WorldWideScience

Sample records for wave function methods

  1. Heuristic method for determining outgoing waves in many-body wave functions

    International Nuclear Information System (INIS)

    Redish, E.F.; Tandy, P.C.; L'Huillier, M.

    1975-12-01

    A new and simple method is proposed for determining the kinds of outgoing waves present in a given many-body wave function. Whether any particular wave function contains ''hidden'' rearrangement components can be determined. 1 figure

  2. Taylor-series method for four-nucleon wave functions

    International Nuclear Information System (INIS)

    Sandulescu, A.; Tarnoveanu, I.; Rizea, M.

    1977-09-01

    Taylor-series method for transforming the infinite or finite well two-nucleon wave functions from individual coordinates to relative and c.m. coordinates, by expanding the single particle shell model wave functions around c.m. of the system, is generalized to four-nucleon wave functions. Also the connections with the Talmi-Moshinsky method for two and four harmonic oscillator wave functions are deduced. For both methods Fortran IV programs for the expansion coefficients have been written and the equivalence of corresponding expressions numerically proved. (author)

  3. Linear density response function in the projector augmented wave method

    DEFF Research Database (Denmark)

    Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel

    2011-01-01

    We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...

  4. Multiquark masses and wave functions through modified Green's function Monte Carlo method

    International Nuclear Information System (INIS)

    Kerbikov, B.O.; Polikarpov, M.I.; Shevchenko, L.V.

    1987-01-01

    The Modified Green's function Monte Carlo method (MGFMC) is used to calculate the masses and ground-state wave functions of multiquark systems in the potential model. The previously developed MGFMC is generalized in order to treat systems containing quarks with inequal masses. The obtained results are presented with the Cornell potential for the masses and the wave functions of light and heavy flavoured baryons and multiquark states (N=6, 9, 12) made of light quarks

  5. Dominant partition method. [based on a wave function formalism

    Science.gov (United States)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  6. The extended hyperbolic function method and exact solutions of the long-short wave resonance equations

    International Nuclear Information System (INIS)

    Shang Yadong

    2008-01-01

    The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions

  7. Approximated calculation of the vacuum wave function and vacuum energy of the LGT with RPA method

    International Nuclear Information System (INIS)

    Hui Ping

    2004-01-01

    The coupled cluster method is improved with the random phase approximation (RPA) to calculate vacuum wave function and vacuum energy of 2 + 1 - D SU(2) lattice gauge theory. In this calculating, the trial wave function composes of single-hollow graphs. The calculated results of vacuum wave functions show very good scaling behaviors at weak coupling region l/g 2 >1.2 from the third order to the sixth order, and the vacuum energy obtained with RPA method is lower than the vacuum energy obtained without RPA method, which means that this method is a more efficient one

  8. Application of the Exp-function method to the equal-width wave equation

    International Nuclear Information System (INIS)

    Biazar, J; Ayati, Z

    2008-01-01

    In this paper, the Exp-function method is used to find an exact solution of the equal-width wave (EW) equation. The method is straightforward and concise, and its applications are promising. It is shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving the EW equation.

  9. Wave resistance calculation method combining Green functions based on Rankine and Kelvin source

    Directory of Open Access Journals (Sweden)

    LI Jingyu

    2017-12-01

    Full Text Available [Ojectives] At present, the Boundary Element Method(BEM of wave-making resistance mostly uses a model in which the velocity distribution near the hull is solved first, and the pressure integral is then calculated using the Bernoulli equation. However,the process of this model of wave-making resistance is complex and has low accuracy.[Methods] To address this problem, the present paper deduces a compound method for the quick calculation of ship wave resistance using the Rankine source Green function to solve the hull surface's source density, and combining the Lagally theorem concerning source point force calculation based on the Kelvin source Green function so as to solve the wave resistance. A case for the Wigley model is given.[Results] The results show that in contrast to the thin ship method of the linear wave resistance theorem, this method has higher precision, and in contrast to the method which completely uses the Kelvin source Green function, this method has better computational efficiency.[Conclusions] In general, the algorithm in this paper provides a compromise between precision and efficiency in wave-making resistance calculation.

  10. Studying Regional Wave Source Time Functions Using the Empirical Green's Function Method: Application to Central Asia

    Science.gov (United States)

    Xie, J.; Schaff, D. P.; Chen, Y.; Schult, F.

    2013-12-01

    Reliably estimated source time functions (STFs) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection and discrimination, and minimization of parameter trade-off in attenuation studies. We have searched for candidate pairs of larger and small earthquakes in and around China that share the same focal mechanism but significantly differ in magnitudes, so that the empirical Green's function (EGF) method can be applied to study the STFs of the larger events. We conducted about a million deconvolutions using waveforms from 925 earthquakes, and screened the deconvolved traces to exclude those that are from event pairs that involved different mechanisms. Only 2,700 traces passed this screening and could be further analyzed using the EGF method. We have developed a series of codes for speeding up the final EGF analysis by implementing automations and user-graphic interface procedures. The codes have been fully tested with a subset of screened data and we are currently applying them to all the screened data. We will present a large number of deconvolved STFs retrieved using various phases (Lg, Pn, Sn and Pg and coda) with information on any directivities, any possible dependence of pulse durations on the wave types, on scaling relations for the pulse durations and event sizes, and on the estimated source static stress drops.

  11. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  12. Application of numerical methods to the determination of molecular wave functions

    International Nuclear Information System (INIS)

    Douady, Jerome

    1969-01-01

    A simplified SCF Method is developed. The wave function of molecular systems and spin densities in the case of free radicals are computed from geometrical data. This method, including at the beginning a delocalization of electrons over all the molecular system, two methods which clear out bonding and anti-bonding interactions have been studied and programmed: a) overlap population analysis, b) localisation of molecular orbitals. These methods have been carried out in the case of organic compounds and free radicals. (author) [fr

  13. Accuracy of three-body wave functions obtained with the correlation-function hyperspherical-harmonic method

    International Nuclear Information System (INIS)

    Haftel, M.I.; Mandelzweig, V.B.

    1990-01-01

    The local convergence and accuracy of wave functions obtained by direct solution of the Schroedinger equation with the help of the correlation-function hyperspherical-harmonic method are analyzed for ground and excited states of the helium atom and for the ground state of the positronium negative ion. The inclusion of the cusp conditions into the correlation function is shown to be of crucial importance, not only near the coalescence points, but also away from them. The proper inclusion of all cusps yields for the ground state of the helium atom the local wave-function accuracy of about 10 -7 for different interparticle distances. The omission of one of the cusps in the excited helium atom reduces the wave-function precision to 10 -2 near the corresponding coalescence point and to 10 -4 --10 -5 away from it

  14. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  15. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  16. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    Science.gov (United States)

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  17. Semiclassical multicomponent wave function

    NARCIS (Netherlands)

    Mostovoy, M.V.

    A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to

  18. Photon wave function

    OpenAIRE

    Bialynicki-Birula, Iwo

    2005-01-01

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, t...

  19. Symmetrized partial-wave method for density-functional cluster calculations

    International Nuclear Information System (INIS)

    Averill, F.W.; Painter, G.S.

    1994-01-01

    The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule

  20. Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods

    DEFF Research Database (Denmark)

    Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo

    2011-01-01

    The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FSCC......) methods are used as well as two-step methods Spin-Orbit Complete Active Space Perturbation Theory at 2nd order (SO-CASPT2) and Spin-Orbit Difference Dedicated Configuration Interaction (SODDCI). The energy of the X21 state corresponds to the Zero-Field Splitting (ZFS) of the ground state spin triplet...

  1. Application of Wave Distribution Function Method to the ERG/PWE Data

    Science.gov (United States)

    Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.

    2017-12-01

    The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.

  2. Quantifying Diastolic Function: From E-Waves as Triangles to Physiologic Contours via the 'Geometric Method'.

    Science.gov (United States)

    Golman, Mikhail; Padovano, William; Shmuylovich, Leonid; Kovács, Sándor J

    2018-03-01

    Conventional echocardiographic diastolic function (DF) assessment approximates transmitral flow velocity contours (Doppler E-waves) as triangles, with peak (E peak ), acceleration time (AT), and deceleration time (DT) as indexes. These metrics have limited value because they are unable to characterize the underlying physiology. The parametrized diastolic filling (PDF) formalism provides a physiologic, kinematic mechanism based characterization of DF by extracting chamber stiffness (k), relaxation (c), and load (x o ) from E-wave contours. We derive the mathematical relationship between the PDF parameters and E peak , AT, DT and thereby introduce the geometric method (GM) that computes the PDF parameters using E peak , AT, and DT as input. Numerical experiments validated GM by analysis of 208 E-waves from 31 datasets spanning the full range of clinical diastolic function. GM yielded indistinguishable average parameter values per subject vs. the gold-standard PDF method (k: R 2  = 0.94, c: R 2  = 0.95, x o : R 2  = 0.95, p PDF method to quantify DF in terms of physiologic chamber properties.

  3. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    Science.gov (United States)

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    Science.gov (United States)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  5. Extended Jacobi Elliptic Function Rational Expansion Method and Its Application to (2+1)-Dimensional Stochastic Dispersive Long Wave System

    International Nuclear Information System (INIS)

    Song Lina; Zhang Hongqing

    2007-01-01

    In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.

  6. Source Estimation for the Damped Wave Equation Using Modulating Functions Method: Application to the Estimation of the Cerebral Blood Flow

    KAUST Repository

    Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem

    2017-01-01

    In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations

  7. An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Wang Qi; Chen Yong; Zhang Hongqing

    2005-01-01

    With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansatz, in which periodic solutions of nonlinear partial differential equations that can be expressed as a finite Laurent series of some of 12 Jacobi elliptic functions, is more powerful than exiting Jacobi elliptic function methods and is very powerful to uniformly construct more new exact periodic solutions in terms of rational formal Jacobi elliptic function solution of nonlinear partial differential equations. As an application of the method, we choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition

  8. System and Method for Measuring the Transfer Function of a Guided Wave Device

    Science.gov (United States)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  9. Continuum kinetic methods for analyzing wave physics and distribution function dynamics in the turbulence dissipation challenge

    Science.gov (United States)

    Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.

    2015-12-01

    We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.

  10. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    Science.gov (United States)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  11. New Traveling Wave Solutions of the Higher Dimensional Nonlinear Partial Differential Equation by the Exp-Function Method

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2012-01-01

    Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.

  12. Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory.

    Science.gov (United States)

    Oliveira, Micael J T; Mignolet, Benoit; Kus, Tomasz; Papadopoulos, Theodoros A; Remacle, F; Verstraete, Matthieu J

    2015-05-12

    Attosecond electron dynamics in small- and medium-sized molecules, induced by an ultrashort strong optical pulse, is studied computationally for a frozen nuclear geometry. The importance of exchange and correlation effects on the nonequilibrium electron dynamics induced by the interaction of the molecule with the strong optical pulse is analyzed by comparing the solution of the time-dependent Schrödinger equation based on the correlated field-free stationary electronic states computed with the equationof-motion coupled cluster singles and doubles and the complete active space multi-configurational self-consistent field methodologies on one hand, and various functionals in real-time time-dependent density functional theory (TDDFT) on the other. We aim to evaluate the performance of the latter approach, which is very widely used for nonlinear absorption processes and whose computational cost has a more favorable scaling with the system size. We focus on LiH as a toy model for a nontrivial molecule and show that our conclusions carry over to larger molecules, exemplified by ABCU (C10H19N). The molecules are probed with IR and UV pulses whose intensities are not strong enough to significantly ionize the system. By comparing the evolution of the time-dependent field-free electronic dipole moment, as well as its Fourier power spectrum, we show that TD-DFT performs qualitatively well in most cases. Contrary to previous studies, we find almost no changes in the TD-DFT excitation energies when excited states are populated. Transitions between states of different symmetries are induced using pulses polarized in different directions. We observe that the performance of TD-DFT does not depend on the symmetry of the states involved in the transition.

  13. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Directory of Open Access Journals (Sweden)

    Rahmatullah

    2018-03-01

    Full Text Available We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses. Keywords: Exp-function method, New exact traveling wave solutions, Modified Riemann-Liouville derivative, Fractional complex transformation, Fractional order Boussinesq-like equations, Symbolic computation

  14. On the use of a Hamiltonian with projected potential for the calculation of scattering wave functions : Methods and general properties

    International Nuclear Information System (INIS)

    Colle, R.; Simonucci, S.

    1996-01-01

    The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed

  15. Method for constructing bound state wave functions of two interacting particles on nullplanes

    International Nuclear Information System (INIS)

    Leidigh, T.J.

    1980-01-01

    Nullplane position and momentum coordinates are defined in terms of the generators of the Poincare group. A transformation to center-of-mass and relative coordinates for a two-particle system is made. Then, another transformation from the original relative coordinates to a new set is made. In terms of the new relative coordinates the formal analogy with nonrelativistic quantum mechanics, already familiar in the nullplane formalism, is greatly enhanced. These coordinates do not appear to have been used previously. The most general form for a two-particle interaction is then partially determined and two methods for solving the remaining constraints are shown to be equivalent. The similarity to nonrelativistic quantum mechanics is used to solve a bound state problem with an interaction resembling a harmonic oscillator. The wave function is then used to model an unstable particle, which has zero spin in the limit in which the particle becomes stable. In the presence of the decay-producing interaction it is shown that the spin spectrum of the parent particle does not remain sharply zero. This is the first relativistic model to unequivocally display this result. The result is interpreted as indicating that real, relativistic, unstable particles may not possess a sharp spin spectrum

  16. Source Estimation for the Damped Wave Equation Using Modulating Functions Method: Application to the Estimation of the Cerebral Blood Flow

    KAUST Repository

    Asiri, Sharefa M.

    2017-10-19

    In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations of blood mass density. The method is described and its performance is assessed through some numerical simulations. The robustness of the method in presence of noise is also studied.

  17. Micrononcasual Euclidean wave functions

    International Nuclear Information System (INIS)

    Enatsu, H.; Takenaka, A.; Okazaki, M.

    1978-01-01

    A theory which describes the internal attributes of hadrons in terms of space-time wave functions is presented. In order to develop the theory on the basis of a rather realistic model, covariant wave equations are first derived for the deuteron, in which the co-ordinates of the centre of mass of two nucleons can be defined unambiguously. Then the micro-noncasual behaviour of virtual mesons mediating between the two nucleons is expressed by means of wave functions depending only on the relative Euclidean co-ordinates with respect to the centre of mass of the two nucleons; the wave functions are assumed to obey the 0 4 and SU 2 x SU 2 groups. The properties of the wave functions under space inversion, time reversal and particle-antiparticle conjugation are investigated. It is found that the internal attributes of the mesons, such as spin, isospin, strangeness, intrinsic parity, charge parity and G-parity are explained consistently. The theory is applicable also to the case of baryons

  18. Wave-function functionals for the density

    International Nuclear Information System (INIS)

    Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht

    2011-01-01

    We extend the idea of the constrained-search variational method for the construction of wave-function functionals ψ[χ] of functions χ. The search is constrained to those functions χ such that ψ[χ] reproduces the density ρ(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals ψ[χ] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals ψ[χ] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W=Σ i r i n , n=-2,-1,1,2, W=Σ i δ(r i ) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2)Σ i ∇ i 2 , the two-particle operators W=Σ n u n , n=-2,-1,1,2, where u=|r i -r j |, and the energy are accurate. We note that the construction of such functionals ψ[χ] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional ψ[χ] is closer to the true wave function.

  19. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  20. Statistical wave function

    International Nuclear Information System (INIS)

    Levine, R.D.

    1988-01-01

    Statistical considerations are applied to quantum mechanical amplitudes. The physical motivation is the progress in the spectroscopy of highly excited states. The corresponding wave functions are strongly mixed. In terms of a basis set of eigenfunctions of a zeroth-order Hamiltonian with good quantum numbers, such wave functions have contributions from many basis states. The vector x is considered whose components are the expansion coefficients in that basis. Any amplitude can be written as a dagger x x. It is argued that the components of x and hence other amplitudes can be regarded as random variables. The maximum entropy formalism is applied to determine the corresponding distribution function. Two amplitudes a dagger x x and b dagger x x are independently distributed if b dagger x a = 0. It is suggested that the theory of quantal measurements implies that, in general, one can one determine the distribution of amplitudes and not the amplitudes themselves

  1. Covariance Function for Nearshore Wave Assimilation Systems

    Science.gov (United States)

    2018-01-30

    which is applicable for any spectral wave model. The four dimensional variational (4DVar) assimilation methods are based on the mathematical ...covariance can be modeled by a parameterized Gaussian function, for nearshore wave assimilation applications , the covariance function depends primarily on...SPECTRAL ACTION DENSITY, RESPECTIVELY. ............................ 5 FIGURE 2. TOP ROW: STATISTICAL ANALYSIS OF THE WAVE-FIELD PROPERTIES AT THE

  2. Estimation of the four-wave mixing noise probability-density function by the multicanonical Monte Carlo method.

    Science.gov (United States)

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2005-01-01

    The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.

  3. Forming method of a functional layer-built film by micro-wave plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Keishi

    1988-11-18

    In forming an amorphous semi-conductor material film, the micro-wave plasma CVD cannot be generally used because of such demerits as film-separation, low yield, columnar structure in the film, and problems in the optical and electrical properties. In this invention, a specific substrate is placed in a layer-built film forming unit which is capable of maintaining vacuum; raw material gas for the film formation is introduced; plasma is generated by a micro-wave energy to decompose the raw material gas, thus forming the layer-built film on the substarte. Then a film is made by adding a specific amount of calcoganide-containing gas to the raw material gas. By this, the utilization efficiency of the raw material gas gets roughly 100% and both the adhesion to the substrate and the structural flexibility of the layer-built film increase, enhancing the yield of forming various functional elements (sensor, solar cell, thin transistor film, etc.), and thus greatly reducing the production cost. 6 figs., 7 tabs.

  4. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  5. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    Science.gov (United States)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  6. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  7. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  8. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Science.gov (United States)

    Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar

    2018-03-01

    We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.

  9. Properties of resonance wave functions.

    Science.gov (United States)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  10. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  11. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states

    International Nuclear Information System (INIS)

    Yu, Kuang; Libisch, Florian; Carter, Emily A.

    2015-01-01

    We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to our previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors

  12. Wigner functions of s waves

    International Nuclear Information System (INIS)

    Dahl, J. P.; Varro, S.; Wolf, A.; Schleich, W. P.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius--that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle

  13. Wigner functions of s waves

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....

  14. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  15. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  16. Gabor Wave Packet Method to Solve Plasma Wave Equations

    International Nuclear Information System (INIS)

    Pletzer, A.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach

  17. A simple and realistic triton wave function

    International Nuclear Information System (INIS)

    Lomnitz-Adler, J.; Pandharipande, V.R.

    1980-01-01

    We propose a simple triton wave function that consists of a product of three correlation operators operating on a three-body spin-isospin state. This wave function is formally similar to that used in the recent variational theories of nuclear matter, the main difference being in the long-range behavior of the correlation operators. Variational calculations are carried out with the Reid potential, using this wave function in the so-called 'symmetrized product' and 'independent pair' forms. The triton energy and density distributions obtained with the symmetrized product wave function agree with those obtained in Faddeev and other variational calculations using harmonic oscillator states. The proposed wave function and calculational methods can be easily generalized to treat the four-nucleon α-particle. (orig.)

  18. An entropy regularization method applied to the identification of wave distribution function for an ELF hiss event

    Science.gov (United States)

    Prot, Olivier; SantolíK, OndřEj; Trotignon, Jean-Gabriel; Deferaudy, Hervé

    2006-06-01

    An entropy regularization algorithm (ERA) has been developed to compute the wave-energy density from electromagnetic field measurements. It is based on the wave distribution function (WDF) concept. To assess its suitability and efficiency, the algorithm is applied to experimental data that has already been analyzed using other inversion techniques. The FREJA satellite data that is used consists of six spectral matrices corresponding to six time-frequency points of an ELF hiss-event spectrogram. The WDF analysis is performed on these six points and the results are compared with those obtained previously. A statistical stability analysis confirms the stability of the solutions. The WDF computation is fast and without any prespecified parameters. The regularization parameter has been chosen in accordance with the Morozov's discrepancy principle. The Generalized Cross Validation and L-curve criterions are then tentatively used to provide a fully data-driven method. However, these criterions fail to determine a suitable value of the regularization parameter. Although the entropy regularization leads to solutions that agree fairly well with those already published, some differences are observed, and these are discussed in detail. The main advantage of the ERA is to return the WDF that exhibits the largest entropy and to avoid the use of a priori models, which sometimes seem to be more accurate but without any justification.

  19. On single nucleon wave functions in nuclei

    International Nuclear Information System (INIS)

    Talmi, Igal

    2011-01-01

    The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.

  20. Microscopy of electronic wave function

    International Nuclear Information System (INIS)

    Harb, M.

    2010-01-01

    This work of thesis aims to visualize, on a position sensitive detector, the spatial oscillations of slow electrons (∼ meV) emitted by a threshold photoionization in the presence of an external electric field. The interference figure obtained represents the square magnitude of electronic wavefunction. This fundamental work allows us to have access to the electronic dynamics and thus to highlight several quantum mechanisms that occur at the atomic scale (field Coulomb, electron/electron interaction..). Despite the presence an electronic core in Li atom, we have succeeded, experimentally and for the first time, in visualizing the wave function associated with the quasi-discrete Stark states coupled to the ionization continuum. Besides, using simulations of wave packet propagation, based on the 'Split-operator' method, we have conducted a comprehensive study of the H, Li and Cs atoms while revealing the significant effects of the Stark resonances. A very good agreement, on and off resonances, was obtained between simulated and experimental results. In addition, we have developed a generalized analytical model to understand deeply the function of VMI (Velocity-Map Imaging) spectrometer. This model is based on the paraxial approximation; it is based on matrix optics calculation by making an analogy between the electronic trajectory and the light beam. An excellent agreement was obtained between the model predictions and the experimental results. (author)

  1. Calculation of wave resistance by using Kochin function in the Rankine source method; Rankinsosuho ni okeru kochin kansu wo mochiita zoha teiko keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, H [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1997-10-01

    In order to avoid negative wave resistance (which is physically incomprehensible) generated in calculating wave resistance by using the Rankine source method, a proposal was made on a wave resistance calculation method using the Kochin function which describes behavior of speed potential in regions far apart from a hull. The Baba`s condition was used as a free surface condition for the speed potential which expresses wave motions around a hull. This has allowed a new Kochin function which uses as unknown the speed potential on the hull surface and the free surface near the hull to be defined and combined with the Rankine source method. A comparison was made between the calculated values for wave resistance, hull subsidence and trim change of an ore transporting vessel (SR107 type of ship) in a fully loaded condition and the result of water tank tests. The wave resistance values derived from pressure integration have all become negative when the Froude number is from 0.1 to 0.2, while no negative resistance has appeared in the calculations by using the Kochin function, but the result has agreed with that of the water tank tests. Accuracy of the calculations at low speeds was improved. The trim change in the calculations was slightly smaller than that in the water tank tests. The subsidence showed a good agreement. 7 refs., 1 fig.

  2. Physical interpretation of Monte Carlo wave-function and stochastic Schroedinger equation methods for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Kist, Tarso B.L.; Orszag, M.; Davidovich, L.

