males whereas in females TP segment indicated significant difference in all three conditions. There was a significant increase in T wave time in males during talking in comparison with resting and ringing; however there was no significant difference in that of females in any of the three stated conditions. This study revealed that there is not any significant difference in PR interval, Time of QRS wave and R wave voltage. According to the results of this study, mobile phones can affect the heart rate, TP segment and time of T wave. Therefore, it seems that long term use can affect heart. Based on several reports on the effects of these waves on biological processes, precautionary measures should be taken about using mobile phones.

  13. Origin of the waves in ‘A case-study of mesoscale spectra of wind and temperature, observed and simulated’: Lee waves from the Norwegian mountains

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Hahmann, Andrea N.

    2012-01-01

    their initiation and ending, propagation, spatial orientation and wavelength, are consistent among the different data sources. This evidence and the key wave parameters derived from the WRF simulation, including the Scorer parameter and wave tilt, all suggest that the waves are lee waves generated by uplift from...

  14. Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    Experiments have been performed in the Shallow Water Wave Basin of DHI (Hørsholm, Denmark), on large arrays of up to 25 heaving point absorber type Wave Energy Converters (WECs), for a range of geometric layout configurations and wave conditions. WEC response and modifications of the wave field a...

  15. Building a foundation to study distributed information behaviour

    Directory of Open Access Journals (Sweden)

    Terry L. von Thaden

    2007-01-01

    Full Text Available Introduction. The purpose of this research is to assess information behaviour as it pertains to operational teams in dynamic safety critical operations. Method. In this paper, I describe some of the problems faced by crews on modern flight decks and suggest a framework modelled on Information Science, Human Factors, and Activity Theory research to assess the distribution of information actions, namely information identification, gathering and use, by teams of users in a dynamic, safety critical environment. Analysis. By analysing the information behaviour of crews who have accidents and those who do not, researchers may be able to ascertain how they (fail to make use of essential, safety critical information in their information environment. The ultimate goal of this research is to differentiate information behaviour among the distinct outcomes. Results. This research affords the possibility to discern differences in distributed information behaviour illustrating that crews who err to the point of an accident appear to practice different distributed information behaviour than those who do not. This foundation serves to operationalise team sense-making through illustrating the social practice of information structuring within the activity of the work environment. Conclusion. . The distributed information behaviour framework provides a useful structure to study the patterning and organization of information distributed over space and time, to reach a common goal. This framework may allow researchers and investigators alike to identify critical information activity in the negotiation of meaning in high reliability safety critical work, eventually informing safer practice. This framework is applicable to other domains.

  16. A physical model study of the travel times and conversion point locations of P-SV converted waves in vertical transversely isotropic media

    Science.gov (United States)

    Tseng, C.

    2013-12-01

    In exploration seismology, subsurface medium commonly exhibits anisotropy, characterized by a vertical transversely isotropic (VTI) model. Due to the need of exploring small reservoirs in complex structures, the seismic exploration is extended to deal with anisotropic media. The P-S converted wave seismic exploration is a relatively inexpensive, broadly applicable, and effective way to obtain the S-wave information of the medium. In anisotropic traveltime analysis, the moveout curve of horizontal P-SV event can help to determine the ratio of the P- and SV-wave vertical velocities, the normal moveout (NMO) velocity of SV-waves, and the anisotropy parameters. The P-SV conversion point (CP) location is of great importance to P-SV data binning, NMO corrections and common conversion point (CCP) stacking, and the anisotropy has a more significant effect on the conversion point location than on the moveout. In this study, we attempt to inspect the theoretical non-hyperbolic moveout and CP equations for the P-SV waves reflected from a VTI layer by numerical calculations and physical modeling. We are also interested in visualizing the variations of the conversion point locations from a designed VTI medium. In traveltime analysis, the theoretical moveout curve is accurate up to offsets about one and a half times the reflector depth (x/z=1.5). However, the moveout curve computed by Fermat's principle fits well to the physical data. The CP locations of P-SV waves are similar to those calculated by Fermat's principle and theoretical CP equation, which are verified by the physical modeling.

