WorldWideScience

Sample records for wave functions

  1. Spheroidal wave functions

    CERN Document Server

    Flammer, Carson

    2005-01-01

    Intended to facilitate the use and calculation of spheroidal wave functions, this applications-oriented text features a detailed and unified account of the properties of these functions. Addressed to applied mathematicians, mathematical physicists, and mathematical engineers, it presents tables that provide a convenient means for handling wave problems in spheroidal coordinates.Topics include separation of the scalar wave equation in spheroidal coordinates, angle and radial functions, integral representations and relations, and expansions in spherical Bessel function products. Additional subje

  2. Wigner functions of s waves

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....

  3. Wave function and CKM renormalization

    CERN Document Server

    Espriu, Doménec

    2002-01-01

    In this presentation we clarify some aspects of the LSZ formalism and wave function renormalization for unstable particles in the presence of electroweak interactions when mixing and CP violation are considered. We also analyze the renormalization of the CKM mixing matrix which is closely related to wave function renormalization. The effects due to the electroweak radiative corrections that are described in this work are small, but they will need to be considered when the precision in the measurement of the charged current sector couplings reaches the 1% level. The work presented here is done in collaboration with Julian Manzano and Pere Talavera.

  4. The Wave Function of Quantum de Sitter

    OpenAIRE

    Castro, Alejandra; Maloney, Alexander

    2012-01-01

    We consider quantum general relativity in three dimensions with a positive cosmological constant. The Hartle-Hawking wave function is computed as a function of metric data at asymptotic future infinity. The analytic continuation from Euclidean Anti-de Sitter space provides a natural integration contour in the space of metrics, allowing us -- with certain assumptions -- to compute the wave function exactly, including both perturbative and non-perturbative effects. The resulting wave function i...

  5. Spheroidal Wave Functions in Electromagnetic Theory

    Science.gov (United States)

    Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng

    2001-11-01

    The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.

  6. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  7. Time symmetry in wave-function collapse

    Science.gov (United States)

    Bedingham, D. J.; Maroney, O. J. E.

    2017-04-01

    The notion of a physical collapse of the wave function is embodied in dynamical collapse models. These involve a modification of the unitary evolution of the wave function so as to give a dynamical account of collapse. The resulting dynamics is at first sight time asymmetric for the simple reason that the wave function depends on those collapse events in the past but not those in the future. Here we show that dynamical wave-function collapse models admit a general description that has no built-in direction of time. Given some simple constraints, we show that there exist empirically equivalent pictures of collapsing wave functions in both time directions, each satisfying the same dynamical rules. A preferred direction is singled out only by the asymmetric initial and final time constraints on the state of the universe.

  8. Sculpturing the Electron Wave Function

    CERN Document Server

    Shiloh, Roy; Lilach, Yigal; Arie, Ady

    2014-01-01

    Coherent electrons such as those in electron microscopes, exhibit wave phenomena and may be described by the paraxial wave equation. In analogy to light-waves, governed by the same equation, these electrons share many of the fundamental traits and dynamics of photons. Today, spatial manipulation of electron beams is achieved mainly using electrostatic and magnetic fields. Other demonstrations include simple phase-plates and holographic masks based on binary diffraction gratings. Altering the spatial profile of the beam may be proven useful in many fields incorporating phase microscopy, electron holography, and electron-matter interactions. These methods, however, are fundamentally limited due to energy distribution to undesired diffraction orders as well as by their binary construction. Here we present a new method in electron-optics for arbitrarily shaping of electron beams, by precisely controlling an engineered pattern of thicknesses on a thin-membrane, thereby molding the spatial phase of the electron wav...

  9. The evolution of piecewise polynomial wave functions

    Science.gov (United States)

    Andrews, Mark

    2017-01-01

    For a non-relativistic particle, we consider the evolution of wave functions that consist of polynomial segments, usually joined smoothly together. These spline wave functions are compact (that is, they are initially zero outside a finite region), but they immediately extend over all available space as they evolve. The simplest splines are the square and triangular wave functions in one dimension, but very complicated splines have been used in physics. In general the evolution of such spline wave functions can be expressed in terms of antiderivatives of the propagator; in the case of a free particle or an oscillator, all the evolutions are expressed exactly in terms of Fresnel integrals. Some extensions of these methods to two and three dimensions are discussed.

  10. Deuteron wave function and OPE potential

    Science.gov (United States)

    Righi, S.; Rosa-Clot, M.

    1987-06-01

    The deuteron wave function is calculated integrating from outside the Schredinger equation using as input its asymptotic behaviour. Some potentials are tested and the one pion exchange potential (OPEP) is shown to be the main responsible of the wave function structure up to distances of about 1 fm. The relevance of the short range part of the potential is analyzed and it is shown that a substantial enhancement of the OPEP central part is needed in the deuteron channel.

  11. The Wave Function and Quantum Reality

    CERN Document Server

    Gao, Shan

    2011-01-01

    We investigate the meaning of the wave function by analyzing the mass and charge density distribution of a quantum system. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, and it is formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is not continuous but discontinuous and random. This result suggests a new interpretation of the wave function, according to which the wave function is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations. It is shown that the suggested interpretation of the wave function disfavors the de Broglie-Bohm theory and the many-worlds interpretation but favors the dynamical collapse theories, and the rando...

  12. Meaning of the nuclear wave function

    CERN Document Server

    Terry, John D

    2016-01-01

    Background The intense current experimental interest in studying the structure of the deuteron and using it to enable accurate studies of neutron structure motivate us to examine the four-dimensional space-time nature of the nuclear wave function, and the various approximations used to reduce it to an object that depends only on three spatial variables. Purpose: The aim is to determine if the ability to understand and analyze measured experimental cross sections is compromised by making the reduction from four to three dimensions. Method: Simple, exactly-calculable, covariant models of a bound-state wave state wave function (a scalar boson made of two constituent-scalar bosons) with parameters chosen to represent a deuteron are used to investigate the accuracy of using different approximations to the nuclear wave function to compute the quasi-elastic scattering cross section. Four different versions of the wave function are defined (light-front spectator, light-front, light-front with scaling and non-relativi...

  13. The Wave Function It or Bit?

    CERN Document Server

    Zeh, H D

    2002-01-01

    Schroedinger's wave function shows many aspects of a state of incomplete knowledge or information ("bit"): (1) it is defined on a space of classical configurations, (2) its generic entanglement is, therefore, analogous to statistical correlations, and (3) it determines probabilites of measurement outcomes. Nonetheless, quantum superpositions (such as represented by a wave function) also define individual physical states ("it"). This conceptual dilemma may have its origin in the conventional operational foundation of physical concepts, successful in classical physics, but inappropriate in quantum theory because of the existence of mutually exclusive operations (used for the definition of concepts). In contrast, a hypothetical realism, based on concepts that are justified only by their universal and consistent applicability, favors the wave function as a description of (thus nonlocal) physical reality. The (conceptually local) classical world then appears as an illusion, facilitated by the phenomenon of decoher...

  14. Spontaneous symmetry breaking in correlated wave functions

    Science.gov (United States)

    Kaneko, Ryui; Tocchio, Luca F.; Valentí, Roser; Becca, Federico; Gros, Claudius

    2016-03-01

    We show that Jastrow-Slater wave functions, in which a density-density Jastrow factor is applied onto an uncorrelated fermionic state, may possess long-range order even when all symmetries are preserved in the wave function. This fact is mainly related to the presence of a sufficiently strong Jastrow term (also including the case of full Gutzwiller projection, suitable for describing spin models). Selected examples are reported, including the spawning of Néel order and dimerization in spin systems, and the stabilization of charge and orbital order in itinerant electronic systems.

  15. Constructibility of the Universal Wave Function

    Science.gov (United States)

    Bolotin, Arkady

    2016-10-01

    This paper focuses on a constructive treatment of the mathematical formalism of quantum theory and a possible role of constructivist philosophy in resolving the foundational problems of quantum mechanics, particularly, the controversy over the meaning of the wave function of the universe. As it is demonstrated in the paper, unless the number of the universe's degrees of freedom is fundamentally upper bounded (owing to some unknown physical laws) or hypercomputation is physically realizable, the universal wave function is a non-constructive entity in the sense of constructive recursive mathematics. This means that even if such a function might exist, basic mathematical operations on it would be undefinable and subsequently the only content one would be able to deduce from this function would be pure symbolical.

  16. Continuous Observations and the Wave Function Collapse

    CERN Document Server

    Marchewka, A

    2011-01-01

    We propose to modify the collapse axiom of quantum measurement theory by replacing the instantaneous with a continuous collapse of the wave function in finite time $\\tau$. We apply it to coordinate measurement of a free quantum particle that is initially confined to a domain $D\\subset\\rR^d$ and is observed continuously by illuminating $\\rR^d-D$. The continuous collapse axiom (CCA) defines the post-measurement wave function (PMWF)in $D$ after a negative measurement as the solution of Schr\\"odinger's equation at time $\\tau$ with instantaneously collapsed initial condition and homogeneous Dirichlet condition on the boundary of $D$. The CCA applies to all cases that exhibit the Zeno effect. It rids quantum mechanics of the unphysical artifacts caused by instantaneous collapse and introduces no new artifacts.

  17. Primordial gravitational waves and the collapse of the wave function

    CERN Document Server

    Leon, Gabriel; Landau, Susana J

    2015-01-01

    "The self-induced collapse hypothesis'' has been introduced by D. Sudarsky and collaborators to explain the origin of cosmic structure from a perfect isotropic and homogeneous universe during the inflationary regime. In this paper, we calculate the power spectrum for the tensor modes, within the semiclassical gravity approximation, with the additional hypothesis of a generic self-induced collapse of the inflaton's wave function; we also compute an estimate for the tensor-to-scalar ratio. Based on this calculation, we show that the considered proposal exhibits a strong suppression of the tensor modes amplitude; nevertheless, the corresponding amplitude is still consistent with the joint BICEP/KECK and Planck collaborations limit on the tensor-to-scalar ratio.

  18. Projector augmented wave method: ab initio molecular dynamics with full wave functions

    Indian Academy of Sciences (India)

    Peter E Blöchl; Clemens J Först; Johannes Schimpl

    2003-01-01

    A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.

  19. A Test of Nuclear Wave Functions for Pseudospin Symmetry

    CERN Document Server

    Ginocchio, J N

    2001-01-01

    Using the fact that pseudospin is an approximate symmetry of the Dirac Hamiltonian with realistic scalar and vector mean fields, we derive the wave functions of the pseudospin partners of eigenstates of a realistic Dirac Hamiltonian and compare these wave functions with the wave functions of the Dirac eigenstates.

  20. Test of nuclear wave functions for pseudospin symmetry.

    Science.gov (United States)

    Ginocchio, J N; Leviatan, A

    2001-08-13

    Using the fact that pseudospin is an approximate symmetry of the Dirac Hamiltonian with realistic scalar and vector mean fields, we derive the wave functions of the pseudospin partners of eigenstates of a realistic Dirac Hamiltonian and compare these wave functions with the wave functions of the Dirac eigenstates.

  1. Test of Nuclear Wave Functions for Pseudospin Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J. N.; Leviatan, A.

    2001-08-13

    Using the fact that pseudospin is an approximate symmetry of the Dirac Hamiltonian with realistic scalar and vector mean fields, we derive the wave functions of the pseudospin partners of eigenstates of a realistic Dirac Hamiltonian and compare these wave functions with the wave functions of the Dirac eigenstates.

  2. Wave function calculations in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, S.C.

    1993-07-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: (1) specification of the Hamiltonian, and (2) calculation of the ground (or excited) states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependencies. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At Argonne and Urbana, the authors have been following a program of developing realistic NN and NNN interactions and the methods necessary to compute nuclear properties from variational wave functions suitable for these interactions. The wave functions are used to compute energies, density distributions, charge form factors, structure functions, momentum distributions, etc. Most recently they have set up a collaboration with S. Boffi and M. Raduci (University of Pavia) to compute (e,e{prime}p) reactions.

  3. Wave function calculations in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, S.C.

    1993-01-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: (1) specification of the Hamiltonian, and (2) calculation of the ground (or excited) states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependencies. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At Argonne and Urbana, the authors have been following a program of developing realistic NN and NNN interactions and the methods necessary to compute nuclear properties from variational wave functions suitable for these interactions. The wave functions are used to compute energies, density distributions, charge form factors, structure functions, momentum distributions, etc. Most recently they have set up a collaboration with S. Boffi and M. Raduci (University of Pavia) to compute (e,e[prime]p) reactions.

  4. Lanczos steps to improve variational wave functions

    Science.gov (United States)

    Becca, Federico; Hu, Wen-Jun; Iqbal, Yasir; Parola, Alberto; Poilblanc, Didier; Sorella, Sandro

    2015-09-01

    Gutzwiller-projected fermionic states can be efficiently implemented within quantum Monte Carlo calculations to define extremely accurate variational wave functions for Heisenberg models on frustrated two-dimensional lattices, not only for the ground state but also for low-energy excitations. The application of few Lanczos steps on top of these states further improves their accuracy, allowing calculations on large clusters. In addition, by computing both the energy and its variance, it is possible to obtain reliable estimations of exact results. Here, we report the cases of the frustrated Heisenberg models on square and Kagome lattices.

  5. How fast is the wave function collapse?

    CERN Document Server

    Ignatiev, A Yu

    2012-01-01

    Using complex quantum Hamilton-Jacobi formulation, a new kind of non-linear equations is proposed that have almost classical structure and extend the Schroedinger equation to describe the collapse of the wave function as a finite-time process. Experimental bounds on the collapse time are reported (of order 0.1 ms to 0.1 ps) and its convenient dimensionless measure is introduced. This parameter helps to identify the areas where sensitive probes of the possible collapse dynamics can be done. Examples are experiments with Bose-Einstein condensates, ultracold neutrons or ultrafast optics.

  6. Comparative study on spreading function for directional wave spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    -dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...

  7. A Scheme of Interferometric Measurement of an Atomic Wave Function

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-Dong; LIN Yu; ZENG Liang; PAN Qin-Min

    2000-01-01

    A new method to measure an atomic wave function is discussed. It effectively solves the problem of an initially random phase of a travelling-wave laser beam. The relationship between the measured data and the atomic wavefunction is presented, and the wave function's reconstruction procedure is also analyzed.PACS: 03.65. Bz, 03. 75. Dg

  8. Superoscillating electron wave functions with subdiffraction spots

    Science.gov (United States)

    Remez, Roei; Tsur, Yuval; Lu, Peng-Han; Tavabi, Amir H.; Dunin-Borkowski, Rafal E.; Arie, Ady

    2017-03-01

    Almost one and a half centuries ago, Abbe [Arch. Mikrosk. Anat. 9, 413 (1873), 10.1007/BF02956173] and shortly after Lord Rayleigh [Philos. Mag. Ser. 5 8, 261 (1879), 10.1080/14786447908639684] showed that, when an optical lens is illuminated by a plane wave, a diffraction-limited spot with radius 0.61 λ /sinα is obtained, where λ is the wavelength and α is the semiangle of the beam's convergence cone. However, spots with much smaller features can be obtained at the focal plane when the lens is illuminated by an appropriately structured beam. Whereas this concept is known for light beams, here, we show how to realize it for a massive-particle wave function, namely, a free electron. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. In addition, we demonstrate that this central spot can be structured by adding orbital angular momentum to it. The resulting superoscillating vortex beam has a smaller dark core with respect to a regular vortex beam. This family of electron beams having hot spots with arbitrarily small features and tailored structures could be useful for studying electron-matter interactions with subatomic resolution.

  9. Interpreting the wave function of the Universe.

    Science.gov (United States)

    Tipler, F. J.

    The Many-Worlds Interpretation of quantum mechanics is used to determine the meaning of the universal wave function of quantum cosmology. More precisely, the Many-Worlds Interpretation is used to distinguish those quantities in quantum cosmology which are measureable, and hence physically meaningful, from those which are not. A number of rather surprising conclusions are drawn from the analysis. All conclusions are illustrated with a closed Friedmann universe quantized in conformal time. The author's quantization procedure allows only one solution to Schrödinger's equation, and this solution solves the Flatness Problem. He shows that the ADM quantization method plus the Hartle-Hawking initial foundary condition gives the same result.

  10. Intercellular Ca2+ Waves: Mechanisms and Function

    Science.gov (United States)

    Sanderson, Michael J.

    2012-01-01

    Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430

  11. Tunnelling matrix elements with Gutzwiller wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Di Ciolo, Andrea; Tocchio, Luca F.; Gros, Claudius [Institut fuer Theoretische Physik, Goethe Universitaet Frankfurt, Frankfurt Am Main (Germany)

    2011-07-01

    We use a generalized Gutzwiller approach, in order to study projected particle (hole) excitations for superconducting systems and systems with antiferromagnetic (AFM) order. As in the standard Gutzwiller scheme the effects of the strong electronic correlations are given via the suppression of the site double occupancy; for our computations it is helpful to consider a lattice with a reservoir site unaffected by this suppression of the double occupancy. In this approach we obtain the probabilities for the tunnelling of a particle (hole) into the projected state. Our results are due only to the physical properties of the trial state and not to the choice of a specifical Hamiltonian: in this sense, they are model-independent but not universal, because they rely on the features of the chosen Gutzwiller wave function (projected Fermi Sea, BCS superconductor, AFM..) The accuracy and the reliability of our analytical approximation is tested using the Variational Monte Carlo. Possible comparisons with tunnelling experiments are discussed.

  12. Computer network defense through radial wave functions

    Science.gov (United States)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  13. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  14. Influence of Generalized (r, q) Distribution Function on Electrostatic Waves

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Non-Maxwellian particle distribution functions possessing high energy tail and shoulder in the profile of distribution function considerably change the damping characteristics of the waves. In the present paper Landau damping ofelectron plasma (Langmuir) waves and ion-acoustic waves in a hot, isotropic, unmagnetized plasma is studied with the generalized (r, q) distribution function. The results show that for the Langmuir oscillations Landau damping becomes severe as the spectral index r or q reduces. However, for the ion-acoustic waves Landau damping is more sensitive to the ion temperature than the spectral indices.

  15. Functional evolution of quantum cylindrical waves

    CERN Document Server

    Cho, D H J; Cho, Demian H.J.; Varadarajan, Madhavan

    2006-01-01

    Kucha{\\v{r}} showed that the quantum dynamics of (1 polarization) cylindrical wave solutions to vacuum general relativity is determined by that of a free axially-symmetric scalar field along arbitrary axially-symmetric foliations of a fixed flat 2+1 dimensional spacetime. We investigate if such a dynamics can be defined {\\em unitarily} within the standard Fock space quantization of the scalar field. Evolution between two arbitrary slices of an arbitrary foliation of the flat spacetime can be built out of a restricted class of evolutions (and their inverses). The restricted evolution is from an initial flat slice to an arbitrary (in general, curved) slice of the flat spacetime and can be decomposed into (i) `time' evolution in which the spatial Minkowskian coordinates serve as spatial coordinates on the initial and the final slice, followed by (ii) the action of a spatial diffeomorphism of the final slice on the data obtained from (i). We show that although the functional evolution of (i) is unitarily implemen...

  16. Chameleonic equivalence postulate and wave function collapse

    CERN Document Server

    Zanzi, Andrea

    2014-01-01

    A chameleonic solution to the cosmological constant problem and the non-equivalence of different conformal frames at the quantum level have been recently suggested [Phys. Rev. D82 (2010) 044006]. In this article we further discuss the theoretical grounds of that model and we are led to a chameleonic equivalence postulate (CEP). Whenever a theory satisfies our CEP (and some other additional conditions), a density-dependence of the mass of matter fields is naturally present. Let us summarize the main results of this paper. 1) The CEP can be considered the microscopic counterpart of the Einstein's Equivalence Principle and, hence, a chameleonic description of quantum gravity is obtained: in our model, (quantum) gravitation is equivalent to a conformal anomaly. 2) To illustrate one of the possible applications of the CEP, we point out a connection between chameleon fields and quantum-mechanical wave function collapse. The collapse is induced by the chameleonic nature of the theory. We discuss the collapse for a S...

  17. Wave-function reconstruction in a graded semiconductor superlattice

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.

    2004-01-01

    We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...

  18. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...

  19. Real no-boundary wave function in Lorentzian quantum cosmology

    Science.gov (United States)

    Dorronsoro, J. Diaz; Halliwell, J. J.; Hartle, J. B.; Hertog, T.; Janssen, O.

    2017-08-01

    It is shown that the standard no-boundary wave function has a natural expression in terms of a Lorentzian path integral with its contour defined by Picard-Lefschetz theory. The wave function is real, satisfies the Wheeler-DeWitt equation and predicts an ensemble of asymptotically classical, inflationary universes with nearly-Gaussian fluctuations and with a smooth semiclassical origin.

  20. Trial wave functions for High-Pressure Metallic Hydrogen

    CERN Document Server

    Pierleoni, Carlo; Morales, Miguel A; Ceperley, David M; Holzmann, Markus

    2007-01-01

    Many body trial wave functions are the key ingredient for accurate Quantum Monte Carlo estimates of total electronic energies in many electron systems. In the Coupled Electron-Ion Monte Carlo method, the accuracy of the trial function must be conjugated with the efficiency of its evaluation. We report recent progress in trial wave functions for metallic hydrogen implemented in the Coupled Electron-Ion Monte Carlo method. We describe and characterize several types of trial functions of increasing complexity in the range of the coupling parameter $1.0 \\leq r_s \\leq1.55$. We report wave function comparisons for disordered protonic configurations and preliminary results for thermal averages.

  1. Flavour Mixing, Gauge Invariance and Wave-function Renormalisation

    CERN Document Server

    Espriu, Doménec; Talavera, P

    2002-01-01

    We clarify some aspects of the LSZ formalism and wave function renormalisation for unstable particles in the presence of electroweak interactions when mixing and CP violation are considered. We also analyse the renormalisation of the CKM mixing matrix which is closely related to wave function renormalisation. We critically review earlier attempts to define a set of "on-shell" wave function renormalisation constants. With the aid of an extensive use of the Nielsen identities complemented by explicit calculations we corroborate that the counter term for the CKM mixing matrix must be explicitly gauge independent and demonstrate that the commonly used prescription for the wave function renormalisation constants leads to gauge parameter dependent amplitudes, even if the CKM counter term is gauge invariant as required. We show that a proper LSZ-compliant prescription leads to gauge independent amplitudes. The resulting wave function renormalisation constants necessarily possess absorptive parts, but we verify that ...

  2. Separation of different wave components in the Bethe–Salpeter wave function

    Indian Academy of Sciences (India)

    Jiao-Kai Chen

    2011-03-01

    The scalar products of polarization tensor and unit vectors are presented explicitly in spherical coordinate system expanded in terms of spherical harmonic functions. By applying the obtained formulae, different wave components in the Salpeter wave function can be shown explicitly, and the results are consistent with the results obtained by - coupling analysis. The cancelation formula is given, by which the terms with pure = + 1 wave components in the Salpeter wave function for the bound state with = (-1) can be obtained by separating the = - 1 wave components from mixing terms. This separation provides the basis for studying higher-order contributions from the coupling of = - 1 and + 1 wave states, and for solving the Salpeter equation exactly without approximation.

  3. EVANS FUNCTIONS AND ASYMPTOTIC STABILITY OF TRAVELING WAVE SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper studies the asymptotic stability of traveling wave solutions of nonlinear systems of integral-differential equations. It has been established that linear stability of traveling waves is equivalent to nonlinear stability and some “nice structure” of the spectrum of an associated operator implies the linear stability. By using the method of variation of parameter, the author defines some complex analytic function, called the Evans function. The zeros of the Evans function corresponds to the eigenvalues of the associated linear operator. By calculating the zeros of the Evans function, the asymptotic stability of the travling wave solutions is established.

  4. Density functional calculations of spin-wave dispersion curves.

    Science.gov (United States)

    Kleinman, Leonard; Niu, Qian

    1998-03-01

    Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.

  5. Modular matrices from universal wave-function overlaps in Gutzwiller-projected parton wave functions

    Science.gov (United States)

    Mei, Jia-Wei; Wen, Xiao-Gang

    2015-03-01

    We implement the universal wave-function overlap (UWFO) method to extract modular S and T matrices for topological orders in Gutzwiller-projected parton wave functions (GPWFs). The modular S and T matrices generate a projective representation of S L (2 ,Z ) on the degenerate-ground-state Hilbert space on a torus and may fully characterize the 2+1D topological orders, i.e., the quasiparticle statistics and chiral central charge (up to E8 bosonic quantum Hall states). We use the variational Monte Carlo method to computed the S and T matrices of the chiral spin liquid (CSL) constructed by the GPWF on the square lattice, and we confirm that the CSL carries the same topological order as the ν =1/2 bosonic Laughlin state. We find that the nonuniversal exponents in the UWFO can be small, and direct numerical computation can be applied on relatively large systems. The UWFO may be a powerful method to calculate the topological order in GPWFs.

  6. Special software for computing the special functions of wave catastrophes

    Directory of Open Access Journals (Sweden)

    Andrey S. Kryukovsky

    2015-01-01

    Full Text Available The method of ordinary differential equations in the context of calculating the special functions of wave catastrophes is considered. Complementary numerical methods and algorithms are described. The paper shows approaches to accelerate such calculations using capabilities of modern computing systems. Methods for calculating the special functions of wave catastrophes are considered in the framework of parallel computing and distributed systems. The paper covers the development process of special software for calculating of special functions, questions of portability, extensibility and interoperability.

  7. On the interpretation of wave function overlaps in quantum dots

    DEFF Research Database (Denmark)

    Stobbe, Søren; Hvam, Jørn Märcher; Lodahl, Peter

    2011-01-01

    that the electron and the hole are located at the same point or region in space, i.e., they must coincide spatially to recombine. Here, we show that this interpretation is not correct even loosely speaking. By general mathematical considerations we compare the envelope wave function overlap, the exchange overlap......The spontaneous emission rate of excitons strongly confined in quantum dots (QDs) is proportional to the overlap integral of electron and hole envelope wave functions. A common and intuitive interpretation of this result is that the spontaneous emission rate is proportional to the probability...... compare our qualitative predictions with recent measurements of the wave function overlap and find good agreement....

  8. Boundary conditions on internal three-body wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Kevin A.; Littlejohn, Robert G.

    1999-10-01

    For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.

  9. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard

    2014-11-01

    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  10. The Green-function transform and wave propagation

    CERN Document Server

    Sheppard, Colin J R; Lin, Jiao

    2014-01-01

    Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogenous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  11. General Green's function formalism for layered systems: Wave function approach

    Science.gov (United States)

    Zhang, Shu-Hui; Yang, Wen; Chang, Kai

    2017-02-01

    The single-particle Green's function (GF) of mesoscopic structures plays a central role in mesoscopic quantum transport. The recursive GF technique is a standard tool to compute this quantity numerically, but it lacks physical transparency and is limited to relatively small systems. Here we present a numerically efficient and physically transparent GF formalism for a general layered structure. In contrast to the recursive GF that directly calculates the GF through the Dyson equations, our approach converts the calculation of the GF to the generation and subsequent propagation of a scattering wave function emanating from a local excitation. This viewpoint not only allows us to reproduce existing results in a concise and physically intuitive manner, but also provides analytical expressions of the GF in terms of a generalized scattering matrix. This identifies the contributions from each individual scattering channel to the GF and hence allows this information to be extracted quantitatively from dual-probe STM experiments. The simplicity and physical transparency of the formalism further allows us to treat the multiple reflection analytically and derive an analytical rule to construct the GF of a general layered system. This could significantly reduce the computational time and enable quantum transport calculations for large samples. We apply this formalism to perform both analytical analysis and numerical simulation for the two-dimensional conductance map of a realistic graphene p -n junction. The results demonstrate the possibility of observing the spatially resolved interference pattern caused by negative refraction and further reveal a few interesting features, such as the distance-independent conductance and its quadratic dependence on the carrier concentration, as opposed to the linear dependence in uniform graphene.

  12. Improved Wave-vessel Transfer Functions by Uncertainty Modelling

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio

    2016-01-01

    This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in input...... variables, notably speed, draft and relative wave eading, often compromises results. In this study, uncertling is applied to improve theoretically calculated transfer functions, so they better fit the corresponding experimental, full-scale ones. Based on a vast amount of full-scale measurements data......, it is shown that uncertainty modelling can be successfully used to improve accuracy (and reliability) of theoretical transfer functions....

  13. Alignment of wave functions for angular momentum projection

    CERN Document Server

    Taniguchi, Yasutaka

    2016-01-01

    Angular momentum projection is used to obtain eigen states of angular momentum from general wave functions. Multi-configuration mixing calculation with angular momentum projection is an important microscopic method in nuclear physics. For accurate multi-configuration mixing calculation with angular momentum projection, concentrated distribution of $z$ components $K$ of angular momentum in the body-fixed frame ($K$-distribution) is favored. Orientation of wave functions strongly affects $K$-distribution. Minimization of variance of $\\hat{J}_z$ is proposed as an alignment method to obtain wave functions that have concentrated $K$-distribution. Benchmark calculations are performed for $\\alpha$-$^{24}$Mg cluster structure, triaxially superdeformed states in $^{40}$Ar, and Hartree-Fock states of some nuclei. The proposed alignment method is useful and works well for various wave functions to obtain concentrated $K$-distribution.

  14. Calculation of electron wave functions and refractive index of Ne

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The radial wave functions of inner electron shell and outer electron shell of a Ne atom were obtained by the approximate analytical method and tested by calculating the ground state energy of the Ne atom. The equivalent volume of electron cloud and the refractive index of Ne were calculated. The calculated refractive index agrees well with the experimental result. Relationship between the refractive index and the wave function of Ne was discovered.

  15. Do Neutrino Wave Functions Overlap and Does it Matter?

    CERN Document Server

    Li, Cheng-Hsien

    2016-01-01

    Studies of neutrinos commonly ignore anti-symmetrization of their wave functions. This implicitly assumes that either spatial wave functions for neutrinos with approximately the same momentum do not overlap or their overlapping has no measurable consequences. We examine these assumptions by considering the evolution of three-dimensional neutrino wave packets (WPs). We find that it is perfectly adequate to treat accelerator and reactor neutrinos as separate WPs for typical experimental setup. While solar and supernova neutrinos correspond to overlapping WPs, they can be treated effectively as non-overlapping for analyses of their detection.

  16. Factorized molecular wave functions: Analysis of the nuclear factor

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, R., E-mail: roland.lefebvre@u-psud.fr [Institut des Sciences Moléculaires d’ Orsay, Bâtiment 350, UMR8214, CNRS- Université. Paris-Sud, 91405 Orsay, France and Sorbonne Universités, UPMC Univ Paris 06, UFR925, F-75005 Paris (France)

    2015-06-07

    The exact factorization of molecular wave functions leads to nuclear factors which should be nodeless functions. We reconsider the case of vibrational perturbations in a diatomic species, a situation usually treated by combining Born-Oppenheimer products. It was shown [R. Lefebvre, J. Chem. Phys. 142, 074106 (2015)] that it is possible to derive, from the solutions of coupled equations, the form of the factorized function. By increasing artificially the interstate coupling in the usual approach, the adiabatic regime can be reached, whereby the wave function can be reduced to a single product. The nuclear factor of this product is determined by the lowest of the two potentials obtained by diagonalization of the potential matrix. By comparison with the nuclear wave function of the factorized scheme, it is shown that by a simple rectification, an agreement is obtained between the modified nodeless function and that of the adiabatic scheme.

  17. Ultrarelativistic quasiclassical wave functions in strong laser and atomic fields

    CERN Document Server

    Di Piazza, A

    2014-01-01

    The problem of an ultrarelativistic charge in the presence of an atomic and a plane-wave field is investigated in the quasiclassical regime by including exactly the effects of both background fields. Starting from the quasiclassical Green's function obtained in [Phys. Lett. B \\textbf{717}, 224 (2012)], the corresponding in- and out-wave functions are derived in the experimentally relevant case of the particle initially counterpropagating with respect to the plane wave. The knowledge of these electron wave functions opens the possibility of investigating a variety of problems in strong-field QED, where both the atomic field and the laser field are strong enough to be taken into account exactly from the beginning in the calculations.

  18. Donor wave functions in Si gauged by STM images

    Science.gov (United States)

    Saraiva, A. L.; Salfi, J.; Bocquel, J.; Voisin, B.; Rogge, S.; Capaz, Rodrigo B.; Calderón, M. J.; Koiller, Belita

    2016-01-01

    The triumph of effective mass theory in describing the energy spectrum of dopants does not guarantee that the model wave functions will withstand an experimental test. Such wave functions have recently been probed by scanning tunneling spectroscopy, revealing localized patterns of resonantly enhanced tunneling currents. We show that the shape of the conducting splotches resembles a cut through Kohn-Luttinger (KL) hydrogenic envelopes, which modulate the interfering Bloch states of conduction electrons. All the nonmonotonic features of the current profile are consistent with the charge density fluctuations observed between successive {001 } atomic planes, including a counterintuitive reduction of the symmetry—a heritage of the lowered point group symmetry at these planes. A model-independent analysis of the diffraction figure constrains the value of the electron wave vector to k0=(0.82 ±0.03 ) (2 π /aSi) . Unlike prior measurements, averaged over a sizable density of electrons, this estimate is obtained directly from isolated electrons. We further investigate the model-specific anisotropy of the wave function envelope, related to the effective mass anisotropy. This anisotropy appears in the KL variational wave function envelope as the ratio between Bohr radii b /a . We demonstrate that the central-cell-corrected estimates for this ratio are encouragingly accurate, leading to the conclusion that the KL theory is a valid model not only for energies but for wave functions as well.

  19. Directional Wave Spectra Using Normal Spreading Function

    Science.gov (United States)

    1985-03-01

    energy spectral density function U. g. Army Engineer Waternays Experiment Station. Coastal Engineering Research Center P. 0. lox 631, Vicksburg...Z39-18 D(f,e) = spreading function E (f,(3) = directional spectral density function f = frequency in cycles per second 8 = direction in radians...of this assumption depends on the narrow bandedness of the energy spectral density function . For fairly narrow spectra (e.g., a swell train), the

  20. The effect of meson wave function on heavy-quark fragmentation function

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2016-05-15

    We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)

  1. Parametric dependence of ocean wave-radar modulation transfer functions

    Science.gov (United States)

    Plant, W. J.; Keller, W. C.; Cross, A.

    1983-01-01

    Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.

  2. Extracting Information from the Atom-Laser Wave Function UsingInterferometric Measurement with a Laser Standing-Wave Grating

    Institute of Scientific and Technical Information of China (English)

    刘正东; 武强; 曾亮; 林宇; 朱诗尧

    2001-01-01

    The reconstruction of the atom-laser wave function is performed using an interferometric measurement with a standing-wave grating, and the results of this scheme are studied. The relations between the measurement data and the atomic wave function are also presented. This scheme is quite applicable and effectively avoids the initial random phase problem of the method that employs the laser running wave. The information which is encoded in the atom-laser wave is extracted.

  3. Rapidity resummation for B-meson wave functions

    Directory of Open Access Journals (Sweden)

    Shen Yue-Long

    2014-01-01

    Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.

  4. Rossby wave Green's functions in an azimuthal wind

    Science.gov (United States)

    Webb, G. M.; Duba, C. T.; Hu, Q.

    2016-05-01

    Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby deformation radius is included in the analysis. The physical characteristics of the Green's functions are delineated and applications are discussed. In the limit as $\\Omega\\to 0$, the rotating wind Green's function reduces to the Rossby wave Green function with no wind.

  5. New approach to folding with the Coulomb wave function

    Energy Technology Data Exchange (ETDEWEB)

    Blokhintsev, L. D.; Savin, D. A. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Kadyrov, A. S. [Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, GPO Box U1987, Perth 6845 (Australia); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A and M University, College Station, Texas 77843 (United States)

    2015-05-15

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  6. Efficient wave-function matching approach for quantum transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, Dan Erik;

    2009-01-01

    The wave-function matching (WFM) technique has recently been developed for the calculation of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable to the widely used Green's function approach. The WFM formalism presented so far requires the evaluation of all ...

  7. Analytic Beyond-Mean-Field BEC Wave Functions

    Science.gov (United States)

    Dunn, Martin; Laing, W. Blake; Watson, Deborah K.; Loeser, John G.

    2006-05-01

    We present analytic N-body beyond-mean-field wave functions for Bose-Einstein condensates. This extends our previous beyond-mean-field energy calculations to the substantially more difficult problem of determining correlated N-body wave functions for a confined system. The tools used to achieve this have been carefully chosen to maximize the use of symmetry and minimize the dependence on numerical computation. We handle the huge number of interactions when N is large (˜N^2/2 two-body interactions) by bringing together three theoretical methods. These are dimensional perturbation theory, the FG method of Wilson et al, and the group theory of the symmetric group. The wave function is then used to derive the density profile of a condensate in a cylindrical trap.This method makes no assumptions regarding the form or strength of the interactions and is applicable to both small-N and large-N systems.

  8. Laws of Nature and the Reality of the Wave Function

    CERN Document Server

    Dorato, Mauro

    2015-01-01

    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I conclude that an elimination of abstract entities from one's ontology commits one to instrumentalism about the wave function, a position that therefore is not as unmotivated as it has seemed to be to many philosophers.

  9. Propagation of Vortex Electron Wave Functions in a Magnetic Field

    CERN Document Server

    Gallatin, Gregg M

    2012-01-01

    The physics of coherent beams of photons carrying axial orbital angular momentum (OAM) is well understood and such beams, sometimes known as vortex beams, have found applications in optics and microscopy. Recently electron beams carrying very large values of axial OAM have been generated. In the absence of coupling to an external electromagnetic field the propagation of such vortex electron beams is virtually identical mathematically to that of vortex photon beams propagating in a medium with a homogeneous index of refraction. But when coupled to an external electromagnetic field the propagation of vortex electron beams is distinctly different from photons. Here we use the exact path integral solution to Schrodingers equation to examine the time evolution of an electron wave function carrying axial OAM. Interestingly we find that the nonzero OAM wave function can be obtained from the zero OAM wave function, in the case considered here, simply by multipling it by an appropriate time and position dependent pref...

  10. The nucleon wave function in light-front dynamics

    CERN Document Server

    Karmanov, V A

    1998-01-01

    The general spin structure of the relativistic nucleon wave function in the $3q$-model is found. It contains 16 spin components, in contrast to 8 ones known previously, since in a many-body system the parity conservation does not reduce the number of the components. The explicitly covariant form of the wave function automatically takes into account the relativistic spin rotations, without introducing any Melosh rotation matrices. It also reduces the calculations to the standard routine of the Dirac matrices and of the trace techniques. In examples of the proton magnetic moment and of the axial nucleon form factor, with a particular wave function, we reproduce the results of the standard approach. Calculations beyond the standard assumptions give different results.

  11. A unified intrinsic functional expansion theory for solitary waves

    Institute of Scientific and Technical Information of China (English)

    Theodore Yaotsu Wu; John Kao; Jin E. Zhang

    2005-01-01

    A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120° down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokes's formula, F2μπ = tanμπ, relating the wave speed (the Froude number F) and the logarithmic decrement μ of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokes's basic term (singular inμ), such that 2Mμ is just somewhat beyond unity, i.e. 2Mμ (~-) 1. This fundamental criterion is fully validated by solutions for waves Dedicated to Zhemin Zheng for celebration of his Eightieth Anniversary It gives us a great pleasure to dedicate this study to Prof. Zhemin Zheng and join our distinguished colleagues and friends for the jubilant celebration of his Eightieth Anniversary. Warmest tribute is due from us, as from many others unlimited by borders and boundaries, for his contributions of great significance to science, engineering science and engineering, his tremendous influence as a source of inspiration and unerring guide to countless workers in the field, his admirable leadership in fostering the Institute of Mechanics of world renown, as well as for his untiring endeavor in promoting international interaction and cooperation between academies of various nations

  12. Period functions for Maass wave forms and cohomology

    CERN Document Server

    Bruggeman, R; Zagier, D; Bruggeman, R W; Zagier, D

    2015-01-01

    The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \\Gamma\\subset\\mathrm{PSL}_2({\\mathbb{R}}). In the case that \\Gamma is the modular group \\mathrm{PSL}_2({\\mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal serie

  13. P wave dispersion and maximum P wave duration are independently associated with rapid renal function decline.

    Directory of Open Access Journals (Sweden)

    Ho-Ming Su

    Full Text Available The P wave parameters measured by 12-lead electrocardiogram (ECG are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR. This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC and corrected P wave maximum duration (PWdurMaxC. Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9% reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms (log-rank P = 0.004 and PWdurMaxC > median (117.9 ms (log-rank P<0.001 were associated with progression to renal end point. Multivariate forward Cox-regression analysis identified increased PWdisperC (hazard ratio [HR], 1.024; P = 0.001 and PWdurMaxC (HR, 1.029; P = 0.001 were independently associated with progression to renal end point. Our results demonstrate that increased PWdisperC and PWdurMaxC were independently associated with progression to renal end point. Screening patients by means of PWdisperC and PWdurMaxC on 12 lead ECG may help identify a high risk group of rapid renal function decline.