    1997-01-01

    The dynamics of open system is frequently modeled in terms of a small system S coupled to a reservoir R, the last having an infinitely larger number of degree of freedom than S. Usually the dynamics of the S variables may be of interest, which can be studied using either Langevin equations, or master equations, or yet the path integral formulation. Useful alternatives for the master equation method are the Monte Carlo Wave-function method (MCWF), and Stochastic Schroedinger Equations (SSE's). The methods MCWF and SSE's recently experienced a fast development both in their theoretical background and applications to the study of the dissipative quantum systems dynamics in quantum optics. Even though these alternatives can be shown to be formally equivalent to the master equation approach, they are often regarded as mathematical tricks, with no relation to a concrete physical evolution of the system. The advantage of using them is that one has to deal with state vectors, instead of density matrices, thus reducing the total amount of matrix elements to be calculated. In this work, we consider the possibility of giving a physical interpretation to these methods, in terms of continuous measurements made on the evolving system. We show that physical realizations of the two methods are indeed possible, for a mode of the electromagnetic field in a cavity interacting with a continuum of modes corresponding to the field outside the cavity. Two schemes are proposed, consisting of a mode of the electromagnetic field interacting with a beam of Rydberg two-level atoms. In these schemes, the field mode plays the role of a small system and the atomic beam plays the role of a reservoir (infinitely larger number of degrees of freedom at finite temperature, the interaction between them being given by the Jaynes-Cummings model

  3. Integral transform technique for meson wave functions

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Mikhajlov, S.V.

    1996-01-01

    In a recent paper [1] we proposed a new approach for extracting the wave function of the π-meson φ π (x) and the masses and wave functions of its first resonances from the new QCD sum rules for nondiagonal correlators obtained in [2]. Here, we test our approach using an exactly solvable toy model as an illustrating example. We demonstrate the validity of the method and suggest a pure algebraic procedure for extracting the masses and wave functions relating to the case under investigation. We also explore the stability of the procedure under perturbations of the theoretical part of the sum rule. In application to the pion case, this results not only in the mass and wave function of the first resonance (π'), but also in the estimation of π''-mass. 17 refs., 11 figs

  4. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    Science.gov (United States)

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  5. Application of numerical methods to the determination of molecular wave functions; Application de methodes de calcul numerique a la determination de fonctions d'onde moleculaires

    Energy Technology Data Exchange (ETDEWEB)

    Douady, Jerome

    1969-10-01

    A simplified SCF Method is developed. The wave function of molecular systems and spin densities in the case of free radicals are computed from geometrical data. This method, including at the beginning a delocalization of electrons over all the molecular system, two methods which clear out bonding and anti-bonding interactions have been studied and programmed: a) overlap population analysis, b) localisation of molecular orbitals. These methods have been carried out in the case of organic compounds and free radicals. (author) [French] Mise en oeuvre d'une methode de champ self-consistant simplifie qui, a partir des donnees geometriques, permet de calculer la fonction d'onde des systemes moleculaires et les densites de spin dans le cas des radicaux libres. Cette methode introduisant au depart une delocalisation des electrons sur tout le systeme moleculaire, deux methodes permettant de rendre compte du caractere liant et antiliant de ces electrons ont ete etudiees et programmees: a) analyse des populations de recouvrement, b) localisation des orbitales moleculaires. Ces methodes ont ete appliquees a divers composes organiques radicalaires et non radicalaires. (auteur)

  6. Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene.

    Science.gov (United States)

    Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia

    2017-11-14

    High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.

  7. Expansion of continuum functions on resonance wave functions and amplitudes

    International Nuclear Information System (INIS)

    Bang, J.; Gareev, F.A.; Gizzatkulov, M.H.; Goncharov, S.A.

    1978-01-01

    To overcome difficulties encountered with wave functions of continuum spectrum (for example, in a shell model with continuum) the pole expansion (by the Mittag-Leffler theorem) of wave functions, scattering amplitudes and the Green functions with positive energies are considered. It is shown that resonance functions (the Gamov functions) form a complete set over which the continuum functions could be expanded. The general view of these expansions for final potentials and for the Coulomb repulsion potential are obtained and discussed. It is shown that the application of the method to nuclear structure calculations leads to simple algebraic equations

  8. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  9. Surface wave velocity tracking by bisection method

    International Nuclear Information System (INIS)

    Maeda, T.

    2005-01-01

    Calculation of surface wave velocity is a classic problem dating back to the well-known Haskell's transfer matrix method, which contributes to solutions of elastic wave propagation, global subsurface structure evaluation by simulating observed earthquake group velocities, and on-site evaluation of subsurface structure by simulating phase velocity dispersion curves and/or H/V spectra obtained by micro-tremor observation. Recently inversion analysis on micro-tremor observation requires efficient method of generating many model candidates and also stable, accurate, and fast computation of dispersion curves and Raleigh wave trajectory. The original Haskell's transfer matrix method has been improved in terms of its divergence tendency mainly by the generalized transmission and reflection matrix method with formulation available for surface wave velocity; however, root finding algorithm has not been fully discussed except for the one by setting threshold to the absolute value of complex characteristic functions. Since surface wave number (reciprocal to the surface wave velocity multiplied by frequency) is a root of complex valued characteristic function, it is intractable to use general root finding algorithm. We will examine characteristic function in phase plane to construct two dimensional bisection algorithm with consideration on a layer to be evaluated and algorithm for tracking roots down along frequency axis. (author)

  10. Discrete expansions of continuum wave functions

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1980-01-01

    Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)

  11. Projector augmented wave method: ab initio molecular dynamics ...

    Indian Academy of Sciences (India)

    Unknown

    kinetic energy is small and the wave function is smooth. However, the wave ... and various strategies have been developed. ... methods let us briefly review the history of augmented ..... alleviated by adding an intelligent zero: If an operator B.

  12. Generating matrix elements of the hamiltonian of the algebraic version of resonating group method on intrinsic wave functions with various oscillator lengths

    International Nuclear Information System (INIS)

    Badalov, S.A.; Filippov, G.F.

    1986-01-01

    The receipts to calculate the generating matrix elements of the algebraic version of resonating group method (RGM) are given for two- and three-cluster nucleon systems, the center of mass motion being separeted exactly. For the Hamiltonian with Gaussian nucleon-nucleon potential dependence the generating matrix elements of the RGM algebraic version can be written down explictly if matrix elements of the corresponding system on wave functions of the Brink cluster model are known

  13. Light-front wave function of composite system with spin

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1979-01-01

    The method to construct the relativistic wave function with spin on the light front is developed. The spin structure of the deuteron wave function in relativistic range is found. The calculation methods are illustrated by the calculation of elastic pd-scattering cross section. The consideration carried out is equivalent to the solution of the problem of taking into account the spins and angular momenta in the parton wave functions in the infinite momentum frame

  14. Model wave functions for the deuteron

    International Nuclear Information System (INIS)

    Certov, A.; Mathelitsch, L.; Moravcsik, M.J.

    1987-01-01

    Model wave functions are constructed for the deuteron to facilitate the unambiguous exploration of dependencies on the percentage D state and on the small-, medium-, and large-distance parts of the deuteron wave function. The wave functions are constrained by those deuteron properties which are accurately known experimentally, and are in an analytic form which is easily integrable in expressions usually encountered in the use of such wave functions

  15. Gravity induced wave function collapse

    Science.gov (United States)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  16. Optimization of nonlinear wave function parameters

    International Nuclear Information System (INIS)

    Shepard, R.; Minkoff, M.; Chemistry

    2006-01-01

    An energy-based optimization method is presented for our recently developed nonlinear wave function expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions, using the graphical unitary group approach (GUGA). The wave function is expanded in a basis of product functions, allowing application to closed-shell and open-shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational function that depends on a relatively small number of nonlinear parameters called arc factors. The energy-based optimization is formulated in terms of analytic arc factor gradients and orbital-level Hamiltonian matrices that correspond to a specific kind of uncontraction of each of the product basis functions. These orbital-level Hamiltonian matrices give an intuitive representation of the energy in terms of disjoint subsets of the arc factors, they provide for an efficient computation of gradients of the energy with respect to the arc factors, and they allow optimal arc factors to be determined in closed form for subspaces of the full variation problem. Timings for energy and arc factor gradient computations involving expansion spaces of > 10 24 configuration state functions are reported. Preliminary convergence studies and molecular dissociation curves are presented for some small molecules

  17. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  18. Dynamic equations for gauge-invariant wave functions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.

    1984-01-01

    The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents

  19. Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

    International Nuclear Information System (INIS)

    Michalicek, Gregor

    2015-01-01

    Density functional theory (DFT) is the most widely-used first-principles theory for analyzing, describing and predicting the properties of solids based on the fundamental laws of quantum mechanics. The success of the theory is a consequence of powerful approximations to the unknown exchange and correlation energy of the interacting electrons and of sophisticated electronic structure methods that enable the computation of the density functional equations on a computer. A widely used electronic structure method is the full-potential linearized augmented plane-wave (FLAPW) method, that is considered to be one of the most precise methods of its kind and often referred to as a standard. Challenged by the demand of treating chemically and structurally increasingly more complex solids, in this thesis this method is revisited and extended along two different directions: (i) precision and (ii) efficiency. In the full-potential linearized augmented plane-wave method the space of a solid is partitioned into nearly touching spheres, centered at each atom, and the remaining interstitial region between the spheres. The Kohn-Sham orbitals, which are used to construct the electron density, the essential quantity in DFT, are expanded into a linearized augmented plane-wave basis, which consists of plane waves in the interstitial region and angular momentum dependent radial functions in the spheres. In this thesis it is shown that for certain types of materials, e.g., materials with very broad electron bands or large band gaps, or materials that allow the usage of large space-filling spheres, the variational freedom of the basis in the spheres has to be extended in order to represent the Kohn-Sham orbitals with high precision over a large energy spread. Two kinds of additional radial functions confined to the spheres, so-called local orbitals, are evaluated and found to successfully eliminate this error. A new efficient basis set is developed, named linearized augmented lattice

  20. Mini wave function for the Universe

    International Nuclear Information System (INIS)

    Maslanka, K.

    1989-01-01

    The Friedman radiation filled world model can formally be treated as an oscillator with frequency determined by the cosmological constant and with an external force connected with the space curvature. The wave function for such a universe is constructed. By using Feynman's sum-over-histories method, the initial fundamental indeterminacy in the state of the universe is propagated forward in time. 5 refs. (author)

  1. Special software for computing the special functions of wave catastrophes

    Directory of Open Access Journals (Sweden)

    Andrey S. Kryukovsky

    2015-01-01

    Full Text Available The method of ordinary differential equations in the context of calculating the special functions of wave catastrophes is considered. Complementary numerical methods and algorithms are described. The paper shows approaches to accelerate such calculations using capabilities of modern computing systems. Methods for calculating the special functions of wave catastrophes are considered in the framework of parallel computing and distributed systems. The paper covers the development process of special software for calculating of special functions, questions of portability, extensibility and interoperability.

  2. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique

    2015-08-26

    The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.

  3. Faddeev wave function decomposition using bipolar harmonics

    International Nuclear Information System (INIS)

    Friar, J.L.; Tomusiak, E.L.; Gibson, B.F.; Payne, G.L.

    1981-01-01

    The standard partial wave (channel) representation for the Faddeev solution to the Schroedinger equation for the ground state of 3 nucleons is written in terms of functions which couple the interacting pair and spectator angular momenta to give S, P, and D waves. For each such coupling there are three terms, one for each of the three cyclic permutations of the nucleon coordinates. A series of spherical harmonic identities is developed which allows writing the Faddeev solution in terms of a basis set of 5 bipolar harmonics: 1 for S waves; 1 for P waves; and 3 for D waves. The choice of a D-wave basis is largely arbitrary, and specific choices correspond to the decomposition schemes of Derrick and Blatt, Sachs, Gibson and Schiff, and Bolsterli and Jezak. The bipolar harmonic form greatly simplifies applications which utilize the wave function, and we specifically discuss the isoscalar charge (or mass) density and the 3 He Coulomb energy

  4. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  5. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    Science.gov (United States)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  6. WKB wave function for many-variable systems

    International Nuclear Information System (INIS)

    Sakita, B.; Tzani, R.

    1986-01-01

    The WKB method is a non-perturbative semi-classical method in quantum mechanics. The method for a system of one degree of freedom is well known and described in standard textbooks. The method for a system with many degrees of freedom especially for quantum fields is more involved. There exist two methods: Feynman path integral and Schrodinger wave function. The Feynman path integral WKB method is essentially a stationary phase approximation for Feynman path integrals. The WKB Schrodinger wave function method is on the other hand an extension of the standard WKB to many-variable systems

  7. An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2

    Science.gov (United States)

    Rendell, Alistair P.; Lee, Timothy J.

    1991-01-01

    The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.

  8. Calculation of deuteron wave functions with relativistic interactions

    International Nuclear Information System (INIS)

    Buck, W.W. III.

    1976-01-01

    Deuteron wave functions with a repulsive core are obtained numerically from a fully relativistic wave equation introduced by Gross. The numerical technique enables analytic solutions for classes of interactions composed of the relativistic exchanges of a single pion and a single phenomenological meson, sigma. The pion is chosen to interact as a mixture of pseudoscalar and pseudovector. The amount of mixture is determined by a free mixing parameter, lambda, ranging between 1 (pure pseudoscalar) and (pure pseudovector). Each value of lambda corresponds, then, to a different interaction. Solutions are found for lambda = 1, .9, .8, .6, and 0. The wave functions for each interaction come in a group of four. Of the four wave functions, two are the usual S and D state wave functions, while the remaining two, arising out of the relativistic prescription, are identified as 3 P 1 and 1 P 1 wave functions (P state wave functions). For the interactions solved for, the D state probabilities ranged between 5.1 percent and 6.3 percent, while the total P state probabilities ranged between 0.7 percent and 2.7 percent. The method of obtaining solutions was to adjust the sigma meson parameters to give the correct binding energy and a good quadrupole moment. All wave functions obtained are applied to relativistic N-d scattering in the backward direction where the effect of the P states is quite measurable

  9. Optimized Perturbation Theory for Wave Functions of Quantum Systems

    International Nuclear Information System (INIS)

    Hatsuda, T.; Tanaka, T.; Kunihiro, T.

    1997-01-01

    The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society

  10. Conformal invariance and pion wave functions of nonleading twist

    International Nuclear Information System (INIS)

    Braun, V.M.; Filyanov, I.E.

    1989-01-01

    The restrictions are studied for the general structure of pion wave functions of twist 3 and twist 4 imposed by the conformal symmetry and the equations of motion. A systematic expansion of wave functions in the conformal spin is built and the first order corrections to asymptotic formulae are calculated by the QCD sum rule method. In particular, we have found a multiplicatively renormalizable contribution into the two-particle wave function of twist 4 which cannot be expanded in a finite set of Gegenbauer polynomials. 19 refs.; 5 figs

  11. Neutrino wave function and oscillation suppression

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Lychkovskiy, O.V.; Mamonov, A.A.; Okun, L.B.; Schepkin, M.G.

    2005-01-01

    We consider a thought experiment, in which a neutrino is produced by an electron on a nucleus in a crystal. The wave function of the oscillating neutrino is calculated assuming that the electron is described by a wave packet. If the electron is relativistic and the spatial size of its wave packet is much larger than the size of the crystal cell, then the wave packet of the produced neutrino has essentially the same size as the wave packet of the electron. We investigate the suppression of neutrino oscillations at large distances caused by two mechanisms: (1) spatial separation of wave packets corresponding to different neutrino masses; (2) neutrino energy dispersion for given neutrino mass eigenstates. We resolve the contributions of these two mechanisms. (orig.)

  12. Problems of the orthogonalized plane wave method. 1

    International Nuclear Information System (INIS)

    Farberovich, O.V.; Kurganskii, S.I.; Domashevskaya, E.P.

    1979-01-01

    The main problems of the orthogonalized plane wave method are discussed including (a) consideration of core states; (b) effect of overlap of wave functions of external core states upon the band structure; (c) calculation of d-type states. The modified orthogonal plane wave method (MOPW method) of Deegan and Twose is applied in a general form to solve the problems of the usual OPW method. For the first time the influence on the spectrum of the main parameters of the MOPW method is studied systematically by calculating the electronic energy spectrum in the transition metals Nb and V. (author)

  13. Conservative numerical methods for solitary wave interactions

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A; Lopez-Marcos, M A [Departamento de Matematica Aplicada y Computacion, Facultad de Ciencias, Universidad de Valladolid, Paseo del Prado de la Magdalena s/n, 47005 Valladolid (Spain)

    2003-07-18

    The purpose of this paper is to show the advantages that represent the use of numerical methods that preserve invariant quantities in the study of solitary wave interactions for the regularized long wave equation. It is shown that the so-called conservative methods are more appropriate to study the phenomenon and provide a dynamic point of view that allows us to estimate the changes in the parameters of the solitary waves after the collision.

  14. Noncommuting limits of oscillator wave functions

    International Nuclear Information System (INIS)

    Daboul, J.; Pogosyan, G. S.; Wolf, K. B.

    2007-01-01

    Quantum harmonic oscillators with spring constants k > 0 plus constant forces f exhibit rescaled and displaced Hermite-Gaussian wave functions, and discrete, lower bound spectra. We examine their limits when (k, f) → (0, 0) along two different paths. When f → 0 and then k → 0, the contraction is standard: the system becomes free with a double continuous, positive spectrum, and the wave functions limit to plane waves of definite parity. On the other hand, when k → 0 first, the contraction path passes through the free-fall system, with a continuous, nondegenerate, unbounded spectrum and displaced Airy wave functions, while parity is lost. The subsequent f → 0 limit of the nonstandard path shows the dc hysteresis phenomenon of noncommuting contractions: the lost parity reappears as an infinitely oscillating superposition of the two limiting solutions that are related by the symmetry

  15. The Wave Function and Quantum Reality

    International Nuclear Information System (INIS)

    Gao Shan

    2011-01-01

    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic

  16. The Green-function transform and wave propagation

    Directory of Open Access Journals (Sweden)

    Colin eSheppard

    2014-11-01

    Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.

  17. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  18. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  19. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  20. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  1. Relativistic deuteron wave function on light front

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1980-01-01

    In the framework of the one boson exchange model the approximate analytical expression for the deuteron wave function (WF) at relativistic relative momenta is obtained. WF depends on extra variable having the form of a unit vector and is determined by six functions instead of two ones (S-and D-waves) in the nonrelativistic case. At moderate momenta the WF is matched with WF in the Reid model. It is emphasized the importance of indication of the qualitative observed phenomena associated with change of parametrization and spin structure of relativistic deuteron WF

  2. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  3. Twist-2 Light-Cone Pion Wave Function

    OpenAIRE

    Belyaev, V. M.; Johnson, Mikkel B.

    1997-01-01

    We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.

  4. Wigner functions for evanescent waves.

    Science.gov (United States)

    Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George

    2012-09-01

    We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

  5. Consequences of wave function orthogonality for medium energy nuclear reactions

    International Nuclear Information System (INIS)

    Noble, J.V.

    1978-01-01

    In the usual models of high-energy bound-state to continuum transitions no account is taken of the orthogonality of the bound and continuum wave functions. This orthogonality induces considerable cancellations in the overlap integrals expressing the transition amplitudes for reactions such as (e,e'p), (γ,p), and (π,N), which are simply not included in the distorted-wave Born-approximation calculations which to date remain the only computationally feasible heirarchy of approximations. The object of this paper is to present a new formulation of the bound-state to continuum transition problem, based upon flux conservation, in which the orthogonality of wave functions is taken into account ab initio. The new formulation, while exact if exact wave functions are used, offers the possibility of using approximate wave functions for the continuum states without doing violence to the cancellations induced by orthogonality. The method is applied to single-particle states obeying the Schroedinger and Dirac equations, as well as to a coupled-channel model in which absorptive processes can be described in a fully consistent manner. Several types of absorption vertex are considered, and in the (π,N) case the equivalence of pseudoscalar and pseudovector πNN coupling is seen to follow directly from wave function orthogonality

  6. Delta function excitation of waves in the earth's ionosphere

    Science.gov (United States)

    Vidmar, R. J.; Crawford, F. W.; Harker, K. J.

    1983-01-01

    Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.

  7. Embedding beyond electrostatics-The role of wave function confinement.

    Science.gov (United States)

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

  8. General method for designing wave shape transformers.

    Science.gov (United States)

    Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu

    2008-12-22

    An effective method for designing wave shape transformers (WSTs) is investigated by adopting the coordinate transformation theory. Following this method, the devices employed to transform electromagnetic (EM) wave fronts from one style with arbitrary shape and size to another style, can be designed. To verify this method, three examples in 2D spaces are also presented. Compared with the methods proposed in other literatures, this method offers the general procedure in designing WSTs, and thus is of great importance for the potential and practical applications possessed by such kinds of devices.

  9. The puzzling entanglement of Schroedinger's wave function

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Rimini, A.; Weber, T.

    1987-05-01

    A brief review of the conceptual difficulties met by the quantum formalism is presented. The main attempts to overcome these difficulties are considered and their limitations are pointed out. A recent proposal based on the assumption of the occurrence of a specific type of wave function collapse is discussed and its consequences for the above-mentioned problems are analyzed. (author). 28 refs

  10. Wind wave source functions in opposing seas

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim

    2015-01-01

    that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution

  11. Semiclassical initial value treatment of wave functions

    International Nuclear Information System (INIS)

    Kay, Kenneth G.

    2010-01-01

    A semiclassical initial value approximation for time-independent wave functions, previously derived for integrable systems, is rederived in a form which allows it to be applied to more general systems. The wave function is expressed as an integral over a Lagrangian manifold that is constructed by propagating trajectories from an initial manifold formed on a Poincare surface. Even in the case of bound, integrable systems, it is unnecessary to identify action-angle variables or construct quantizing tori. The approximation is numerically tested for separable and highly chaotic two-dimensional quartic oscillator systems. For the separable (but highly anharmonic) system, the accuracy of the approximation is found to be excellent: overlaps of the semiclassical wave functions with the corresponding quantum wave functions exceed 0.999. For the chaotic system, semiclassical-quantum overlaps are found to range from 0.989 to 0.994, indicating accuracy that is still very good, despite the short classical trajectories used in the calculations.

  12. Accuracy of Several Wave Function and Density Functional Theory Methods for Description of Noncovalent Interaction of Saturated and Unsaturated Hydrocarbon Dimers

    Czech Academy of Sciences Publication Activity Database

    Granatier, Jaroslav; Pitoňák, M.; Hobza, Pavel

    2012-01-01

    Roč. 8, č. 7 (2012), s. 2282-2292 ISSN 1549-9618 Grant - others:APVV(SK) APVV-0059-10 Institutional research plan: CEZ:AV0Z40550506 Keywords : intermolecular interaction energies * Plesset perturbation-theory * molecular-orbital methods * protein rubredoxin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  13. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW)

    Science.gov (United States)

    Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.

    2017-05-01

    This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.

  14. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW)

    International Nuclear Information System (INIS)

    Alfianto, E; Rusydi, F; Aisyah, N D; Dipojono, H K; Martoprawiro, M A; Fadilla, R N

    2017-01-01

    This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso. (paper)

  15. Distorted wave method in reactions with composite particles

    International Nuclear Information System (INIS)

    Zelenskaya, N.S.; Teplov, I.B.

    1980-01-01

    The work deals with the distorbed wave method with a finite radius of interaction (DWBAFR) as applied to quantitative analysis of direct nuclear reactions with composite particles (including heavy ions) considering the reaction mechanisms other than the cluster stripping mechanism, in particular the exchange processes. The accurate equations of the distorbed-wave method in the three-body problem and the general formula dor calculating differential cross-sections of arbitrary binary reactions by DWBAFR are presented. Accurate and approximate methods allowing for finite interaction radius are discussed. Two main versions of exact account of recoil effects: separation of variables in wave functions of relative motion of particles and in interaction potentials and separation of variables in distorted waves are analysed. Given is a characteristic of the known calculated programs approximately and exactly taking account of recoil effects for direct and exchange processes [ru

  16. An Unconditionally Stable Method for Solving the Acoustic Wave Equation

    Directory of Open Access Journals (Sweden)

    Zhi-Kai Fu

    2015-01-01

    Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.