  17. Study on the risk-informed regulation of NPP

    International Nuclear Information System (INIS)

    Wang Chaogui

    2007-01-01

    The risk-informed regulation is a modern type of NPP safety management mode using both deterministic and probabilistic approaches. It is necessary to entirely and systematically study the associated regulations, standards and practices in order to promote the developments of risk-informed regulations in China. This paper introduces the risk-informed regulation, gives out the basic principles, method and acceptance risk criteria of risk-informed decision,making, discusses the PSA requirements for risk-informed decision-making and makes some suggestions about the application of risk-informed regulations in Chinese NPP. (authors)

  18. A Study on Improving Information Processing Abilities Based on PBL

    Science.gov (United States)

    Kim, Du Gyu; Lee, JaeMu

    2014-01-01

    This study examined an instruction method for the improvement of information processing abilities in elementary school students. Current elementary students are required to develop information processing abilities to create new knowledge for this digital age. There is, however, a shortage of instruction strategies for these information processing…

  19. Feasibility Study for Using a Linear Transverse Flux Machine as part of the Structure of Point Absorber Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Ilana Pereira da Costa Cunha

    2017-10-01

    Full Text Available This is a feasibility study for the generation of wave energy by means of a transverse flux machine connected to a device for converting wave energy known as Point Absorber. The article contains literature review on the topic and analysis of data obtained by means of a prototype built in the laboratory. Based on the results, the study concludes that this use is feasible.

  20. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  1. An experimental study of irregular wave forces on multiple quasi-ellipse caissons

    Science.gov (United States)

    Ren, Xiaozhong; Zhang, Peng; Ma, Yuxiang; Meng, Yufan

    2014-09-01

    An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.

  2. The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study.

    Directory of Open Access Journals (Sweden)

    Joel Singer

    Full Text Available OBJECTIVES: Pulse wave velocity (PWV is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. METHOD: Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. RESULTS: There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. CONCLUSION: A higher level of PWV was not associated with lower cognitive function in the whole sample.

  3. The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study.

    Science.gov (United States)

    Singer, Joel; Trollor, Julian N; Crawford, John; O'Rourke, Michael F; Baune, Bernhard T; Brodaty, Henry; Samaras, Katherine; Kochan, Nicole A; Campbell, Lesley; Sachdev, Perminder S; Smith, Evelyn

    2013-01-01

    Pulse wave velocity (PWV) is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. A higher level of PWV was not associated with lower cognitive function in the whole sample.

  4. Séparation des ondes P et S à l'aide de la matrice spectrale avec informations à priori The Separation of P and S Waves Using the Spectral Matrix with a Priori Information

    Directory of Open Access Journals (Sweden)

    Mari J. L.

    2006-11-01

    Full Text Available Classiquement, la technique de filtrage utilisant la matrice spectrale proposée par Mermoz ne permet une séparation automatique des ondes au sens des indicatrices sismiques que dans certains cas particuliers, à savoir lorsque les ondes à séparer sont naturellement alignées sur les vecteurs propres de la matrice spectrale. Dans les autres cas, nous montrons que l'introduction d'information a priori sur la vitesse apparente de quelques ondes et une limitation de la durée temporelle de ces dernières permettent d'estimer leurs vecteurs d'ondes. L'utilisation de ces vecteurs et une technique de projection au sens des moindres carrés conduit à une extraction optimale de ces ondes, sans dégrader les autres ondes. La technique de filtrage proposée a été appliquée sur des données sismiques de type PSV (profil sismique vertical déporté. Le PSV a été enregistré dans un puits entre les cotes 1050 m et 1755 m; la source est déportée de 654 m par rapport à la tête de puits. L'outil utilisé est un géophone de puits à trois composantes. Le puits traverse une structure géologique complexe. Le traitement réalisé a mis en évidence des réflexions sismiques d'ondes de compression et de cisaillement, associées à des marqueurs fortement pentés (10 à 25°. Après estimation des champs de vitesse et des pendages à l'aide d'abaques, la migration en profondeur des horizons temps pointés a permis d'obtenir un modèle structural faillé. Detailed structural analysis can be achieved by using 3-component vertical seismic profiling method which gives structural information at several hundred meters from the wellhead. The use of an offset VSP on the Auzance structure has led to obtain a structural model composed by faulted dipping reflectors. This is due to the robust nature of the wave separation method which is based on the spectral matrix and uses an a priori information. This method preserves the true amplitude and the local apparent

  5. Identifying Threshold Concepts for Information Literacy: A Delphi Study

    OpenAIRE

    Lori Townsend; Amy R. Hofer; Silvia Lin Hanick; Korey Brunetti

    2016-01-01

    This study used the Delphi method to engage expert practitioners on the topic of threshold concepts for information literacy. A panel of experts considered two questions. First, is the threshold concept approach useful for information literacy instruction? The panel unanimously agreed that the threshold concept approach holds potential for information literacy instruction. Second, what are the threshold concepts for information literacy instruction? The panel proposed and discussed over fift...