  14. On the asymptotic evolution of finite energy Airy wave functions.

    Science.gov (United States)

    Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S

    2015-06-15

    In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.

  15. How close can we get waves to wave functions, including potential?

    Science.gov (United States)

    Faletič, Sergej

    2016-05-01

    In the following article we show that mechanical waves on a braced string can have the same shapes as important wave functions in introductory quantum mechanics. A braced string is a string with additional transversal springs that serve as external "potential". The aim is not to suggest teaching quantum mechanics with these analogies. Instead, the aim is to provide students with some additional relevant experience in wave mechanics before they are introduced to quantum mechanics. We show how this experience can be used in a constructivist sense as the basis for building quantum concepts. We consider energy transfer along such string and show that penetration of a wave into a region with high "potential" is not unexpected. We also consider energy transfer between two such strings and show that it can appear point-like even though the wave is an extended object. We also suggest that applying quantization of energy transfer to wave phenomena can explain some of the more difficult to accept features of quantum mechanics.

  16. A Green's function method for surface acoustic waves in functionally graded materials.

    Science.gov (United States)

    Matsuda, Osamu; Glorieux, Christ

    2007-06-01

    Acoustic wave propagation in anisotropic media with one-dimensional inhomogeneity is discussed. Using a Green's function approach, the wave equation with inhomogeneous variation of elastic property and mass density is transformed into an integral equation, which is then solved numerically. The method is applied to find the dispersion relation of surface acoustic waves for a medium with continuously or discontinuously varying elastic property and mass density profiles.

  17. Dark energy and normalization of the cosmological wave function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peng [Sun Yat-Sen University, School of Astronomy and Space Science, Guangzhou (China); Huang, Yue; Li, Nan [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing (China); Li, Miao [Sun Yat-Sen University, School of Astronomy and Space Science, Guangzhou (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China)

    2016-08-15

    Dark energy is investigated from the perspective of quantum cosmology. It is found that, together with an appropriate normal ordering factor q, only when there is dark energy can the cosmological wave function be normalized. This interesting observation may require further attention. (orig.)

  18. Wave function of the de Sitter-Schwarzchild universe

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Hiroyuki (Kyushu Industrial Univ., Fukuoka (Japan))

    1989-08-01

    The wave function of the universe with an O(3) invariant inhomogeneous 3-space metric, called the de Sitter-Schwarzschild metric, is calculated under an appropriate boundary condition in the semi-classical approximation. The calculated result suggests that the quantum birth of the inhomogeneous universe cannot be disregarded. (author).

  19. On the Ground State Wave Function of Matrix Theory

    CERN Document Server

    Lin, Ying-Hsuan

    2014-01-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  20. On the ground state wave function of matrix theory

    Science.gov (United States)

    Lin, Ying-Hsuan; Yin, Xi

    2015-11-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU( N ) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  1. Precanonical Quantization and the Schr\\"odinger Wave Functional Revisited

    CERN Document Server

    Kanatchikov, I V

    2011-01-01

    We address the long-standing issue of the relation between the Schr\\"odinger functional representation in quantum field theory and the approach of precanonical field quantization which requires neither a distinguished time variable nor infinite-dimensional spaces of field configurations. The functional Schr\\"odinger equation is derived in the limiting case \\varkappa \\rightarrow \\delta(0) from the Dirac-like covariant generalization of the Schr\\"odinger equation within the precanonical quantization approach, where the constant \\varkappa of the dimension of the inverse spatial volume naturally appears on dimensional grounds. An explicit expression of the Schr\\"odinger wave functional as a continuous product of precanonical wave functions on the finite-dimensional covariant configuration space of the field and space-time variables is obtained.

  2. Linear density response function in the projector augmented wave method

    DEFF Research Database (Denmark)

    Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel;

    2011-01-01

    We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single......-particle eigenstates can be expanded on a real space grid or in atomic-orbital basis for increased efficiency. The exchange-correlation kernel is treated at the level of the adiabatic local density approximation (ALDA) and crystal local field effects are included. The calculated static and dynamical dielectric...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...

  3. Microstructure Functional Devices-Effectively Manipulate Terahertz Waves

    Institute of Scientific and Technical Information of China (English)

    Fei Fan; Ji-Ning Li; Sai Chen; Sheng-Jiang Chang

    2014-01-01

    Terahertz (THz) technology promises important applications including imaging, spectroscopy, and communications. However, one of limitations at present for advancing THz applications is the lack of efficient devices to manipulate THz waves. Here, our recent important progresses in THz functional devices based on artificial microstructures, such as photonic crystal, metamaterial, and plasmonic structures, have been reviewed in this paper, involving the THz modulator, isolator, and sensor. These THz microstructure functional devices exhibit great promising potential in THz application systems.

  4. Explicitly correlated wave function for a boron atom

    CERN Document Server

    Puchalski, Mariusz; Pachucki, Krzysztof

    2015-01-01

    We present results of high-precision calculations for a boron atom's properties using wave functions expanded in the explicitly correlated Gaussian basis. We demonstrate that the well-optimized 8192 basis functions enable a determination of energy levels, ionization potential, and fine and hyperfine splittings in atomic transitions with nearly parts per million precision. The results open a window to a spectroscopic determination of nuclear properties of boron including the charge radius of the proton halo in the $^8$B nucleus.

  5. Rossby Wave Green's Functions in an Azimuthal Wind

    CERN Document Server

    Webb, G M; Hu, Q

    2015-01-01

    Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby defo...

  6. Evaluation techniques for Gutzwiller wave functions in finite dimensions

    Science.gov (United States)

    Kaczmarczyk, Jan; Schickling, Tobias; Bünemann, Jörg

    2015-09-01

    We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evaluation of the diagrams. The method is applied to the problem of d-wave superconductivity in a two-dimensional single-band Hubbard model. Here, we discuss in particular the role of long-range contributions in our diagrammatic expansion. We further reconsider our previous analysis on the kinetic energy gain in the superconducting state.

  7. Wind-Wave Model with an Optimized Source Function

    CERN Document Server

    Polnikov, Vladislav

    2010-01-01

    On the basis of the author's earlier results, a new source function for a numerical wind-wave model optimized by the criterion of accuracy and speed of calculation is substantiated. The proposed source function includes (a) an optimized version of the discrete interaction approximation for parametrization of the nonlinear evolution mechanism, (b) a generalized empirical form of the input term modified by adding a special block of the dynamic boundary layer of the atmosphere, and (c) a dissipation term quadratic in the wave spectrum. Particular attention is given to a theoretical substantiation of the least investigated dissipation term. The advantages of the proposed source function are discussed by its comparison to the analogues used in the widespread models of the third generation WAM and WAVEWATCH. At the initial stage of assessing the merits of the proposed model, the results of its testing by the system of academic tests are presented. In the course of testing, some principals of this procedure are form...

  8. Configuration interaction wave functions: A seniority number approach

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  9. GPView: A program for wave function analysis and visualization.

    Science.gov (United States)

    Shi, Tian; Wang, Ping

    2016-11-01

    In this manuscript, we will introduce a recently developed program GPView, which can be used for wave function analysis and visualization. The wave function analysis module can calculate and generate 3D cubes for various types of molecular orbitals and electron density of electronic excited states, such as natural orbitals, natural transition orbitals, natural difference orbitals, hole-particle density, detachment-attachment density and transition density. The visualization module of GPView can display molecular and electronic (iso-surfaces) structures. It is also able to animate single trajectories of molecular dynamics and non-adiabatic excited state molecular dynamics using the data stored in existing files. There are also other utilities to extract and process the output of quantum chemistry calculations. The GPView provides full graphic user interface (GUI), so it very easy to use. It is available from website http://life-tp.com/gpview.

  10. Horizon Wave-Function and the Quantum Cosmic Censorship

    CERN Document Server

    Casadio, Roberto; Stojkovic, Dejan

    2015-01-01

    We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF) formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superxtremal case (with charge-to-mass ratio $\\alpha>1$), which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for $\\alpha^2 2$, and the uncertainty in the location of the horizon blows up at $\\alpha^2=2$, signalling that such an object is no more well-defined. This perhaps implies that a {\\em quantum\\/} Cosmic Censorhip might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of $\\sqrt{2}$) can exist.

  11. GPView: a program for wave function analysis and visualization

    CERN Document Server

    Shi, Tian

    2016-01-01

    In this manuscript, we will introduce a recently developed program GPView, which can be used for wave function analysis and visualization. The wave function analysis module can calculate and generate 3D cubes for various types of molecular orbitals and electron density related with electronic excited states, such as natural orbitals, natural transition orbitals, natural difference orbitals, hole-particle density, detachment-attachment density and transition density. The visualization module of GPView can display molecular and electronic (iso-surfaces) structures. It is also able to animate single trajectories of molecular dynamics and non-adiabatic excited state molecular dynamics using the data stored in existing files. There are also other utilities help to extract and process the output of quantum chemistry calculations. The GPView provides full graphic user interface (GUI) which makes it very easy to use. The software, manual and tutorials are available in the website http://www.life-tp.com/gpview.

  12. Horizon wave-function and the quantum cosmic censorship

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-07-01

    Full Text Available We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superextremal case (with charge-to-mass ratio α>1, which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for α22, and the uncertainty in the location of the horizon blows up at α2=2, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorship might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of 2 can exist.

  13. Reactive Scattering Wave Functions by Linear Combination of Arrangement Channels

    Institute of Scientific and Technical Information of China (English)

    邓从豪; 冯大诚; 蔡政亭

    1994-01-01

    The similarity and dissimilarity of reactive scattering wave functions and molecular orbitalby linear combination of atomic orbitals(LCAOMO)are examined.Based on the similarity a method is pro-posed to construct the reactive scattering wave functions by linear combination of arrangement channel wavefunctions(LCACSW).Based on the dissimilarity,it is shown that the combination coefficients can be deter-mined by solving s set of simultaneous algebraic equations.The elements of the reactive scattering matrix areshown to be related to the combination coefficients of open arrangement channels.The differential and totalreactive scattering cross-section derived by this method agrees completely with that derived by other meth-ods.

  14. Spin-orbit decomposition of ab initio nuclear wave functions

    Science.gov (United States)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  15. Anatomy of quantum critical wave functions in dissipative impurity problems

    Science.gov (United States)

    Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge

    2017-02-01

    Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.

  16. Lattice effects on Laughlin wave functions and parent Hamiltonians

    Science.gov (United States)

    Glasser, Ivan; Cirac, J. Ignacio; Sierra, Germán; Nielsen, Anne E. B.

    2016-12-01

    We investigate lattice effects on wave functions that are lattice analogs of bosonic and fermionic Laughlin wave functions with number of particles per flux ν =1 /q in the Landau levels. These wave functions are defined analytically on lattices with μ particles per lattice site, where μ may be different than ν . We give numerical evidence that these states have the same topological properties as the corresponding continuum Laughlin states for different values of q and for different fillings μ . These states define, in particular, particle-hole symmetric lattice fractional quantum Hall states when the lattice is half filled. On the square lattice it is observed that for q ≤4 this particle-hole symmetric state displays the topological properties of the continuum Laughlin state at filling fraction ν =1 /q , while for larger q there is a transition towards long-range ordered antiferromagnets. This effect does not persist if the lattice is deformed from a square to a triangular lattice, or on the kagome lattice, in which case the topological properties of the state are recovered. We then show that changing the number of particles while keeping the expression of these wave functions identical gives rise to edge states that have the same correlations in the bulk as the reference lattice Laughlin states but a different density at the edge. We derive an exact parent Hamiltonian for which all these edge states are ground states with different number of particles. In addition this Hamiltonian admits the reference lattice Laughlin state as its unique ground state of filling factor 1 /q . Parent Hamiltonians are also derived for the lattice Laughlin states at other fillings of the lattice, when μ ≤1 /q or μ ≥1 -1 /q and when q =4 also at half filling.

  17. Detecting topological order in a ground state wave function

    OpenAIRE

    2005-01-01

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, d_i, F^{ijk}_{lmn}, \\delta_{ijk}). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the ``topological entropy'' which directly measures the quantum dimension D = \\sum_i d^2_i.

  18. Wave functions in SUSY cosmological models with matter

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, C. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico); Rosales, J.J. [Facultad de Ingenieria Mecanica Electrica y Electronica, Universidad de Guanajuato, Prolongacion Tampico 912, Bellavista, Salamanca, Guanajuato (Mexico); Socorro, J. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico)]. E-mail: socorro@fisica.ugto.mx; Torres, J. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico); Tkach, V.I. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico)

    2005-06-06

    In this work we consider the n=2 supersymmetric superfield approach for the FRW cosmological model and the corresponding term of matter content, perfect fluid with barotropic state equation p={gamma}{rho}. We are able to obtain a normalizable wave function (at zero energy) of the universe. Besides, the mass parameter spectrum is found for the closed FRW case in the Schrodinger picture, being similar to those obtained by other methods, using a black hole system.

  19. Heavy quarkonia spectra using wave function with gluonic components

    OpenAIRE

    Bartnik, E. A.; Al-Nadary, H.

    2009-01-01

    We calculate the spectra of charmonium and bottomium in an approximation scheme which treats hard gluons perturbatively while soft gluons are expanded in a set of localized wave functions. Quark-antiquark and quark-antiquark-gluon sectors are included. Reasonable agreement with 2 parameters only is found but the spectra are too coulombic. Despite large coupling constant the admixture of the quark-antiquark-gluon sector is found to be remarkably small.

  20. Two-Variable Hermite Function as Quantum Entanglement of Harmonic Oscillator's Wave Functions

    Institute of Scientific and Technical Information of China (English)

    LU Hai-Liang; FAN Hong-Yi

    2007-01-01

    We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions.The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(r)Hm,n(μa1+, μa2+)|00〉, which is the minimum uncertainty state for sum squeezing, in 〈η| representation is calculated.

  1. Improved variational many-body wave function in light nuclei

    Science.gov (United States)

    Usmani, Q. N.; Singh, A.; Anwar, K.; Rawitscher, G.

    2009-09-01

    We propose and implement a simple method for improving the variational wave function of a many-body system. We have obtained a significant improvement in the binding energies, wave functions, and variance for the light nuclei H3, He4, and Li6, using the fully realistic Argonne (AV18) two-body and Urbana-IX (UIX) three-body interactions. The energy of He4 was improved by about 0.2 MeV and the Li6 binding energy was increased by ≈1.7 MeV compared to earlier variational Monte Carlo results. The latter result demonstrates the significant progress achieved by our method, and detailed analyses of the improved results are given. With central interactions the results are found to be in agreement with the “exact” calculations. Our study shows that the relative error in the many-body wave functions, compared to two-body pair correlations, increases rapidly at least proportionally to the number of pairs in the system. However, this error does not increase indefinitely since the pair interactions saturate owing to convergence of cluster expansion.

  2. Computational aspects of the continuum quaternionic wave functions for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Morais, J., E-mail: joao.pedro.morais@ua.pt

    2014-10-15

    Over the past few years considerable attention has been given to the role played by the Hydrogen Continuum Wave Functions (HCWFs) in quantum theory. The HCWFs arise via the method of separation of variables for the time-independent Schrödinger equation in spherical coordinates. The HCWFs are composed of products of a radial part involving associated Laguerre polynomials multiplied by exponential factors and an angular part that is the spherical harmonics. In the present paper we introduce the continuum wave functions for hydrogen within quaternionic analysis ((R)QHCWFs), a result which is not available in the existing literature. In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R{sup 3} and R{sup 4}). We prove that the (R)QHCWFs are orthonormal to one another. The representation of these functions in terms of the HCWFs are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of fundamental properties and further computation of the hydrogen-like atom transforms of the (R)QHCWFs are also discussed. We address all the above and explore some basic facts of the arising quaternionic function theory. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QHCWFs are new in the literature and have some consequences that are now under investigation.

  3. Love wave propagation in functionally graded piezoelectric material layer.

    Science.gov (United States)

    Du, Jianke; Jin, Xiaoying; Wang, Ji; Xian, Kai

    2007-03-01

    An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.

  4. Wave Function Structure in Two-Body Random Matrix Ensembles

    CERN Document Server

    Kaplan, L; Kaplan, Lev; Papenbrock, Thomas

    2000-01-01

    We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.

  5. OPERA Collaboration have observed phase speed of neutrino wave function

    CERN Document Server

    Li, Shi-Yuan

    2011-01-01

    First we call the attention that velocity defined by ratio between some intervals of space and time respectively is sometimes ambiguous, in the framework of quantum theory. Velocity in general is not possible to be well defined as some generator of certain space-time symmetry operation. Then by analyzing the OPERA experiment we show that the OPERA Collaboration may have measured the phase speed of the neutrino wave function. Employing a very (maybe too) simple model which is just a reproduction from Brillouin's classical book, we demonstrate the phase velocity and group velocity. These are just a qualitative illustration rather than aiming to quantitively explain the OPERA data.

  6. Baryon Wave Functions in Covariant Relativistic Quark Models

    CERN Document Server

    Dillig, M

    2002-01-01

    We derive covariant baryon wave functions for arbitrary Lorentz boosts. Modeling baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to a covariant 3-dimensional form by projecting on the relative quark-diquark energy. Guided by a phenomenological multigluon exchange representation of a covariant confining kernel, we derive for practical applications explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly comment on the interplay of boosts and center-of-mass corrections in relativistic quark models.

  7. New Forms of Deuteron Equations and Wave Function Representations

    CERN Document Server

    Fachruddin, I; Glöckle, W; Elster, Ch.

    2001-01-01

    A recently developed helicity basis for nucleon-nucleon (NN) scattering is applied to th e deuteron bound state. Here the total spin of the deuteron is treated in such a helicity representation. For the bound state, two sets of two coupled eigenvalue equations are developed, where the amplitudes depend on two and one variable, respectively. Numerical illustrations based on the realistic Bonn-B NN potential are given. In addition, an `operator form' of the deuteron wave function is presented, and several momentum dependent spin densities are derived and shown, in which the angular dependence is given analytically.

  8. Cosmic Wave Functions with the Brans-Dicke Theory

    Institute of Scientific and Technical Information of China (English)

    ZHU Zong-Hong

    2000-01-01

    Using the standard Wentzel-Kramers-Brillouin method, the Wheeler-De Witt equation for the Brans-Dicke theory is solved under three kinds of boundary conditions (proposed by Hattie-Hawking, Vilenkin and Linde, respectively). It is found that, although the gravitational and cosmological"constants" are dynamical and timedependent in the classical models, they will acquire constant values when the universe comes from the quantum creation, and that in particular, the amplitude of the resulting wave function under Linde or Vilenkin boundary conditions reaches its maximum if the cosmological constant is the minimum.

  9. On the Convergence to Ergodic Behaviour of Quantum Wave Functions

    CERN Document Server

    Jacquod, P; Jacquod, Ph.

    1996-01-01

    We study the decrease of fluctuations of diagonal matrix elements of observables and of Husimi densities of quantum mechanical wave functions around their mean value upon approaching the semi-classical regime ($\\hbar strongly chaotic regime. We show that the fluctuations are Gaussian distributed, with a width $\\sigma^2$ decreasing as the square root of Planck's constant. This is consistent with Random Matrix Theory (RMT) predictions, and previous studies on these fluctuations. We further study the width of the probability distribution of $\\hbar$-dependent fluctuations and compare it to the Gaussian Orthogonal Ensemble (GOE) of RMT.

  10. Electromagnetism and multiple-valued loop-dependent wave functionals

    CERN Document Server

    Leal, Lorenzo

    2009-01-01

    We quantize the Maxwell theory in the presence of a electric charge in a "dual" Loop Representation, i.e. a geometric representation of magnetic Faraday's lines. It is found that the theory can be seen as a theory without sources, except by the fact that the wave functional becomes multivalued. This can be seen as the dual counterpart of what occurs in Maxwell theory with a magnetic pole, when it is quantized in the ordinary Loop Representation. The multivaluedness can be seen as a result of the multiply-connectedness of the configuration space of the quantum theory.

  11. Relativistic Covariance and Quark-Diquark Wave Functions

    CERN Document Server

    Dillig, M

    2006-01-01

    We derive covariant wave functions for hadrons composed of two constituents for arbitrary Lorentz boosts. Focussing explicitly on baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to covariant 3-dimensional forms by projecting on the relative quark-diquark energy. Guided by a phenomenological multi gluon exchange representation of covariant confining kernels, we derive explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly sketch implications of breaking the spherical symmetry of the ground state and the transition from the instant form to the light cone via the infinite momentum frame.

  12. Black hole mass function from gravitational wave measurements

    Science.gov (United States)

    Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc

    2017-05-01

    We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.

  13. Stochastic wave function approach to the calculation of multitime correlation functions of open quantum systems

    CERN Document Server

    Breuer, H P; Petruccione, F; Breuer, Heinz-Peter; Kappler, Bernd; Petruccione, Francesco

    1997-01-01

    Within the framework of probability distributions on projective Hilbert space a scheme for the calculation of multitime correlation functions is developed. The starting point is the Markovian stochastic wave function description of an open quantum system coupled to an environment consisting of an ensemble of harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix elements of reduced Heisenberg picture operators and general time-ordered correlation functions can be expressed by time-symmetric expectation values of extended operators in a doubled Hilbert space. This representation allows the construction of a stochastic process in the doubled Hilbert space which enables the determination of arbitrary matrix elements and correlation functions. The numerical efficiency of the resulting stochastic simulation algorithm is investigated and compared with an alternative Monte Carlo wave function method proposed first by Dalibard et al. [Phys. Rev. Lett. {\\bf 68}, 580 (1992)]. By means of a stan...

  14. Extracting Supersymmetry-Breaking Effects from Wave-Function Renormalization

    CERN Document Server

    Giudice, Gian Francesco

    1998-01-01

    We show that in theories in which supersymmetry breaking is communicated by renormalizable perturbative interactions, it is possible to extract the soft terms for the observable fields from wave-function renormalization. Therefore all the information about soft terms can be obtained from anomalous dimensions and beta functions, with no need to further compute any Feynman diagram. This method greatly simplifies calculations which are rather involved if performed in terms of component fields. For illustrative purposes we reproduce known results of theories with gauge-mediated supersymmetry breaking. We then use our method to obtain new results of phenomenological importance. We calculate the next-to-leading correction to the Higgs mass parameters, the two-loop soft terms induced by messenger-matter superpotential couplings, and the soft terms generated by messengers belonging to vector supermultiplets.

  15. Quantum canonical tensor model and an exact wave function

    CERN Document Server

    Sasakura, Naoki

    2013-01-01

    Tensor models in various forms are being studied as models of quantum gravity. Among them the canonical tensor model has a canonical pair of rank-three tensors as dynamical variables, and is a pure constraint system with first-class constraints. The Poisson algebra of the first-class constraints has structure functions, and provides an algebraically consistent way of discretizing the Dirac first-class constraint algebra for general relativity. This paper successfully formulates the Wheeler-DeWitt scheme of quantization of the canonical tensor model; the ordering of operators in the constraints is determined without ambiguity by imposing Hermiticity and covariance on the constraints, and the commutation algebra of constraints takes essentially the same from as the classical Poisson algebra, i.e. is first-class. Thus one could consistently obtain, at least locally in the configuration space, wave functions of "universe" by solving the partial differential equations representing the constraints, i.e. the Wheeler...

  16. The Black Hole Mass Function from Gravitational Wave Measurements

    CERN Document Server

    Kovetz, Ely D; Breysse, Patrick C; Kamionkowski, Marc

    2016-01-01

    We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parameterizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift-dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10% accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass ...

  17. Precise wave-function engineering with magnetic resonance

    Science.gov (United States)

    Wigley, P. B.; Starkey, L. M.; Szigeti, S. S.; Jasperse, M.; Hope, J. J.; Turner, L. D.; Anderson, R. P.

    2017-07-01

    Controlling quantum fluids at their fundamental length scale will yield superlative quantum simulators, precision sensors, and spintronic devices. This scale is typically below the optical diffraction limit, precluding precise wave-function engineering using optical potentials alone. We present a protocol to rapidly control the phase and density of a quantum fluid down to the healing length scale using strong time-dependent coupling between internal states of the fluid in a magnetic field gradient. We demonstrate this protocol by simulating the creation of a single stationary soliton and double soliton states in a Bose-Einstein condensate with control over the individual soliton positions and trajectories, using experimentally feasible parameters. Such states are yet to be realized experimentally, and are a path towards engineering soliton gases and exotic topological excitations.

  18. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  19. Norm of Bethe Wave Function as a Determinant

    CERN Document Server

    Korepin, Vladimir E

    2009-01-01

    This is a historical note. Bethe Ansatz solvable models are considered, for example XXZ Heisenberg anti-ferromagnet and Bose gas with delta interaction. Periodic boundary conditions lead to Bethe equation. The square of the norm of Bethe wave function is equal to a determinant of linearized system of Bethe equations (determinant of matrix of second derivatives of Yang action). The proof was first published in Communications in Mathematical Physics, vol 86, page 391 in l982. Also domain wall boundary conditions for 6 vertex model were discovered in the same paper [see Appendix D]. These play an important role for algebraic combinatorics: alternating sign matrices, domino tiling and plane partition. Many publications are devoted to six vertex model with domain wall boundary conditions.

  20. From Bethe-Salpeter Wave functions to Generalised Parton Distributions

    Science.gov (United States)

    Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2016-09-01

    We review recent works on the modelling of generalised parton distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation.

  1. From Bethe-Salpeter Wave Functions to Generalised Parton Distributions

    CERN Document Server

    Mezrag, C; Rodriguez-Quintero, J

    2016-01-01

    We review recent works on the modelling of Generalised Parton Distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation.

  2. The wave function essays on the metaphysics of quantum mechanics

    CERN Document Server

    Albert, David Z

    2013-01-01

    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and persons? This collection includes a comprehensive introduction with a history of quantum mechanics and the debate over its metaphysical interpretation focusing especially on the main realist alternatives.

  3. Semiclassical-wave-function perspective on high-harmonic generation

    Science.gov (United States)

    Mauger, François; Abanador, Paul M.; Lopata, Kenneth; Schafer, Kenneth J.; Gaarde, Mette B.

    2016-04-01

    We introduce a semiclassical-wave-function (SCWF) model for strong-field physics and attosecond science. When applied to high-harmonic generation (HHG), this formalism allows one to show that the natural time-domain separation of the contribution of ionization, propagation, and recollisions to the HHG process leads to a frequency-domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B 43, 122001 (2010), 10.1088/0953-4075/43/12/122001]. Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization, which also allows one to attribute individual contributions to the spectrum to the underlying trajectories.

  4. The one loop gluon emission light cone wave function

    CERN Document Server

    Lappi, Tuomas

    2016-01-01

    Light cone perturbation theory has become an essential tool to calculate cross sections for various small-$x$ dilute-dense processes such as deep inelastic scattering and forward proton-proton and proton-nucleus collisions. Here we set out to do one loop calculations in an explicit helicity basis in the four dimensional helicity scheme. As a first process we calculate light cone wave function for one gluon emission to one-loop order in Hamiltonian perturbation theory on the light front. We regulate ultraviolet divergences with transverse dimensional regularization and soft divergences with using a cut-off on longitudinal momentum. We show that when all the renormalization constants are combined, the ultraviolet divergences can be absorbed into the standard QCD running coupling constant, and give an explicit expression for the remaining finite part.

  5. Topological wave functions and the 4D-5D lift

    CERN Document Server

    Gao, Peng

    2008-01-01

    We revisit the holomorphic anomaly equations satisfied by the topological string amplitude from the perspective of the 4D-5D lift, in the context of ``magic'' N=2 supergravity theories. In particular, we interpret the Gopakumar-Vafa relation between 5D black hole degeneracies and the topological string amplitude as the result of a canonical transformation from 4D to 5D charges. Moreover we use the known Bekenstein-Hawking entropy of 5D black holes to constrain the asymptotic behavior of the topological wave function at finite topological coupling but large K\\"ahler classes. In the process, some subtleties in the relation between 5D black hole degeneracies and the topological string amplitude are uncovered, but not resolved. Finally we extend these considerations to the putative one-parameter generalization of the topological string amplitude, and identify the canonical transformation as a Weyl reflection inside the 3D duality group.

  6. Dominant partition method. [based on a wave function formalism

    Science.gov (United States)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  7. Multi-Determinant Wave-functions in Quantum Monte Carlo

    CERN Document Server

    Morales, M A; Clark, B K; Kim, J; Scuseria, G; 10.1021/ct3003404

    2013-01-01

    Quantum Monte Carlo (QMC) methods have received considerable attention over the last decades due to their great promise for providing a direct solution to the many-body Schrodinger equation in electronic systems. Thanks to their low scaling with number of particles, QMC methods present a compelling competitive alternative for the accurate study of large molecular systems and solid state calculations. In spite of such promise, the method has not permeated the quantum chemistry community broadly, mainly because of the fixed-node error, which can be large and whose control is difficult. In this Perspective, we present a systematic application of large scale multi-determinant expansions in QMC, and report on its impressive performance with first row dimers and the 55 molecules of the G1 test set. We demonstrate the potential of this strategy for systematically reducing the fixed-node error in the wave function and for achieving chemical accuracy in energy predictions. When compared to traditional quantum chemistr...

  8. Unitary Networks from the Exact Renormalization of Wave Functionals

    CERN Document Server

    Fliss, Jackson R; Parrikar, Onkar

    2016-01-01

    The exact renormalization group (ERG) for $O(N)$ vector models (at large $N$) on flat Euclidean space can be interpreted as the bulk dynamics corresponding to a holographically dual higher spin gauge theory on $AdS_{d+1}$. This was established in the sense that at large $N$ the generating functional of correlation functions of single trace operators is reproduced by the on-shell action of the bulk higher spin theory, which is most simply presented in a first-order (phase space) formalism. In this paper, we extend the ERG formalism to the wave functionals of arbitrary states of the $O(N)$ vector model at the free fixed point. We find that the ERG flow of the ground state and a specific class of excited states is implemented by the action of unitary operators which can be chosen to be local. Consequently, the ERG equations provide a continuum notion of a tensor network. We compare this tensor network with the entanglement renormalization networks, MERA, and its continuum version, cMERA, which have appeared rece...

  9. Wave-function and density functional theory studies of dihydrogen complexes

    CERN Document Server

    Fabiano, E; Della Sala, F

    2014-01-01

    We performed a benchmark study on a series of dihydrogen bond complexes and constructed a set of reference bond distances and interaction energies. The test set was employed to assess the performance of several wave-function correlated and density functional theory methods. We found that second-order correlation methods describe relatively well the dihydrogen complexes. However, for high accuracy inclusion of triple contributions is important. On the other hand, none of the considered density functional methods can simultaneously yield accurate bond lengths and interaction energies. However, we found that improved results can be obtained by the inclusion of non-local exchange contributions.

  10. On the Galilean transformation of the few-electron wave functions

    CERN Document Server

    Frolov, Alexei M

    2013-01-01

    The Galilean transformations of the few-electron atomic wave functions are considered. We discuss the few-electron wave functions constructed in the model of independent electrons as well as the truly correlated (or highly accurate) wave functions. Results of our analysis are applied to determine the probability of formation of the negatively charged tritium/protium ions during the nuclear $(n,{}^{3}$He$;t,p)-$reaction of the helium-3 atoms with thermal/slow neutrons.

  11. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  12. Metal-Insulator Transition of Solid Hydrogen by the Antisymmetric Shadow Wave Function

    CERN Document Server

    Calcavecchia, Francesco

    2016-01-01

    We present an improved shadow wave function approach to quantum Monte Carlo for large-scale fermionic systems. It is based on employing the antisymmetric shadow wave function in conjunction with the Gaussian determinant method to reduce the variance and an enhanced stochastic reconfiguration scheme to efficiently optimize the trail wave function, as well as refined twist averaged boundary conditions and periodic coordinates techniques. The predictive power of this approach is demonstrated by revisiting the pressure-induced metal-insulator-transition of solid hydrogen. It is found that the ameliorated accuracy of the antisymmetric shadow wave function results in a significantly increased transition pressure.

  13. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    Institute of Scientific and Technical Information of China (English)

    WANGKe-Lin; WANShao-Long; CHENQing; XUFei

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we use non-Abelian Berry phase to anaJyze the statistics of this membrane wave function. Our results show that the membrane wave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensiona space than 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  14. Multidimensional Wave Field Signal Theory: Transfer Function Relationships

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2012-01-01

    Full Text Available The transmission of information by propagating or diffusive waves is common to many fields of engineering and physics. Such physical phenomena are governed by a Helmholtz (real wavenumber or pseudo-Helmholtz (complex wavenumber equation. Since these equations are linear, it would be useful to be able to use tools from signal theory in solving related problems. The aim of this paper is to derive multidimensional input/output transfer function relationships in the spatial domain for these equations in order to permit such a signal theoretic approach to problem solving. This paper presents such transfer function relationships for the spatial (not Fourier domain within appropriate coordinate systems. It is shown that the relationships assume particularly simple and computationally useful forms once the appropriate curvilinear version of a multidimensional spatial Fourier transform is used. These results are shown for both real and complex wavenumbers. Fourier inversion of these formulas would have applications for tomographic problems in various modalities. In the case of real wavenumbers, these inversion formulas are presented in closed form, whereby an input can be calculated from a given or measured wavefield.

  15. The effects of extracorporeal shock wave therapy on frozen shoulder patients’ pain and functions

    OpenAIRE

    2015-01-01

    [Purpose] The present study was conducted to examine the effects of extracorporeal shock wave therapy on frozen shoulder patients’ pain and functions. [Subjects] In the present study, 30 frozen shoulder patients were divided into two groups: an extracorporeal shock wave therapy group of 15 patients and a conservative physical therapy group of 15 patients. [Methods] Two times per week for six weeks, the extracorporeal shock wave therapy group underwent extracorporeal shock wave therapy, and th...

  16. Wave function of the Universe in the early stage of its evolution

    CERN Document Server

    Maydanyuk, Sergei P

    2007-01-01

    In quantum cosmological models, constructed in the Friedmann-Robertson-Walker metrics, a nucleation of Universe with its further extension is described as a tunneling transition (or leaving out) of wave through effective barrier between regions with small and large values of scale factor a at nonzero (or zero) energy. An approach for description of tunneling with leaving outside consists in construction of wave function under choice of needed boundary condition. There are different ways for definition of the boundary condition that leads to different estimations of barrier penetrability and duration of the Universe nucleation. In given paper, with a purpose to describe a process of leaving of the wave from the tunneling region outside accurately as possible, to construct the total wave function on the basis of its two partial solutions unambiguously, the tunneling boundary condition (the total wave function must represent only the wave outgoing outside) is used at point of the wave leaving from the barrier ou...

  17. Shadow wave-function variational calculations of crystalline and liquid phases of 4He

    Science.gov (United States)

    Vitiello, S. A.; Runge, K. J.; Chester, G. V.; Kalos, M. H.

    1990-07-01

    A new class of variational wave functions for boson systems, shadow wave functions, is used to investigate the properties of solid and liquid 4He. The wave function is translationally invariant and symmetric under particle interchange. In principle, the calculations for the crystalline phase do not require the use of any auxiliary lattice. Using the Metropolis Monte Carlo algorithm, we show that the additional variational degrees of freedom in the wave function lower the energy significantly. This wave function also allows the crystalization of an equilibrated liquid phase when a crystalline seed is used. The pair correlation function and structure factor S(k) are determined in the liquid phase. The condensate fraction is calculated as well. Results are given for the single-particle distribution function around the lattice positions in the solid phase.

  18. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    Science.gov (United States)

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  19. Covariant nucleon wave function with S, D, and P-state components

    CERN Document Server

    Gross, Franz; Pena, M T

    2012-01-01

    Expressions for the nucleon wave functions in the covariant spectator theory (CST) are derived. The nucleon is described as a system with a off-mass-shell constituent quark, free to interact with an external probe, and two spectator constituent quarks on their mass shell. Integrating over the internal momentum of the on-mass-shell quark pair allows us to derive an effective nucleon wave function that can be written only in terms of the quark and diquark (quark-pair) variables. The derived nucleon wave function includes contributions from S, P and D-waves.

  20. Covariant nucleon wave function with S, D, and P-state components

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, G. Ramalho, M. T. Pena

    2012-05-01

    Expressions for the nucleon wave functions in the covariant spectator theory (CST) are derived. The nucleon is described as a system with a off-mass-shell constituent quark, free to interact with an external probe, and two spectator constituent quarks on their mass shell. Integrating over the internal momentum of the on-mass-shell quark pair allows us to derive an effective nucleon wave function that can be written only in terms of the quark and diquark (quark-pair) variables. The derived nucleon wave function includes contributions from S, P and D-waves.

  1. Experimental determination of wave function spread in Si inversion layers

    Science.gov (United States)

    Majumdar, Amlan

    2010-08-01

    We have experimentally determined the extent of wave function spread TQM in Si inversion layers on (100)-oriented surface in metal-oxide-semiconductor field-effect transistors (MOSFETs) using the back gate bias sensitivity of front gate threshold voltage of planar fully depleted silicon-on-insulator (SOI) MOSFETs. We show that the sum of TQM for large positive and negative F is an electrically determined value of the SOI thickness TSI. We find that the electric field dependence of TQM for electrons and holes is given by TQM˜F-0.4 and F-0.6, respectively, at high electric fields with TQM being larger for holes at a given F. Larger TQM for holes can be explained by the fact that holes have a smaller effective mass along the confinement direction than electrons in (100) Si. The field dependences of TQM are, however, not consistent with the results of variational calculations that assume single-subband occupancy and predict TQM˜F-1/3. The discrepancy likely indicates that the effects of multiple-subband occupation are significant at room temperature, especially for holes.

  2. Multiple-resonance local wave functions for accurate excited states in quantum Monte Carlo

    NARCIS (Netherlands)

    Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia

    2016-01-01

    We introduce a novel class of local multideterminant Jastrow–Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to

  3. The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics

    CERN Document Server

    Gao, Shan

    2016-01-01

    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of (incomplete) knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical state does it represent? In this book, I aim to make sense of the wave function in quantum mechanics and find the ontological content of the theory. The book can be divided into three parts. The first part addresses the question of the nature of the wave function (Chapters 1-5). After giving a comprehensive and critical review of the competing views of the wave function, I present a new argument for the ontic view in terms of protective measurements. In addition, I also analyze the origin of the wave function by derivin...

  4. Short-range spin- and pair-correlations : a variational wave-function

    NARCIS (Netherlands)

    van der Marel, D

    2004-01-01

    A many-body wave-function is postulated, which is sufficiently general to describe superconducting pair-correlations, and/or spin-correlations, which can occur either as long-range order or as finite-range correlations. The proposed wave-function appears to summarize some of the more relevant aspect

  5. Structure of the channeling electrons wave functions under dynamical chaos conditions

    CERN Document Server

    Shul'ga, N F; Tarnovsky, A I; Isupov, A Yu

    2015-01-01

    The stationary wave functions of fast electrons axially channeling in the silicon crystal near [110] direction have been found numerically for integrable and non-integrable cases, for which the classical motion is regular and chaotic, respectively. The nodal structure of the wave functions in the quasi-classical region, where the energy levels density is high, is agreed with quantum chaos theory predictions.