  17. A pair density functional theory utilizing the correlated wave function

    International Nuclear Information System (INIS)

    Higuchi, M; Higuchi, K

    2009-01-01

    We propose a practical scheme for calculating the ground-state pair density (PD) by utilizing the correlated wave function. As the correlated wave function, we adopt a linear combination of the single Slater determinants that are constructed from the solutions of the initial scheme [Higuchi M and Higuchi K 2007 Physica B 387, 117]. The single-particle equation is derived by performing the variational principle within the set of PDs that are constructed from such correlated wave functions. Since the search region of the PD is substantially extended as compared with the initial scheme, it is expected that the present scheme can cover more correlation effects. The single-particle equation is practical, and may be easily applied to actual calculations.

  18. ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances

    International Nuclear Information System (INIS)

    Fort, E.

    1982-01-01

    1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions

  19. Wave propagation retrieval method for chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2010-01-01

    In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...

  20. Antiferromagnetism and d-wave superconductivity in (doped) Mott insulators: A wave function approach

    OpenAIRE

    Weng, Z. Y.; Zhou, Y.; Muthukumar, V. N.

    2003-01-01

    We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be ...

  1. Study of Ion Acoustic Wave Damping through Green's Functions

    DEFF Research Database (Denmark)

    Hsuan, H.C.S.; Jensen, Vagn Orla

    1973-01-01

    Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....

  2. Relativistic amplitudes in terms of wave functions

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1978-01-01

    In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum

  3. Cranked cluster wave function for molecular states

    International Nuclear Information System (INIS)

    Horiuchi, Hisashi; Yabana, Kazuhiro; Wada, Takahiro.

    1986-01-01

    Construction of the cranked cluster wave function is discussed by focussing on three problems; the self-consistency between the potential and the density distribution, the properties of the rotational angular frequency which is strongly influenced by the inter-cluster Pauli principle and by the parity projection, and the spin alignment along the rotation axis with the resulting structure-change of the molecular state. (author)

  4. Tur\\'an type inequalities for regular Coulomb wave functions

    OpenAIRE

    Baricz, Árpád

    2015-01-01

    Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.

  5. Meson wave functions in 2-dim QCD

    International Nuclear Information System (INIS)

    Hildebrandt, S.; Visnjic, V.

    1977-07-01

    We consider the eigenvalue problem of 't Hooft for the meson spectrum in 2-dim QCD by defining some alternative formulations whose equivalence we prove. Hence we are able to prove that the spectrum is discrete and of finite multiplicity and to derive bounds (upper and lower) for the eigenvalues (ground state, with state and n → infinitely state). We prove that the functions are analytic and use this to carry out explicit numerical calculations of the wave functions for various values of the quark masses and to recalculate the meson spectrum. (orig.) [de

  6. Measurement of light-cone wave functions by diffractive dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Asheri, D. [Tel Aviv Univ., School of Physics and Astronomy, Sackler Faculty of Exact Science (Israel)

    2005-07-01

    The measurement of the pion light-cone wave function is revisited and results for the Gegenbauer coefficients are presented. Measurements of the photon electromagnetic and hadronic wave functions are described and results are presented. (authors)

  7. General Forms of Wave Functions for Dipositronium, Ps2

    Science.gov (United States)

    Schrader, D.M.

    2007-01-01

    The consequences of particle interchange symmetry for the structure of wave functions of the states of dipositronium was recently discussed by the author [I]. In the present work, the methodology is simply explained, and the wave functions are explicitly given.

  8. Boundary conditions of the exact impulse wave function

    International Nuclear Information System (INIS)

    Gravielle, M.; Miraglia, J.E.

    1997-01-01

    The behavior of the exact impulse wave function is investigated at intermediate and high impact energies. Numerical details of the wave function and its perturbative potential are reported. We conclude that the impulse wave function does not tend to the proper Coulomb asymptotic limit. For electron capture, however, it is shown that the impulse wave function produces reliable probabilities even for intermediate velocities and symmetric collision systems. copyright 1997 The American Physical Society

  9. Systems and methods for wave energy conversion

    Science.gov (United States)

    MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.

    2017-02-28

    Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.

  10. Galerkin finite element methods for wave problems

    Indian Academy of Sciences (India)

    basis functions (called G1FEM here) and quadratic basis functions (called G2FEM) ... mulation of Brookes & Hughes (1982) that implicitly incorporates numerical ..... functions and (c) SUPG method in the (kh − ω t)-plane for explicit Euler.

  11. On the asymptotic evolution of finite energy Airy wave functions.

    Science.gov (United States)

    Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S

    2015-06-15

    In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.

  12. Comparison of matrix methods for elastic wave scattering problems

    International Nuclear Information System (INIS)

    Tsao, S.J.; Varadan, V.K.; Varadan, V.V.

    1983-01-01

    This article briefly describes the T-matrix method and the MOOT (method of optimal truncation) of elastic wave scattering as they apply to A-D, SH- wave problems as well as 3-D elastic wave problems. Two methods are compared for scattering by elliptical cylinders as well as oblate spheroids of various eccentricity as a function of frequency. Convergence, and symmetry of the scattering cross section are also compared for ellipses and spheroidal cavities of different aspect ratios. Both the T-matrix approach and the MOOT were programmed on an AMDHL 470 computer using double precision arithmetic. Although the T-matrix method and MOOT are not always in agreement, it is in no way implied that any of the published results using MOOT are in error

  13. Introduction to functional methods

    International Nuclear Information System (INIS)

    Faddeev, L.D.

    1976-01-01

    The functional integral is considered in relation to Feynman diagrams and phase space. The holomorphic form of the functional integral is then discussed. The main problem of the lectures, viz. the construction of the S-matrix by means of the functional integral, is considered. The functional methods described explicitly take into account the Bose statistics of the fields involved. The different procedure used to treat fermions is discussed. An introduction to the problem of quantization of gauge fields is given. (B.R.H.)

  14. Classical representation of wave functions for integrable systems

    International Nuclear Information System (INIS)

    Kay, Kenneth G.

    2004-01-01

    Classical exact (CE) wave functions are certain integral representations of energy eigenfunctions that are parameterized in terms of the motion of the corresponding classical system in a semiclassically relevant way. When applied to systems for which they are not exact, such expressions serve as semiclassical approximations. Previous work identified CE wave functions for a number of specific systems and established their semiclassical usefulness. This paper explores the degree to which such representations can be found for more general systems. It is shown that CE wave functions exist, in principle, for bound states of an arbitrary integrable system that are confined to a single classically allowed region. Evidence is presented that CE representations also exist for more general states of such a system that are unbound, or that extend over more than one allowed region. The CE expressions are not unique: an innumerable variety exists for each such system. The existence proof provides a formal method for constructing CE expressions by Fourier transforming certain superpositions of energy eigenstates. The parameterization in terms of the classical motion is achieved by identifying certain quantities in these superpositions as classical action and angle variables. The semiclassical relevance of this identification is ensured by imposing some mild conditions on the coefficients in the superposition. This procedure for parameterizing exact wave functions in terms of classical variables indicates a basic relationship between the quantum and classical descriptions of states. The method of constructing CE wave functions introduced in the proof is shown to be consistent with a number of previously obtained CE formulas and is used to derive two new, closed-form, CE expressions. A simple numerical example is presented to illustrate the semiclassical application of one of these expressions and to further verify the physical significance of the classical parameterization

  15. A simplified method of evaluating the stress wave environment of internal equipment

    Science.gov (United States)

    Colton, J. D.; Desmond, T. P.

    1979-01-01

    A simplified method called the transfer function technique (TFT) was devised for evaluating the stress wave environment in a structure containing internal equipment. The TFT consists of following the initial in-plane stress wave that propagates through a structure subjected to a dynamic load and characterizing how the wave is altered as it is transmitted through intersections of structural members. As a basis for evaluating the TFT, impact experiments and detailed stress wave analyses were performed for structures with two or three, or more members. Transfer functions that relate the wave transmitted through an intersection to the incident wave were deduced from the predicted wave response. By sequentially applying these transfer functions to a structure with several intersections, it was found that the environment produced by the initial stress wave propagating through the structure can be approximated well. The TFT can be used as a design tool or as an analytical tool to determine whether a more detailed wave analysis is warranted.

  16. Calculating scattering matrices by wave function matching

    International Nuclear Information System (INIS)

    Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.

    2008-01-01

    The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Comparative study on spreading function for directional wave spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    -dimensional wave energy S(f) and the directional spreading function D(f, theta). This paper reviews various spreading functions proposed in the past for estimating the directional wave energy and presents their application to the Indian wave condition. It is found...

  18. Improved Wave-vessel Transfer Functions by Uncertainty Modelling

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio

    2016-01-01

    This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in inp...

  19. Green function for three-wave coupling problems

    International Nuclear Information System (INIS)

    Molevich, N E

    2001-01-01

    The Green function is found for three-wave coupling problems. The function was used for analysis of parametric amplification in dissipative and active media. It is shown that the parametric increment in active media can become exponential. As an example, the nonstationary stimulated scattering of electromagnetic waves by sound and temperatures waves is considered. (nonlinear optical phenomena)

  20. Response functions of free mass gravitational wave antennas

    Science.gov (United States)

    Estabrook, F. B.

    1985-01-01

    The work of Gursel, Linsay, Spero, Saulson, Whitcomb and Weiss (1984) on the response of a free-mass interferometric antenna is extended. Starting from first principles, the earlier work derived the response of a 2-arm gravitational wave antenna to plane polarized gravitational waves. Equivalent formulas (generalized slightly to allow for arbitrary elliptical polarization) are obtained by a simple differencing of the '3-pulse' Doppler response functions of two 1-arm antennas. A '4-pulse' response function is found, with quite complicated angular dependences for arbitrary incident polarization. The differencing method can as readily be used to write exact response functions ('3n+1 pulse') for antennas having multiple passes or more arms.

  1. Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics

    OpenAIRE

    Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies

    1997-01-01

    We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...

  2. Simple functional-differential equations for the bound-state wave-function components

    International Nuclear Information System (INIS)

    Kamuntavicius, G.P.

    1986-01-01

    The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)

  3. Deep inelastic scattering and light-cone wave functions

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Johnson, M.B.

    1996-01-01

    In the framework of light-cone QCD rules, we study the valence quark distribution function q(x B ) of a pion for moderate x B . The sum rule with the leading twist-2 wave function gives q(x B ) = φ π (x B ). Twist-4 wave functions give about 30% for x B ∼0.5. It is shown that QCD sum rule predictions, with the asymptotic pion wave function, are in good agreement with experimental data. We found that a two-hump profile for the twist-2 wave function leads to a valence quark distribution function that contradicts experimental data

  4. Study on evaluation methods for Rayleigh wave dispersion characteristic

    Science.gov (United States)

    Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.

    2005-01-01

    The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.

  5. Elastic wave scattering methods: assessments and suggestions

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed

  6. A Stream Function Theory Based Calculation of Wave Kinematics for Very Steep Waves Using a Novel Non-linear Stretching Technique

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak

    2016-01-01

    A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...

  7. On a novel iterative method to compute polynomial approximations to Bessel functions of the first kind and its connection to the solution of fractional diffusion/diffusion-wave problems

    International Nuclear Information System (INIS)

    Yuste, Santos Bravo; Abad, Enrique

    2011-01-01

    We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.

  8. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    Science.gov (United States)

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  9. Intercellular Ca2+ Waves: Mechanisms and Function

    Science.gov (United States)

    Sanderson, Michael J.

    2012-01-01

    Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430

  10. An exponential multireference wave-function Ansatz

    International Nuclear Information System (INIS)

    Hanrath, Michael

    2005-01-01

    An exponential multireference wave-function Ansatz is formulated. In accordance with the state universal coupled-cluster Ansatz of Jeziorski and Monkhorst [Phys. Rev. A 24, 1668 (1981)] the approach uses a reference specific cluster operator. In order to achieve state selectiveness the excitation- and reference-related amplitude indexing of the state universal Ansatz is replaced by an indexing which is based on excited determinants. There is no reference determinant playing a particular role. The approach is size consistent, coincides with traditional single-reference coupled cluster if applied to a single-reference, and converges to full configuration interaction with an increasing cluster operator excitation level. Initial applications on BeH 2 , CH 2 , Li 2 , and nH 2 are reported

  11. String wave function across a Kasner singularity

    International Nuclear Information System (INIS)

    Copeland, Edmund J.; Niz, Gustavo; Turok, Neil

    2010-01-01

    A collision of orbifold planes in 11 dimensions has been proposed as an explanation of the hot big bang. When the two planes are close to each other, the winding membranes become the lightest modes of the theory, and can be effectively described in terms of fundamental strings in a ten-dimensional background. Near the brane collision, the 11-dimensional metric is a Euclidean space times a 1+1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general Kasner background. In this paper we extend the previous classical analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with circular symmetry. The evolution across the singularity is regular, and explained in terms of the excitement of higher oscillation modes. We also show there is finite particle production and unitarity is preserved.

  12. Computer network defense through radial wave functions

    Science.gov (United States)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  13. Configuration interaction wave functions: A seniority number approach

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-01-01

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure

  14. Configuration interaction wave functions: A seniority number approach

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  15. BAYESZ, S-Wave, P-Wave Resonance Level Spacing and Strength Functions

    International Nuclear Information System (INIS)

    Moore, M.S.

    1982-01-01

    A - Description of problem or function: BAYESZ calculates average s- and p-wave level spacings, strength functions, and average radiation widths of a mixed sequence of s- and p-wave resonances whose parameters are supplied as input. The code is based on two physical assumptions: 1) The neutron reduced width distribution for each open channel is a chi-squared distribution with one degree of freedom, i.e. Porter-Thomas. 2) The spacing distribution follows the Gaussian Orthogonal Ensemble. This property is used, however, only to fix the s- to p-wave level density ratio as proportional to (2J+1) with a spin cut-off correction. B - Method of solution: The method used is an extension of that described by Moore et al. in reference (1), and is based on the method of moments of a truncated Porter-Thomas distribution. C - Restrictions on the complexity of the problem: Parameters for a maximum of 500 individual resonances can be specified. This restriction can be relaxed by increasing array dimensions

  16. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

  17. On the construction of translationally invariant deformed wave functions

    International Nuclear Information System (INIS)

    Guardiola, R.

    1975-01-01

    Translationally invariant nuclear wave functions are constructed from deformed harmonic oscillator shell-model wave functions, with an exact projection of angular momentum quantum numbers. It is shown that the computation of matrix elements with the translationally invariant wave functions is as simple as the standard calculation, and formulae are obtained for (i) the potential energy, (ii) the kinetic energy and rms radius, and (iii) the charge form factor. (Auth.)

  18. Wave function of the Universe as a leaking system

    International Nuclear Information System (INIS)

    Suen, W.; Young, K.

    1989-01-01

    We propose a path-integral formulation for the wave function of the Universe which requires neither the Euclidean nor the conformal rotation. The boundary condition is taken to be that ''all possible boundaries are included.'' The resulting wave function in a simple model is shown to have the following properties: (i) the wave function tends to zero as the scale factor of the Universe tends to zero; (ii) in the semiclassical regime, it contains only the expanding component; (iii) it favors inflation

  19. Mathieu functions describing particles evolving in electromagnetic waves

    Science.gov (United States)

    Mihu, Denisa-Andreea; Dariescu, Marina-Aura

    2017-12-01

    Solutions of Klein-Gordon equation for particles moving in a standing wave configuration bring into attention an intricate and complicated category of special functions, namely the Mathieu functions. The stability of the solutions governed by the intercorrelation between Mathieu equation' parameters is discussed. For specific intervals of the wave number, the instability regime installs, pointing out the tendency of exponential growth for the oscillatory wave functions, as a consequence of parametric resonance phenomenon. The expression of the wave function allows the computation of the four-dimensional conserved current density components.

  20. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  1. The essential theory of fast wave current drive with full wave method

    International Nuclear Information System (INIS)

    Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan

    2007-01-01

    The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)

  2. The (′/-Expansion Method for Abundant Traveling Wave Solutions of Caudrey-Dodd-Gibbon Equation

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2011-01-01

    Full Text Available We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG equation by the (/-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the (/-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.

  3. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  4. A ''quadratized'' augmented plane wave method

    International Nuclear Information System (INIS)

    Smrcka, L.

    1982-02-01

    The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)

  5. Application of the generalized multi structural (GMS) wave function to photoelectron spectra and electron scattering processes

    International Nuclear Information System (INIS)

    Nascimento, M.A.C. do

    1992-01-01

    A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)

  6. Parametrization of the scattering wave functions of the Paris potential

    International Nuclear Information System (INIS)

    Loiseau, B.; Mathelitsch, L.

    1996-10-01

    The neutron-proton scattering wave functions of the Paris nucleon-nucleon potential are parametrized for partial waves of total angular momenta less than 5. The inner parts of the wave functions are approximated by polynomials with a continuous transition to the outer parts, which are given by the asymptotic regime and determined by the respective phase shifts. The scattering wave functions can then be calculated at any given energy below 400 MeV. Special attention is devoted to the zero-energy limit of the low partial waves. An easy-to-use FORTRAN program, which allows the user to calculate these parametrized wave functions, is available via electronic mail. (author)

  7. Six Impossible Things: Fractional Charge From Laughlin's Wave Function

    International Nuclear Information System (INIS)

    Shrivastava, Keshav N.

    2010-01-01

    The Laughlin's wave function is found to be the zero-energy ground state of a δ-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian. (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in ψ m can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.

  8. Green function iterative solution of ground state wave function for Yukawa potential

    International Nuclear Information System (INIS)

    Zhang Zhao

    2003-01-01

    The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP

  9. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  10. The technique of the modified hamiltonian for construction of the spin-projected wave function

    International Nuclear Information System (INIS)

    Tsaune, A.Ya.; Glushkov, V.N.

    1991-01-01

    A method is suggested to construct the wave function, which is an eigenfunction for operator S 2 . A combination of Lowdin's projection operators and the method of taking into account the orthogonality conditions in variational problems previously developed by the authors is used for determination of the spin-current wave functions component. It is shown that the suggested method gives better results for the energies that the traditional restricted Hartee-Fock scheme

  11. Wave-function reconstruction in a graded semiconductor superlattice

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.

    2004-01-01

    We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...

  12. A convenient analytical form for the triton wave function

    International Nuclear Information System (INIS)

    Hajduk, C.; Green, A.M.; Sainio, M.E.

    1979-01-01

    The triton wave function obtained by solving the Faddeev equations with the Reid soft core potential is parametrized in a symmetrized cluster form. As a test the 3 He charge form factor is calculated for the exact and the parametrized wave functions and reasonable agreement between the two is found. (author)

  13. Baryons with functional methods

    International Nuclear Information System (INIS)

    Fischer, Christian S.

    2017-01-01

    We summarise recent results on the spectrum of ground-state and excited baryons and their form factors in the framework of functional methods. As an improvement upon similar approaches we explicitly take into account the underlying momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. For light octet and decuplet baryons we find a spectrum in very good agreement with experiment, including the level ordering between the positive- and negative-parity nucleon states. Comparing the three-body framework with the quark-diquark approximation, we do not find significant differences in the spectrum for those states that have been calculated in both frameworks. This situation is different in the electromagnetic form factor of the Δ, which may serve to distinguish both pictures by comparison with experiment and lattice QCD.

  14. Collapse of the wave function models, ontology, origin, and implications

    CERN Document Server

    2018-01-01

    This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...

  15. Discontinuous approximate molecular electronic wave-functions

    International Nuclear Information System (INIS)

    Stuebing, E.W.; Weare, J.H.; Parr, R.G.

    1977-01-01

    Following Kohn, Schlosser and Marcus and Weare and Parr an energy functional is defined for a molecular problem which is stationary in the neighborhood of the exact solution and permits the use of trial functions that are discontinuous. The functional differs from the functional of the standard Rayleigh--Ritz method in the replacement of the usual kinetic energy operators circumflex T(μ) with operators circumflex T'(μ) = circumflex T(μ) + circumflex I(μ) generates contributions from surfaces of nonsmooth behavior. If one uses the nabla PSI . nabla PSI way of writing the usual kinetic energy contributions, one must add surface integrals of the product of the average of nabla PSI and the change of PSI across surfaces of discontinuity. Various calculations are carried out for the hydrogen molecule-ion and the hydrogen molecule. It is shown that ab initio calculations on molecules can be carried out quite generally with a basis of atomic orbitals exactly obeying the zero-differential overlap (ZDO) condition, and a firm basis is thereby provided for theories of molecular electronic structure invoking the ZDO aoproximation. It is demonstrated that a valence bond theory employing orbitals exactly obeying ZDO can provide an adequate account of chemical bonding, and several suggestions are made regarding molecular orbital methods

  16. Amplitude modulation of atomic wave functions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The major theoretical advance has been to show that one can modulate Rydberg wave functions using either of two methods: (1) the amplitude modulation technique which depends on autoionization to deplete part of the wave function, or (2) a phase modulation method, which uses a change in the core potential to create a localized phase shift in the wave function. Essentially, these two methods can both be seen as using the core potential to change the Rydberg wave function, using the imaginary part of the potential to do amplitude modulation, or using the real part of the potential to do phase modulation. This work will be published as the authors acquire experimental results which show the differences between the two methods. One of the results of this theoretical study is that the initial proposal to study Barium 6snd states had a significant flaw. Neither the autoionization time, nor the quantum defect shifts are very large in these cases. This means that the modulation is relatively small. This shows itself primarily in the difficulty of seeing significant population redistribution into different 6snd states. The authors intend to correct this in the next funding cycle either: (a) by using the more quickly decaying Ba 6pnf states to modulate 6snd states, or (b) by using Sr 5 snd states, as outlined in this report. Their first, low power experiments are complete. These experiments have used two pulses to do a temporal version of the Ramsey separated oscillatory fields excitation. The two pulses are generated by passing the single pulse through a Michelson-Morley interferometer, which is computer controlled to sweep one arm through 2.5 {micro}m in steps of 10 nm. The second pulse`s excitation interferes with that of the first pulse, and so the total excitation has a sinusoidal variation (with a time period equal to the optical period) on top of a constant background. The amplitude of the total variation should decay at half of the rate decay rate of the autoionizing

  17. Traveling wave tube and method of manufacture

    Science.gov (United States)

    Vancil, Bernard K. (Inventor)

    2004-01-01

    A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.

  18. The functional variable method for finding exact solutions of some ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we implemented the functional variable method and the modified. Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled. KdV system. This method is extremely simple ...

  19. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....

  20. Improved wave functions for large-N expansions

    International Nuclear Information System (INIS)

    Imbo, T.; Sukhatme, U.

    1985-01-01

    Existing large-N expansions of radial wave functions phi/sub n/,l(r) are only accurate near the minimum of the effective potential. Within the framework of the shifted 1/N expansion, we use known analytic results to motivate a simple modification so that the improved wave functions are accurate over a wide range of r and any choice of quantum numbers n and l. It is shown that these wave functions yield simple and accurate analytic expressions for certain quantities of interest in quarkonium physics

  1. A combined wave distribution function and stability analysis of Viking particle and low-frequency wave data

    International Nuclear Information System (INIS)

    Oscarsson, T.E.; Roennmark, K.G.

    1990-01-01

    In this paper the authors present an investigation of low-frequency waves observed on auroral field lines below the acceleration region by the Swedish satellite Viking. The measured frequency spectra are peaked at half the local proton gyrofrequency, and the waves are observed in close connection with precipitating electrons. In order to obtain information about the distribution of wave energy in wave vector space, they reconstruct the wave distribution function (WDF) from observed spectral densities. They use a new scheme that allows them to reconstruct simultaneously the WDF over a broad frequency band. The method also makes it possible to take into account available particle observations as well as Doppler shifts caused by the relative motion between the plasma and the satellite. The distribution of energy in wave vector space suggested by the reconstructed WDF is found to be consistent with what is expected from a plasma instability driven by the observed precipitating electrons. Furthermore, by using UV images obtained on Viking, they demonstrate that the wave propagation directions indicated by the reconstructed WDFs are consistent with a simple model of the presumed wave source in the electron precipitation region

  2. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

    Science.gov (United States)

    Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F

    2012-09-14

    We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.