  6. RESERCH STUDIES ON THE LOCATION OF A WAVE ENERGY POWER PLANT WITHIN CONSTANTA AREA

    Directory of Open Access Journals (Sweden)

    SAMOILESCU Gheorghe

    2015-05-01

    Full Text Available This paper is based on a research project on the development and installation of the first hydropneumatic plant in the Black Sea. It shows the location and its particularities, existing and previous hydrometeorological conditions, required work, plant qualities and standards to be met. The wave characteristics calculation and the hydrotechnic studies were presented: articulated concrete blocks demolition of the existing breakwater; dredging for the foundation of the plant; accomplish the foundation of the plant; installation of the plant; testing; consolidation and assuring protection of the breakwater; consolidation and assuring protection of the plant. Environmental protection measures are an important part of any research project of this type.

  7. Study of profile control and suprathermal electron production with lower hybrid waves

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Brambilla, M.; Leuterer, F.; Muenich, M.

    1986-05-01

    In this study the coupling of LH waves to suprathermal electrons, the LH current drive efficiency and the mechanism for sawtooth stabilisation will be discussed. A wide data base has been obtained by the LH experiments on Alcator C, ASDEX, FT; JFT-2M, JIPPT-IIU, Petula, PLT, Versator, WT II during the last years and important aspects as the scaling of global current drive efficiency are satisfactorily described by theory. We mainly rely here on experimental results from ASDEX and comparison with theoretical calculations by Fisch and Karney. (orig.)

  8. Quantitative study of the trapped particle bunching instability in Langmuir waves

    International Nuclear Information System (INIS)

    Hara, Kentaro; Boyd, Iain D.; Chapman, Thomas; Joseph, Ilon; Berger, Richard L.; Banks, Jeffrey W.; Brunner, Stephan

    2015-01-01

    The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters

  9. Quantitative study of the trapped particle bunching instability in Langmuir waves

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Kentaro, E-mail: kenhara@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chapman, Thomas; Joseph, Ilon; Berger, Richard L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Banks, Jeffrey W. [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Brunner, Stephan [Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland)

    2015-02-15

    The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters.

  10. A Study on the Thickness Measurement of Thin Film by Ultrasonic Wave

    International Nuclear Information System (INIS)

    Han, Eung Kyo; Lee, Jae Joon; Kim, Jae Yeol

    1988-01-01

    Recently, it is gradually raised necessity that thickness of thin film is measured accurately and managed in industrial circles and medical world. In this study, regarding to the thickness of film which is in opaque object and is beyond distance resolution capacity, thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measurement results, film thickness which is beyond distance resolution capacity was measured accurately. And within thickness range that don't exist interference, thickness measurement by MEM-ceptrum analysis was impossible

  11. On the shape of continuous wave infrared stimulated luminescence signals from feldspars: A case study

    DEFF Research Database (Denmark)

    Pagonis, V.; Jain, Mayank; Thomsen, Kristina Jørkov

    2014-01-01

    The continuous-wave IRSL (CW-IRSL) signals from feldspars are known to decay in a non-exponential manner, and their exact mathematical description is of great importance in dosimetric and dating studies. This paper investigates the possibility of fitting experimental CW-IRSL curves from a variety...... to guide future modeling work on luminescence processes in feldspars. Small statistical differences were found between K-rich and Na-rich fractions of the same sample. However, the experimental data shows that the parameters depend on the irradiation dose, but do not depend on the time elapsed after...

  12. Study of self-excited ion acoustic waves in a plasma

    International Nuclear Information System (INIS)

    Ghoranneviss, M.H.; Agashe, V.V.

    1985-01-01

    Plasma oscillation were studied in spherical discharge system of different sizes: with diameters of 10, 20 and 40 cm. The self-excited ion-acoustic waves were observed, and the oscillation amplitudes were measured at different radial distances. If the discharge conditions were varied, the oscillation frequency was found varying discontinuously from mode to mode. The method used is suggested for application in plasma diagnostics as a very reliable tool for the investigation of stationary dc. low pressure plasma in the absence of external magnetic fields. (D.Gy.)

  13. 77 FR 44710 - Information Collection Activities (Depreciation Studies)

    Science.gov (United States)

    2012-07-30

    ... (Depreciation Studies) ACTION: 60-day notice and request for comments. SUMMARY: As part of its continuing effort... Office of Management and Budget (OMB) the information collection--Rail Depreciation Studies--further... information collection: Title: Rail Depreciation Studies. OMB Control Number: 2140-XXXX. Form Number: None...