  6. Coherent cooling of atoms in a frequency-modulated standing laser wave: wave function and stochastic trajectory approaches

    CERN Document Server

    Argonov, Victor

    2013-01-01

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field may suppress packet splitting for some atoms having specific velocities in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. Also we demonstrate that modulated field can not only trap, but also cool the atoms. We perform a numerical experiment with a large atomic ensebmble having wide initial velocity and energy distribution. During the experiment, most of atoms leave the wave while trapped atoms have narrow energy distribution

  7. Exact density functional and wave function embedding schemes based on orbital localization

    Science.gov (United States)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  8. Realism and instrumentalism about the wave function. How should we choose?

    CERN Document Server

    Dorato, Mauro

    2014-01-01

    The main claim of the paper is that one can be 'realist' (in some sense) about quantum mechanics without requiring any form of realism about the wave function. We begin by discussing various forms of realism about the wave function, namely Albert's configuration-space realism, Duerr Zanghi and Goldstein's nomological realism about the wave function, Esfeld's dispositional reading of the wave function and Pusey Barrett and Rudolph's realism about the quantum state. By discussing the articulation of these four positions, and their interrelation, we conclude that instrumentalism about the wave function is by itself not sufficient to choose one over the other interpretations of quantum mechanics, thereby confirming in a different way the indetermination of the metaphysical interpretations of quantum mechanics.

  9. Fractal dimensions of wave functions and local spectral measures on the Fibonacci chain

    Science.gov (United States)

    Macé, Nicolas; Jagannathan, Anuradha; Piéchon, Frédéric

    2016-05-01

    We present a theoretical framework for understanding the wave functions and spectrum of an extensively studied paradigm for quasiperiodic systems, namely the Fibonacci chain. Our analytical results, which are obtained in the limit of strong modulation of the hopping amplitudes, are in good agreement with published numerical data. In the perturbative limit, we show a symmetry of wave functions under permutation of site and energy indices. We compute the wave-function renormalization factors and from them deduce analytical expressions for the fractal exponents corresponding to individual wave functions, as well as their global averages. The multifractality of wave functions is seen to appear at next-to-leading order in ρ . Exponents for the local spectral density are given, in extremely good accord with numerical calculations. Interestingly, our analytical results for exponents are observed to describe the system rather well even for values of ρ well outside the domain of applicability of perturbation theory.

  10. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model

    Directory of Open Access Journals (Sweden)

    L. Sun

    2007-10-01

    Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.

  11. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  12. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    Institute of Scientific and Technical Information of China (English)

    XU Fei; WANG Ke-Lin; WAN Shao-Long; CHEN Qing

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we usenon-Abelian Berry phase to analyze the statistics of this membrane wave function. Our results show that the membranewave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensional spacethan 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  13. Detection of gravitational waves in Michelson interferometer by the use of second order correlation functions

    CERN Document Server

    Ben-Aryeh, Y

    2006-01-01

    The possibility of measuring the second order correlation function of the gravitational waves detectors' currents or photonumbers, and the observation of the gravitational signals by using a spectrum analyzer is discussed. The method is based on complicated data processing and is expected to be efficient for coherent periodic gravitational waves. It is suggested as an alternative method to the conventional one which is used now in the gravitational waves observatories.

  14. Ocean wave-radar modulation transfer functions from the West Coast experiment

    Science.gov (United States)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  15. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices.

  16. Application of wave-shape functions and Synchrosqueezing transform to pulse signal analysis

    CERN Document Server

    Wu, Hau-tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang

    2015-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and study the pulse wave signal. Based on the wave shape function model and SST, we extract features, called the spectral pulse signature, based on the functional regression technique, to characterize the hemodynamics from the pulse wave signals. To demonstrate how the algorithm and the extracted features work, we study the radial pulse wave signal recorded by the sphygmomanometer from normal subjects and patients with congestive heart failure. The analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. In addition, it shows that different positions of the radial artery contain significant different information, which is compatible with the empirical conclusion of the pulse diagnosis in the traditional Chinese medicine.

  17. The realization of the wave function collapse in the linguistic interpretation of quantum mechanics

    CERN Document Server

    Ishikawa, Shiro

    2015-01-01

    Recently I proposed the linguistic interpretation of quantum mechanics, which is characterized as the linguistic turn of the Copenhagen interpretation of quantum mechanics. This turn from physics to language does not only extend quantum theory to classical theory but also yield the quantum mechanical world view. Although the wave function collapse is prohibited in the linguistic interpretation, in this paper I show that the phenomenon like wave function collapse can be realized in the linguistic interpretation. And furthermore, I propose the justification of the von Neumann-L\\"uders projection postulate. After all, I conclude that the wave function collapse should not be adopted in the Copenhagen interpretation.

  18. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  19. A nonorthogonal state-interaction approach for matrix product state wave functions

    CERN Document Server

    Knecht, Stefan; Autschbach, Jochen; Reiher, Markus

    2016-01-01

    We present a state-interaction approach for matrix product state (MPS) wave functions in a nonorthogonal molecular orbital basis. Our approach allows us to calculate for example transition and spin-orbit coupling matrix elements between arbitrary electronic states provided that they share the same one-electron basis functions and active orbital space, respectively. The key element is the transformation of the MPS wave functions of different states from a nonorthogonal to a biorthonormal molecular orbital basis representation exploiting a sequence of non-unitary transformations following a proposal by Malmqvist (Int. J. Quantum Chem. 30, 479 (1986)). This is well-known for traditional wave-function parametrizations but has not yet been exploited for MPS wave functions.

  20. Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1974-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.

  1. Functionally graded piezoelectric materials for modal transducers for exciting bulk and surface acoustic waves.

    Science.gov (United States)

    Yang, Jiashi; Jin, Zhihe; Li, Jiangyu

    2008-07-01

    We show that functionally graded piezoelectric materials can be used to make modal actuators through theoretical analyses of the excitation of extensional motion in an elastic rod and Rayleigh surface waves over an elastic half-plane. The results suggest alternatives with certain advantages for the excitation of bulk and surface acoustic waves.

  2. A Stream Function Theory Based Calculation of Wave Kinematics for Very Steep Waves Using a Novel Non-linear Stretching Technique

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak

    2016-01-01

    A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...

  3. Rogue Waves of Nonlinear Schrödinger Equation with Time-Dependent Linear Potential Function

    Directory of Open Access Journals (Sweden)

    Ni Song

    2016-01-01

    Full Text Available The rogue waves of the nonlinear Schrödinger equation with time-dependent linear potential function are investigated by using the similarity transformation in this paper. The first-order and second-order rogue waves solutions are obtained and the nonlinear dynamic behaviors of these solutions are discussed in detail. In addition, the amplitudes of the rogue waves under the effect of the gravity field and external magnetic field changing with the time are analyzed by using numerical simulation. The results can be used to study the matter rogue waves in the Bose-Einstein condensates and other fields of nonlinear science.

  4. Potential applications of low-energy shock waves in functional urology.

    Science.gov (United States)

    Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi

    2017-08-01

    A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.

  5. Characterizing the parent Hamiltonians for a complete set of orthogonal wave functions: An inverse quantum problem

    Science.gov (United States)

    Ramezanpour, A.

    2016-06-01

    We study the inverse problem of constructing an appropriate Hamiltonian from a physically reasonable set of orthogonal wave functions for a quantum spin system. Usually, we are given a local Hamiltonian and our goal is to characterize the relevant wave functions and energies (the spectrum) of the system. Here, we take the opposite approach; starting from a reasonable collection of orthogonal wave functions, we try to characterize the associated parent Hamiltonians, to see how the wave functions and the energy values affect the structure of the parent Hamiltonian. Specifically, we obtain (quasi) local Hamiltonians by a complete set of (multilayer) product states and a local mapping of the energy values to the wave functions. On the other hand, a complete set of tree wave functions (having a tree structure) results to nonlocal Hamiltonians and operators which flip simultaneously all the spins in a single branch of the tree graph. We observe that even for a given set of basis states, the energy spectrum can significantly change the nature of interactions in the Hamiltonian. These effects can be exploited in a quantum engineering problem optimizing an objective functional of the Hamiltonian.

  6. Interpolated wave functions for nonadiabatic simulations with the fixed-node quantum Monte Carlo method

    CERN Document Server

    Tubman, Norm; Hammes-Schiffer, Sharon; Ceperley, David

    2016-01-01

    Simulating nonadiabatic effects with many-body wave function approaches is an open field with many challenges. Recent interest has been driven by new algorithmic developments and improved theoretical understanding of properties unique to electron-ion wave functions. Fixed-node diffusion Monte Caro is one technique that has shown promising results for simulating electron-ion systems. In particular, we focus on the CH molecule for which previous results suggested a relatively significant contribution to the energy from nonadiabatic effects. We propose a new wave function ansatz for diatomic systems which involves interpolating the determinant coefficients calculated from configuration interaction methods. We find this to be an improvement beyond previous wave function forms that have been considered. The calculated nonadiabatic contribution to the energy in the CH molecule is reduced compared to our previous results, but still remains the largest among the molecules under consideration.

  7. Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.

    Science.gov (United States)

    Branson, David

    1979-01-01

    Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)

  8. The meaning of the wave function in search of the ontology of quantum mechanics

    CERN Document Server

    Gao, Shan

    2017-01-01

    At the heart of quantum mechanics lies the wave function, a powerful but mysterious mathematical object which has been a hot topic of debate from its earliest stages. Covering much of the recent debate and providing a comprehensive and critical review of competing approaches, this ambitious text provides new, decisive proof of the reality of the wave function. Aiming to make sense of the wave function in quantum mechanics and to find the ontological content of the theory, this book explores new ontological interpretations of the wave function in terms of random discontinuous motion of particles. Finally, the book investigates whether the suggested quantum ontology is complete in solving the measurement problem and if it should be revised in the relativistic domain. A timely addition to the literature on the foundations of quantum mechanics, this book is of value to students and researchers with an interest in the philosophy of physics. Presents a concise introduction to quantum mechanics, including the c...

  9. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    Science.gov (United States)

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  10. Many-body nodal hypersurface and domain averages for correlated wave functions

    CERN Document Server

    Hu, Shuming; Mitas, Lubos

    2013-01-01

    We outline the basic notions of nodal hypersurface and domain averages for antisymmetric wave functions. We illustrate their properties and analyze the results for a few electron explicitly solvable cases and discuss possible further developments.

  11. Weak Equivalence Principle and Propagation of the Wave Function in Quantum Mechanics

    CERN Document Server

    de Matos, Clovis Jacinto

    2010-01-01

    The propagation of the wave function of a particle is characterised by a group and a phase velocity. The group velocity is associated with the particle's classical velocity, which is always smaller than the speed of light, and the phase velocity is associated with the propagation speed of the wave function phase and is treated as being unphysical, since its value is always greater than the speed of light. Here we show, using Sciama's Machian formulation of rest mass energy, that this physical interpretation, for the group and the phase velocity of the wave function, is only valid if the weak equivalence principle strictly holds for the propagating particle, except for the photon. In case this constraint is released the phase velocity of the wave function could acquire a physical meaning in quantum condensates.

  12. Globally singularity-free semi-classical wave functions in closed form

    CERN Document Server

    Jung, C; Seligman, T H

    2000-01-01

    We use a factorization technique and representation of canonical transformations to construct globally valid closed form expressions without singularities of semi-classical wave functions for arbitrary smooth potentials over a one-dimensional position space.

  13. Transformation between harmonic-oscillator wave functions in different coordinate bases

    Energy Technology Data Exchange (ETDEWEB)

    Davies, K.T.R.; Krieger, S.J.

    1981-10-01

    Coefficients are derived for transformations between harmonic oscillator wave functions in different coordinate representations. Such coefficients have been found especially useful in performing static Hartree-Fock calculations for nuclei of widely varying shapes.

  14. Revival of the Phase-Amplitude Description of a Quantum-Mechanical Wave Function

    Science.gov (United States)

    Rawitscher, George

    2017-01-01

    The phase-amplitude description of a wave function is formulated by means of a new linear differential-integral equation, which is valid in the region of turning points. A numerical example for a Coulomb potential is presented.

  15. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    Energy Technology Data Exchange (ETDEWEB)

    McKechnie, Scott [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Booth, George H. [Theory and Simulation of Condensed Matter, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Cohen, Aron J. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Cole, Jacqueline M., E-mail: jmc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-05-21

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  16. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    Science.gov (United States)

    McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.

    2015-05-01

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  17. Shoulder function after extracorporal shock wave therapy for calcific tendinitis.

    Science.gov (United States)

    Rompe, J D; Bürger, R; Hopf, C; Eysel, P

    1998-01-01

    We report a controlled, prospective study that explored the effect of extracorporal shock waves of low- versus high-energy density in patients with chronic shoulder pain and calcific tendinitis. We assigned at random 100 patients who had had calcific tendinitis for more than 12 months to 2 groups to receive shock wave therapy either of a low- or high-energy density. Group 1 received 1500 impulses of 0.06 mJ/mm2, whereas group 2 received 1500 impulses of 0.28 mJ/mm2. Unlike group 1, in which the shock wave application could be performed without local anesthesia, all patients in group 2 required brachial plexus anesthesia. The patients were reviewed at 6 and 24 weeks. Partial or complete disintegration of the calcareous deposit was observed in 50% of the patients in group 1 and 64% of the patients in group 2 (P < .01). According to the Constant score, ratings increased from 48 to 71 points in group 1 (P < .001) and from 53 to 88 in group 2 (P < .001) (out of a total possible 100 points), the end values of both groups differing significantly (P < .01). After 24 weeks, 52% of the patients in group 1 rated the results of treatment as good or excellent, compared with 68% in group 2 (P < .01). No improvement was reported by 24% versus 10%, respectively, at the 24-week follow-up.

  18. Structure of the channeling electrons wave functions under dynamical chaos conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shul’ga, N.F. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., Kharkov 61108 (Ukraine); V.N. Karazin National University, 4, Svodody Sq., Kharkov 61022 (Ukraine); Syshchenko, V.V., E-mail: syshch@yandex.ru [Belgorod National Research University, 85, Pobedy St., Belgorod 308015 (Russian Federation); Tarnovsky, A.I. [Belgorod National Research University, 85, Pobedy St., Belgorod 308015 (Russian Federation); Isupov, A.Yu. [Laboratory of High Energy Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-01

    The stationary wave functions of fast electrons axially channeling in the silicon crystal near [1 1 0] direction have been found numerically for integrable and non-integrable cases, for which the classical motion is regular and chaotic, respectively. The nodal structure of the wave functions in the quasi-classical region, where the energy levels density is high, is agreed with quantum chaos theory predictions.

  19. Nonperturbative Strange Sea in Proton Using Wave Functions Inspired by Light Front Holography

    Science.gov (United States)

    Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.

    2017-03-01

    We use different light-front wave functions (two inspired by the AdS/QCD formalism), together with a model of the nucleon in terms of meson-baryon fluctuations to calculate the nonperturbative (intrinsic) contribution to the s(x) - bar{s}(x) asymmetry of the proton sea. The holographic wave functions for an arbitrary number of constituents, recently derived by us, give results quite close to known parametrizations that appear in the literature.

  20. Spinless relativistic particle in energy-dependent potential and normalization of the wave function

    Science.gov (United States)

    Benchikha, Amar; Chetouani, Lyazid

    2014-06-01

    The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.

  1. Reciprocity between Moduli and Phases in Time-Dependent Wave-Functions

    CERN Document Server

    Englman, R; Bär, M

    1999-01-01

    For time (t) dependent wave functions we derive rigorous conjugate relations between analytic decompositions (in the complex t-plane) of the phases and of the log moduli. We then show that reciprocity, taking the form of Kramers-Kronig integral relations (but in the time domain), holds between observable phases and moduli in several physically important instances. These include the nearly adiabatic (slowly varying) case, a class of cyclic wave-functions, wave packets and non-cyclic states in an "expanding potential". The results exhibit the interdependence of geometric-phases and related decay probabilities. Several known quantum mechanical theories possess the reciprocity property obtained in the paper.

  2. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  3. Elliptic Function Waves of Spinor Bose-Einstein Condensates in an Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    XIE Yuan-Dong

    2009-01-01

    An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.

  4. Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations

    Science.gov (United States)

    Chang, Chia-Chen; Rubenstein, Brenda M.; Morales, Miguel A.

    2016-12-01

    Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wave function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.

  5. Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions.

    Science.gov (United States)

    Van Raemdonck, Mario; Alcoba, Diego R; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Van Neck, Dimitri; Bultinck, Patrick

    2015-09-14

    A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.

  6. Two-body wave functions and compositeness from scattering amplitudes. I. General properties with schematic models

    CERN Document Server

    Sekihara, Takayasu

    2016-01-01

    For a general two-body bound state in quantum mechanics, both in the stable and decaying cases, we establish a way to extract its two-body wave function in momentum space from the scattering amplitude of the constituent two particles. For this purpose, we first show that the two-body wave function of the bound state corresponds to the residue of the off-shell scattering amplitude at the bound state pole. Then, we examine our scheme to extract the two-body wave function from the scattering amplitude in several schematic models. As a result, the two-body wave functions from the Lippmann--Schwinger equation coincides with that from the Schr\\"{o}dinger equation for an energy-independent interaction. Of special interest is that the two-body wave function from the scattering amplitude is automatically scaled; the norm of the two-body wave function, to which we refer as the compositeness, is unity for an energy-independent interaction, while the compositeness deviates from unity for an energy-dependent interaction, ...

  7. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    Science.gov (United States)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  8. Small Components of the Wave Function of Electron

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper shows that the moving or time-varying large components of four-component wavefunction of electron would induce small components, and vice versa. Then when a wave packet of electron is moving with high speeds or varies rapidly, or its size is sufficiently small, or in the presence of a strong electromagnetic field, its small components and the related effects cannot be ignored. Furthermore, the spin quantum states of both a moving electron and a motionless electron can be affected by some special electrostatic fields. This may open a new pathway for spintronics to the manipulation of electron spins in the absence of applied magnetic fields.

  9. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

  10. Duality and helicity: the photon wave function approach

    Science.gov (United States)

    Elbistan, M.; Horváthy, P. A.; Zhang, P.-M.

    2017-08-01

    The photon wave equation proposed in terms of the Riemann-Silberstein vector is derived from a first-order Dirac/Weyl-type action principle. It is symmetric w.r.t. duality transformations, but the associated Noether quantity vanishes. Replacing the fields by potentials and using instead a quadratic Klein-Gordon-type Lagrangian allows us to recover the double-Chern-Simons expression of conserved helicity and is shown to be equivalent to recently proposed alternative frameworks. Applied to the potential-modified theory the Dirac/Weyl-type approach yields again zero conserved charge, whereas the Klein-Gordon-type approach applied to the original setting yields Lipkin's ;zilch;.

  11. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    Science.gov (United States)

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  12. The effects of extracorporeal shock wave therapy on frozen shoulder patients' pain and functions.

    Science.gov (United States)

    Park, Chan; Lee, Sangyong; Yi, Chae-Woo; Lee, Kwansub

    2015-12-01

    [Purpose] The present study was conducted to examine the effects of extracorporeal shock wave therapy on frozen shoulder patients' pain and functions. [Subjects] In the present study, 30 frozen shoulder patients were divided into two groups: an extracorporeal shock wave therapy group of 15 patients and a conservative physical therapy group of 15 patients. [Methods] Two times per week for six weeks, the extracorporeal shock wave therapy group underwent extracorporeal shock wave therapy, and the conservative physical therapy group underwent general physical therapy. Visual analog scales were used to measure frozen shoulder patients' pain, and patient-specific functional scales were used to evaluate the degree of functional disorders. [Results] In intra-group comparisons, the two groups showed significant decreases in terms of visual analog scales and patient-specific functional scales, although the extracorporeal shock wave therapy group showed significantly lower scores than the conservative physical therapy group. [Conclusion] Extracorporeal shock wave therapy is considered an effective intervention for improving frozen shoulder patients' pain and functions.

  13. On the precanonical structure of the Schr\\"odinger wave functional

    CERN Document Server

    Kanatchikov, I V

    2013-01-01

    An expression of the Schr\\"odinger wave functional as the product integral of precanonical wave functions on the space of fields and space-time variables is obtained. A functional derivative Schr\\"odinger equation in the canonical quantization is derived from the partial derivative covariant analogue of the Schr\\"odinger equation, which appears in the precanonical quantization based on the De Donder-Weyl Hamiltonization of field theory. The representation of precanonical quantum operators typically contains a parameter $\\varkappa$ of the dimension of the inverse spatial volume. The transition from the precanonical description of quantum fields in terms of Clifford-valued wave functions and partial derivative operators to the standard functional Schr\\"odinger representation obtained from canonical quantization is accomplished if $\\varkappa \\rightarrow 0$ and $\\gamma^0 / \\varkappa$ is mapped to the infinitesimal spatial volume element $d\\mathbf{x}$. Thus the standard QFT corresponds to the precanonical QFT in t...

  14. Mapping crustal S-wave velocity structure with SV-component receiver function method

    Institute of Scientific and Technical Information of China (English)

    邹最红; 陈晓非

    2003-01-01

    In this article, we analyze the characters of SV-component receiver function of teleseismic body waves and its advantages in mapping the S-wave velocity structure of crust in detail. Similar to radial receiver function, SV-component receiver function can be obtained by directly deconvolving the P-component from the SV-component of teleseismic recordings. Our analyses indicate that the change of amplitude of SV-component receiver function against the change of epicentral distance is less than that of radial receiver function. Moreover, the waveform of SV-component receiver function is simpler than the radial receiver function and gives prominence to the PS converted phases that are the most sensitive to the shear wave velocity structure in the inversion. The synthetic tests show that the convergence of SV-component receiver function inversion is faster than that of the radial receiver function inversion. As an example, we investigate the S-wave velocity structure beneath HIA station by using the SV-component receiver function inversion method.

  15. Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure

    Institute of Scientific and Technical Information of China (English)

    CAO Xiaoshan; JIN Feng; WANG ZiKun; LU TianJian

    2009-01-01

    This work presents a theoretical study of the propagation behavior of Bleustein-Gulyaev waves in a layered structure consisting of a functionally graded piezoelectric material (FGPM) layer and a trans-versely isotropic piezoelectric substrate. The influence of the graded variation of FGPM coefficients on the dispersion relations of Bleustein-Gulyaev waves in the layered structure is investigated. It is dem-onstrated that, for a certain frequency range of Bleustein-Gulyaev waves, the mechanical perturbations of the particles are restricted in the FPGM layer and the phase velocity is independent of the electrical boundary conditions at the free surface. Results presented in this study can not only provide further Insight on the electromechanical coupling behavior of surface waves in FGPM layered structures, but also lend a theoretical basis for the design of high-performance surface acoustic wave (SAW) devices.

  16. Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work presents a theoretical study of the propagation behavior of Bleustein-Gulyaev waves in a layered structure consisting of a functionally graded piezoelectric material(FGPM) layer and a transversely isotropic piezoelectric substrate. The influence of the graded variation of FGPM coefficients on the dispersion relations of Bleustein-Gulyaev waves in the layered structure is investigated. It is demonstrated that,for a certain frequency range of Bleustein-Gulyaev waves,the mechanical perturbations of the particles are restricted in the FPGM layer and the phase velocity is independent of the electrical boundary conditions at the free surface. Results presented in this study can not only provide further insight on the electromechanical coupling behavior of surface waves in FGPM layered structures,but also lend a theoretical basis for the design of high-performance surface acoustic wave(SAW) devices.

  17. Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability.

    Science.gov (United States)

    Bumstead, Jonathan R; Bauer, Adam Q; Wright, Patrick W; Culver, Joseph P

    2017-02-01

    Resting-state functional connectivity is a growing neuroimaging approach that analyses the spatiotemporal structure of spontaneous brain activity, often using low-frequency (waves. Despite how close in frequency these phenomena exist, there is little research on how vasomotion and Mayer waves are related to or affect resting-state functional connectivity. In this study, we analyze spontaneous hemodynamic fluctuations over the mouse cortex using optical intrinsic signal imaging. We found spontaneous occurrence of oscillatory hemodynamics ∼0.2 Hz consistent with the properties of Mayer waves reported in the literature. Across a group of mice (n = 19), there was a large variability in the magnitude of Mayer waves. However, regardless of the magnitude of Mayer waves, functional connectivity patterns could be recovered from hemodynamic signals when filtered to the lower frequency band, 0.01-0.08 Hz. Our results demonstrate that both Mayer waves and resting-state functional connectivity patterns can co-exist simultaneously, and that they can be separated by applying bandpass filters.

  18. Photon reflection by a quantum mirror: a wave function approach

    CERN Document Server

    Corrêa, Raul

    2016-01-01

    We derive from first principles the momentum exchange between a photon and a quantum mirror upon reflection, by considering the boundary conditions imposed by the mirror surface on the photon wave equation. We show that the system generally ends up in an entangled state, unless the mirror position uncertainty is much smaller than the photon wavelength, when the mirror behaves classically. Our treatment leads us directly to the conclusion that the photon momentum has the known value hk/2{\\pi}. This implies that when the mirror is immersed in a dielectric medium the photon radiation pressure is proportional to the medium refractive index n. Our work thus contributes to the longstanding Abraham-Minkowski debate about the momentum of light in a medium. We interpret the result by associating the Minkowski momentum (which is proportional to n) with the canonical momentum of light, which appears naturally in quantum formulations.

  19. Basis of symmetric polynomials for many-boson light-front wave functions.

    Science.gov (United States)

    Chabysheva, Sophia S; Hiller, John R

    2014-12-01

    We provide an algorithm for the construction of orthonormal multivariate polynomials that are symmetric with respect to the interchange of any two coordinates on the unit hypercube and are constrained to the hyperplane where the sum of the coordinates is one. These polynomials form a basis for the expansion of bosonic light-front momentum-space wave functions, as functions of longitudinal momentum, where momentum conservation guarantees that the fractions are on the interval [0,1] and sum to one. This generalizes earlier work on three-boson wave functions to wave functions for arbitrarily many identical bosons. A simple application in two-dimensional ϕ(4) theory illustrates the use of these polynomials.

  20. A Fortran program to calculate the matrix elements of the Coulomb interaction involving hydrogenic wave functions

    Science.gov (United States)

    Sarkadi, L.

    2017-03-01

    The program MTRXCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) | R - r | - 1ψi(r) d r. Bound-free transitions are considered, and non-relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library (PL) subprogram [2] is fixed. Furthermore, the COULCC CPC PL subprogram [3] applied for the calculations of the radial wave functions of the free states and the Bessel functions is replaced by the CPC PL subprogram DCOUL [4].

  1. Generalized Extended tanh-function Metho d for Traveling Wave Solutions of Nonlinear Physical Equations

    Institute of Scientific and Technical Information of China (English)

    Chang Jing; Gao Yi-xian; Cai Hua

    2014-01-01

    In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher’s equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.

  2. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....... of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...

  3. Prolate Spheroidal Wave Functions, Quadrature, Interpolation, And Asymptotic Formulae

    CERN Document Server

    Xiao, H

    2001-01-01

    Whenever physical signals are measured or generated, the results tend to be band-limited (i.e. to have compactly supported Fourier transforms). Indeed, measurements of electromagnetic and acoustic data are band-limited due to the oscillatory character of the processes that have generated the quantities being measured. When the signals being measured come from heat propagation or diffusion processes, they are (practically speaking) band-limited, since the underlying physical processes operate as low- pass filters. The importance of band-limited functions has been recognized for hundreds of years; classical Fourier analysis can be viewed as an apparatus for dealing with such functions. When band-limited functions are defined on the whole line (or on the circle), classical tools are very satisfactory. However, in many cases, we are confronted with band- limited functions defined on intervals (or, more generally, on compact regions in R n). In this environment, standard tools based on polynomials are often effe...

  4. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  5. Single-valued definition of the multivalued function for borehole acoustic waves in transversely isotropic formations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is useful to extract all components, including compressional, shear, and guided waves, from the full waveforms when we investigate the acoustic log data. The component waves can be simulated by calculating the contributions from poles and branch points of the borehole acoustic function according to Cauchy’s theorem. For such an algorithm to be implemented, the multivalued function for the borehole wave field in the frequency-axial-wavenumber domain has to be rendered single-valued first. Assuming that the borehole axis is parallel to the symmetry axis of transverse isotropy, this paper derives the branch points of the borehole acoustic function. We discover that the number and the locations of those branch points are determined by the relation among the formation parameters c33, c44, ε, and δ. Thus the single-valued definitions in the acoustic-wave computation are sorted into two different cases. After building the Riemann surface related to each radial wavenumber, we give the single-valued definition of the borehole acoustic function inside and on the integration contour based on the radiation condition. In a formation with δ > ε + c44/2c33, if we choose the integration contour and the single-valued definition of the acoustic function in the way used in isotropic cases, the simulation results of component waves will be wrong.

  6. The wave-function description of the electromagnetic field

    CERN Document Server

    Friedman, Yaakov

    2013-01-01

    For an arbitrary electromagnetic field, we define a prepotential $S$, which is a complex-valued function of spacetime. The prepotential is a modification of the two scalar potential functions introduced by E. T. Whittaker. The prepotential is Lorentz covariant under a spin half representation. For a moving charge and any observer, we obtain a complex dimensionless scalar. The prepotential is a function of this dimensionless scalar. The prepotential $S$ of an arbitrary electromagnetic field is described as an integral over the charges generating the field. The Faraday vector at each point may be derived from $S$ by a convolution of the differential operator with the alpha matrices of Dirac. Some explicit examples will be calculated. We also present the Maxwell equations for the prepotential.

  7. Symmetric multivariate polynomials as a basis for three-boson light-front wave functions.

    Science.gov (United States)

    Chabysheva, Sophia S; Elliott, Blair; Hiller, John R

    2013-12-01

    We develop a polynomial basis to be used in numerical calculations of light-front Fock-space wave functions. Such wave functions typically depend on longitudinal momentum fractions that sum to unity. For three particles, this constraint limits the two remaining independent momentum fractions to a triangle, for which the three momentum fractions act as barycentric coordinates. For three identical bosons, the wave function must be symmetric with respect to all three momentum fractions. Therefore, as a basis, we construct polynomials in two variables on a triangle that are symmetric with respect to the interchange of any two barycentric coordinates. We find that, through the fifth order, the polynomial is unique at each order, and, in general, these polynomials can be constructed from products of powers of the second- and third-order polynomials. The use of such a basis is illustrated in a calculation of a light-front wave function in two-dimensional ϕ(4) theory; the polynomial basis performs much better than the plane-wave basis used in discrete light-cone quantization.

  8. New Semiclassical and Numerical Approaches to Locate Zeros of Wave Functions

    Institute of Scientific and Technical Information of China (English)

    AsiriNanayakkara

    2004-01-01

    A new semiclassical method is presented for evaluating zeros of wave functions. In this method, locating zeros of the wave functions of Schrodinger equation is converted to finding roots of a polynomial. The coefficients of this polynomial are evaluated using WKB and semi quantum action variable methods. For certain potentials WKB expressions for moments are obtained exactly. Almost explicit formulae for moments are obtained for the potential V(x)=xN. Examples are given to illustrate both methods. Using semi quantum action variable method, complex zeros of the wave functions of the PT symmetric complex system V(x)=x4+iAx are obtained. These zeros exhibit complex version of in terlacing.

  9. New Semiclassical and Numerical Approaches to Locate Zeros of Wave Functions Asiri Nanayakkara

    Institute of Scientific and Technical Information of China (English)

    Asiri Nanayakkara

    2004-01-01

    A new semiclassical method is presented for evaluating zeros of wave functions. In this method, locating zeros of the wave functions of Schrodinger equation is converted to finding roots of a polynomial. The coefficients of this polynomial are evaluated using WKB and semi quantum action variable methods. For certain potentials WKB expressions for moments are obtained exactly. Almost explicit formulae for moments are obtained for the potential V (x) = xN. Examples are given to illustrate both methods. Using semi quantum action variable method, complex zeros of the wave functions of the PT symmetric complex system V(x) = x4 + iAx are obtained. These zeros exhibit complex version of interlacing.

  10. Assessment of large basis shell model wave functions for the Li isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S.; Brown, B.A. [Michigan State Univ., East Lansing, MI (United States); Dortmans, P.J.; Amos, K. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-06-01

    The Li isotopes are good examples with which the shell model can be tested for cluster-like behaviour, as large space (no core) shell model wave functions may be constructed. The cross sections and analysing power for the inelastic scattering of electron and proton scattering data for {sup 6,7}Li ground states were analysed using the same shell model wave functions. It was found that the results obtained by using 0{Dirac_h}{omega} structure model wave functions is unable to reproduce the magnitude of the data. Meanwhile, those obtained by using the larger space models are able to reproduce the low-angle part of the cross section, but all model results severely underestimate the cross section above 20 deg. Meanwhile, in the case of analysing power, all model calculations give reasonable representation of the data. 13 refs., 3 figs.

  11. On the construction of CASCI-type wave functions for very large active spaces

    CERN Document Server

    Boguslawski, Katharina; Reiher, Markus

    2011-01-01

    We present an efficient procedure to construct configuration-interaction-type electronic wave functions of molecular systems that require very large active spaces for a qualitatively correct description of their electronic structure. Our procedure is based on the density-matrix renormalization group algorithm that provides the necessary information in terms of the eigenstates of the reduced density matrices to calculate the coefficient of any basis state in the many-particle Hilbert space of the molecular system under study. Since the dimension of the Hilbert space scales factorially with the size of the active space, a sophisticated Monte Carlo sampling routine has been implemented that constructs an accurate representation of the electronic wave function. We emphasize that our sampling routine can also construct complete-active-space configuration-interaction-type wave functions from any other type of tensor network states, such as the complete-graph tensor network states or the correlator product states.

  12. U (1 )×U (1 ) symmetry-protected topological order in Gutzwiller wave functions

    Science.gov (United States)

    Liu, Zheng-Xin; Mei, Jia-Wei; Ye, Peng; Wen, Xiao-Gang

    2014-12-01

    Gutzwiller projection is a way to construct many-body wave functions that could carry topological order or symmetry-protected topological (SPT) order. However, an important issue is to determine whether or not a given Gutzwiller-projected wave function (GWF) carries a nontrivial SPT order, and which SPT order is carried by the wave function. In this paper, we numerically study the SPT order in a spin S =1 GWF on the kagome lattice. Using the standard Monte Carlo method, we directly confirm that the GWF has (1) gapped bulk with short-range correlations, (2) a trivial topological order via a nondegenerate ground state, and zero topological entanglement entropy, (3) a nontrivial U (1 )×U (1 ) SPT order via the Hall conductances of the protecting U (1 )×U (1 ) symmetry, and (4) a symmetry-protected gapless boundary. This represents numerical evidence of continuous symmetry-protected topological order in two-dimensional bosonic lattice systems.

  13. Electronic structure and correlated wave functions of a few electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-22

    The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.

  14. Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.

    Science.gov (United States)

    Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia

    2016-03-08

    We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules.

  15. Automatic determination of important mode-mode correlations in many-mode vibrational wave functions.

    Science.gov (United States)

    König, Carolin; Christiansen, Ove

    2015-04-14

    We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.

  16. Orthogonality of embedded wave functions for different states in frozen-density embedding theory

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Alexander; Wesolowski, Tomasz A. [Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4 (Switzerland); Aquilante, Francesco [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy)

    2015-10-28

    Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematical structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.

  17. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGJin-Liang; WANGMing-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  18. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  19. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    OpenAIRE

    Baalrud, Scott D.

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...

  20. Interacting relativistic quantum dynamics for multi-time wave functions

    Directory of Open Access Journals (Sweden)

    Lienert Matthias

    2016-01-01

    Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.

  1. Interacting relativistic quantum dynamics for multi-time wave functions

    Science.gov (United States)

    Lienert, Matthias

    2016-11-01

    In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.

  2. A system’s wave function is uniquely determined by its underlying physical state

    Science.gov (United States)

    Colbeck, Roger; Renner, Renato

    2017-01-01

    We address the question of whether the quantum-mechanical wave function Ψ of a system is uniquely determined by any complete description Λ of the system’s physical state. We show that this is the case if the latter satisfies a notion of ‘free choice’. This notion requires that certain experimental parameters—those that according to quantum theory can be chosen independently of other variables—retain this property in the presence of Λ. An implication of this result is that, among all possible descriptions Λ of a system’s state compatible with free choice, the wave function {{\\Psi }} is as objective as Λ.

  3. Wave function collapses in a single spin magnetic resonance force microscopy

    CERN Document Server

    Berman, G P; Tsifrinovich, V I

    2004-01-01

    We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) magnetic resonance force microscopy (MRFM) technique. The quantum dynamics of the cantilever tip (CT) and the spin is analyzed and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the effective magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental study of this shift can reveal the information about the average time interval between the consecutive collapses of the wave function

  4. Visualization of superluminal pulses inside a white light cavity using plane wave spatio temporal transfer functions.

    Science.gov (United States)

    Yum, H N; Jang, Y J; Liu, X; Shahriar, M S

    2012-08-13

    In a white light cavity (WLC), the group velocity is superluminal over a finite bandwidth. For a WLC-based data buffering system we recently proposed, it is important to visualize the behavior of pulses inside such a cavity. The conventional plane wave transfer functions, valid only over space that is translationally invariant, cannot be used for the space inside WLC or any cavity, which is translationally variant. Here, we develop the plane wave spatio temporal transfer function (PWSTTF) method to solve this problem, and produce visual representations of a Gaussian input pulse incident on a WLC, for all times and positions.

  5. Probability Density Function for Waves Propagating in a Straight PEC Rough Wall Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Pao, H

    2004-11-08

    The probability density function for wave propagating in a straight perfect electrical conductor (PEC) rough wall tunnel is deduced from the mathematical models of the random electromagnetic fields. The field propagating in caves or tunnels is a complex-valued Gaussian random processing by the Central Limit Theorem. The probability density function for single modal field amplitude in such structure is Ricean. Since both expected value and standard deviation of this field depend only on radial position, the probability density function, which gives what is the power distribution, is a radially dependent function. The radio channel places fundamental limitations on the performance of wireless communication systems in tunnels and caves. The transmission path between the transmitter and receiver can vary from a simple direct line of sight to one that is severely obstructed by rough walls and corners. Unlike wired channels that are stationary and predictable, radio channels can be extremely random and difficult to analyze. In fact, modeling the radio channel has historically been one of the more challenging parts of any radio system design; this is often done using statistical methods. In this contribution, we present the most important statistic property, the field probability density function, of wave propagating in a straight PEC rough wall tunnel. This work only studies the simplest case--PEC boundary which is not the real world but the methods and conclusions developed herein are applicable to real world problems which the boundary is dielectric. The mechanisms behind electromagnetic wave propagation in caves or tunnels are diverse, but can generally be attributed to reflection, diffraction, and scattering. Because of the multiple reflections from rough walls, the electromagnetic waves travel along different paths of varying lengths. The interactions between these waves cause multipath fading at any location, and the strengths of the waves decrease as the distance

  6. Catastrophes in non-equilibrium many-particle wave functions: universality and critical scaling

    Science.gov (United States)

    Mumford, J.; Kirkby, W.; O’Dell, D. H. J.