  3. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  4. Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function

    Science.gov (United States)

    Gao, Fei; Chang, Lei; Liu, Yu-xin

    2017-07-01

    We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.

  5. Bayesian extraction of the parton distribution amplitude from the Bethe–Salpeter wave function

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2017-07-01

    Full Text Available We propose a new numerical method to compute the parton distribution amplitude (PDA from the Euclidean Bethe–Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe–Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM. The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA can be well determined. We confirm prior work on PDA computations, which was based on different methods.

  6. Numerical simulation of electromagnetic wave propagation using time domain meshless method

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi

    2012-01-01

    The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)

  7. Mountain Wave Analysis Using Fourier Methods

    National Research Council Canada - National Science Library

    Roadcap, John R

    2007-01-01

    ...) their requirements for only a coarse horizontal background state. Common traits of Fourier mountain wave models include use of the Boussinesq approximation and neglect of moisture and Coriolis terms...

  8. EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS USING DIRECT ALGEBRAIC METHOD

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.

  9. Analytical evaluation of integrals over Coulomb wave functions

    International Nuclear Information System (INIS)

    Nesbet, R.K.

    1988-01-01

    Indefinite integrals of products of Coulomb wave functions over the interval (r, ∞) can be evaluated by conversion to continued fractions. Examples are given of normalization and dipole transition integrals required in photoionization calculations. (orig.)

  10. A wave propagation matrix method in semiclassical theory

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.

    1977-05-01

    A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied

  11. Construction of Bethe Salpeter wave functions and applications in QCD

    International Nuclear Information System (INIS)

    Gromes, D.

    1993-01-01

    We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)

  12. Wave function collapse implies divergence of average displacement

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    2005-01-01

    We show that propagating a truncated discontinuous wave function by Schr\\"odinger's equation, as asserted by the collapse axiom, gives rise to non-existence of the average displacement of the particle on the line. It also implies that there is no Zeno effect. On the other hand, if the truncation is done so that the reduced wave function is continuous, the average coordinate is finite and there is a Zeno effect. Therefore the collapse axiom of measurement needs to be revised.

  13. Horizon wave-function and the quantum cosmic censorship

    OpenAIRE

    Casadio, RobertoDipartimento di Fisica e Astronomia, Alma Mater Università di Bologna, via Irnerio 46, Bologna, 40126, Italy; Micu, Octavian(Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele, RO-077125, Romania); Stojkovic, Dejan(HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY, 14260-1500, United States)

    2015-01-01

    We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF) formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superxtremal case (with charge-to-mass ratio $\\alpha>1$), which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for $\\alpha^2 2$, and the uncertainty in t...

  14. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    Science.gov (United States)

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  15. Charge symmetry of electron wave functions in a quantized electromagnetic wave field

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M V [AN SSSR, Moscow. Fizicheskij Inst.

    1975-01-01

    An attempt to clear up the reasons of the electron charge symmetry violation in the quantum wave field was made in this article. For this purpose the connection between the Dirac equation and the electron wave functions in the external field with the exact equation of quantum electrodynamics is established. Attention is paid to the fact that a number of equations for single-electron wave functions can be used in the framework of the same assumptions. It permits the construction of the charge-symmetric solutions in particular.

  16. Approximate scattering wave functions for few-particle continua

    International Nuclear Information System (INIS)

    Briggs, J.S.

    1990-01-01

    An operator identity which allows the wave operator for N particles interacting pairwise to be expanded as products of operators in which fewer than N particles interact is given. This identity is used to derive appproximate scattering wave functions for N-particle continua that avoid certain difficulties associated with Faddeev-type expansions. For example, a derivation is given of a scattering wave function used successfully recently to describe the three-particle continuum occurring in the electron impact ionization of the hydrogen atom

  17. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    International Nuclear Information System (INIS)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-01-01

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  18. Wave drag as the objective function in transonic fighter wing optimization

    Science.gov (United States)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  19. Longitudinal wave function control in single quantum dots with an applied magnetic field

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  20. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  1. expansion method and travelling wave solutions for the perturbed ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we construct the travelling wave solutions to the perturbed nonlinear. Schrödinger's equation (NLSE) with Kerr law non-linearity by the extended (G /G)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with. Kerr law nonlinearity with arbitrary ...

  2. The extended (G/G)-expansion method and travelling wave ...

    Indian Academy of Sciences (India)

    In this paper, we construct the travelling wave solutions to the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law non-linearity by the extended (′/)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with Kerr law nonlinearity with arbitrary parameters.

  3. Exact density functional and wave function embedding schemes based on orbital localization

    International Nuclear Information System (INIS)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály; Ferenczy, György G.

    2016-01-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  4. Exact density functional and wave function embedding schemes based on orbital localization

    Science.gov (United States)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  5. Exact density functional and wave function embedding schemes based on orbital localization

    Energy Technology Data Exchange (ETDEWEB)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu [MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest (Hungary); Ferenczy, György G. [Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest (Hungary); Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest (Hungary)

    2016-08-14

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  6. An analysis of the accuracy of an initial value representation surface hopping wave function in the interaction and asymptotic regions

    International Nuclear Information System (INIS)

    Sergeev, Alexey; Herman, Michael F.

    2006-01-01

    The behavior of an initial value representation surface hopping wave function is examined. Since this method is an initial value representation for the semiclassical solution of the time independent Schroedinger equation for nonadiabatic problems, it has computational advantages over the primitive surface hopping wave function. The primitive wave function has been shown to provide transition probabilities that accurately compare with quantum results for model problems. The analysis presented in this work shows that the multistate initial value representation surface hopping wave function should approach the primitive result in asymptotic regions and provide transition probabilities with the same level of accuracy for scattering problems as the primitive method

  7. Method and apparatus for generating acoustic waves

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1982-01-01

    A portable source of acoustic waves comprises a sample of iron-nickel alloy including an austenite phase cooled to become martensite, and a wave guide to transmit the acoustic waves. The source is applied to the pressure boundary region of a pressurized water reactor to simulate an actual metal flaw and test the calibration of the monitoring and surveillance system. With at most 29.7% nickel in the sample, the source provides acoustic emission due to ductile deformation, and with at least 30% nickel the acoustic emission is characteristic of a brittle deformation. Thus, the monitoring and surveillance system can be tested in either or both situations. In the prior art, synthetic waveform signals were used for such calibration but found not suitable for on-line simulation of the surveillance system. This invention provides an improved system in that it generates true acoustic signals. (author)

  8. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters

  9. Wave function of the Universe in the early stage of its evolution

    International Nuclear Information System (INIS)

    Maydanyuk, Sergei P.

    2008-01-01

    In quantum cosmological models, constructed in the framework of Friedmann-Robertson-Walker metrics, a nucleation of the Universe with its further expansion is described as a tunneling transition through an effective barrier between regions with small and large values of the scale factor a at non-zero (or zero) energy. The approach for describing this tunneling consists of constructing a wave function satisfying an appropriate boundary condition. There are various ways for defining the boundary condition that lead to different estimates of the barrier penetrability and the tunneling time. In order to describe the escape from the tunneling region as accurately as possible and to construct the total wave function on the basis of its two partial solutions unambiguously, we use the tunneling boundary condition that the total wave function must represent only the outgoing wave at the point of escape from the barrier, where the following definition for the wave is introduced: the wave is represented by the wave function whose modulus changes minimally under a variation of the scale factor a. We construct a new method for a direct non-semiclassical calculation of the total stationary wave function of the Universe, analyze the behavior of this wave function in the tunneling region, near the escape point and in the asymptotic region, and estimate the barrier penetrability. We observe oscillations of the modulus of the wave function in the external region starting from the turning point which decrease with increasing of a and which are not shown in semiclassical calculations. The period of such an oscillation decreases uniformly with increasing a and can be used as a fully quantum dynamical characteristic of the expansion of the Universe. (orig.)

  10. The effect of meson wave function on heavy-quark fragmentation function

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2016-05-15

    We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)

  11. The Yang-Mills vacuum wave functional in Coulomb gauge

    International Nuclear Information System (INIS)

    Campagnari, Davide R.

    2011-01-01

    Yang-Mills theories are the building blocks of today's Standard Model of elementary particle physics. Besides methods based on a discretization of space-time (lattice gauge theory), also analytic methods are feasible, either in the Lagrangian or in the Hamiltonian formulation of the theory. This thesis focuses on the Hamiltonian approach to Yang-Mills theories in Coulomb gauge. The thesis is presented in cumulative form. After an introduction into the general formulation of Yang-Mills theories, the Hamilton operator in Coulomb gauge is derived. Chap. 1 deals with the heat-kernel expansion of the Faddeev-Popov determinant. In Chapters 2 and 3, the high-energy behaviour of the theory is investigated. To this purpose, perturbative methods are applied, and the results are compared with the ones stemming from functional methods in Coulomb and Landau gauge. Chap. 4 is devoted to the variational approach. Variational ansatzes going beyond the Gaussian form for the vacuum wave functional are considered and treated using Dyson-Schwinger techniques. Equations for the higher-order variational kernels are derived and their effects are estimated. Chap. 5 presents an application of the previously obtained propagators, namely the evaluation of the topological susceptibility, which is related to the mass of the η meson. Finally, a short overview of the perturbative treatment of dynamical fermion fields is presented.

  12. Improved WKB radial wave functions in several bases

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.; Department of Physics, University of Wisconsin, Madison, Wisconsin 53706)

    1986-01-01

    We develop approximate WKB-like solutions to the radial Schroedinger equation for problems with an angular momentum barrier using Riccati-Bessel, Coulomb, and harmonic-oscillator functions as basis functions. The solutions treat the angular momentum singularity near the origin more accurately in leading approximation than the standard WKB solutions based on sine waves. The solutions based on Riccati-Bessel and free Coulomb wave functions continue smoothly through the inner turning point and are appropriate for scattering problems. The solutions based on oscillator and bound Coulomb wave functions incorporate both turning points smoothly and are particularly appropriate for bound-state problems; no matching of piecewise solutions using Airy functions is necessary

  13. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.

    Science.gov (United States)

    Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M

    2011-11-01

    Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.

  14. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    Science.gov (United States)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  15. Rapidity resummation for B-meson wave functions

    Directory of Open Access Journals (Sweden)

    Shen Yue-Long

    2014-01-01

    Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.

  16. Real-space grid implementation of the projector augmented wave method

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...... valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency...... is comparable to standard plane-wave methods, but the memory requirements are higher....

  17. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    Science.gov (United States)

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  18. P wave dispersion and maximum P wave duration are independently associated with rapid renal function decline.

    Science.gov (United States)

    Su, Ho-Ming; Tsai, Wei-Chung; Lin, Tsung-Hsien; Hsu, Po-Chao; Lee, Wen-Hsien; Lin, Ming-Yen; Chen, Szu-Chia; Lee, Chee-Siong; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2012-01-01

    The P wave parameters measured by 12-lead electrocardiogram (ECG) are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR). This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC) and corrected P wave maximum duration (PWdurMaxC). Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9%) reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms) (log-rank P = 0.004) and PWdurMaxC > median (117.9 ms) (log-rank Pfunction decline.

  19. Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods

    DEFF Research Database (Denmark)

    Reikard, Gordon; Pinson, Pierre; Bidlot, Jean

    2011-01-01

    Recently, the technology has been developed to make wave farms commercially viable. Since electricity is perishable, utilities will be interested in forecasting ocean wave energy. The horizons involved in short-term management of power grids range from as little as a few hours to as long as several...... days. In selecting a method, the forecaster has a choice between physics-based models and statistical techniques. A further idea is to combine both types of models. This paper analyzes the forecasting properties of a well-known physics-based model, the European Center for Medium-Range Weather Forecasts...... (ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...

  20. Analytic moment method calculations of the drift wave spectrum

    International Nuclear Information System (INIS)

    Thayer, D.R.; Molvig, K.

    1985-11-01

    A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA

  1. A fast method for linear waves based on geometrical optics

    NARCIS (Netherlands)

    Stolk, C.C.

    2009-01-01

    We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the

  2. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  3. Numerical method for wave forces acting on partially perforated caisson

    Science.gov (United States)

    Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou

    2015-04-01

    The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.

  4. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  5. On the interpretation of wave function overlaps in quantum dots

    DEFF Research Database (Denmark)

    Stobbe, Søren; Hvam, Jørn Märcher; Lodahl, Peter

    2011-01-01

    The spontaneous emission rate of excitons strongly confined in quantum dots (QDs) is proportional to the overlap integral of electron and hole envelope wave functions. A common and intuitive interpretation of this result is that the spontaneous emission rate is proportional to the probability...... that the electron and the hole are located at the same point or region in space, i.e., they must coincide spatially to recombine. Here, we show that this interpretation is not correct even loosely speaking. By general mathematical considerations we compare the envelope wave function overlap, the exchange overlap...... integral, and the probability of electrons and holes coinciding, and find that the frequency dependence of the envelope wave function overlap integral is very different from that expected from the common interpretation. We show that these theoretical considerations lead to predictions for measurements. We...

  6. Validation of Standing Wave Liner Impedance Measurement Method, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hersh Acoustical Engineering, Inc. proposes to establish the feasibility and practicality of using the Standing Wave Method (SWM) to measure the impedance of...

  7. Period functions for Maass wave forms and cohomology

    CERN Document Server

    Bruggeman, R; Zagier, D; Bruggeman, R W; Zagier, D

    2015-01-01

    The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \\Gamma\\subset\\mathrm{PSL}_2({\\mathbb{R}}). In the case that \\Gamma is the modular group \\mathrm{PSL}_2({\\mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal serie

  8. The deuteron bound state wave function with tensor forces

    International Nuclear Information System (INIS)

    Takemasa, Tadashi

    1991-01-01

    A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)

  9. Evolution of wave function in a dissipative system

    Science.gov (United States)

    Yu, Li-Hua; Sun, Chang-Pu

    1994-01-01

    For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.

  10. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

    KAUST Repository

    Liu, Shaolin

    2017-09-28

    The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.

  11. Wave propagation numerical models in damage detection based on the time domain spectral element method

    International Nuclear Information System (INIS)

    Ostachowicz, W; Kudela, P

    2010-01-01

    A Spectral Element Method is used for wave propagation modelling. A 3D solid spectral element is derived with shape functions based on Lagrange interpolation and Gauss-Lobatto-Legendre points. This approach is applied for displacement approximation suited for fundamental modes of Lamb waves as well as potential distribution in piezoelectric transducers. The novelty is the model geometry extension from flat to curved elements for application in shell-like structures. Exemplary visualisations of waves excited by the piezoelectric transducers in curved shell structure made of aluminium alloy are presented. Simple signal analysis of wave interaction with crack is performed. The crack is modelled by separation of appropriate nodes between elements. An investigation of influence of the crack length on wave propagation signals is performed. Additionally, some aspects of the spectral element method implementation are discussed.

  12. Extracting a shape function for a signal with intra-wave frequency modulation.

    Science.gov (United States)

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).

  13. Traveling waves in a diffusive predator-prey model with holling type-III functional response

    International Nuclear Information System (INIS)

    Li Wantong; Wu Shiliang

    2008-01-01

    We establish the existence of traveling wave solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator-prey model with Holling type-III functional response. The analysis is in the three-dimensional phase space of the nonlinear ordinary differential equation system given by the diffusive predator-prey system in the traveling wave variable. The methods used to prove the results are the shooting argument, invariant manifold theory and the Hopf bifurcation theorem

  14. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method

    International Nuclear Information System (INIS)

    Fan Engui

    2002-01-01

    A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)

  15. Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method

    International Nuclear Information System (INIS)

    Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.

    1994-01-01

    Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig

  16. Spectral and partial-wave decomposition of time-dependent wave functions on a grid: Photoelectron spectra of H and H2+ in electromagnetic fields

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.

    2007-01-01

    We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum

  17. Schmidt decomposition for non-collinear biphoton angular wave functions

    International Nuclear Information System (INIS)

    Fedorov, M V

    2015-01-01

    Schmidt modes of non-collinear biphoton angular wave functions are found analytically. The experimentally realizable procedure for their separation is described. Parameters of the Schmidt decomposition are used to evaluate the degree of the biphoton's angular entanglement. (paper)

  18. Gravity induced corrections to quantum mechanical wave functions

    International Nuclear Information System (INIS)

    Singh, T.P.

    1990-03-01

    We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs

  19. The linear potential propagator via wave function expansion

    International Nuclear Information System (INIS)

    Nassar, Antonio B.; Cattani, Mauro S.D.

    2002-01-01

    We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developed formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities. (author)

  20. Potential harmonic expansion for atomic wave functions

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.; Larsen, S.Y.

    1991-01-01

    One way to reduce the large degeneracy of the Hyperspherical Harmonic basis for solving few- and many-body bound state problems is to introduce an optimal basis truncation called the Potential Harmonic (PH) basis. Various PH truncation schemes are introduced, and their accuracies are evaluated in predicting the energies of the Helium and H - ground states , and the excited 2 1 S level of the Helium atom. It was found that the part of the PH basis that accounts for one-body correlations gives a better ground state energy for He than the Hartree-Fock approximation. When an orthogonal complement is introduced to the basis to account for e-e correlations, the error in the binding energy is found to be .00025 au and .00015 au for ground and excited helium, resp., and .00035 au for H - . Furthermore, the PH truncation is about 99.9% accurate in accounting for contributions coming from large values of the global angular momentum. This PH scheme is also much more accurate than previous versions based on the Faddeev equations. The present results indicate that the PH truncation can render the Hyperspherical Harmonic method useful for systems with N>3. (R.P.) 14 refs., 4 tabs

  1. Simulation of wind wave growth with reference source functions

    Science.gov (United States)

    Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.

    2013-04-01

    We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdissμ4w?N (k)θ(? - ?diss) (3) Here frequency-dependent wave steepness μ2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its

  2. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  3. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    Science.gov (United States)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  4. Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.

    Science.gov (United States)

    Vallone, Giuseppe; Dequal, Daniele

    2016-01-29

    Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.

  5. Calculation of the nucleon structure function from the nucleon wave function

    Science.gov (United States)

    Hussar, Paul E.

    1993-01-01

    Harmonic oscillator wave functions have played an historically important role in our understanding of the structure of the nucleon, most notably by providing insight into the mass spectra of the low-lying states. High energy scattering experiments are known to give us a picture of the nucleon wave function at high-momentum transfer and in a frame in which the nucleon is traveling fast. A simple model that crosses the twin bridges of momentum scale and Lorentz frame that separate the pictures of the nucleon wave function provided by the deep inelastic scattering data and by the oscillator model is presented.

  6. Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method

    International Nuclear Information System (INIS)

    Saddique, I.; Nazar, K.

    2009-01-01

    In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)

  7. A New Method for Constructing Travelling Wave Solutions to the modified Benjamin–Bona–Mahoney Equation

    International Nuclear Information System (INIS)

    Jun-Mao, Wang; Miao, Zhang; Wen-Liang, Zhang; Rui, Zhang; Jia-Hua, Han

    2008-01-01

    We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified Benjamin–Bona–Mahoney equation, and obtain some new solutions which can be expressed by trigonometric functions and hyperbolic functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics. (general)

  8. Prediction of the shape of inline wave force and free surface elevation using First Order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe

    2017-01-01

    theory, that is, the most likely time history of inline force around a force peak of given value. The results of FORM and NewForce are linearly identical and show only minor deviations at second order. The FORM results are then compared to wave averaged measurements of the same criteria for crest height......In design of substructures for offshore wind turbines, the extreme wave loads which are of interest in Ultimate Limit States are often estimated by choosing extreme events from linear random sea states and replacing them by either stream function wave theory or the NewWave theory of a certain...... design wave height. As these wave theories super from limitations such as symmetry around the crest, other methods to estimate the wave loads are needed. In the present paper, the First Order Reliability Method, FORM, is used systematically to estimate the most likely extreme wave shapes. Two parameters...

  9. Coordinate asymptotics of the (3→3) wave functions for a three charged particle system

    International Nuclear Information System (INIS)

    Merkur'ev, S.P.

    1977-01-01

    Coordinate asymptotics of the (3 → 3) wave functions for three particles system with Coulomb interaction in the scattering problem is plotted. (3 → 3) and (3 → 2) process cases are considered, when the particles are not connected at the initial state. For coordinate asymptotics plotting the basis functions are used which meet Schroedinger equation in the eikonal approximation. The wave functions coordinate asymptotics plotting method is described far from special directions. Wave function asymptotical form is studied in the range of special directions and (3 → 3) scattering amplitude singularities are described. All data are given in accordance with the system with 2 charged particles only. The model in question is of special interest because of the described ppn system the studying of which is of great importance in nuclear physics. Final formulae are discussed for the most general case of three charged particles. Boundary problems for Schroedinger equation are shown to give the only way of definition for the (3 → 3) wave functions. It is pointed out that in special directions wave function coordinate asymptotics is presented with accuracy that gives the possibility to set such a boundary problem

  10. Finite element and discontinuous Galerkin methods for transient wave equations

    CERN Document Server

    Cohen, Gary

    2017-01-01

    This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...

  11. Wave field restoration using three-dimensional Fourier filtering method.

    Science.gov (United States)

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  12. Chiral metamaterials characterisation using the wave propagation retrieval method

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu

    2010-01-01

    In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...

  13. A comparison of high-order polynomial and wave-based methods for Helmholtz problems

    Science.gov (United States)

    Lieu, Alice; Gabard, Gwénaël; Bériot, Hadrien

    2016-09-01

    The application of computational modelling to wave propagation problems is hindered by the dispersion error introduced by the discretisation. Two common strategies to address this issue are to use high-order polynomial shape functions (e.g. hp-FEM), or to use physics-based, or Trefftz, methods where the shape functions are local solutions of the problem (typically plane waves). Both strategies have been actively developed over the past decades and both have demonstrated their benefits compared to conventional finite-element methods, but they have yet to be compared. In this paper a high-order polynomial method (p-FEM with Lobatto polynomials) and the wave-based discontinuous Galerkin method are compared for two-dimensional Helmholtz problems. A number of different benchmark problems are used to perform a detailed and systematic assessment of the relative merits of these two methods in terms of interpolation properties, performance and conditioning. It is generally assumed that a wave-based method naturally provides better accuracy compared to polynomial methods since the plane waves or Bessel functions used in these methods are exact solutions of the Helmholtz equation. Results indicate that this expectation does not necessarily translate into a clear benefit, and that the differences in performance, accuracy and conditioning are more nuanced than generally assumed. The high-order polynomial method can in fact deliver comparable, and in some cases superior, performance compared to the wave-based DGM. In addition to benchmarking the intrinsic computational performance of these methods, a number of practical issues associated with realistic applications are also discussed.

  14. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    Science.gov (United States)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  15. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  16. Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain

    International Nuclear Information System (INIS)

    Conte, Elio; Khrennikov, Andrei; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.

  17. Stochastic wave-function unravelling of the generalized Lindblad equation using correlated states

    International Nuclear Information System (INIS)

    Moodley, Mervlyn; Nsio Nzundu, T; Paul, S

    2012-01-01

    We perform a stochastic wave-function unravelling of the generalized Lindblad master equation using correlated states, a combination of the system state vectors and the environment population. The time-convolutionless projection operator method using correlated projection superoperators is applied to a two-state system, a qubit, that is coupled to an environment consisting of two energy bands which are both populated. These results are compared to the data obtained from Monte Carlo wave-function simulations based on the unravelling of the master equation. We also show a typical quantum trajectory and the average time evolution of the state vector on the Bloch sphere. (paper)

  18. Second-Order Moller-Plesset Perturbation Theory for Molecular Dirac-Hartree-Fock Wave Functions

    Science.gov (United States)

    Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Moller-Plesset perturbation theory is developed to second order for a selection of Kramers restricted Dirac-Hartree-Fock closed and open-shell reference wave functions. The open-shell wave functions considered are limited to those with no more than two electrons in open shells, but include the case of a two-configuration SCF reference. Denominator shifts are included in the style of Davidson's OPT2 method. An implementation which uses unordered integrals with labels is presented, and results are given for a few test cases.