  14. Dynamic Excitation of Monopiles by Steep and Breaking Waves: Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Slabiak, Peter; Sahlberg-Nielsen, Lasse

    2013-01-01

    . Emphasis is given to the observed impulsive excitation of the natural modes by steep and breaking waves. Additionally, springing and ringing-type continuous forcing of the first natural mode is seen for the moderately steep waves. The experiments were carried out at three depths and with two wave climates...

  15. Potential use of point shear wave elastography for the pancreas: A single center prospective study

    International Nuclear Information System (INIS)

    Kawada, Natsuko; Tanaka, Sachiko; Uehara, Hiroyuki; Ohkawa, Kazuyoshi; Yamai, Takuo; Takada, Ryoji; Shiroeda, Hisakazu; Arisawa, Tomiyasu; Tomita, Yasuhiko

    2014-01-01

    Aim: Clinical use of point shear wave elastography for the liver has been established, however, few studies demonstrated its usefulness for the pancreas. A prospective study was conducted to clarify its feasibility for the pancreas and its usefulness for the identification of high risk group for pancreatic cancer. Patients and methods: Consecutive eighty-five patients underwent point shear wave elastography for the pancreas. The success rate of shear wave velocity (SWV) measurement, that is the number of successful measurements over total 10 measurements, was recorded. The SWV of the pancreas measured at non-tumorous area was compared between patients with and without pancreatic cancer. Factors associated with high SWV were determined by logistic regression model. Results: Sixty patients were included, of these 18 had pancreatic cancer. The success rate of 100% was achieved at the head, the body and the tail of the pancreas in 80%, 83%, and 68% of the patients, respectively. The success rate of ≥80% was achieved in 100%, 100%, and 96% of the patients, respectively. Although mean SWV of the pancreas harboring pancreatic cancer tended to be higher compared with that of the pancreas without cancer (1.51 ± 0.45 m/s vs 1.43 ± 0.28 m/s), they did not reach statistical significance. Multivariate analysis showed that increased amount of alcohol intake was associated with high SWV. Conclusion: The SWV of the pancreas was measured with excellent success rate. However, tendency of higher SWV obtained from the pancreas harboring pancreatic cancer needed to be further investigated

  16. Incident Wave Climate at the OWC Pico Plant

    DEFF Research Database (Denmark)

    Le Crom, I.; Cabrera Bermejo, H.; Pecher, Arthur

    2011-01-01

    The aim of the study is to retrieve the incident wave information that coincides with former Pico plant operation periods. The recent implementation of a directional pressure sensor for wave measurement as well as the recovery of the data gathered by a directional wave rider buoy allowed embarkin...... on the validation of two different models by using both wave measurements: a model for wave propagation (SWAN) and an Artificial Neural Network (ANN). This paper, as a first step of a comprehensive study, leads to several recommendations to improve both methodologies in future works....

  17. A Two-Radius Circular Array Method: Extracting Independent Information on Phase Velocities of Love Waves From Microtremor Records From a Simple Seismic Array

    Science.gov (United States)

    Tada, T.; Cho, I.; Shinozaki, Y.

    2005-12-01

    We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce

  18. Interplay of normative beliefs and behavior in developmental patterns of physical and relational aggression in adolescence: a four-wave longitudinal study.

    Science.gov (United States)

    Krahé, Barbara; Busching, Robert

    2014-01-01

    In a longitudinal study with N = 1,854 adolescents from Germany, we investigated patterns of change and gender differences in physical and relational aggression in relation to normative beliefs about these two forms of aggression. Participants, whose mean age was 13 years at T1, completed self-report measures of physically and relationally aggressive behavior and indicated their normative approval of both forms of aggression at four data waves separated by 12-month intervals. Boys scored higher than did girls on both forms of aggression, but the gender difference was more pronounced for physical aggression. Physical aggression decreased and relational aggression increased over the four data waves in both gender groups. The normative acceptance of both forms of aggression decreased over time, with a greater decrease for the approval of physical aggression. In both gender groups, normative approval of relational aggression prospectively predicted relational aggression across all data waves, and the normative approval of physical aggression predicted physically aggressive behavior at the second and third data waves. A reciprocal reinforcement of aggressive norms and behavior was found for both forms of aggression. The findings are discussed as supporting a social information processing perspective on developmental patterns of change in physical and relational aggression in adolescence.