    2017-02-01

    As part of the quest to uncover universal features of quantum dynamics, we study catastrophes that form in simple many-particle wave functions following a quench, focusing on two-mode systems that include the two-site Bose–Hubbard model, and under some circumstances optomechanical systems and the Dicke model. When the wave function is plotted in Fock space certain characteristic shapes, that we identify as cusp catastrophes, appear under generic conditions. In the vicinity of a cusp the wave function takes on a universal structure described by the Pearcey function and obeys scaling relations which depend on the total number of particles N. In the thermodynamic limit (N\\to ∞ ) the cusp becomes singular, but at finite N it is decorated by an interference pattern. This pattern contains an intricate network of vortex–antivortex pairs, initiating a theory of topological structures in Fock space. In the case where the quench is a δ-kick the problem can be solved analytically and we obtain scaling exponents for the size and position of the cusp, as well as those for the amplitude and characteristic length scales of its interference pattern. Finally, we use these scalings to describe the wave function in the critical regime of a {{{Z}}}2 symmetry-breaking dynamical phase transition.

  7. Wave function perturbations propagation in multi-particle systems, Einstein-Podolsky-Rosen (EPR) paradox and entanglement

    CERN Document Server

    Shnaid, Isaac

    2013-01-01

    If a one-particle or multi-particle non-relativistic quantum system is initially in a stationary state, and its wave function field is locally perturbed, then according to classical Schr\\"odinger equation, the perturbation instantaneously affects all infinite region because, according to the equation, speed of the wave function perturbations propagation is infinite. This feature strongly influences all theoretical predictions for time evolution of the system and contradicts the natural limitation of the perturbations propagation speed by speed of light. We develop finite propagation speed concept for multi-particle non-relativistic quantum systems. It consists of (a) eikonal type equation for the wave function perturbation traveltime describing finite speed perturbation waves in hyperspace including coordinates of all paricles in the system; (b) modified multi-particle Schr\\"odinger equation with finite speed of the wave function perturbations propagation; and (c) hypothesis that speed of the wave function pe...

  8. Surface Wave Speed of Functionally Graded Magneto-Electro-Elastic Materials with Initial Stresses

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-09-01

    Full Text Available The shear surface wave at the free traction surface of half- infinite functionally graded magneto-electro-elastic material with initial stress is investigated. The material parameters are assumed to vary ex- ponentially along the thickness direction, only. The velocity equations of shear surface wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magneto-electro-elastic material with the initial stresses and the free traction boundary conditions. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are discussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.

  9. Acoustical impedance defined by wave-function solutions of the reduced Webster equation.

    Science.gov (United States)

    Forbes, Barbara J

    2005-07-01

    The electrical impedance was first defined by Heaviside in 1884, and the analogy of the acoustical impedance was made by Webster in 1919. However, it can be shown that Webster did not draw a full analogy with the electromagnetic potential, the potential energy per unit charge. This paper shows that the analogous "acoustical potential" the potential energy per unit displacement of fluid, corresponds to the wave function Psi of the reduced Webster equation, which is of Klein-Gordon form. The wave function is found to obey all of Dirichlet, Von Neumann, and mixed (Robins) boundary conditions, and the latter give rise to resonance phenomena that are not elucidated by Webster's analysis. It is shown that the exact Heaviside analogy yields a complete analytic account of the one-dimensional input impedance, that accounts for both plane- and dispersive-wave propagation both at the origin and throughout the duct.

  10. Scattering cluster wave functions on the lattice using the adiabatic projection method

    CERN Document Server

    Rokash, Alexander; Elhatisari, Serdar; Lee, Dean; Epelbaum, Evgeny; Krebs, Hermann

    2015-01-01

    The adiabatic projection method is a general framework for studying scattering and reactions on the lattice. It provides a low-energy effective theory for clusters which becomes exact in the limit of large Euclidean projection time. Previous studies have used the adiabatic projection method to extract scattering phase shifts from finite periodic-box energy levels using L\\"uschers method. In this paper we demonstrate that scattering observables can be computed directly from asymptotic cluster wave functions. For a variety of examples in one and three spatial dimensions, we extract elastic phase shifts from asymptotic cluster standing waves corresponding to spherical wall boundary conditions. We find that this approach of extracting scattering wave functions from the adiabatic Hamiltonian to be less sensitive to small stochastic and systematic errors as compared with using periodic-box energy levels.

  11. A New Maximum Entropy Probability Function for the Surface Elevation of Nonlinear Sea Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-zhen; XU De-lun

    2005-01-01

    Based on the maximum entropy principle a new probability density function (PDF) f(x) for the surface elevation of nonlinear sea waves, X, is derived through performing a coordinate transform of X and solving a variation problem subject to three constraint conditions of f(x). Compared with the maximum entropy PDFs presented previously, the new PDF has the following merits: (1) it has four parameters to be determined and hence can give more refined fit to observed data and has wider suitability for nonlinear waves in different conditions; (2) these parameters are expressed in terms of distribution moments of X in a relatively simple form and hence are easy to be determined from observed data; (3) the PDF is free of the restriction of weak nonlinearity and possible to be used for sea waves in complicated conditions, such as those in shallow waters with complicated topography; and (4) the PDF is simple in form and hence convenient for theoretical and practical uses. Laboratory wind-wave experiments have been conducted to test the competence of the new PDF for the surface elevation of nonlinear waves. The experimental results manifest that the new PDF gives somewhat better fit to the laboratory wind-wave data than the well-known Gram-Charlier PDF and beta PDF.

  12. Functional data analytic approach of modeling ECG T-wave shape to measure cardiovascular behavior

    CERN Document Server

    Zhou, Yingchun; 10.1214/09-AOAS273

    2010-01-01

    The T-wave of an electrocardiogram (ECG) represents the ventricular repolarization that is critical in restoration of the heart muscle to a pre-contractile state prior to the next beat. Alterations in the T-wave reflect various cardiac conditions; and links between abnormal (prolonged) ventricular repolarization and malignant arrhythmias have been documented. Cardiac safety testing prior to approval of any new drug currently relies on two points of the ECG waveform: onset of the Q-wave and termination of the T-wave; and only a few beats are measured. Using functional data analysis, a statistical approach extracts a common shape for each subject (reference curve) from a sequence of beats, and then models the deviation of each curve in the sequence from that reference curve as a four-dimensional vector. The representation can be used to distinguish differences between beats or to model shape changes in a subject's T-wave over time. This model provides physically interpretable parameters characterizing T-wave sh...

  13. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    Science.gov (United States)

    Peng, Bo; Kowalski, Karol

    2016-12-01

    In this paper we derive basic properties of the Green's-function matrix elements stemming from the exponential coupled-cluster (CC) parametrization of the ground-state wave function. We demonstrate that all intermediates used to express the retarded (or, equivalently, ionized) part of the Green's function in the ω representation can be expressed only through connected diagrams. Similar properties are also shared by the first-order ω derivative of the retarded part of the CC Green's function. Moreover, the first-order ω derivative of the CC Green's function can be evaluated analytically. This result can be generalized to any order of ω derivatives. Through the Dyson equation, derivatives of the corresponding CC self-energy operator can be evaluated analytically. In analogy to the CC Green's function, the corresponding CC self-energy operator can be represented by connected terms. Our analysis can easily be generalized to the advanced part of the CC Green's function.

  14. Molecular potentials and wave function mapping by high-resolution electron spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2014-08-15

    Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.

  15. Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.

    Science.gov (United States)

    Ley-Koo, E.; And Others

    1980-01-01

    Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.…

  16. Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.

    Science.gov (United States)

    Buenker, Robert J; Liebermann, Heinz-Peter; Zhang, Yu; Wu, Yong; Yan, Lingling; Liu, Chunhua; Qu, Yizhi; Wang, Jianguo

    2013-04-30

    Technical problems connected with use of the Born-Oppenheimer clamped-nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo-dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements. It ensures that the electronic wave functions are continuous over the entire range of nuclear conformations considered, thereby greatly simplifying the process of obtaining the above quantities from the results of single-point Born-Oppenheimer calculations. The overlap results are also used to define a diabatic transformation of the wave functions obtained for conical intersections that greatly simplifies the computation of off-diagonal matrix elements by eliminating the need for complex phase factors.

  17. The wave function of the universe and spontaneous breaking of supersymmetry

    CERN Document Server

    Obregón, O; Socorro, J; Tkach, V I

    1998-01-01

    In this work we define a scalar product ``weighted'' with the scalar factor $R$ and show how to find a normalized wave function for the supersymmetric quantum FRW cosmological model using the idea of supersymmetry breaking selection rules under local n=2 conformal supersymmetry. We also calculate the expectation value of the scalar factor R in this model and its corresponding behaviour.

  18. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  19. Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media

    Science.gov (United States)

    Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...

  20. Influence of wetting layer wave functions on carrier capture in quantum dots

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Markussen, Troels; Tromborg, Bjarne

    2005-01-01

    This work numerically solves the effective mass Schrodinger equation and shows that the capture times are strongly influenced by details of the continuum states not accounted for by the approximate wave functions. Results show that calculations of capture time for phonon mediated carrier capture...

  1. Gutzwiller variational wave function for multiorbital Hubbard models in finite dimensions

    Science.gov (United States)

    Münster, Kevin zu; Bünemann, Jörg

    2016-07-01

    We develop a diagrammatic method for the evaluation of general multiband Gutzwiller wave functions in finite dimensions. Our approach provides a systematic improvement of the widely used Gutzwiller approximation. As a first application, we investigate itinerant ferromagnetism and correlation-induced deformations of the Fermi surface for a two-band Hubbard model on a square lattice.

  2. Size-extensive wave functions for quantum Monte Carlo: A linear scaling generalized valence bond approach

    NARCIS (Netherlands)

    Fracchia, F.; Filippi, C.; Amovilli, C.

    2012-01-01

    We propose a new class of multideterminantal Jastrow–Slater wave functions constructed with localized orbitals and designed to describe complex potential energy surfaces of molecular systems for use in quantum Monte Carlo (QMC). Inspired by the generalized valence bond formalism, we elaborate a coup

  3. Nonlinear waves in lattice materials: Adaptively augmented directivity and functionality enhancement by modal mixing

    Science.gov (United States)

    Ganesh, R.; Gonella, S.

    2017-02-01

    The motive of this work is to understand the complex spatial characteristics of finite-amplitude elastic wave propagation in periodic structures and leverage the unique opportunities offered by nonlinearity to activate complementary functionalities and design adaptive spatial wave manipulators. The underlying assumption is that the magnitude of wave propagation is small with respect to the length scale of the structure under consideration, albeit large enough to elicit the effects of finite deformation. We demonstrate that the interplay of dispersion, nonlinearity and modal complexity involved in the generation and propagation of higher harmonics gives rise to secondary wave packets that feature multiple characteristics, one of which conforms to the dispersion relation of the corresponding linear structure. This provides an opportunity to engineer desired wave characteristics through a geometric and topological design of the unit cell, and results in the ability to activate complementary functionalities, typical of high frequency regimes, while operating at low frequencies of excitation - an effect seldom observed in linear periodic structures. The ability to design adaptive switches is demonstrated here using lattice configurations whose response is characterized by geometric and/or material nonlinearities.

  4. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    CERN Document Server

    Baalrud, Scott D

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.

  5. On the excited state wave functions of Dirac fermions in the random gauge potential

    Indian Academy of Sciences (India)

    H Milani Moghaddam

    2010-04-01

    In the last decade, it was shown that the Liouville field theory is an effective theory of Dirac fermions in the random gauge potential (FRGP). We show that the Dirac wave functions in FRGP can be written in terms of descendents of the Liouville vertex operator. In the quasiclassical approximation of the Liouville theory, our model predicts 22.2 that the localization length scales with the energy as $ ∼ E^{−b^{2}(1+b^{2})^{2}}$, where is the strength of the disorder. The self-duality of the theory under the transformation → 1/ is discussed. We also calculate the distribution functions of 0 = |0 ()|2, (i.e. (0); 0 () is the ground state wave function), which behaves as the log-normal distribution function. It is also shown that in small 0, (0) behaves as a chi-square distribution.

  6. On Green's function for 3-D wave-body interaction in a channel

    DEFF Research Database (Denmark)

    Xia, Jinzhu

    1997-01-01

    An analytical and numerical study is presented for efficient evaluation of the Green's function that satisfies the linear free surface condition and the non-penetration condition on the channel bottomand the side walls. the formulation is based on the open-sea green's function and the complete...... series of images is evaluated accurately based on an asmptotic analysis. It is demonstrated that the Green's function has a square-root singular behaviour due to the side walls when the wave frequency approaches one of the resonant frequencies. The numerical results for the Green's function has a square......-root singular behaviour due to the side walls when the wave frequency approaches one of the resonant frequencies. The numerical results for the Green's funciton presented in the present paper are believed to have an absolute accuracy of 10-5....

  7. Relationship between vascular endothelial function and pulse wave velocity in prehypertension

    Institute of Scientific and Technical Information of China (English)

    杨娉婷

    2014-01-01

    Objective To investigate the association between vascular endothelial function and arteriosclerosis in prehypertensive,hypertensive and healthy subjects.Methods 810 consecutive subjects were divided into three groups:hypertension group,prehypertension group and control group.Brachial-ankle pulse wave velocity(ba PWV)and flow-mediated brachial artery dilation(FMD)were used to evaluate the artery vascular stiffness and endothelial function respectively.Results Prehypertension

  8. Universal Probability Distribution for the Wave Function of a Quantum System Entangled with its Environment

    Science.gov (United States)

    Goldstein, Sheldon; Lebowitz, Joel L.; Mastrodonato, Christian; Tumulka, Roderich; Zanghì, Nino

    2016-03-01

    A quantum system (with Hilbert space {H}1) entangled with its environment (with Hilbert space {H}2) is usually not attributed to a wave function but only to a reduced density matrix {ρ1}. Nevertheless, there is a precise way of attributing to it a random wave function {ψ1}, called its conditional wave function, whose probability distribution {μ1} depends on the entangled wave function {ψ in H1 ⊗ H2} in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of H2 but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about {μ1}, e.g., that if the environment is sufficiently large then for every orthonormal basis of H2, most entangled states {ψ} with given reduced density matrix {ρ1} are such that {μ1} is close to one of the so-called GAP (Gaussian adjusted projected) measures, {GAP(ρ1)}. We also show that, for most entangled states {ψ} from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval {[E, E+ δ E]}) and most orthonormal bases of H2, {μ1} is close to {GAP({tr}2 ρ_{mc})} with {ρ_{mc}} the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then {μ1} is close to {GAP(ρ_β)} with {ρ_β} the canonical density matrix on H1 at inverse temperature {β=β(E)}. This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193-1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.

  9. Multipole expansion of Green's function for guided waves in a transversely isotropic plate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Son; Kim, Yoon Young [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    The multipole expansion of Green's function in a transversely isotropic plate is derived based on the eigenfunction expansion method. For the derivation, Green's function is expressed in a bilinear form composed of the regular and singular Lamb-type (or shear-horizontal) wave eigenfunctions. The specific form of the derived Green's function facilitates the handling of general scattering problems in an elastic plate when numerical methods such as the methods of the null-field integral equations are employed. In the derivation, the integral transform of an arbitrary guided wave field is first constructed by the Lamb-type and shear horizontal wave eigenfunctions that work as the kernel functions. After showing that the thickness-dependent parts of the eigenfunctions are orthogonal to each other in the transformed space, Green's function is explicitly derived by using the orthogonality. As an application of the derived Green's function, a scattering problem is solved by the transition matrix method.

  10. Effect of extracorporeal shock wave therapy on the shoulder joint functional status of patients with calcific tendinitis

    OpenAIRE

    2016-01-01

    [Purpose] This study aimed to analyze the effect of extracorporeal shock wave therapy on the shoulder function of patients with calcific tendinitis through a 12-week follow-up. [Subjects and Methods] A total of 34 patients with calcific tendinitis participated in this study. In the extracorporeal shock wave therapy group, 18 patients received 6-week extracorporeal shock wave therapy and 12-week follow-up. The Constant-Murley scale was used to evaluate shoulder joint function. [Results] Analys...

  11. Automated calculation of anharmonic vibrational contributions to first hyperpolarizabilities: quadratic response functions from vibrational configuration interaction wave functions.

    Science.gov (United States)

    Hansen, Mikkel Bo; Christiansen, Ove; Hättig, Christof

    2009-10-21

    Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H(2)O, CH(2)O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.

  12. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions.

    Science.gov (United States)

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2017-02-09

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C2 molecule.

  13. Expansion of Arbitrary Electromagnetic Fields in Terms of Vector Spherical Wave Functions

    CERN Document Server

    Moreira, W L; Garbos, M K; Euser, T G; Russell, P St J; Cesar, C L

    2010-01-01

    Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of an electromagnetic plane-wave, generalizing his analysis to the case of an arbitrary incident wave has proved elusive. This is due to the presence of certain radially-dependent terms in the equation for the beam-shape coefficients of the expansion of the electromagnetic fields in terms of vector spherical wave functions. Here we show for the first time how these terms can be canceled out, allowing analytical expressions for the beam shape coefficients to be found for a completely arbitrary incident field. We give several examples of how this new method, which is well suited to numerical calculation, can be used. Analytical expressions are found for Bessel beams and the modes of rectangular and cylindrical metallic waveguides. The results are highly relevant for speeding up calculation of the radiation forces acting on small spherical particles placed in an arbitrary electromagnetic field, fo...

  14. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    Science.gov (United States)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; Zurbuchen, T. H.

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  15. Reliability assessment of different plate theories for elastic wave propagation analysis in functionally graded plates.

    Science.gov (United States)

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2014-01-01

    The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.

  16. Relations between low-lying quantum wave functions and solutions of the Hamilton-Jacobi equation

    CERN Document Server

    Friedberg, R; Zhao Wei Qin

    1999-01-01

    We discuss a new relation between the low lying Schroedinger wave function of a particle in a one-dimentional potential V and the solution of the corresponding Hamilton-Jacobi equation with -V as its potential. The function V is $\\geq 0$, and can have several minina (V=0). We assume the problem to be characterized by a small anhamornicity parameter $g^{-1}$ and a much smaller quantum tunneling parameter $\\epsilon$ between these different minima. Expanding either the wave function or its energy as a formal double power series in $g^{-1}$ and $\\epsilon$, we show how the coefficients of $g^{-m}\\epsilon^n$ in such an expansion can be expressed in terms of definite integrals, with leading order term determined by the classical solution of the Hamilton-Jacobi equation. A detailed analysis is given for the particular example of quartic potential $V={1/2}g^2(x^2-a^2)^2$.

  17. Dust heating by Alfvén waves using non-Maxwellian distribution function

    Energy Technology Data Exchange (ETDEWEB)

    Zubia, K. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Lahore 54600 (Pakistan); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-08-15

    Quasilinear theory is employed in order to evaluate the resonant heating rate by Alfvén waves, of multiple species dust particles in a hot, collisionless, and magnetized plasma, with the underlying assumption that the dust velocity distribution function can be modeled by a generalized (r, q) distribution function. The kinetic linear dispersion relation for the electromagnetic dust cyclotron Alfvén waves is derived, and the dependence of the heating rate on the magnetic field, mass, and density of the dust species is subsequently investigated. The heating rate and its dependence on the spectral indices r and q of the distribution function are also investigated. It is found that the heating is sensitive to negative value of spectral index r.

  18. Effect of wave-function localization on the time delay in photoemission from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.-H.; Thumm, U. [Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2011-12-15

    We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a{sub latt} of attractive Gaussian-shaped core potentials of width {sigma}. The parameter {sigma}/a{sub latt} thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of {sigma}/a{sub latt}<<1 yield lattice eigenfunctions that consist of localized atomic wave functions modulated by a ''Bloch-envelope'' function, while the eigenfunctions become delocalized for larger values of {sigma}/a{sub latt} > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near {sigma}/a{sub latt}=0.3 from relatively large values below {sigma}/a{sub latt}{approx}0.2 to much smaller delays above {sigma}/a{sub latt}{approx}0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.

  19. The Uniqueness of Single Data Function, Multiple Model Functions, Inverse Problems Including the Rayleigh Wave Dispersion Problem

    Science.gov (United States)

    Menke, William

    2017-02-01

    We prove that the problem of inverting Rayleigh wave phase velocity functions c( k ) , where k is wavenumber, for density ρ ( z ) , rigidity μ ( z ) and Lamé parameter λ ( z ) , where z is depth, is fully non-unique, at least in the highly-idealized case where the base Earth model is an isotropic half space. The model functions completely trade off. This is one special case of a common inversion scenario in which one seeks to determine several model functions from a single data function. We explore the circumstances under which this broad class of problems is unique, starting with very simple scenarios, building up to the somewhat more complicated (and common) case where data and model functions are related by convolutions, and then finally, to scale-independent problems (which include the Rayleigh wave problem). The idealized cases that we examine analytically provide insight into the kinds of nonuniqueness that are inherent in the much more complicated problems encountered in modern geophysical imaging (though they do not necessarily provide methods for solving those problems). We also define what is meant by a Backus and Gilbert resolution kernel in this kind of inversion and show under what circumstances a unique localized average of a single model function can be constructed.

  20. The Uniqueness of Single Data Function, Multiple Model Functions, Inverse Problems Including the Rayleigh Wave Dispersion Problem

    Science.gov (United States)

    Menke, William

    2017-04-01

    We prove that the problem of inverting Rayleigh wave phase velocity functions c( k ), where k is wavenumber, for density ρ ( z ), rigidity μ ( z ) and Lamé parameter λ ( z ), where z is depth, is fully non-unique, at least in the highly-idealized case where the base Earth model is an isotropic half space. The model functions completely trade off. This is one special case of a common inversion scenario in which one seeks to determine several model functions from a single data function. We explore the circumstances under which this broad class of problems is unique, starting with very simple scenarios, building up to the somewhat more complicated (and common) case where data and model functions are related by convolutions, and then finally, to scale-independent problems (which include the Rayleigh wave problem). The idealized cases that we examine analytically provide insight into the kinds of nonuniqueness that are inherent in the much more complicated problems encountered in modern geophysical imaging (though they do not necessarily provide methods for solving those problems). We also define what is meant by a Backus and Gilbert resolution kernel in this kind of inversion and show under what circumstances a unique localized average of a single model function can be constructed.

  1. On the Quantum Mechanical Wave Function as a Link Between Cognition and the Physical World A Role for Psychology

    CERN Document Server

    Snyder, D

    2002-01-01

    A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.

  2. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    Science.gov (United States)

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour.

  3. Fermionic spectral functions in backreacting p-wave superconductors at finite temperature

    CERN Document Server

    Giordano, G L; Lugo, A R

    2016-01-01

    We investigate the spectral function of fermions in a $p$-wave superconducting state, at finite both temperature and gravitational coupling, using the $AdS/CFT$ correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the "peak-dip-hump" structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

  4. The acoustical Klein-Gordon equation: the wave-mechanical step and barrier potential functions.

    Science.gov (United States)

    Forbes, Barbara J; Pike, E Roy; Sharp, David B

    2003-09-01

    The transformed form of the Webster equation is investigated. Usually described as analogous to the Schrödinger equation of quantum mechanics, it is noted that the second-order time dependency defines a Klein-Gordon problem. This "acoustical Klein-Gordon equation" is analyzed with particular reference to the acoustical properties of wave-mechanical potential functions, U(x), that give rise to geometry-dependent dispersions at rapid variations in tract cross section. Such dispersions are not elucidated by other one-dimensional--cylindrical or conical--duct models. Since Sturm-Liouville analysis is not appropriate for inhomogeneous boundary conditions, the exact solution of the Klein-Gordon equation is achieved through a Green's-function methodology referring to the transfer matrix of an arbitrary string of square potential functions, including a square barrier equivalent to a radiation impedance. The general conclusion of the paper is that, in the absence of precise knowledge of initial conditions on the area function, any given potential function will map to a multiplicity of area functions of identical relative resonance characteristics. Since the potential function maps uniquely to the acoustical output, it is suggested that the one-dimensional wave physics is both most accurately and most compactly described within the Klein-Gordon framework.

  5. Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems

    Science.gov (United States)

    Shepherd, James J.; Grüneis, Andreas; Booth, George H.; Kresse, Georg; Alavi, Ali

    2012-07-01

    Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete-basis-set (CBS) limit in methods utilizing plane-wave wave-function expansions. Simple analytic and numerical results from second-order Møller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis-set truncation when constructing many-electron wave functions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wave-function methods, from MP2 to coupled-cluster doubles theory and the random-phase approximation plus second-order screened exchange. Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane-wave basis and thereby allow application of these methods to more realistic physical problems. We demonstrate this explicitly for solid and molecular lithium hydride.

  6. Auxiliary-field based trial wave functions in quantum Monte Carlo simulations

    Science.gov (United States)

    Chang, Chia-Chen; Rubenstein, Brenda; Morales, Miguel

    We propose a simple scheme for generating correlated multi-determinant trial wave functions for quantum Monte Carlo algorithms. The method is based on the Hubbard-Stratonovich transformation which decouples a two-body Jastrow-type correlator into one-body projectors coupled to auxiliary fields. We apply the technique to generate stochastic representations of the Gutzwiller wave function, and present benchmark resuts for the ground state energy of the Hubbard model in one dimension. Extensions of the proposed scheme to chemical systems will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, 15-ERD-013.

  7. Second-order corrections to the wave function at origin in muonic hydrogen and pionium

    CERN Document Server

    Ivanov, Vladimir G; Karshenboim, Savely G

    2009-01-01

    Non-relativisitic second-order corrections to the wave function at origin in muonic and exotic atoms are considered. The corrections are due to the electronic vacuum polarization. Such corrections are of interest due to various effective approaches, which take into account QED and hadronic effects. The wave function at origin plays a key role in the calculation of the pionium lifetime, various finite nuclear size effects and the hyperfine splitting. The results are obtained for the $1s$ and $2s$ states in pionic and muonic hydrogen and deuterium and in pionium, a bound system of $\\pi^+$ and $\\pi^-$. Applications to the hyperfine structure and the Lamb shift in muonic hydrogen are also considered.

  8. Super-oscillating Electron Wave Functions with Sub-diffraction Spots

    CERN Document Server

    Remez, Roei; Lu, Peng-Han; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2016-01-01

    Almost one and a half centuries ago, Ernst Abbe [1] and shortly after Lord Rayleigh [2] derived the minimum, diffraction-limited spot radius of an optical lens to be 1.22{\\lambda}/(2sin{\\alpha}), where {\\lambda} is the wavelength and {\\alpha} is the semi-angle of the beam's convergence cone. Here, we show how to overcome this limit and realize the first super-oscillating massive-particle wave function, which has an arbitrarily small central spot that is much smaller than the Abbe-Rayleigh limit and theoretically even smaller than the de Broglie wavelength. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. Such an electronic wave function can serve as a probe in scanning transmission electron microscopy, providing improved imaging of objects at the sub-{\\AA}ngstrom scale.

  9. Quantum Monte Carlo with reoptimized perturbatively selected configuration-interaction wave functions

    CERN Document Server

    Giner, Emmanuel; Toulouse, Julien

    2016-01-01

    We explore the use in quantum Monte Carlo (QMC) of trial wave functions consisting of a Jastrow factor multiplied by a truncated configuration-interaction (CI) expansion in Slater determinants obtained from a CI perturbatively selected iteratively (CIPSI) calculation. In the CIPSI algorithm, the CI expansion is iteratively enlarged by selecting the best determinants using perturbation theory, which provides an optimal and automatic way of constructing truncated CI expansions approaching the full CI limit. We perform a systematic study of variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo (DMC) total energies of first-row atoms from B to Ne with different levels of optimization of the parameters (Jastrow parameters, coefficients of the determinants, and orbital parameters) in these trial wave functions. The results show that the reoptimization of the coefficients of the determinants in VMC (together with the Jastrow factor) leads to an important lowering of both VMC and DMC total energies, and ...

  10. Form Factors and Wave Functions of Vector Mesons in Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hovhannes R. Grigoryan; Anatoly V. Radyushkin

    2007-07-01

    Within the framework of a holographic dual model of QCD, we develop a formalism for calculating form factors of vector mesons. We show that the holographic bound states can be described not only in terms of eigenfunctions of the equation of motion, but also in terms of conjugate wave functions that are close analogues of quantum-mechanical bound state wave functions. We derive a generalized VMD representation for form factors, and find a very specific VMD pattern, in which form factors are essentially given by contributions due to the first two bound states in the Q^2-channel. We calculate electric radius of the \\rho-meson, finding the value < r_\\rho^2>_C = 0.53 fm^2.

  11. Calculations of properties of screened He-like systems using correlated wave functions.

    Science.gov (United States)

    Dai, S T; Solovyova, A; Winkler, P

    2001-07-01

    The purpose of the present study is twofold. First, the techniques of correlated wave functions for two-electron systems have been extended to obtain results for P and D states in a screening environment, and in particular for Debye screening. In these calculations, the satisfaction of both the quantum virial theorem and a related sum rule has been enforced and found to provide a high degree of stability of the solutions. Second, in order to facilitate the general use of correlated wave functions in combination with sum rule stability criteria, a rather systematic computational approach to this notoriously cumbersome method has been developed and thoroughly discussed here. Accurate calculations for few-electron systems are of interest to plasma diagnostics; in particular, when inaccuracies in binding energies are drastically magnified as they occur in exponents of Boltzmann factors.

  12. Dynamical Quantum Phase Transitions: Role of Topological Nodes in Wave Function Overlaps

    Science.gov (United States)

    Huang, Zhoushen; Balatsky, Alexander V.

    2016-08-01

    A sudden quantum quench of a Bloch band from one topological phase toward another has been shown to exhibit an intimate connection with the notion of a dynamical quantum phase transition (DQPT), where the returning probability of the quenched state to the initial state—i.e., the Loschmidt echo—vanishes at critical times {t*}. Analytical results to date are limited to two-band models, leaving the exact relation between topology and DQPT unclear. In this Letter, we show that, for a general multiband system, a robust DQPT relies on the existence of nodes (i.e., zeros) in the wave function overlap between the initial band and the postquench energy eigenstates. These nodes are topologically protected if the two participating wave functions have distinctive topological indices. We demonstrate these ideas in detail for both one and two spatial dimensions using a three-band generalized Hofstadter model. We also discuss possible experimental observations.

  13. High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution

    CERN Document Server

    Lublinsky, Michael

    2016-01-01

    Soft components of the light cone wave-function of a fast moving projectile hadron is computed in perturbation theory to third order in QCD coupling constant. At this order, the Fock space of the soft modes consists of one-gluon, two-gluon, and a quark-antiquark states. The hard component of the wave-function acts as a non-Abelian background field for the soft modes and is represented by a valence charge distribution that accounts for non-linear density effects in the projectile. When scattered off a dense target, the diagonal element of the S-matrix reveals the Hamiltonian of high energy evolution, the JIMWLK Hamiltonian. This way we provide a new direct derivation of the JIMWLK Hamiltonian at the Next-to-Leading Order.

  14. Calculation of the matrix elements of the Coulomb interaction involving relativistic hydrogenic wave functions

    Science.gov (United States)

    Sarkadi, L.

    2017-03-01

    The program MTRDCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) ∣ R - r∣-1ψi(r) d r. Bound-free transitions are considered, and relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library subprogram [2] is fixed.

  15. On the derivation of wave function reduction from Schr\\"odinger's equation: A model

    OpenAIRE

    Omnès, Roland

    2010-01-01

    The possibility of consistency between the basic quantum principles and reduction (wave function reduction) is reexamined. The mathematical description of an organized macroscopic device is constructed explicitly as a convenient tool for this investigation. A derivation of reduction from quantum mechanics is proposed on a specific example, using standard methods of statistical physics. Although these methods are valid only "for all practical purposes", arguments are given to ascribe an emergi...

  16. Inelastic electron scattering as an indicator of clustering in wave functions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    While the shell model is the most fundamental of nuclear structure models, states in light nuclei also have been described successfully in terms of clusters. Indeed, Wildemuth and Tang have shown a correspondence between the cluster and shell models, the clusters arising naturally as correlations out of the shell model Hamiltonian. For light nuclei, the cluster model reduces the many-body problem to a few-body one, with interactions occurring between the clusters. These interactions involve particle exchanges, since the nucleons may still be considered somewhat freely moving, with their motion not strictly confined to the clusters themselves. Such is the relation of the cluster model to the shell model. For a realistic shell model then, one may expect some evidence of clustering in the wave functions for those systems in which the cluster model is valid. The results obtained using the multi-{Dirac_h}{omega}shell model wave functions are closer in agreement with experiment than the results obtained using the 0{Dirac_h}{omega}wave functions. Yet in all cases, that level of agreement is not good, with the calculations underpredicting the measured values by at least a factor of two. This indicates that the shell model wave functions do not exhibit clustering behavior, which is expected to manifest itself at small momentum transfer. The exception is the transition to the 7{sup -}/2 state in {sup 7}Li, for which the value obtained from the {gamma}-decay width is in agreement with the value obtained from the MK3W and (0 + 2 + 4){Dirac_h}{omega}shell model calculations 17 refs., 1 tab., 2 figs.

  17. Universal Wave Function Overlap and Universal Topological Data from Generic Gapped Ground States

    OpenAIRE

    2014-01-01

    We propose a way -- universal wave function overlap -- to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data should fully characterize the topological orders with gapped or gapless boundary. For non-chiral topological orders in 2+1D, this universal topological data consist of two matrices, $S$ and $T$, which generate a projective representation of $SL(2,\\mathbb Z)$ on the degenerate ground state Hilbert space on ...

  18. Generalization of Cramer's rule and its application to the projection of Hartree-Fock wave function

    CERN Document Server

    Hage-Hassan, Mehdi

    2009-01-01

    We generalize the Cramer's rule of linear algebra. We apply it to calculate the spectra of nucleus by applying Hill-Wheeler projection operator to Hartree-Fock wave function, and to derive L\\"owdin formula and Thouless theorem. We derive by an elementary method the infinitesimal or L\\"owdin projection operators and its integral representation to be useful for the projection of Slater determinant.

  19. Visualization of a particle's wave function in the double slits experiment

    CERN Document Server

    Postnikov, Eugene B

    2013-01-01

    The double slits experiment is a basic phenomenon, which allows to explain principal behaviour of quantum systems. However, textbooks present static pictures of corresponding interference patterns. At the same time, modern computer software for PDE solution provides an opportunity for dynamical modeling of a wave function behaviour using a numerical solution of Schroedinger's equation and to use the obtained demonstrations in a teaching of physics. This material presents such a dynamical animated simulation.

  20. Modeling shock waves using exponential interpolation functions with the Least-Squares Finite Element method

    Science.gov (United States)

    Smith, Bradford Scott, Jr.

    The hypothesis of this research is that exponential interpolation functions will approximate fluid properties at shock waves with less error than polynomial interpolation functions. Exponential interpolation functions are derived for the purpose of modeling sharp gradients. General equations for conservation of mass, momentum, and energy for an inviscid flow of a perfect gas are converted to finite element equations using the least-squares method. Boundary conditions and a mesh adaptation scheme are also presented. An oblique shock reflection problem is used as a benchmark to determine whether or not exponential interpolation provides any advantages over Lagrange polynomial interpolation. Using exponential interpolation in elements downstream of a shock and having edges coincident with the shock showed a slight reduction in the solution error. However there was very little qualitative difference between solutions using polynomial and exponential interpolation. Regardless of the type of interpolation used, the shocks were smeared and oscillations were present both upstream and downstream of the shock waves. When a mesh adaptation scheme was implemented, exponential elements adjacent to the shock waves became much smaller and the numerical solution diverged. Changing the exponential elements to polynomial elements yielded a convergent solution. There appears to be no significant advantage to using exponential interpolation in comparison to Lagrange polynomial interpolation.

  1. Two Variations On The Theme Of The Wave Function Of The Universe

    CERN Document Server

    Nitti, F

    2005-01-01

    In this work, we analyze two different aspects of the formulation of Quantum Gravity using the Wave Function of the Universe approach. In Part I we search for a way to define nonperturbatively the wave function, in the context of gravity in 2+1 dimensions, making use of the conjectured duality between the latter and 2-d conformal field theory on the spacetime boundary. In the pure gravity case, it has been known that the Wheeler-DeWitt equation, that formally defines the wave function, can be interpreted as a Ward identity for the boundary theory, which in this case can be identified with a model with affine sl(2, R) invariance. We try to extend this method to the general case when gravity is coupled to matter. What makes this possible is our finding that there exist a boundary affine sl(2, R) algebra structure also in the most general case: any two dimensional conformal field theory can be universally embedded into a larger structure that carries an action for that algebra. Part II has a more phenomenologica...

  2. Working With the Wave Equation in Aeroacoustics: The Pleasures of Generalized Functions

    Science.gov (United States)

    Farassat, F.; Brentner, Kenneth S.; Dunn, mark H.

    2007-01-01

    The theme of this paper is the applications of generalized function (GF) theory to the wave equation in aeroacoustics. We start with a tutorial on GFs with particular emphasis on viewing functions as continuous linear functionals. We next define operations on GFs. The operation of interest to us in this paper is generalized differentiation. We give many applications of generalized differentiation, particularly for the wave equation. We discuss the use of GFs in finding Green s function and some subtleties that only GF theory can clarify without ambiguities. We show how the knowledge of the Green s function of an operator L in a given domain D can allow us to solve a whole range of problems with operator L for domains situated within D by the imbedding method. We will show how we can use the imbedding method to find the Kirchhoff formulas for stationary and moving surfaces with ease and elegance without the use of the four-dimensional Green s theorem, which is commonly done. Other subjects covered are why the derivatives in conservation laws should be viewed as generalized derivatives and what are the consequences of doing this. In particular we show how we can imbed a problem in a larger domain for the identical differential equation for which the Green s function is known. The primary purpose of this paper is to convince the readers that GF theory is absolutely essential in aeroacoustics because of its powerful operational properties. Furthermore, learning the subject and using it can be fun.

  3. Compact wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment

    CERN Document Server

    Giesbertz, K J H

    2014-01-01

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions and near degeneracy static correlations. In this work we analyze how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function $f(r_{12})$ depending on the interelectronic distance $r_{12}$. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. For the model system we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided cro...

  4. Plane-wave superpositions defined by orthonormal scalar functions on two- and three-dimensional manifolds

    Science.gov (United States)

    Borzdov

    2000-04-01

    Vector plane-wave superpositions defined by a given set of orthonormal scalar functions on a two- or three-dimensional manifold-beam manifold-are treated. We present a technique for composing orthonormal beams and some other specific types of fields such as three-dimensional standing waves, moving and evolving whirls. It can be used for any linear fields, in particular, electromagnetic fields in complex media and elastic fields in crystals. For electromagnetic waves in an isotropic medium or free space, unique families of exact solutions of Maxwell's equations are obtained. The solutions are illustrated by calculating fields, energy densities, and energy fluxes of beams defined by the spherical harmonics. It is shown that the obtained results can be used for a transition from the plane-wave approximation to more accurate models of real incident beams in free-space techniques for characterizing complex media. A mathematical formalism convenient for the treatment of various beams defined by the spherical harmonics is presented.

  5. Ten reasons why a thermalized system cannot be described by a many-particle wave function

    Science.gov (United States)

    Drossel, Barbara

    2017-05-01

    It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.

  6. Wave function of the Universe and Chern-Simons Perturbation Theory

    CERN Document Server

    Soo, C P

    2002-01-01

    The Chern-Simons exact solution of four-dimensional quantum gravity with nonvanishing cosmological constant is presented in metric variable as the partition function of a Chern-Simons theory with nontrivial source. The perturbative expansion is given, and the wave function is computed to the lowest order of approximation for the Cauchy surface which is topologically a 3-sphere. The state is well-defined even at degenerate and vanishing values of the dreibein. Reality conditions for the Ashtekar variables are also taken into account; and remarkable features of the Chern-Simons state and their relevance to cosmology are pointed out.

  7. Generalized extended tanh-function method and its application to (1+1)-dimensional dispersive long wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Xuedong; Chen Yong; Zhang Hongqing

    2003-05-12

    Making use of a new generalized ansatzes, we present the generalized extended tanh-function method for constructing the exact solutions of nonlinear partial differential equations (NPDEs) in a unified way. Applying the generalized method, with the aid of MAPLE, we consider the Wu-Zhang equation (which describes (1+1)-dimensional dispersive long wave). As a result, we can successfully obtain the solitary wave solutions that can be found by the extended tanh-function method and the modified extended tanh-function method. More importantly, for the equation, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary wave solutions, bell-profile solitary wave solutions, periodic wave solutions, rational solutions, singular solutions and other new formal solutions. As an illustrative sample, the properties of some soliton solutions for Wu-Zhang equation are shown by some figures.

  8. Exclusive $J/\\psi$ Production in Diffractive Process with AdS/QCD Holographic Wave Function in BLFQ

    CERN Document Server

    Xie, Ya-ping; Zhao, Xingbo

    2016-01-01

    The AdS/QCD holographic wave function of basis light-front quantization (BLFQ) for vector meson $J/\\psi$ is applied in this manuscript. The exclusive production of $J/\\psi$ in diffractive process is computed in dipole model with AdS/QCD holographic wave function. We use IP-Sat and IIM model in the calculation of the differential cross section of the dipole scattering off the proton. The prediction of AdS/QCD holographic wave function in BLFQ gives a good agreement to the experimental data.

  9. Time Reversal Mirrors and Cross Correlation Functions in Acoustic Wave Propagation

    Science.gov (United States)

    Fishman, Louis; Jonsson, B. Lars G.; de Hoop, Maarten V.

    2009-03-01

    In time reversal acoustics (TRA), a signal is recorded by an array of transducers, time reversed, and then retransmitted into the configuration. The retransmitted signal propagates back through the same medium and retrofocuses on the source that generated the signal. If the transducer array is a single, planar (flat) surface, then this configuration is referred to as a planar, one-sided, time reversal mirror (TRM). In signal processing, for example, in active-source seismic interferometry, the measurement of the wave field at two distinct receivers, generated by a common source, is considered. Cross correlating these two observations and integrating the result over the sources yield the cross correlation function (CCF). Adopting the TRM experiments as the basic starting point and identifying the kinematically correct correspondences, it is established that the associated CCF signal processing constructions follow in a specific, infinite recording time limit. This perspective also provides for a natural rationale for selecting the Green's function components in the TRM and CCF expressions. For a planar, one-sided, TRM experiment and the corresponding CCF signal processing construction, in a three-dimensional homogeneous medium, the exact expressions are explicitly calculated, and the connecting limiting relationship verified. Finally, the TRM and CCF results are understood in terms of the underlying, governing, two-way wave equation, its corresponding time reversal invariance (TRI) symmetry, and the absence of TRI symmetry in the associated one-way wave equations, highlighting the role played by the evanescent modal contributions.

  10. Blast Wave Dynamics at the Cornea as a Function of Eye Protection Form and Fit.

    Science.gov (United States)

    Williams, Steven T; Harding, Thomas H; Statz, J Keegan; Martin, John S

    2017-03-01

    A shock tube and anthropomorphic headforms were used to investigate eye protection form and fit using eyewear on the Authorized Protective Eyewear List in primary ocular blast trauma experiments. Time pressure recordings were obtained from highly linear pressure sensors mounted at the cornea of instrumented headforms of different sizes. A custom shock tube produced highly reliable shock waves and pressure recordings were collected as a function of shock wave orientation and protective eyewear. Eyewear protection coefficients were calculated as a function of a new metric of eyewear fit. In general, better protection was correlated with smaller gaps between the eyewear and face. For oblique angles, most spectacles actually potentiated the blast wave by creating higher peak pressures at the cornea. Installing foam around the perimeter of the spectacle lens to close the gap between the lens and face resulted in significantly lower pressure at the cornea. In conclusion, current eye protection, which was designed to reduce secondary and tertiary blast injuries, provides insufficient protection against primary blast injury. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  11. Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions

    Science.gov (United States)

    Akpan, Ofonime; Nyblade, Andrew; Okereke, Chiedu; Oden, Michael; Emry, Erica; Julià, Jordi

    2016-04-01

    We report new estimates of crustal thickness (Moho depth), Poisson's ratio and shear-wave velocities for eleven broadband seismological stations in Nigeria and Ghana. Data used for this study came from teleseismic earthquakes recorded at epicentral distances between 30° and 95° and with moment magnitudes greater than or equal to 5.5. P-wave receiver functions were modeled using the Moho Ps arrival times, H-k stacking, and joint inversion of receiver functions and Rayleigh wave group velocities. The average crustal thickness of the stations in the Neoproterozoic basement complex of Nigeria is 36 km, and 23 km for the stations in the Cretaceous Benue Trough. The crustal structure of the Paleoproterozoic Birimian Terrain, and Neoproterozoic Dahomeyan Terrain and Togo Structural Unit in southern Ghana is similar, with an average Moho depth of 44 km. Poisson's ratios for all the stations range from 0.24 to 0.26, indicating a bulk felsic to intermediate crustal composition. The crustal structure of the basement complex in Nigeria is similar to the average crustal structure of Neoproterozoic terrains in other parts of Africa, but the two Neoproterozoic terrains in southern Ghana have a thicker crust with a thick mafic lower crust, ranging in thickness from 12 to 17 km. Both the thicker crust and thick mafic lower crustal section are consistent with many Precambrian suture zones, and thus we suggest that both features are relict from the collisional event during the formation of Gondwana.

  12. Multichannel liquid-crystal-based wave-front corrector with modal influence functions.

    Science.gov (United States)

    Naumov, A F; Vdovin, G

    1998-10-01

    We report on a multichannel liquid-crystal-based wave-front corrector with smooth modal influence functions. The phase is controlled by application of spatially localized ac voltages to a distributed voltage divider formed by a liquid-crystal layer sandwiched between a high-conductance and a low-conductance electrode. The shape of the influence function depends on the control frequency and material parameters of the distributed voltage divider. We have experimentally realized a reflective modulator controlled by an array of 16 x 16 electrodes, providing phase control with an amplitude of approximately 16 pi at lambda =633 nm with a time constant of the order of tens of milliseconds. We experimentally demonstrated that the amplitude of each influence function can be controlled by change of the control voltage, whereas the width of the influence function is controlled by the frequency of the control voltage in a range of approximately 1 mm to the full width of the modulator aperture.

  13. Linear-scaling density functional theory using the projector augmented wave method

    Science.gov (United States)

    Hine, Nicholas D. M.

    2017-01-01

    Quantum mechanical simulation of realistic models of nanostructured systems, such as nanocrystals and crystalline interfaces, demands computational methods combining high-accuracy with low-order scaling with system size. Blöchl’s projector augmented wave (PAW) approach enables all-electron (AE) calculations with the efficiency and systematic accuracy of plane-wave pseudopotential calculations. Meanwhile, linear-scaling (LS) approaches to density functional theory (DFT) allow for simulation of thousands of atoms in feasible computational effort. This article describes an adaptation of PAW for use in the LS-DFT framework provided by the ONETEP LS-DFT package. ONETEP uses optimisation of the density matrix through in situ-optimised local orbitals rather than the direct calculation of eigenstates as in traditional PAW approaches. The method is shown to be comparably accurate to both PAW and AE approaches and to exhibit improved convergence properties compared to norm-conserving pseudopotential methods.

  14. Relational interpretation of the wave function and a possible way around Bell's theorem

    CERN Document Server

    Filk, T

    2006-01-01

    The famous ``spooky action at a distance'' in the EPR-szenario is shown to be a local interaction, once entanglement is interpreted as a kind of ``nearest neighbor'' relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the ``nearest neighbor'' relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, ``position'' becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the ``weird'' aspects, like the particle-wave duality, the non-locality of entanglement, or the ``mystery'' of the double-slit experiment, disappear. Furthermore, this picture cirumvents the restrictions set by Bell's inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics.

  15. Decay length of surface-state wave functions on Bi(1 1 1)

    Science.gov (United States)

    Ishida, H.

    2017-01-01

    We calculate the decay length in surface normal direction of the surface-state wave functions on a clean Bi(1 1 1) surface as a function of two-dimensional (2D) wave vector \\mathbf{k} along the {\\bar Γ }-\\bar{M} line. For this purpose, we perform a first-principles density functional theory (DFT) calculation for semi-infinite Bi(1 1 1) by employing the surface embedded Green’s function technique. The decay length of the two surface bands is found to be  ∼24 Bi bilayers at \\bar{M} , while it remains less than 5 Bi bilayers when \\mathbf{k} is away from \\bar{M} and {\\bar Γ } . At {\\bar Γ } , the degenerate surface bands are split from the upper boundary energy of the projected bulk valence bands only by 5 meV. In spite of this, the decay length of these bands at {\\bar Γ } is less than 10 Bi bilayers due to the large effective mass (small curvature) of the highest valence band in the surface normal direction.

  16. The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study.

    Directory of Open Access Journals (Sweden)

    Joel Singer

    Full Text Available OBJECTIVES: Pulse wave velocity (PWV is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. METHOD: Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. RESULTS: There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. CONCLUSION: A higher level of PWV was not associated with lower cognitive function in the whole sample.

  17. The Association between Pulse Wave Velocity and Cognitive Function: The Sydney Memory and Ageing Study

    Science.gov (United States)

    Singer, Joel; Trollor, Julian N.; Crawford, John; O’Rourke, Michael F.; Baune, Bernhard T.; Brodaty, Henry; Samaras, Katherine; Kochan, Nicole A.; Campbell, Lesley; Sachdev, Perminder S.; Smith, Evelyn

    2013-01-01

    Objectives Pulse wave velocity (PWV) is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. Method Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70–90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. Results There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. Conclusion A higher level of PWV was not associated with lower cognitive function in the whole sample. PMID:23637918

  18. Determination of the third critical field of superconductors using constrained effective wave function containing two variational parameters

    Energy Technology Data Exchange (ETDEWEB)

    Xu Longdao; Gao Yuliang

    1985-09-01

    Two variational parameters are included in the most probable constrained effective wave function with the accurate Hamiltonian remained. The third critical field which coincides with the result in paper (1) has been easily obtained through the variational principle.

  19. Configuration mixing of mean-field wave-functions projected on angular momentum and particle number; application to 24Mg

    CERN Document Server

    Valor, A; Bonche, P

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF+BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF+BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment.

  20. Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes

    CERN Document Server

    Widom, A; Larsen, L

    2012-01-01

    There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

  1. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  2. Crustal thickness variation beneath the Romanian seismic network from Rayleigh wave dispersion and receiver function analysis

    Science.gov (United States)

    Tataru, Dragos; Grecu, Bogdan; Zaharia, Bogdan

    2014-05-01

    Variations in crustal thickness in Romania where determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group velocity dispersion. We present new models of shear wave velocity structure of the crust beneath Romanian broad band stations. The data set consist in more than 500 teleseismic earthquake with epicentral distance between 30° and 95°, magnitude greater than 6 and a signal-to-noise ratio greater than 3 for the P-wave pulse. Most epicenters are situated along the northern Pacific Rim and arrive with backazimuths (BAZs) between 0° and 135° at the Romanian seismic network. We combine receiver functions with fundamental-mode of the Rayleigh wave group velocities to further constrain the shear-wave velocity structure.To extract the group velocities we applied the Multiple Filter Technique analysis to the vertical components of the earthquakes recordings. This technique allowed us to identify the Rayleigh wave fundamental mode and to compute the dispersion curves of the group velocities at periods between 10 and 150 s allowing us to resolve shear wave velocities to a depth of 100 km. The time-domain iterative deconvolution procedure of Ligorrıa and Ammon (1999) was employed to deconvolve the vertical component of the teleseismic P waveforms from the corresponding horizontal components and obtain radial and transverse receiver functions at each broadband station. The data are inverted using a joint, linearized inversion scheme (Hermann, 2002) which accounts for the relative influence of each set of observations, and allows a trade-off between fitting the observations, constructing a smooth model, and matching a priori constraints. The results show a thin crust for stations located inside the Pannonian basin (28-30 km) and a thicker crust for those in the East European Platform (36-40 km). The stations within the Southern and Central Carpathian Orogen are characterized by crustal depths of ~35 km. For stations located in the Northern

  3. Constraining the Lithospheric Structure of the Central Andes Using P- and S- wave Receiver Functions

    Science.gov (United States)

    Ryan, J. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.

    2014-12-01

    The Central Andean Plateau (CAP) has elevations in excess of 3 km, and is part of the Andean Cordillera that resulted in part from shortening along the western edge of South America as it was compressed between the subducting Nazca plate and underthrusting Brazilian cratonic lithosphere. We calculated P- and S-wave receiver functions for the Central Andean Uplift and Geodynamics of High Topography (CAUGHT) temporary deployment of broadband seismometers in the Bolivian orocline (12°-20°S) region to investigate crustal thickness and lithospheric structure. Migration of the receiver functions is done using common conversion point (CCP) stacks through a 3D shear velocity model from ambient noise tomography (Ward et al., 2013). The P- and S-wave receiver functions provide similar estimates of the depth to Moho under the CAP. Crustal thicknesses include 60-65 km thick crust underneath the Bolivian Altiplano, crust that varies from ~70 km to ~50 km underneath the Eastern Cordillera and Interandean zone, and thins to 50 to 40 km crust in the Subandes and the edge of the foreland. The variable crustal thickness of the Eastern Cordillera and Interandean zone ranges from >70 km associated with the Los Frailes volcanic field at 19°-20°S to ~55 km beneath the 6 km peaks of the Cordillera Real at ~16°S. From our S-wave receiver functions, that have no multiples that can interfere with deeper structure, we also identify structures below the Moho. Along a SW-NE line that runs near La Paz where we have our highest station density, the S-wave CCP receiver-function stacks show a strong negative polarity arrival at a depth of ~120 km from the eastern edge of the Altiplano to the Subandean zone. We suggest this may be a good candidate for the base of the CAP lithosphere. In addition, above this depth the mantle is strongly layered, suggesting that there is not a simple high velocity mantle lithosphere associated with the continental lithosphere underthrusting the Andean orogen

  4. Extended Jacobi Elliptic Function Rational Expansion Method and Its Application to (2+1)-Dimensional Stochastic Dispersive Long Wave System

    Institute of Scientific and Technical Information of China (English)

    SONG Li-Na; ZHANG Hong-Qing

    2007-01-01

    In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.

  5. Reduction of the Bethe–Salpeter wave function: Fermion–scalar case and scalar–scalar case

    Indian Academy of Sciences (India)

    Chen Chong; Chen Jiao-Kai

    2016-04-01

    In this paper, the general forms of the nonrelativistic Bethe–Salpeter wave functions for fermion–scalar bound state and scalar–scalar bound state are presented. Using the obtained normalization conditions and the corresponding Schrödinger equations for these bound states, the nonrelativistic Bethe–Salpeter wave functions can be calculated and can be used to compute the amplitude for the process involving these bound states.

  6. Virial theorem for an inhomogeneous medium, boundary conditions for the wave functions, and stress tensor in quantum statistics.

    Science.gov (United States)

    Bobrov, V B; Trigger, S A; van Heijst, G J F; Schram, P P J M

    2010-07-01

    On the basis of the stationary Schrödinger equation, the virial theorem in an inhomogeneous external field for the canonical ensemble is proved. It is shown that the difference in the form of virial theorem is conditioned by the value of the wave-function derivative on the surface of the volume, surrounding the system under consideration. The stress tensor in such a system is determined by the average values of the wave-function space derivatives.

  7. Student difficulties with quantum states while translating state vectors in Dirac notation to wave functions in position and momentum representations

    CERN Document Server

    Marshman, Emily

    2015-01-01

    We administered written free-response and multiple-choice questions and conducted individual interviews to investigate the difficulties that upper-level undergraduate and graduate students have with quantum states while translating state vectors in Dirac notation to wave functions in position and momentum representations. We find that students share common difficulties with translating a state vector written in Dirac notation to the wave function in position or momentum representation.

  8. The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system

    Science.gov (United States)

    Yeon, Kyu Hwang; Um, Chung IN; George, T. F.

    1994-01-01

    The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.

  9. Doubly Periodic Wave Solutions of Janlent-Miodek Equations Using Variational Iteration Method Combined with Jacobian-function Method

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; ZHU Jia-Min; WANG Tong-Tong; LU Zhi-Ming; LIU Yu-Lu

    2008-01-01

    One of the advantages of the variational iteration method is the free choice of initial guess. In this paper we use the basic idea of the Jacobian-function method to construct a generalized trial function with some unknown parameters. The Jaulent-Miodek equations are used to illustrate effectiveness and convenience of this method, some new explicit exact travelling wave solutions have been obtained, which include bell-type soliton solution, kink-type soliton solutions, solitary wave solutions, and doubly periodic wave solutions.

  10. SCATTERING OF THE HARMONIC STRESS WAVE BY CRACKS IN FUNCTIONALLY GRADED PIEZOELECTRIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Nie Wu; Wu Linzhi; Zhou Zhengong

    2005-01-01

    The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM).It is assumed that the properties of the FGPM vary continuously as an exponential function.By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials.Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors.

  11. Parametric dependent Hamiltonians, wave functions, random matrix theory, and quantal-classical correspondence.

    Science.gov (United States)

    Cohen, D; Kottos, T

    2001-03-01

    We study a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) are the canonical coordinates of a particle in a two-dimensional well, and x is a parameter. By changing x we can deform the "shape" of the well. The quantum eigenstates of the system are /n(x)>. We analyze numerically how the parametric kernel P(n/m)=//(2) evolves as a function of delta(x)[triple bond](x-x(0)). This kernel, regarded as a function of n-m, characterizes the shape of the wave functions, and it also can be interpreted as the local density of states. The kernel P(n/m) has a well-defined classical limit, and the study addresses the issue of quantum-classical correspondence. Both the perturbative and the nonperturbative regimes are explored. The limitations of the random matrix theory approach are demonstrated.

  12. Regularized quadratic cost-function for integrating wave-front gradient fields.

    Science.gov (United States)

    Villa, Jesús; Rodríguez, Gustavo; Ivanov, Rumen; González, Efrén

    2016-05-15

    From the Bayesian regularization theory we derive a quadratic cost-function for integrating wave-front gradient fields. In the proposed cost-function, the term of conditional distribution uses a central-differences model to make the estimated function well consistent with the observed gradient field. As will be shown, the results obtained with the central-differences model are superior to the results obtained with the backward-differences model, commonly used in other integration techniques. As a regularization term we use an isotropic first-order differences Markov Random-Field model, which acts as a low-pass filter reducing the errors caused by the noise. We present simulated and real experiments of the proposal applied in the Foucault test, obtaining good results.

  13. Probing the Nodal Structure of Landau Level Wave Functions in Real Space.

    Science.gov (United States)

    Bindel, J R; Ulrich, J; Liebmann, M; Morgenstern, M

    2017-01-06

    The inversion layer of p-InSb(110) obtained by Cs adsorption of 1.8% of a monolayer is used to probe the Landau level wave functions within smooth potential valleys by scanning tunneling spectroscopy at 14 T. The nodal structure becomes apparent as a double peak structure of each spin polarized first Landau level, while the zeroth Landau level exhibits a single peak per spin level only. The real space data show single rings of the valley-confined drift states for the zeroth Landau level and double rings for the first Landau level. The result is reproduced by a recursive Green function algorithm using the potential landscape obtained experimentally. We show that the result is generic by comparing the local density of states from the Green function algorithm with results from a well-controlled analytic model based on the guiding center approach.

  14. Spectral transfer functions of body waves propagating through a stratified medium. Part II: Theoretical spectral curves behavious of long perior P-waves

    Energy Technology Data Exchange (ETDEWEB)

    Macia, R.; Correig, A.M.

    1987-01-01

    The medium through which seismic waves propagate acts as a filter. This filter is characterized by the medium spectral transfer functions, that deppend only on the model parameters that represents the medium. The behaviour of the ratio of amplitudes between spectral transfer functions, corresponding to vertical and horizontal desplacements of long period P-waves propagating though a stratified media, is analysed. Correlations between the properties of a theoretical model with respect to the curve defined by the ratio of the spectral transfer functions are studied as a function of frequency, as well as the influence of the parameters that define de model of the curves. Finally, the obtained correlations are analysed from the point of view of the utilisations to the study of the Earth's Crust. (Author)

  15. P-wave receiver function study of crustal structure in Scandinavia

    Science.gov (United States)

    Makushkina, Anna; Thybo, Hans; Vinnik, Lev; Youssof, Mohammad

    2016-04-01

    In this study we present preliminary results on the structure of the continental crust in northern Scandinavia. The research area consists of three geologically different domains: the Archaean Domain in the north-east, the Palaeoproterozoic Svecofennian Domain in the east and the Caledonian Deformed Domain in the west (Gorbatschev and Bogdanova,1993). We present results based on data collected by 60 seismic stations during 2-4 years of deployment in the ScanArray experiment, which is an international collaboration between Scandinavian, German and British universities. We use the receiver function (RF) technique in the LQT ray-oriented coordinate system (Vinnik, 1977). Receiver function analysis has rather high vertical resolution of the depth to seismic discontinuities which cause transformation between P- and S-waves. The whole dataset is uniformly filtered and deconvolved records are stacked using appropriate moveout corrections. We have used events with a magnitude ≥ 5.5 Mw, with epicentral distances range from 30° to 95°. The technique allows us to constrain crustal structure and determine the Moho depth around stations by analyzing the PS converted phases generated at discontinuities in particular the Moho. We present preliminary interpretation of P-wave RF analysis in terms of the complex tectonic and geodynamic evolution of the Baltic Shield. Further studies will include joint P and S receiver function analysis of this area as well as investigations of the upper mantle. References: Vinnik L.P. (1977) Detection of waves converted from P to SV in the mantle. Phys. Earth planet. Inter. 15, 39-45 Gorbatschev R., Bogdanova, S. (1993) Frontiers in the Baltic Shield. Precambrian Res. 64, 3-21

  16. Effect of a functionally graded soft middle layer on Love waves propagating in layered piezoelectric systems.

    Science.gov (United States)

    Ben Salah, Issam; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2015-08-01

    Numerical examples for wave propagation in a three-layer structure have been investigated for both electrically open and shorted cases. The first order differential equations are solved by both methods ODE and Stiffness matrix. The solutions are used to study the effects of thickness and gradient coefficient of soft middle layer on the phase velocity and on the electromechanical coupling factor. We demonstrate that the electromechanical coupling factor is substantially increased when the equivalent thickness is in the order of the wavelength. The effects of gradient coefficients are plotted for the first mode when electrical and mechanical gradient variations are applied separately and altogether. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. The impact related to the gradient coefficient of the soft middle layer, on the mechanical displacement and the Poynting vector, is carried out. The numericals results are illustrated by a set of appropriate curves related to various profiles. The obtained results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices, but also for the measurement of material properties in a functionally graded piezoelectric layered system using Love waves.

  17. Mantle upwelling beneath Madagascar: evidence from receiver function analysis and shear wave splitting

    Science.gov (United States)

    Paul, Jonathan D.; Eakin, Caroline M.

    2017-07-01

    Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.

  18. Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali; Peyerimhoff, Sigrid D.

    2000-04-01

    An energy decomposition scheme based on the block-localized wave function (BLW) method is proposed. The key of this scheme is the definition and the full optimization of the diabatic state wave function, where the charge transfer among interacting molecules is deactivated. The present energy decomposition (ED), BLW-ED, method is similar to the Morokuma decomposition scheme in definition of the energy terms, but differs in implementation and the computational algorithm. In addition, in the BLW-ED approach, the basis set superposition error is fully taken into account. The application of this scheme to the water dimer and the lithium cation-water clusters reveals that there is minimal charge transfer effect in hydrogen-bonded complexes. At the HF/aug-cc-PVTZ level, the electrostatic, polarization, and charge-transfer effects contribute 65%, 24%, and 11%, respectively, to the total bonding energy (-3.84 kcal/mol) in the water dimer. On the other hand, charge transfer effects are shown to be significant in Lewis acid-base complexes such as H3NSO3 and H3NBH3. In this work, the effect of basis sets used on the energy decomposition analysis is addressed and the results manifest that the present energy decomposition scheme is stable with a modest size of basis functions.

  19. Unravelling the noise: the discrimination of wave function collapse models under time-continuous measurements

    Science.gov (United States)

    Genoni, Marco G.; Duarte, O. S.; Serafini, Alessio

    2016-10-01

    Inspired by the notion that environmental noise is in principle observable, while fundamental noise due to spontaneous localization would not be, we study the estimation of the diffusion parameter induced by wave function collapse models under continuous monitoring of the environment. We take into account finite measurement efficiencies and, in order to quantify the advantage granted by monitoring, we analyse the quantum Fisher information associated with such a diffusion parameter, identify optimal measurements in limiting cases, and assess the performance of such measurements in more realistic conditions.

  20. A Physically Based Analytical Model to Predict Quantized Eigen Energies and Wave Functions Incorporating Penetration Effect

    CERN Document Server

    Chowdhury, Nadim; Azim, Zubair Al; Alam, Md Hasibul; Niaz, Iftikhar Ahmad; Khosru, Quazi D M

    2014-01-01

    We propose a physically based analytical compact model to calculate Eigen energies and Wave functions which incorporates penetration effect. The model is applicable for a quantum well structure that frequently appears in modern nano-scale devices. This model is equally applicable for both silicon and III-V devices. Unlike other models already available in the literature, our model can accurately predict all the eigen energies without the inclusion of any fitting parameters. The validity of our model has been checked with numerical simulations and the results show significantly better agreement compared to the available methods.

  1. Wave Function of the Universe from a Matrix Valued First-Order Formalism

    CERN Document Server

    Kruglov, Sergey I

    2014-01-01

    In this paper, we obtain the wave function of the universe for a universe filled with a constant energy density and radiation. First, the Wheeler-DeWitt equation for this model in minisuperspace approximation is considered. Then, we represent the Wheeler-DeWitt equation in a matrix valued first-order formalism. We note that the Wheeler-DeWitt equation can be expressed as an eigenvalue equation in this formalism. So, projection operators for the Wheeler-DeWitt equation are constructed. Using these projection operators we obtain a solution for the Wheeler-DeWitt equation.

  2. Transfer ionization and its sensitivity to the ground-state wave function

    CERN Document Server

    Schöffler, M S; Popov, Yu V; Houamer, S; Titze, J; Jahnke, T; Schmidt, L Ph H; Jagutzki, O; Galstyan, A G; Gusev, A A

    2012-01-01

    We present kinematically complete theoretical calculations and experiments for transfer ionization in H$^++$He collisions at 630 keV/u. Experiment and theory are compared on the most detailed level of fully differential cross sections in the momentum space. This allows us to unambiguously identify contributions from the shake-off and two-step-2 mechanisms of the reaction. It is shown that the simultaneous electron transfer and ionization is highly sensitive to the quality of a trial initial-state wave function.

  3. Piecewise continuous distribution function method in the theory of wave disturbances of inhomogeneous gas

    Energy Technology Data Exchange (ETDEWEB)

    Vereshchagin, D.A. [Theoretical Physics Department, Kaliningrad State University, A. Nevsky st. 14, Kaliningrad (Russian Federation); Leble, S.B. [Theoretical Physics Department, Kaliningrad State University, A. Nevsky st. 14, Kaliningrad (Russian Federation) and Theoretical Physics and Mathematical Methods Department, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk (Poland)]. E-mail: leble@mifgate.pg.gda.pl; Solovchuk, M.A. [Theoretical Physics Department, Kaliningrad State University, A. Nevsky st. 14, Kaliningrad (Russian Federation)]. E-mail: solovchuk@yandex.ru

    2006-01-02

    The system of hydrodynamic-type equations for a stratified gas in gravity field is derived from BGK equation by method of piecewise continuous distribution function. The obtained system of the equations generalizes the Navier-Stokes one at arbitrary Knudsen numbers. The problem of a wave disturbance propagation in a rarefied gas is explored. The verification of the model is made for a limiting case of a homogeneous medium. The phase velocity and attenuation coefficient values are in an agreement with former fluid mechanics theories; the attenuation behavior reproduces experiment and kinetics-based results at more wide range of the Knudsen numbers.

  4. Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.

    Science.gov (United States)

    Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-03-29

    We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.

  5. Wave-shape function analysis -- when cepstrum meets time-frequency analysis

    CERN Document Server

    Lin, Chen-Yun; Wu, Hau-tieng

    2016-01-01

    We propose to combine cepstrum and nonlinear time-frequency (TF) analysis to study mutiple component oscillatory signals with time-varying frequency and amplitude and with time-varying non-sinusoidal oscillatory pattern. The concept of cepstrum is applied to eliminate the wave-shape function influence on the TF analysis, and we propose a new algorithm, named de-shape synchrosqueezing transform (de-shape SST). The mathematical model, adaptive non-harmonic model, is introduced and the de-shape SST algorithm is theoretically analyzed. In addition to simulated signals, several different physiological, musical and biological signals are analyzed to illustrate the proposed algorithm.

  6. Relativistic k .p Hamiltonians for centrosymmetric topological insulators from ab initio wave functions

    Science.gov (United States)

    Nechaev, I. A.; Krasovskii, E. E.

    2016-11-01

    We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.

  7. On the nature of the change in the wave function in a measurement in quantum mechanics

    CERN Document Server

    Snyder, D M

    1996-01-01

    Generally a central role has been assigned to an unavoidable physical interaction between the measuring instrument and the physical entity measured in the change in the wave function that often occurs in measurement in quantum mechanics. A survey of textbooks on quantum mechanics by authors such as Dicke and Witke (1960), Eisberg and Resnick (1985), Gasiorowicz (1974), Goswami (1992), ift fur Physik, vol. 158, p. 417), supports these points. Work on electron shelving is reported by Dehmelt and his colleagues (Physical Review Letters, vol. 56, p. 2797), Wineland and his colleagues (Physical Review Letters, vol. 57, p. 1699), and Sauter, Neuhauser, Blatt, and Toschek (Physical Review Letters, vol. 57, p. 1696).

  8. Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests.

    Science.gov (United States)

    Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D

    2017-08-17

    Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants

  9. Wave-function inspired density functional applied to the H$_2$/H$_2^+$ challenge

    CERN Document Server

    Zhang, Igor Ying; Scheffler, Matthias

    2016-01-01

    We start from the Bethe-Goldstone equation (BGE) to derive a simple orbital-dependent correlation functional -- BGE2 -- which terminates the BGE expansion at the second-order, but retains the self-consistent coupling of electron-pair orrelations. We demonstrate that BGE2 is size consistent and one-electron "self-correlation" free. The electron-pair correlation coupling ensures the correct H$_2$ dissociation limit and gives a finite correlation energy for any system even if it has a no energy gap. BGE2 provides a good description of both H$_2$ and H$_2^+$ dissociation, which is regarded as a great challenge in density functional theory (DFT). We illustrate the behavior of BGE2 analytically by considering H$_2$ in a minimal basis. Our analysis shows that BGE2 captures essential features of the adiabatic connection path that current state-of-the-art DFT approximations do not.

  10. Subspace accelerated inexact Newton method for large scale wave functions calculations in Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J

    2008-07-29

    We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.

  11. Ion and electron beam effects on kinetic Alfven wave with general loss-cone distribution function-kinetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Nidhi; Mishra, Ruchi; Varma, P; Tiwari, M S [Department of Physics and Electronics, Dr H S Gour University, Sagar (MP) 470003 (India)

    2008-02-15

    This work studies the effect of ion and electron beam on kinetic Alfven wave (KAW) with general loss-cone distribution function. The kinetic theory has been adopted to evaluate the dispersion relation and damping rate of the wave in the presence of loss-cone distribution indices J. The variations in wave frequency {omega} and damping rate with perpendicular wave number k{sub perpendicular}{rho}{sub i} (k{sub perpendicular} is perpendicular wave number and {rho}{sub i} is ion gyroradius) and parallel wave number k{sub parallel} are studied. It is found that the distribution index J and ion beam velocity enhance the wave frequency at lower k{sub perpendicular}{rho}{sub i}, whereas the electron beam velocity enhances the wave frequency at higher k{sub perpendicular}{rho}{sub i}. The calculated values of frequency correspond to the observed values in the range 0.1-4 Hz. Increase in damping rate due to higher distribution indices J and ion beam velocity is observed. The effect of electron beam is to reduce the damping rate at higher k{sub perpendicular}{rho}{sub i}. The plasma parameters appropriate to plasma sheet boundary layer are used. The results may explain the transfer of Poynting flux from the magnetosphere to the ionosphere. It is also found that in the presence of the loss-cone distribution function the ion beam becomes a sensitive parameter to reduce the Poynting flux of KAW propagating towards the ionosphere.

  12. A Novel Algorithm for Extracting the Parton Distribution Amplitude from the Euclidean Bethe-Salpeter Wave Function

    CERN Document Server

    Gao, Fei; Liu, Yu-xin

    2016-01-01

    We propose a new numerical method to compute parton distribution amplitude(PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method(MEM). The Nakanishi weight function as well as the corresponding light-front PDA can be well determined. We confirm the previous works on PDA computation therein the different method has been performed.

  13. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case

    Science.gov (United States)

    Abdelrahman, Mahmoud A. E.; Sohaly, M. A.

    2017-08-01

    This work deals with the construction of the exact traveling wave solutions for the nonlinear Schrödinger equation by the new Riccati-Bernoulli Sub-ODE method. Additionally, we apply this method in order to study the random solutions by finding the probability distribution function when the coefficient in our problem is a random variable. The travelling wave solutions of many equations physically or mathematically are expressed by hyperbolic functions, trigonometric functions and rational functions. We discuss our method in the deterministic case and also in a random case, by studying the beta distribution for the random input.

  14. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.

    Science.gov (United States)

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-03-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.

  15. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis

    Science.gov (United States)

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-01-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients’ function. PMID:28356649

  16. Pseudospectral calculation of the wave function of helium and the negative hydrogen ion

    Science.gov (United States)

    Grabowski, Paul E.; Chernoff, David F.

    2010-03-01

    We study the numerical solution of the nonrelativistic Schrödinger equation for two-electron atoms in ground and excited S states using pseudospectral (PS) methods of calculation. The calculation achieves convergence rates for the energy, Cauchy error in the wave function, and variance in local energy that are exponentially fast for all practical purposes. The method requires three separate subdomains to handle the wave function’s cusplike behavior near the two-particle coalescences. The use of three subdomains is essential to maintaining exponential convergence and is more computationally efficient than a single subdomain. A comparison of several different treatments of the cusps suggests that the simplest prescription is sufficient. We investigate two alternate methods for handling the semi-infinite domain, one which involves a sequence of truncated versions of the domain and the other which employs an algebraic mapping of the semi-infinite domain to a finite one and imposes no explicit cutoffs on the wave function. The latter prescription proves superior. For many purposes it proves unnecessary to handle the three-particle coalescence in a special way. The presence of logarithmic terms in the exact solution is expected to limit the convergence to being nonexponential but the only clear evidence of that is the rate of convergence of derivatives near the three-particle coalescence point. Higher resolution than achieved in this work will ultimately be needed to see its limiting effect on other measures of error. As developed and applied here the PS method has many virtues: no explicit assumptions need be made about the asymptotic behavior of the wave function near cusps or at large distances, the local energy (Hψ/ψ) is exactly equal to the calculated global energy at all collocation points, local errors go down everywhere with increasing resolution, the effective basis using Chebyshev polynomials is complete and simple, and the method is easily extensible to

  17. DNA--a molecule in search of additional functions: recipient of pool wave emissions? A hypothesis.

    Science.gov (United States)

    Doerfler, Walter

    2010-09-01

    Almost the entire nucleotide sequence of human DNA is functionally unaccounted for, although large parts of the human genome are transcribed. The genes, as defined by current molecular biology, comprise about 1.5-2% of the DNA molecule. It is proposed that DNA encodes additional, hitherto unrecognized functions. In this discussion, the total information inside and outside the universe we live in is termed the pool or the sum total, known or unknown, of all laws, matter, energy, concepts and events. In a hypothetical model, a Gedankenexperiment, it is suggested that the total of all information emits pool waves of an unknown physical nature. They could be related to black energy or have completely different qualities. The designation pool waves should not imply any similarity to electromagnetism. Further, DNA is suggested to have the capability of interacting with the pool waves and thus permit humans - to some partly genetically determined and yet very limited extent - to perceive information from the pool. Pool emissions might be one of the forces that have been instrumental in and are still driving evolution from simple oligonucleotides to DNA with ever more complex recipient capacities. It will be a major challenge for researchers in the field to unravel these and less hypothetical undetected coding principles in DNA. It is uncertain whether the current trend to search the available DNA sequences with ever more refined computer technology on the basis of our present understanding of biology will detect unknown coding systems. For molecular medicine, research into the genetics of the most common human diseases could profit from the elucidation of presently still ephemeral codes in human DNA. Young scientists with a proven record of original research deserve support for the pursuit of unconventional ideas. This concept of granting priorities will be of the utmost importance in advancing the field beyond current concepts in molecular biology.

  18. The Yang-Mills Vacuum Wave Functional in 2+1 Dimensions

    CERN Document Server

    Krug, Sebastian

    2014-01-01

    We investigate Yang-Mills theory in 2+1 dimensions in the Schroedinger representation. The Schroedinger picture is interesting because it is well suited to explore properties of the vacuum state in the non-perturbative regime. Yet, not much analytical work has been done on this subject, and even the topic of perturbation theory in the Schroedinger representation is not well developed, especially in the case of gauge theories. In a paper by Hatfield [Phys.Lett.B 147, 435 (1984)] the vacuum wave functional for SU(2) theory was computed to O(e). In the non-perturbative regime, the most sophisticated analytical approach has been developed by Karabali et al. in a series of papers (see [Nucl.Phys.B 824, 387 (2010)] and references therein). This thesis aims to put perturbation theory in the Schroedinger representation on more solid ground by computing the vacuum wave functional for a general gauge group SU$(N_c)$ up to O$(e^2)$, utilizing modifications of these two methods. This is important since it provides us wit...

  19. The role of the wave function in the GRW matter density theory

    Energy Technology Data Exchange (ETDEWEB)

    Egg, Matthias [University of Lausanne (Switzerland)

    2014-07-01

    Every approach to quantum mechanics postulating some kind of primitive ontology (e.g., Bohmian particles, a mass density field or flash-like collapse events) faces the challenge of clarifying the ontological status of the wave function. More precisely, one needs to spell out in what sense the wave function ''governs'' the behaviour of the primitive ontology, such that the empirical predictions of standard quantum mechanics are recovered. For Bohmian mechanics, this challenge has been addressed in recent papers by Belot and Esfeld et al. In my talk, I do the same for the matter density version of the Ghirardi-Rimini-Weber theory (GRWm). Doing so will highlight relevant similarities and differences between Bohmian mechanics and GRWm. The differences are a crucial element in the evaluation of the relative strengths and weaknesses of the two approaches, while the similarities can shed light on general characteristics of the primitive ontology approach, as opposed to other interpretative approaches to quantum mechanics.

  20. Niels Bohr on the wave function and the classical/quantum divide

    CERN Document Server

    Zinkernagel, Henrik

    2016-01-01

    It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on ho...

  1. Niels Bohr on the wave function and the classical/quantum divide

    Science.gov (United States)

    Zinkernagel, Henrik

    2016-02-01

    It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on how Bohr's ideas make much sense also when modern developments in quantum gravity and early universe cosmology are taken into account.

  2. Analysis of two-orbital correlations in wave functions restricted to electron-pair states

    Science.gov (United States)

    Boguslawski, Katharina; Tecmer, Paweł; Legeza, Örs

    2016-10-01

    Wave functions constructed from electron-pair states can accurately model strong electron correlation effects and are promising approaches especially for larger many-body systems. In this article, we analyze the nature and the type of electron correlation effects that can be captured by wave functions restricted to electron-pair states. We focus on the pair-coupled-cluster doubles (pCCD) ansatz also called the antisymmetric product of the 1-reference orbital geminal (AP1roG) method, combined with an orbital optimization protocol presented in Boguslawski et al. [Phys. Rev. B 89, 201106(R) (2014)], 10.1103/PhysRevB.89.201106, whose performance is assessed against electronic structures obtained form density-matrix renormalization-group reference data. Our numerical analysis covers model systems for strong correlation: the one-dimensional Hubbard model with a periodic boundary condition as well as metallic and molecular hydrogen rings. Specifically, the accuracy of pCCD/AP1roG is benchmarked using the single-orbital entropy, the orbital-pair mutual information, as well as the eigenvalue spectrum of the one-orbital and two-orbital reduced density matrices. Our study indicates that contributions from singly occupied states become important in the strong correlation regime which highlights the limitations of the pCCD/AP1roG method. Furthermore, we examine the effect of orbital rotations within the pCCD/AP1roG model on correlations between orbital pairs.

  3. Determination of the exchange interaction energy from the polarization expansion of the wave function

    Science.gov (United States)

    Gniewek, Piotr; Jeziorski, Bogumił

    2016-10-01

    The exchange contribution to the energy of the hydrogen atom interacting with a proton is calculated from the polarization expansion of the wave function using the conventional surface-integral formula and two formulas involving volume integrals: the formula of the symmetry-adapted perturbation theory (SAPT) and the variational formula recommended by us. At large internuclear distances R , all three formulas yield the correct expression -(2 /e ) R e-R , but they approximate it with very different convergence rates. In the case of the SAPT formula, the convergence is geometric with the error falling as 3-K, where K is the order of the applied polarization expansion. The error of the surface-integral formula decreases exponentially as aK/(K +1 ) , where a =ln2 - 1/2. The variational formula performs best, its error decays as K1 /2[aK/(K+1 ) ] 2 . These convergence rates are much faster than those resulting from approximating the wave function through the multipole expansion. This shows the efficiency of the partial resummation of the multipole series effected by the polarization expansion. Our results demonstrate also the benefits of incorporating the variational principle into the perturbation theory of molecular interactions.

  4. Does consciousness really collapse the wave function? A possible objective biophysical resolution of the measurement problem

    CERN Document Server

    Thaheld, F H

    2005-01-01

    An analysis has been performed of the theories and postulates advanced by von Neumann, London and Bauer, and Wigner, concerning the role that consciousness might play in the collapse of the wave function, which has become known as the measurement problem. This reveals that an error may have been made by them in the area of biology and its interface with quantum mechanics, when they called for the reduction of any superposition states in the brain through the mind or consciousness. Many years later Wigner changed his mind to reflect a simpler and more realistic objective position, expanded upon by Shimony, which appears to offer a way to resolve this issue. The argument is therefore made that the wave function of any superposed photon state or states is always objectively changed within the complex architecture of the eye in a continuous linear process initially for most of the superposed photons, followed by a discontinuous nonlinear collapse process later for any remaining superposed photons, thereby guarant...

  5. S-wave velocity structure beneath Changbaishan volcano inferred from receiver function

    Institute of Scientific and Technical Information of China (English)

    Jianping Wu; Yuehong Ming; Lihua Fang; Weilai Wang

    2009-01-01

    The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic re-gion, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldem. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con-sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.

  6. Determination of the exchange interaction energy from the polarization expansion of the wave function

    CERN Document Server

    Gniewek, Piotr

    2016-01-01

    The exchange contribution to the energy of the hydrogen atom interacting with a proton is calculated from the polarization expansion of the wave function using the conventional surface-integral formula and two formulas involving volume integrals: the formula of the symmetry-adapted perturbation theory (SAPT) and the variational formula recommended by us. At large internuclear distances $R$, all three formulas yield the correct expression $-(2/e)Re^{-R}$, but approximate it with very different convergence rates. In the case of the SAPT formula, the convergence is geometric with the error falling as $3^{-K}$, where $K$ is the order of the applied polarization expansion. The error of the surface-integral formula decreases exponentially as $a^K/(K+1)!$, where $a=\\ln2 -\\tfrac{1}{2}$. The variational formula performs best, its error decays as $K^{1/2} [a^{ K}/(K+1)!]^2$. These convergence rates are much faster than those resulting from approximating the wave function through the multipole expansion. This shows the ...

  7. Modification of AMD wave functions and application to the breaking of the N=20 magic number

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masaaki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics

    2001-09-01

    By using the deformed Gaussian instead of the spherical one, we have modified the AMD (Antisymmetrized Molecular Dynamics) wave functions. The calculation results with this modified AMD shows the drastic improvement of the deformation properties of Mg isotopes. This improvement means that this new version of AMD can treat the deformation of mean field properly than before and the deformation of mean field is important in Mg isotopes. With this new version of AMD, we have also calculated 32Mg in which the breaking of magic number N=20 is experimentally known. In this nucleus, {beta}-energy surface is also drastically changed by the modification AMD wave function. Our results show that this nucleus is indeed deformed and neutron's 2p2h state is dominant in its ground state. This ground state reproduces the experimental data and shows the breaking of the magic number N=20 clearly. Additionally, near the ground state, there is also very interesting state which has neutron's 4p4h structure and shows parity violating density distribution and cluster-like nature. (author)

  8. Method of Moments of Coupled-Cluster Equations: Externally Corrected Approaches Employing Configuration Interaction Wave Functions

    Directory of Open Access Journals (Sweden)

    Ian S.O. Pimienta

    2002-05-01

    Full Text Available Abstract: A new approach to the many-electron correlation problem, termed the method of moments of coupled-cluster equations (MMCC, is further developed and tested. The main idea of the MMCC theory is that of the noniterative energy corrections which, when added to the energies obtained in the standard coupled-cluster calculations, recover the exact (full configuration interaction energy. The MMCC approximations require that a guess is provided for the electronic wave function of interest. The idea of using simple estimates of the wave function, provided by the inexpensive configuration interaction (CI methods employing small sets of active orbitals to define higher–than–double excitations, is tested in this work. The CI-corrected MMCC methods are used to study the single bond breaking in HF and the simultaneous breaking of both O–H bonds in H2O.

  9. Structure of the Particle-Hole Amplitudes in No-core Shell Model Wave Functions

    CERN Document Server

    Hayes, A C

    2009-01-01

    We study the structure of the no-core shell model wave functions for $^6$Li and $^{12}$C by investigating the ground state and first excited state electron scattering charge form factors. In both nuclei, large particle-hole ($ph$) amplitudes in the wave functions appear with the opposite sign to that needed to reproduce the shape of the $(e,e')$ form factors, the charge radii, and the B(E2) values for the lowest two states. The difference in sign appears to arise mainly from the monopole $\\Delta\\hbar\\omega=2$ matrix elements of the kinetic and potential energy (T+V) that transform under the harmonic oscillator SU(3) symmetries as $(\\lambda,\\mu)=(2,0)$. These are difficult to determine self-consistently, but they have a strong effect on the structure of the low-lying states and on the giant monopole and quadrupole resonances. The Lee-Suzuki transformation, used to account for the restricted nature of the space in terms of an effective interaction, introduces large higher-order $\\Delta\\hbar\\omega=n, n>$2, $ph$ ...

  10. New constraints on D-state contributions to the trinucleon wave functions

    Science.gov (United States)

    Vuaridel, B.; Grüebler, W.; König, V.; Elsener, K.; Schmelzbach, P. A.; Bittcher, M.; Singy, D.; Borbély, I.; Bruno, M.; Cannata, F.; D'agostino, M.

    1989-07-01

    Cross-section and polarization data of the 4He(d, 3He) 3H reaction measured at 5 energies have been analysed. The vertex constants for the neutron transfer Gn, the proton transfer Gp and the asymptotic normalization constant Cs2, for the S-state of the 3H wave function have been determined. New constraints on the D- to S-state asymptotic normalization ratio ηt, and η3He for the triton and 3He wave functions are obtained from the tensor analyzing powers. The method of the analytic extrapolation in the angular variable to the transfer poles was used. Implications of this method and its application are discussed. Criteria for the reliability of the results are presented. The result of the analysis is Cs2 = 2.95 ±0.15, ηt = 0.050 ± 0.006 and η3He = 0.035 ± 0.006. The ratio ηt/ η3He shows a significant deviation from unity suggesting a substantial isospin breaking effect.

  11. New constraints on D-state contributions to the trinucleon wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Vuaridel, B.; Grueebler, W.; Koenig, V.; Elsener, K.; Schmelzbach, P.A.; Bittcher, M.; Singy, D. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Borbeley, I. (Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics); Bruno, M.; Cannata, F.; D' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Bologna Univ. (Italy). Ist. di Fisica)

    1989-07-31

    Cross-section and polarization data of the {sup 4}He(d, {sup 3}He){sup 3}H reaction measured at 5 energies have been analysed. The vertex constants for the neutron transfer G{sub n}, the proton transfer G{sub p} and the asymptotic normalization constant C{sub S}{sup 2} for the S-state of the {sup 3}H wave function have been determined. New constraints on the D- to S-state asymptotic normalization ratio eta{sub t} and eta{sup 3}{sub He} for the triton and {sup 3}He wave functions are obtained from the tensor analyzing powers. The method of the analytic extrapolation in the angular variable to the transfer poles was used. Implications of this method and its application are discussed. Criteria for the reliability of the results are presented. The result of the analysis is C{sub S}{sup 2}=2.95+-0.15, eta{sub t}=0.050+-0.006 and eta{sup 3}{sub He}=0.035+-0.006. The ratio eta{sub t}/eta{sup 3}{sub He} shows a significant deviation from unity suggesting a substantial isospin breaking effect. (orig.).

  12. Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Gok, R; Mahdi, H; Al-Shukri, H; Rodgers, A J

    2006-08-31

    We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.

  13. Microscopy of electronic wave function; Microscopie de fonction d'onde electronique

    Energy Technology Data Exchange (ETDEWEB)

    Harb, M.

    2010-09-15

    This work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons ({approx} meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, in visualizing the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the 'Split-operator' method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI (Velocity-Map Imaging) spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results. (author)

  14. On functional equations leading to exact solutions for standing internal waves

    NARCIS (Netherlands)

    Beckebanze, F.; Keady, G.

    The Dirichlet problem for the wave equation is a classical example of a problem which is ill-posed. Nevertheless, it has been used to model internal waves oscillating harmonically in time, in various situations, standing internal waves amongst them. We consider internal waves in two-dimensional

  15. Longitudinal dielectric function and dispersion relation of electrostatic waves in relativistic plasmas

    Science.gov (United States)

    Touil, B.; Bendib, A.; Bendib-Kalache, K.

    2017-02-01

    The longitudinal dielectric function is derived analytically from the relativistic Vlasov equation for arbitrary values of the relevant parameters z = m c 2 / T , where m is the rest electron mass, c is the speed of light, and T is the electron temperature in energy units. A new analytical approach based on the Legendre polynomial expansion and continued fractions was used. Analytical expression of the electron distribution function was derived. The real part of the dispersion relation and the damping rate of electron plasma waves are calculated both analytically and numerically in the whole range of the parameter z . The results obtained improve significantly the previous results reported in the literature. For practical purposes, explicit expressions of the real part of the dispersion relation and the damping rate in the range z > 30 and strongly relativistic regime are also proposed.

  16. Gutzwiller wave function for finite systems: superconductivity in the Hubbard model

    Science.gov (United States)

    Tomski, Andrzej; Kaczmarczyk, Jan

    2016-05-01

    We study the superconducting phase of the Hubbard model using the Gutzwiller variational wave function (GWF) and the recently proposed diagrammatic expansion technique (DE-GWF). The DE-GWF method works on the level of the full GWF and in the thermodynamic limit. Here, we consider a finite-size system to study the accuracy of the results as a function of the system size (which is practically unrestricted). We show that the finite-size scaling used, e.g. in the variational Monte Carlo method can lead to significant, uncontrolled errors. The presented research is the first step towards applying the DE-GWF method in studies of inhomogeneous situations, including systems with impurities, defects, inhomogeneous phases, or disorder.

  17. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-01-21

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  18. Compact two-electron wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment

    Energy Technology Data Exchange (ETDEWEB)

    Giesbertz, Klaas J. H. [Theoretical Chemistry, Faculty of Exact Sciences, VU University, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Leeuwen, Robert van [Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Survontie 9, Jyväskylä (Finland)

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r{sub 12}) depending on the interelectronic distance r{sub 12}. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r{sub 12}) needs to diverge for large r{sub 12} at large internuclear distances while for shorter bond distances it increases as a function of r{sub 12} to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  19. Acoustic scattering from multiple spheres by using a kind of addition formulae for the spherical wave functions

    Institute of Scientific and Technical Information of China (English)

    WU Jiuhui; WANG Yaojun; LI Taibao

    2004-01-01

    A kind of addition formulae for the spherical wave functions is generated by using the bicentric expansion of Green function in spherical coordinates. For an acoustical system with multiple spheres, the addition formulae permit the field expansions all referred to the center of one of the spheres, whose boundary conditions can be consequently used to study the multiple scattering easily. The two-sphere acoustical system with different boundary conditions is considered and the field scattered by each sphere can be obtained by solving an infinite set of two linear, complex, algebraic equations, whose coefficients are coupled through double sums in the spherical wave functions. Finally, the form functions of two spheres insonified by a plane wave at arbitrary angles of incidence are calculated and the addition formulae presented are validated by comparing the corresponding numerical results with those of the existing literature.

  20. Eigen spectra and wave functions of the massless Dirac fermions under the nonuniform magnetic fields in graphene

    Science.gov (United States)

    Eshghi, M.; Mehraban, H.; Azar, I. Ahmadi

    2017-10-01

    In this research, firstly, by using the new form of Dirac-Weyl equation and the series method with submitting more suitable details, the energy spectrum and wave functions of the massless Dirac fermions are calculated under the inhomogeneous and q-deformed spatially magnetic fields. Although, we discussed about the results of the energy levels, further, we obtained the wave function as the Hessenberg determinant with calculating the elements of it as exact. On the other hand, by using the Mellin-Barnes integral representation and Hurwitz zeta function, we have achieved the thermodynamic physical quantities of the Dirac-Weyl fermions in the absence of a magnetic field for inside of the graphene quantum dot. Finally, our numerical results for the wave functions and probability densities are presented too.

  1. Two-state model based on the block-localized wave function method

    Science.gov (United States)

    Mo, Yirong

    2007-06-01

    The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).

  2. Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium

    Science.gov (United States)

    Wang, Lugen; Rokhlin, S. I.

    2004-11-01

    The differential equations governing transfer and stiffness matrices and acoustic impedance for a functionally graded generally anisotropic magneto-electro-elastic medium have been obtained. It is shown that the transfer matrix satisfies a linear 1st order matrix differential equation, while the stiffness matrix satisfies a nonlinear Riccati equation. For a thin nonhomogeneous layer, approximate solutions with different levels of accuracy have been formulated in the form of a transfer matrix using a geometrical integration in the form of a Magnus expansion. This integration method preserves qualitative features of the exact solution of the differential equation, in particular energy conservation. The wave propagation solution for a thick layer or a multilayered structure of inhomogeneous layers is obtained recursively from the thin layer solutions. Since the transfer matrix solution becomes computationally unstable with increase of frequency or layer thickness, we reformulate the solution in the form of a stable stiffness-matrix solution which is obtained from the relation of the stiffness matrices to the transfer matrices. Using an efficient recursive algorithm, the stiffness matrices of the thin nonhomogeneous layer are combined to obtain the total stiffness matrix for an arbitrary functionally graded multilayered system. It is shown that the round-off error for the stiffness-matrix recursive algorithm is higher than that for the transfer matrices. To optimize the recursive procedure, a computationally stable hybrid method is proposed which first starts the recursive computation with the transfer matrices and then, as the thickness increases, transits to the stiffness matrix recursive algorithm. Numerical results show this solution to be stable and efficient. As an application example, we calculate the surface wave velocity dispersion for a functionally graded coating on a semispace.

  3. Shear Wave Elastography of the Spleen for Monitoring Transjugular Intrahepatic Portosystemic Shunt Function: A Pilot Study.

    Science.gov (United States)

    Gao, Jing; Zheng, Xiao; Zheng, Yuan-Yi; Zuo, Guo-Qing; Ran, Hai-Tao; Auh, Yong Ho; Waldron, Levi; Chan, Tiffany; Wang, Zhi-Gang

    2016-05-01

    To assess the feasibility of splenic shear wave elastography in monitoring transjugular intrahepatic portosystemic shunt (TIPS) function. We measured splenic shear wave velocity (SWV), main portal vein velocity (PVV), and splenic vein velocity (SVV) in 33 patients 1 day before and 3 days to 12 months after TIPS placement. We also measured PVV, SVV, and SWV in 10 of 33 patients with TIPS dysfunction 1 day before and 3 to 6 days after TIPS revision. Analyses included differences in portosystemic pressure gradient (PPG), PVV, SVV, and mean SWV before and after TIPS procedures; comparison of median SWV before and after TIPS procedures; differences in PVV, SVV, and SWV before and at different times up to 12 months after TIPS placement; accuracy of PVV, SVV, and SWV in determining TIPS dysfunction; and correlation between PPG and SWV. During 12 months of follow-up, 23 of 33 patients had functioning TIPS, and 10 had TIPS dysfunction. The median SWV was significantly different before and after primary TIPS placement (3.60 versus 3.05 m/s; P = .005), as well as before and after revision (3.73 versus 3.06 m/s; P = .003). The PPG, PVV, and SVV were also significantly different before and after TIPS placement and revision (P < .001). The PPG and SWV decreased, whereas PVV and SVV increased, after successful TIPS procedures. A positive correlation was observed between PPG and SWV (r = 0.70; P < .001), and a negative correlation was observed between PPG and PVV and SVV (r = -0.65; P < .001). The areas under the receiver operating characteristic curve for PVV, SVV, and SWV in determining TIPS dysfunction were 0.82, 0.84, and 0.81, respectively. Splenic SWV is compatible with splenoportal venous velocity in quantitatively monitoring TIPS function and determining TIPS dysfunction. © 2016 by the American Institute of Ultrasound in Medicine.

  4. Spectrum for heavy quarkonia and mixture of the relevant wave functions within the framework of Bethe-Salpeter equation

    Institute of Scientific and Technical Information of China (English)

    CHANG; ChaoHsi

    2010-01-01

    Considering the fact that some excited states of the heavy quarkonia (charmonium and bottomonium) are still missing in experimental observations and potential applications of the relevant wave functions of the bound states,we re-analyze the spectrum and the relevant wave functions of the heavy quarkonia within the framework of Bethe-Salpeter (B.S.) equation with a proper QCDinspired kernel.Such a kernel for the heavy quarkonia,relating to potential of the non-relativistic quark model,is instantaneous,so we call the corresponding B.S.equation as BS-In equation throughout the paper.Particularly,a new way to solve the B.S.equation,which is different from the traditional ones,is proposed here,and with it not only the known spectrum for the heavy quarkonia is re-generated,but also an important issue is brought in,i.e.,the obtained solutions of the equation ‘automatically’ include the ‘fine’,‘hyperfine’ splittings and the wave function mixture,such as S-D wave mixing in J PC = 1-states,P-F wave mixing in J PC = 2 ++ states for charmonium,bottomonium etc.It is pointed out that the best place to test the wave mixture probably is at Z-factory (e + e-collider running at Z-boson pole with extremely high luminosity).

  5. General coalescence conditions for the exact wave functions. II. Higher-order relations for many-particle systems.

    Science.gov (United States)

    Kurokawa, Yusaku I; Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2014-06-07

    We derived the necessary conditions that must be satisfied by the non-relativistic time-independent exact wave functions for many-particle systems at a two-particle coalescence (or cusp) point. Some simple conditions are known to be Kato's cusp condition (CC) and Rassolov and Chipman's CC. In a previous study, we derived an infinite number of necessary conditions that two-particle wave functions must satisfy at a coalescence point. In the present study, we extend these conditions to many-particle systems. They are called general coalescence conditions (GCCs), and Kato's CC and Rassolov and Chipman's CC are included as special conditions. GCCs can be applied not only to Coulombic systems but also to any system in which the interaction between two particles is represented in a power series of inter-particle distances. We confirmed the correctness of our derivation of the GCCs by applying the exact wave function of a harmonium in electron-electron and electron-nucleus coalescence situations. In addition, we applied the free complement (FC) wave functions of a helium atom to the GCCs to examine the accuracy of the FC wave function in the context of a coalescence situation.

  6. General coalescence conditions for the exact wave functions. II. Higher-order relations for many-particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Yusaku I., E-mail: y-kurokawa@qcri.or.jp, E-mail: h.nakatsuji@qcri.or.jp; Nakashima, Hiroyuki; Nakatsuji, Hiroshi, E-mail: y-kurokawa@qcri.or.jp, E-mail: h.nakatsuji@qcri.or.jp [Quantum Chemistry Research Institute, Kyodai Katsura Venture Plaza 107, Goryo Oohara 1-36, Nishikyo-ku, Kyoto 615-8245 (Japan)

    2014-06-07

    We derived the necessary conditions that must be satisfied by the non-relativistic time-independent exact wave functions for many-particle systems at a two-particle coalescence (or cusp) point. Some simple conditions are known to be Kato's cusp condition (CC) and Rassolov and Chipman's CC. In a previous study, we derived an infinite number of necessary conditions that two-particle wave functions must satisfy at a coalescence point. In the present study, we extend these conditions to many-particle systems. They are called general coalescence conditions (GCCs), and Kato's CC and Rassolov and Chipman's CC are included as special conditions. GCCs can be applied not only to Coulombic systems but also to any system in which the interaction between two particles is represented in a power series of inter-particle distances. We confirmed the correctness of our derivation of the GCCs by applying the exact wave function of a harmonium in electron-electron and electron-nucleus coalescence situations. In addition, we applied the free complement (FC) wave functions of a helium atom to the GCCs to examine the accuracy of the FC wave function in the context of a coalescence situation.

  7. Orbital-free density functional theory implementation with the projector augmented-wave method

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari; Lopez-Acevedo, Olga, E-mail: olga.lopez.acevedo@aalto.fi [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Caro, Miguel A. [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland)

    2014-12-21

    We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.

  8. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.

    Science.gov (United States)

    Chacón, Enrique; Tarazona, Pedro

    2016-06-22

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.

  9. Gradual collapse of nuclear wave functions regulated by frequency tuned X-ray scattering.

    Science.gov (United States)

    Ignatova, Nina; Cruz, Vinícius V; Couto, Rafael C; Ertan, Emelie; Zimin, Andrey; Guimarães, Freddy F; Polyutov, Sergey; Ågren, Hans; Kimberg, Victor; Odelius, Michael; Gel'mukhanov, Faris

    2017-03-07

    As is well established, the symmetry breaking by isotope substitution in the water molecule results in localisation of the vibrations along one of the two bonds in the ground state. In this study we find that this localisation may be broken in excited electronic states. Contrary to the ground state, the stretching vibrations of HDO are delocalised in the bound core-excited state in spite of the mass difference between hydrogen and deuterium. The reason for this effect can be traced to the narrow "canyon-like" shape of the potential of the state along the symmetric stretching mode, which dominates over the localisation mass-difference effect. In contrast, the localisation of nuclear motion to one of the HDO bonds is preserved in the dissociative core-excited state . The dynamics of the delocalisation of nuclear motion in these core-excited states is studied using resonant inelastic X-ray scattering of the vibrationally excited HDO molecule. The results shed light on the process of a wave function collapse. After core-excitation into the state of HDO the initial wave packet collapses gradually, rather than instantaneously, to a single vibrational eigenstate.

  10. A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM).

    Science.gov (United States)

    Ben Salah, Issam; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2012-02-01

    An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x(1). The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.

  11. Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method.

    Science.gov (United States)

    Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2015-01-01

    The Peano-series expansion is used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes in a functionally graded piezoelectric material (FGPM) plate. Aluminum nitride has been retained for illustration, it is polarized along the thickness axis, and at the same time the material properties change gradually perpendicularly to the plate with an exponential variation. The effects of the gradient variation on the phase velocity and the coupling electromechanical factor are obtained. Appropriate curves are given to reflect their behavior with respect to frequency. The highest value of the electromechanical coupling factor has been observed for S0 mode, it is close to six percent, conversely for A0 mode it does not exceed 1.5%. The coupling factor maxima undergo a shift toward the high frequency area when the corresponding gradient coefficient increases. The Peano-series method computed under Matlab software, gives rapid convergence and accurate phase velocity when analysing Lamb waves in FGPM plate. The obtained numerical results can be used to design different sensors with high performance working at different frequency ranges by adjusting the extent of the gradient property.

  12. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    Science.gov (United States)

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  13. Bohmian mechanics in the exact factorization of electron-nuclear wave functions

    Science.gov (United States)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2016-09-01

    The exact factorization of an electron-nuclear wave function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010), 10.1103/PhysRevLett.105.123002] allows us to define the rigorous nuclear time-dependent Schrödinger equation (TDSE) with a time-dependent potential-energy surface (TDPES) that fully accounts for the coupling to the electronic motion and drives the nuclear wave-packet dynamics. Here, we study whether the propagation of multiple classical trajectories can reproduce the quantum nuclear motion in strong-field processes when their motions are governed by the quantum Hamilton-Jacobi equation derived by applying Bohmian mechanics to this exact nuclear TDSE. We demonstrate that multiple classical trajectories propagated by the force from the gradient of the exact TDPES plus the Bohmian quantum potential can reproduce the strong-field dissociation dynamics of a one-dimensional model of the H2 + molecule. Our results show that the force from the Bohmian quantum potential plays a non-negligible role in yielding quantum nuclear dynamics in the strong-field process studied here, where ionization and/or splitting of nuclear probability density occurs.

  14. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    Science.gov (United States)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  15. Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak’s foundation

    Directory of Open Access Journals (Sweden)

    M. Arefi

    2017-05-01

    Full Text Available Wave propagation analysis for a functionally graded nanobeam with rectangular cross-section resting on visco-Pasternak’s foundation is studied in this paper. Timoshenko’s beam model and nonlocal elasticity theory are employed for formulation of the problem. The equations of motion are derived using Hamilton’s principals by calculating kinetic energy, strain energy and work due to viscoelastic foundation. The effects of various parameters such as wavenumber, non-homogeneous index, nonlocal parameter and three parameters of foundation are performed on the phase velocity of the nanobeam. The obtained results indicate that some parameters such as non-homogeneous index, nonlocal parameter and wavenumber have significant effect on the response of the system.

  16. CSL Wave Function Collapse Model as a Mechanism for the Emergence of Cosmological Asymmetries in Inflation

    CERN Document Server

    Cañate, Pedro; Sudarsky, Daniel

    2012-01-01

    As previously discussed in (D. Sudarsky, Int.J.Mod.Phys.D20:509-552, (2011); [arXiv:0906.0315]), the inflationary account for the emergence of the seeds of cosmic structure falls short of actually explaining the generation of primordial anisotropies and inhomogeneities. This description starts from a symmetric background, and invokes symmetric dynamics, so it cannot explain asymmetries. To generate asymmetries, we present an application of the Continuous Spontaneous Localization (CSL) model of wave function collapse (P. Pearle, Phys. Rev. A 39, 2277, (1989); G. C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A42, 78 (1990)) in the context of inflation. This modification of quantum dynamics introduces a stochastic non-unitary component to the evolution of the inflaton field perturbations. This leads to passage from a homogeneous and isotropic stage to another, where the quantum uncertainties in the initial state of inflation transmute into the primordial inhomogeneities and anisotropies. We examine requiremen...

  17. Reduced surface wave transmission function and neural networks for crack evaluation of concrete structures

    Science.gov (United States)

    Shin, Sung Woo; Yun, Chung Bang; Furuta, Hitoshi; Popovics, John S.

    2007-04-01

    Determination of crack depth in field using the self-calibrating surface wave transmission measurement and the cutting frequency in the transmission function (TRF) is very difficult due to variations of the measurement conditions. In this study, it is proposed to use the measured full TRF as a feature for crack depth assessment. A principal component analysis (PCA) is employed to generate a basis of the measured TRFs for various crack cases. The measured TRFs are represented by their projections onto the most significant principal components. Then artificial neural network (ANN) using the PCA-compressed TRFs is applied to assess the crack in concrete. Experimental study is carried out for five different crack cases to investigate the effectiveness of the proposed method. Results reveal that the proposed method can be effectively used for the crack depth assessment of concrete structures.

  18. Precision Measurement of the Position-space Wave Functions of Gravitationally Bound Ultracold Neutrons

    CERN Document Server

    Kamiya, Y; Komamiya, S

    2015-01-01

    Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states, and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.

  19. S-wave velocity structure inferred from receiver function inversion in Tengchong volcanic area

    Institute of Scientific and Technical Information of China (English)

    贺传松; 王椿镛; 吴建平

    2004-01-01

    Tengchong volcanic area is located near the impinging and underthrust margin of India and Eurasia plates. The volcanic activity is closely related to the tectonic environment. The deep structure characteristics are inferred from the receiver function inversion with the teleseismic records in the paper. The results show that the low velocity zone is influenced by the NE-trending Dayingjiang fault. The S-wave low velocity structure occurs obviously in the southern part of the fault, but unobviously in its northern part. There are low velocity zones in the shallow position, which coincides with the seismicity. It also demonstrates that the low velocity zone is directly related to the thermal activity in the volcanic area. Therefore, we consider that the volcano may be alive again.

  20. Comultiplication in ABCD algebra and scalar products of bethe wave functions

    Science.gov (United States)

    Mikhailov, A.

    1994-07-01

    The representation of scalar products of Bethe wave functions in terms of dual fields, proved by A. G. Izergin and V. E. Korepin in 1987, plays an important role in the theory of completely integrable models. The proof in [A. G. Izergin, Dokl. Akad. Nauk SSSR, 297, No. 2, 331 (1987)] and [V. E. Korepin, Commun. Math. Phys., 113, 177 190 (1978)] is based on the explicit expression for the “senior” coefficient, which was guessed in the Izergin paper and then proved to satisfy some recurrent relations, which determine it unambiguously. In this paper we present an alternative proof based on direct computation. It uses the operation of comultiplication in the ABCD-algebra.

  1. The adiabatic limit of the exact factorization of the electron-nuclear wave function

    CERN Document Server

    Eich, Florian G

    2016-01-01

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numerically on a model proton- coupled electron transfer in different non-adiabatic regimes.

  2. Probability distribution function for inclinations of merging compact binaries detected by gravitational wave interferometers

    CERN Document Server

    Seto, Naoki

    2014-01-01

    We analytically discuss probability distribution function (PDF) for inclinations of merging compact binaries whose gravitational waves are coherently detected by a network of ground based interferometers. The PDF would be useful for studying prospects of (1) simultaneously detecting electromagnetic signals (such as gamma-ray-bursts) associated with binary mergers and (2) statistically constraining the related theoretical models from the actual observational data of multi-messenger astronomy. Our approach is similar to Schutz (2011), but we explicitly include the dependence of the polarization angles of the binaries, based on the concise formulation given in Cutler and Flanagan (1994). We find that the overall profiles of the PDFs are similar for any networks composed by the second generation detectors (Advanced-LIGO, Advanced-Virgo, KAGRA, LIGO-India). For example, 5.1% of detected binaries would have inclination angle less than 10 degree with at most 0.1% differences between the potential networks. A perturb...

  3. Hydrogen atom wave function and eigen energy in the Rindler space

    CERN Document Server

    Dai, De-Chang

    2016-01-01

    We study the hydrogen atom eigenstate energy and wave function in the Rindler space. The probability distribution is tilted because the electric field of the nucleus is no longer spherically symmetric. The hydrogen atom therefore cannot be treated exactly in the same way as what it is in an inertial frame. We also find that if the external force accelerates only the nucleus and then the nucleus accelerates its surrounding electrons through electromagnetic force, the electrons can tunnel through the local energy gap and split the hydrogen atom into an ion. This is similar to what one expects from the Stark effect. However, the critical acceleration is about $3\\times 10^{22} m/s^2$. It is well beyond the gravitational acceleration on a regular star surface.

  4. Universal Wave-Function Overlap and Universal Topological Data from Generic Gapped Ground States.

    Science.gov (United States)

    Moradi, Heidar; Wen, Xiao-Gang

    2015-07-17

    We propose a way-universal wave-function overlap-to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data might fully characterize the topological orders with a gapped or gapless boundary. For nonchiral topological orders in (2+1)D, these universal topological data consist of two matrices S and T, which generate a projective representation of SL(2,Z) on the degenerate ground state Hilbert space on a torus. For topological orders with a gapped boundary in higher dimensions, these data constitute a projective representation of the mapping class group MCG(M^{d}) of closed spatial manifold M^{d}. For a set of simple models and perturbations in two dimensions, we show that these quantities are protected to all orders in perturbation theory. These overlaps provide a much more powerful alternative to the topological entanglement entropy and allow for more efficient numerical implementations.

  5. Comparison of two approaches for the treatment of Gutzwiller variational wave functions

    Science.gov (United States)

    Kaczmarczyk, J.

    2015-02-01

    In this work, we analyse the variational problem emerging from the Gutzwiller approach to strongly correlated systems. This problem comprises two main steps: evaluation and minimization of the ground state energy ? for the postulated Gutzwiller Wave Function. We discuss the available methods for evaluating ?, in particular the recently proposed diagrammatic expansion method. We compare the two existing approaches to minimize ?: the standard approach based on the effective single-particle Hamiltonian and the so-called Statistically-consistent Gutzwiller Approximation (SGA). On the example of the superconducting phase analysis, we show that these approaches lead to the same minimum as it should be. However, the calculations within the SGA method are easier to perform and the two approaches allow for a simple cross-check of the obtained results. Finally, we show two ways of solving the equations resulting from the variational procedure, as well as how to incorporate the condition for a fixed number of particles.

  6. Hydrogen atom wave function and eigen energy in the Rindler space

    Science.gov (United States)

    Dai, De-Chang

    2016-10-01

    We study the hydrogen atom eigenstate energy and wave function in the Rindler space. The probability distribution is tilted because the electric field of the nucleus is no longer spherically symmetric. The hydrogen atom therefore cannot be treated exactly in the same way as what it is in an inertial frame. We also find that if the external force accelerates only the nucleus and then the nucleus accelerates its surrounding electrons through electromagnetic force, the electrons can tunnel through the local energy gap and split the hydrogen atom into an ion. This is similar to what one expects from the Stark effect. However, the critical acceleration is about 3 ×1022 m /s2. It is well beyond the gravitational acceleration on a regular star surface.

  7. Distorted Waves with Exact Non-Local Exchange a Canonical Function Approach

    CERN Document Server

    Fakhreddine, K; Vien, G N; Tannous, C; Langlois, J M; Robaux, O

    2002-01-01

    It is shown how the Canonical Function approach can be used to obtain accurate solutions for the distorted wave problem taking account of direct static and polarisation potentials and exact non-local exchange. Calculations are made for electrons in the field of atomic hydrogen and the phaseshifts are compared with those obtained using a modified form of the DWPO code of McDowell and collaborators: for small wavenumbers our approach avoids numerical instabilities otherwise present. Comparison is also made with phaseshifts calculated using local equivalent-exchange potentials and it is found that these are inaccurate at small wavenumbers. Extension of our method to the case of atoms having other than s-type outer shells is dicussed.

  8. Precision Measurement of the Position-Space Wave Functions of Gravitationally Bound Ultracold Neutrons

    Directory of Open Access Journals (Sweden)

    Y. Kamiya

    2014-01-01

    Full Text Available Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.

  9. Long-wave infrared functional brain imaging in human: a pilot study.

    Science.gov (United States)

    Joyal, Christian C; Henry, Mylene

    2013-01-01

    Although some authors suggest to use Long-Wave Infrared (LWIR) sensors to evaluate brain functioning, the link between emissions of LWIR and mental effort is not established. The goal of this pilot study was to determine whether frontal LWIR emissions vary during execution of neuropsychological tasks known to differentially activate the pre-frontal cortex (simple color presentations, induction of the Stroop effect, and a gambling task with real money). Surprisingly, LWIR emissions as measured with bilateral frontal sensors in 47 participants significantly differed between tasks, in the supposed direction (Colorpilot study suggests that investigations of convergent validity with other types of brain imaging techniques can be initiated with LWIR imaging. If confirmed, this technique would offer a simple and accessible method to evaluate frontal cortex activation.

  10. Gutzwiller wave-function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states

    Science.gov (United States)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Jozef

    2015-09-01

    The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f -electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4 f - or 5 f -electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f -electron occupancy is very close to the f -state half filling, →1 . The nonstandard features of the emerging correlated quantum liquid state are stressed.

  11. Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory.

    Science.gov (United States)

    Xiong, Xiao-Gen; Yanai, Takeshi

    2017-07-11

    The Projector Augmented Wave (PAW) method developed by Blöchl is well recognized as an efficient, accurate pseudopotential approach in solid-state density functional theory (DFT) calculations with the plane-wave basis. Here we present an approach to incorporate the PAW method into the Gauss-type function (GTF) based DFT implementation, which is widely used for molecular quantum chemistry calculations. The nodal and high-exponent GTF components of valence molecular orbitals (MOs) are removed or pseudized by the ultrasoft PAW treatment, while there is elaborate transparency to construct an accurate and well-controlled pseudopotential from all-electron atomic description and to reconstruct an all-electron form of valence MOs from the pseudo MOs. The smoothness of the pseudo MOs should benefit the efficiency of GTF-based DFT calculations in terms of elimination of high-exponent primitive GTFs and reduction of grid points in the numerical quadrature. The processes of the PAW method are divided into basis-independent and -dependent parts. The former is carried out using the previously developed PAW libraries libpaw and atompaw. The present scheme is implemented by incorporating libpaw into the conventional GTF-based DFT solver. The details of the formulations and implementations of GTF-related PAW procedures are presented. The test calculations are shown for illustrating the performance. With the near-complete GTF basis at the cc-pVQZ level, the total energies obtained using our PAW method with suited frozen core treatments converge to those with the conventional all-electron GTF-based method with a rather small absolute error.

  12. A New Extended Jacobi Elliptic Function Expansion Method and Its Application to the Generalized Shallow Water Wave Equation

    Directory of Open Access Journals (Sweden)

    Yafeng Xiao

    2012-01-01

    Full Text Available With the aid of symbolic computation, a new extended Jacobi elliptic function expansion method is presented by means of a new ansatz, in which periodic solutions of nonlinear evolution equations, which can be expressed as a finite Laurent series of some 12 Jacobi elliptic functions, are very effective to uniformly construct more new exact periodic solutions in terms of Jacobi elliptic function solutions of nonlinear partial differential equations. As an application of the method, we choose the generalized shallow water wave (GSWW equation to illustrate the method. As a result, we can successfully obtain more new solutions. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition.

  13. Analytical structure and properties of Coulomb wave functions for real and complex energies

    Science.gov (United States)

    Humblet, J.

    1984-07-01

    The radical Coulomb wave functions are analysed in their dependence on the energy E considered as a complex parameter. Repulsive and attractive fields are both considered. First turning to the function Φl ∝ r- l-1 Fl introduced by Briet, slightly modifying its definition, and assuming that the angular momentum is also a complex parameter, for which the notation L is used, it is proved that ΦL is an entire function of both E and L. From an expansion of the regular Whittaker function given by Buchholz, the Taylor expansion of ΦL in powers of E and a simple recurrence relation for its coefficients are easily obtained. The expansion of the regular function Fl is readily obtained from that of ΦL for L = l, but the irregular function Gl contains Φl and ∂Φ L/∂L for L = l and - l-1. Having proved that the expansion obtained for ΦL in powers of E can also be regarded as a uniformly convergent series of entire functions of L, the derivative ∂Φ L/∂L can be obtained by term-by-term derivation. This method for obtaining the expansion of Gl is straightforward and leads to a final result involving essentially: (i) the conventional function h(η) = 1/2ψ(1 + iη) + 1/2ψ(1 - iη) - ln η which is singular at η = ∞, i.e., at k = 0; (ii) two entire functions of E, namely Φl and Ψl; the terms of the expansion of the latter in powers of E contain only Bessel functions multiplied by Bernoulli numbers and coefficients easily obtained from a simple recurrence relation. As an application of the above results, the last sections contain: (i) an alternate from of Gl expansion useful in numerical computations; (ii) the definition and expansion of two linearly independent solutions of the Coulomb equation which are entire in E; (iii) the expansion and threshold properties of the outgoing and incoming solutions, Ol and Il, corresponding to those we have obtained for Fl and Gl.

  14. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  15. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  16. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves

  17. Wave function of the Universe, preferred reference frame effects and metric signature transition

    CERN Document Server

    Ghaffarnejad, Hossein

    2013-01-01

    Extending the Brans Dicke (BD) gravity theory in the presence of power-law self interacting potential $\\thicksim\\phi^n,$ action functional of a dynamical unit-time-like four vector field $N_{\\mu}$ and action functional of perfect fluid matter field, we study classical and quantum approaches of a flat Robertson-Walker (RW) space time. In the classical approach we use slow-roll condition of the potential $V(\\phi),$ and obtain power-law inflationary cosmological model which exhibits metric signature transition at the origin of time. Our solution follows $n\\approx-4,$ with negative barotropic index $\\gamma\\approx-1$ corresponding to dark matter perfect fluid and $\\omega\\geq4\\times10^4$ corresponding to the experimentally redicted value on the BD parameter. Deceleration parameter is obtained also as $q\\approx-1.$ Applying a minisuperspace model of quantum cosmology, we derive corresponding Wheeler DeWitt (WD) wave functional equation of the system with a nonzero ADM mass. Minisuperspace potential of the WD equatio...

  18. Increasing Radical Character of Large [n]cyclacenes Unveiled by Wave Function Theory.

    Science.gov (United States)

    Battaglia, Stefano; Faginas-Lago, Noelia; Andrae, Dirk; Evangelisti, Stefano; Leininger, Thierry

    2017-05-18

    We have investigated the radicality and the vertical singlet-triplet energy gap of [n]cyclacenes (cyclic polyacenes) as a function of the system size for n even, from 6 to 22. The calculations are performed using the complete active space self-consistent field method and second-order n-electron valence perturbation theory. We present a systematic way for the selection of the active space in order to have a balanced description of the wave function as the size of the system increases. Moreover, we provide didactic insight into the failure of an approach based on a minimal active space. We find that the ground state is an open-shell singlet and its multireference character increases progressively with n. The singlet-triplet gap decreases as a function of the system size and approaches a finite positive value for the limit n → ∞. Finally, an analysis based on the one-particle reduced density matrix suggests a polyradical character for the largest cyclacenes.

  19. Quantum kinematics on q-deformed quantum spaces II, Wave functions on position and momentum space

    CERN Document Server

    Wachter, H

    2006-01-01

    The aim of Part II of this paper is to try to describe wave functions on q-deformed versions of position and momentum space. This task is done within the framework developed in Part I of the paper. In order to make Part II self-contained the most important results of Part I are reviewed. Then it is shown that q-deformed exponentials and q-deformed delta functions play the role of momentum and position eigenfunctions, respectively. Their completeness and orthonormality relations are derived. For both bases of eigenfunctions matrix elements of position and momentum operators are calculated. A q-deformed version of the spectral decomposition of multiplication operators is discussed and q-analogs of Heaviside functions are proposed. Interpreting the results from the point of view provided by the concept of quasipoints gives the formalism a physical meaning. The definition of expectation values and the calculation of probability densities are explained in detail. Finally, it is outlined how the considerations so f...

  20. Effect of initial stress on Love waves in a piezoelectric structure carrying a functionally graded material layer.

    Science.gov (United States)

    Qian, Zheng-Hua; Jin, Feng; Lu, Tianjian; Kishimoto, Kikuo; Hirose, Sohichi

    2010-01-01

    The effect of initial stress on the propagation behavior of Love waves in a piezoelectric half-space of polarized ceramics carrying a functionally graded material (FGM) layer is analytically investigated in this paper from the three-dimensional equations of linear piezoelectricity. The analytical solutions are obtained for the dispersion relations of Love wave propagating in this kind of structure with initial stress for both electrical open case and electrical short case, respectively. One numerical example is given to graphically illustrate the effect of initial stress on dispersive curve, phase velocity and electromechanical coupling factor of the Love wave propagation. The results reported here are meaningful for the design of surface acoustic wave (SAW) devices with high performance.

  1. Singularity Correction for Long-Range-Corrected Density Functional Theory with Plane-Wave Basis Sets.

    Science.gov (United States)

    Kawashima, Yukio; Hirao, Kimihiko

    2017-02-24

    We introduced two methods to correct the singularity in the calculation of long-range Hartree-Fock (HF) exchange for long-range-corrected density functional theory (LC-DFT) calculations in plane-wave basis sets. The first method introduces an auxiliary function to cancel out the singularity. The second method introduces a truncated long-range Coulomb potential, which has no singularity. We assessed the introduced methods using the LC-BLYP functional by applying it to isolated systems of naphthalene and pyridine. We first compared the total energies and the HOMO energies of the singularity-corrected and uncorrected calculations and confirmed that singularity correction is essential for LC-DFT calculations using plane-wave basis sets. The LC-DFT calculation results converged rapidly with respect to the cell size as the other functionals, and their results were in good agreement with the calculated results obtained using Gaussian basis sets. LC-DFT succeeded in obtaining accurate orbital energies and excitation energies. We next applied LC-DFT with singularity correction methods to the electronic structure calculations of the extended systems, Si and SiC. We confirmed that singularity correction is important for calculations of extended systems as well. The calculation results of the valence and conduction bands by LC-BLYP showed good convergence with respect to the number of k points sampled. The introduced methods succeeded in overcoming the singularity problem in HF exchange calculation. We investigated the effect of the singularity correction on the excitation state calculation and found that careful treatment of the singularities is required compared to ground-state calculations. We finally examined the excitonic effect on the band gap of the extended systems. We calculated the excitation energies to the first excited state of the extended systems using a supercell model at the Γ point and found that the excitonic binding energy, supposed to be small for

  2. Fractality of wave functions on a Cayley tree: Difference between tree and locally treelike graph without boundary

    Science.gov (United States)

    Tikhonov, K. Â. S.; Mirlin, A. Â. D.

    2016-11-01

    We investigate analytically and numerically eigenfunction statistics in a disordered system on a finite Bethe lattice (Cayley tree). We show that the wave-function amplitude at the root of a tree is distributed fractally in a large part of the delocalized phase. The fractal exponents are expressed in terms of the decay rate and the velocity in a problem of propagation of a front between unstable and stable phases. We demonstrate a crucial difference between a loopless Cayley tree and a locally treelike structure without a boundary (random regular graph) where extended wave functions are ergodic.

  3. Wave-function Visualization of Core-induced Interaction of Non-hydrogenic Rydberg Atom in Electric Field

    CERN Document Server

    Gao, W; Cheng, H; Zhang, S S; Liu, H P

    2015-01-01

    We have investigated the wave-function feature of Rydberg sodium in a uniform electric field and found that the core-induced interaction of non-hydrogenic atom in electric field can be directly visualized in the wave-function. As is well known, the hydrogen atom in electric field can be separated in parabolic coordinates (\\eta, \\xi), whose eigen-function can show a clear pattern towards negative and positive directions corresponding to the so-called red and blue states without ambiguity, respectively. It can be served as a complete orthogonal basis set to study the core-induced interaction of non-hydrogenic atom in electric field. Owing to complete different patterns of the probability distribution for red and blue states, the interaction can be visualized in the wave-function directly via superposition. Moreover, the constructive and destructive interferences between red and blue states are also observed in the wave-function, explicitly explaining the experimental measurement for the spectral oscillator stre...

  4. Estimation of the Crustal Bulk Properties Beneath Mainland Portugal from P-Wave Teleseismic Receiver Functions

    Science.gov (United States)

    Dündar, Süleyman; Dias, Nuno A.; Silveira, Graça; Kind, Rainer; Vinnik, Lev; Matias, Luís; Bianchi, Marcelo

    2016-06-01

    In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H- κ stacking algorithm to the PRFs enabled us to estimate the crustal thickness ( H) and the average crustal ratio of the P- and S-waves velocities V p/ V s ( κ) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V p/ V s values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V p/ V s is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V p/ V s with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.

  5. Aromatic Lateral Substituents Influence the Excitation Energies of Hexaaza Lanthanide Macrocyclic Complexes: A Wave Function Theory and Density Functional Study.

    Science.gov (United States)

    Rabanal-León, Walter A; Murillo-López, Juliana A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2015-09-24

    The high interest in lanthanide chemistry, and particularly in their luminescence, has been encouraged by the need of understanding the lanthanide chemical coordination and how the design of new luminescent materials can be affected by this. This work is focused on the understanding of the electronic structure, bonding nature, and optical properties of a set of lanthanide hexaaza macrocyclic complexes, which can lead to potential optical applications. Here we found that the DFT ground state of the open-shell complexes are mainly characterized by the manifold of low lying f states, having small HOMO-LUMO energy gaps. The results obtained from the wave function theory calculations (SO-RASSI) put on evidence the multiconfigurational character of their ground state and it is observed that the large spin-orbit coupling and the weak crystal field produce a strong mix of the ground and the excited states. The electron localization function (ELF) and the energy decomposition analysis (EDA) support the idea of a dative interaction between the macrocyclic ligand and the lanthanide center for all the studied systems; noting that, this interaction has a covalent character, where the d-orbital participation is evidenced from NBO analysis, leaving the f shell completely noninteracting in the chemical bonding. From the optical part we observed in all cases the characteristic intraligand (IL) (π-π*) and ligand to metal charge-transfer (LMCT) bands that are present in the ultraviolet and visible regions, and for the open-shell complexes we found the inherent f-f electronic transitions on the visible and near-infrared region.

  6. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    Science.gov (United States)

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection.

  7. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Kaude, J.V.; Williams, C.M.; Millner, M.R.; Scott, K.N.; Finlayson, B.

    1985-08-01

    The acute effects of extracorporeal shock-wave lithotripsy (ESWL) on morphology and function of the kidney were evaluated by excretory urography, quantitative radionuclide renography (QRR), and magnetic resonance imaging (MRI) in 33 consecutive patients. Excretory urograms demonstrated an enlarged kidney in seven (18%) of 41 treatments and partial or complete obstruction of the ureter by stone fragments after 15 (37%) of 41 treatments. Total effective renal plasma flow (ERPF) was not changed after ESWL, but the percentage ERPF of the treated kidney was decreased by more than 5% in 10 (30%) of 33 cases. QRR images showed partial parenchymal obstruction in 10 (25%) of 41 teated kidneys and total parenchymal obstruction in 9 (22%). MRI disclosed one or more abnormalities in 24 (63%) of 38 treated kidneys. Treated kidneys were normal by all three imaging methods in 26% and abnormal by one or more tests in 74% of cases. The morphologic and functional changes are attributed to renal contusion resulting in edema and extravasation of urine and blood into the interstitial, subcapsular, and perirenal spaces.

  8. On intrinsic structure of wave function of fermion triplet in external monopole field

    CERN Document Server

    Redkov, V M

    1999-01-01

    Using the Weyl-Tetrode-Fock spinor formalism, the fermion triplet in the 't Hooft-Polyakov monopole field is examined all over again. Spherical solutions corresponding to the total conserved momentum J =l + S + T are constructed. The angular dependence is expressed in terms of the Wigner's functions. The radial system of 12 equations decomposes into two sub-systems by diagonalizing some complicated inversion operator. The case of minimal j = 1/2 is considered separately. A more detailed analysis is accomplished for the case of simplest monopole field: namely, the one produced by putting the Dirac potential into the non-Abelian scheme. Now a discrete operation diagonalized contains an additional complex parameter A. The same parameter enters wave functions. This quantity can manifest itself at matrix elements. In particular, there have been analyzed the N(A)-parity selection rules: those depending on the A. As shown, the A-freedom is a consequence of the existence of additional symmetry of the relevant Hamilto...

  9. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  10. Orbital-Free Density Functional Theory Implementation with the Projector Augmented-Wave Method

    CERN Document Server

    Lehtomäki, J; Caro, M A; Lopez-Acevedo, O

    2014-01-01

    We present a novel orbital-free density functional theory (OFDFT) implementation using the projector augmented-wave method (PAW) that simultaneously preserves the linear scaling characteristic of OFDFT and provides access to all-electron values. The advantages of using the PAW method are two fold. First, PAW offers freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and grid methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10~meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. Because computed bulk modulus and lattice constant are extremely different from reported pseudopotential values, we conclude that in order to assess the performance of OFDFT functionals it is necessary to use al...

  11. Comparison of Source Time Functions Retrieved from Various Regional Waves and Coda Using Moderate Earthquakes in East and Central Asia

    Science.gov (United States)

    Xie, J.; Torpey, M. E.

    2015-12-01

    Source time functions may vary with various P and S wave types. Regional Lg waves have been used to estimate radiated energy and apparent stress. In nuclear explosion seismology, the practice of discriminating Earthquake and explosions using regional wave spectra and spectral ratios relies on a fundamental assumption that Earthquakes and explosions excite various regional waves in a systematically-different manner. We have been carrying out a systematic study to retrieve source time functions (STFs) from seismic sources using the empirical Green's function (EGF) approach. In phase 1 of the study, we focus on retrieving STFs from moderate earthquakes in east and central Asia using regional Lg, Pg, Lg coda, and Sn and Pn waves to see whether or not the shape of the STFs varies with the wave type. We explored various methods to reduce the noise in the deconvolved STFs which tend to be higher for the relatively weaker Pg, Sn, Pn and coda waves. For example, an array-stacking method is used to enhance source pulses and reduce the level of side-lobes. Preliminary results suggest that Lg and Lg coda STFs may be similar, as generally believed. Pg STF is less similar to Lg STF. For example, when a stacked Lg STF is clearly asymmetric with a sharp-rise time, the stack Pg STF seems to be fairly symmetric. In general, our confidence on this kind of dissimilarity is still limited by the non-diminishing deconvolution noise in the retrieved Pg STFs, and by the small number of events studied. We are trying to further reduce the deconvolution noise for each regional wave, and find and analyze more moderate events. We will present newly-retrieved STFs from each of the various regional waves and coda, and compare the pulse widths and shapes of the STFs from different waves. We will also present estimates of source-radiated energy and apparent stresses using the estimated Lg STFs without using various simplified source models and Q corrections.

  12. Fully differential cross sections in single ionization of helium by ion impact: Assessing the role of correlated wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M.F. [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187, Dresden (Germany)], E-mail: ciappi@pks.mpg.de; Cravero, W.R. [CONICET and Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahia Blanca (Argentina)

    2008-02-15

    We study the effect of final state dynamic correlation in single ionization of atoms by ion impact analyzing fully differential cross sections (FDCS). We use a distorted wave model where the final state is represented by a {phi}{sub 2} type correlated function, solution of a non-separable three body continuum Hamiltonian. This final state wave function partially includes the correlation of electron-projectile and electron-recoil relative motion as coupling terms of the wave equation. A comparison of fully differential results using this model with other theories and experimental data reveals that inclusion of dynamic correlation effects have little influence on FDCS, and do not contribute to a better description of available data in the case of electronic emission out-of scattering plane.

  13. Effects of Simulated Heat Waves on Cardiovascular Functions in Senile Mice

    Directory of Open Access Journals (Sweden)

    Xiakun Zhang

    2014-08-01

    Full Text Available The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter.

  14. Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus.

    Science.gov (United States)

    Furman, Moran; Xu, Hong-Ping; Crair, Michael C

    2013-09-01

    Prior to eye opening, waves of spontaneous activity sweep across the developing retina. These "retinal waves," together with genetically encoded molecular mechanisms, mediate the formation of visual maps in the brain. However, the specific role of wave activity in synapse development in retino-recipient brain regions is unclear. Here we compare the functional development of synapses and the morphological development of neurons in the superior colliculus (SC) of wild-type (WT) and transgenic (β2-TG) mice in which retinal wave propagation is spatially truncated (Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. Neuron 70: 1115-1127, 2011). We use two recently developed brain slice preparations to examine neurons and synapses in the binocular vs. mainly monocular SC. We find that retinocollicular synaptic strength is reduced whereas the number of retinal inputs is increased in the binocular SC of β2-TG mice compared with WT mice. In contrast, in the mainly monocular SC the number of retinal inputs is normal in β2-TG mice, but, transiently, synapses are abnormally strong, possibly because of enhanced activity-dependent competition between local, "small" retinal wave domains. These findings demonstrate that retinal wave size plays an instructive role in the synaptic and morphological development of SC neurons, possibly through a competitive process among retinofugal axons.

  15. Analytical Derivation of Three Dimensional Vorticity Function for wave breaking in Surf Zone

    CERN Document Server

    Dutta, R

    2015-01-01

    In this report, Mathematical model for generalized nonlinear three dimensional wave breaking equations was de- veloped analytically using fully nonlinear extended Boussinesq equations to encompass rotational dynamics in wave breaking zone. The three dimensional equations for vorticity distributions are developed from Reynold based stress equations. Vorticity transport equations are also developed for wave breaking zone. This equations are basic model tools for numerical simulation of surf zone to explain wave breaking phenomena. The model reproduces most of the dynamics in the surf zone. Non linearity for wave height predictions is also shown close to the breaking both in shoaling as well as surf zone. Keyword Wave breaking, Boussinesq equation, shallow water, surf zone. PACS : 47.32-y

  16. Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots

    DEFF Research Database (Denmark)

    Markussen, Troels; Kristensen, Philip Trøst; Tromborg, Bjarne

    2006-01-01

    Models of carrier dynamics in quantum dots rely strongly on adequate descriptions of the carrier wave functions. In this work we numerically solve the one-band effective mass Schrodinger equation to calculate the capture times of phonon-mediated carrier capture into self-assembled quantum dots...

  17. Functionalization of embedded thiol-ene waveguides for evanescent wave-induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans, Nikolaj A.; Jensen, Thomas Glasdam; Lafleur, Josiane P.;

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol-ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol-ene waveguide was selectively fu...

  18. Magnetization process of a one-dimensional quantum antiferromagnet: The product-wave-function renormalization group approach

    Science.gov (United States)

    Hieida, Yasuhiro; Okunishi, Kouichi; Akutsu, Yasuhiro

    1997-02-01

    The product-wave-function renormalization group method, a new numerical renormalization group scheme proposed recently, is applied to one-dimensional quantum spin chains in a magnetic field. We find the zero-temperature magnetization curve of the spin chains, which excellently agrees with the exact solution in the whole range of the field.

  19. Multi-level quantum monte Carlo wave functions for complex reactions: The decomposition of α-hydroxy-dimethylnitrosamine

    NARCIS (Netherlands)

    Fracchia, F.; Filippi, C.; Amovilli, C.

    2014-01-01

    We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we deve

  20. Exact Green Function for a Dirac Particle in Presence of Two Orthogonal Plane Wave Fields. Path Integral Derivation

    Science.gov (United States)

    Ould-Lahoucine, H. K.; Chetouani, L.

    2012-07-01

    Exact Green function for a Dirac particle subject to a couple of orthogonal plane wave fields is obtained throughout a path integral approach. In addition, a suitable representation of the Dirac matrices is deduced so that the initial problem becomes the one of a free particle.

  1. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.

    Science.gov (United States)

    Keith, Todd A; Frisch, Michael J

    2011-11-17

    Scalar-relativistic, all-electron density functional theory (DFT) calculations were done for free, neutral atoms of all elements of the periodic table using the universal Gaussian basis set. Each core, closed-subshell contribution to a total atomic electron density distribution was separately fitted to a spherical electron density function: a linear combination of s-type Gaussian functions. The resulting core subshell electron densities are useful for systematically and compactly approximating total core electron densities of atoms in molecules, for any atomic core defined in terms of closed subshells. When used to augment the electron density from a wave function based on a calculation using effective core potentials (ECPs) in the Hamiltonian, the atomic core electron densities are sufficient to restore the otherwise-absent electron density maxima at the nuclear positions and eliminate spurious critical points in the neighborhood of the atom, thus enabling quantum theory of atoms in molecules (QTAIM) analyses to be done in the neighborhoods of atoms for which ECPs were used. Comparison of results from QTAIM analyses with all-electron, relativistic and nonrelativistic molecular wave functions validates the use of the atomic core electron densities for augmenting electron densities from ECP-based wave functions. For an atom in a molecule for which a small-core or medium-core ECPs is used, simply representing the core using a simplistic, tightly localized electron density function is actually sufficient to obtain a correct electron density topology and perform QTAIM analyses to obtain at least semiquantitatively meaningful results, but this is often not true when a large-core ECP is used. Comparison of QTAIM results from augmenting ECP-based molecular wave functions with the realistic atomic core electron densities presented here versus augmenting with the limiting case of tight core densities may be useful for diagnosing the reliability of large-core ECP models in

  2. Validity of quadratic two-source spherical wave structure functions in analysis of beam propagation through generalized atmospheric turbulence

    Science.gov (United States)

    Chen, Chunyi; Yang, Huamin; Kavehrad, Mohsen; Tong, Shoufeng; Li, Yanfang

    2014-12-01

    Two distinct methods based on which two different quadratic-form expressions for the two-source spherical wave structure function (WSF) can be derived are reviewed. The validity of closed-form expressions for the beam-wave cross-spectral density function (CSDF) due to generalized atmospheric turbulence featuring an arbitrary spectral index ranging from 3 to 4, developed based on the quadratic two-source spherical WSFs, is examined in detail. New formulations for the conditions under which the said closed-form expressions for the beam-wave CSDF are strictly valid are developed and several novel interesting findings are elucidated. In particular, the closed-form beam-wave CSDF derived based on the small-separation asymptotic two-source spherical WSF can be considered a rigorous asymptotic solution under the strong-turbulence condition only when the separation distance between the two observation points is much smaller than the inner scale of turbulence; moreover it is also a rigorous asymptotic solution when a certain relation among the initial beam radius, initial transverse coherence width and inner scale holds, regardless of the turbulence strength and spectral index. On the other hand, the accuracy of the closed-form beam-wave CSDF derived based on the large-separation-approximation two-source spherical WSF depends on the spectral index, and a spectral index closer to 4 results in better accuracy.

  3. New Traveling Wave Solutions of the Higher Dimensional Nonlinear Partial Differential Equation by the Exp-Function Method

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2012-01-01

    Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.

  4. Trigonometric Function Periodic Wave Solutions and Their Limit Forms for the KdV-Like and the PC-Like Equations

    Directory of Open Access Journals (Sweden)

    Liu Zhengrong

    2011-01-01

    study the periodic wave solutions and their limit forms for the KdV-like equation ut+a(1+buuux+uxxx=0, and PC-like equation vtt - vttxx - (a1v+a2v2+a3v3xx=0, respectively. Via some special phase orbits, we obtain some new explicit periodic wave solutions which are called trigonometric function periodic wave solutions because they are expressed in terms of trigonometric functions. We also show that the trigonometric function periodic wave solutions can be obtained from the limits of elliptic function periodic wave solutions. It is very interesting that the two equations have similar periodic wave solutions. Our work extend previous some results.

  5. Asymptotics of three-body bound state radial wave functions of halo nuclei involving two charged particles

    CERN Document Server

    Yarmukhamedov, R

    2016-01-01

    Asymptotic expressions for the radial and full wave functions of a three{body bound halo nuclear system with two charged particles in relative coordinates are obtained in explicit form, when the relative distance between two particles tends to infinity. The obtained asymptotic forms are applied to the analysis of the asymptotic behavior of the three-body (pn?) wave functions for the halo ($E^*=3.562$ MeV, $J^{\\pi}=0^+$, $T=1$) state of $^6$Li derived by D. Baye within the Lagrange-mesh method for two forms of the $\\alpha N$ -potential. The agreement between the calculated wave function and the asymptotic formula is excellent for distances up to 30 fm. Information about the values of the three-body asymptotic normalization functions is extracted. It is shown that the extracted values of the three-body asymptotic normalization function are sensitive to the form of the $\\alpha N$ -potential. The mirror symmetry is revealed for the three-body asymptotic normalization functions derived for the isobaric ($^6$He, $^...

  6. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    Science.gov (United States)

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  7. Inflation including collapse of the wave function: the quasi-de Sitter case

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Landau, Susana J. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Piccirilli, Maria Pia [Universidad Nacional de La Plata, Grupo de Astrofisica, Relatividad y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, Pcia de Buenos Aires (Argentina)

    2015-08-15

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)

  8. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

    Science.gov (United States)

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  9. Photoionization microscopy of the lithium atom: Wave-function imaging of quasibound and continuum Stark states

    Science.gov (United States)

    Cohen, S.; Harb, M. M.; Ollagnier, A.; Robicheaux, F.; Vrakking, M. J. J.; Barillot, T.; Lépine, F.; Bordas, C.

    2016-07-01

    Photoionization of an atom in the presence of a uniform static electric field provides the unique opportunity to expand and visualize the atomic wave function at a macroscopic scale. In a number of seminal publications dating back to the 1980s, Fabrikant, Demkov, Kondratovich, and Ostrovsky showed that this goal could be achieved by projecting slow (meV) photoionized electrons onto a position-sensitive detector and underlined the distinction between continuum and resonant contributions. The uncovering of resonant signatures was achieved fairly recently in experiments on the nonhydrogenic lithium atoms [Cohen et al., Phys. Rev. Lett. 110, 183001 (2013)], 10.1103/PhysRevLett.110.183001. The purpose of the present article is the general description of these findings, with emphasis on the various manifestations of resonant character. From this point of view, lithium has been chosen as an illustrative example between the two limiting cases of hydrogen, where resonance effects are more easily identified, and heavy atoms like xenon, where resonant effects were not observed.

  10. Energy Optimization of Many-Body Wave Functions: Application to Silicon Interstitial Defects

    Science.gov (United States)

    Parker, W. D.; Driver, K. P.; Hennig, R. G.; Wilkins, J. W.; Umrigar, C. J.

    2006-03-01

    Energy minimization [1], as opposed to the standard variance minimization [2], of the Jastrow factor results not only in lower variational Monte Carlo (VMC) energies but also in lower diffusion Monte Carlo (DMC) energies for systems that employ a nonlocal pseudopotential. We apply this approach to solids: single-interstitials in silicon. Allowing the Jastrow for the defect atom(s) to differ from that for bulk atoms lowers the VMC energy but not the DMC energy, indicating the pseudopotential locality error is small. DMC energies from 8 and 64 atom cells (plus interstitial) computed with energy-optimized trial wave functions estimate a 0.2 eV finite-size error in the formation energy. Cubic spline and Lagrange polynomial representations of orbitals have comparable efficiency in memory usage, run time and accuracy. [1] C. J. Umrigar and C. Filippi, Phys. Rev. Lett. 94, 150201 (2005). [2] C. J. Umrigar, K. G. Wilson and J. W. Wilkins, Phys. Rev. Lett. 60, 1719 (1988).

  11. The collapse of the wave function in the joint metric-matter quantization for inflation

    CERN Document Server

    Diez-Tejedor, Alberto; Sudarsky, Daniel

    2011-01-01

    It has been argued that the standard inflationary scenario suffers from a serious deficiency as a model for the origin of the seeds of cosmic structure: it can not truly account for the transition from an early homogeneous and isotropic stage to another one lacking such symmetries. The issue has often been thought as a standard instance of the "quantum measurement problem", but as has been recently argued by some of us the situation reaches a critical level in the cosmological context of interest here. This has lead to a proposal in which the standard paradigm is supplemented by a hypothesis concerning the self-induced dynamical collapse of the wave function, as representing the physical mechanism through which such change of symmetry is brought forth. This proposal was formulated within the context of semiclassical gravity. Here we investigate an alternative realization of such idea implemented directly within the standard analysis in terms of a quantum field jointly describing the inflaton and metric pertur...

  12. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    Science.gov (United States)

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  13. Exchange splitting of the interaction energy and the multipole expansion of the wave function

    CERN Document Server

    Gniewek, Piotr

    2015-01-01

    The exchange splitting $J$ of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula $J_{\\textrm{surf}}[\\varphi]$, the volume-integral formula of the symmetry-adapted perturbation theory $J_{\\textrm{SAPT}}[\\varphi]$, and a variational volume-integral formula $J_{\\textrm{var}}[\\varphi]$. The calculations are based on the multipole expansion of the wave function $\\varphi$, which is divergent for any internuclear distance $R$. Nevertheless, the resulting approximations to the leading coefficient $j_0$ in the large-$R$ asymptotic series $J(R) = 2 e^{-R-1} R ( j_0 + j_1 R^{-1} + j_2 R^{-2} +\\cdots ) $ converge, with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the $J_{\\textrm{var}}[\\varphi]$, $J_{\\textrm{surf}}[\\varphi]$, and $J_{\\textrm{SAPT}}[\\varphi]$ formulas are used, respectively. Additionally, we observe that also the higher $j_k$ coefficients are predicted correctly when the multipole expansion is used in the $J_{...

  14. Inflation including collapse of the wave function: The quasi-de Sitter case

    CERN Document Server

    León, Gabriel; Piccirilli, María Pía

    2015-01-01

    The emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous Universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: "the self-induced collapse hypothesis." In this scheme, the collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at each scale. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that lead to a perfect scale-invariant power spectrum. In this paper, we consider a quasi-de Sitter expansion factor and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allow us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction o...

  15. Semiclassical wave functions in billiards built on classical trajectories. Energy quantization, scars and periodic orbits

    CERN Document Server

    Giller, Stefan

    2011-01-01

    A way of construction of semiclassical wave function (SWF) based on the Maslov - Fedoriuk approach is proposed which appears to be appropriate also for systems with chaotic classical limits. Some classical constructions called skeletons are considered. The skeletons are generalizations of Arnolds' tori able to gather chaotic dynamics. SWF's are continued by caustic singularities in the configuration space rather then in the phase space using complex time method. The skeleton formulation provides us with a new algorithm for the semiclassical approximation method which is applied to construct SWF's as well as to calculate energy spectra for the circular and rectangular billiards as well as to construct the simplest SWF's and the respective spectrum for the Bunimovich stadium. The scar phenomena are considered and a possibility of their description by the skeleton method is discussed. PACS number(s): 03.65.-w, 03.65.Sq, 02.30.Jr, 02.30.Lt, 02.30.Mv Key Words: Schr\\"odinger equation, semiclassical expansion, Lagr...

  16. Baryon scattering at high energies: wave function, impact factor, and gluon radiation

    CERN Document Server

    Bartels, J

    2007-01-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in gamma* scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in gamma* scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the gamma*-initiated quark-antiquark dipole, and, in particular, it co...

  17. Shock Wave Lithotripsy Does Not Impair Renal Function in a Swine Model of Metabolic Syndrome

    Science.gov (United States)

    Johnson, Cynthia D.; Connors, Bret A.; Evan, Andrew P.; Phillips, Carrie L.; Liu, Ziyue

    2015-01-01

    Abstract Purpose: To determine whether shock wave lithotripsy (SWL) may be a risk factor for renal functional impairment in a swine model of metabolic syndrome (MetS). Materials and Methods: Nine-month-old female Ossabaw pigs were fed an excess calorie atherogenic diet to induce MetS. At 15 months of age, the MetS pigs were treated with 2000 SWs or an overtreatment dose of 4000 SWs targeted at the upper pole calyx of the left kidney (24 kV at 120 SWs/min using the unmodified Dornier HM3 lithotripter; n=5–6 per treatment group). Serum creatinine (Cr) and blood urea nitrogen (BUN) levels were measured in conscious pigs before and ∼60 days after SWL to provide a qualitative assessment of how well both kidneys were filtering (glomerular filtration rate [GFR]). Bilateral renal function was assessed at ∼65 days post-SWL in anesthetized pigs with GFR and effective renal plasma flow (ERPF) quantified by the renal clearance of inulin and para-amino hippurate, respectively. Results: Cr and BUN values were within normal limits before SWL and remained unchanged after lithotripsy in both the 2000 SW- and 4000 SW-treated pigs. GFR and ERPF of kidneys treated with SWL at either SW dose were similar to the contralateral nontreated kidney. Chronic histological changes in the SW-treated pole of the kidney included interstitial fibrosis, sclerotic glomeruli, and dilated and atrophic tubules. Conclusions: Our results are consistent with the view that a single SWL session does not result in renal impairment, even in the presence of MetS. PMID:25285417

  18. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum.

    Science.gov (United States)

    Baron, Cécile

    2011-02-01

    As a non-destructive, non-invasive and non-ionizing evaluation technique for heterogeneous media, the ultrasonic method is of major interest in industrial applications but especially in biomedical fields. Among the unidirectionally heterogeneous media, the continuously varying media are a particular but widespread case in natural materials. The first studies on laterally varying media were carried out by geophysicists on the Ocean, the atmosphere or the Earth, but the teeth, the bone, the shells and the insects wings are also functionally graded media. Some of them can be modeled as planar structures but a lot of them are curved media and need to be modeled as cylinders instead of plates. The present paper investigates the influence of the tubular geometry of a waveguide on the propagation of elastic waves. In this paper, the studied structure is an anisotropic hollow cylinder with elastic properties (stiffness coefficients c(ij) and mass density ρ) functionally varying in the radial direction. An original method is proposed to find the eigenmodes of this waveguide without using a multilayered model for the cylinder. This method is based on the sextic Stroh's formalism and an analytical solution, the matricant, explicitly expressed under the Peano series expansion form. This approach has already been validated for the study of an anisotropic laterally-graded plate (Baron et al., 2007; Baron and Naili, 2010) [6,5]. The dispersion curves obtained for the radially-graded cylinder are compared to the dispersion curves of a corresponding laterally-graded plate to evaluate the influence of the curvature. Preliminary results are presented for a tube of bone in vacuum modelling the in vitro conditions of bone strength evaluation.

  19. Evidence for magmatic underplating under the Azores Islands from P-wave receiver functions

    Science.gov (United States)

    Spieker, Kathrin; Rondenay, Stéphane; Ramalho, Ricardo; Thomas, Christine; Helffrich, George

    2016-04-01

    The Azores plateau is located near the Mid-Atlantic Ridge and consists of nine islands. Various methods including seismic reflection, gravity, and passive seismology, have been used to investigate the crustal thickness beneath the islands. They have yielded depth estimates that range between roughly 10 km and 30 km, but until now, a model of the fine-scale crustal structure has been lacking. Geochemical studies carried out across the islands suggest the existence of volcanic interfaces within the shallow crust. Moreover, magma might have accumulated beneath the existing crust (magmatic underplating), causing a shift of the crust-mantle boundary to lower depths. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with P-wave receiver functions (PRFs). A challenge of using ocean island data is oceanic noise that interferes with the useful conversion signals. Here, we employ a frequency-domain deconvolution with objective regularisation based on the pre-event noise spectrum to reduce the effect of the oceanic noise. Our fine-scale PRFs yield conversions at about 0.3 s, 1 s, and 2-3.5 s, which we attribute to a shallow volcanic interface, a mid-crustal interface, and the crust-mantle boundary, respectively. Following the interpretation of similar PRF studies beneath other volcanic ocean islands, the 1 s signal (mid-crustal interface) may correspond to a conversion at the top of the underplated magmatic material. Underplating is most pronounced in the southeastern portion of the Azores plateau. Considering lower seismic P- and S-wave velocities within the volcanic interfaces (vp=4.9 km/s, vs=2.6 km/s) and higher velocities within the underplated material (vp=7.3 km/s, vs=4.2 km/s) compared to the normal crust (vp=6.3 km/s, vs=3.6 km/s), the total crustal thickness amounts to approximately 12-15 km.

  20. Reorganization of pathological control functions of memory-A neural model for tissue healing by shock waves

    Science.gov (United States)

    Wess, Othmar

    2005-04-01

    Since 1980 shock waves have proven effective in the field of extracorporeal lithotripsy. More than 10 years ago shock waves were successfully applied for various indications such as chronic pain, non-unions and, recently, for angina pectoris. These fields do not profit from the disintegration power but from stimulating and healing effects of shock waves. Increased metabolism and neo-vascularization are reported after shock wave application. According to C. J. Wang, a biological cascade is initiated, starting with a stimulating effect of physical energy resulting in increased circulation and metabolism. Pathological memory of neural control patterns is considered the reason for different pathologies characterized by insufficient metabolism. This paper presents a neural model for reorganization of pathological reflex patterns. The model acts on associative memory functions of the brain based on modification of synaptic junctions. Accordingly, pathological memory effects of the autonomous nervous system are reorganized by repeated application of shock waves followed by development of normal reflex patterns. Physiologic control of muscle and vascular tone is followed by increased metabolism and tissue repair. The memory model may explain hyper-stimulation effects in pain therapy.

  1. Functional Coordination of WAVE and WASP in C. elegans Neuroblast Migration.

    Science.gov (United States)

    Zhu, Zhiwen; Chai, Yongping; Jiang, Yuxiang; Li, Wenjing; Hu, Huifang; Li, Wei; Wu, Jia-Wei; Wang, Zhi-Xin; Huang, Shanjin; Ou, Guangshuo

    2016-10-24

    Directional cell migration is critical for metazoan development. We define two molecular pathways that activate the Arp2/3 complex during neuroblast migration in Caenorhabditis elegans. The transmembrane protein MIG-13/Lrp12 is linked to the Arp2/3 nucleation-promoting factors WAVE or WASP through direct interactions with ABL-1 or SEM-5/Grb2, respectively. WAVE mutations partially impaired F-actin organization and decelerated cell migration, and WASP mutations did not inhibit cell migration but enhanced migration defects in WAVE-deficient cells. Purified SEM-5 and MIG-2 synergistically stimulated the F-actin branching activity of WASP-Arp2/3 in vitro. In GFP knockin animals, WAVE and WASP were largely organized into separate clusters at the leading edge, and the amount of WASP was less than WAVE but could be elevated by WAVE mutations. Our results indicate that the MIG-13-WAVE pathway provides the major force for directional cell motility, whereas MIG-13-WASP partially compensates for its loss, underscoring their coordinated activities in facilitating robust cell migration.

  2. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    Science.gov (United States)

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm(2) ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  4. Evolution of the wave function of an atom hit by a photon in a three-grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Arsenovic, Dusan; Bozic, Mirjana [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Sanz, Angel S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Davidovic, Milena [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia)], E-mail: arsenovic@phy.bg.ac.yu, E-mail: bozic@phy.bg.ac.yu, E-mail: asanz@imaff.cfmac.csic.es, E-mail: milena@grf.bg.ac.yu

    2009-07-15

    In 1995, Chapman et al (1995 Phys. Rev. Lett. 75 2783) showed experimentally that the interference contrast in a three-grating atom interferometer does not vanish in the presence of scattering events with photons, as required by the complementarity principle. In this work, we present an analytical study of this experiment by determining the evolution of an atom's wave function along the three-grating Mach-Zehnder interferometer under the assumption that the atom is hit by a photon after passing through the first grating. The consideration of a transverse wave function in momentum representation is essential in this study. As is shown, the number of atoms transmitted through the third grating is given by a simple periodic function of the lateral shift along this grating, both in the absence and in the presence of photon scattering. Moreover, the relative contrast (laser on/laser off) is shown to be a simple analytical function of the ratio d{sub p}/{lambda}{sub i}, where d{sub p} is the distance between atomic paths at the scattering locus and {lambda} {sub i} the scattered photon wavelength. We argue that this dependence, being in agreement with experimental results, can be considered as showing compatibility between the wave and corpuscle properties of atoms.

  5. Variability In Long-Wave Runup as a Function of Nearshore Bathymetric Features

    Energy Technology Data Exchange (ETDEWEB)

    Dunkin, Lauren McNeill [Texas A & M Univ., College Station, TX (United States)

    2010-05-01

    Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regions to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.