  19. Localized atomic basis set in the projector augmented wave method

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Vanin, Marco; Mortensen, Jens Jørgen

    2009-01-01

    We present an implementation of localized atomic-orbital basis sets in the projector augmented wave (PAW) formalism within the density-functional theory. The implementation in the real-space GPAW code provides a complementary basis set to the accurate but computationally more demanding grid...

  20. Characterizing Bonding Patterns in Diradicals and Triradicals by Density-Based Wave Function Analysis: A Uniform Approach.

    Science.gov (United States)

    Orms, Natalie; Rehn, Dirk R; Dreuw, Andreas; Krylov, Anna I

    2018-02-13

    Density-based wave function analysis enables unambiguous comparisons of the electronic structure computed by different methods and removes ambiguity of orbital choices. We use this tool to investigate the performance of different spin-flip methods for several prototypical diradicals and triradicals. In contrast to previous calibration studies that focused on energy gaps between high- and low spin-states, we focus on the properties of the underlying wave functions, such as the number of effectively unpaired electrons. Comparison of different density functional and wave function theory results provides insight into the performance of the different methods when applied to strongly correlated systems such as polyradicals. We show that canonical molecular orbitals for species like large copper-containing diradicals fail to correctly represent the underlying electronic structure due to highly non-Koopmans character, while density-based analysis of the same wave function delivers a clear picture of the bonding pattern.

  1. Electronic structure and correlated wave functions of a few electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-22

    The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.

  2. Sum rules for baryonic vertex functions and the proton wave function in QCD

    International Nuclear Information System (INIS)

    Lavelle, M.J.

    1985-01-01

    We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)

  3. Effect of logarithmic terms on the energy level and wave function of a dtμ system

    International Nuclear Information System (INIS)

    Zhen, Z.

    1990-01-01

    The effect of the logarithmic terms on the ground-state energy level and wave function of a dtμ system is investigated. No significant contribution of the logarithmic terms on either the energy level or wave function is found. At the same time, we find the lowest upper bound of the ground-state energy ever obtained by the variational method using the Hylleraas-type trial function and that the corresponding wave function satisfies the cusp condition as r dt →0 automatically to a reasonable accuracy for r<3 (muonic a.u.), where r is the distance between the fused dt nuclear compound and the muon

  4. Expression of relativistic amplitudes in terms of wave functions

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1978-01-01

    The conditions under which relativistic amplitudes may be expressed in terms of the wave functions are analyzed within the framework of the invariant diagram technique which appears on formulation of field theory on the light front. The amplitudes depend on the 4-vector ω which defines the surface of the light front. A rule is formulated for the determination of those values of the 4-vector ω for which the diagram contribution, which cannot be expressed in terms of the wave functions, is minimum. The present investigation is equivalent to a study of the dependence of the amplitudes of the old fashioned perburbation theory in the infinite momentum depending on the direction of the infinite momentum

  5. Angular momentum projection of cranked PNC wave function

    International Nuclear Information System (INIS)

    Han Yong

    2000-01-01

    In studying the properties of nuclear higher-spin states, not only the K-mixture needed to be taken into account, but also the Coriolis interaction (the cranking term) should be introduced. The cranking term breaks the time reversal symmetry, and the projection of the single-particle angular momentum on the intrinsic symmetric axis is no longer a good quantum number. This makes the theoretical calculation somewhat complicated. However, considering some intrinsic symmetry in a nucleus, it is not very difficult to apply the angular momentum projection technique to the PNC wave functions including the cranking components (the cranked PNC wave functions). The fundamental expressions for calculating the nuclear energy spectra and the electromagnetic properties are deduced and evaluated in theory, consequently the feasibility of actualizing the present scheme is made clear

  6. Horizon wave-function and the quantum cosmic censorship

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-07-01

    Full Text Available We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superextremal case (with charge-to-mass ratio α>1, which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for α22, and the uncertainty in the location of the horizon blows up at α2=2, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorship might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of 2 can exist.

  7. Damage detection in composite materials using Lamb wave methods

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos

    2002-04-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.

  8. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  9. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  10. The Boundary Function Method. Fundamentals

    Science.gov (United States)

    Kot, V. A.

    2017-03-01

    The boundary function method is proposed for solving applied problems of mathematical physics in the region defined by a partial differential equation of the general form involving constant or variable coefficients with a Dirichlet, Neumann, or Robin boundary condition. In this method, the desired function is defined by a power polynomial, and a boundary function represented in the form of the desired function or its derivative at one of the boundary points is introduced. Different sequences of boundary equations have been set up with the use of differential operators. Systems of linear algebraic equations constructed on the basis of these sequences allow one to determine the coefficients of a power polynomial. Constitutive equations have been derived for initial boundary-value problems of all the main types. With these equations, an initial boundary-value problem is transformed into the Cauchy problem for the boundary function. The determination of the boundary function by its derivative with respect to the time coordinate completes the solution of the problem.

  11. Optimization method for identifying the source term in an inverse wave equation

    Directory of Open Access Journals (Sweden)

    Arumugam Deiveegan

    2017-08-01

    Full Text Available In this work, we investigate the inverse problem of identifying a space-wise dependent source term of wave equation from the measurement on the boundary. On the basis of the optimal control framework, the inverse problem is transformed into an optimization problem. The existence and necessary condition of the minimizer for the cost functional are obtained. The projected gradient method and two-parameter model function method are applied to the minimization problem and numerical results are illustrated.

  12. Fine structure and analytical quantum-defect wave functions

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Nieto, M.M.; Truax, D.R.

    1988-01-01

    We investigate the domain of validity of previously proposed analytical wave functions for atomic quantum-defect theory. This is done by considering the fine-structure splitting of alkali-metal and singly ionized alkaline-earth atoms. The Lande formula is found to be naturally incorporated. A supersymmetric-type integer is necessary for finite results. Calculated splittings correctly reproduce the principal features of experimental values for alkali-like atoms

  13. Wave Functions for Time-Dependent Dirac Equation under GUP

    Science.gov (United States)

    Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen

    2018-04-01

    In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009

  14. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  15. Green function formalism for nonlinear acoustic waves in layered media

    International Nuclear Information System (INIS)

    Lobo, A.; Tsoy, E.; De Sterke, C.M.

    2000-01-01

    Full text: The applications of acoustic waves in identifying defects in adhesive bonds between metallic plates have received little attention at high intensities where the media respond nonlinearly. However, the effects of reduced bond strength are more distinct in the nonlinear response of the structure. Here we assume a weak nonlinearity acting as a small perturbation, thereby reducing the problem to a linear one. This enables us to develop a specialized Green function formalism for calculating acoustic fields in layered media

  16. Search for a bosonic component in the neutrino wave function

    International Nuclear Information System (INIS)

    Tornow, W.

    2010-01-01

    Recently, Dolgov and Smirnov speculated that neutrinos may not obey the principle named after their inventor, the Pauli Principle. The neutrino wave function may contain a bosonic component. In principle, two-neutrino double-beta (2ν2β) decay data could be used to check on the conjecture that neutrinos violate the Pauli Principle. Recent 2ν2β data on 100 Mo to both the ground state and excited states in 100 Ru will be used to illustrate the procedure.

  17. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    Science.gov (United States)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  18. Capacitive acoustic wave detector and method of using same

    Science.gov (United States)

    Yost, William T. (Inventor)

    1994-01-01

    A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.

  19. Simulation of the acoustic wave propagation using a meshless method

    Directory of Open Access Journals (Sweden)

    Bajko J.

    2017-01-01

    Full Text Available This paper presents numerical simulations of the acoustic wave propagation phenomenon modelled via Linearized Euler equations. A meshless method based on collocation of the strong form of the equation system is adopted. Moreover, the Weighted least squares method is used for local approximation of derivatives as well as stabilization technique in a form of spatial ltering. The accuracy and robustness of the method is examined on several benchmark problems.

  20. Numerical simulation methods for wave propagation through optical waveguides

    International Nuclear Information System (INIS)

    Sharma, A.

    1993-01-01

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  1. Trinucleon wave functions from separable expansions of the N-N interaction

    International Nuclear Information System (INIS)

    Birrell, N.D.

    1976-09-01

    This work is intended to determine whether a separable expansion for the N-N interaction can be used to obtain trinucleon wave functions of high quality. The expansions used in the study are the Unitary Pole expansion of Harms, Afnan and Read, and the expansion of Adhikari and Sloan. We first compare the calculation of the RSC potential Triton binding energy with the two methods, and find that the results agree quite closely. However, while it is found necessary to use t-matrix perturbation theory to obtain the UPE result, such is not the case with the ASE, thus offering a considerable improvement on the previously used method. We then proceed to calculate the L-S coupling probabilities for the wave function, and in so doing, discover a source of inaccuracy in the work of other authors. We also find that the UPE and ASE give probabilities in good agreement with one another. The calculation of the He 3 charge form factor turns out to be the most critical judge of the accuracy of the wave function. Although both expansions give quite satisfactory results for the charge form factor, those obtained with the ASE are exceptionally pleasing. We finally apply both methods to the OBEP of Holinde and Machleidt, and find that the UPE is quite unsuitable for such application. The ASE, however, once again gives very good results, indicating the high quality of the trinucleon wave function obtained with it. (author)

  2. QCD Phenomenology and Light-Front Wave Functions

    International Nuclear Information System (INIS)

    Brodsky, St.J.

    2001-01-01

    A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wave functions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wave functions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially-weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wave functions. (author)

  3. Based on Penalty Function Method

    Directory of Open Access Journals (Sweden)

    Ishaq Baba

    2015-01-01

    Full Text Available The dual response surface for simultaneously optimizing the mean and variance models as separate functions suffers some deficiencies in handling the tradeoffs between bias and variance components of mean squared error (MSE. In this paper, the accuracy of the predicted response is given a serious attention in the determination of the optimum setting conditions. We consider four different objective functions for the dual response surface optimization approach. The essence of the proposed method is to reduce the influence of variance of the predicted response by minimizing the variability relative to the quality characteristics of interest and at the same time achieving the specific target output. The basic idea is to convert the constraint optimization function into an unconstraint problem by adding the constraint to the original objective function. Numerical examples and simulations study are carried out to compare performance of the proposed method with some existing procedures. Numerical results show that the performance of the proposed method is encouraging and has exhibited clear improvement over the existing approaches.

  4. The extended (G/G)-expansion method and travelling wave ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 6. The extended (′/)-expansion method and travelling wave solutions for the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity. Zaiyun Zhang Jianhua Huang Juan Zhong Sha-Sha Dou Jiao Liu Dan Peng Ting Gao. Research Articles ...

  5. Quadratic algebras in the noncommutative integration method of wave equation

    International Nuclear Information System (INIS)

    Varaksin, O.L.

    1995-01-01

    The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

  6. Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions

    Science.gov (United States)

    Jerke, Jonathan; Poirier, Bill

    2018-03-01

    Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.

  7. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    Science.gov (United States)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  8. Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests.

    Science.gov (United States)

    Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A

    2017-03-14

    Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.

  9. Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank

    Directory of Open Access Journals (Sweden)

    Adria Moreno Miquel

    2018-06-01

    Full Text Available In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD-based numerical wave tanks (NWTs is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM, and turbulence is modeled with the k-ω model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. Wave breaking over a sloping bed and wave forces on a vertical cylinder are calculated, and the influence of the reflections on the wave breaking location and the wave forces on the cylinder is investigated. In addition, a comparison with another open-source CFD code, OpenFOAM, has been carried out based on published results. Some differences in the calculated quantities depending on the wave generation and absorption method have been observed. The active wave absorption method is seen to be more efficient for long waves, whereas the relaxation method performs better for shorter waves. The relaxation method-based numerical beach generally results in lower reflected waves in the wave tank for most of the cases simulated in this study. The comparably better performance of the relaxation method comes at the cost of larger computational requirements due to the relaxation zones that have to be included in the domain. The reflections in the NWT in REEF3D are generally lower than the published results for

  10. The potential-free approach to the construction of the NN-wave functions

    International Nuclear Information System (INIS)

    Troitsky, V.E.

    1984-01-01

    The traditional approaches to the nonrelativistic NN-interaction use local and nonlocal potentials of the kind defined by different dynamical speculations. The wave functions are obtained then from the Schroedinger equation with the chosen potential. Here the author obtains the wave functions (scattering wave function and bound state wave function) directly from the scattering phases in the frame of a dispersion approach without use of potential. (Auth.)

  11. Antisymmetrized four-body wave function and coexistence of single particle and cluster structures

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1979-01-01

    It is shown that each Yakubovski component of the totally antisymmetric four-body wave function satisfies the same equation as the unantisymmetric wave function. In the antisymmetric total wave function, the wave functions belonging to the same kind of partition are totally antisymmetric among themselves. This leads to the coexistence of cluster models, including the single particle model as a special case of the cluster model, as a sum

  12. Simple analytical methods for computing the gravity-wave contribution to the cosmic background radiation anisotropy

    International Nuclear Information System (INIS)

    Wang, Y.

    1996-01-01

    We present two simple analytical methods for computing the gravity-wave contribution to the cosmic background radiation (CBR) anisotropy in inflationary models; one method uses a time-dependent transfer function, the other methods uses an approximate gravity-mode function which is a simple combination of the lowest order spherical Bessel functions. We compare the CBR anisotropy tensor multipole spectrum computed using our methods with the previous result of the highly accurate numerical method, the open-quote open-quote Boltzmann close-quote close-quote method. Our time-dependent transfer function is more accurate than the time-independent transfer function found by Turner, White, and Lindsey; however, we find that the transfer function method is only good for l approx-lt 120. Using our approximate gravity-wave mode function, we obtain much better accuracy; the tensor multipole spectrum we find differs by less than 2% for l approx-lt 50, less than 10% for l approx-lt 120, and less than 20% for l≤300 from the open-quote open-quote Boltzmann close-quote close-quote result. Our approximate graviton mode function should be quite useful in studying tensor perturbations from inflationary models. copyright 1996 The American Physical Society

  13. On relation of momenta of structure functions of the composite systems with their simultaneous wave functions

    International Nuclear Information System (INIS)

    Linkevich, A.D.; Savrin, V.I.; Sanadze, V.V.; Skachkov, N.B.

    1984-01-01

    Calculation of hadron structure function (SF) comprising point objects is carried out. The obtained hadron SF is expressed by means of simultaneous relativistic wave functions of a composite particle. Exact calculation of hadron SF momenta in simultaneous formulation of quantum field theory off-energy surface is conducted. The given calculation of hadron SF is shown to result in their dependence on momentum transferred square (or square of total vector of energy-momentum of Compton scattering on a quark) whih is determined by the set of simultaneous hadron wave functions as bound state of quark (partons) in the considered case of non-structural quarks

  14. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    Science.gov (United States)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  15. Spatial Dynamics Methods for Solitary Waves on a Ferrofluid Jet

    Science.gov (United States)

    Groves, M. D.; Nilsson, D. V.

    2018-04-01

    This paper presents existence theories for several families of axisymmetric solitary waves on the surface of an otherwise cylindrical ferrofluid jet surrounding a stationary metal rod. The ferrofluid, which is governed by a general (nonlinear) magnetisation law, is subject to an azimuthal magnetic field generated by an electric current flowing along the rod. The ferrohydrodynamic problem for axisymmetric travelling waves is formulated as an infinite-dimensional Hamiltonian system in which the axial direction is the time-like variable. A centre-manifold reduction technique is employed to reduce the system to a locally equivalent Hamiltonian system with a finite number of degrees of freedom, and homoclinic solutions to the reduced system, which correspond to solitary waves, are detected by dynamical-systems methods.

  16. Description of the nucleon wave function as a sum of well-chosen Gaussian functions

    International Nuclear Information System (INIS)

    Roux, C.; Silvestre-Brac, B.

    1995-01-01

    We study in detail the possibility of describing the nucleon (three quark-system) wave function as a superposition of Gaussian functions. A Faddeev treatment including 8 amplitudes is performed and taken as reference for the exact values. Several approximations are proposed and compared carefully to the exact solutions. Three different potentials have been tested and several observables are considered. (author)

  17. The Multi-Wave Method for Exact Solutions of Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2018-02-01

    Full Text Available In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 5th order KdV equation and fth order KdV (fKdV equation with power law nonlinearity. Computations are performed with the help of the mathematics software Mathematica. Then, periodic wave solutions, bright soliton solutions and rational function solutions with free parameters are obtained by this approach. It is shown that this method is very useful and effective.

  18. Irregular wave functions of a hydrogen atom in a uniform magnetic field

    Science.gov (United States)

    Wintgen, D.; Hoenig, A.

    1989-01-01

    The highly excited irregular wave functions of a hydrogen atom in a uniform magnetic field are investigated analytically, with wave function scarring by periodic orbits considered quantitatively. The results obtained confirm that the contributions of closed classical orbits to the spatial wave functions vanish in the semiclassical limit. Their disappearance, however, is slow. This discussion is illustrated by numerical examples.

  19. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    Science.gov (United States)

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  20. Photonic band structures solved by a plane-wave-based transfer-matrix method

    International Nuclear Information System (INIS)

    Li Zhiyuan; Lin Lanlan

    2003-01-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method

  1. A tuning method for nonuniform traveling-wave accelerating structures

    International Nuclear Information System (INIS)

    Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi

    2013-01-01

    The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)

  2. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media

    Science.gov (United States)

    Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.

    2009-01-01

    Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.

  3. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to 24Mg

    International Nuclear Information System (INIS)

    Valor, A.; Heenen, P.-H.; Bonche, P.

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment

  4. Microstrip natural wave spectrum mathematical model using partial inversion method

    International Nuclear Information System (INIS)

    Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.

    1995-01-01

    It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types

  5. A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves

    Science.gov (United States)

    Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang

    2018-03-01

    The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.

  6. Angular momentum projection on a mesh of cranked Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    Baye, D.; Heenen, P.

    1984-01-01

    A method for projecting on angular momentum wave functions discretized on a three-dimensional Cartesian mesh is presented. The method is based on a matrix representation of the rotation operator. It is applied to cranked Hartree-Fock wave functions calculated for 24 Mg with a simple interaction. In this case, the accuracy of the projected matrix elements is estimated to be of the order of 0.1%. An extensive comparison of the projected and cranking energies is made. The validity of the cranking method as an approximation to a variation-after-projection calculation seems to be wider than usually expected. The study of the fission barrier of 24 Mg for the channel 4 He- 16 O- 4 He shows that the cranking predictions for these very deformed states are quite reliable

  7. S-wave velocity measurements along levees in New Orleans using passive surface wave methods

    Science.gov (United States)

    Hayashi, K.; Lorenzo, J. M.; Craig, M. S.; Gostic, A.

    2017-12-01

    In order to develop non-invasive methods for levee inspection, geophysical investigations were carried out at four sites along levees in the New Orleans area: 17th Street Canal, London Avenue Canal, Marrero Levee, and Industrial Canal. Three of the four sites sustained damage from Hurricane Katrina in 2005 and have since been rebuilt. The geophysical methods used include active and passive surface wave methods, and capacitively coupled resistivity. This paper summarizes the acquisition and analysis of the 1D and 2D passive surface wave data. Twelve wireless seismic data acquisition units with 2 Hz vertical component geophones were used to record data. Each unit includes a GPS receiver so that all units can be synchronized over any distance without cables. The 1D passive method used L shaped arrays of three different sizes with geophone spacing ranging from 5 to 340 m. Ten minutes to one hour of ambient noise was recorded with each array, and total data acquisition took approximately two hours at each site. The 2D method used a linear array with a geophone spacing of 5m. Four geophones were moved forward every 10 minutes along 400 1000 m length lines. Data acquisition took several hours for each line. Recorded ambient noise was processed using the spatial autocorrelation method and clear dispersion curves were obtained at all sites (Figure 1a). Minimum frequencies ranged from 0.4 to 0.7 Hz and maximum frequencies ranged from 10 to 30 Hz depending on the site. Non-linear inversion was performed and 1D and 2D S-wave velocity models were obtained. The 1D method penetrated to depths ranging from 200 to 500 m depending on the site (Figure 1b). The 2D method penetrated to a depth of 40 60 m and provided 400 1000 m cross sections along the levees (Figure 2). The interpretation focused on identifying zones beneath the levees or canal walls having low S-wave velocities corresponding to saturated, unconsolidated sands, or low-rigidity clays. Resultant S-wave velocity profiles

  8. Chameleon fields, wave function collapse and quantum gravity

    International Nuclear Information System (INIS)

    Zanzi, A

    2015-01-01

    Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)

  9. Search for a bosonic component in the neutrino wave function

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W. [Triangle Universities Nuclear Laboratory (TUNL) and Duke University Department of Physics, P.O. Box 90308, Durham, NC 27708-0308 (United States)

    2010-11-01

    Recently, Dolgov and Smirnov speculated that neutrinos may not obey the principle named after their inventor, the Pauli Principle. The neutrino wave function may contain a bosonic component. In principle, two-neutrino double-beta (2{nu}2{beta}) decay data could be used to check on the conjecture that neutrinos violate the Pauli Principle. Recent 2{nu}2{beta} data on {sup 100}Mo to both the ground state and excited states in {sup 100}Ru will be used to illustrate the procedure.

  10. Exact solution to the Coulomb wave using the linearized phase-amplitude method

    Directory of Open Access Journals (Sweden)

    Shuji Kiyokawa

    2015-08-01

    Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

  11. Full wave simulation of waves in ECRIS plasmas based on the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)

    2014-02-12

    This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.

  12. Integral Equation Methods for Electromagnetic and Elastic Waves

    CERN Document Server

    Chew, Weng; Hu, Bin

    2008-01-01

    Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq

  13. Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Huang, T.; Lepage, G.P.

    1983-01-01

    This chapter emphasizes the utility of a Fock state representation of the meson and baryon wave functions as a means not only to parametrize the effects of bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, and higher twist processes. Discusses hadronic wave functions in QCD, measures of hadronic wave functions (form factors of composite systems, form factors of mesons, the meson distribution amplitude); large momentum transfer exclusive processes (two-photon processes); deep inelastic lepton scattering; and the phenomenology of hadronic wave functions (measures of hadron wave functions, constraints on the pion and proton valence wave function, quark jet diffraction excitation, the ''unveiling'' of the hadronic wave function and intrinsic charm). Finds that the testing ground of perturbative QCD where rigorous, definitive tests of the theory can be made can now be extended throughout a large domain of large momentum transfer exclusive and inclusive lepton, photon, and hadron reactions

  14. The wave function behavior of the open topological string partition function on the conifold

    International Nuclear Information System (INIS)

    Kashani-Poor, Amir-Kian

    2007-01-01

    We calculate the topological string partition function to all genus on the conifold, in the presence of branes. We demonstrate that the partition functions for different brane backgrounds (smoothly connected along a quantum corrected moduli space) can be interpreted as the same wave function in different polarizations. This behavior has a natural interpretation in the Chern-Simons target space description of the topological theory. Our detailed analysis however indicates that non-perturbatively, a modification of real Chern-Simons theory is required to capture the correct target space theory of the topological string. We perform our calculations in the framework of a free fermion representation of the open topological string, demonstrating that this framework extends beyond the simple C 3 geometry. The notion of a fermionic brane creation operator arises in this setting, and we study to what extent the wave function properties of the partition function can be extended to this operator

  15. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zaigao; Wang, Jianguo [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Wang, Yue; Qiao, Hailiang; Zhang, Dianhui [Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Guo, Weijie [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  16. Nonlinear optimization method of ship floating condition calculation in wave based on vector

    Science.gov (United States)

    Ding, Ning; Yu, Jian-xing

    2014-08-01

    Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.