  19. Interplay of normative beliefs and behavior in developmental patterns of physical and relational aggression in adolescence: A four-wave longitudinal study

    Directory of Open Access Journals (Sweden)

    Barbara eKrahé

    2014-10-01

    Full Text Available A longitudinal study with N = 1,854 adolescents from Germany investigated patterns of change and gender differences in physical and relational aggression in relation to normative beliefs about aggression. Participants, whose mean age was 13 years at T1, completed self-report measures of physically and relationally aggressive behavior and indicated their normative approval about both forms of aggression at four data waves separated by 12-month intervals. Boys scored higher than did girls on both forms of aggression, but the gender difference was more pronounced for physical aggression. Physical aggression decreased and relational aggression increased over the four data waves in both gender groups. The normative acceptance of both forms of aggression decreased over time, with a greater decrease for the approval of physical aggression. In both gender groups, normative approval of relational aggression prospectively predicted relational aggression across all data waves, and the normative approval of physical aggression predicted physically aggressive behavior at the second and third data waves. A reciprocal reinforcement of aggressive norms and behavior was found for both forms of aggression. The findings are discussed as supporting a social information processing perspective on developmental patterns of change in physical and relational aggression in adolescence.

  20. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    Science.gov (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  1. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm) - Volume #2 - Appendices #16-17

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, Brendan [Pacific Gas and Electric Company, San Ramon, CA (United States). Applied Technical Services; Toman, William I. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Inst. of Advanced Technology and Public Policy; Davy, Doug M. [CH2M Hill Engineers, Inc., Sacramento, CA (United States); Blakslee, Samuel N. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2017-07-31

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro siting considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed

  2. An analytical study of M2 tidal waves in the Taiwan Strait using an extended Taylor method

    Science.gov (United States)

    Wu, Di; Fang, Guohong; Cui, Xinmei; Teng, Fei

    2018-02-01

    The tides in the Taiwan Strait (TS) feature large semidiurnal lunar (M2) amplitudes. An extended Taylor method is employed in this study to provide an analytical model for the M2 tide in the TS. The strait is idealized as a rectangular basin with a uniform depth, and the Coriolis force and bottom friction are retained in the governing equations. The observed tides at the northern and southern openings are used as open boundary conditions. The obtained analytical solution, which consists of a stronger southward propagating Kelvin wave, a weaker northward propagating Kelvin wave, and two families of Poincaré modes trapped at the northern and southern openings, agrees well with the observations in the strait. The superposition of two Kelvin waves basically represents the observed tidal pattern, including an anti-nodal band in the central strait, and the cross-strait asymmetry (greater amplitudes in the west and smaller in the east) of the anti-nodal band. Inclusion of Poincaré modes further improves the model result in that the cross-strait asymmetry can be better reproduced. To explore the formation mechanism of the northward propagating wave in the TS, three experiments are carried out, including the deep basin south of the strait. The results show that the southward incident wave is reflected to form a northward wave by the abruptly deepened topography south of the strait, but the reflected wave is slightly weaker than the northward wave obtained from the above analytical solution, in which the southern open boundary condition is specified with observations. Inclusion of the forcing at the Luzon Strait strengthens the northward Kelvin wave in the TS, and the forcing is thus of some (but lesser) importance to the M2 tide in the TS.

  3. STEREO WAVES Capabilities for Studying Initiation and Early-time Dynamics of Solar Eruptions

    Science.gov (United States)

    Kaiser, M. L.

    2005-01-01

    In 2006, NASA will launch the twin STEREO spacecraft from Kennedy Space Center into a pair of heliocentric orbits near 1 AU such that the spacecraft will move away from Earth (ahead and behind) at about 22 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the heliosphere. Additionally, STEREO will study the mechanisms and sites of solar energetic particle (SEP) acceleration and determine 3-D time-dependent traces of the magnetic topology, temperature, density and velocity of the solar wind between the sun and Earth. To accomplish these goals, each STEREO spacecraft will be equipped with set of optical and particles and fields instruments including the STEREO WAVES (SWAVES) instrument which will use radio waves to track the location of CME-driven shocks (via type I1 bursts) and the 3-D topology of open field lines along which energetic particles flow (via the ubiquitous type I11 bursts). Type 11 bursts very often commence with a series of special type 111 bursts (called SA or type 111-L bursts) that likely coincide with CME liftoff time, thus SWAVES should be able to determine this time to within 15 sec. It is also known that the occurrence of SEP events is usually accompanied by type I1 radio bursts at decametric wavelengths as well as strong type III bursts at all wavelengths. SWAVES will be able to determine the initiation of these bursts to within 15 sec, and from the simultaneous measurements from the two spacecraft, should be able to triangulate their source locations. The utility of radio observations and the capabilities of SWAVES will be illustrated by showing a number of examples using the similar Wind WAVES instrument in combination with SOH0 coronagraph and RHESSI high energy X-ray/gamma ray observations.