  6. Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in full symmetry approach

    CERN Document Server

    Lapierre, David; Kochanov, Roman; Kokoouline, Viatcheslav; Tyuterev, Vladimir

    2016-01-01

    Energies and lifetimes (widths) of vibrational states above the lowest dissociation limit of $^{16}$O$_3$ were determined using a previously-developed efficient approach, which combines hyperspherical coordinates and a complex absorbing potential. The calculations are based on a recently-computed potential energy surface of ozone determined with a spectroscopic accuracy [J. Chem. Phys. {\\bf 139}, 134307 (2013)]. The effect of permutational symmetry on rovibrational dynamics and the density of resonance states in O$_3$ is discussed in detail. Correspondence between quantum numbers appropriate for short- and long-range parts of wave functions of the rovibrational continuum is established. It is shown, by symmetry arguments, that the allowed purely vibrational ($J=0$) levels of $^{16}$O$_3$ and $^{18}$O$_3$, both made of bosons with zero nuclear spin, cannot dissociate on the ground state potential energy surface. Energies and wave functions of bound states of the ozone isotopologue $^{16}$O$_3$ with rotational ...

  7. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment.

    Science.gov (United States)

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo

    2016-07-07

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.

  8. [Comparative evaluation of the efficiency of the effect of very high frequency electromagnetic waves on platelet functional activity].

    Science.gov (United States)

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A comparative analysis was made of the effect of two kinds of EMI MMD-radiation: EMI MMD-waves, generated by a vehicle "Jav-1 M" (42.2 and 53.5 HHz), and EMI MMD-waves exerting influence with frequencies of molecular spectrum of radiation and nitric oxide absorption (150.176-150.644 HHz), obtained with a specially created generator, with respect to their influence on the functional ability of platelets of unstable angina pectoris patients. It was shown that in vitro EMI MMD-fluctuations with frequencies of molecular spectrum of radiation and nitric oxide absorption exert a stronger inhibiting influence on the functional activity of platelets of unstable angina pectoris patients. Features of the action of various kinds of EMI MMD-effect on the activative-high-speed characteristics of platelet aggregation are shown.

  9. Correlated Band Structure of a Transition Metal Oxide ZnO Obtained from a Many-Body Wave Function Theory.

    Science.gov (United States)

    Ochi, Masayuki; Arita, Ryotaro; Tsuneyuki, Shinji

    2017-01-13

    Obtaining accurate band structures of correlated solids has been one of the most important and challenging problems in first-principles electronic structure calculation. There have been promising recent active developments of wave function theory for condensed matter, but its application to band-structure calculation remains computationally expensive. In this Letter, we report the first application of the biorthogonal transcorrelated (BITC) method: self-consistent, free from adjustable parameters, and systematically improvable many-body wave function theory, to solid-state calculations with d electrons: wurtzite ZnO. We find that the BITC band structure better reproduces the experimental values of the gaps between the bands with different characters than several other conventional methods. This study paves the way for reliable first-principles calculations of the properties of strongly correlated materials.

  10. General coalescence conditions for the exact wave functions: higher-order relations for two-particle systems.

    Science.gov (United States)

    Kurokawa, Yusaku I; Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2013-07-28

    We derived the necessary conditions that the non-relativistic time-independent exact wave functions for two-particle systems must satisfy at a coalescence (or cusp) point. Some of such necessary conditions are already known to be Kato's cusp condition (CC) and Rassolov and Chipman's CC. In the present study, we extended and generalized those conditions, calling them generalized coalescence conditions (GCCs). Kato's CC and Rassolov and Chipman's CC were shown to be specific cases included in the GCCs. The GCCs can be applied not only to Coulombic systems but also to any systems where the interaction between two particles is represented in a power series of the inter-particle distance. We confirmed the correctness of our derivation of these GCCs by applying the free complement wave functions of a hydrogen atom in ground and excited states, a harmonic oscillator, and a system with an interacting potential of V = r.

  11. A New Method to Derive Low-Lying N-dimensional Quantum Wave Functions by Quadratures Along a Single Trajectory

    CERN Document Server

    Friedberg, R; Zhao Wei Qin

    2000-01-01

    We present a new method to derive low-lying N-dimensional quantum wave functions by quadrature along a single trajectory. The N-dimensional Schroedinger equation is cast into a series of readily integrable first order ordinary differential equations. Our approach resembles the familiar W.K.B. approximation in one dimension, but is designed to explore the classically forbidden region and has a much wider applicability than W.K.B.. The method also provides a perturbation series expansion and the Green's functions of the wave equation in N-dimension, all by quadratures along a single trajectory. A number of examples are given for illustration, including a simple algorithm to evaluate the Stark effect in closed form to any finite order of the electric field.

  12. A new algorithm for the extraction of the surface waves for the Green's function in layered dielectrics

    Institute of Scientific and Technical Information of China (English)

    宋犇; 洪伟

    2002-01-01

    There exist the complicated waveguide modes as well as the surface waves in the electromagnetic field induced by a horizontal electric dipole in layered Iossless dielectrics between two ground planes.In spectral domain,all these modes can be characterized by the rational parts with the real poles of the vector and scalar potentials.The accurate extraction of these modes plays an important role in the evaluation of the Green's function in spatial domain.In this paper,a new algorithm based on rational approximation is presented,which can accurately extract all the real poles and the residues of each pole simultaneously.Thus,we can get all the surface wave modes and waveguide modes,which is of great help to the calculation of the spatial domain Green's function.The numerical results demonstrated the accuracy and efficiency of the proposed method.``

  13. Correlated Band Structure of a Transition Metal Oxide ZnO Obtained from a Many-Body Wave Function Theory

    Science.gov (United States)

    Ochi, Masayuki; Arita, Ryotaro; Tsuneyuki, Shinji

    2017-01-01

    Obtaining accurate band structures of correlated solids has been one of the most important and challenging problems in first-principles electronic structure calculation. There have been promising recent active developments of wave function theory for condensed matter, but its application to band-structure calculation remains computationally expensive. In this Letter, we report the first application of the biorthogonal transcorrelated (BITC) method: self-consistent, free from adjustable parameters, and systematically improvable many-body wave function theory, to solid-state calculations with d electrons: wurtzite ZnO. We find that the BITC band structure better reproduces the experimental values of the gaps between the bands with different characters than several other conventional methods. This study paves the way for reliable first-principles calculations of the properties of strongly correlated materials.

  14. Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

  15. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  16. SCATTERING OF ANTI-PLANE SHEAR WAVES IN A FUNCTIONALLY GRADED MATERIAL STRIP WITH AN OFF-CENTER VERTICAL CRACK

    Institute of Scientific and Technical Information of China (English)

    LI Lin; ZHOU Zhen-gong; WANG Biao

    2006-01-01

    The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.

  17. Extended Jacobi elliptic function method and its applications to (2+1)-dimensional dispersive long-wave equation

    Institute of Scientific and Technical Information of China (English)

    Chen Yong; Li Biao; Zhang Hong-Qing

    2004-01-01

    @@ An extended Jacobi elliptic function method is proposed for constructing the exact double periodic solutions of nonlinear partial differential equations (PDEs) in a unified way. It is shown that these solutions exactly degenerate to the many types of soliton solutions in a limited condition. The Wu-Zhang equation (which describes the (2+1)-dimensional dispersive long wave) is investigated by this means and more formal double periodic solutions are obtained.

  18. Slave-boson mean-field theory versus variational-wave-function approach for the periodic Anderson model

    Science.gov (United States)

    Yang, Min-Fong; Sun, Shih-Jye; Hong, Tzay-Ming

    1993-12-01

    We show that a special kind of slave-boson mean-field approximation, which allows for the symmetry-broken states appropriate for a bipartite lattice, can give essentially the same results as those by the variational-wave-function approach proposed by Gula´csi, Strack, and Vollhardt [Phys. Rev. B 47, 8594 (1993)]. The advantages of our approach are briefly discussed.

  19. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  20. General transformation of α cluster model wave function to jj-coupling shell model in various 4N nuclei

    Science.gov (United States)

    Itagaki, N.; Matsuno, H.; Suhara, T.

    2016-09-01

    The antisymmetrized quasi-cluster model (AQCM) is a method to describe transitions from the α cluster wave functions to jj-coupling shell model wave functions. In this model, the cluster-shell transition is characterized by only two parameters: R representing the distance between α clusters and Λ describing the breaking of α clusters. The contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α cluster model wave function. In this article we show the generality of AQCM by extending the application to heavier regions: various 4N nuclei from 4He to 100Sn. The characteristic magic numbers of the jj-coupling shell model, 28 and 50, are described starting with the α cluster model. The competition of two different configurations is discussed in 20Ne (16O + one quasi-cluster and 12C + two quasi-clusters) and 28Si (pentagon shape of five quasi-clusters and 12C + 16O). Also, we compare the energy curves for the α + 40Ca cluster configuration calculated with and without the α breaking effect in 44Ti.

  1. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  2. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.

    Science.gov (United States)

    Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li

    2016-08-01

    The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps.

  3. Obtaining natural oscillatory modes of bays and harbors via Empirical Orthogonal Function analysis of tsunami wave fields

    Science.gov (United States)

    Tolkova, Elena; Power, William

    2011-06-01

    To a tsunami wave, bays and harbors represent oscillatory systems, whose resonance (normal) modes determine the response to tsunami and consequently the potential hazard. The direct way to obtain the resonance modes of a water reservoir is by solving the boundary problem for the eigenfunctions of the linearized shallow-water wave equation. The principal difficulty of posing such a problem for a basin coupled to an ocean is specifying the boundary between the two. The technique developed in this work allows the normal modes of a semi-enclosed water body to be obtained without a-priori restricting the resonator area. The technique utilizes complex Empirical Orthogonal Function analysis of modeled tsunami wave fields. On the examples of Poverty Bay in New Zealand and Monterey Bay in California (United States), we demonstrate that the normal modes can be identified and isolated using the EOFs of a data set comprised of the concatenated time-series collected from different tsunami scenarios in a basin. The analysis of the modeled tsunami wave fields for the normal modes can also answer the question of how likely and under which conditions the different modes are exited, due to feasible natural events.

  4. Effects of Increase in Amplitude of Occipital Alpha & Theta Brain Waves on Global Functioning Level of Patients with GAD.

    Science.gov (United States)

    Dadashi, Mohsen; Birashk, Behrooz; Taremian, Farhad; Asgarnejad, Ali Asghar; Momtazi, Saeed

    2015-01-01

    The basic objective of this study is to investigate the effects of alpha and theta brain waves amplitude increase in occipital area on reducing the severity of symptoms of generalized anxiety disorder and to increase the global functioning level in patients with GAD. This study is a quasi-experimental study with pre-test and post-test with two groups. For this purpose, 28 patients who had been referred to Sohrawardi psychiatric and clinical psychology center in Zanjan were studied based on the interview with the psychiatrist, clinical psychologist and using clinical diagnostic criteria for the Diagnostic and Statistical Manual of Mental Disorders text revision - the DSM-IV-TR Fourth Edition diagnosis of GAD, 14 subjects were studied in neurofeedback treatment group and 14 subjects in the waiting list group. Patients in both groups were evaluated at pre-test and post-test with General Anxiety Disorder Scale (GAD-7) and Global Assessment Functioning Scale (GAFs). The treatment group received fifteen 30-minute alpha training sessions and fifteen 30-minute theta brain training sessions in occipital area by neurofeedback training (treatment group). This evaluation was performed according to the treatment protocol to increase the alpha and theta waves. And no intervention was done in the waiting list group. But due to ethical issues after the completion of the study all the subjects in the waiting list group were treated. The results showed that increase of alpha and theta brain waves amplitude in occipital area in people with GAD can increase the global functioning level and can reduce symptoms of generalized anxiety disorder in a treatment group, but no such change was observed in the waiting list group. Increase of alpha and theta brain waves amplitude in occipital area can be useful in the treatment of people with GAD.

  5. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions

    Science.gov (United States)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi

    2017-08-01

    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  6. Implementational Improvements of the early warning method based on P-wave waveform envelope function with an application to Korea

    Science.gov (United States)

    Heo, T.; Kim, J.

    2016-12-01

    From recent earthquakes, it is observed the production in high-tech industrial plants can be affected significantly even by a weak earthquake ground shaking. This kind of risk may be mitigated by building an earthquake early warning system. In order to be effective, the warning should be issued within few seconds after the occurrence of an earthquake, which is a daunting task. So far there have been developed several warning systems. Among them, a system based on P-wave waveform envelope function utilizing a single station data appears to be very promising. This method estimates the epicentral distance and magnitude from the initial part of the P-wave waveform using the relationships between waveform envelope parameters and seismic parameters. The system employed by Japan Meteorological Agency uses the relationships obtained from the data of earthquakes with magnitudes larger than 5. In this study, however, we attempted to extend the method to the earthquakes as small as magnitude 3 in order to implement to Korea of moderate seismicity. In total, 1,586 records from earthquakes of magnitude between 3 and 5.2 are analyzed. The epicentral distances of these records are less than 140km. The reliability of the prediction of epicenter is found to be very dependent on the accurate picking of P-wave arrival time from a record. Compared with the existing method, a significant improvement is achieved in identifying P-wave arrival time by analyzing the wave in 2-dimensional horizontal plane instead of analyzing in each orthogonal direction, by tracking waveform of which amplitude exceeds the noise level and by utilizing the continuity of the waveform. It enabled us to estimate accurately the direction to the epicenter. To estimate the epicentral distance, we used, as a parameter, the slope from the initial point to the maximum of the envelope function instead of the power of exponential envelope function. Consequently, the location of epicenter can be predicted very

  7. Extension of the basis set of linearized augmented plane wave (LAPW) method by using supplemented tight binding basis functions

    Science.gov (United States)

    Nikolaev, A. V.; Lamoen, D.; Partoens, B.

    2016-07-01

    In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the u ˙ l -component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.

  8. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves

    Directory of Open Access Journals (Sweden)

    Zhen Qu

    2016-01-01

    Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

  9. The effect of music on brain wave functioning during an acute psychotic episode: a pilot study.

    Science.gov (United States)

    Morgan, Kylie Anne; Harris, Anthony W; Luscombe, Georgina; Tran, Yvonne; Herkes, Geoff; Bartrop, Roger W

    2010-07-30

    This pilot study compared the differences in the quantified electroencephalogram (qEEG) between two conditions; eyes closed resting and eyes closed listening to music of 15 subjects currently experiencing an acute psychotic episode. The results showed a significant decrease in delta, alpha and beta waves when listening to music compared to resting condition. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Waves, damped wave and observation

    CERN Document Server

    Phung, Kim Dang

    2009-01-01

    We consider the wave equation in a bounded domain (eventually convex). Two kinds of inequality are described when occurs trapped ray. Applications to control theory are given. First, we link such kind of estimate with the damped wave equation and its decay rate. Next, we describe the design of an approximate control function by an iterative time reversal method.

  11. An analysis of surface acoustic wave propagation in a plate of functionally graded materials with a layered model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In a homogeneous plate, Rayleigh waves will have a symmetric and anti-symmetric mode regarding to the mid-plane with different phase velocities. If plate properties vary along the thickness, or the plate is of functionally graded material (FGM), the symmetry of modes and frequency behavior will be modified, thus producing dif-ferent features for engineering applications such as amplifying or reducing the velocity and deformation. This kind of effect can also be easily realized by utilizing a layered structure with desired material properties that can produce these effects in terms of velocity and displacements, since Rayleigh waves in a solid with gen-eral material property grading schemes are difficult to analyze with known methods. Solutions from layered structures with exponential and polynomial property grad-ing schemes are obtained from the layered model and comparisons with known analytical results are made to validate the method and examine possible applica-tions of such structures in engineering.

  12. Increased brachial-ankle pulse wave velocity is associated with impaired endothelial function in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-hong; TAO Jun; WANG Yan; LIAO Xin-xue; XU Ming-guo; WANG Jie-mei; YANG Zhen; CHEN Long; L(U) Ming-de; LU Kun

    2006-01-01

    Background Pulse wave velocity and flow-mediated vasodilation (FMD) are widely used as noninvasive modalities for evaluating atherosclerosis. However, it is not known whether pulse wave velocity is related to FMD in patients with coronary artery disease (CAD). Therefore, the present study was designed to investigate the alteration in brachial-ankle pulse wave velocity (baPWV) and endothelial function in CAD patients.Methods Thirty-three patients with CAD and thirty control subjects were recruited for this study. baPWV was measured non-invasively using a VP 1000 automated PWV/ABI analyzer (PWV/ABI, Colin Co. Ltd., Komaki,Japan). Endothelial function as reflected by FMD in the brachial artery was assessed with a high-resolution ultrasound device.Results baPWV was increased in CAD patients compared with control subjects [(1756.1±253.1) cm/s vs(1495.3 ± 202.3) cm/s, P<0.01]. FMD was significantly reduced in CAD patients compared with control subjects[(5.2±2.1) % vs (11.1 ±4.4) %, P<0.01]. baPWV correlated with FMD (r =-0.68, P<0.001). The endothelium-independent vasodilation induced by sublingual nitroglycerin in the brachial artery was similar in the CAD group compared with the control group.Conclusions CAD is associated with increased baPWV and endothelial dysfunction. Increased baPWV parallels diminished endothelial function. Our data therefore suggest that baPWV can be used as a noninvasive surrogate index in clinical evaluation of endothelial function.

  13. A Stochastic Wave Model Interpretation of Correlation Functions for Turbulent Shear Flows.

    Science.gov (United States)

    narrow band (frequency filtered) correlation function data. Next, the power spectral density function is identified as the appropriate frequency weighting... density function which agrees with the observed data is taken to be the superposition of a strong, unorganized background turbulence (Markoff noise...function with which to synthesize the broad band (unfiltered) from the narrow band correlation functions. The functional form of the power spectral

  14. A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice

    Institute of Scientific and Technical Information of China (English)

    Zha Qi-Lao; Sirendaoreji

    2006-01-01

    Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach.This approach can also be applied to other nonlinear differential-difference equations.

  15. ORBITALES. A program for the calculation of wave functions with an analytical central potential; ORBITALES. Programa de calculo de Funciones de Onda para una Potencial Central Analitico

    Energy Technology Data Exchange (ETDEWEB)

    Yunta Carretero; Rodriguez Mayquez, E.

    1974-07-01

    In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs.

  16. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia and Physics Department, State University of Surabaya, Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto [Theoretical Physics Group, Physics Department of Post Graduate Program, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 (Indonesia)

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

  17. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to sup 2 sup 4 Mg

    CERN Document Server

    Valor, A; Bonche, P

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to sup 2 sup 4 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment.

  18. Temperature-Dependent Optical Properties of PbS/CdS Core/Shell Quantum Dot Thin Films : Probing the Wave Function Delocalization

    NARCIS (Netherlands)

    Fang, Honghua; Balazs, Daniel M.; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2015-01-01

    Colloidal semiconductor quantum dots (QDs) are extraordinarily appealing for the development of cheap and large area solar cells due to high absorption efficiency; tunable bandgap energies; and solution processability. Understanding:and controlling electronic wave function delocalitation in QD thin

  19. The Weibull functional form for the energetic particle spectrum at interplanetary shock waves

    Science.gov (United States)

    Laurenza, M.; Consolini, G.; Storini, M.; Pallocchia, G.; Damiani, A.

    2016-11-01

    Transient interplanetary shock waves are often associated with high energy particle enhancements, which are called energetic storm particle (ESP) events. Here we present a case study of an ESP event, recorded by the SEPT, LET and HET instruments onboard the STEREO B spacecraft, on 3 October 2011, in a wide energy range from 0.1 MeV to ∼ 30 MeV. The obtained particle spectrum is found to be reproduced by a Weibull like shape. Moreover, we show that the Weibull spectrum can be theoretically derived as the asymptotic steady state solution of the diffusion loss equation by assuming anomalous diffusion for particle velocity. The evaluation of Weibull's parameters obtained from particle observations and the power spectral density of the turbulent fluctations in the shock region, support this scenario and suggest that stochastic acceleration can contribute significantly to the acceleration of high energetic particles at collisioness shock waves.

  20. When function mirrors structure: how slow waves are shaped by cortical layers

    Directory of Open Access Journals (Sweden)

    Cristiano Capone

    2015-04-01

    As the model predicted, we found that strips of early wave propagation reliably overlapped with the regions where maximum Up state duration and firing activity occurred, strengthening the duality between spontaneous activity and network structure. Finally, we matched the excitable strips with the slice cortical layers as identified by histology, finding a reliable overlap between such strips and L4 and L5 (see Figure 1E. Figure 1. A. Wavefronts for 2 modes of propagation. B. Average strips where wavefronts propagate earlier (black, and where Up states have maximum duration (green and magnitude (blue. C. Modulation of the connectivity parameter in the model. D. Nullclines under mean-field approximation varying levels of connectivity.  and C are average firing rate and fatigue level, respectively. Circles, fixed points. Dark to light gray, different excitability levels as in C, respectively. E. Example match between strip of early wave propagation and slice’s layers.

  1. Development of a Wireless Love Wave Biosensor Platform for Multi-functional Detection

    Science.gov (United States)

    Song, Taehyeon; Song, Seung Yeon; Yoon, Hyun C.; Lee, Keekeun

    2011-06-01

    A Love wave-based biosensor with a 440 MHz operating frequency was developed for simultaneous detection of two different concentrations of anti-dinitrophenyl-keyhole limpet hemocyanin (Anti-DNP-KLH) rabbit immunoglobulin G (IgG) in a single sensor. The sensor was composed of surface acoustic wave (SAW) reflective delay lines built from interdigital transducer (IDT) and several reflectors, a poly(methyl methacrylate) (PMMA) waveguide layer, and two sensitive films. To extract optimal device parameters, coupling of mode (COM) modeling was carried. According to the device parameters determined, the Love wave biosensor was fabricated and then wirelessly characterized by a network analyzer. Binding of anti-DNP IgG to DNP induced a change in the time positions of the original reflection peaks mainly due to the mass loading effect. The measured time positions were matched well with the predicted values from COM modeling. The sensitivities evaluated from the first and second sensitive films were 167.9 and 44.8 deg·µg-1·ml-1, respectively.

  2. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Kowalski, Karol

    2016-12-23

    In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CC self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.

  3. Directional Wave Spectra Using Cosine-Squared And Cosine 2S Spreading Functions

    Science.gov (United States)

    1985-06-01

    the product of two functions: E(f, 0) = E(f)*D(f, 0) where R(f, 0) = directional spectral density function R(f) = one-dimensional energy spectral ... density function D(f, 0) = angular spreading function f = frequency in hertz 8 = direction in radians The formulation of D(f, 0) requires that 2

  4. Effects of extracorporeal shock wave therapy on functional and strength recovery of handgrip in patients affected by epicondylitis.

    Science.gov (United States)

    Notarnicola, Angela; Quagliarella, Livio; Sasanelli, Nicola; Maccagnano, Giuseppe; Fracella, Maria Rosaria; Forcignanò, Maria Immacolata; Moretti, Biagio

    2014-12-01

    Extracorporeal shock wave therapy (ESWT) is effective in the treatment of tendinopathy. We designed a prospective observational clinical study to assess the correlation between clinical and functional measures and recovery of strength after ESWT for epicondylitis. We analyzed 26 patients. We measured progressive improvement in visual analogue scale values (p 0.05). We found no correlation between degree of clinical function and muscle deficit during follow-up. After ESWT, there was a tendency toward a decrease in grip strength, especially in the dominant limb. This could be related to the effects of ESWT, which reduces spasticity in painful hypertonic muscles. These data may be useful in defining the expectations for function during ESWT for epicondylitis, particularly for elite athletes.

  5. Effect of the Group Music Therapy on Brain Wave, Behavior, and Cognitive Function among Patients with Chronic Schizophrenia.

    Science.gov (United States)

    Kwon, Myoungjin; Gang, Moonhee; Oh, Kyongok

    2013-12-01

    The purpose of the study was to examine the effect of group music therapy on brain waves, behavior, and cognitive function among patients with chronic schizophrenia. A quasi-experimental pretest-posttest design was used with nonequivalent control group. The potential participants were recruited from inpatients in a psychiatric facility in a metropolitan city, assigned either to the experimental group (n = 28) or to the control group (n = 27) according to their wards to avoid treatment contamination. The experimental group participated in the group music therapy for 13 sessions over 7 weeks while continuing their standard treatment. The control group only received a standard treatment provided in the hospitals. The outcome measures include brain wave by electroencephalography, behavior by Nurses' Observation Scale for Inpatient Evaluation, and cognitive function by Mini-Mental State Examination. After participating in 13 sessions of the group music therapy, alpha waves measured from eight different sites were consistently present for the experimental group (p = .006-.045) than the control group, revealing that the participants in the music therapy may have experienced more joyful emotions throughout the sessions. The experimental group also showed improved cognitive function (F = 13.46, p = .001) and positive behavior (social competence, social interest & personal neatness) while their negative behaviors was significantly less than those of the control group (F = 24.04, p music therapy used in this study was an effective intervention for improving emotional relaxation, cognitive processing abilities along with positive behavioral changes in patients with chronic schizophrenia. Our results can be useful for establishing intervention strategies toward psychiatric rehabilitation for those who suffer from chronic mental illnesses. Copyright © 2013. Published by Elsevier B.V.

  6. Monocular and binocular steady-state flicker VEPs: frequency-response functions to sinusoidal and square-wave luminance modulation.

    Science.gov (United States)

    Nicol, David S; Hamilton, Ruth; Shahani, Uma; McCulloch, Daphne L

    2011-02-01

    Steady-state VEPs to full-field flicker (FFF) using sinusoidally modulated light were compared with those elicited by square-wave modulated light across a wide range of stimulus frequencies with monocular and binocular FFF stimulation. Binocular and monocular VEPs were elicited in 12 adult volunteers to FFF with two modes of temporal modulation: sinusoidal or square-wave (abrupt onset and offset, 50% duty cycle) at ten temporal frequencies ranging from 2.83 to 58.8 Hz. All stimuli had a mean luminance of 100 cd/m(2) with an 80% modulation depth (20-180 cd/m(2)). Response magnitudes at the stimulus frequency (F1) and at the double and triple harmonics (F2 and F3) were compared. For both sinusoidal and square-wave flicker, the FFF-VEP magnitudes at F1 were maximal for 7.52 Hz flicker. F2 was maximal for 5.29 Hz flicker, and F3 magnitudes are largest for flicker stimulation from 3.75 to 7.52 Hz. Square-wave flicker produced significantly larger F1 and F2 magnitudes for slow flicker rates (up to 5.29 Hz for F1; at 2.83 and 3.75 Hz for F2). The F3 magnitudes were larger overall for square-wave flicker. Binocular FFF-VEP magnitudes are larger than those of monocular FFF-VEPs, and the amount of this binocular enhancement is not dependant on the mode of flicker stimulation (mean binocular: monocular ratio 1.41, 95% CI: 1.2-1.6). Binocular enhancement of F1 for 21.3 Hz flicker was increased to a factor of 2.5 (95% CI: 1.8-3.5). In the healthy adult visual system, FFF-VEP magnitudes can be characterized by the frequency-response functions of F1, F2 and F3. Low-frequency roll-off in the FFF-VEP magnitudes is greater for sinusoidal flicker than for square-wave flicker for rates ≤ 5.29 Hz; magnitudes for higher-frequency flicker are similar for the two types of flicker. Binocular FFF-VEPs are larger overall than those recorded monocularly, and this binocular summation is enhanced at 21.3 Hz in the mid-frequency range.

  7. Exciton analysis of many-body wave functions: Bridging the gap between the quasiparticle and molecular orbital pictures

    Science.gov (United States)

    Bäppler, Stefanie A.; Plasser, Felix; Wormit, Michael; Dreuw, Andreas

    2014-11-01

    Exciton sizes and electron-hole binding energies, which are central properties of excited states in extended systems and crucial to the design of modern electronic devices, are readily defined within a quasiparticle framework but are quite challenging to understand in the molecular-orbital picture. The intent of this work is to bridge this gap by providing a general way of extracting the exciton wave function out of a many-body wave function obtained by a quantum chemical excited-state computation. This methodology, which is based on the one-particle transition density matrix, is implemented within the ab initio algebraic diagrammatic construction scheme for the polarization propagator and specifically the evaluation of exciton sizes, i.e., dynamic charge separation distances, is considered. A number of examples are presented. For stacked dimers it is shown that the exciton size for charge separated states corresponds to the intermolecular separation, while it only depends on the monomer size for locally excited states or Frenkel excitons. In the case of conjugated organic polymers, the tool is applied to analyze exciton structure and dynamic charge separation. Furthermore, it is discussed how the methodology may be used for the construction of a charge-transfer diagnostic for time-dependent density-functional theory.

  8. Multi-level quantum Monte Carlo wave functions for complex reactions: the decomposition of α-hydroxy-dimethylnitrosamine.

    Science.gov (United States)

    Fracchia, Francesco; Filippi, Claudia; Amovilli, Claudio

    2014-01-05

    We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we develop a multilevel scheme to treat different regions of the molecule at different levels of the theory. As prototypical study case, we investigate the decomposition of α-hydroxy-dimethylnitrosamine, a carcinogenic metabolite of dimethylnitrosamine (NDMA), through a two-step mechanism of isomerization followed by a retro-ene reaction. We compute a reliable reaction path with the quadratic configuration interaction method and employ QMC for the calculation of the electronic energies. We show that the use of multideterminantal wave functions is very important to correctly describe the critical points of this PES within QMC, and that our multilevel J-LGVB approach is an effective tool to significantly reduce the cost of QMC calculations without loss of accuracy. As regards the complex PES of α-hydroxy-dimethylnitrosamine, the accurate energies computed with our approach allows us to confirm the validity of the two-step reaction mechanism of decomposition originally proposed within density functional theory, but with some important differences in the barrier heights of the individual steps.

  9. Approximate Three-Dimensional Wave Function and the T-Matrix for the Sharply Cut Off Coulomb Potential

    Directory of Open Access Journals (Sweden)

    Witała H.

    2010-04-01

    Full Text Available For a sharply cut-off Coulomb potential we derive analytically the asymptotic form of the threedimensional wave function and the related scattering amplitude. We show a failure of the standard renormalization factor which is believed to be generally valid for any type of screening. We obtain also the asymptotic form of the corresponding three-dimensional half-shell t-matrix. Our results are fully supported by the numerical solutions of the three-dimensional Lippmann-Schwinger equation.

  10. Equation for wave processes in inhomogeneous moving media and functional solution of the acoustic tomography problem based on it

    Science.gov (United States)

    Rumyantseva, O. D.; Shurup, A. S.

    2017-01-01

    The paper considers the derivation of the wave equation and Helmholtz equation for solving the tomographic problem of reconstruction combined scalar-vector inhomogeneities describing perturbations of the sound velocity and absorption, the vector field of flows, and perturbations of the density of the medium. Restrictive conditions under which the obtained equations are meaningful are analyzed. Results of numerical simulation of the two-dimensional functional-analytical Novikov-Agaltsov algorithm for reconstructing the flow velocity using the the obtained Helmholtz equation are presented.

  11. Lithosphere/Asthenosphere Structure beneath the Mendocino Triple Junction from the Analysis of Surface Wave, Ambient Noise, and Receiver Functions

    Science.gov (United States)

    Liu, K.; Zhai, Y.; Levander, A.; Porritt, R. W.; Allen, R. M.; Schmandt, B.; Humphreys, E.; O'Driscoll, L.

    2010-12-01

    We have developed a 3-D shear velocity model using finite-frequency Rayleigh wave phase velocity dispersion, PdS receiver functions, and ambient noise tomography to better understand the complex lithosphere/asthenosphere structures in the Mendocino Triple Junction (MTJ) region. Using approximately 100 events (July 2007-December 2008) recorded by the stations of the Flexible Array Mendocino Experiment (FAME), the USArray Transportable Array (TA) network, and the Berkeley Digital Seismograph network, we have obtained the phase velocities (20-100s) from the finite-frequency Rayleigh wave tomography, which agrees well with the ambient noise tomography results (7-40 s, Porritt & Allen, 2010) in the overlapping period range. We subsequently inverted for a 3-D Vs model on a 0.25°x0.25° grid from the combined dispersion datasets, constrained by interface depths from the PdS receiver functions (Zhai & Levander, 2010). The resulting crustal and upper mantle Vs model (~150 km) reveals strong lateral heterogeneity in the subduction and transform regimes of the Mendocino Triple Junction region where the Gorda, Pacific, and North American plates intersect. The subducting Gorda slab is well-imaged as an eastward-dipping high-velocity anomaly to ~100 km depth. At the same depth to the east we observe a large-scale low velocity zone, which is the mantle wedge beneath the North American Plate. The southern edge of the Gorda plate (SEDGE) is imaged at 80-100 km depth and is in excellent agreement with measurements made from PdS receiver functions, body-wave tomography (Schmandt & Humphreys, 2010; Obrebski et al., 2010), and active source studies. At depths greater than 80 km, we interpret low velocities under the Cascadia subduction zone as the asthenosphere below the Gorda plate, in agreement with measured LAB depths from RFs. South of the SEDGE shallow strong low-velocities appear beneath the transform region, which we interpret as the asthenosphere in the slab-gap region left by

  12. Bound state energies and wave functions of spherical quantum dots in presence of a confining potential model

    CERN Document Server

    Ikhdair, Sameer M

    2011-01-01

    We obtain the exact energy spectra and corresponding wave functions of the radial Schr\\"odinger equation (RSE) for any (n,l) state in the presence of a combination of psudoharmonic, Coulomb and linear confining potential terms using an exact analytical iteration method. The interaction potential model under consideration is Cornell-modified plus harmonic (CMpH) type which is a correction form to the harmonic, Coulomb and linear confining potential terms. It is used to investigates the energy of electron in spherical quantum dot and the heavy quarkonia (QQ-onia).

  13. Extraction of ionization spectra from correlated wave functions: a comparison between different methods

    CERN Document Server

    Argenti, Luca; Feist, Johannes; Nagele, Stefan; Liertzer, Matthias; Persson, Emil; Burgdörfer, Joachim; Lindroth, Eva

    2013-01-01

    We compare three techniques to extract partial photoelectron spectra from the wave packet resulting from the integration on a finite-element discrete variable representation basis of the time-dependent Schr\\"odinger equation for an helium atom subject to an ultra-short XUV pulse. These techniques are: projection on products of hydrogenic bound and continuum states, projection onto multi-channel scattering states computed in a B-spline close-coupling basis, and a technique based on exterior complex scaling (ECS) [Palacios \\emph{et al}, Phys. Rev. A {\\bf 76}, 043420 (2007)] implemented in the same basis used for the time propagation. These methods allow to monitor the population of continuum states in wave packets created with ultrashort pulses in different regimes. The first method works well at the energies where the ionization continuum is unstructured while it becomes inefficient close to threshold openings due to the presence of long-lived metastable states or of vanishingly slow photofragments. The agreem...

  14. Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice.

    Science.gov (United States)

    Parameswaran, S A; Kimchi, Itamar; Turner, Ari M; Stamper-Kurn, D M; Vishwanath, Ashvin

    2013-03-22

    We study Bose-Hubbard models on tight-binding, non-Bravais lattices, with a filling of one boson per unit cell--and thus fractional site filling. We discuss situations where no classical bosonic insulator, which is a product state of particles on independent sites, is admitted. Nevertheless, we show that it is possible to construct a quantum Mott insulator of bosons if a trivial band insulator of fermions is possible at the same filling. The ground state wave function is simply a permanent of exponentially localized Wannier orbitals. Such a Wannier permanent wave function is featureless in that it respects all lattice symmetries and is the unique ground state of a parent Hamiltonian that we construct. Motivated by the recent experimental demonstration of a kagome optical lattice of bosons, we study this lattice at 1/3 site filling. Previous approaches to this problem have invariably produced either broken-symmetry states or topological order. Surprisingly, we demonstrate that a featureless insulator is a possible alternative and is the exact ground state of a local Hamiltonian. We briefly comment on the experimental relevance of our results to ultracold atoms as well as to 1/3 magnetization plateaus for kagome spin models in an applied field.

  15. Probing Electronic Wave Functions of Sodium-Doped Clusters: Dyson Orbitals, Anisotropy Parameters, and Ionization Cross-Sections.

    Science.gov (United States)

    Gunina, Anastasia O; Krylov, Anna I

    2016-12-15

    We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethyl ether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter the expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. We also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.

  16. 缀饰原子的简化波函数%A Simplified Wave Function for Dressed Atoms

    Institute of Scientific and Technical Information of China (English)

    李书民; 陈激; 周子舫; 张声涛

    2003-01-01

    A wave function for laser dressed atom is derived as a perturbative solution of the time-dependent Schrdinger equation in the velocity gauge. With the use of the average excitation energy approximation and the closure approximation, the solution is reduced to a time-dependent operator acting on the "bare" atomic state. In soft-photon approximation, the average excitation energy only appears in the first and second order terms of field frequency. Such a simplified dressed wave function is useful in the calculation of laser-assisted scattering, especially in the laser-assisted rearrangement collisions.%作为含时薛定谔方程的微扰近似解, 在速度规范下给出了激光场中缀饰原子的一个波函数. 利用平均激发能近似和完备关系, 可将此波函数简化为一个含时的相乘算符作用于无场时的"裸原子"态上. 在软光子近似下, 平均激发能仅出现在光场频率的一阶和二阶项上. 此波函数适用于计算激光辅助的散射过程, 特别是重排过程.

  17. Interlace properties for the real and imaginary parts of the wave functions of complex-valued potentials with real spectrum

    Science.gov (United States)

    Jaimes-Nájera, Alfonso; Rosas-Ortiz, Oscar

    2017-01-01

    Some general properties of the wave functions of complex-valued potentials with real spectrum are studied. The main results are presented in a series of lemmas, corollaries and theorems that are satisfied by the zeros of the real and imaginary parts of the wave functions on the real line. In particular, it is shown that such zeros interlace so that the corresponding probability densities ρ(x) are never null. We find that the profile of the imaginary part VI(x) of a given complex-valued potential determines the number and distribution of the maxima and minima of the related probability densities. Our conjecture is that VI(x) must be continuous in R, and that its integral over all the real line must be equal to zero in order to get control on the distribution of the maxima and minima of ρ(x) . The applicability of these results is shown by solving the eigenvalue equation of different complex potentials, these last being either PT-symmetric or not invariant under the PT-transformation.

  18. Computation of phonon spectra from density-functional perturbation theory in the projector augmented-wave approach

    Science.gov (United States)

    Torrent, Marc; Jollet, Francois; Audouze, Christophe; Gonze, Xavier

    2009-03-01

    The density-functional perturbation theory expressions have been derived within the projector augmented-wave formalism (PAW) and compared to those found in the ultrasoft pseudopotential framework [1]. They have been recently implemented in the abinit package [2] in the case of perturbations of the atomic-displacement type. We summarize the key points of this implementation: The variational and non-variational forms of the 2nd-order total energy changes are detailed. The resolution of the variational principle by a generalized Sternheimer equation is explained (the 1st-order wave-function change is found with a band-by-band conjugate gradient algorithm). We focus on some difficulties: metallic electronic occupations, response to incommensurate perturbations of periodic systems Results on pure compounds are presented; a comparison with results from pseudopotentials approach is performed in order to highlight the effect of the PAW methodology and its accuracy. [1] Audouze, Jollet, Torrent and Gonze. Phys. Rev. B 73, 235101 (2006); 78, 035105 (2008) [2] http://www.abinit.org.

  19. SCATTERING OF HARMONIC ANTI-PLANE SHEAR STRESS WAVES BY A CRACK IN FUNCTIONALLY GRADED PIEZOELECTRIC/PIEZOMAGNETIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Liang Jun

    2007-01-01

    In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect pf the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.

  20. Relativistic corrections for non-Born-Oppenheimer molecular wave functions expanded in terms of complex explicitly correlated Gaussian functions

    Science.gov (United States)

    Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik

    2017-06-01

    In our previous work S. Bubin et al., Chem. Phys. Lett. 647, 122 (2016), 10.1016/j.cplett.2016.01.056, it was established that complex explicitly correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for very accurate nonrelativistic molecular non-Born-Oppenheimer calculations. In this work, we advance the molecular CECGs approach further by deriving and implementing algorithms for calculating the leading relativistic corrections within this approach. The algorithms are tested in the calculations of the corrections for all 23 bound pure vibrational states of the HD+ ion.