  17. Overdetermined shooting methods for computing standing water waves with spectral accuracy

    International Nuclear Information System (INIS)

    Wilkening, Jon; Yu Jia

    2012-01-01

    A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss the existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In the numerical method, robustness is achieved by posing the problem as an overdetermined nonlinear system and using either adjoint-based minimization techniques or a quadratically convergent trust-region method to minimize the objective function. Efficiency is achieved in the trust-region approach by parallelizing the Jacobian computation, so the setup cost of computing the Dirichlet-to-Neumann operator in the variational equation is not repeated for each column. Updates of the Jacobian are also delayed until the previous Jacobian ceases to be useful. Accuracy is maintained using spectral collocation with optional mesh refinement in space, a high-order Runge–Kutta or spectral deferred correction method in time and quadruple precision for improved navigation of delicate regions of parameter space as well as validation of double-precision results. Implementation issues for transferring much of the computation to a graphic processing units are briefly

  18. Multi-configurational explicitly correlated wave functions for the study of confined many electron atoms

    International Nuclear Information System (INIS)

    Sarsa, A; Buendía, E; Gálvez, F J

    2016-01-01

    Explicitly correlated wave functions to study confined atoms under impenetrable spherical walls have been obtained. Configuration mixing and a correlation factor are included in the variational ansatz. The behaviors of the ground state and some low-lying excited states of He, Be, B and C atoms with the confinement size are analyzed. Level crossing with confinement is found for some cases. This effect is analyzed in terms of the single particle energy of the occupied orbitals. The multi-configuration parameterized optimized effective potential method is employed with a cut-off factor to account for Dirichlet boundary conditions. The variational Monte Carlo method is used to deal with explicitly correlated wave functions. (paper)

  19. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....

  20. Application of Modified G'/G-Expansion Method to Traveling Wave Solutions for Whitham-Broer-Kaup-Like Equations

    International Nuclear Information System (INIS)

    Zhou Yubin; Li Chao

    2009-01-01

    A modified G'/G-expansion method is presented to derive traveling wave solutions for a class of nonlinear partial differential equations called Whitham-Broer-Kaup-Like equations. As a result, the hyperbolic function solutions, trigonometric function solutions, and rational solutions with parameters to the equations are obtained. When the parameters are taken as special values the solitary wave solutions can be obtained. (general)

  1. Suppression of electron waves in relation to the deformation of the electron beam distribution function

    International Nuclear Information System (INIS)

    Fukumasa, O.; Itatani, R.

    1978-01-01

    The change of the electron beam distribution function due to the wave excited by the beam density modulation is observed, in relation to the suppression of electron waves in a beam-plasma system. (Auth.)

  2. Stability analysis and reconstruction of wave distribution functions in warm plasmas

    International Nuclear Information System (INIS)

    Oscarsson, T.E.

    1989-05-01

    The purpose of this thesis is first to describe stability analysis and reconstruction of the wave distribution function (WDF) separately, and then to show how the two approaches can be combined in an investigation of satellite data. To demonstrate the type of stability investigation that is often used in space physics we study instabilities below the local proton gyrofrequency which are caused by anisotropic proton distributions. Arbitrary angles between the wavevector and the background magnetic field are considered, and effects of warm plasma on the wave propagation properties are included. We also comment briefly given on an often-used scheme for classifying instabilities. In our discussion on WDF analysis we develop a completely new and general method for reconstructing the WDF. Our scheme can be used to reconstruct the distribution function of waves in warm as well as cold plasma. Doppler effects introduced by satellite motion are included, and the reconstructions can be performed over a broad frequency range simultaneously. The applicability of our new WDF reconstruction method is studied in model problems and in an application to observations made by the Swedish satellite Viking. In the application to Viking data we combine stability and WDF analyses in a unique way that promises to become an important tool in future studies of wave-particle interactions in space plasmas. (author)

  3. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    Science.gov (United States)

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  4. Towards Finding the Global Minimum of the D-Wave Objective Function for Improved Neural Network Regressions

    Science.gov (United States)

    Dorband, J. E.

    2017-12-01

    The D-Wave 2X has successfully been used for regression analysis to derive carbon flux data from OCO-2 CO2 concentration using neural networks. The samples returned from the D-Wave should represent the minimum of an objective function presented to it. An accurate as possible minimum function value is needed for this analysis. Samples from the D-Wave are near minimum, but seldom are the global minimum of the function due to quantum noise. Two methods for improving the accuracy of minimized values represented by the samples returned from the D-Wave are presented. The first method finds a new sample with a minimum value near each returned D-Wave sample. The second method uses all the returned samples to find a more global minimum sample. We present three use-cases performed using the former method. In the first use case, it is demonstrated that an objective function with random qubits and coupler coefficients had an improved minimum. In the second use case, the samples corrected by the first method can improve the training of a Boltzmann machine neural network. The third use case demonstrated that using the first method can improve virtual qubit accuracy.The later method was also performed on the first use case.

  5. Methods for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  6. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    Science.gov (United States)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    : 2.80 GHz Intel Pentium IV CPU Operating system: GNU/Linux RAM: 55 992 KB Word size: 32 bits Classification: 2.7 External routines: Netlib Nature of problem: Let us have an N-electron molecule and define an exhaustive partition of the physical space into m three-dimensional regions. The edf program computes the probabilities P(n,n,…,n)≡P({n}) of all possible allocations of n electrons to Ω, n electrons to Ω,…, and n electrons to Ω,{n} being integers. Solution method: Let us assume that the N-electron molecular wave function, Ψ(1,N), is a linear combination of M Slater determinants, Ψ(1,N)=∑rMCψ(1,N). Calling SΩrs the overlap matrix over the 3D region Ω between the (real) molecular spin-orbitals (MSO) in ψ(χ1r,…χNr) and the MSOs in ψ,(χ1s,…,χNs), edf finds all the P({n})'s by solving the linear system ∑{n}{∏kmtkn}P({n})=∑r,sMCCdet[∑kmtSΩrs], where t=1 and t,…,t are arbitrary real numbers. Restrictions: The number of {n} sets grows very fast with m and N, so that the dimension of the linear system (1) soon becomes very large. Moreover, the computer time required to obtain the determinants in the second member of Eq. (1) scales quadratically with M. These two facts limit the applicability of the method to relatively small molecules. Unusual features: Most of the real variables are of precision real*16. Running time: 0.030, 2.010, and 0.620 seconds for Test examples 1, 2, and 3, respectively. References: [1] A. Martín Pendás, E. Francisco, M.A. Blanco, Faraday Discuss. 135 (2007) 423-438. [2] A. Martín Pendás, E. Francisco, M.A. Blanco, J. Phys. Chem. A 111 (2007) 1084-1090. [3] A. Martín Pendás, E. Francisco, M.A. Blanco, Phys. Chem. Chem. Phys. 9 (2007) 1087-1092. [4] E. Francisco, A. Martín Pendás, M.A. Blanco, J. Chem. Phys. 126 (2007) 094102. [5] A. Martín Pendás, E. Francisco, M.A. Blanco, C. Gatti, Chemistry: A European Journal 113 (2007) 9362-9371.

  7. STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis.

    Science.gov (United States)

    Gustafsson, Alexander; Paulsson, Magnus

    2017-12-20

    We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.

  8. STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis

    Science.gov (United States)

    Gustafsson, Alexander; Paulsson, Magnus

    2017-12-01

    We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.

  9. Modelling viscoacoustic wave propagation with the lattice Boltzmann method.

    Science.gov (United States)

    Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen

    2017-08-31

    In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.

  10. Overlap integrals of model wave functions of 4He and 3He,3H nuclei

    International Nuclear Information System (INIS)

    Voloshin, N.I.; Levshin, E.B.; Fursa, A.D.

    1990-01-01

    Overlap integrals of wave functions 4 He nucleus and 3 He and 3 H nuclei are calculated. Two types of model wave functions are used to describe the structure of nuclei. The wace function is taken as a product of the one-particle Gaussian functions of the Gaussian type in the second case

  11. Pulse wave velocity and cognitive function in older adults.

    Science.gov (United States)

    Zhong, Wenjun; Cruickshanks, Karen J; Schubert, Carla R; Carlsson, Cynthia M; Chappell, Richard J; Klein, Barbara E K; Klein, Ronald; Acher, Charles W

    2014-01-01

    Arterial stiffness may be associated with cognitive function. In this study, pulse wave velocity (PWV) was measured from the carotid to femoral (CF-PWV) and from the carotid to radial (CR-PWV) with the Complior SP System. Cognitive function was measured by 6 tests of executive function, psychomotor speed, memory, and language fluency. A total of 1433 participants were included (mean age 75 y, 43% men). Adjusting for age, sex, education, pulse rate, hemoglobin A1C, high-density lipoprotein cholesterol, hypertension, cardiovascular disease history, smoking, drinking, and depression symptoms, a CF-PWV>12 m/s was associated with a lower Mini-Mental State Examination score (coefficient: -0.31, SE: 0.11, P=0.005), fewer words recalled on Auditory Verbal Learning Test (coefficient: -1.10, SE: 0.43, P=0.01), and lower score on the composite cognition score (coefficient: -0.10, SE: 0.05, P=0.04) and marginally significantly associated with longer time to complete Trail Making Test-part B (coefficient: 6.30, SE: 3.41, P=0.06), CF-PWV was not associated with Trail Making Test-part A, Digit Symbol Substation Test, or Verbal Fluency Test. No associations were found between CR-PWV and cognitive performance measures. Higher large artery stiffness was associated with worse cognitive function, and longitudinal studies are needed to confirm these associations.

  12. Analytic structure of the wave function for a hydrogen atom in an analytic potential

    International Nuclear Information System (INIS)

    Hill, R.N.

    1984-01-01

    The rate of convergence of an approximate method for solving Schroedinger's equation depends on the ability of the approximating sequence to mimic the analytic structure of the unknown exact wave function. Thus a knowledge of the analytic structure of the wave function can be of great value when approximation schemes are designed. Consider the Schroedinger equation [- 1/2 del 2 -r -1 +V(r)]Psi(r) = EPsi(r) for a hydrogen atom in a potential V(r). The general theory of elliptic partial differential equations implies that Psi is analytic at regular points, but no general theory is available at singular points. The present paper investigates the Coulomb singular point at r = 0 and shows that, if V(r) = V 1 (x, y, z)+rV 2 (x, y, z) where V 1 and V 2 are analytic functions of x, y, z at x = y = z = 0, then the wave function has the form Psi(r) = Psi 1 (x, y, z)+rPsi 2 (x, y, z) where Psi 1 and Psi 2 are analytic functions of x, y, z at x = y = z = 0

  13. Probing spontaneous wave-function collapse with entangled levitating nanospheres

    Science.gov (United States)

    Zhang, Jing; Zhang, Tiancai; Li, Jie

    2017-01-01

    Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.

  14. Approximate relativistic corrections to atomic radial wave functions

    International Nuclear Information System (INIS)

    Cowan, R.D.; Griffin, D.C.

    1976-01-01

    The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a local central field potential for use in these terms. Introduction of the quantum number j is avoided by omitting the spin-orbit term of the Pauli equation. The major relativistic effects, both direct and indirect, are thereby incorporated into the wave functions, while allowing retention of the commonly used nonrelativistic formulation of energy level calculations. The improvement afforded in calculated total binding energies, excitation energies, spin-orbit parameters, and expectation values of r/sub m/ is comparable with that provided by fully relativistic Dirac-Hartree-Fock calculations

  15. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  16. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  17. Solitary wave solutions of the fourth order Boussinesq equation through the exp(-Ф(η))-expansion method.

    Science.gov (United States)

    Akbar, M Ali; Hj Mohd Ali, Norhashidah

    2014-01-01

    The exp(-Ф(η))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(-Ф(η))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(-Ф(η))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering. 35C07; 35C08; 35P99.

  18. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  19. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    Science.gov (United States)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  20. Useful variational principle for the scattering length for the target ground-state wave function imprecisely known

    International Nuclear Information System (INIS)

    Blau, R.; Rosenberg, L.; Spruch, L.

    1977-01-01

    A minimum principle for the calculation of the scattering length, applicable when the ground-state wave function of the target system is known precisely, has been available for some time. When, as is almost always the case, the target wave function is imprecisely known, a minimum principle is available but the simple minimum principle noted above is not applicable. Further, as recent calculations show, numerical instabilities usually arise which severely limit the utility of even an ordinary variational approach. The difficulty, which can be traced to the appearance of singularities in the variational construction, is here removed through the introduction of a minimum principle, not for the true scattering length, but for one associated with a closely connected problem. This guarantees that no instability difficulties can arise as the trial scattering wave function and the trial target wave function are improved. The calculations are little different from those required when the target ground-state wave function is known, and, in fact, the original version of the minimum principle is recovered as the trial target wave function becomes exact. A careful discussion is given of the types of problems to which the method can be applied. In particular, the effects of the Pauli principle, and the existence of a finite number of composite bound states, can be accounted for

  1. Bohmian Conditional Wave Functions (and the status of the quantum state)

    International Nuclear Information System (INIS)

    Norsen, Travis

    2016-01-01

    The de Broglie - Bohm pilot-wave theory - uniquely among realistic candidate quantum theories - allows a straightforward and simple definition of the wave function of a subsystem of some larger system (such as the entire universe). Such sub-system wave functions are called “Conditional Wave Functions” (CWFs). Here we explain this concept and indicate the CWF's role in the Bohmian explanation of the usual quantum formalism, and then develop (and motivate) the more speculative idea that something like single-particle wave functions could replace the (ontologically problematical) universal wave function in some future, empirically adequate, pilot-wave-type theory. Throughout the presentation is pedagogical and points are illustrated with simple toy models. (paper)

  2. Relation between equal-time and light-front wave functions

    International Nuclear Information System (INIS)

    Miller, Gerald A.; Tiburzi, Brian C.

    2010-01-01

    The relation between equal-time and light-front wave functions is studied using models for which the four-dimensional solution of the Bethe-Salpeter wave function can be obtained. The popular prescription of defining the longitudinal momentum fraction using the instant-form free kinetic energy and third component of momentum is found to be incorrect except in the nonrelativistic limit. One may obtain light-front wave functions from rest-frame, instant-form wave functions by boosting the latter wave functions to the infinite momentum frame. Despite this difficulty, we prove a relation between certain integrals of the equal-time and light-front wave functions.

  3. Coulomb singularities in scattering wave functions of spin-orbit-coupled states

    International Nuclear Information System (INIS)

    Bogdanski, P.; Ouerdane, H.

    2011-01-01

    We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.

  4. WaveSeq: a novel data-driven method of detecting histone modification enrichments using wavelets.

    Directory of Open Access Journals (Sweden)

    Apratim Mitra

    Full Text Available BACKGROUND: Chromatin immunoprecipitation followed by next-generation sequencing is a genome-wide analysis technique that can be used to detect various epigenetic phenomena such as, transcription factor binding sites and histone modifications. Histone modification profiles can be either punctate or diffuse which makes it difficult to distinguish regions of enrichment from background noise. With the discovery of histone marks having a wide variety of enrichment patterns, there is an urgent need for analysis methods that are robust to various data characteristics and capable of detecting a broad range of enrichment patterns. RESULTS: To address these challenges we propose WaveSeq, a novel data-driven method of detecting regions of significant enrichment in ChIP-Seq data. Our approach utilizes the wavelet transform, is free of distributional assumptions and is robust to diverse data characteristics such as low signal-to-noise ratios and broad enrichment patterns. Using publicly available datasets we showed that WaveSeq compares favorably with other published methods, exhibiting high sensitivity and precision for both punctate and diffuse enrichment regions even in the absence of a control data set. The application of our algorithm to a complex histone modification data set helped make novel functional discoveries which further underlined its utility in such an experimental setup. CONCLUSIONS: WaveSeq is a highly sensitive method capable of accurate identification of enriched regions in a broad range of data sets. WaveSeq can detect both narrow and broad peaks with a high degree of accuracy even in low signal-to-noise ratio data sets. WaveSeq is also suited for application in complex experimental scenarios, helping make biologically relevant functional discoveries.

  5. Method of synthesizing silica nanofibers using sound waves

    Science.gov (United States)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  6. A Comparison of Surface Acoustic Wave Modeling Methods

    Science.gov (United States)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  7. Generalized theory of resonance scattering (GTRS) using the translational addition theorem for spherical wave functions.

    Science.gov (United States)

    Mitri, Farid

    2014-11-01

    The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.

  8. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    Science.gov (United States)

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  9. Simultaneous projection of particle-number and angular momentum BCS wave-functions in the rare-earth nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Benhamouda, N.; Fellah, M.; Allal, N.H.

    2000-01-01

    A method of simultaneous particle-number and angular-momentum projection of the BCS wave-function is presented. The particle number projection method is of FBCS type. In the frame work of the adiabatic approximation, the rotational energies of the axially symmetric even-even nuclei are established and numerically calculated for the rare-earth region. (author)

  10. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    International Nuclear Information System (INIS)

    Valeo, Ernest; Johnson, Jay R.; Kim, Eun-Hwa; Phillips, Cynthia

    2012-01-01

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  11. A comparison of dynamical and statistical downscaling methods for regional wave climate projections along French coastlines.

    Science.gov (United States)

    Laugel, Amélie; Menendez, Melisa; Benoit, Michel; Mattarolo, Giovanni; Mendez, Fernando

    2013-04-01

    Wave climate forecasting is a major issue for numerous marine and coastal related activities, such as offshore industries, flooding risks assessment and wave energy resource evaluation, among others. Generally, there are two main ways to predict the impacts of the climate change on the wave climate at regional scale: the dynamical and the statistical downscaling of GCM (Global Climate Model). In this study, both methods have been applied on the French coast (Atlantic , English Channel and North Sea shoreline) under three climate change scenarios (A1B, A2, B1) simulated with the GCM ARPEGE-CLIMAT, from Météo-France (AR4, IPCC). The aim of the work is to characterise the wave climatology of the 21st century and compare the statistical and dynamical methods pointing out advantages and disadvantages of each approach. The statistical downscaling method proposed by the Environmental Hydraulics Institute of Cantabria (Spain) has been applied (Menendez et al., 2011). At a particular location, the sea-state climate (Predictand Y) is defined as a function, Y=f(X), of several atmospheric circulation patterns (Predictor X). Assuming these climate associations between predictor and predictand are stationary, the statistical approach has been used to project the future wave conditions with reference to the GCM. The statistical relations between predictor and predictand have been established over 31 years, from 1979 to 2009. The predictor is built as the 3-days-averaged squared sea level pressure gradient from the hourly CFSR database (Climate Forecast System Reanalysis, http://cfs.ncep.noaa.gov/cfsr/). The predictand has been extracted from the 31-years hindcast sea-state database ANEMOC-2 performed with the 3G spectral wave model TOMAWAC (Benoit et al., 1996), developed at EDF R&D LNHE and Saint-Venant Laboratory for Hydraulics and forced by the CFSR 10m wind field. Significant wave height, peak period and mean wave direction have been extracted with an hourly-resolution at

  12. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...... of the microphone-coupler system in a Boundary Element formulation. In order to obtain a realistic representation of the sound field, viscous losses must be introduced in the model. This paper presents such a model, and the results of the simulations for different combinations of microphones and couplers...

  13. Multidimensional Wave Field Signal Theory: Transfer Function Relationships

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2012-01-01

    Full Text Available The transmission of information by propagating or diffusive waves is common to many fields of engineering and physics. Such physical phenomena are governed by a Helmholtz (real wavenumber or pseudo-Helmholtz (complex wavenumber equation. Since these equations are linear, it would be useful to be able to use tools from signal theory in solving related problems. The aim of this paper is to derive multidimensional input/output transfer function relationships in the spatial domain for these equations in order to permit such a signal theoretic approach to problem solving. This paper presents such transfer function relationships for the spatial (not Fourier domain within appropriate coordinate systems. It is shown that the relationships assume particularly simple and computationally useful forms once the appropriate curvilinear version of a multidimensional spatial Fourier transform is used. These results are shown for both real and complex wavenumbers. Fourier inversion of these formulas would have applications for tomographic problems in various modalities. In the case of real wavenumbers, these inversion formulas are presented in closed form, whereby an input can be calculated from a given or measured wavefield.

  14. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  15. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    International Nuclear Information System (INIS)

    Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn

    2016-01-01

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  16. Computational Methods and Function Theory

    CERN Document Server

    Saff, Edward; Salinas, Luis; Varga, Richard

    1990-01-01

    The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.

  17. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method.

    Science.gov (United States)

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-11-14

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This "open-shielded" device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities.

  18. Determination of the S-wave scattering shape parameter P from the zero-energy wave function

    International Nuclear Information System (INIS)

    Kermode, M.W.; van Dijk, W.

    1990-01-01

    We show that for S-wave scattering at an energy k 2 by a local potential which supports no more than one bound state, the shape parameter P and coefficients of higher powers of k 2 in the effective range expansion function cotδ=-1/a+1/2 r 0 k 2 -Pr 0 3 k 3 +Qr 0 5 k 6 +..., where δ is the phase shift, may be obtained from the zero-energy wave function, u 0 (r). Thus δ itself may be determined from u 0 . We show that Pr 0 3 =∫ 0 R [β(r)u 0 2 (r)-bar β(r)bar u 0 2 (r)]dr, where r 0 is the effective range, β(r) is determined from an integral involving the wave function, and bar β(r) is a simple function of r which involves the scattering length and effective range

  19. Third-order non-Coulomb correction to the S-wave quarkonium wave functions at the origin

    International Nuclear Information System (INIS)

    Beneke, M.; Kiyo, Y.; Schuller, K.

    2008-01-01

    We compute the third-order correction to the S-wave quarkonium wave functions |ψ n (0)| 2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction for bottomonium and toponium are given

  20. Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume; Bonnefoy, Félicien

    2017-11-01

    This study investigates a wave-breaking onset criteria to be implemented in the non-linear potential flow solver HOS-NWT. The model is a computationally efficient, open source code, which solves for the free surface in a numerical wave tank using the High-Order Spectral (HOS) method. The goal of this study is to determine the best method to identify the onset of random single and multiple breaking waves over a large domain at the exact time they occur. To identify breaking waves, a breaking onset criteria based on the ratio of local energy flux velocity to the local crest velocity, introduced by Barthelemy et al. (2017) is selected. The breaking parameter is uniquely applied in the numerical model in that calculations of the breaking onset criteria ratio are not made only at the location of the wave crest, but at every point in the domain and at every time step. This allows the model to calculate the onset of a breaking wave the moment it happens, and without knowing anything about the wave a priori. The application of the breaking criteria at every point in the domain and at every time step requires the phase velocity to be calculated instantaneously everywhere in the domain and at every time step. This is achieved by calculating the instantaneous phase velocity using the Hilbert transform and dispersion relation. A comparison between more traditional crest-tracking techniques shows the calculation of phase velocity using Hilbert transform at the location of the breaking wave crest provides a good approximation of crest velocity. The ability of the selected wave breaking criteria to predict single and multiple breaking events in two dimensions is validated by a series of large-scale experiments. Breaking waves are generated by energy focusing and modulational instability methods, with a wide range of primary frequencies. Steep irregular waves which lead to breaking waves, and irregular waves with an energy focusing wave superimposed are also generated. This set of

  1. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.

    Science.gov (United States)

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-03-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.

  2. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2010-01-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  3. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  4. Quantum wave packet dynamics with trajectories: Implementation with distributed approximating functionals

    International Nuclear Information System (INIS)

    Wyatt, Robert E.; Kouri, Donald J.; Hoffman, David K.