  4. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Henan Normal Univ., Xinxiang (China). College of Mathematics and Information Science; Xu, J. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Yue, J. [National Center for Atmospheric Research, Boulder, CO (United States). High Altitude Observatory; Hampton Univ., VA (United States). Atmospheric and Planetary Sciences; Vadas, S.L. [North West Research Associates, Inc., Boulder, CO (United States)

    2013-03-01

    We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs) within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths ({lambda}{sub z}) ranging from 5 to 50 km. We show that {lambda}{sub z} decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005) (VF05). We also find good agreement for the peak height of the momentum flux (z{sub diss}) between our simulations and VF05 for GWs with initial {lambda}{sub z} {<=} 2{pi}H in an isothermal, windless background, where H is the density scale height.We also confirm that z{sub diss} increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial {lambda}{sub z}. We also simulate GW packets in a non-isothermal atmosphere. The net {lambda}{sub z} profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and {lambda}{sub z} spectra at both early and late times for GW packets with initial {lambda}{sub z} {>=} 10 km. These effects are caused by the increase in T in the thermosphere, and the decrease in T near the mesopause. (orig.)

  5. Information strategy and information products in radiation protection. A Norwegian RISKPERCOM study

    Energy Technology Data Exchange (ETDEWEB)

    Reitan, J B; Toennesen, A [Statens Straalevern, Oesteraas (Norway); Waldahl, R [Avdeling for media og kommunikasjon, Oslo Univ., Oslo (Norway)

    1998-02-01

    A short description of the national background for the radiation issue is presented together with a presentation of information strategy and analysis of the information products of the Norwegian Radiation Protection Authority. This is part of an international study. 35 refs.

  6. Information strategy and information products in radiation protection. A Norwegian RISKPERCOM study

    International Nuclear Information System (INIS)

    Reitan, J.B.; Toennesen, A.; Waldahl, R.

    1998-02-01

    A short description of the national background for the radiation issue is presented together with a presentation of information strategy and analysis of the information products of the Norwegian Radiation Protection Authority. This is part of an international study. 35 refs

  7. Wave particle interactions in the high-altitude polar cusp: a Cluster case study

    Directory of Open Access Journals (Sweden)

    B. Grison

    2005-12-01

    Full Text Available On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation the high-altitude (10 RE cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame. Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.

  8. Wave particle interactions in the high-altitude polar cusp: a Cluster case study

    Directory of Open Access Journals (Sweden)

    B. Grison

    2005-12-01

    Full Text Available On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation the high-altitude (10 RE cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame. Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.

  9. Numerical study on design for wave energy generation of a floater for energy absorption

    International Nuclear Information System (INIS)

    Li, Kui Ming; Parthasarathy, Nanjundan; Choi, Yoon Hwan; Lee, Yeon Won

    2012-01-01

    In order to design a wave energy generating system of a floater type, a 6 DOF motion technique was applied to the three Dimensional CFD analysis on a floating body and the behavior was interpreted according to the nature of the incoming waves. Waves in a tank model were generated using a single floater comparing with that of a Pelamis wave energy converter. In this paper, we focus on four variables, namely the wave height, angular velocity, diameter and length of the floater. The process was carried out in three stages and it was found that there are energy absorption differences in different parameters of wave height, length and the diameter of a floater during simulation, thus leading for the necessity of an optimal design for wave energy generation

  10. Polarization study of non-resonant X-ray magnetic scattering from spin-density-wave modulation in chromium

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Takata, Masaki

    2007-01-01

    We present a polarization study of non-resonant X-ray magnetic scattering in pure chromium. Satellite reflections are observed at +/-Q and +/-2Q, where Q is the modulation wave vector of an itinerant spin-density-wave. The first and second harmonics are confirmed to have magnetic and charge origin, respectively, by means of polarimetry without using an analyzer crystal. This alternative technique eliminates intolerable intensity loss at an analyzer by utilizing the sample crystal also as an analyzer crystal

  11. High speed photography for studying the shock wave propagation at high Mach numbers through a reflection nozzle

    International Nuclear Information System (INIS)

    Zaytsev, S.G.; Lazareva, E.V.; Mikhailova, A.V.; Nikolaev-Kozlov, V.L.; Chebotareva, E.I.

    1979-01-01

    Propagation of intensive shock waves with a temperature of about 1 eV has been studied in a two-dimensional reflection nozzle mounted at the exit of a shock tube. The Toepler technique has been involved along with the interference scheme with a laser light source allowing the multiple-frame recording to be done. Density distribution in the nozzle as well as the wave pattern occurring at the shock propagation are presented. (author)

  12. A versatile ray-tracing code for studying rf wave propagation in toroidal magnetized plasmas

    International Nuclear Information System (INIS)

    Peysson, Y; Decker, J; Morini, L

    2012-01-01

    A new ray-tracing code named C3PO has been developed to study the propagation of arbitrary electromagnetic radio-frequency (rf) waves in magnetized toroidal plasmas. Its structure is designed for maximum flexibility regarding the choice of coordinate system and dielectric model. The versatility of this code makes it particularly suitable for integrated modeling systems. Using a coordinate system that reflects the nested structure of magnetic flux surfaces in tokamaks, fast and accurate calculations inside the plasma separatrix can be performed using analytical derivatives of a spline-Fourier interpolation of the axisymmetric toroidal MHD equilibrium. Applications to reverse field pinch magnetic configuration are also included. The effects of 3D perturbations of the axisymmetric toroidal MHD equilibrium, due to the discreteness of the magnetic coil system or plasma fluctuations in an original quasi-optical approach, are also studied. Using a Runge–Kutta–Fehlberg method for solving the set of ordinary differential equations, the ray-tracing code is extensively benchmarked against analytical models and other codes for lower hybrid and electron cyclotron waves. (paper)

  13. Data Resource Profile: Cross-national and cross-study sociodemographic and health-related harmonized domains from SAGE plus ELSA, HRS and SHARE (SAGE+, Wave 1).

    Science.gov (United States)

    Minicuci, Nadia; Naidoo, Nirmala; Chatterji, Somnath; Kowal, Paul

    2016-10-01

    Four longitudinal studies were included in this rigorous harmonization process: the Study on global AGEing and adult health (SAGE); English Longitudinal Study on Ageing (ELSA); US Health and Retirement Study (HRS); and Survey of Health, Ageing and Retirement in Europe (SHARE). An ex-post harmonized process was applied to nine health-related thematic domains (socio-demographic and economic, health states, overall self-report of health and mental state, health examinations, physical and mental performance tests, risk factors, chronic conditions, social network and subjective well-being) for data from the 2004 wave of each study. Large samples of adults aged 50 years and older were available from each study: SAGE, n = 18 886; ELSA, n = 9181; HRS, n = 19 303; and SHARE, n = 29 917. The microdata, along with further details about the harmonization process and all metadata, are available through the World Health Organization (WHO) data archive at [http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog]. Further information and enquiries can be made to [sagesurvey@who.int] or the corresponding author. The data resource will continue to be updated with data across additional waves of these surveys and new waves. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  14. Everyday Information Needs and Information Seeking Habits in the Countryside: a Study of a Local Community

    Directory of Open Access Journals (Sweden)

    Gorazd Vodeb

    2014-04-01

    Full Text Available ABSTRACTPurpose: The research attempts to provide an insight into the information world of the Slovenian countryside. It presents the first results of an exploratory study of information needs, information seeking habits and types of information sources.Methodology/approach: Brenda Dervin's Sense-Making Methodology was used as the theoretical basis for this research. 25 open structured interviews with inhabitants of a local community were conducted based on purposive sampling. Interview recordings were transcribed, summarised and analysed using the qualitative content analysis approach.Results: The analysis results in recognizing the types of gaps in the context of an individual, economic activities and in the context of a local community. Gap categories are described with regard to questions or problems and the ways of solving them. There are 20 categories describing gaps in the context of an individual, 17 categories which present economic activities – and 6 categories which pertain to a local community. Findings about information needs and the ways of seeking information stress the key role of information sources in farming and prevalence of interpersonal exchange of information and experts' opinion in the context of individual problem solving.Research limitation: The generalisation of results is not possible due to the sample size.Originality/practical implications: The findings contribute to understanding of information needs and ways of information seeking in the Slovenian countryside.

  15. Study of information needs of juveniles in Asero remand home ...

    African Journals Online (AJOL)

    The study examines the information needs of juveniles in Asero remand home, Abeokuta, Ogun State, Nigeria. A structured questionnaire was used to obtain data for the study. Interviews were also conducted with the staff of the home to supplement the data. Of the respondents 100% revealed that their major information ...

  16. Aspartame exacerbates EEG spike-wave discharge in children with generalized absence epilepsy: a double-blind controlled study.

    Science.gov (United States)

    Camfield, P R; Camfield, C S; Dooley, J M; Gordon, K; Jollymore, S; Weaver, D F

    1992-05-01

    There are anecdotal reports of increased seizures in humans after ingestion of aspartame. We studied 10 children with newly diagnosed but untreated generalized absence seizures. Ambulatory cassette recording of EEG allowed quantification of numbers and length of spike-wave discharges in a double-blind study on two consecutive days. On one day the children received 40 mg/kg aspartame and on the other day, a sucrose-sweetened drink. Baseline EEG was the same before aspartame and sucrose. Following aspartame compared with sucrose, the number of spike-wave discharges per hour and mean length of spike-wave discharges increased but not to a statistically significant degree. However, the total duration of spike-wave discharge per hour was significantly increased after aspartame (p = 0.028), with a 40% +/- 17% (SEM) increase in the number of seconds per hour of EEG recording that the children spent in spike-wave discharge. Aspartame appears to exacerbate the amount of EEG spike wave in children with absence seizures. Further studies are needed to establish if this effect occurs at lower doses and in other seizure types.

  17. The information needs of occupational therapy students: a case study.

    Science.gov (United States)

    Morgan-Daniel, Jane; Preston, Hugh

    2017-06-01

    This article summarises a case study on the information needs of Masters level Occupational Therapy 5 (OT) students at one English university. A mixed methods questionnaire was used to explore motivators for information-seeking, preferred information resources and barriers inhibiting the satisfaction of information needs. Thirteen recommendations for practice were formulated, focusing on how information professionals can best facilitate OT students' learning and evidence-based research skills in preparation for clinical practice. The study was completed by Jane Morgan-Daniel, who received a Distinction for her work from Aberystwyth University, where she graduated with an MSC in Information and Library Studies in December 2016. She has written this article together with her dissertation supervisor, Hugh Preston. A. M. © 2017 Health Libraries Group.

  18. A study on the fusion reactor - A study on wave physics of fast wave heating and the current drive in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Su Won; Yeom, Hyun Ju [Kyonggi University, Suwon (Korea, Republic of); Hong, Sang Hee; Chung, Mo Se [Seoul National University, Seoul (Korea, Republic of)

    1996-09-01

    A full 3-dimensional code for fast wave heating and the current drive has been developed ant its results are compared with those of FASTWA for Phaedrus-T tokamak. The finite Larmour radius expansion and the order reduction method have been used to derive the wave equation in the toroidal coordinate from the Maxwell-Vlasov equations. By expanding the fields in poloidal Fourier series, the wave equations are reduced to the system of ordinary differential equations in the radial axis, which are then numerically integrated via the shooting method. In addition, the convergence of the solutions and energy conservation are discussed. Finally, and example calculation of the current drive is presented for the advanced superconducting tokamak which is in its conceptual design phase. 17 refs., 10 tabs., 31 figs. (author)

  19. Grenada School Nutrition Study: Evidence to Inform Policy

    International Development Research Centre (IDRC) Digital Library (Canada)

    Grenada School Nutrition Study: Evidence to Inform ... research focusing on the main risk factors for NCDs: tobacco use, unhealthy diet, alcohol misuse, and physical inactivity. ... study predicts that non-communicable diseases associated.

  20. Study of mode-converted and directly-excited ion Bernstein waves by CO2 laser scattering in Alcator C

    International Nuclear Information System (INIS)

    Takase, Y.; Fiore, C.L.; McDermott, F.S.; Moody, J.D.; Porkolab, M.; Shepard, T.; Squire, J.

    1987-01-01

    Mode-converted and directly excited ion Bernstein waves (IBW) were studied using CO 2 laser scattering in the Alcator C tokamak. During the ICRF fast wave heating experiments, mode-converted IBW was observed on the high-field side of the resonance in both second harmonic and minority heating regimes. By comparing the relative scattered powers from the two antennas separated by 180 0 toroidally, an increased toroidal wave damping with increasing density was inferred. In the IBW heating experiments, optimum direct excitation is obtained when an ion-cyclotron harmonic layer is located just behind the antenna. Wave absorption at the ω = 3Ω/sub D/ = 1.5Ω/sub H/ layer was directly observed. Edge ion heating was inferred from the IBW dispersion when this absorption layer was located in the plasma periphery, which may be responsible for the observed improvement in particle confinement