    2000-01-01

    The quantum trajectory method (QTM) was recently developed to solve the hydrodynamic equations of motion in the Lagrangian, moving-with-the-fluid, picture. In this approach, trajectories are integrated for N fluid elements (particles) moving under the influence of both the force from the potential surface and from the quantum potential. In this study, distributed approximating functionals (DAFs) are used on a uniform grid to compute the necessary derivatives in the equations of motion. Transformations between the physical grid where the particle coordinates are defined and the uniform grid are handled through a Jacobian, which is also computed using DAFs. A difficult problem associated with computing derivatives on finite grids is the edge problem. This is handled effectively by using DAFs within a least squares approach to extrapolate from the known function region into the neighboring regions. The QTM-DAF is then applied to wave packet transmission through a one-dimensional Eckart potential. Emphasis is placed upon computation of the transmitted density and wave function. A problem that develops when part of the wave packet reflects back into the reactant region is avoided in this study by introducing a potential ramp to sweep the reflected particles away from the barrier region. (c) 2000 American Institute of Physics

  5. Determination of optimum "multi-channel surface wave method" field parameters.

    Science.gov (United States)

    2012-12-01

    Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...

  6. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation

  7. Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.

  8. N-representability of the Jastrow wave function pair density of the lowest-order.

    Science.gov (United States)

    Higuchi, Katsuhiko; Higuchi, Masahiko

    2017-08-08

    Conditions for the N-representability of the pair density (PD) are needed for the development of the PD functional theory. We derive sufficient conditions for the N-representability of the PD that is calculated from the Jastrow wave function within the lowest order. These conditions are used as the constraints on the correlation function of the Jastrow wave function. A concrete procedure to search the suitable correlation function is also presented.

  9. Supersonic wave detection method and supersonic detection device

    International Nuclear Information System (INIS)

    Machida, Koichi; Seto, Takehiro; Ishizaki, Hideaki; Asano, Rin-ichi.

    1996-01-01

    The present invention provides a method of and device for a detection suitable to a channel box which is used while covering a fuel assembly of a BWR type reactor. Namely, a probe for transmitting/receiving supersonic waves scans on the surface of the channel box. A data processing device determines an index showing a selective orientation degree of crystal direction of the channel box based on the signals received by the probe. A judging device compares the determined index with a previously determined allowable range to judge whether the channel box is satisfactory or not based on the result of the comparison. The judgement are on the basis that (1) the bending of the channel box is caused by the difference of elongation of opposed surfaces, (2) the elongation due to irradiation is caused by the selective orientation of crystal direction, and (3) the bending of the channel box can be suppressed within a predetermined range by suppressing the index determined by the measurement of supersonic waves having a correlation with the selective orientation of the crystal direction. As a result, the performance of the channel box capable of enduring high burnup region can be confirmed in a nondestructive manner. (I.S.)

  10. Coping with the node problem in quantum hydrodynamics: The covering function method

    International Nuclear Information System (INIS)

    Babyuk, Dmytro; Wyatt, Robert E.

    2004-01-01

    A conceptually simple approach, the covering function method (CFM), is developed to cope with the node problem in the hydrodynamic formulation of quantum mechanics. As nodes begin to form in a scattering wave packet (detected by a monitor function), a nodeless covering wave function is added to it yielding a total function that is also nodeless. Both local and global choices for the covering function are described. The total and covering functions are then propagated separately in the hydrodynamic picture. At a later time, the actual wave function is recovered from the two propagated functions. The results obtained for Eckart barrier scattering in one dimension are in excellent agreement with exact results, even for very long propagation times t=1.2 ps. The capability of the CFM is also demonstrated for multidimensional propagation of a vibrationally excited wave packet

  11. A stochastic collocation method for the second order wave equation with a discontinuous random speed

    KAUST Repository

    Motamed, Mohammad; Nobile, Fabio; Tempone, Raul

    2012-01-01

    In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical

  12. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    Science.gov (United States)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  13. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    Science.gov (United States)

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  14. Newton force from wave function collapse: speculation and test

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.

  15. The universal wave function interpretation of string theory

    International Nuclear Information System (INIS)

    Gang, Dr. Sha Zhi; Xiu, Rulin

    2016-01-01

    In this work, we will show that a deeper understanding of space-time provided by both quantum physics and general relativity can lead to a new way to understand string theory. This new way of understanding and applying string theory, the universal wave function interpretation of string theory (UWFIST), may yield to a more powerful string theory and testable prediction. We will show how to derive UWFIST and what new result we can obtain from UWFIST. We will demonstrate that UWFIST indicates that the observed space-time and all phenomena are the projections from the world-sheet hologram. UWFIST provides the possible source for dark energy and dark matter and the explanation about why the dark energy and dark matter is beyond the detection of our current detector. We will show that UWFIST may also yield correct prediction of the cosmological constant to be of the order 10-121 in the unit of Planck scale. It may also help us understand and derive the energy source for inflation and the flatness of our observed 4-dimensional universe. UWFIST may also make other testable predictions that may be detected by interferometers. We conclude that UWFIST has the potential to make string theory a more powerful physics theory that can yield testable predictions. It is worth further investigation by more physicists

  16. Relativistic form factors for clusters with nonrelativistic wave functions

    International Nuclear Information System (INIS)

    Mitra, A.N.; Kumari, I.

    1977-01-01

    Using a simple variant of an argument employed by Licht and Pagnamenta (LP) on the effect of Lorentz contraction on the elastic form factors of clusters with nonrelativistic wave functions, it is shown how their result can be generalized to inelastic form factors so as to produce (i) a symmetrical appearance of Lorentz contraction effects in the initial and final states, and (ii) asymptotic behavior in accord with dimensional scaling theories. A comparison of this result with a closely analogous parametric form obtained by Brodsky and Chertok from a propagator chain model leads, with plausible arguments, to the conclusion of an effective mass M for the cluster, with M 2 varying as the number n of the quark constituents, instead of as n 2 . A further generalization of the LP formula is obtained for an arbitrary duality-diagram vertex, again with asymptotic behavior in conformity with dimensional scaling. The practical usefulness of this approach is emphasized as a complementary tool to those of high-energy physics for phenomenological fits to data up to moderate values of q 2

  17. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    Science.gov (United States)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  18. Hyperspherical time-dependent method with semiclassical outgoing waves for double photoionization of helium

    International Nuclear Information System (INIS)

    Kazansky, A.K.; Selles, P.; Malegat, L.

    2003-01-01

    The hyperspherical time-dependent method with semiclassical outgoing waves for study of double photoionization of helium is presented. It is closely related to the hyperspherical R-matrix method with semiclassical outgoing waves [Phys. Rev. A 65, 032711 (2002)]: both split configuration space into two regions to solve the stationary inhomogeneous Schroedinger equation associated with the one-photon ionization problem, and both apply the same treatment to the outer region. However, the two methods differ radically in their treatments of the problem in the inner region: the most recent one applies a time-dependent approach for calculating the stationary wave function, while the previous one uses a R-matrix treatment. The excellent agreement observed between the triple differential cross sections obtained from these two basically different methods provides very strong support for both of them. Importantly, the very different numerical structures of both methods might make the most recent one a better candidate for investigating the near-threshold region

  19. Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Koichi Narahara

    2012-01-01

    Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.

  20. Application of Exp-function method to potential Kadomtsev-Petviashvili equation

    International Nuclear Information System (INIS)

    Xian Daquan; Dai Zhengde

    2009-01-01

    Exact periodic kink-wave solution, periodic soliton and doubly periodic solutions for the potential Kadomtsev-Petviashvii (PKP) equation are obtained using Exp-function method with the help of Maple computation.

  1. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    Science.gov (United States)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  2. Cut-off frequencies of circumferential horizontal shear waves in various functionally graded cylinder shells.

    Science.gov (United States)

    Shen, Xiaoqin; Ren, Dawei; Cao, Xiaoshan; Wang, Ji

    2018-03-01

    In this study, cut-off frequencies of the circumferential SH waves in functionally graded piezoelectric-piezomagnetic material (FGPPM) cylinder shells with traction free, electrical and magnetic open boundary conditions are investigated analytically. The Wentzel-Kramers-Brillouin (WKB) method is employed for solving differential equations with variable coefficients for general cases. For comparison, Bessel functions and Kummer functions are used for solving cut-off frequency problems in homogenous and ideal FGPPM cylinder shells. It is shown that the WKB solution for the cut-off frequencies has good precise. The set of cut-off frequencies is a series of approximate arithmetic progressions, for which the difference is a function of the density and the effective elastic parameter. The relationship between the difference and the gradient coefficient is described. These results provide theoretical guidance for the non-destructive evaluation of curved shells based on the cut-off frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    Science.gov (United States)

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  4. Methods for Functional Connectivity Analyses

    Science.gov (United States)

    2012-12-13

    motor , or hand motor function (green, red, or blue shading, respectively). Thus, this work produced the first comprehensive analysis of ECoG...Computer Engineering, University of Texas at El Paso , TX, USA 3Department of Neurology, Albany Medical College, Albany, NY, USA 4Department of Computer...Department of Health, Albany, NY, USA bDepartment of Electrical and Computer Engineering, University of Texas at El Paso , TX, USA cDepartment of Neurology

  5. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    Science.gov (United States)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  6. Lithospheric Structure of the Arabian Shield from the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations

    National Research Council Canada - National Science Library

    Julia, Jordi; Ammon, Charles J; Herrimann, Robert B

    2006-01-01

    .... Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...

  7. Lithospheric Structure of the Arabian Shield From the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations

    National Research Council Canada - National Science Library

    Herrmann, Robert B; Julia, Jordi; Ammon, Charles J

    2007-01-01

    .... Receiver functions are primarily sensitive to shear-wave velocity contrast and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...

  8. The Ion Cyclotron, Lower Hybrid, and Alfven Wave Heating Methods

    International Nuclear Information System (INIS)

    Koch, R.

    2004-01-01

    This lecture covers the practical features and experimental results of the three heating methods. The emphasis is on ion cyclotron heating. First, we briefly come back to the main non-collisional heating mechanisms and to the particular features of the quasilinear coefficient in the ion cyclotron range of frequencies (ICRF). The specific case of the ion-ion hybrid resonance is treated, as well as the polarisation issue and minority heating scheme. The various ICRF scenarios are reviewed. The experimental applications of ion cyclotron resonance heating (ICRH) systems are outlined. Then, the lower hybrid and Alfven wave heating and current drive experimental results are covered more briefly. Where applicable, the prospects for ITER are commented

  9. The modified extended Fan's sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2005-01-01

    By using a modified extended Fan's sub-equation method, we have obtained new and more general solutions including a series of non-travelling wave and coefficient function solutions namely: soliton-like solutions, triangular-like solutions, single and combined non-degenerative Jacobi elliptic wave function-like solutions for the (2 + 1)-dimensional dispersive long wave equation. The most important achievement of this method lies on the fact that, we have succeeded in one move to give all the solutions which can be previously obtained by application of at least four methods (method using Riccati equation, or first kind elliptic equation, or auxiliary ordinary equation, or generalized Riccati equation as mapping equation)

  10. Ab initio calculation atomics ground state wave function for interactions Ion- Atom

    International Nuclear Information System (INIS)

    Shojaee, F.; Bolori zadeh, M. A.

    2007-01-01

    Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.

  11. Influence of wetting layer wave functions on carrier capture in quantum dots

    DEFF Research Database (Denmark)

    Markussen, Troels; Kristensen, Philip; Tromborg, Bjarne

    2005-01-01

    This work numerically solves the effective mass Schrodinger equation and shows that the capture times are strongly influenced by details of the continuum states not accounted for by the approximate wave functions. Results show that calculations of capture time for phonon mediated carrier capture...... from a wetting layer into a quantum dot depend critically on the approximations used for the wetting layer wave functions....

  12. Smart wave filtering method of a rectangular panel using Hilbert transformers and its application to an adaptive control system

    International Nuclear Information System (INIS)

    Iwamoto, Hiroyuki; Tanaka, Nobuo; Hill, Simon G

    2010-01-01

    This paper concerns the active vibration control of a rectangular panel using smart sensors from the viewpoint of an active wave control theory. The objective of this paper is to present a new type of filter which enables the measurement of the wave amplitude of a rectangular panel in real time for the application of an adaptive feedforward control system which inactivates vibration modes. Firstly, a novel wave filtering method using smart PVDF sensors is proposed. It is found that the shaping function of smart sensors is a complex function. To realize the smart sensor in a practical situation, a Hilbert transformer is utilized to implement a phase shifter of 90° for broadband frequencies. Then, from the viewpoint of a numerical analysis, the characteristics of the proposed wave filter and the performance of the adaptive feedforward control system using the wave filter are discussed. Finally, experiments implementing the active wave control theory which uses the proposed wave filter are conducted, demonstrating the validity of the proposed method in suppressing the vibration of a rectangular panel

  13. The application of He's exp-function method to a nonlinear differential-difference equation

    International Nuclear Information System (INIS)

    Dai Chaoqing; Cen Xu; Wu Shengsheng

    2009-01-01

    This paper applies He's exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear partial differential equations (NPDEs) or coupled nonlinear partial differential equations (CNPDEs), to a nonlinear differential-difference equation, and some new travelling wave solutions are obtained.

  14. Rayleigh wave behavior in functionally graded magneto-electro-elastic material

    Science.gov (United States)

    Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben

    2017-12-01

    Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.

  15. Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.

    Science.gov (United States)

    Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia

    2016-03-08

    A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.

  16. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-01-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  17. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-05-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  18. La résistance de vague des carènes. Calcul de la fonction de Green par intégration numérique et par une méthode asymptotique. 1° Partie Hull Resistance to Wave? Computing the Green Function by Numerical Integration and by an Asymptotic Method. Part One

    Directory of Open Access Journals (Sweden)

    Carou A.

    2006-11-01

    Full Text Available Le calcul de la résistance de vague d'une carène par éléments finis concentrés sur un ouvert borné nécessite la connaissance de la fonction de Green du problème à grande distance. Cette fonction est très difficile à calculer numériquement. On justifie dans ce travail une méthode asymptotique rapide, remplaçant avantageusement l'intégration numérique. Computing wave resistance -by finite elements concentrated on a bounded open set requires the prior knowledge of the Green function of the problem at a great distance. Computing this function is numerically very difficult. A fast asymptotic method is iustified in this article, and it can be used ta advantage as a replacemenf for numerical integration.

  19. Character of GPR wave in air and processed method

    International Nuclear Information System (INIS)

    Shi Jianping; Zhang Zhiyong; Deng Juzhi

    2009-01-01

    The wave reflected by objects in the air is unavoidable because electromagnetic wave of GPR was send to all directions. There are three air reflection types: directly arrived wave, system ring and reflection wave. The directly arrived waves don't disturb the recognition of the reflections from earth because they affect the first short time of GPR trace record. But system ring and reflection from air are the mainly part of disturbs. The time and distance curve of reflection from air can be classified into two types: hyperbola type and line type. The reflection from air and from earth can be recognized by calculating the velocity of electromagnetic wave. Line type reflection can be filtered by background remove and 2-D filter; by comparing the migrated profiles with velocity in air and ground, the interpretation will become more exact. (authors)

  20. Hadron-quark vertex function. Interconnection between 3D and 4D wave function

    International Nuclear Information System (INIS)

    Mitra, A.N.; Bhatnagar, S.

    1990-01-01

    Interconnection between 3D and 4D forms of Bethe-Salpeter equation (EBS) with a kernel depending on relative momenta is used to derive hadron-quark vertex function in Lorentz invariance form. The vertex function which is directly related to a 4D wave function satisfying a corresponding EBS determines the natural continuation outside mass surface for the entire momentum space and serves the basis for computing amplitudes of transitions through appropriate loop quark diagrams. Two applications (f p values for P→ll-bar and F π for n 0 +yy) are discussed briefly to illustrate this formalism. An attention is paid to the problem of complex amplitudes for quark loops with a larger number of external hadrons.A possible solution of the problem is proposed. 29 refs

  1. Methods to filter out spurious disturbances in continuous-wave searches from gravitational-wave detectors

    International Nuclear Information System (INIS)

    Leaci, Paola

    2015-01-01

    Semicoherent all-sky searches over year-long observation times for continuous gravitational wave signals produce various thousands of potential periodic source candidates. Efficient methods able to discard false candidate events are crucial in order to put all the efforts into a computationally intensive follow-up analysis for the remaining most promising candidates (Shaltev et al 2014 Phys. Rev. D 89 124030). In this paper we present a set of techniques able to fulfill such requirements, identifying and eliminating false candidate events, reducing thus the bulk of candidate sets that need to be further investigated. Some of these techniques were also used to streamline the candidate sets returned by the Einstein@Home hierarchical searches presented in (Aasi J et al (The LIGO Scientific Collaboration and the Virgo Collaboration) 2013 Phys. Rev. D 87 042001). These powerful methods and the benefits originating from their application to both simulated and on detector data from the fifth LIGO science run are illustrated and discussed. (paper)

  2. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  3. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2018-02-01

    Full Text Available Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  4. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Science.gov (United States)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  5. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  6. Symmetry analysis of many-body wave functions, with applications to the nuclear shell model

    International Nuclear Information System (INIS)

    Novoselsky, A.; Katriel, J.

    1995-01-01

    The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration

  7. Measuring the band structures of periodic beams using the wave superposition method

    Science.gov (United States)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in

  8. Mittag-Leffler functions as solutions of relaxation-oscillation and diffusion-wave fractional order equation

    International Nuclear Information System (INIS)

    Sandev, D. Trivche

    2010-01-01

    The fractional calculus basis, Mittag-Leffler functions, various relaxation-oscillation and diffusion-wave fractional order equation and systems of fractional order equations are considered in this thesis. To solve these fractional order equations analytical methods, such as the Laplace transform method and method of separation of variables are employed. Some applications of the fractional calculus are considered, particularly physical system with anomalous diffusive behavior. (Author)

  9. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Agricultural Univ., Nanjing; Chen Rushan; Zhang Yun

    2006-01-01

    The dielectric property of dispersive media is written as rational polynomial function, the relation between D and E is derived in time domain. It is named shift operator FDTD (SO-FDTD) method. The high accuracy and efficiency of this method is confirmed by computing the reflection coefficients of electromagnetic waves by a collisional plasma slab. The reflection coefficients between plasma and the atmosphere or vacuum can be calculated by using the SO-FDTD method. The result is that the reflection coefficients are affected by plasma thickness, electron numerical density, the distributing orderliness of electron density, and incidence wave frequency. (authors)

  10. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    Science.gov (United States)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  11. Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas

    International Nuclear Information System (INIS)

    Guo Yonghui; Duan Yaoyong; Kuai Bin

    2007-01-01

    The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)

  12. A comparison of three time-dependent wave packet methods for calculating electron--atom elastic scattering cross sections

    International Nuclear Information System (INIS)

    Judson, R.S.; McGarrah, D.B.; Sharafeddin, O.A.; Kouri, D.J.; Hoffman, D.K.

    1991-01-01

    We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, |ζ(t)right-angle=U|ψ(t)right-angle, where U is the interaction potential and |ψ(t)right-angle is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200--1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy

  13. Expansion and compression shock wave calculation in pipes with the C.V.M. numerical method

    International Nuclear Information System (INIS)

    Raymond, P.; Caumette, P.; Le Coq, G.; Libmann, M.

    1983-03-01

    The Control Variables Method for fluid transients computations has been used to compute expansion and compression shock waves propagations. In this paper, first analytical solutions for shock wave and rarefaction wave propagation are detailed. Then after a rapid description of the C.V.M. technique and its stability and monotonicity properties, we will present some results about standard shock tube problem, reflection of shock wave, finally a comparison between experimental results obtained on the ELF facility and calculations is given

  14. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation

    Science.gov (United States)

    Jerke, Jonathan; Tymczak, C. J.; Poirier, Bill

    We report on theoretical and computational developments towards a computationally efficient direct solve of the many-body Schrödinger wave equation for electronic systems. This methodology relies on two recent developments pioneered by the authors: 1) the development of a Cardinal Sine basis for electronic structure calculations; and 2) the development of a highly efficient and compact representation of multidimensional functions using the Canonical tensor rank representation developed by Belykin et. al. which we have adapted to electronic structure problems. We then show several relevant examples of the utility and accuracy of this methodology, scaling with system size, and relevant convergence issues of the methodology. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation.

  15. An accurate optical design method for synchrotron radiation beamlines with wave-front aberration theory

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaojiang, E-mail: slsyxj@nus.edu.sg; Diao, Caozheng; Breese, Mark B. H. [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2016-07-27

    An aberration calculation method which was developed by Lu [1] can treat individual aberration term precisely. Spectral aberration is the linear sum of these aberration terms, and the aberrations of multi-element systems also can be calculated correctly when the stretching ratio, defined herein, is unity. Evaluation of focusing mirror-grating systems which are optimized according to Lu’s method, along with the Light Path Function (LPF) and the Spot Diagram method (SD) are discussed to confirm the advantage of Lu’s methodology. Lu’s aberration terms are derived from a precise wave-front treatment, whereas the terms of the power series expansion of the light path function do not yield an accurate sum of the aberrations. Moreover, Lu’s aberration terms can be individually optimized. This is not possible with the analytical spot diagram formulae.

  16. Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures

    CERN Document Server

    Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad

    2008-01-01

    The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.

  17. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    International Nuclear Information System (INIS)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-01-01

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system

  18. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kai, E-mail: kaigao87@gmail.com [Department of Geology and Geophysics, Texas A& M University, College Station, TX 77843 (United States); Fu, Shubin, E-mail: shubinfu89@gmail.com [Department of Mathematics, Texas A& M University, College Station, TX 77843 (United States); Gibson, Richard L., E-mail: gibson@tamu.edu [Department of Geology and Geophysics, Texas A& M University, College Station, TX 77843 (United States); Chung, Eric T., E-mail: tschung@math.cuhk.edu.hk [Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Efendiev, Yalchin, E-mail: efendiev@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, TX 77843 (United States); Numerical Porous Media SRI Center (NumPor), King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-08-15

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  19. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    KAUST Repository

    Gao, Kai

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both boundaries and the interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  20. The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study.

    Directory of Open Access Journals (Sweden)

    Joel Singer

    Full Text Available OBJECTIVES: Pulse wave velocity (PWV is a measure of arterial stiffness and its increase with ageing has been associated with damage to cerebral microvessels and cognitive impairment. This study examined the relationship between carotid-femoral PWV and specific domains of cognitive function in a non-demented elderly sample. METHOD: Data were drawn from the Sydney Memory and Ageing Study, a cohort study of non-demented community-dwelling individuals aged 70-90 years, assessed in successive waves two years apart. In Wave 2, PWV and cognitive function were measured in 319 participants. Linear regression was used to analyse the cross-sectional relationship between arterial stiffness and cognitive function in the whole sample, and separately for men and women. Analysis of covariance was used to assess potential differences in cognition between subjects with PWV measurements in the top and bottom tertiles of the cohort. Covariates were age, education, body mass index, pulse rate, systolic blood pressure, cholesterol, depression, alcohol, smoking, hormone replacement therapy, apolipoprotein E ε4 genotype, use of anti-hypertensive medications, history of stroke, transient ischemic attack, myocardial infarction, angina, diabetes, and also sex for the whole sample analyses. RESULTS: There was no association between PWV and cognition after Bonferroni correction for multiple testing. When examining this association for males and females separately, an association was found in males, with higher PWV being associated with lower global cognition and memory, however, a significant difference between PWV and cognition between males and females was not found. CONCLUSION: A higher level of PWV was not associated with lower cognitive function in the whole sample.

  1. Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media

    KAUST Repository

    Chung, Eric T.

    2014-11-13

    Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to their complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this paper, we present a multiscale finite element method for wave propagation on a coarse grid. The proposed method is based on the generalized multiscale finite element method (GMsFEM) (see [Y. Efendiev, J. Galvis, and T. Hou, J. Comput. Phys., 251 (2012), pp. 116--135]). To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block, where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. These local spectral problems are different from each other and their formulations are based on the analysis. To the best of knowledge, this is the first time that multiple snapshot spaces and multiple spectral problems are used and necessary for efficient computations. Using the dominant modes from local spectral problems, multiscale basis functions are constructed to represent the solution space locally within each coarse block. These multiscale basis functions are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block diagonal mass matrix and, consequently, results in fast computations in an explicit time discretization. Our methods\\' stability and spectral convergence are rigorously analyzed. Numerical examples are presented to show our methods\\' performance. We also test oversampling strategies. In particular, we discuss how the modes from different snapshot spaces can affect the proposed methods\\' accuracy.

  2. A novel method for predicting the power outputs of wave energy converters

    Science.gov (United States)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  3. Quasihomogeneous function method and Fock's problem

    International Nuclear Information System (INIS)

    Smyshlyaev, V.P.

    1987-01-01

    The diffraction of a high-frequency wave by a smooth convex body near the tangency point of the limiting ray to the surface is restated as the scattering problem for the Schrodinger equation with a linear potential on a half-axis. Various prior estimates for the scattering problem are used in order to prove existence, uniqueness, and smoothness theorems. The corresponding solution satisfies the principle of limiting absorption. The formal solution of the corresponding Schrodinger equation in the form of quasihomogeneous functions is essentially used in their constructions

  4. Coherent molecular transistor: control through variation of the gate wave function.

    Science.gov (United States)

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  5. Coherent molecular transistor: Control through variation of the gate wave function

    International Nuclear Information System (INIS)

    Ernzerhof, Matthias

    2014-01-01

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor

  6. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.

    2016-02-26

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  7. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Gibson, Richard L.; Vasilyeva, Maria

    2016-01-01

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  8. Study on Meshfree Hermite Radial Point Interpolation Method for Flexural Wave Propagation Modeling and Damage Quantification

    Directory of Open Access Journals (Sweden)

    Hosein Ghaffarzadeh

    Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.

  9. Ocean wave-radar modulation transfer functions from the West Coast experiment

    Science.gov (United States)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  10. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    Science.gov (United States)

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  11. One step linear reconstruction method for continuous wave diffuse optical tomography

    Science.gov (United States)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  12. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)

    2015-11-15

    Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  13. Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4](2-) molecules: Some insights from wave function theory.

    Science.gov (United States)

    Giner, Emmanuel; Angeli, Celestino

    2015-09-28

    The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl2 and [CuCl4](2-) systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.

  14. Soliton solution for nonlinear partial differential equations by cosine-function method

    International Nuclear Information System (INIS)

    Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.

    2007-01-01

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations

  15. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  16. Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1974-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.

  17. Dispersion relation for Bernstein waves using a new transformation for the modified Bessel function

    International Nuclear Information System (INIS)

    Sato, Masumi

    1985-01-01

    Aitken's or Shanks' transformation of the exponent-modified Bessel function produces better approximations. Dispersion relations for the hybrid and Bernstein waves using these provide better thermal and parallel wavenumber corrections. They also predict more closely the evolution and mode-conversion of these waves. (author)

  18. Data synthesis and display programs for wave distribution function analysis

    Science.gov (United States)

    Storey, L. R. O.; Yeh, K. J.

    1992-01-01

    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.

  19. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution

    Science.gov (United States)

    Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2015-08-01

    Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.

  20. Applications of continuity and discontinuity of a fractional derivative of the wave functions to fractional quantum mechanics

    International Nuclear Information System (INIS)

    Dong Jianping; Xu Mingyu

    2008-01-01

    The space fractional Schroedinger equation with a finite square potential, periodic potential, and delta-function potential is studied in this paper. We find that the continuity or discontinuity condition of a fractional derivative of the wave functions should be considered to solve the fractional Schroedinger equation in fractional quantum mechanics. More parity states than those given by standard quantum mechanics for the finite square potential well are obtained. The corresponding energy equations are derived and then solved by graphical methods. We show the validity of Bloch's theorem and reveal the energy band structure for the periodic potential. The jump (discontinuity) condition for the fractional derivative of the wave function of the delta-function potential is given. With the help of the jump condition, we study some delta-function potential fields. For the delta-function potential well, an alternate expression of the wave function (the H function form of it was given by Dong and Xu [J. Math. Phys. 48, 072105 (2007)]) is obtained. The problems of a particle penetrating through a delta-function potential barrier and the fractional probability current density of the particle are also discussed. We study the Dirac comb and show the energy band structure at the end of the paper

  1. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    Science.gov (United States)

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  2. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  3. Development of numerical methods to calculate the propagation and the absorption of the hybrid wave in tokamaks

    International Nuclear Information System (INIS)

    Sebelin, E.

    1997-01-01

    Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.)

  4. Spectral element method for elastic and acoustic waves in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)

    2016-12-15

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  5. Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines

    Directory of Open Access Journals (Sweden)

    M. A. Banaja

    2015-01-01

    Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.

  6. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  7. Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure

    Science.gov (United States)

    Xie, J. "; Schaff, D. P.

    2010-12-01

    Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.

  8. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  9. Theoretical calculation of shakeup intensities using Xa--SW wave functions

    International Nuclear Information System (INIS)

    Tse, J.S.; Loubriel, G.

    1981-01-01

    The ground and 1s core hole state molecular wave functions of CH 4 , NH 3 , H 2 O, and HF obtained from Xa--SW calculations using the touching spheres (TS) and overlapping spheres (OS) approximations are used to calculate the intensity of shakeup satellites observed in their ls core level photoelectron spectra. The sudden approximation was assumed in the calculation. In case of TS Xa--SW wave functions, the one electron overlap integral inside the intersphere was calculated via Green's theorem. For OS Xa--SW wave functions, the integration over the awkwardly shaped intersphere region was circumvented by distributing the intersphere charge into the atomic spheres according to the charge partition scheme suggested by Case and Karplus. Our results show that there are no significant differences between the shakeup energies calculated from the TS and OS approximations. However, shakeup intensities calculated from TS Xa--SW wave functions are more reliable and in better numerical agreement with experiment

  10. ORBITALES. A program for the calculation of wave functions with an analytical central potential

    International Nuclear Information System (INIS)

    Yunta Carretero; Rodriguez Mayquez, E.

    1974-01-01

    In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs

  11. Covariant two-particle wave functions for model quasipotentials admitting exact solutions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.

    1983-01-01

    Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of the internal motion of the bound system of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials

  12. Covariant two-particle wave functions for model quasipotential allowing exact solutions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.

    1982-01-01

    Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of relative motion of a bound state of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials

  13. Order in large and chaos in small components of nuclear wave functions

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1992-06-01

    An investigation of the order and chaos of the nuclear excited states has shown that there is order in the large and chaos in the small quasiparticle or phonon components of the nuclear wave functions. The order-to-chaos transition is treated as a transition from the large to the small components of the nuclear wave function. The analysis has shown that relatively large many-quasiparticle components of the wave function at an excitation energy (4-8)MeV may exist. The large many-quasiparticle components of the wave functions of the neutron resonances are responsible for enhanced E1-, M1- and E2-transition probabilities from neutron resonance to levels lying (1-2)MeV below them. (author)

  14. Short time propagation of a singular wave function: Some surprising results

    Science.gov (United States)

    Marchewka, A.; Granot, E.; Schuss, Z.

    2007-08-01

    The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.

  15. Four-body correlation embedded in antisymmetrized geminal power wave function.

    Science.gov (United States)

    Kawasaki, Airi; Sugino, Osamu

    2016-12-28

    We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.

  16. Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.

    Science.gov (United States)

    Branson, David

    1979-01-01

    Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)

  17. Variation in Differential and Total Cross Sections Due to Different Radial Wave Functions

    Science.gov (United States)

    Williamson, W., Jr.; Greene, T.

    1976-01-01

    Three sets of analytical wave functions are used to calculate the Na (3s---3p) transition differential and total electron excitation cross sections by Born approximations. Results show expected large variations in values. (Author/CP)

  18. The meaning of the wave function in search of the ontology of quantum mechanics

    CERN Document Server

    Gao, Shan

    2017-01-01

    At the heart of quantum mechanics lies the wave function, a powerful but mysterious mathematical object which has been a hot topic of debate from its earliest stages. Covering much of the recent debate and providing a comprehensive and critical review of competing approaches, this ambitious text provides new, decisive proof of the reality of the wave function. Aiming to make sense of the wave function in quantum mechanics and to find the ontological content of the theory, this book explores new ontological interpretations of the wave function in terms of random discontinuous motion of particles. Finally, the book investigates whether the suggested quantum ontology is complete in solving the measurement problem and if it should be revised in the relativistic domain. A timely addition to the literature on the foundations of quantum mechanics, this book is of value to students and researchers with an interest in the philosophy of physics. Presents a concise introduction to quantum mechanics, including the c...

  19. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G'/G)-expansion method.

    Science.gov (United States)

    Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-

    2014-01-01

    Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.

  20. Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves

    Science.gov (United States)

    2011-09-01

    measure elastic properties of thin isotropic materials and laminated composite plates. Two types of waves propagate a symmetric wave and antisymmetric...compare it to the original signal. In this time reversal procedure wave propagation from point-A to point-B and can be modeled as a convolution ...where * is the convolution operator and transducer transmit and receive transfer function are neglected for simplification. In the frequency

  1. On the comparsion of the Spherical Wave Expansion-to-Plane Wave Expansion and the Sources Reconstruction Method for Antenna Diagnostics

    DEFF Research Database (Denmark)

    Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando

    2008-01-01

    A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), based...

  2. Asymptotic form of three-body (dtμ)+ and (ddμ)+ wave functions

    International Nuclear Information System (INIS)

    Kino, Y.; Shimamura, I.; Armour, E.A.G.; Kamimura, M.

    1996-01-01

    In order to investigate a discrepancy between existing literature values for the normalization constant in the asymptotic form of three-body wave functions for (DTμ) + , we report the results of a new calculation of the normalization constants for this system as well as the related system (DDμ) + . These were obtained by fitting to accurate variational wave functions with special care being taken to describe the long-range behavior. (orig.)

  3. Convergence of repeated quantum nondemolition measurements and wave-function collapse

    International Nuclear Information System (INIS)

    Bauer, Michel; Bernard, Denis

    2011-01-01

    Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with information theory.

  4. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids

    International Nuclear Information System (INIS)

    Holzwarth, N.A.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y.

    1997-01-01

    The projector augmented-wave (PAW) method was developed by Bloechl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his open-quotes soft pseudopotentialclose quotes formalism and in earlier work by Bloechl in his open-quotes generalized separable potentials,close quotes and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF 2 , fcc Ca, and bcc V. With the exception of CaF 2 , for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms. copyright 1997 The American Physical Society

  5. The finite product method in the theory of linear wave propagation

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Chapman, John

    2012-01-01

    of the method are presented for several non-trivial examples, that of symmetric/anti-symmetric elastic waves in a layer and in a thin plate. In each case, the method gives a sequence of polynomial approximations to the dispersion relation of remarkable accuracy over a broad range of frequencies and wave numbers...

  6. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    Science.gov (United States)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  7. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Science.gov (United States)

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  8. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  9. Double photoionization of helium: A new correlated double continuum wave function

    Energy Technology Data Exchange (ETDEWEB)

    Macri, P.A.; Kornberg, M.A.; Miraglia, J.E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina). Inst. de Astron. y Fisica del Espacio; Garibotti, C.R.; Gasaneo, G.; Colavecchia, F.D. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche, Rio Negro (Argentina)

    1997-10-01

    In this work we discuss the failures and goodness of using the product of two and three Coulomb waves to represent the double-continuum wave function of two electrons in the field of an ion. Furthermore, we present a new wave function for the double continuum, which takes into account the non-diagonal part of the kinetic energy. It satisfies the correct boundary conditions for large particle separations, and treats the electronic interaction in a more realistic way than the previously enunciated models. (orig.). 14 refs.

  10. Demonstration of improved seismic source inversion method of tele-seismic body wave

    Science.gov (United States)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  11. Projected potential profiles across interfaces obtained by reconstructing the exit face wave function from through focal series

    International Nuclear Information System (INIS)

    Bhattacharyya, Somnath; Koch, Christoph T.; Ruehle, Manfred

    2006-01-01

    An iterative method for reconstructing the exit face wave function from a through focal series of transmission electron microscopy image line profiles across an interface is presented. Apart from high-resolution images recorded with small changes in defocus, this method works also well for a large defocus range as used for Fresnel imaging. Using the phase-object approximation the projected electrostatic as well as the absorptive potential profiles across an interface are determined from this exit face wave function. A new experimental image alignment procedure was developed in order to align images with large relative defocus shift. The performance of this procedure is shown to be superior to other image alignment procedures existing in the literature. The reconstruction method is applied to both simulated and experimental images

  12. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-01-21

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  13. Numerical methods for hyperbolic differential functional problems

    Directory of Open Access Journals (Sweden)

    Roman Ciarski

    2008-01-01

    Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.

  14. Producing accurate wave propagation time histories using the global matrix method

    International Nuclear Information System (INIS)

    Obenchain, Matthew B; Cesnik, Carlos E S

    2013-01-01

    This paper presents a reliable method for producing accurate displacement time histories for wave propagation in laminated plates using the global matrix method. The existence of inward and outward propagating waves in the general solution is highlighted while examining the axisymmetric case of a circular actuator on an aluminum plate. Problems with previous attempts to isolate the outward wave for anisotropic laminates are shown. The updated method develops a correction signal that can be added to the original time history solution to cancel the inward wave and leave only the outward propagating wave. The paper demonstrates the effectiveness of the new method for circular and square actuators bonded to the surface of isotropic laminates, and these results are compared with exact solutions. Results for circular actuators on cross-ply laminates are also presented and compared with experimental results, showing the ability of the new method to successfully capture the displacement time histories for composite laminates. (paper)

  15. An improved method for estimating the frequency correlation function

    KAUST Repository

    Chelli, Ali; Pä tzold, Matthias

    2012-01-01

    For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.

  16. An improved method for estimating the frequency correlation function

    KAUST Repository

    Chelli, Ali

    2012-04-01

    For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.

  17. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  18. Wave directional spectrum from array measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Sarma, Y; Menon, H.B.

    Using the method of Esteva (1976, 1977), whcih assumes that at the frequency band the waves approach from just a single "mean" wave direction, wave direction has been consistently, accurately and unambiguously evaluated as a function of frequency...

  19. Nouvelles méthodes d'identification des fractures par diagraphie acoustique en full wave form New Methods of Identifying Fractures by Full Wave Form Acoustic Logging

    Directory of Open Access Journals (Sweden)

    Denis A.

    2006-11-01

    the Stoneley wave are proposed. For each of them, an application to data obtained from deep drilling illustrates their potential for use. The first method consists in quantifying, in the frequency domain, the frequency modifications of the Stoneley wave as it passes a fracture. For this we have adapted the coherency function (Fig. 2. The second method is based on an examination of the deformation of the shape of the Stoneley wave in the vicinity of or opposite fractured levels (Fig. 3. The third and last method adapts geometric inversion techniques to acoustic logging. This enables us to use the energy of the Stoneley wave (Fig. 4 to obtain attenuation logs with a maximum vertical resolution (Fig. 5. For all these methods, the vertical resolution obtained is equivalent to the displacement interval of the logging tool inside the borehole. A quick inventory of the methods normally used for detecting fractured zones has been made. The impossibility of such methods to position and assess the importance of each fracture making up a fractured zone, particularly because of low vertical resolution, shows the great contribution of the methods proposed for better identifying fractures.

  20. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase

    International Nuclear Information System (INIS)

    Snieder, Roel

    2004-01-01

    The Green's function of waves that propagate between two receivers can be found by cross-correlating multiply scattered waves recorded at these receivers. This technique obviates the need for a source at one of these locations, and is therefore called ''passive imaging.'' This principle has been explained by assuming that the normal modes of the system are uncorrelated and that all carry the same amount of energy (equipartitioning). Here I present an alternative derivation of passive imaging of the ballistic wave that is not based on normal modes. The derivation is valid for scalar waves in three dimensions, and for elastic surface waves. Passive imaging of the ballistic wave is based on the destructive interference of waves radiated from scatterers away from the receiver line, and the constructive interference of waves radiated from secondary sources near the receiver line. The derivation presented here shows that the global requirement of the equipartitioning of normal modes can be relaxed to the local requirement that the scattered waves propagate on average isotropically near the receivers

  1. A method for detecting crack wave arrival time and crack localization in a tunnel by using moving window technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Park, Tae Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Source localization in a dispersive medium has been carried out based on the time-of-arrival-differences (TOADs) method: a triangulation method and a circle intersection technique. Recent signal processing advances have led to calculation TOAD using a joint time-frequency analysis of the signal, where a short-time Fourier transform(STFT) and wavelet transform can be included as popular algorithms. The time-frequency analysis method is able to provide various information and more reliable results such as seismic-attenuation estimation, dispersive characteristics, a wave mode analysis, and temporal energy distribution of signals compared with previous methods. These algorithms, however, have their own limitations for signal processing. In this paper, the effective use of proposed algorithm in detecting crack wave arrival time and source localization in rock masses suggest that the evaluation and real-time monitoring on the intensity of damages related to the tunnels or other underground facilities is possible. Calculation of variances resulted from moving windows as a function of their size differentiates the signature from noise and from crack signal, which lead us to determine the crack wave arrival time. Then, the source localization is determined to be where the variance of crack wave velocities from real and virtual crack localization becomes a minimum. To validate our algorithm, we have performed experiments at the tunnel, which resulted in successful determination of the wave arrival time and crack localization.

  2. Sum rules in the response function method

    International Nuclear Information System (INIS)

    Takayanagi, Kazuo

    1990-01-01

    Sum rules in the response function method are studied in detail. A sum rule can be obtained theoretically by integrating the imaginary part of the response function over the excitation energy with a corresponding energy weight. Generally, the response function is calculated perturbatively in terms of the residual interaction, and the expansion can be described by diagrammatic methods. In this paper, we present a classification of the diagrams so as to clarify which diagram has what contribution to which sum rule. This will allow us to get insight into the contributions to the sum rules of all the processes expressed by Goldstone diagrams. (orig.)

  3. Analytic perturbation theory for screened Coulomb potential: full continuum wave function

    International Nuclear Information System (INIS)

    Bechler, A.; Ennan, Mc J.; Pratt, R.H.

    1979-01-01

    An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)

  4. Exact solutions for nonlinear evolution equations using Exp-function method

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2008-01-01

    In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations

  5. Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2009-01-01

    In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.

  6. The Method of Lines Solution of the Regularized Long-Wave Equation Using Runge-Kutta Time Discretization Method

    Directory of Open Access Journals (Sweden)

    H. O. Bakodah

    2013-01-01

    Full Text Available A method of lines approach to the numerical solution of nonlinear wave equations typified by the regularized long wave (RLW is presented. The method developed uses a finite differences discretization to the space. Solution of the resulting system was obtained by applying fourth Runge-Kutta time discretization method. Using Von Neumann stability analysis, it is shown that the proposed method is marginally stable. To test the accuracy of the method some numerical experiments on test problems are presented. Test problems including solitary wave motion, two-solitary wave interaction, and the temporal evaluation of a Maxwellian initial pulse are studied. The accuracy of the present method is tested with and error norms and the conservation properties of mass, energy, and momentum under the RLW equation.

  7. Cell detachment method using shock wave induced cavitation

    NARCIS (Netherlands)

    Junge, L.; Junge, L.; Ohl, C.D.; Wolfrum, B.; Arora, M.; Ikink, R.

    2003-01-01

    The detachment of adherent HeLa cells from a substrate after the interaction with a shock wave is analyzed. Cavitation bubbles are formed in the trailing, negative pressure cycle following the shock front. We find that the regions of cell detachment are strongly correlated with spatial presence of

  8. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Science.gov (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  9. Analysis of efficient preconditioned defect correction methods for nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter

    2014-01-01

    Robust computational procedures for the solution of non-hydrostatic, free surface, irrotational and inviscid free-surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable...... prediction of free-surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow...... equations. We present new detailed fundamental analysis using finite-amplitude wave solutions for iterative solvers. We demonstrate that the PDC method in combination with a high-order discretization method enables efficient and scalable solution of the linear system of equations arising in potential flow...

  10. Doubly stochastic radial basis function methods

    Science.gov (United States)

    Yang, Fenglian; Yan, Liang; Ling, Leevan

    2018-06-01

    We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).

  11. Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling

    Energy Technology Data Exchange (ETDEWEB)

    Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.

  12. Analysis of a plane stress wave by the moving least squares method

    Directory of Open Access Journals (Sweden)

    Wojciech Dornowski

    2014-08-01

    Full Text Available A meshless method based on the moving least squares approximation is applied to stress wave propagation analysis. Two kinds of node meshes, the randomly generated mesh and the regular mesh are used. The nearest neighbours’ problem is developed from a triangulation that satisfies minimum edges length conditions. It is found that this method of neighbours’ choice significantly improves the solution accuracy. The reflection of stress waves from the free edge is modelled using fictitious nodes (outside the plate. The comparison with the finite difference results also demonstrated the accuracy of the proposed approach.[b]Keywords[/b]: civil engineering, meshless method, moving least squares method, elastic waves

  13. Reduced density matrix functional theory via a wave function based approach

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Robert; Bloechl, Peter [Institute for Theoretical Physics, Clausthal University of Technology, Clausthal (Germany); Pruschke, Thomas [Institute for Theoretical Physics, University of Goettingen, Goettingen (Germany)

    2016-07-01

    We propose a new method for the calculation of the electronic and atomic structure of correlated electron systems based on reduced density matrix functional theory (rDMFT). The density-matrix functional is evaluated on the fly using Levy's constrained search formalism. The present implementation rests on a local approximation of the interaction reminiscent to that of dynamical mean field theory (DMFT). We focus here on additional approximations to the exact density-matrix functional in the local approximation and evaluate their performance.

  14. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

    KAUST Repository

    Liu, Shaolin; Yang, Dinghui; Dong, Xingpeng; Liu, Qiancheng; Zheng, Yongchang

    2017-01-01

    The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint

  15. Traveling Wave Resonance and Simplified Analysis Method for Long-Span Symmetrical Cable-Stayed Bridges under Seismic Traveling Wave Excitation

    Directory of Open Access Journals (Sweden)

    Zhong-ye Tian

    2014-01-01

    Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.

  16. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  17. Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability.

    Science.gov (United States)

    Bumstead, Jonathan R; Bauer, Adam Q; Wright, Patrick W; Culver, Joseph P

    2017-02-01

    Resting-state functional connectivity is a growing neuroimaging approach that analyses the spatiotemporal structure of spontaneous brain activity, often using low-frequency (Mayer waves. Despite how close in frequency these phenomena exist, there is little research on how vasomotion and Mayer waves are related to or affect resting-state functional connectivity. In this study, we analyze spontaneous hemodynamic fluctuations over the mouse cortex using optical intrinsic signal imaging. We found spontaneous occurrence of oscillatory hemodynamics ∼0.2 Hz consistent with the properties of Mayer waves reported in the literature. Across a group of mice (n = 19), there was a large variability in the magnitude of Mayer waves. However, regardless of the magnitude of Mayer waves, functional connectivity patterns could be recovered from hemodynamic signals when filtered to the lower frequency band, 0.01-0.08 Hz. Our results demonstrate that both Mayer waves and resting-state functional connectivity patterns can co-exist simultaneously, and that they can be separated by applying bandpass filters.

  18. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  19. Ab initio/interpolated quantum dynamics on coupled electronic states with full configuration interaction wave functions

    International Nuclear Information System (INIS)

    Thompson, K.; Martinez, T.J.

    1999-01-01

    We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics

  20. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines

    International Nuclear Information System (INIS)

    Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang

    2013-01-01

    Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP