WorldWideScience

Sample records for wave energy device

  1. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  2. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... devices is a new and expanding technical area where there is no tradition for probabilistic design—in fact very little full scale devices has been build to date, so it can be said that no design tradition really exists in this area. For this reason it is considered to be of great importance to develop...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  3. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  4. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.

  5. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  6. Floating attenuator wave energy device: Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes research funded by the Department of Trade and Industry (DTI) into the feasibility of developing and constructing a floating attenuator wave energy device known as HYDRA following initial studies by Wavegen. HYDRA is a floating externally tensioned articulated raft wave energy generator based on work by Professor FJM Farley and colleagues during the 1980s. The project's first four work tasks confirmed the theoretical potential of the device but also highlighted significant practical problems in translating that potential into a viable design. It was therefore decided not to proceed further, i.e. not to construct and test a prototype device. The report provides a general description of the device and describes the results of the initial analysis and the first series of model tests. It then discusses device design and component testing and explains the methodology for determining device performance at a particular site and mathematical modelling of a one-third scale device. To help future research and development programmes, the report emphasises the generic problems associated with the development of wave devices.

  7. Research on a new wave energy absorption device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  8. Preliminary Load Estimations for DEXA Wave Energy Device - Hanstholm, Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    by DEXA Wave Energy ApS, in regular and irregular wave states, as described in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The length scale of the model was 1:20 compared to a full scale device suitable fro the Danish part of the North Sea, according...... to DEXA Wave Energy ApS. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by DEXA Wave Energy ApS, were measured and used for calculation of power available...... to the power take-off....

  9. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  10. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...... these models, estimates of the power production, eciency, forces and moments are made. We nd that it is possible to extract a signicant amount of energy from an ocean wave using the described device. Further studies are required for a full treatment of the device....

  11. Characterisation of the biofouling community on a floating wave energy device.

    Science.gov (United States)

    Nall, Christopher R; Schläppy, Marie-Lise; Guerin, Andrew J

    2017-05-01

    Wave energy devices are novel structures in the marine environment and, as such, provide a unique habitat for biofouling organisms. In this study, destructive scrape samples and photoquadrats were used to characterise the temperate epibenthic community present on prototypes of the Pelamis wave energy converter. The biofouling observed was extensive and diverse with 115 taxa recorded including four non-native species. Vertical zonation was identified on the sides of the device, with an algae-dominated shallow subtidal area and a deeper area characterised by a high proportion of suspension-feeding invertebrates. Differences in species composition and biomass were also observed between devices, along the length of the device and between sampling dates. This research provides an insight into the variation of biofouling assemblages on a wave energy device as well as the potential technical and ecological implications associated with biofouling on marine renewable energy structures.

  12. The environmental interactions of tidal and wave energy generation devices

    International Nuclear Information System (INIS)

    Frid, Chris; Andonegi, Eider; Depestele, Jochen; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: ► We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. ► Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. ► Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. ► Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  13. The environmental interactions of tidal and wave energy generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Frid, Chris, E-mail: c.l.j.frid@liv.ac.uk [School of Environmental Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB (United Kingdom); Andonegi, Eider, E-mail: eandonegi@azti.es [AZTI-Tecnalia, Txatxarramendi ugartea, z/g E-48395 Sukarrieta (Bizkaia) (Spain); Depestele, Jochen, E-mail: jochen.depestele@ilvo.vlaanderen.be [Institute for Agricultural and Fisheries Research, Ankerstraat 1, B-8400 Oostende (Belgium); Judd, Adrian, E-mail: Adrian.Judd@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Rihan, Dominic, E-mail: Dominic.RIHAN@ec.europa.eu [Irish Sea Fisheries Board, P.O. Box 12 Dun Laoghaire, Co. Dublin (Ireland); Rogers, Stuart I., E-mail: stuart.rogers@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science , Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT United Kingdom (United Kingdom); Kenchington, Ellen, E-mail: Ellen.Kenchington@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth Canada, NS B2Y 4A2 (Canada)

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  14. Reliability and Maintenance for Offshore Wind Turbines and Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines are in some countries contributing significantly the production of electricity and wave energy devices have the potential to be developed in a similarway. For both offshore wind turbines and wave energy devices reliability is a key issue since costs to operation and maintenance may...... be significant contributors to the Levelized Cost Of Energy and OM costs are highly dependent on the reliability of the components implying that it is important to focus on increasing the reliability as much as is economically reasonable. This paper describes basic aspects for reliability analysis of wind...... turbines and wave energy devices with special focus on structural components. The reliability assessment needs include the effects of the control system and possible faults due to failure of electrical/mechanical components and e.g. loss of grid connection. The target reliability level for wind turbine...

  15. Control Strategies for Arrays of Wave Energy Devices

    OpenAIRE

    Westphalen, J; Bacelli, G; Balitsky, P; Ringwood, John

    2011-01-01

    In this paper, we investigate the differences between two control strategies for a two-device linear array of wave energy converters (WEC) for device spacings of 4 to 80 times the device diameter. The WECs operate in heave only and are controlled in real time. The control strategies, called the independent device and global array control, estimate the excitation forces and calculate the optimum vertical velocity trajectory and reactive power take off force to achieve the ...

  16. Wave energy devices with compressible volumes.

    Science.gov (United States)

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-08

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.

  17. Innovative wave energy device applied to coastal observatory systems

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Piermattei, Viviana; Scanu, Sergio; Paladini de Mendoza, Francesco; Martellucci, Riccardo; Maximo, Peviani

    2017-04-01

    Marine environment is one of the most promising sources of renewable energy, whose exploitation could have an effect on several application fields. This work presents the design of an innovative device based on the Oscillating Water Column (OWC), that allows to convert wave energy into electricity, suitable for the typical Mediterranean wave climate. The flexibility of the device permits its installation either in deep or shallow waters, with reduced costs of deployment, maintenance and connection to the grid. Furthermore, the replicability of the design allows the device to be installed in array of several number of similar units. The technical concept is to convey the sea water within a vertical pipe, in which the water movements activate a rotor connected to a generator that transforms the energy of the water motion into electricity. The hydrodynamic design of the pipe is built to minimize the losses due to friction and turbulence and to exploit the maximum possible energy from wave motion. The wave energy is directly absorbed by the rotational movement of the turbine blades located in the water itself allowing a further reduction of the energy losses associated with the transformation of the linear water motion into electrical generation in the air phase (typical configuration of the OWC devices). In this work the device components are described considering two possible configurations that use a Wells turbine or a Bulb type turbine. The system can be realized at a low cost, because of the modularity of the device project, which allows large freedom of sizes and placements, being able to be installed both individually and in arrays. The modularity, associated with the fact that the main elements of the system are available on the market, makes the device particularly attractive from the economic point of view. Finally, it is realized with a high constructive flexibility: the proposed system can be transported floating and moored to existing coastal structures or

  18. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    Science.gov (United States)

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  19. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    Science.gov (United States)

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  20. The environmental interactions of tidal and wave energy generation devices

    OpenAIRE

    Frid, C.; Andonegi, E.; Depestele, J.; Judd, A.; Rihan, D.; Rogers, S.I.; Kenchington, E.

    2012-01-01

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other...

  1. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  2. Report on feasibility study of the Clam Wave Energy Device

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    The main emphasis of the feasibility study has been towards producing an acceptable spine design for the Clam wave energy converter. Concrete and steel designs based on a mathematical model of the waveloading have been produced. Progress is also reported in the design of a bellows for a low-pressure air power transmission system. A narrow wave tank and scale model have been constructed in order to carry out a test programme on various aspects of the device's construction and performance.

  3. High energy devices versus low energy devices in orthopedics treatment modalities

    Science.gov (United States)

    Schultheiss, Reiner

    2003-10-01

    The orthopedic consensus group defined in 1997 the 42 most likely relevant parameters of orthopedic shock wave devices. The idea of this approach was to correlate the different clinical outcomes with the physical properties of the different devices with respect to their acoustical waves. Several changes in the hypothesis of the dose effect relationship have been noticed since the first orthopedic treatments. The relation started with the maximum pressure p+, followed by the total energy, the energy density; and finally the single treatment approach using high, and then the multiple treatment method using low energy. Motivated by the reimbursement situation in Germany some manufacturers began to redefine high and low energy devices independent of the treatment modality. The OssaTron as a high energy, single treatment electro hydraulic device gained FDA approval as the first orthopedic ESWT device for plantar fasciitis and, more recently, for lateral epicondylitis. Two low energy devices have now also gained FDA approval based upon a single treatment. Comparing the acoustic data, differences between the OssaTron and the other devices are obvious and will be elaborated upon. Cluster analysis of the outcomes and the acoustical data are presented and new concepts will be suggested.

  4. Research status of wave energy conversion (WEC) device of raft structure

    Science.gov (United States)

    Dong, Jianguo; Gao, Jingwei; Tao, Liang; Zheng, Peng

    2017-10-01

    This paper has briefly described the concept of wave energy generation and six typical conversion devices. As for raft structure, detailed analysis is provided from its development process to typical devices. Taking the design process and working principle of Plamis as an example, the general principle of raft structure is briefly described. After that, a variety of raft structure models are introduced. Finally, the advantages and disadvantages, and development trend of raft structure are pointed out.

  5. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    's first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  6. Numerical and tank test of a pivoted floating device for wave energy

    International Nuclear Information System (INIS)

    Coiro, Domenico P.; Calise, Giuseppe; Bizzarrini, Nadia; Troise, Giancarlo

    2015-01-01

    In this paper a system for extracting energy from waves is presented. The present work deals with numerical and experimental tests on a scaled model, performed in the DII towing tank facility. The device is made up of a floating body, which oscillates due to waves, and of a linear electromechanical generator. The electromechanical generator, based on ball-bearing screw, is linked both to the buoyant body and a fixed frame, converting relative movements of its anchor point in electrical power. Numerical analyses on such device have been performed in order to evaluate critical parameters for the system optimization, including analytical study of the system, potential flow and computational fluid dynamics (CFD) simulations, based on Reynolds Averaged Navier-Stokes (RANS), as well. [it

  7. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    International Nuclear Information System (INIS)

    Klingler, S.; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.

    2015-01-01

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves

  8. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw-muenchen.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2015-05-25

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.

  9. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  10. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  11. Development of Wave Energy Devices: The Danish Case / The Dragon of Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    2009-01-01

    The paper presents the Danish case of development of wave energy devices and outlines the established best practice. A brief overview of international standardization efforts is given and the Danish involvement in this described. The developed Danish best practice, which is being carried over to ...

  12. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  13. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and ......The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack...

  14. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  15. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  16. Nanoporous metal film: An energy-dependent transmission device for electron waves

    International Nuclear Information System (INIS)

    Grech, S.; Degiovanni, A.; Lapena, L.; Morin, R.

    2011-01-01

    We measure electron transmission through free-standing ultrathin nanoporous gold films, using the coherent electron beam emitted by sharp field emission tips in a low energy electron projection microscope setup. Transmission coefficient versus electron wavelength plots show periodic oscillations between 75 and 850 eV. These oscillations result from the energy dependence of interference between paths through the gold and paths through the nanometer-sized pores of the film. We reveal that these films constitute high transmittance quantum devices acting on electron waves through a wavelength-dependent complex transmittance defined by the porosity and the thickness of the film.

  17. Design of a non-linear power take-off simulator for model testing of rotating wave energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.F.P.; Henriques, J.C.C.; Lopes, Miguel C.; Gato, L.M.C. [IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Dente Antonio [CIE3 - Center for Innovation in Electrical and Energy Engineering, Lisboa (Portugal)

    2009-07-01

    Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in the model testing of wave energy converters at small scale. These are based on the principle that a conductive material moving perpendicularly to a magnetic field generates a braking force proportional to its velocity. This was applied in the design of the PTO simulator of a bottom-hinged flap wave energy converter model, at 1/16 scale. The efforts put into the accurate dynamic simulation of the device led to the development of a controllable PTO simulator, which can be applied to other small scale rotating wave energy device models. A special power source was built to provide the required controllable current intensity to feed the magnetic field generating coils. Different non-linear damping PTO characteristic curves can be simulated by basing the current control on real-time velocity measurement. The calibration of the system was done by connecting the device to a constant rotating speed motor and measuring the resistent torque produced by the PTO with a torquemeter for different values of current intensity through the coils.

  18. Resonant Wave Energy Converters: Concept development

    International Nuclear Information System (INIS)

    Arena, Felice; Barbaro, Giuseppe; Fiamma, Vincenzo; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati, Federica Mara

    2015-01-01

    The Resonant Wave Energy Converter (REWEC) is a device for converting sea wave energy to electrical energy. It belongs to the family of Oscillating Water Columns and is composed by an absorbing chamber connected to the open sea via a vertical duct. The paper gives a holistic view on the concept development of the device, starting from its implementation in the context of submerged breakwaters to the recently developed vertical breakwaters. [it

  19. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  20. Compact toroidal energy storage device with relativistically densified electrons through the use of travelling magnetic waves

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.

    1983-01-01

    A new concept for a small compact multimegajoule energy storage device utilizing relativistically densified electron beam circulating in a torus is presented. The electron cloud is produced through inductive charge injection by a travelling magnetic wave circulating the torus. Parameters are given for two representative toroidal energy storage devices, consisting of 1 m and 32 m in radius respectively, which could store more than 4 x 10 17 electrons and 30' MJ in energy. The concept utilizes the idea that large electric and magnetic fields can be produced by a partially space-charge neutralized intense relativistic electron beam which could become many orders of magnitude greater than the externally applied field confining the beam. In the present approach, the electron cloud densification can be achieved gradually by permitting multiple traversals of the magnetic wave around the torus. The magnetic mirror force acts on the orbital magnetic electron dipole moment and completely penetrates the entire electron cloud. As the electrons gain relativistic energies, the beam can be continuously densified at the front of the travelling wave, where the magnetic field is rising with time. The use of travelling magnetic wave to accelerate an electron cloud and the use of large electric field at the thusly accelerated cloud form the basis for a high beam intensity and hence high energy storage. Technical considerations and several potential applications, which include the driving of a powerful gyrotron, are discussed

  1. Experimental Study of a Multi Level Overtopping Wave Power Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Hald, Tue; Frigaard, Peter Bak

    2002-01-01

    Results of experimental investigations of a floating wave energy device called Power Pyramid is presented. The Power Pyramid utilizes reservoirs in multiple levels when capturing wave overtopping and converting it into electrical energy. The effect of capturing the overtopping in multiple levels,......, using 5 levels introduces practical problems, and is most probably not economically feasible. It is concluded that it is reasonable to use 2 levels (maybe 3), which can increase the efficiency by 25-40 % compared to using a single level.......Results of experimental investigations of a floating wave energy device called Power Pyramid is presented. The Power Pyramid utilizes reservoirs in multiple levels when capturing wave overtopping and converting it into electrical energy. The effect of capturing the overtopping in multiple levels......, compared to only one level, has been evaluated experimentally. From the experimental results, and the performed optimizations based on these, it has been found that the efficiency of a wave power device of the overtopping type can be increased by as much as 76 % by using 5 levels instead of 1. However...

  2. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  3. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    Science.gov (United States)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  4. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  5. Specification of Instrumentation of Multi MW Wave Dragon Offshore Wave Energy Converter

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the exp......Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based...

  6. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  7. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  8. Wave energy for the 21st century: status and prospects

    International Nuclear Information System (INIS)

    Thorpe, Tom

    2000-01-01

    This article reviews the current technical and commercial status of wave energy, and discusses the design of near shore devices such as the 2MW OSPREY, and offshore devices including the McCabe wave pump, the Ocean Power Technology Wave Energy Converter, the Archimedes Wave Swing, the Pelamis, and wave energy schemes under development by other commercial firms. The predicted generating costs, the potential market, environmental impacts, and institution factors such as planning and consent, grid connection,and safety in design and operation are considered. The operating principles of an oscillating water column, and some promising offshore devices are illustrated

  9. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    2007-01-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived...... experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient...... to allow advanced control systems to be developed using this knowledge to significantly improve power capture....

  10. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, J.; Frigaard, P. [Department of Civil Engineering, Aalborg University, Aalborg (Denmark)

    2007-07-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient to allow advanced control systems to be developed using this knowledge to significantly improve power capture.

  11. The 'CETO' wave power generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Profitt, Michael

    2007-07-01

    Renewable Energy Holdings plc (REH) is an international company established to be an operator of, and undertake active investments in both proven and innovative renewable energy technologies. The CETO devices have been developed in Western Australia by Seapower Pacific PTY Ltd (SPPL), a subsidiary of Renewable Energy Holdings Plc (REH). This paper reports on the technology and also includes the findings from an independent technical appraisal undertaken by PB Power. The CETO device consists primarily of a novel pump anchored to the seabed and driven by a spherical buoyant actuator that collects wave energy and transmits it to the pump. High pressure seawater is delivered ashore where it can be used to drive a turbine to generate electricity or passed through a reverse osmosis desalination unit to produce fresh water. The competitive edge of CETO against other current wave and tidal generation devices: Electricity generated onshore (using well-proven hydro-power technology); Low cost mass produced device; Simplified infrastructure from pumping pressurised sea water ashore rather than electricity; Allows shore-based desalination; Modular design and self deployment; and, Transport in standard containers.

  12. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and reduce...... loads in extreme wave conditions. This A-shaped floating structure absorbs the energy in the waves through a multitude of rotors, the shape of which is based on the renowned Salter’s Duck. These rotors pivot around a common axle, one for each leg of the structure, to which the rotors transfer...... the absorbed wave energy and which is connected to a common power take off system (one for each leg). The study investigates the performance of the device in a large range of wave states and estimates the performance in terms of mechanical power available to the power take off system of the WEPTOS WEC for two...

  13. Energy conversion of orbital motions in gravitational waves: Simulation and test of the Seaspoon wave energy converter

    International Nuclear Information System (INIS)

    Di Fresco, L.; Traverso, A.

    2014-01-01

    Highlights: • We investigate an innovative wave energy converter. • We study a robust technology derived from wind power sector. • We increased the performance of a drag type rotor exploiting the motion of ocean waves and a simple flat plate component. • We proved the working principle with a numerical model first and with experimental test in wave flume later. • We aim to obtain a robust large energy harvester able to operate in mild energy sea and with an extended operating range. - Abstract: The conversion of ocean wave power into sustainable electrical power represents a major opportunity to Nations endowed with such a kind of resource. At the present time the most of the technological innovations aiming at converting such resources are at early stage of development, with only a handful of devices close to be at the commercial demonstration stage. The Seaspoon device, thought as a large energy harvester, catches the kinetic energy of ocean waves with promising conversion efficiency, and robust technology, according to specific “wave-motion climate”. University of Genoa aims to develop a prototype to be deployed in medium average energy content seas (i.e. Mediterranean or Eastern Asia seas). This paper presents the first simulation and experimental results carried out on a reduced scale proof-of-concept model tested in the laboratory wave flume

  14. Practical performances of MPC for wave energy converters

    DEFF Research Database (Denmark)

    Ferri, Francesco; Tetu, Amelie; Hals, J.

    2016-01-01

    Maximising the efficiency of Wave Energy Converter (WEC) is one of the important tasks toward the exploitation of the wave energy resource. Along with a proper design of the device, an important way to achieve better energy performances is to improve the wave-body interaction by applying an appro...

  15. Numerical and experimental investigation of wave dynamics on a land-fixed OWC device

    International Nuclear Information System (INIS)

    Ning, De-Zhi; Wang, Rong-Quan; Gou, Ying; Zhao, Ming; Teng, Bin

    2016-01-01

    An Oscillating Water Column (OWC) Wave Energy Converter (WEC) is a device that converts the energy of ocean waves to electrical energy. When an OWC is designed, both its energy efficiency and the wave loads on it should be considered. Most attentions have been paid to the energy efficiency of an OWC device in the past several decades. In the present study, the fully nonlinear numerical wave model developed by Ning et al. (2015) [1] is extended to simulate the dynamic wave forces on the land-fixed OWC device by using the acceleration potential method, and the experimental tests are also carried out. The comparisons between numerical results and experimental data are performed. Then the effects of wave conditions and chamber geometry on the wave force on the front wall of the chamber are investigated. The results indicate that the total wave force decreases with the increase of the wavelength and increases with the increase of the incident wave height. The wave force is also strongly influenced by the opening ratio, i.e., in the low-frequency region, the larger the opening ratio, the smaller the wave force and it shows an opposite tendency in the high-frequency region. - Highlights: • The wave dynamics on a land-fixed OWC device is numerically and experimentally studied. • The largest wave pressure occurs on the outside of the front wall on the free surface under the action of the wave crest. • The total horizontal wave load on the front wall decreases with the increase of the wavelength. • The opening ratio greatly influences the wave force on the front wall.

  16. Wave energy resource assessment and review of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan Nik, W.B.: Sulaiman, O.O. [Maritime Technology Department, Universiti Malaysia Terengganu, 21030, Kuala Terengganu (Malaysia); Rosliza, R. [TATI University College, Teluk Kalong, 24000 Kemaman, Terengganu, (Malaysia); Prawoto, Y. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Muzathik, A.M. [Institute of Technology, University of Moratuwa (Sri Lanka)

    2011-07-01

    Increase in human population has increased the demand for more energy. Technical improvement in transport and electrical appliances gives a lot of facilities to our life nowadays. Still we need to generate or convert this energy. Energy generation based on conventional technologies is always accompanied by environmental pollution. It gives overheating and greenhouse effects that later result in biosphere degradation. Nowadays sea wave energy is being increasingly regarded in many countries as a major and promising resource. It is renewable and environmentally friendly. In this paper wave parameters related to wave energy is analyzed. Then the paper describes the development of many different types of wave-energy converters. Several topics are addressed; the characterization of the wave energy resource, range of devices and how such devices can be organized into classes.

  17. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  18. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  19. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  20. Quasi-static analysis of wave loadings on spine-based wave energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, F.P.; Peatfield, A.M.; West, M.J.

    1980-02-01

    A report is given on the Wave Energy Research Programme at Lanchester Polytechnic. Results are presented for both theoretical and experimental scale models for wave loadings on circular and rectangular spines of various lengths. The results are in good agreement over the operational wave range for the 1/50 scale model and for the more limited data on the 1/10 scale model.

  1. Electricity from wave and tide an introduction to marine energy

    CERN Document Server

    Lynn, Paul A

    2014-01-01

    This is a concise yet technically authoritative overview of modern marine energy devices with the goal of sustainable electricity generation. With 165 full-colour illustrations and photographs of devices at an advanced stage, the book provides inspiring case studies of today's most promising marine energy devices and developments, including full-scale grid-connected prototypes tested in sea conditions. It also covers the European Marine Energy Centre (EMEC) in Orkney, Scotland, where many of the devices are assessed. Topics discussed: global resources - drawing energy from the World's waves and tides history of wave and tidal stream systems theoretical background to modern developments conversion of marine energy into grid electricity modern wave energy converters and tidal stream energy converters. This book is aimed at a wide readership including professionals, policy makers and employees in the energy sector needing an introduction to marine energy. Its descriptive style and technical level will also appea...

  2. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...

  3. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  4. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    Science.gov (United States)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  5. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  6. What can wave energy learn from offshore oil and gas?

    Science.gov (United States)

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.

  7. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  8. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  9. Wave energy absorption by a floating air bag

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Chaplin, John; Greaves, Deborah

    2017-01-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting...

  10. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  11. Physical measurements of breaking wave impact on a floating wave energy converter

    Science.gov (United States)

    Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison

    2013-04-01

    Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.

  12. WaveSAX device: design optimization through scale modelling and a PTO strategical control system

    Science.gov (United States)

    Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto

    2017-04-01

    WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench

  13. A parametric costing model for wave energy technology

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the philosophy and technical approach to a parametric cost model for offshore wave energy systems. Consideration is given both to existing known devices and other devices yet to be conceptualised. The report is complementary to a spreadsheet based cost estimating model. The latter permits users to derive capital cost estimates using either inherent default data or user provided data, if a particular scheme provides sufficient design definition for more accurate estimation. The model relies on design default data obtained from wave energy device designs and a set of specifically collected cost data. (author)

  14. Traveling-wave device with mass flux suppression

    Science.gov (United States)

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2000-01-01

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  15. Wave power integration with a renewable hydrogen energy system. Paper no. IGEC-1-085

    International Nuclear Information System (INIS)

    St. Germain, L.; Wild, P.; Rowe, A.

    2005-01-01

    In British Columbia, approximately 90% of the electricity generated comes from hydroelectric facilities while another abundant and renewable resource, ocean wave energy, is not being utilized at all. Technologies exist that can capture and convert wave energy but there are few studies examining systemic integration of wave energy devices. This work examines the potential to use wave energy as an input into a hydrogen-based renewable energy system. A model of an oscillating water column (OWC) was developed as a module within TRNSYS where it can be coupled to other existing hydrogen-specific components such as an electrolyser, storage device, and fuel cell. The OWC model accounts for device geometry, dynamics, and generator efficiency. For this particular study, wave profiles generated from hourly average data for a location on the west coast of Vancouver Island are used as a resource input. An analysis of the potential to utilise wave energy is carried out with an emphasis on overall system efficiency and resulting device scaling. The results of the integration of wave energy with other renewable energy inputs into a hydrogen-based system are used to make recommendations regarding technical feasibility of wave power projects on Vancouver Island. (author)

  16. Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2018-04-01

    Full Text Available A fixed, concentric, cylindrical oscillating water column (OWC wave energy converter (WEC is proposed for shallow offshore sites. Compared with the existing shoreline OWC device, this wave energy device is not restricted by the wave directions and coastline geography conditions. Analytical solutions are derived based on the linear potential-flow theory and eigen-function expansion technique to investigate hydrodynamic properties of the device. Three typical free-surface oscillation modes in the chamber are discussed, of which the piston-type mode makes the main contribution to the energy conversion. The effects of the geometrical parameters on the hydrodynamic properties are further investigated. The resonance frequency of the chamber, the power extraction efficiency, and the effective frequency bandwidth of the device is discussed, amongst other topics. It is found that the proposed OWC-WEC device with a lower draft and wider chamber breadth has better power extraction ability.

  17. Key features of wave energy.

    Science.gov (United States)

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.

  18. Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2011-01-01

    The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....

  19. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose

    Science.gov (United States)

    Behzad, Hamed; Panahi, Roozbeh

    2017-06-01

    In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.

  20. Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part I: Wave Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Marine hydrokinetic energy is a promising and growing piece of the renewable energy sector that offers high predictability and additional energy sources for a diversified energy economy. This report investigates the market opportunities for wave energy along the U.S. coastlines. It is part one of a two-part investigation into the United State's two largest marine hydrokinetic resources (wave and tidal). Wave energy technology is still an emerging form of renewable energy for which large-scale, grid-connected project costs are currently poorly defined. Ideally, device designers would like to know the resource conditions at economical project sites so they can optimize device designs. On the other hand, project developers need detailed device cost data to identify sites where projects are economical. That is, device design and siting are, to some extent, a coupled problem. This work describes a methodology for identifying likely deployment locations based on a set of criteria that wave energy experts in industry, academia, and national laboratories agree are likely to be important factors for all technology types. This work groups the data for the six criteria into 'locales' that are defined as the smaller of either the local transmission grid or a state boundary. The former applies to U.S. islands (e.g., Hawaii, American Samoa) and rural villages (e.g., in Alaska); the latter applies to states in the contiguous United States. These data are then scored from 0 to 10 according to scoring functions that were developed with input from wave energy industry and academic experts. The scores are aggregated using a simple product method that includes a weighting factor for each criterion. This work presents two weighting scenarios: a long-term scenario that does not include energy price (weighted zero) and a near term scenario that includes energy price. The aggregated scores are then used to produce ranked lists of likely deployment locales. In both scenarios

  1. Geometry Optimization of an Overtopping Wave Energy Device Implemented into the New Breakwater of the Hanstholm Port Expansion

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Stratigaki, Vasiliki; Troch, Peter

    2012-01-01

    breakwater is 1.5 km and the water depth ranges approximately from 8.0 m up to 14 m with localized influences on the wave climate. The study is conducted numerically in order to present the expected power production and overall performance of the SSG breakwater in Hanstholm. The price par kWh is also......The study presented here describes the geometry optimization of the Sea wave Slot cone Generator (SSG) overtopping wave energy converter as part of the feasibility study for the implementation of the device in the development plan of Hanstholm harbour in Denmark. The total length of the new planned...

  2. Near-surface viscosity measurements with a love acoustic wave device

    International Nuclear Information System (INIS)

    Collings, A.F.; Cooper, B.J.; Lappas, S.; Sor, J.A.

    1999-01-01

    Full text: In the last decade, considerable research effort has been directed towards interfacing piezoelectric transducers with biological detection systems to produce efficient and highly selective biosensors. Several types of piezoelectric or, more specifically, acoustic wave transducers have been investigated. Our group has developed Love wave (guided surface skimming wave) devices which are made by attaching a thin overlayer with the appropriate acoustic properties to the surface of a conventional surface horizontal mode device. An optimised layer concentrates most of the propagating wave energy in the guiding layer and can improve the device sensitivity in detecting gas-phase mass loading on the surface some 20- to 40-fold. Love wave devices used in liquid phase sensing will also respond to viscous, as well as mass, loading on the device surface. We have studied the propagation of viscous waves into liquid sitting on a Love wave device both theoretically and experimentally. Modelling of the effect of a viscous liquid layer on a Love wave propagating in a layered medium predicts the velocity profile in the solid substrate and in the adjoining liquid. This is a function of the thickness of the guiding layer, the elastic properties of the guiding layer and the piezoelectric substrate, and of the viscosity and density of the liquid layer. We report here on measurements of the viscosity of aqueous glycerine solutions made with a quartz Love wave device with a 5.5 μm SiO 2 guiding layer. The linear relationship between the decrease in the device frequency and the square root of the viscosity density product is accurately observed at Newtonian viscosities. At higher viscosities, there is an increase in damping, the insertion loss of the device saturates, Δf is no longer proportional to (ηp) l/2 and reaches a maximum. We also show results for the determination of the gelation time in protein and inorganic aqueous gels and for the rate of change of viscosity with

  3. Measurements of Overtopping Flow Time Series on the Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    2009-01-01

    A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow the character......A study of overtopping flow series on the Wave Dragon prototype, a low crested device designed to maximise flow, in a real sea, is presented. This study aims to fill the gap in the literature on time series of flow overtopping low crested structures. By comparing to a simulated flow...... the characteristics of the overtopping flow are discussed and the simulation algorithm is tested. Measured data is shown from a storm build up in October 2006, from theWave Dragon prototype situated in an inland sea in Northern Denmark. This wave energy converter extracts energy from the waves, by funnelling them...

  4. Control-Informed Geometric Optimization of Wave Energy Converters: The Impact of Device Motion and Force Constraints

    Directory of Open Access Journals (Sweden)

    Paula B. Garcia-Rosa

    2015-12-01

    Full Text Available The energy cost for producing electricity via wave energy converters (WECs is still not competitive with other renewable energy sources, especially wind energy. It is well known that energy maximising control plays an important role to improve the performance of WECs, allowing the energy conversion to be performed as economically as possible. The control strategies are usually subsequently employed on a device that was designed and optimized in the absence of control for the prevailing sea conditions in a particular location. If an optimal unconstrained control strategy, such as pseudo-spectral optimal control (PSOC, is adopted, an overall optimized system can be obtained no matter whether the control design is incorporated at the geometry optimization stage or not. Nonetheless, strategies, such as latching control (LC, must be incorporated at the optimization design stage of the WEC geometry if an overall optimized system is to be realised. In this paper, the impact of device motion and force constraints in the design of control-informed optimized WEC geometries is addressed. The aim is to verify to what extent the constraints modify the connection between the control and the optimal device design. Intuitively, one might expect that if the constraints are very tight, the optimal device shape is the same regardless of incorporating or not the constrained control at the geometry optimization stage. However, this paper tests the hypothesis that the imposition of constraints will limit the control influence on the optimal device shape. PSOC, LC and passive control (PC are considered in this study. In addition, constrained versions of LC and PC are presented.

  5. Effects of Wave Energy Converter (WEC) Arrays on Wave, Current, and Sediment Circulation

    Science.gov (United States)

    Ruehl, K.; Roberts, J. D.; Jones, C.; Magalen, J.; James, S. C.

    2012-12-01

    The characterization of the physical environment and commensurate alteration of that environment due to Wave Energy Conversion (WEC) devices, or arrays of devices, must be understood to make informed device-performance predictions, specifications of hydrodynamic loads, and environmental evaluations of eco-system responses (e.g., changes to circulation patterns, sediment dynamics, and water quality). Hydrodynamic and sediment issues associated with performance of wave-energy devices will primarily be nearshore where WEC infrastructure (e.g., anchors, piles) are exposed to large forces from the surface-wave action and currents. Wave-energy devices will be subject to additional corrosion, fouling, and wear of moving parts caused by suspended sediments in the water column. The alteration of the circulation and sediment transport patterns may also alter local ecosystems through changes in benthic habitat, circulation patterns, or other environmental parameters. Sandia National Laboratories is developing tools and performing studies to quantitatively characterize the environments where WEC devices may be installed and to assess potential affects to hydrodynamics and local sediment transport. The primary tools are wave, hydrodynamic, and sediment transport models. To ensure confidence in the resulting evaluation of system-wide effects, the models are appropriately constrained and validated with measured data where available. An extension of the US EPA's EFDC code, SNL-EFDC, provides a suitable platform for modeling the necessary hydrodynamics;it has been modified to directly incorporate output from a SWAN wave model of the region. Model development and results are presented. In this work, a model is exercised for Monterey Bay, near Santa Cruz where a WEC array could be deployed. Santa Cruz is located on the northern coast of Monterey Bay, in Central California, USA. This site was selected for preliminary research due to the readily available historical hydrodynamic data

  6. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  7. Investigation and Optimisation of a Discrete Fluid Power PTO-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard

    Patents on ocean wave energy dates back to 1799, however no wave energy converter (WEC) concept have a commercialised device. The cost of energy produced with wave energy converters is very high compared to traditional energy sources. Even when compared to energy from wind turbines wave energy...... investigation show how the wave climate naturally influence the optimal system configuration yielding maximal energy output, and how one may choose the system configuration based on the installation site. The switching manifold is the control element of the secondary controlled force system. The force...... needs cost reductions. Hence, next to political will, the main obstacle for a commercial break through of wave energy technology is the high cost of energy. Initiatives to lower costs are made in areas of minimising structural costs and increasing the energy production per device. Wave Star A/S has...

  8. On the dynamics of a novel ocean wave energy converter

    KAUST Repository

    Orazov, B.

    2010-11-01

    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 2565 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device\\'s power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used. © 2010 Elsevier Ltd. All rights reserved.

  9. Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting.

    Science.gov (United States)

    Xiao, Tian Xiao; Jiang, Tao; Zhu, Jian Xiong; Liang, Xi; Xu, Liang; Shao, Jia Jia; Zhang, Chun Lei; Wang, Jie; Wang, Zhong Lin

    2018-01-31

    Triboelectric nanogenerator (TENG) has been proven to be efficient for harvesting water wave energy, which is one of the most promising renewable energy sources. In this work, a TENG with a silicone rubber/carbon black composite electrode was designed for converting the water wave energy into electricity. The silicone-based electrode with a soft texture provides a better contact with the dielectric film. Furthermore, a spring structure is introduced to transform low-frequency water wave motions into high-frequency vibrations. They together improve the output performance and efficiency of TENG. The output performances of TENGs are further enhanced by optimizing the triboelectric material pair and tribo-surface area. A spring-assisted TENG device with the segmented silicone rubber-based electrode structure was sealed into a waterproof box, which delivers a maximum power density of 2.40 W m -3 , as triggered by the water waves. The present work provides a new strategy for fabricating high-performance TENG devices by coupling flexible electrodes and spring structure for harvesting water wave energy.

  10. Estimation of Downtime and of Missed Energy Associated with a Wave Energy Converter by the Equivalent Power Storm Model

    Directory of Open Access Journals (Sweden)

    Felice Arena

    2015-10-01

    Full Text Available The design of any wave energy converter involves the determination of relevant statistical data on the wave energy resource oriented to the evaluation of the structural reliability and energy performance of the device. Currently, limited discussions concern the estimation of parameters connected to the energy performance of a device. Thus, this paper proposes a methodology for determining average downtime and average missed energy, which is the energy that is not harvested because of device deactivations during severe sea storms. These quantities are fundamental for evaluating the expected inactivity of a device during a year or during its lifetime and are relevant for assessing the effectiveness of a device working at a certain site. For this purpose, the equivalent power storm method is used for their derivation, starting from concepts pertaining to long-term statistical analysis. The paper shows that the proposed solutions provide reliable estimations via comparison with results obtained by processing long wave data.

  11. Floating attenuator wave energy device. Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Wavegen Project which set out to develop a floating externally tensioned articulated wave-energy generator based on work carried out at RMCS Shrivenham in the 1980s has been abandoned until further notice. The computer modelling carried out in the early days indicated much promise, but the promise turned to disappointment when difficulties cropped-up in attempting to put the design into practice. A particular problem arose in matching the external tension to an equivalent beam stiffness to tune the natural bending frequency of the raft to that of the driving waves. A further eleven practical problems encountered are discussed.

  12. Operation and maintenance strategies for wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Marquis, Laurent; Kofoed, Jens Peter

    2015-01-01

    costs including costs due to lost electricity production are minimized. The risk-based approach is compared with an approach where only boats are used and another approach where the target is to minimize the downtime of the device. This article presents a dynamic approach for total operation......Inspection and maintenance costs are a significant contributor to the cost of energy for wave energy converters. There are different operation and maintenance strategies for wave energy converters. Maintenance can be performed after failure (corrective) or before a breakdown (preventive) occurs....... Furthermore, a helicopter and boats can be used to transport equipment and personnel to the device, or the whole device can be towed to a harbour for operation and maintenance actions. This article describes, among others, a risk-based inspection and maintenance planning approach where the overall repair...

  13. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  14. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  15. Wave-to-wire Modelling of Wave Energy Converters : Critical Assessment, Developments and Applicability for Economical Optimisation

    DEFF Research Database (Denmark)

    Ferri, Francesco

    The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly...... untapped, renewable energy resource that has the potential to contribute significantly to the future energy mix, especially in an environmental friendly future scenario. What is bounding the sector to roll off into the market is the cost of the produced energy: too high if compared with other renewable...... energy sources. Generally speaking, the devices have a low efficiency and a high structural cost. The aim of the thesis is to push the research toward a cost minimisation algorithm, based on numerical simulation, which account for both efficiency and structural cost of the device. In order to achieve...

  16. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    International Nuclear Information System (INIS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-01-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2∼1.0μW in the Human heart rate range on the skin contact area of 3.71cm 2 . Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves

  17. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  18. Stochastic control of inertial sea wave energy converter.

    Science.gov (United States)

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  19. Wave-to-wire Modelling of Wave Energy Converters : Critical Assessment, Developments and Applicability for Economical Optimisation

    DEFF Research Database (Denmark)

    Ferri, Francesco

    The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly unt...

  20. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  1. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  2. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  3. Investigation of Wave Height Reduction behind the Wave Dragon Wave Energy Converters and Application in Santander, Spain

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...

  4. Hydraulic Evaluation of the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the power production of the device, based...... on laboratory testing of a model of the WEC provided by LEANCON. LEANCON, represented by Kurt Due Rasmussen, has been heavily involved in the testing of the device, including the instrumentation, model setup and execution of the tests in the laboratory, all under the supervision of the personnel of the Wave...... Energy Research Group at Department of Civil Engineering, Aalborg University....

  5. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  6. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  7. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  8. Further development of the SEA-Clam wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.; Peatfield, A.M.

    1984-04-01

    The final design of the SEA-Clam as a unit for a large 2 GW scheme has been described. This is the leading wave energy device arising out of the UK National Wave Energy Program and is seen as having the greatest potential for further development particularly for smaller scale applications. The small scale market for wave energy is examined and the design and cost parameters evaluated for the 250 kW to 1000 kW range of SEA-Clam units. Building a demonstration prototype rated at 650 kW and producing an annual average output of 250 kW is identified as the next step towards the commercial exploitation of wave energy.

  9. Stochastic Control of Inertial Sea Wave Energy Converter

    Science.gov (United States)

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  10. Stochastic Control of Inertial Sea Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Mattia Raffero

    2015-01-01

    Full Text Available The ISWEC (inertial sea wave energy converter is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  11. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  12. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  13. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  14. Conversion of the energy of a high-current REB into electromagnetic wave energy

    International Nuclear Information System (INIS)

    Kurilko, V.I.; Kharchenko, I.F.

    2000-01-01

    Results are presented from a theoretical investigation and quantitative analysis of the physical processes that govern the efficiency of a coaxial device aimed at converting the energy of a relativistic electron beam into the energy of a TEM wave (a wave in a circular cylindrical coaxial waveguide). The key diffractional problem is solved exactly using a simplified theoretical model, which makes it possible to understand the mechanisms for the formation of a TEM wave and determine how the beam parameters and the design parameters of the converter affect the relative fractions of the kinetic energy of a relativistic electron beam and the energy of its own magnetic and electric fields that are transferred into the energy of the TEM wave field. The results obtained are analyzed quantitatively, and prospects for further theoretical and experimental research in this area are outlined

  15. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Tommy Larsen

    2012-04-01

    Full Text Available The WEPTOS wave energy converter (WEC is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and floating structure absorbs the energy of the waves through a multitude of rotors. The shape of the rotors is based on the renowned Salter’s Duck. On each leg, the rotors pivot around a common axle, through which the rotors transfer the absorbed power to a common power take off system. The study investigates the required capacity of the power take off (PTO system and the structural forces on a WEPTOS WEC prototype, intended for installation at Hanstholm (Denmark, based on large scale experimental tests using a highly realistic laboratory model of the complete device. The results hereof includes the rotational speed and transmitted torque (and hereby power to the PTO system using different PTO control strategies, the impact of fluctuations of the available mechanical power and the effect of limiting the PTO capacity on the annual energy production. Acquisition of structural forces includes mooring forces and structural bending moments in both production and extreme wave conditions, illustrating that the regulation of the angle in the A shape ensures that extreme forces on the structure can be kept in the same order of magnitude as in production conditions.

  16. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    Science.gov (United States)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  17. Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

    Directory of Open Access Journals (Sweden)

    Kesayoshi Hadano

    2017-05-01

    Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

  18. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  19. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting...

  20. Selection of Design Power of Wave Energy Converters Based on Wave Basin Experiments

    DEFF Research Database (Denmark)

    Martinelli, L.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    of the measured efficiency; description of the energy production by means of a function of the design capacity; application of a simple formula for cost benefit analysis. The analyses here proposed are based on the experimental results of 3D tests on two floating wave energy devices, named LEANCON and DEXA......Aim of this paper is to develop a method for selecting the optimal power generation capacity for which a wave energy converter (WEC) should be rated. This method is suitable for the earliest stages of development, when several studies are missing, including design of the Power Take Off (PTO) system...

  1. Opportunities for shear energy scaling in bulk acoustic wave resonators

    NARCIS (Netherlands)

    Jose, Sumy; Hueting, Raymond Josephus Engelbart

    2014-01-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots

  2. Reliability Study of Energy Harvesting from Sea Waves by Piezoelectric Patches Consideraing Random JONSWAP Wave Theory

    Directory of Open Access Journals (Sweden)

    M. Ettefagh

    2018-03-01

    Full Text Available One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.  

  3. Wave Energy Converters based on Dielectric Elastomer generators: Status and perspectives

    International Nuclear Information System (INIS)

    Fontana, Marco; Vertechy, Rocco

    2015-01-01

    Dielectric Elastomers (DEs) are a very promising technology for the development of energy harvesting devices based on the variable-capacitance electrostatic generator principle. This paper discusses the potentialities of DE technology for advancing the ocean wave energy sector. In particular, three innovative concepts of wave energy converters with DE-based power take-off system are introduced and described.

  4. Optimal Configurations of Wave Energy Converter Arrays with a Floating Body

    Directory of Open Access Journals (Sweden)

    Zhang Wanchao

    2016-10-01

    Full Text Available An array of floating point-absorbing wave energy converters (WECs is usually employed for extracting efficiently ocean wave energy. For deep water environment, it is more feasible and convenient to connect the absorbers array with a floating body, such as a semi-submersible bottom-moored disk, whose function is to act as the virtual seabed. In the present work, an array of identical floating symmetrically distributed cylinders in a coaxial moored disk as a wave energy device is proposed The power take-off (PTO system in the wave energy device is assumed to be composed of a linear/nonlinear damper activated by the buoys heaving motion. Hydrodynamic analysis of the examined floating system is implemented in frequency domain. Hydrodynamic interferences between the oscillating bodies are accounted for in the corresponding coupled equations. The array layouts under the constraint of the disk, incidence wave directions, separating distance between the absorbers and the PTO damping are considered to optimize this kind of WECs. Numerical results with regular waves are presented and discussed for the axisymmetric system utilizing heave mode with these interaction factors, in terms of a specific numbers of cylinders and expected power production.

  5. Pneumatic Performance of a Non-Axisymmetric Floating Oscillating Water Column Wave Energy Conversion Device in Random Waves

    OpenAIRE

    Bull, Diana

    2014-01-01

    A stochastic approach is used to gain a sophisticated understanding of a non-axisymmetric floating oscillating water column's response to random waves. A linear, frequency-domain performance model that links the oscillating structure to air-pressure fluctuations with a Wells Turbine in 3-dimensions is used to study the device performance at a northern California deployment location. Both short-term, sea-state, and long-term, annual, predictions are made regarding the devices performance. U...

  6. Spin wave absorber generated by artificial surface anisotropy for spin wave device network

    Directory of Open Access Journals (Sweden)

    Naoki Kanazawa

    2016-09-01

    Full Text Available Spin waves (SWs have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

  7. Wave energy absorption by a submerged air bag connected to a rigid float

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Chaplin, J. R.; Hann, M. R.

    2017-01-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are gene......A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements...

  8. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  9. Energy from the waves

    CERN Document Server

    Ross, D

    2012-01-01

    Revised and substantially expanded to include the latest developments in the field, the second edition of this popular book provides a concise, non-technical account of the historical background and current research and development in the field of wave energy and its planned utilisation. It explains in simple terms the technology involved and describes the new inventions, devices and discoveries which led wave energy to be regarded as a significant future source of alternative power. The author recounts the major events leading up to today's development; the roles played by the principal characters involved, inventors, engineers and politicians and the inevitable struggle which all pioneers must face. The book concludes by discussing the environmental implications, the political conflicts and the problems which lie ahead. Also included, is a useful glossary of terms and a selected bibliography of important technical reports and further sources of information.

  10. Simplified Design Procedures for Moorings of Wave-Energy Converters

    DEFF Research Database (Denmark)

    Bergdahl, Lars; Kofoed, Jens Peter

    The goal of the report is that the reader shall be able to self-dependently make a first, preliminary analysis of wave-induced horizontal loads, motions and mooring forces for a moored floating wave energy device. Necessary prerequisites to attain that goal are the understanding of the physical p...

  11. Building a wave energy policy focusing on innovation, manufacturing and deployment

    International Nuclear Information System (INIS)

    Dalton, G.; Gallachoir, B.P.O.

    2010-01-01

    The Irish Government has set a goal to make Ireland a world leader for research, development and deployment of ocean energy technologies. Ireland has a wave energy resource of 21 TWh and an ambition is to achieve at least 500 MW installed generating capacity from ocean energy by 2020. This paper investigates what is required to move from ambition to delivery. A successful wave energy strategy will require focused policies that will stimulate innovation to develop the technologies, manufacturing to produce the devices and deployment to build the required wave power plants. The paper draws on the successful policies in Ireland that have stimulated each of these dimensions, albeit for different sectors. From 2004 to 2008, successful policies in (ICT and biotech) innovation led to an increase in Ireland's Innovation Index score from 0.48 to 0.53. The policy focus on (food and pharmaceuticals) manufacturing in Ireland resulted in high levels of economic growth over the period 1998-2002, reaching >10% GDP growth levels per annum, and full employment. Successful wind energy policies deployment has accelerated rapidly since 2003 and reached 1.2 GW installed capacity in 2009 representing 15% of Ireland's total installed capacity. The paper draws on appropriate elements of these policies to build a successful wave energy policy for Ireland. It also draws on the successful policies adopted in Denmark for innovation, manufacturing and deployment of wind energy. The Danish wind turbine manufacturers hold a world market share of approximately 40%. The paper proposes establishing a wave energy strategy group to develop an action plan to deliver the 500 MW. It also proposes a novel extension of corporate tax specifically for wave energy companies, an initial 30% capital grant scheme for wave energy developers, a grid code for wave energy devices and fast tracking of planning decisions through an amended approach to strategic infrastructure. (author)

  12. Clam wave energy converter. Report for period July 1979 to December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    Work by the Sea Energy Asociates Ltd - Lanchester Polytechnic Wave Energy Group on the Clam device since the April 1979 feasibility study has shown it to be a well developed and viable device capable of extracting energy economically from sea waves. The experience of the team includes mooring, structural and device tests from 1/100th to 1/10th scale in narrow and wide tanks, Draycote Reservoir and on Loch Ness. Theoretical and semi-empirical modelling has become increasingly important. Recently a test rig to assess a 1/10th scale power take off system, based on a Wells turbine, has been completed. The philosophy of the project team has been to aim for a device as simple as possible, with a small number of moving parts in order to minimise maintenance problems.

  13. Review of 5kW wave energy LOPF buoy design study and test

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The purpose of this project was to document the mechanical power production against a target power curve of a 5kW grid connected wave energy buoy in Nissum Bredning at Helligsø. This test site is typically used for open sea testing of scale 1:10 devices in irregular waves. In order to better adapt...... to the moderate wave height, the buoy was down sized by a factor of 3 and a new lower target power curve for the buoy was agreed to. Downsizing the project also had the advantage that it is more cost effective and fast to experiment with small wave energy devices than with big devices, at an early development...... stage, in line with the TRL and four phases development (proof of concept, design and feasibility study, field trials and half or full‐scale trials) promoted by AAU and supported by the marine renewable energy sector. To complement this, the IEC 114 standards define 3 stages of testing (1=small scale...

  14. Initial Characterization of the Wave Resource at Several High Energy U.S. Sites

    OpenAIRE

    Dallman, Ann; Neary, Vincent S.

    2014-01-01

    Wave energy resource characterization efforts are critical for developing knowledge of the physical conditions experienced by wave energy converter (WEC) devices and arrays. Developers are lacking a consistent characterization of possible wave energy test sites, and therefore Sandia National Laboratories (SNL) has been tasked with developing a catalogue characterizing three high energy U.S. test sites. The initial results and framework for the catalogue are discussed in this paper. U.S. De...

  15. Key Aspects of Wave Energy

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Nørgaard, Jørgen Harck

    2012-01-01

    Diversification of renewable energy sources is fundamental to ensure sustainability. In this contest, wave energy can provide a substantial contribution as soon as the sector breaks into the market. In order to accelerate shift from a technology to a market focus and reduce technical and non...... versatility into account can improve their overall performance and the value of investments. The way installation of devices can be perceived also by local communities can also benefit from this prospective thus providing and additional tool to overcome the sector´s setbacks....

  16. WEC3: Wave Energy Converter Code Comparison Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien; Ruehl, Kelley; Roy, Andre; Costello, Ronan; Laporte Weywada, Pauline; Bailey, Helen

    2017-01-01

    This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to model hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.

  17. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  18. Technological and Economic Aspects of Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Rahul Basu

    2018-01-01

    Full Text Available The geographical regions contiguous to the Indian Ocean, Bay of Bengal and the Arabian Sea are prone to natural disasters and poor electric supply especially in rural and hard to reach coastal regions. Utilization of ocean resources for power generation such as tidal, thermal solar and wind for energy need to be incorporated in a broad framework for the region. Development of ocean-based energy systems can be integrated with early warning networks linked by satellite which can give a few hours to days warning to help mitigate the severity of natural disasters on human life. Ocean-based electricity extraction has; however, remained elusive for various reasons. Interest in these systems resumed after the oil crisis of the 1970’s, but was uncoordinated. Extraction of ocean energy from the kinetic energy of waves and ocean currents depends on various mechanical devices with variable efficiencies. Apart from the efficiency, one must match the output phase of the feeder waveforms with that of the electrical grid. Also, the wavelengths of the typical wave are of the order of a few meters, the interception of which requires large devices. The mechanical efficiency of the turbine extraction system is further limited by the flow momentum considerations. Some applications and their implementation are looked at, specifically with reference to the difficulties of implementation in the region, and other factors like economic efficiency (rate of returns in place of mechanical efficiency. Individual wave energy harvesters are thus bound to suffer from inefficiencies and it may be beneficial to use wave farm configurations from the point of view of the randomness of wave motion, the large wavelengths, and the added advantage of averaging fluctuations from large numbers of generators.

  19. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mirko Previsic

    2010-06-17

    other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent

  20. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Choiniere, Michael [University of Maine; Thiagarajan, Krish P. [University of Maine

    2017-08-01

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. This ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.

  1. Experimental Research of Machineless Energy Separation Effect Influenced by Shock Waves

    Directory of Open Access Journals (Sweden)

    S. S. Popovich

    2016-01-01

    Full Text Available The paper presents experimental research results of machineless energy separation effect with transversal ribs in supersonic channel. The energy separation effect assumes a physical division of the inlet flow into two or more flows, each having different stagnation temperature. Among well-known energy separation effects noted there are Ranque-Hilsch vortex tubes, Hartmann-Sprenger resonance tubes, pulsating tubes and some others.A working principle of device under study is based on thermal interaction between subsonic and supersonic gas flows through a heat-conducting division wall. This energy separation method was proposed by academician Leontiev and was patented in 1998. A number of references for PhD theses, articles, and conference proceedings devoted to the research of “Leontiev tube” have been mentioned in the paper. Efficiency factors for energy separation device performability have been analyzed in detail. The main attention was focused on the phenomenon of shock waves generation in supersonic channel of Leontiev tube.Experiment was carried out in the air prototype of energy separation device with supersonic flow Mach numbers 1.9 and 2.5, stagnation temperatures 40°С and 70°С, and for uni-flow and counter-flow air moving direction in subsonic and supersonic channels. Shock waves have been generated by means of circular ribs in supersonic channel of energy separation device. The research was carried out by means of infrared thermal imaging, thermocouples, total and static pressure probes, and modern National Insturments automation equipment. The work shows that shock waves have no negative influence on energy separation effect. A conclusion is made that unexpected shock wave generation in supersonic channel will not cause operability loss. It was gained that counter-flow regime is more efficient than uni-flow. Energy separation effect also appears to be higher with the rise of Mach number and flow initial stagnation temperature

  2. AN INVESTIGATION OF WAVE ENERGY POTENTIAL IN WESTERN BLACK SEA REGION

    Directory of Open Access Journals (Sweden)

    İlyas UYGUR

    2006-01-01

    Full Text Available The main energy sources which are natural, clean, environmentally friendly, and renewable are wind power, solar energy, biomass energy, hydro energy, and wave energy. The wave energy has no cost except for the first investment and maintenance. There is also no cost for input energy. Besides these, it has no pollution effect on the environment, it is cheap and there is a huge potential all around the world. Wave energy is a good opportunity to solve the energy problem for Turkey which is surrounded by seas. Concerning all these facts, it has been conducted some studies which included five years of observation in the Western Black Sea Region (Akçakoca. The wave energy potential has also been calculated. From this sutdy results, it can be concluded that the wave energy potential of this region is inefficient. It is believed that by the improvement of the new energy converter devices in future, this low potential can be used more efficiently and as a result this study might be used as a basis for the future researches.

  3. Stochastic control applied to the ISWEC Wave Energy System

    International Nuclear Information System (INIS)

    Bracco, Giovanni; Casassa, Maria; Giorcelli, Ermanno; Mattiazzo, Giuliana; Passione, Biagio; Raffero, Mattia; Vissio, Giacomo; Martini, Michele

    2015-01-01

    ISWEC (Inertial Sea Wave Energy Converter) is a floating marine device able to harvest sea waves energy by the interaction between the pitching motion of a floater and a spinning flywheel which can drive an electric PTO. In the ISWEC the hull dynamics is governed and controlled by the gyroscopic torque. The optimal control logic results in tuning the floater dynamics to the incoming waves in order to maximize the power transfer from the waves to the floater. In this paper the control problems of the ISWEC are stated and a control scheme based on the sub-optimal stochastic control logic is presented. The control scheme here presented has been tested using real wave records acquired at the deployment location in Pantelleria Island, which is one of the most energetic sites of the Mediterranean Sea.

  4. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  5. Estimation of Overtopping Rates on Slopes in Wave Power Devices and Other Low Crested Structures

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Burcharth, Hans Falk

    2002-01-01

    Motivated by questions raised by developers of wave energy devices based on wave overtopping concepts, model tests have been performed to study overtopping of structures with limited draught, low crest freeboards and slope geometries designed to increase overtopping and thereby also the captured...

  6. The state of development of wave energy

    International Nuclear Information System (INIS)

    Duckers, L.J.

    1991-01-01

    Wave energy converters are being developed and tested in as many as ten countries. The author believes that the shore mounted converters will be economically attractive in many locations around the world. These devices are simple and easily maintained. In order to harvest the greater offshore resource floating devices such as the Clam, Duck and Whale will be needed. Urgent research and development is needed to bring these to the prototype stage. Future deployment of large arrays of these floating systems could be quickly and easily achieved in many parts of the world and they would provide considerable quantities of environmentally benign, reasonably cheap energy. (author) 6 figs., 5 refs

  7. Hydraulic Performance of an Innovative Breakwater for Overtopping Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Claudio Iuppa

    2016-11-01

    Full Text Available The Overtopping BReakwaterfor Energy Conversion (OBREC is an overtopping wave energy converter, totally embedded in traditional rubble mound breakwaters. The device consists of a reinforced concrete front reservoir designed with the aim of capturing the wave overtopping in order to produce electricity. The energy is extracted through low head turbines, using the difference between the water levels in the reservoir and the sea water level. This paper analyzes the OBREC hydraulic performances based on physical 2D model tests carried out at Aalborg University (DK. The analysis of the results has led to an improvement in the overall knowledge of the device behavior, completing the main observations from the complementary tests campaign carried out in 2012 in the same wave flume. New prediction formula are presented for wave reflection, the overtopping rate inside the front reservoir and at the rear side of the structure. Such methods have been used to design the first OBREC prototype breakwater in operation since January 2016 at Naples Harbor (Italy.

  8. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  9. 3 Years Experience with Energy Production on the Nissum Bredning Wave Dragon Prototype

    DEFF Research Database (Denmark)

    Frigaard, Peter; Tedd, James; Kofoed, Jens Peter

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...

  10. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...

  11. Hydrodynamic Behavior of Overtopping Wave Energy Converters Built in Sea Defense Structures

    DEFF Research Database (Denmark)

    Victor, Lander; Kofoed, Jens Peter; Troch, Peter

    2010-01-01

    Many sea defense structures need to be adapted to the rising sea water level and changing wave climate due to global warming. The accordingly required investment opens perspectives for wave energy converters (WECs) – that are built as part of the sea defense structures – to become economically...... viable. In this paper the average overtopping discharges q of overtopping wave energy devices built in sea defense structures are studied. Physical model tests with this type of devices have been carried out in a wave flume leading to experimental q - values. The experimental q -values are compared...... with predicted average overtopping discharges by existing empirical formulae from literature. Overtopping converters have low relative crest freeboards and smooth slope characteristics to maximize overtopping, which is contradictive to the basic role of sea defense structures. As a consequence, the achieved...

  12. Hydraulic evaluation of the Crest Wing wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, J.P.; Antonishen, M.

    2008-09-15

    The Crest Wing Wave Energy Converter is currently being developed by Henning Pilgaard, of WaveEnergyFyn, Denmark. It is meant to act like a carpet on the water, conforming to the shape of each wave and using that movement to generate power. The thought of making a WEC that acts like a carpet on top of the waves is not new; ongoing or past projects such as the Pelamis and Cockerel Raft were designed with this thought in mind. The real difference with the Crest Wing is that it has skirt drafts, that extend down into the water and create suction; this increases the effective mass of the WEC while minimizing the material use. Special attention was given to the design of the first and last floaters as they are meant to act as a smooth transition between wave and machine. Their purpose is to make sure that no air gets under the two middle floaters so that suction is not broken and the device continues to function well. In summary the Crest Wing functions and is able to produce power with a good overall efficiency. The configuration with relative reference PTO (Power Take Off) is superior. It has not been proven that the idea of mounting skirts on the floaters is leading to a better performance. Thus, the study leads to the conclusion that the idea of making a simple hinged raft type device is good, and it is likely that the construction cost for a device of this type can be kept down. However, the study also leaves the chance that some limited draft of skirts in combination with inlet/outlet devices, could prove beneficial. In case of further testing on this device, an effort should be made to design and construct a more easily and accurately controlled PTO model in the test setup. This could greatly improve the quality of the output of such tests. (ln)

  13. Gyroscopic power take-off wave energy point absorber in irregular sea states

    DEFF Research Database (Denmark)

    Zhang, Zili; Chen, Bei; Nielsen, Søren R.K.

    2017-01-01

    Highlights •A GyroPTO wave energy point absorber with magnetic coupling mechanism is proposed. •A 4DOF nonlinear model of the GyroPTO absorber has been derived. •Rational approximations are performed on the radiation damping moments. •Synchronization of the device is more easily maintained...... in narrow-banded sea waves. •The generator gain and the magnetic coupling constant influence the performance of the device....

  14. SSG wave energy converter. Design, reliability and hydraulic performance of an innovative overtopping device

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.; Frigaard, P. [Department of Civil Engineering, Aalborg University. Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark); Vicinanza, D. [Department of Civil Engineering - CIRIAM, Seconda Universita di Napoli. Via Roma 29, 81031 Aversa (Caserta) (Italy)

    2009-05-15

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each other above the mean water level in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low head hydro-turbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter and the studies behind the process that leads to its construction. The pilot plant is an on-shore full-scale module in 3 levels with an expected power production of 320 MWh/y in the North Sea. Location, wave climate and laboratory tests' results will be used here to describe the pilot plant and its characteristics. (author)

  15. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  16. Experimental investigation on the hydrodynamic performance of a wave energy converter

    Science.gov (United States)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  17. Dynamics and control of the GyroPTO wave energy point absorber under sea waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.; Basu, Biswajit

    2017-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber has the operational principle somewhat similar to the so-called gyroscopic hand wrist exerciser. Inside the float of GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact...... to a ring. At certain conditions, the ring starts to rotate at a frequency equal to the excitation angular frequency. In this synchronized state, the generator is running at almost constant speed and the generated power becomes constant. In this paper, theoretical modeling of the GyroPTO device is carried...... out based on analytical rigid body dynamics, and a 3-DOF nonlinear model is established. Simulation results show that synchronization of the device is maintained under harmonic sea wave, but is lost easily under non-harmonic sea waves.To overcome this problem, a magnetic coupling mechanism is added...

  18. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    OpenAIRE

    Jing Zhang; Haitao Yu; Zhenchuan Shi

    2018-01-01

    Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC) must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC) system with a tubular permanent magnet linear generator (TPMLG) on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating pr...

  19. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  20. Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designing wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.

  1. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  2. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtoppi......-by-wave measurement of couples of hydraulic head-flow rate acting on a virtual turbine inlet. Finally, the influence of draft length on overtopping discharge has been identified....... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate....... Preliminary design formulae are presented to predict overtopping at the rear side of the structure and in to the front reservoir based on both datasets. Moreover, some important results have been presented on hydraulic behaviour of OBREC with saturated reservoir. Particularly attention is paid to wave...

  3. Shock waves in water at low energy pulsed electric discharges

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  4. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...

  5. Midinfrared radiation energy harvesting device

    Science.gov (United States)

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  6. Wave Loadings Acting on an Innovative Breakwater for Energy Production

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Ciardulli, F.; Buccino, M.

    2011-01-01

    The paper reports on 2D small scale experiments conducted to investigate wave loadings acting on a pilot project of device for the conversion of wave energy into electricity. The conversion concept is based on the overtopping principle and the structure is worldwide known with the acronym SSG....... The hydraulic model tests have been carried out at the LInC laboratory of the University of Naples Federico II using random waves. Results indicate wave overtopping is able to cause a sudden inversion of vertical force under wave crest, so that it is alternatively upward and downward directed over a short time...

  7. Experimental Research on the Characteristic of a Generator Used in Wave Energy Conversion

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Wu, Guoheng

    2018-01-01

    Due to the environmental issues like global warming and pollution, the exploration for ocean energy becomes important. Selecting the suitable generator for wave energy generation system is essential to improve the efficiency of power generation system. Thus, the object of the research is the generator of a self-adaptation inversion type wave energy absorption device. The major focus of this paper is the characteristics and the technique of the generator used in prototype. By setting up the generator performance test platform, the output voltage, efficiency and performance of the generator are tested to select the suitable generator for the wave energy generating system.

  8. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  9. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  10. Modeling and Simulation of a Wave Energy Converter INWAVE

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2017-01-01

    Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

  11. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  12. Guided-wave acousto-optics interactions, devices, and applications

    CERN Document Server

    1990-01-01

    The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in­ tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap­ plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in­ tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in thr...

  13. Wecpos - Wave Energy Coastal Protection Oscillating System: A Numerical Assessment

    Science.gov (United States)

    Dentale, Fabio; Pugliese Carratelli, Eugenio; Rzzo, Gianfranco; Arsie, Ivan; Davide Russo, Salvatore

    2010-05-01

    In recent years, the interest in developing new technologies to produce energy with low environmental impact by using renewable sources has grown exponentially all over the world. In this context, the experiences made to derive electricity from the sea (currents, waves, etc.) are of particular interest. At the moment, due to the many existing experiments completed or still in progress, it is quite impossible explain what has been obtained but it is worth mentioning the EMEC, which summarizes the major projects in the world. Another important environmental aspect, also related to the maritime field, is the coastal protection from the sea waves. Even in this field, since many years, the structural and non-structural solutions which can counteract this phenomenon are analyzed, in order to cause the least possible damage to the environment. The studies in development by the researchers of the University of Salerno are based on these two aspect previously presented. Considering the technologies currently available, a submerged system has been designed, WECPOS (Wave Energy Coastal Protection Oscillating System), to be located on relatively shallow depths, to can be used simultaneously for both electricity generation and for the coastal protection using the oscillating motion of the water particles. The single element constituting the system is realized by a fixed base and three movable panels that can fluctuate in a fixed angle. The waves interact with the panels generating an alternative motion which can be exploited to produce electricity. At the same time, the constraint movement imposed for the rotation of the panels is a barrier to the wave propagation phenomena, triggering the breaking in the downstream part of the device. So the wave energy will be dissipated obtaining a positive effect for the coastal protection. Currently, the efficiency and effectiveness of the system (WECPOS single module) has been studied by using numerical models. Using the FLOW-3D

  14. Analysis, Design, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.; Peiffer, Antoine; Tom, Nathan; Matlak, Tomasz

    2010-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and future directions for improvements. Copyright © 2010 by ASME.

  15. Design, Analysis, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.; Peiffer, Antoine; Tom, Nathan; Matlak, Tomasz

    2012-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and the future directions for improvements. © 2012 American Society of Mechanical Engineers.

  16. Experimental Testing of the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2011-01-01

    Aalborg University carried out wave tank testing a 1:20 scale model of Langlee, an oscillating wave-surge type of Wave Energy Converter (WEC). Langlee is designed to operate in deep water, with the hinged flaps attached to a, moored, semi-submerged reference frame. Langlee has a novel flap...... arrangement, with the flaps placed symmetrically opposing each other on a floating reference structure. This minimises the net force on the reference frame and increases the stability of the reference frame under optimal wave conditions. This paper presents the results and analysis from the wave tanks, which...... addressed the following: The Power Take Offs (PTOs) were simulated using a motor to resist the motion of the wings, according to the damping profile. Torque and velocity measurements were used to predict the wave- to mechanical-power conversion efficiency of the device. A number of wing types...

  17. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  18. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    Science.gov (United States)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  19. Experimental Study of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study on the power conversion capabilities and structural loads of the WEPTOS wave energy converter. The investigation focuses mainly at identifying the performance of the WEPTOS prototype in a wide range of production wave states...... and at the mooring forces and structural bending moments in extreme wave conditions, in order to estimate the performance and structural loads of larger WEPTOS machines being located at various offshore locations of interest. The following aspects were the main subjects of investigation: Performance of the prototype...... under a constant and linear PTO loading, the opening angle of the device, the effect of alterations to the wave conditions, and mooring forces and structural bending moments in production and extreme wave states. During the study, a highly realistic scale model was supplied by the client, WEPTOS, which...

  20. Building a Pre-Competitive Knowledge Base to Support Australia's Wave Energy Industry

    Science.gov (United States)

    Hoeke, R. K.; Hemer, M. A.; Symonds, G.; Rosebrock, U.; Kenyon, R.; Zieger, S.; Durrant, T.; Contardo, S.; O'Grady, J.; Mcinnes, K. L.

    2016-02-01

    A pre-competitive, query-able and openly available spatio-temporal atlas of Australia's wind-wave energy resource and marine management uses is being delivered. To provide the best representation of wave energy resource information, accounting for both spatial and temporal characteristics of the resource, a 34+yr numerical hindcast of wave conditions in the Australian region has been developed. Considerable in situ and remotely sensed data have been collected to support calibration and validation of the hindcast, resulting in a high-quality characterisation of the available wave resource in the Australian domain. Planning for wave energy projects is also subject to other spatial constraints. Spatial information on alternative uses of the marine domain including, for example, fisheries and aquaculture, oil and gas, shipping, navigation and ports, marine parks and reserves, sub-sea cables and infrastructure, shipwrecks and sites of cultural significance, have been compiled to complement the spatial characterisation of resource and support spatial planning of future wave energy projects. Both resource and spatial constraint information are being disseminated via a state-of-the-art portal, designed to meet the needs of all industry stakeholders. Another aspect currently impeding the industry in Australia is the limited evidence-base of impacts of wave energy extraction on adjacent marine and coastal environments. To build this evidence base, a network of in situ wave measurement devices have been deployed surrounding the 3 wave energy converters of Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to calibrate and validate numerical simulations of the project site. Early stage results will be presented.

  1. Preliminary Results from Second Phase Sea Testing of the Wave Dragon Prototype Wave Energy Converter

    DEFF Research Database (Denmark)

    Soerensen, Hans Chr.; Tedd, James; Friis-Madsen, Erik

    2006-01-01

    In March 2006 the prototype Wave Dragon has been redeployed to a more energetic site in Nissum Bredning an inland sea in Western Denmark. This has followed a period of renovation of many aspects of the device which have resulted in 20% higher energy output. This paper describes the preliminary...

  2. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  3. Designing a point-absorber wave energy converter for the Mediterranean Sea

    International Nuclear Information System (INIS)

    Archetti, Renata; Moreno Miquel, Adria; Antonini, Alessandro; Passoni, Giuseppe; Bozzi, Silvia; Gruosso, Giambattista; Scarpa, Francesca; Bizzozero, Federica; Giassi, Marianna

    2015-01-01

    This work aims to assess the potential for wave energy production in the Italian seas by the deployment of arrays of heaving point absorbers, specifically optimized for mild climates. We model a single-body WEC, consisting of a cylindrical heaving buoy, attached to a linear electric generator placed on the seabed. The model includes both hydrodynamic and electromechanical forces. The results show that the best buoy-generator configuration at the selected sites (Alghero and Mazara del Vallo) is given by a 6 to 10 kW device and with a buoy with diameter between 4 and 5 m. This device can be brought to resonance, increasing the performances, by adding a submerged sphere. These results are encouraging and enlarge the perspective on wave energy production in the Italian seas. [it

  4. Conceptual Design of Wave Plane

    DEFF Research Database (Denmark)

    Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter

    The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...

  5. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  6. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  7. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  8. Wave loadings acting on Overtopping Breakwater for Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Nørgaard, Jørgen Harck; Contestabile, Pasquale

    2013-01-01

    distributions. Load measurements were compared with the most used prediction method for traditional breakwaters, available in the Coastal Engineering Manual (U.S. Army Corps of Engineers, 2002). These results suggest to use the experimental data as design loadings since the design criteria for the innovative......Any kind of Wave Energy Converter (WEC) requires information on reliability of technology and on time required for the return of the investment (reasonable payback). The structural response is one of the most important parameters to take in to account for a consistent assessment on innovative...... devices. This paper presents results on wave loading acting on an hybrid WEC named Overtopping BReakwater for Energy Conversion (OBREC). The new design is based on the concept of an integration between a traditional rubble mound breakwater and a front reservoir designed to store the wave overtopping from...

  9. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  10. SU-8 Guiding Layer for Love Wave Devices

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2007-11-01

    Full Text Available SU-8 is a technologically important photoresist used extensively for thefabrication of microfluidics and MEMS, allowing high aspect ratio structures to beproduced. In this work we report the use of SU-8 as a Love wave sensor guiding layerwhich allows the possibility of integrating a guiding layer with flow cell during fabrication.Devices were fabricated on ST-cut quartz substrates with a single-single finger design suchthat a surface skimming bulk wave (SSBW at 97.4 MHz was excited. SU-8 polymer layerswere successively built up by spin coating and spectra recorded at each stage; showing afrequency decrease with increasing guiding layer thickness. The insertion loss andfrequency dependence as a function of guiding layer thickness was investigated over thefirst Love wave mode. Mass loading sensitivity of the resultant Love wave devices wasinvestigated by deposition of multiple gold layers. Liquid sensing using these devices wasalso demonstrated; water-glycerol mixtures were used to demonstrate sensing of density-viscosity and the physical adsorption and removal of protein was also assessed usingalbumin and fibrinogen as model proteins.

  11. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  12. A device for using wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.

    1984-01-01

    An offshore floating platform is used to support an electrical generator and two pontoons fastened on the edges. A horizontal tube located in a housing for two turbine blades rotating in opposite directions is connected to the generator by a shaft housed in a casing. The conical transmission connects the horizontal shafts of the turbine blades to the vertical shaft. When the waves pass near this platform, the pontoons rise up, the platform leans over to one side, and the turbine blades describe an arc, and cause the transmission and generator shaft to turn via the internal shafts. When the wave passes under the support, the raised pontoon drops and the other rises, and the platform leans over in the opposite direction; the blades then rotate in the opposite direction.

  13. On the fundamental performance of the floating offshore wave power device (FOWAD)

    International Nuclear Information System (INIS)

    Hotta, H.; Washio, Y.; Miyazaki, T.

    1990-01-01

    This paper reports on the wave power absorption, wave dissipation, mooring line tension and oscillation in regular and irregular (long created and short created) waves of the floating offshore wave power device (FOWAD) that were measured and analyzed by a scale model test in a wave tank. FOWAD is an oscillating water column type device equipped with air turbine generators, and air chambers facing the waves. Therefore, it belongs in the close of terminator type wave power devices. It has several projecting walls in front of each air chamber, several buoyancy compartments behind each chamber and stabilizer at the keel. The measured data indicates that, the performance and stability were improved in comparison with former terminator type devices, FOWAD absorbed about 30% of wave power and mooring line tension was within the limits of safety even in rough seas. Nevertheless the performance for dissipation of waves can be improved. This paper describes on the results of the model test and subsequent analysis

  14. Can cellulite be treated with low-energy extracorporeal shock wave therapy?

    Science.gov (United States)

    Angehrn, Fiorenzo; Kuhn, Christoph; Voss, Axel

    2007-01-01

    The present study investigates the effects of low-energy defocused extracorporeal generated shock waves on collagen structure of cellulite afflicted skin. Cellulite measurement using high-resolution ultrasound technology was performed before and after low-energy defocused extracorporeal shock wave therapy (ESWT) in 21 female subjects. ESWT was applied onto the skin at the lateral thigh twice a week for a period of six weeks. Results provide evidence that low-energy defocused ESWT caused remodeling of the collagen within the dermis of the tested region. Improving device-parameters and therapy regimes will be essential for future development of a scientific based approach to cellulite treatment. PMID:18225463

  15. Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Frederick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jenne, Dale S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bull, Dianna [Sandia National Laboratories; Dallman, Ann [Sandia National Laboratories; Gunawan, Budi [Sandia National Laboratories; Ruehl, Kelley [Sandia National Laboratories; Newborn, David [Naval Surface Warfare Center, Carderock Division; Quintero, Miguel [Naval Surface Warfare Center, Carderock Division; LaBonte, Alison [U.S. Department of Energy; Karwat, Darshan [U.S. Department of Energy; Beatty, Scott [Cascadia Coast Research Ltd.

    2018-03-08

    The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width to the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.

  16. Wave energy absorption by a submerged air bag connected to a rigid float.

    Science.gov (United States)

    Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  17. Quantifying the uncertainty of wave energy conversion device cost for policy appraisal: An Irish case study

    International Nuclear Information System (INIS)

    Farrell, Niall; Donoghue, Cathal O’; Morrissey, Karyn

    2015-01-01

    Wave Energy Conversion (WEC) devices are at a pre-commercial stage of development with feasibility studies sensitive to uncertainties surrounding assumed input costs. This may affect decision making. This paper analyses the impact these uncertainties may have on investor, developer and policymaker decisions using an Irish case study. Calibrated to data present in the literature, a probabilistic methodology is shown to be an effective means to carry this out. Value at Risk (VaR) and Conditional Value at Risk (CVaR) metrics are used to quantify the certainty of achieving a given cost or return on investment. We analyse the certainty of financial return provided by the proposed Irish Feed-in Tariff (FiT) policy. The influence of cost reduction through bulk discount is also discussed, with cost reduction targets for developers identified. Uncertainty is found to have a greater impact on the profitability of smaller installations and those subject to lower rates of cost reduction. This paper emphasises that a premium is required to account for cost uncertainty when setting FiT rates. By quantifying uncertainty, a means to specify an efficient premium is presented. - Highlights: • Probabilistic model quantifies uncertainty for wave energy feasibility analyses. • Methodology presented and applied to an Irish case study. • A feed-in tariff premium of 3–4 c/kWh required to account for cost uncertainty. • Sensitivity of uncertainty and cost to rates of technological change analysed. • Use of probabilistic model for investors and developers also demonstrated

  18. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  19. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  20. Hydroelectromechanical modelling of a piezoelectric wave energy converter

    Science.gov (United States)

    Renzi, E.

    2016-11-01

    We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant.

  1. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  2. Model Testing of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a preliminary experimental study of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed using...... a scale model (length scale 1:15) of a SSG device to be installed on the west coast of the island Kvitsøy near Stavanger, Norway. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The model has been subjected to regular and irregular waves...... corresponding to typical conditions off shore from the intended installation site. The overtopping rates for the individual reservoirs have been measured and the potential energy in the overtopping water has been calculated....

  3. Experimental test of a dynamically tuned wave energy converter based on inflatable dielectric elastomer generators (Conference Presentation)

    Science.gov (United States)

    Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.

  4. EquiMar : Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact

    DEFF Research Database (Denmark)

    McCombes, T; Johnstone, C.; Holmes, B.

    At present no common practices are adopted to assess the performance and operational characteristics of conceptual and small prototype wave and tidal energy devices when tested within controlled laboratory environments. Information acquired from this early stage assessment may be used to secure...... development funding or promote a specific wave or tidal energy device. Since no standards exist, the data produced may be misinterpreted or inaccurately presented, which in turn may lead to failure to live up to performance expectations, as devices scale up in size. This report aims to identify limitations...

  5. EquiMar : Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact

    DEFF Research Database (Denmark)

    McCombes, T; Johnstone, C.; Holmes, B.

    At present no common practices are adopted to assess the performance and operational characteristics of conceptual and small prototype wave and tidal energy devices when tested within controlled laboratory environments. Information acquired from this early stage assessment may be used to secure...... development funding or promote a specific wave or tidal energy device. Since no standards exist, the data produced may be misinterpreted or inaccurately presented, which in turn may lead to failure to live up to performance expectations, as devices scale up in size. This report builds on Deliverable 3.3 which...

  6. Inertial Sea Wave Energy Converter from Mediterranean Sea to Ocean - Design Optimization

    Science.gov (United States)

    Calleri, Marco

    Optimization of the number of gyroscopes and flywheel rotational speed of a Wave Energy Converter able to produce 725 kW as the nominal power, in the chosen installation site, respecting some imposed constraints and some dimensions from the previous design, by minimizing the cost of the device and the bearing power losses, through the minimization of the LCOE of the device.

  7. InP Devices For Millimeter-Wave Monolithic Circuits

    Science.gov (United States)

    Binari, S. C.; Neidert, R. E.; Dietrich, H. B.

    1989-11-01

    High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.

  8. Study on the Performance of the “Pendulor” Wave Energy Converter in an Array Configuration

    Directory of Open Access Journals (Sweden)

    Sudath Prasanna Gunawardane

    2016-04-01

    Full Text Available For over three decades the “Pendulor” wave energy device has had a significant influence in this field, triggering several research endeavours. It includes a top-hinged flap propelled by the standing waves produced in a caisson with a back wall on the leeward side. However, one of the main disadvantages which impedes its progress is the enormous expense involved in the construction of the custom made typical caisson structure, about a little more than one-quarter of the wave length. In this study, the influence of such design parameters on the performance of the device is investigated, via numerical modelling for a device arranged in an array configuration, for irregular waves. The potential wave theory is applied to derive the frequency-dependent hydrodynamic parameters by making a distinction in the fluid domain into a separate sea side and lee side. The Cummins equation was utilised for the development of the time domain equation of motion while the transfer function estimation methods were used to solve the convolution integrals. Finally, the device was tested numerically for irregular wave conditions for a 50 kW class unit. It was observed that in irregular wave operating conditions, the caisson chamber length could be reduced by 40% of the value estimated for the regular waves. Besides, the device demonstrated around 80% capture efficiency for irregular waves thus allowing provision for avoiding the employment of any active control.

  9. Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Chozas, Julia Fernandez; Pecher, Arthur

    2011-01-01

    At the present pre-commercial phase of the wave energy sector, device developers are called to provide reliable estimates on power performance and production at possible deployment locations. The EU EquiMar project has proposed a novel approach, where the performance assessment is based mainly...... on experimental data deriving from sea trials rather than solely on numerical predictions. The study applies this methodology to evaluate the performance of Wave Dragon at two locations in the North Sea, based on the data acquired during the sea trials of a 1:4.5 scale prototype. Indications about power...

  10. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    Science.gov (United States)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  11. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  12. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    International Nuclear Information System (INIS)

    Fowler, A G; Moheimani, S O R; Behrens, S

    2013-01-01

    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  13. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.

  14. Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.

    2016-02-01

    Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.

  15. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Neary, Vincent S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2015-09-01

    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  16. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  17. Ultrasound acoustic wave energy transfer and harvesting

    Science.gov (United States)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  18. Surface wave photonic device based on porous silicon multilayers

    International Nuclear Information System (INIS)

    Guillermain, E.; Lysenko, V.; Benyattou, T.

    2006-01-01

    Porous silicon is widely studied in the field of photonics due to its interesting optical properties. In this work, we present theoretical and first experimental studies of a new kind of porous silicon photonic device based on optical surface wave. A theoretical analysis of the device is presented using plane-wave approximation. The porous silicon multilayered structures are realized using electrochemical etching of p + -type silicon. Morphological and optical characterizations of the realized structures are reported

  19. Sea wave energy based in nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Carlos

    2010-09-15

    Application on which it turns east document is the recovery of the energy of the sea waves turning it into electricity by means of the combination of nano-piezoelectric and condensing, the system would be seen like a compound floating fabric of million piezoelectric crystals that turn the oscillating movement of the sea into micro-electrical signals that they are added and they left by means cables to the surface where electronics devices classified to the load of condensers, from the electricity is confined and later is invested and synchronize itself with the great national mains.

  20. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  1. Wave energy: a Pacific perspective.

    Science.gov (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  2. A comparative analysis of the environmental impacts of a Pelamis Wave Energy device with existing off shore developments and installations.

    OpenAIRE

    Quinn, Eoghan

    2011-01-01

    Scotland is currently at the forefront of development and expansion of wave energy, especially with recent renewable energy targets. Research and development has increased greatly off the Scottish coastline. Various adjectives can be used to describe wave energy’s creative potential in helping to achieve Scotland’s energy goals. Put simply however the production of wave energy appears to have all the ingredients for success; it is benign, the visual impacts minimal and its energy is reliable,...

  3. Wave energy extraction by coupled resonant absorbers.

    Science.gov (United States)

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  4. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  5. S. E. A. Clam. Vol. 3E. Technical appraisal. [Wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    A detailed technical appraisal of the wave energy device known as a 'Celam' is presented by a team of Consultants. The scheme assessed is a 2 GW array based off the coast of Skye. The cost of energy from such an array is assessed both by the Consultants and by the development team and the discrepancies between the two discussed.

  6. System and Method for Measuring the Transfer Function of a Guided Wave Device

    Science.gov (United States)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  7. Resonant Wave Energy Converters: Small-scale field experiments and first full-scale prototype

    International Nuclear Information System (INIS)

    Arena, Felice; Fiamma, Vincenzo; Iannolo, Roberto; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati Federica Maria

    2015-01-01

    The Resonant Wave Energy Converter 3 (REWEC3) is a device belonging to the family of Oscillating Water Columns (OWCs), that can convert the energy of incident waves into electrical energy via turbines. In contrast to classical OWCs, it incorporates a small vertical U-shaped duct to connect the water column to the open wave field. This article shows the results of a small-scale field experiment involving a REWEC3 designed for working with a 2 kW turbine. Then, the next experimental activity on a REWEC3 installed in the NOEL laboratory with the collaboration of ENEA, is presented. Finally, the first prototype of ReWEC3 under construction in Civitavecchia (Rome, Italy) is shown. The crucial features of the construction stage are discussed and some initial performances are provided. [it

  8. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    Directory of Open Access Journals (Sweden)

    David W. Greve

    2013-05-01

    Full Text Available Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  9. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  10. Nonimaging radiant energy device

    Science.gov (United States)

    Winston, Roland; Ning, Xiaohui

    1993-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  11. Wave energy input into the Ekman layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.

  12. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    Science.gov (United States)

    Espindola, Rafael Luz; Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  13. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  14. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    Science.gov (United States)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  15. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  16. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  17. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    Science.gov (United States)

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  18. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....

  19. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  20. Numerical hydrodynamic analysis of an offshore stationary–floating oscillating water column–wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2017-01-01

    Full Text Available Offshore oscillating water columns (OWC represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements. Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave–pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

  1. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  2. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  3. Omnidirectional refractive devices for flexural waves based on graded phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel, E-mail: daniel.torrent@iemn.univ-lille1.fr; Pennec, Yan; Djafari-Rouhani, Bahram [Institut d' Electronique, de Microléctronique et de Nanotechnologie, UMR CNRS 8520, Université de Lille 1, 59655 Villeneuve d' Ascq (France)

    2014-12-14

    Different omnidirectional refractive devices for flexural waves in thin plates are proposed and numerically analyzed. Their realization is explained by means phononic crystal plates, where a previously developed homogenization theory is employed for the design of graded index refractive devices. These devices consist of a circular cluster of inclusions with a properly designed gradient in their radius. With this approach, the Luneburg and Maxwell lenses and a family of beam splitters for flexural waves are proposed and analyzed. Results show that these devices work properly in a broadband frequency region, being therefore an efficient approach for the design of refractive devices specially interesting for nano-scale applications.

  4. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    Science.gov (United States)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).

  5. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  6. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...

  7. A method for EIA scoping of wave energy converters—based on classification of the used technology

    International Nuclear Information System (INIS)

    Margheritini, Lucia; Hansen, Anne Merrild; Frigaard, Peter

    2012-01-01

    During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

  8. A method for EIA scoping of wave energy converters-based on classification of the used technology

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, Lucia, E-mail: lm@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark); Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk [Aalborg University, Department of Planning and Development, Fibigerstraede 13, DK - 9220, Aalborg (Denmark); Frigaard, Peter, E-mail: pf@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark)

    2012-01-15

    During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

  9. Analysis of a Wave Energy Converter with Particular Focus on the Effects of Power Take-Off Forces on the Structural Responses

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen

    to evaluate the electrical power generated by a given wave energy device from a given wave condition. The first part of this work focuses on the development of such a numerical model. An important task is to quantify the wave-induced load effects to ensure that the input is correct and a safe and robust......Wave energy is regarded as a major and promising renewable energy resource. The most critical factor to the success of deploying a wave energy converter in an ocean environment is the cost. The key factors affecting the costs include the performance, capital costs, operation and maintenance costs...

  10. Review of 3D Printed Millimeter-Wave and Terahertz Passive Devices

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-01-01

    Full Text Available The 3D printing technology is catching attention nowadays. It has certain advantages over the traditional fabrication processes. We give a chronical review of the 3D printing technology from the time it was invented. This technology has also been used to fabricate millimeter-wave (mmWave and terahertz (THz passive devices. Though promising results have been demonstrated, the challenge lies in the fabrication tolerance improvement such as dimensional tolerance and surface roughness. We propose the design methodology of high order device to circumvent the dimensional tolerance and suggest specific modelling of the surface roughness of 3D printed devices. It is believed that, with the improvement of the 3D printing technology and related subjects in material science and mechanical engineering, the 3D printing technology will become mainstream for mmWave and THz passive device fabrication.

  11. EquiMar : Equitable Testing and Evaluation of Marine Energy Extraction Devices in Terms of Performance, Cost and Environmental Impact

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Pecher, Arthur; Margheritini, Lucia

    The Sea Trial Manual (D4.1) describes the type of operations required to advance an ocean energy conversion device (wave and tide) from an intermediate scaled sub-systems proving machine (circa 1:4) to a full size solo prototype pre-production unit and on towards a pre-commercial device ready for...... of marine energy converters, according to Annex 1 – Description of Work of the EquiMar project, where task 4.2 is defined. Some slight modifications have been made to the original structure due to re-adjustments in accordance with the on-going research.......The Sea Trial Manual (D4.1) describes the type of operations required to advance an ocean energy conversion device (wave and tide) from an intermediate scaled sub-systems proving machine (circa 1:4) to a full size solo prototype pre-production unit and on towards a pre-commercial device ready...

  12. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  13. WindWaveFloat (WWF): Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Alla; Roddier, Dominique; Banister, Kevin

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  14. Experimental and Theoretical Analysis of a Combined Floating Wave and Wind Energy Conversion Platform

    DEFF Research Database (Denmark)

    Yde, Anders; Pedersen, Mads Mølgaard; Bellew, Sarah Bellew

    This report presents results from the PSO project 2011-1-10668 entitled Poseidon 2. The project is a continuation of the previous PSO project entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines. Floating Power Plant has developed the technology...... for a novel, floating, wave- and wind-energy hybrid device. To test the technology they have scaled the design to P37, a 37 m wide test platform that has been undergoing offshore testing for four complete test phases (totaling more than 2 years). The test platform provides electricity to the grid from both...... wind and wave energy, however its purpose is purely for research and development. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the test periods has been used for evaluating...

  15. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    Science.gov (United States)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  16. Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen

    2013-01-01

    to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement......This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...... the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due...

  17. Modeling Innovative Power Take-Off Based on Double-Acting Hydraulic Cylinders Array for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Juan Carlos Antolín-Urbaneja

    2015-03-01

    Full Text Available One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.

  18. Balancing Power Absorption and Structural Loading for an Assymmetric Heave Wave-Energy Converter in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-07-01

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  19. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    Directory of Open Access Journals (Sweden)

    Sharay Astariz

    2015-07-01

    Full Text Available Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be realised through these co-located energy farms and, thus, some challenges of offshore wind energy can be met. Among them, this paper focuses on the longer non-operational periods of offshore wind turbines—relative to their onshore counterparts—typically caused by delays in maintenance due to the harsh marine conditions. Co-located wave energy converters would act as a barrier extracting energy from the waves and resulting in a shielding effect over the wind farm. On this basis, the aim of this paper is to analyse wave energy economics in a holistic way, as well as the synergies between wave and offshore wind energy, focusing on the shadow effect and the associated increase in the accessibility to the wind turbines.

  20. Problems of application of wave energy

    International Nuclear Information System (INIS)

    D'yakov, A.F.; Morozkina, M.V.

    1993-01-01

    Technical solutions of using the energy both sea waves and lake ones are analyzed. Mathematical description of wave processes and phenomena as well as techniques of selection and conversion of the wave energy are given. Wave energy electromechanical converters are considered. Great attention is paid to linear generators of electromechanical converters eddy currents in massive sections of these generators and features of their calculation. Techniques for optimization of the linear generator parameters are shown. 60 refs

  1. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  2. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data

    Science.gov (United States)

    Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731

  3. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    Directory of Open Access Journals (Sweden)

    Rafael Luz Espindola

    Full Text Available This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon different wave energy converters (WEC over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  4. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    Science.gov (United States)

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  5. Developments in the design of the PS Frog Mk 5 wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, A.P.; Bradshaw, A.; Meadowcroft, J.A.C.; Aggidis, G. [Department of Engineering, Lancaster University Renewable Energy Group, Lancaster LA1 4YR (United Kingdom)

    2006-02-01

    This paper describes one of the innovative wave energy converters under development by the Lancaster University Renewable Energy Group. An offshore point-absorber wave energy converter, PS Frog Mk 5 consists of a large buoyant paddle with an integral ballasted 'handle' hanging below it. The waves act on the blade of the paddle and the ballast beneath provides the necessary reaction. When the WEC is pitching, power is extracted by partially resisting the sliding of a power-take-off mass, which moves in guides above sea level. Totally enclosed in a steel hull, with no external moving parts, PS Frog Mk. 5 is at least as robust as a ship and the survivability of the device is currently under investigation, though such work is beyond the scope of this paper. Such a device could be very economic in terms of power output per unit of capital cost. New inventive steps with experimental results and computer studies have led to promising improvements to the hull shape. The WEC is maintained in a resonant state by the use of special means to maintain a high dynamic magnifier in irregular seas. A robust feedback control system has been developed to ensure stability and maintain efficient power take-off. Some of these developments are described and illustrated with the results of computer simulations that show power outputs and device motion over a range of conditions. It is shown that useful advances have been made, with the power capture bordering on 2MW in an increasing proportion of sea states. (author)

  6. Design of Passive Acoustic Wave Shaping Devices and Their Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole; Fernandez Grande, Efren

    We discuss a topology optimization based approach for designing passive acoustic wave shaping devices and demonstrate its application to; directional sound emission [1], sound focusing and wave splitting. Optimized devices, numerical and experimental results are presented and benchmarked against...... other designs proposed in the literature. We focus on design problems where the size of the device is on the order of the wavelength, a problematic region for traditional design methods, such as ray tracing.The acoustic optimization problem is formulated in the frequency domain and modeled...

  7. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  8. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  9. Reliability-based Calibration of Partial Safety Factors for Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten Mejlhede; Sørensen, John Dalsgaard

    2015-01-01

    of partial safety factors for design of welded details for wave energy converter applications is presented in this paper using probabilistic methods. The paper presents an example with focus on the Wavestar device. SN curves and Rainflow counting are used to model fatigue without considering inspections....... The influence of inspections is modelled using a fracture mechanics approach, which is calibrated by the SN curve approach. Furthermore, the paper assesses the influence of the inspection quality. The results show that with multiple inspections during the lifetime of the device and by applying a good inspection...

  10. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  11. Development of the 'SEA-Clam' wave energy device for small scale use. Interim report 1st August 1983 - 30th April 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-01

    An Interim Report on the development of the Sea-Clam wave energy device for small scale use is presented. Experimental tests to measure the productivity of the Clam system, using 1/14th linear scale models of a 80 m long x 7 to 9 m deep x 5 m wide device intended for small community use are outlined. A feature of these experiments has been the development of a rotating damper which enables damping rate to be readily varied during a series of successive tests, a major advance in power measurements of air systems at this scale. Development of corded bags, progress made during the period with mathematical modelling of the turbine-generator power take-off system, and use of paralleled induction generators run at near-synchronous speed in conjuction with either a 3-phase base supply or an on-board alternator to provide magnetization current are discussed.

  12. ZnO film for application in surface acoustic wave device

    International Nuclear Information System (INIS)

    Du, X Y; Fu, Y Q; Tan, S C; Luo, J K; Flewitt, A J; Maeng, S; Kim, S H; Choi, Y J; Lee, D S; Park, N M; Park, J; Milne, W I

    2007-01-01

    High quality, c-axis oriented zinc oxide (ZnO) thin films were grown on silicon substrate using RF magnetron sputtering. Surface acoustic wave (SAW) devices were fabricated with different thickness of ZnO ranging from 1.2 to 5.5 μmUm and the frequency responses were characterized using a network analyzer. Thick ZnO films produce the strongest transmission and reflection signals from the SAW devices. The SAW propagation velocity is also strongly dependent on ZnO film thickness. The performance of the ZnO SAW devices could be improved with addition of a SiO 2 layer, in name of reflection signal amplitude and phase velocity of Rayleigh wave

  13. Parametrics for Molecular Deuterium Concentrations in the Source Region of the UW-IEC Device Using an Ion Acoustic Wave Diagnostic

    Science.gov (United States)

    Boris, D. R.; Emmert, G. A.

    2007-11-01

    The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.

  14. Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models

    International Nuclear Information System (INIS)

    Greenwood, Charles; Christie, David; Venugopal, Vengatesan; Morrison, James; Vogler, Arne

    2016-01-01

    This paper presents results from numerical simulations of three Oscillating Wave Surge Converters (OWSC) using two different computational models, Boussinesq wave (BW) and Spectral wave (SW) of the commercial software suite MIKE. The simulation of a shallow water wave farm applies alternative methods for implementing a frequency dependent absorption in both the BW and SW models, where energy extraction is based on experimental data from a scaled Oyster device. The effects of including wave diffraction within the SW model is tested by using diffraction smoothing steps and various directional wave conditions. The results of this study reveal important information on the models realms of validity that is heavily dependent on the incident sea state and the removal of diffraction for the SW model. This yields an increase in simulation accuracy for far-field disturbances when diffraction is entirely removed. This highlights specific conditions where the BW and SW model may thrive but also regions where reduced performance is observed. The results presented in this paper have not been validated with real sea site wave device array performance, however, the methodology described would be useful to device developers to arrive at preliminary decisions on array configurations and to minimise negative environmental impacts.

  15. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    Ocean waves provide a sustainable, power-dense, predictable and widely available source of energy that could provide about 10 % of worlds energy needs. While research into waveenergy has been undertaken for decades, a significant increase in related activities has been seen in the recent years......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes....... Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. Thisimplicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development...

  16. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  17. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  18. Gas loading of graphene-quartz surface acoustic wave devices

    Science.gov (United States)

    Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-08-01

    Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.

  19. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  20. Wave Energy Potential in the Latvian EEZ

    Science.gov (United States)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  1. Slow wave cyclotron maser

    International Nuclear Information System (INIS)

    Kho, T.H.; Lin, A.T.

    1988-01-01

    Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application

  2. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  3. Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices

    Science.gov (United States)

    Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.

    2016-12-01

    Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC

  4. Recent developments at CNR-INSEAN on testing and modelling marine renewable energy systems for waves and currents

    International Nuclear Information System (INIS)

    Salvatore, Francesco; Di Felice, Fabio; Fabbri Luigi

    2015-01-01

    Hydrodynamic testing centers are nowadays challenged by a continuously increasing demand for studies aimed at the development, verification and assessment of marine renewable energy capturing systems. This paper describes the experience matured over the last years at CNR-INSEAN, the marine technology research Institute of the Italian National Research Council. Originally designed for hydrodynamics testing of marine vehicles, the Institute’s experimental facilities like wave and calm water tanks, circulating water channel, now host testing programs on wave energy converters, marine current turbines and hybrid systems, combining devices to extract energy from different marine sources like waves and winds. Selected case studies are described and main findings are discussed in the paper.

  5. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    Science.gov (United States)

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  6. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Erik Friis-Madsen

    2013-04-01

    Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.

  7. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  8. Brain Computer Interface-Controlling Devices Utilizing The Alpha Brain Waves

    Directory of Open Access Journals (Sweden)

    Rohan Hundia

    2015-01-01

    Full Text Available Abstract This paper describes the development and testing of an interface system whereby one can control external devices by voluntarily controlling alpha waves that is through eye movement. Such a system may be used for the control of prosthetics robotic arms and external devices like wheelchairs using the alpha brain waves and the Mu rhythm. The response generated through the movement of the eye detecting and controlling the amplitude of the alpha brain waves is interfaced and processed to control Robotic systems and smart home control. In order to measure the response of alpha waves over different lobes of the brain initially I measured these signals over 32 regions using silver chloride plated electrodes. By the opening and the closure of the eyes and the movement in the up-down left-right directions and processing these movements measuring them over the occipital region I was able to differentiate the amplitude of the alpha waves generated due to these several movements. In the First session testing period subjects were asked to close and open their eyes and they were able to control limited movements of a Robot and a prosthetic arm. In the Second 2session the movement of the eyes was also considered left-right up-down along with the opening and closure during this time span they were able to control more dimensions of the robot several devices at the same time using different eye movements.

  9. Contribution to coherent atom optics - Design of multiple wave devices

    International Nuclear Information System (INIS)

    Impens, F.

    2008-03-01

    The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)

  10. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  11. Wave Intensity Analysis of Right Ventricular Function during Pulsed Operation of Rotary Left Ventricular Assist Devices.

    Science.gov (United States)

    Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod

    2018-05-29

    Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.

  12. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    OpenAIRE

    Sharay Astariz; Gregorio Iglesias

    2015-01-01

    Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be rea...

  13. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  15. Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices

    Science.gov (United States)

    Rana, Bivas; Otani, YoshiChika

    2018-01-01

    Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.

  16. Marine Planning for Potential Wave Energy Facility Placement Amongst a Crowded Sea of Existing Resource Uses

    Science.gov (United States)

    Feist, B. E.; Fuller, E.; Plummer, M. L.

    2016-12-01

    Conversion to renewable energy sources is a logical response to increasing pressure to reduce greenhouse gas emissions. Ocean wave energy is the least developed renewable energy source, despite having the highest energy per unit area. While many hurdles remain in developing wave energy, assessing potential conflicts and evaluating tradeoffs with existing uses is essential. Marine planning encompasses a broad array of activities that take place in and affect large marine ecosystems, making it an ideal tool for evaluating wave energy resource use conflicts. In this study, we focus on the potential conflicts between wave energy conversion (WEC) facilities and existing marine uses in the context of marine planning, within the California Current Large Marine Ecosystem. First, we evaluated wave energy facility development using the Wave Energy Model (WEM) of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) toolkit. Second, we ran spatial analyses on model output to identify conflicts with existing marine uses including AIS based vessel traffic, VMS and observer based measures of commercial fishing effort, and marine conservation areas. We found that regions with the highest wave energy potential were distant from major cities and that infrastructure limitations (cable landing sites) restrict integration with existing power grids. We identified multiple spatial conflicts with existing marine uses; especially shipping vessels and various commercial fishing fleets, and overlap with marine conservation areas varied by conservation designation. While wave energy generation facilities may be economically viable in the California Current, this viability must be considered within the context of the costs associated with conflicts that arise with existing marine uses. Our analyses can be used to better inform placement of WEC devices (as well as other types of renewable energy facilities) in the context of marine planning by accounting for economic tradeoffs

  17. On theory and simulation of heaving-buoy wave-energy converters with control

    Energy Technology Data Exchange (ETDEWEB)

    Eidsmoen, H.

    1995-12-01

    Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.

  18. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik

    2013-01-01

    An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon...

  19. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy

    KAUST Repository

    Ahmed, Abdelsalam

    2016-12-08

    This paper presents a fully enclosed duck-shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low-frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck-shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m−2. Following the design, a fluid–solid interaction analysis is carried out on one duck-shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck-shaped TENG shows a simple, cost-effective, environmentally friendly, light-weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.

  20. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy

    KAUST Repository

    Ahmed, Abdelsalam; Saadatnia, Zia; Hassan, Islam; Zi, Yunlong; Xi, Yi; He, Xu; Zu, Jean; Wang, Zhong Lin

    2016-01-01

    This paper presents a fully enclosed duck-shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low-frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck-shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m−2. Following the design, a fluid–solid interaction analysis is carried out on one duck-shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck-shaped TENG shows a simple, cost-effective, environmentally friendly, light-weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.

  1. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...

  2. Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Real-time control of wave energy converters requires knowledge of future incident wave elevation in order to approach optimal efficiency of wave energy extraction. We present an approach where the wave elevation is treated as a time series and it is predicted only from its past history. A comparison of a range of forecasting methodologies on real wave observations from two different locations shows how the relatively simple linear autoregressive model, which implicitly models the cyclical beh...

  3. Clustering of cycloidal wave energy converters

    Science.gov (United States)

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  4. Energy in one-dimensional linear waves

    International Nuclear Information System (INIS)

    Repetto, C E; Roatta, A; Welti, R J

    2011-01-01

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  5. Controller for a wave energy converter

    Science.gov (United States)

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  6. Reliability-Based Structural Optimization of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Simon Ambühl

    2014-12-01

    Full Text Available More and more wave energy converter (WEC concepts are reaching prototypelevel. Once the prototype level is reached, the next step in order to further decrease thelevelized cost of energy (LCOE is optimizing the overall system with a focus on structuraland maintenance (inspection costs, as well as on the harvested power from the waves.The target of a fully-developed WEC technology is not maximizing its power output,but minimizing the resulting LCOE. This paper presents a methodology to optimize thestructural design of WECs based on a reliability-based optimization problem and the intentto maximize the investor’s benefits by maximizing the difference between income (e.g., fromselling electricity and the expected expenses (e.g., structural building costs or failure costs.Furthermore, different development levels, like prototype or commercial devices, may havedifferent main objectives and will be located at different locations, as well as receive varioussubsidies. These points should be accounted for when performing structural optimizationsof WECs. An illustrative example on the gravity-based foundation of the Wavestar deviceis performed showing how structural design can be optimized taking target reliability levelsand different structural failure modes due to extreme loads into account.

  7. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    . Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. This implicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes...

  8. Feasibility Study for Using a Linear Transverse Flux Machine as part of the Structure of Point Absorber Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Ilana Pereira da Costa Cunha

    2017-10-01

    Full Text Available This is a feasibility study for the generation of wave energy by means of a transverse flux machine connected to a device for converting wave energy known as Point Absorber. The article contains literature review on the topic and analysis of data obtained by means of a prototype built in the laboratory. Based on the results, the study concludes that this use is feasible.

  9. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  10. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  11. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  12. Basin Testing of Wave Energy Converters in Trondheim: Investigation of Mooring Loads and Implications for Wider Research

    Directory of Open Access Journals (Sweden)

    Vladimir Krivtsov

    2014-04-01

    Full Text Available This paper describes the physical model testing of an array of wave energy devices undertaken in the NTNU (Norwegian University of Science and Technology Trondheim basin between 8 and 20 October 2008 funded under the EU Hydralabs III initiative, and provides an analysis of the extreme mooring loads. Tests were completed at 1/20 scale on a single oscillating water column device and on close-packed arrays of three and five devices following calibration of instrumentation and the wave and current test environment. One wave energy converter (WEC was fully instrumented with mooring line load cells, optical motion tracker and accelerometers and tested in regular waves, short- and long-crested irregular waves and current. The wave and current test regimes were measured by six wave probes and a current meter. Arrays of three and five similar WECs, with identical mooring systems, were tested under similar environmental loading with partial monitoring of mooring forces and motions. The majority of loads on the mooring lines appeared to be broadly consistent with both logistic and normal distribution; whilst the right tail appeared to conform to the extreme value distribution. Comparison of the loads at different configurations of WEC arrays suggests that the results are broadly consistent with the hypothesis that the mooring loads should differ. In particular; the results from the tests in short crested seas conditions give an indication that peak loads in a multi WEC array may be considerably higher than in 1-WEC configuration. The test campaign has contributed essential data to the development of Simulink™ and Orcaflex™ models of devices, which include mooring system interactions, and data have also been obtained for inter-tank comparisons, studies of scale effects and validation of mooring system numerical models. It is hoped that this paper will help to draw the attention of a wider scientific community to the dataset freely available from the

  13. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...... power outputs of three wave energy technologies in the Danish North Sea are examined. The simultaneous and co-located forecast and buoy-measured wave parameters at Hanstholm, Denmark, during a non-consecutive autumn and winter 3-month period form the basis of the investigation. The objective...

  14. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  15. Application of the Aero-Hydro-Elastic Model, HAWC2-WAMIT, to Offshore Data from Floating Power Plants Hybrid Wind- and Wave-Energy Test Platform, P37

    DEFF Research Database (Denmark)

    Bellew, Sarah; Yde, Anders; Verelst, David Robert

    2014-01-01

    numerical models, which can combine the aerodynamic, hydrodynamic, structural exibility and mooring components. Very little oshore data exists, however, in order to validate these numerical models. Floating Power Plant are the developers of a oating, hybrid wind- and wave-energy device. The device uses...... the pitching wave energy devices, not only to increase and smooth the power output from the platform, but also to take the energy from the waves in a controlled manner, resulting in a stable platform for the wind turbine and a safe harbour for O&M. They are currently developing the nal design for their rst...... full-scale prototype, the P80, which has a width of 80 m. As part of the development, Floating Power Plant have completed 4 oshore test-phases (totalling over 2 years oshore operation) on a 37 m wide scaled test device, the P37. This paper focuses on the comparison of one of the leading numerical...

  16. A capacitive device approach to gravitational wave detection

    International Nuclear Information System (INIS)

    Mours, B.; Yvert, M.

    1988-05-01

    The possible use of a capacitive device to detect gravitational waves is discussed. Special emphasis is put on the detection of permanent periodic sources. The intrinsic properties of such a method, its sensitivity, directionality and its wide frequency band, makes it a very appealing one

  17. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    Science.gov (United States)

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  18. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    Science.gov (United States)

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.

  19. Development of the 'SEA-Clam' wave energy device for small scale use. Interim report 1st August 1983 - 30th April 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-01

    An Interim Report on the development of the Sea-Clam wave energy device for small scale use is presented. Experimental tests to measure the productivity of the Clam system, using 1/14th linear scale models of a 80 m long x 7 to 9 m deep x 5 m wide device intended for small community use are outlined. A feature of these experiments has been the development of a rotating damper which enables damping rate to be readily varied during a series of successive tests, a major advance in power measurements of air systems at this scale. Development of corded bags, progress made during the period with mathematical modelling of the turbine-generator power take-off system, and use of paralleled induction generators run at near-synchronous speed in conjuction with either a 3-phase base supply or an on-board alternator to provide magnetization current are discussed.

  20. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Ozger, M.; Altunkaynak, A.; Sen, Z.

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S. (author)

  1. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Oezger, Mehmet; Altunkaynak, Abduesselam; Sen, Zekai

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S

  2. Simulating ecological changes caused by marine energy devices

    Science.gov (United States)

    Schuchert, Pia; Elsaesser, Bjoern; Pritchard, Daniel; Kregting, Louise

    2015-04-01

    Marine renewable energy from wave and tidal technology has the potential to contribute significantly globally to energy security for future generations. However common to both tidal and wave energy extraction systems is concern regarding the potential environmental consequences of the deployment of the technology as environmental and ecological effects are so far poorly understood. Ecological surveys and studies to investigate the environmental impacts are time consuming and costly and are generally reactive; a more efficient approach is to develop 2 and 3D linked hydrodynamic-ecological modelling which has the potential to be proactive and to allow forecasting of the effects of array installation. The objective of the study was to explore tools which can help model and evaluate possible far- and near field changes in the environment and ecosystem caused by the introduction of arrays of marine energy devices. Using the commercial software, MIKE by DHI, we can predict and model possible changes in the ecosystem. MIKE21 and ECOLab modelling software provide the opportunity to couple high level hydrodynamic models with process based ecological models and/or agent based models (ABM). The flow solutions of the model were determined in an idealised tidal basin with the dimensions similar to that of Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen. In the first instance a simple process oriented ecological NPZD model was developed which are used to model marine and freshwater systems describing four state variables, Nutrient, Phytoplankton, Zooplankton and Detritus. The ecological model was run and evaluated under two hydrodynamic scenarios of the idealised basin. This included no tidal turbines (control) and an array of 55 turbines, an extreme scenario. Whilst an array of turbines has an effect on the hydrodynamics of the Lough, it is unlikely to see an extreme effect on the NPZD model

  3. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Horton, W.

    1990-05-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab

  4. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Changbae Kim; Horton, W.

    1991-01-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)

  5. Waves energy comes to surface

    International Nuclear Information System (INIS)

    Guezel, J.Ch.

    2006-01-01

    The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)

  6. Near-Shore Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca

    2011-01-01

    and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is deployed in front of Marina di Ravenna beach (IT), a highly touristic site of the Adriatic Coast. Based on the CERC......Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...

  7. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  8. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS FOR OVERTOPPING DISCHARGE OF THE OBREC WAVE ENERGY CONVERTER

    Directory of Open Access Journals (Sweden)

    A. YAZID MALIKI

    2017-05-01

    Full Text Available OBREC is the latest innovation of overtopping wave energy converter (WEC which is coalesced with the rubble mound breakwaters. The acquisition of wave overtopping in a front reservoir and consequently releasing process through turbine is the concept of energy production in OBREC. The physical scale model studies of overtopping discharge of the OBREC have recently been done by previous researcher in wave flume at Aalborg University. This paper demonstrates the overtopping behavior of OBREC device using a VOF method with capabilities to solve RANS equation in the numerical suite Flow3D. The purpose of this research is to validate the overtopping discharge performance of the numerical model against the experiments of the OBREC. Based on the observation, the results have shown a good agreement between the validation and physical experiment.

  9. Graphene-based energy devices

    CERN Document Server

    Yusoff, A Rashid bin Mohd

    2015-01-01

    This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic f

  10. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  11. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  12. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    Science.gov (United States)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  13. The potential of wave and offshore wind energy in around the coastline of Malaysia that face the South China Sea

    International Nuclear Information System (INIS)

    Chiang, E.P.; Zainal, Z.A.; Aswatha Narayana, P.A.; Seetharamu, K.N.

    2006-01-01

    The world wide estimated wave resource is more than 2 TW. Offshore wind speeds are generally higher than wind speeds over land, hence higher available energy resource. The estimated offshore wind potential in European waters alone is in excess of 2500 TWh/annum. Offshore area also provides larger area for deploying wind energy devices. In recent year efforts to promote these two types of renewable and green energy sources have been intensify. Using the data obtained from the Malaysia Meteorological Service (MMS) analysis was conducted for the potential of wave energy and wind energy along the coastline of Malaysia facing the South China Sea. Maps of wave power potential were produced. The mean vector wind speed and direction were tabulated

  14. Supersonic wave detection method and supersonic detection device

    International Nuclear Information System (INIS)

    Machida, Koichi; Seto, Takehiro; Ishizaki, Hideaki; Asano, Rin-ichi.

    1996-01-01

    The present invention provides a method of and device for a detection suitable to a channel box which is used while covering a fuel assembly of a BWR type reactor. Namely, a probe for transmitting/receiving supersonic waves scans on the surface of the channel box. A data processing device determines an index showing a selective orientation degree of crystal direction of the channel box based on the signals received by the probe. A judging device compares the determined index with a previously determined allowable range to judge whether the channel box is satisfactory or not based on the result of the comparison. The judgement are on the basis that (1) the bending of the channel box is caused by the difference of elongation of opposed surfaces, (2) the elongation due to irradiation is caused by the selective orientation of crystal direction, and (3) the bending of the channel box can be suppressed within a predetermined range by suppressing the index determined by the measurement of supersonic waves having a correlation with the selective orientation of the crystal direction. As a result, the performance of the channel box capable of enduring high burnup region can be confirmed in a nondestructive manner. (I.S.)

  15. Surface acoustic wave coding for orthogonal frequency coded devices

    Science.gov (United States)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  16. Stochastic Modeling of Long-Term and Extreme Value Estimation of Wind and Sea Conditions for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave energy power plants are expected to become one of the major future contribution to the sustainable electricity production. Optimal design of wave energy power plants is associated with modeling of physical, statistical, measurement and model uncertainties. This paper presents stochastic models...... for the significant wave height, the mean zero-crossing wave period and the wind speed for long-term and extreme estimations. The long-term estimation focuses on annual statistical distributions, the inter-annual variation of distribution parameters and the statistical uncertainty due to limited amount of data...

  17. Exploring the Potential for Increased Production from the Wave Energy Converter Lifesaver by Reactive Control

    Directory of Open Access Journals (Sweden)

    Marta Molinas

    2013-07-01

    Full Text Available Fred Olsen is currently testing their latest wave energy converter (WEC, Lifesaver, outside of Falmouth Bay in England, preparing it for commercial operation at the Wavehub test site. Previous studies, mostly focusing on hydrodynamics and peak to average power reduction, have shown that this device has potential for increased power extraction using reactive control. This article extends those analyses, adding a detailed model of the all-electric power take-off (PTO system, consisting of a permanent magnet synchronous generator, inverter and DC-link. Time domain simulations are performed to evaluate the PTO capabilities of the modeled WEC. However, when tuned towards reactive control, the generator losses become large, giving a very low overall system efficiency. Optimal control with respect to electrical output power is found to occur with low added mass, and when compared to pure passive loading, a 1% increase in annual energy production is estimated. The main factor reducing the effect of reactive control is found to be the minimum load-force constraint of the device. These results suggest that the Lifesaver has limited potential for increased production by reactive control. This analysis is nevertheless valuable, as it demonstrates how a wave-to-wire model can be used for investigation of PTO potential, annual energy production estimations and evaluations of different control techniques for a given WEC device.

  18. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  19. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  20. Sensitivity of wave energy to climate change

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Wave energy will have a key role in meeting renewable energy targets en route to a low carbon economy. However, in common with other renewables, it may be sensitive to changes in climate resulting from rising carbon emissions. Changes in wind patterns are widely anticipated and this will ultimately alter wave regimes. Indeed, evidence indicates that wave heights have been changing over the last 40 years, although there is no proven link to global warming. Changes in the wave climate will impa...

  1. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter

    2010-01-01

    The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...

  2. Surface ionization wave in a plasma focus-like model device

    International Nuclear Information System (INIS)

    Yordanov, V; Blagoev, A; Ivanova-Stanik, I; Veldhuizen, E M van; Nijdam, S; Dijk, J van; Mullen, J J A M van der

    2008-01-01

    A numerical particle in cell-Monte Carlo model of the breakdown in the plasma focus device simulates the development of an ionization wave sliding along the insulator. In order to validate this model a planar model device is created. The pictures of the discharges taken by a fast optical camera show that we have qualitative agreement between the model and the experimental observations.

  3. Surface ionization wave in a plasma focus-like model device

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, V; Blagoev, A [Faculty of Physics, University of Sofia, 5 James Bourchier Blvd, BG-1164, Sofia (Bulgaria); Ivanova-Stanik, I [IPPLM, 23 Hery St, PO Box 49, PL-00-908 Warsaw (Poland); Veldhuizen, E M van; Nijdam, S; Dijk, J van; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: v.yordanov@phys.uni-sofia.bg

    2008-11-07

    A numerical particle in cell-Monte Carlo model of the breakdown in the plasma focus device simulates the development of an ionization wave sliding along the insulator. In order to validate this model a planar model device is created. The pictures of the discharges taken by a fast optical camera show that we have qualitative agreement between the model and the experimental observations.

  4. The Indian wave energy programme- an overview

    International Nuclear Information System (INIS)

    Ravindran, M.; Jayashankar, V.; Jalihal, P.; Pathak, A.G.

    1997-01-01

    The Indian wave energy plant at Vizhinjam, Kerala has demonstrated that energy from a random source such as waves can be harnessed as electrical energy and exported via the local grid. This plant is based on the oscillating water column (OWC) principle. The research on wave energy in India has achieved a commendable status within a decade. A caisson was constructed in December 1990 at Vizhinjam and two generations of power modules have been tested as of today. The physical processes in the energy conversion are understood to a much greater extent, leading to a threefold increase in absolute power from the plant. Efforts are on to make the technology cost-effective

  5. Influence of material selection on the structural behavior of a wave energy converter

    Directory of Open Access Journals (Sweden)

    Cândida M. S. P. Malça

    2014-09-01

    Full Text Available In the last decades, the world energy demand has raised significantly. Concerning this fact, wave energy should be considered as a valid alternative for electricity production. Devices suitable to harness this kind of renewable energy source and convert it into electricity are not yet commercially competitive. This paper is focused on the selection and analysis of different types of elastic materials and their influence on the structural behavior of a wave energy converter (WEC. After a brief characterization of the device, a tridimensional computer aided design (3D CAD numerical model was built and several finite element analyses (FEA were performed through a commercial finite element code. The main components of the WEC, namely the buoy, supporting cables and hydraulic cylinder were simulated assuming different materials. The software used needs, among other parameters, the magnitude of the resultant hydrodynamic forces acting upon the floating buoy obtained from a WEC time domain simulator (TDS which was built based on the WEC dynamic model previously developed. The Von Mises stress gradients and displacement fields determined by the FEA demonstrated that, regardless of the WEC component, the materials with low Young's modulus seems to be unsuitable for this kind of application. The same is valid for the material yield strength since materials with a higher yield strength lead to a better structural behavior of WEC components because lower stress and displacement values were obtained. The developed 3D CAD numerical model showed to be suitable to analyze different combinations of structural conditions. They could depend of different combinations of buoy position and resultant hydrodynamic forces acting upon the buoy, function of the specific sea wave parameters found on the deployment site.

  6. A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance

    Directory of Open Access Journals (Sweden)

    Ruiyin Song

    2016-05-01

    Full Text Available Wave and current energy can be harnessed in the East China Sea and South China Sea; however, both areas are subject to high frequencies of typhoon events. To improve the safety of the ocean energy conversion device, a Floating Ocean Energy Conversion Device (FOECD with a single mooring system is proposed, which can be towed to avoid severe ocean conditions or for regular maintenance. In this paper, the structure of the FOECD is introduced, and it includes a catamaran platform, an oscillating buoy part, a current turbine blade, hydraulic energy storage and an electrical generation part. The numerical study models the large catamaran platform as a single, large buoy, while the four floating buoys were modeled simply as small buoys. Theoretical models on wave energy power capture and efficiency were established. To improve the suitability of the buoy for use in the FOECD and its power harvesting capability, a numerical simulation of the four buoy geometries was undertaken. The shape profiles examined in this paper are cylindrical, turbinate (V-shaped and U-shaped cone with cylinder, and combined cylinder-hemisphere buoys. Simulation results reveal that the suitability of a turbinate buoy is the best of the four types. Further simulation models were carried out by adjusting the tip radius of the turbinate buoy. Three performance criteria including suitability, power harvesting capability and energy capture efficiency were analyzed. It reveals that the turbinate buoy has almost the same power harvesting capabilities and energy capture efficiency, while its suitability is far better than that of a cylindrical buoy.

  7. Energy Capture Optimization for an Adaptive Wave Energy Converter

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Meijer, Harmen; van Rooij, Marijn; Clemente Pinol, Silvia; Galvan Garcia, Bruno; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2016-01-01

    Wave energy has great potential as a renewable energy source, and can therefore contribute significantly to the proportion of renewable energy in the global energy mix. This is especially important since energy mixes with high renewable penetration have become a worldwide priority. One solution to

  8. Nanostructured energy devices equilibrium concepts and kinetics

    CERN Document Server

    Bisquert, Juan

    2014-01-01

    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  9. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-03-01

    Full Text Available Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC system with a tubular permanent magnet linear generator (TPMLG on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating principle of D-DWECs is introduced, and detailed analyses of the proposed D-DWEC’s floater system, wave force characteristics, and conversion efficiency conducted using computational fluid dynamics are presented. A TPMLG with an asymmetric slot structure is designed to increase the output electric power, and detailed analyses of the magnetic field distribution, detent force characteristics, and no-load and load performances conducted using finite element analysis are discussed. The TPMLG with an asymmetric slot, which produces the same power as the TPMLG with a symmetric slot, has one fifth detent force of the latter. An experiment system with a prototype of the TPMLG with a symmetric slot is used to test the simulation results. The experiment and analysis results agree well. Therefore, the proposed D-DWEC fulfills the requirements of WEC systems.

  10. Technical and Non-Technical Issues towards the Commercialisation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    , it then determines the stages where there is a gap in research, and lastly, it analyses the identified key subjects. Accordingly, the thesis elaborates on seven areas: . i. It examines regulatory frameworks for wave energy developments and how they affect project execution. . ii. It investigates the role...... are of relevance to successfully reach the commercialisation of WECs and need attention from the sector as such, not least from device developers. The thesis is presented in two parts: a main introduction and a collection of papers. The first part provides a brief history of wave energy, introduces the research...... topic, describes the different disciplines addressed in the thesis and relates them. The eight papers comprise the core part of the work. The papers address the research topic in different ways: from a legal, social, technical and economic viewpoint, and from various WEC development stages. All...

  11. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    Science.gov (United States)

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  12. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  13. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lamb, Bradford [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Prudell, Joseph [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Hammagren, Erik [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc., Charlottesville, VA (United States)

    2016-08-22

    This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) and lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).

  14. Power from Ocean Waves.

    Science.gov (United States)

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  15. An oxygen pressure sensor using surface acoustic wave devices

    Science.gov (United States)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  16. Wave energy absorption by ducks

    OpenAIRE

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle.

  17. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2018-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  18. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  19. An innovative approach for energy generation from waves

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habaibeh, A. [Advanced Design and Manufacturing Engineering Centre, School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); Su, D. [School of Architecture, Design and the Built Environment, Nottingham Trent University (United Kingdom); McCague, J. [Technical Director, Ocean Navitas Ltd., Lincolnshire (United Kingdom); Knight, A. [Marketing and Communications Manager, Ocean Navitas Ltd., Lincolnshire (United Kingdom)

    2010-08-15

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a {+-}0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves. (author)

  20. An innovative approach for energy generation from waves

    International Nuclear Information System (INIS)

    Al-Habaibeh, A.; Su, D.; McCague, J.; Knight, A.

    2010-01-01

    Sustainable energy generation is becoming increasingly important due to the expected limitations in current energy resources and to reduce pollution. Wave energy generation has seen significant development in recent years. This paper describes an innovative system for generating energy from wave power. A complete description of the system is presented including the general concept, configurations, mechanical design, electrical system, simulation techniques and expected power output of the system. The results from the hydraulic linear wave simulator, using a real wave profiles captured at a location in the UK using an ultrasound system, it was seen that a ±0.8 m wave at 10 s time period, produced a conditioned power output of approximately 22 kW at optimum load conditions for the tested 3-phase 44 kW permanent magnet generator type STK500. The results indicate that this new technology could provide an efficient and low cost method of generating electricity from waves.

  1. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  2. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  3. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  4. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  5. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Science.gov (United States)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  6. Prospects and applicability of wave energy for South Africa

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan

    2018-03-01

    Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.

  7. Numerical study on design for wave energy generation of a floater for energy absorption

    International Nuclear Information System (INIS)

    Li, Kui Ming; Parthasarathy, Nanjundan; Choi, Yoon Hwan; Lee, Yeon Won

    2012-01-01

    In order to design a wave energy generating system of a floater type, a 6 DOF motion technique was applied to the three Dimensional CFD analysis on a floating body and the behavior was interpreted according to the nature of the incoming waves. Waves in a tank model were generated using a single floater comparing with that of a Pelamis wave energy converter. In this paper, we focus on four variables, namely the wave height, angular velocity, diameter and length of the floater. The process was carried out in three stages and it was found that there are energy absorption differences in different parameters of wave height, length and the diameter of a floater during simulation, thus leading for the necessity of an optimal design for wave energy generation

  8. Discrete microfluidics based on aluminum nitride surface acoustic wave devices

    OpenAIRE

    Zhou, J.; Pang, H.F.; Garcia-Gancedo, L.; Iborra, E.; Clement, M.; De Miguel-Ramos, M.; Jin, H.; Luo, J.K.; Smith, S.; Dong, S.R.; Wang, D.M.; Fu, Y.Q.

    2015-01-01

    To date, most surface acoustic wave (SAW) devices have been made from bulk piezoelectric materials, such as quartz, lithium niobate or lithium tantalite. These bulk materials are brittle, less easily integrated with electronics for control and signal processing, and difficult to realize multiple wave modes or apply complex electrode designs. Using thin film SAWs makes it convenient to integrate microelectronics and multiple sensing or microfluidics techniques into a lab-on-a-chip with low cos...

  9. Experimentally Based Model to Size the Geometry of a New OWC Device, with Reference to the Mediterranean Sea Wave Environment

    Directory of Open Access Journals (Sweden)

    Piero Ruol

    2013-09-01

    Full Text Available This note presents the Seabreath wave energy converter, basically a multi-chamber floating oscillating water column device, and the lumped model used to size its chambers, the ducts and the turbine. The model is based on extensive testing carried out in the wave flume of the University of Padova using fixed and floating models with a dummy power take off and indirect measurement of the produced power. A map with the available energy in the Mediterranean Sea is also proposed, showing possible ideal application sites. The Seabreath is finally dimensioned for a quarter scale test application in the Adriatic Sea, with a 3 kW turbine, and a capacity factor of 40%.

  10. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  11. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  12. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, Simon

    2011-07-01

    On March 13th, 2006, the Div. of Electricity at Uppsala Univ. deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that

  13. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić

    2011-01-01

    Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception

  14. The Draukie's Tale: Origin Myth for Wave Energy

    DEFF Research Database (Denmark)

    Watts, Laura

    2017-01-01

    Poem based on ethnographic research with people and places around the European Marine Energy Centre, the world's longest running test site for wave and tide energy, Orkney islands, Scotland.......Poem based on ethnographic research with people and places around the European Marine Energy Centre, the world's longest running test site for wave and tide energy, Orkney islands, Scotland....

  15. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  16. Wave energy transmission apparatus for high-temperature environments

    Science.gov (United States)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  17. Waves, currents and sediment transport modelling at the Wave Hub site

    OpenAIRE

    Gonzalez-Santamaria, Raul

    2013-01-01

    Primary supervisory team: Qingping Zou and Shunqi Pan This research project uses an integrated modelling system to investigate the effects of a wave farm on nearshore sediment transport at the Wave Hub site. The Wave Hub project is a large scale demonstration site for the development of the operation of arrays of wave energy generation devices located at the southwest coast of the UK where multiple field measurements took place. Particular attention of this study was paid to th...

  18. Efficient transformer for electromagnetic waves

    Science.gov (United States)

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  19. A Numerical Analysis of Phononic-Assisted Control of Ultrasound Waves in Acoustofluidic Device

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Bruus, Henrik

    2015-01-01

    and streaming has received much attention, since it relies solely on mechanical properties such as particle size and contrast in density and compressibility. We present a theoretical study of phononic-assisted control of ultrasound waves in acoustofluidic devices. We propose the use of phononic crystal...... diffractors, which can be introduced in acoustofluidic structures. These diffractors can be applied in the design of efficient resonant cavities, directional sound waves for new types of particle sorting methods, or acoustically controlled deterministic lateral displacement. The PnC-diffractor-based devices...... can be made configurable, by embedding the diffractors, all working at the same excitation frequency but with different resulting diffraction patterns, in exchangeable membranes on top of the device....

  20. Hanstholm phase 2B. Offshore wave energy test 1994 - 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The wave power converter consists of a float 2.5 meter in diameter, connected by a rope to a seabed-mounted piston pump, installed on 25 meter deep water 2,5 km offshore Hanstholm, Denmark. The converter is designed to absorb an average maximum power of 1 kW. Measured data in real sea conditions are compared to results based on computer simulations and previous tank testing. Losses caused by rope elasticity and hysteresis, friction in the pump and back flow through the valves are assessed. The economic perspectives of a large wave power plant are presented, based on a revised prototype incorporating the results and experience gained during the test period. The wave energy conversion test `Hanstholm phase 2B` has showed, that it it technically possible to exploit the offshore wave energy resource. This source of energy could become attractive for commercial enterprise. The wave power converter demonstrated a reliable performance over a period of nine months. It produced energy under all wave conditions and survived storm waves of 9,6 m. A 300 MW wave power plant in the Danish part of the North sea is estimated to produce electricity at a cost between 2,1 - 2,4 DKK/kWh. The electrical transmission to shore contribute to approximately 20% of the cost. New data predict a potential of 23 kW per meter wave front. The energy plan Energy 21 proposed by the Danish Department of Energy, includes a scenario incorporating wave energy in the energy system year 2030. A strategy for the development of wave energy, has been proposed as part of the project OWEC-1 supported by the European Joule R and D programme. A proposal for future Danish initiatives to develop second generation point absorber systems is outlined. (ARW) 29 refs.

  1. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  2. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  3. Comparison of simulations and offshore measurement data of a prototype of a floating combined wind and wave energy conversion system

    DEFF Research Database (Denmark)

    Yde, Anders; Larsen, Torben J.; Hansen, Anders Melchior

    2015-01-01

    In this paper, results from comparisons of simulations and measured offshore data from a floating combined wind and wave energy conversion system are presented. The device is a downscaled prototype that consists of a floating platform equipped with ten wave energy absorbers and three wind turbines....... The numerical model of the platform is based on the aeroelastic code, HAWC2, developed by DTU Wind Energy, which is coupled with a special external system that reads the output generated directly by the wave analysis software, WAMIT. The model also includes models for the dynamic mooring lines as well...... as the turbines non-linear yaw and teeter motion behavior. The main focus on the comparison will be on the statistical trends of the platform motion, mooring loads and turbine loads in measurements and simulations during different operational conditions such as increasing wind speed, wave height and wind...

  4. Low energy consumption vortex wave flow membrane bioreactor.

    Science.gov (United States)

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  5. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.

    Science.gov (United States)

    Luo, Cheng; Hofmann, Heath F

    2011-07-01

    In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.

  6. Stakeholder requirements for commercially successful wave energy converter farms

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine; Malins, Robert; Nielsen, Kim; Costello, Ronan; Roberts, Jesse; Bittencourt Ferreira, Claudio; Kennedy, Ben; Weber, Jochem

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance level metric will accelerate wave energy conversion technology convergence.

  7. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  8. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  9. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam

    2017-04-11

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester\\'s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  10. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  11. Design guidelines of triboelectric nanogenerator for water wave energy harvesters.

    Science.gov (United States)

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-05-05

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  12. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    Science.gov (United States)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  13. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  14. Analysis and Synthesis of Leaky-Wave Devices in Planar Technology

    Science.gov (United States)

    Martinez Ros, Alejandro Javier

    The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip. El trabajo llevado a cabo durante la realizacion de esta tesis doctoral, se ha centrado en el analisis y sintesis de dispositivos de microondas en tecnologia planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiacion por ondas de fuga "leaky waves", en los cuales las propiedades de radiacion

  15. Wave-particle interactions in rotating mirrorsa)

    Science.gov (United States)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  16. Wave-particle Interactions In Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  17. Wave-particle interactions in rotating mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in ExB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  18. Wave-particle Interactions In Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in E-B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  19. Power from the seas - Wave energy has a big future

    International Nuclear Information System (INIS)

    Schenler, W.

    2008-01-01

    This article takes a look at how the energy of the oceans' waves can become an important source of energy. The generation of the energy contained in waves as an indirect form of solar energy is described. The energy potential offered is quoted as being high in the Atlantic near England and Scotland. The article goes on the discuss the technical potential of this form of renewable energy and provides a map showing this. Financial aspects and economic potentials are discussed. Effects on the environment are also discussed. The on-shore and off-shore technologies that can be used to capture wave energy are described and discussed, as is the combination of power production from wind and waves

  20. Low-energy Shock Wave Therapy-A Novel Treatment Option for Erectile Dysfunction in Men With Cardiovascular Disease.

    Science.gov (United States)

    Kałka, Dariusz; Gebala, Jana; Smoliński, Ryszard; Rusiecki, Lesław; Pilecki, Witold; Zdrojowy, Romuald

    2017-11-01

    Patients with cardiovascular disease (CVD) are prone to developing erectile dysfunction (ED) owing to the common risk factors and pathogenesis underlying ED and CVD. As a result, ED affects nearly 80% of male patients with CVD. The efficacy of phosphodiesterase type 5 inhibitors, vacuum erection devices, or intracavernosal injection of vasodilating agents is well established in the treatment of ED; however, their use is limited. Low-energy shock wave therapy is a novel modality that may become a causative treatment for ED. This review aims to assess the efficacy and safety of low-energy shock wave therapy in the treatment of ED in men with CVD. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons.

    Science.gov (United States)

    Qi, Yi; Kim, Jihoon; Nguyen, Thanh D; Lisko, Bozhena; Purohit, Prashant K; McAlpine, Michael C

    2011-03-09

    The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.

  2. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...

  3. Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks.

    Science.gov (United States)

    Leon-Gil, Jesus A; Cortes-Loredo, Agustin; Fabian-Mijangos, Angel; Martinez-Flores, Javier J; Tovar-Padilla, Marco; Cardona-Castro, M Antonia; Morales-Sánchez, Alfredo; Alvarez-Quintana, Jaime

    2018-03-03

    Internet of Things (IoT) is an emerging platform in which every day physical objects provided with unique identifiers are connected to the Internet without requiring human interaction. The possibilities of such a connected world enables new forms of automation to make our lives easier and safer. Evidently, in order to keep billions of these communicating devices powered long-term, a self-sustainable operation is a key point for realization of such a complex network. In this sense, energy-harvesting technologies combined with low power consumption ICs eliminate the need for batteries, removing an obstacle to the success of the IoT. In this work, a Radio Frequency (RF) energy harvester tuned at AM broadcast has been developed for low consumption power devices. The AM signals from ambient are detected via a high-performance antenna-free LC circuit with an efficiency of 3.2%. To maximize energy scavenging, the RF-DC conversion stage is based on a full-wave Cockcroft-Walton voltage multiplier (CWVM) with efficiency up to 90%. System performance is evaluated by rating the maximum power delivered into the load via its output impedance, which is around 62 μW, although power level seems to be low, it is able to power up low consumption devices such as Leds, portable calculators and weather monitoring stations.

  4. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  5. Wave energy and its possibilities in the Danish power supplies

    International Nuclear Information System (INIS)

    Traeholt Madsen, N.; Lorenzen, S.; Haunstrup Christensen, T.

    1997-06-01

    Mathematical theory of wave forces (wave height, spectrua, energy distribution and effect) is summarized. An attempt to estimate the Danish wave power potential on the basis of previous investigations og wave effect in various regions is presented. A brief review of wave energy applications and research constitutes basis for two scenarios of wave power adjustment into the 'Green society'. Power quality, environment, economics and supply reliability are estimated. (EG) 42 refs

  6. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described. Thi...

  7. Assessment of wave energy potential along the south coast of Java Island

    Science.gov (United States)

    Song, Qingyang; Mayerle, Roberto

    2018-04-01

    The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.

  8. Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2015-06-01

    Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.

  9. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  10. Dissipation of Wave Energy by Cohesive Sediments

    National Research Council Canada - National Science Library

    Kaihatu, James M; Sheremet, Alexandru

    2004-01-01

    Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...

  11. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-08-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  12. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters.

    Science.gov (United States)

    Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan

    2017-01-01

    The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

  13. ICRF Traveling Wave launcher for fusion devices

    International Nuclear Information System (INIS)

    Ragona, R

    2017-01-01

    Ion Cyclotron Resonance Heating and Current Drive is a method that has the ability to heat directly the ions in the Deuterium-Tritrium fuel to the high temperature needed for the fusion reaction to works. The capability of efficiently couple the Radio Frequency power to the plasma plays a big role in the overall performance of a fusion device. A Traveling Wave Antenna in a resonant ring configuration is a good candidate for an Ion Cyclotron Resonance Heating and Current Drive system. It has the capability to increase the coupled power with respect to present designs and to have a highly selective power spectrum that can be peaked around the maximally absorbed wave. It is also insensitive to the loading variations due to fluctuation of the plasma edge increasing the reliability and the efficiency of the system. It works as a low power density launcher due to the possible large number of current carrying elements. (paper)

  14. Wave Energy Resource along the Coast of Santa Catarina (Brazil

    Directory of Open Access Journals (Sweden)

    Pasquale Contestabile

    2015-12-01

    Full Text Available Brazil has one of the largest electricity markets in South America, which needs to add 6000 MW of capacity every year in order to satisfy growing the demand from an increasing and more prosperous population. Apart from biomass, no other renewable energy sources, besides hydroelectricity, play a relevant role in the energy mix. The potential for wind and wave energy is very large. Brazil's Santa Catarina state government is starting a clean energy program in the state, which is expected to bring more than 1 GW of capacity. Assessment of wave energy resources is needed along the coastline. This work studied the potential wave energy along the north-central coasts of Santa Catarina, in Southern Brazil, by analysis of the hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF. The annual offshore wave power was found to be equal to 15.25 kW/m, the bulk of which is provided by southeastern waves. The nearshore energetic patterns were studied by means of a numerical coastal propagation model (Mike21 SW. The mean wave power of 20 m isobaths is 11.43 kW/m. Supplementary considerations are drawn on realistic perspectives for wave energy converters installations.

  15. Energy flow characteristics of vector X-Waves

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    The vector form of X-Waves is obtained as a superposition of transverse electric and transverse magnetic polarized field components. It is shown that the signs of all components of the Poynting vector can be locally changed using carefully chosen complex amplitudes of the transverse electric and transverse magnetic polarization components. Negative energy flux density in the longitudinal direction can be observed in a bounded region around the centroid; in this region the local behavior of the wave field is similar to that of wave field with negative energy flow. This peculiar energy flux phenomenon is of essential importance for electromagnetic and optical traps and tweezers, where the location and momenta of microand nanoparticles are manipulated by changing the Poynting vector, and in detection of invisibility cloaks. © 2011 Optical Society of America.

  16. Wave energy transfer in elastic half-spaces with soft interlayers.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  17. An Appraisal of the DEXA Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report has been requested by VækstFonden and aims at giving an overview of the experimental tests and a general appraisal of the DEXA wave energy converter (WEC). The reported results and findings were obtained during previously performed experimental tests by the Wave Energy Research Group...

  18. Prolongation of the deployment and monitoring of a multiple oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Chudley, J.; Dai, Y.M.

    2003-07-01

    This report summarises the findings of a project to prolong the sea trials of a multiple oscillating water column wave energy converter (MOWC) device for another 12 months to obtain further data. The objectives of the project include the evaluation of the ability of the MOWC to generate reliable energy to produce electricity, the estimation of the conversion efficiency, and the identification of improvements to increase the conversion efficiency, Details are given of the analysis of the sea trials data, and the performance of the broadband oscillating water column prototype.

  19. Wave Energy Potential in the North-West of Sardinia (Italy)

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Contestabile, P.; Ferrante, V.

    2013-01-01

    Sardinia (Italy) is the second largest island in the Mediterranean Sea and its economy is penalized by high costs of electricity, which is double compared to the continental Italian regions, and triple compared to the EU average. In this research, the wave energy potential of the north......, a Wave Energy Converter with maximum efficiency in the ranges of significant wave heights between 3.5 and 4.5 m (energy periods 9.5-11 s) and 4-6 m (energy periods 9.5-11.5 s) respectively should be selected. In order to find a concrete solution to the problem of harvesting wave energy in this area......, the characterization of waves providing energy is considered along with additional considerations, such as installation and operational costs, institutional factors, environmental sensitivity and interferences with others human activities. On the basis of the information available and the identified circumstances...

  20. Buoy-Rope-Drum Wave Power System

    Directory of Open Access Journals (Sweden)

    Linsen Zhu

    2013-01-01

    Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.

  1. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  2. Communicating Wave Energy: An Active Learning Experience for Students

    Science.gov (United States)

    Huynh, Trongnghia; Hou, Gene; Wang, Jin

    2016-01-01

    We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…

  3. Numerical Forecasting Experiment of the Wave Energy Resource in the China Sea

    Directory of Open Access Journals (Sweden)

    Chong Wei Zheng

    2016-01-01

    Full Text Available The short-term forecasting of wave energy is important to provide guidance for the electric power operation and power transmission system and to enhance the efficiency of energy capture and conversion. This study produced a numerical forecasting experiment of the China Sea wave energy using WAVEWATCH-III (WW3, the latest version 4.18 wave model driven by T213 (WW3-T213 and T639 (WW3-T639 wind data separately. Then the WW3-T213 and WW3-T639 were verified and compared to build a short-term wave energy forecasting structure suited for the China Sea. Considering the value of wave power density (WPD, “wave energy rose,” daily and weekly total storage and effective storage of wave energy, this study also designed a series of short-term wave energy forecasting productions. Results show that both the WW3-T213 and WW3-T639 exhibit a good skill on the numerical forecasting of the China Sea WPD, while the result of WW3-T639 is much better. Judging from WPD and daily and weekly total storage and effective storage of wave energy, great wave energy caused by cold airs was found. As there are relatively frequent cold airs in winter, early spring, and later autumn in the China Sea and the surrounding waters, abundant wave energy ensues.

  4. Further Development of SNL‐Swan, a Validated Wave Energy Converter

    OpenAIRE

    Porter, Aaron; Ruehl, Kelley; Chartrand, Chris

    2014-01-01

    Commercialization of wave energy will lead to the necessary deployment of Wave Energy Converters (WECs) in arrays, or wave farms. In order for projects in the United States to be approved, regulatory agencies must perform an Environmental Assessment proving little to no environmental impact. However, little is known about the environmental impacts of such wave farms. As a result, the environmental impacts of wave farms are largely determined by numerical wave models capable of modeling large ...

  5. Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Dezhi Ning

    2017-09-01

    Full Text Available The performance of a dual-chamber Oscillating Water Column (OWC Wave Energy Converter (WEC is considered in the present study. The device has two sub-chambers with a shared orifice. A two-dimensional (2D fully nonlinear numerical wave flume based on the potential-flow theory and the time-domain higher-order boundary element method (HOBEM is applied for the simulation. The incident waves are generated by using the immerged sources and the air-fluid coupling influence is considered with a simplified pneumatic model. In the present study, the variation of the surface elevation and the water column volume in the two sub-chambers are investigated. The effects of the chamber geometry (i.e., the draft and breadth of two chambers on the surface elevation and the air pressure in the chamber are investigated, respectively. It is demonstrated that the surface elevations in the two sub-chambers are strongly dependent on the wave conditions. The larger the wavelength, the more synchronous motion of the two water columns in the two sub-chambers, thus, the lager the variation of the water column volume.

  6. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    2018-04-03

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  7. On Mooring Solutions for Large Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Ferri, Francesco

    2017-01-01

    The present paper describes the work carried out in the project ’Mooring Solutions for Large Wave Energy Converters’, which is a Danish research project carried out in a period of three years from September 2014, with the aim of reducing cost of the moorings for four wave energy converters...

  8. Marine Waves Energy: A spatio-temporal DSS-WebGIS to support the wave-energy potential assessment in the Mediterranean Sea

    International Nuclear Information System (INIS)

    Pollino, Maurizio; La Porta, Luigi; Caiaffa, Emanuela

    2015-01-01

    GIS technologies are able to provide a useful tool for estimating the energy resource from the sea waves, assessing whether this energy flux is exploitable and evaluating the social and environmental impacts in deep water and/or in the seaboard. The DDS-WebGIS 'Energy Waves' represents a tool for displaying and sharing geo spatial data and maps, as well as a valuable support for new installations planning, forecasting system and existing infrastructure management. [it

  9. Wave Energy, Lever Operated Pivoting Float LOPF Study

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg...... University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed...... for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency...

  10. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  11. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  12. Micro and nano devices in passive millimetre wave imaging systems

    Science.gov (United States)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  13. Recent Developments of Wave Energy Utilization in Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Kramer, Morten

    2006-01-01

    by a more thorough description of three ongoing projects. These are Wave Dragon, Wave Star and Seawave Slot-cone Generator. Common for these projects are that they are being, or will soon be, tested in real sea and have benefited from the Danish Wave Energy Program. The work by the department......This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed...... on these projects involves substantial laboratory testing, numerical simulations and real sea prototype testing....

  14. Evaluation of Environmental Effects of Wave Energy Convertor Arrays

    Science.gov (United States)

    Jones, C. A.

    2015-12-01

    Stakeholders and regulators in the U.S. are generally uncertain as to the potential environmental impacts posed by deployments of marine and hydrokinetic (MHK) devices, and in particular wave energy conversion (WEC) devices, in coastal waters. The first pilot-scale WEC deployments in the U.S. have had to absorb unsustainable costs and delays associated with permitting to get devices in the water. As such, there is an urgent industry need to streamline the technical activities and processes used to assess potential environmental impacts. To enable regulators and stakeholders to become more comfortable and confident with developing effective MHK environmental assessments, a better understanding of the potential environmental effects induced by arrays of WEC devices is needed. A key challenge in developing this understanding is that the assessment of the WEC effects must come prior to deployment. A typical approach in similar environmental assessments is to use numerical models to simulate the WEC devices and array layouts so that the appropriate environmental stressors and receptors can be identified and assessed. Sandia National Laboratories (SNL) and the U.S. Department of Energy are fulfilling the industry-wide need to develop "WEC-friendly" open-source numerical modeling tools capable of assessing potential changes to the physical environment caused by the operation of WEC arrays. Studies using these tools will advance the nation's general knowledge of the interrelationships among the number, size, efficiency, and configuration of MHK arrays and the subsequent effects these relationships may have on the deployment environment. By better understanding these relationships, industry, stakeholders, and regulators will be able to work together to optimize WEC deployments such that environmental impacts are minimized while power output is maximized. The present work outlines the initial effort in coupling the SNL WEC-friendly tools with the environmental assessment

  15. Dominant wave frequency and amplitude estimation for adaptive control of wave energy converters

    OpenAIRE

    Nguyen , Hoai-Nam; Tona , Paolino; Sabiron , Guillaume

    2017-01-01

    International audience; Adaptive control is of great interest for wave energy converters (WEC) due to the inherent time-varying nature of sea conditions. Robust and accurate estimation algorithms are required to improve the knowledge of the current sea state on a wave-to-wave basis in order to ensure power harvesting as close as possible to optimal behavior. In this paper, we present a simple but innovative approach for estimating the wave force dominant frequency and wave force dominant ampl...

  16. Up-Wave and Autoregressive Methods for Short-Term Wave Forecasting for an Oscillating Water Column

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, M.F.P.; Conley, Daniel; Ringwood, John

    2015-01-01

    The real-time control of wave energy converters (WECs) requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation up-wave of the WEC. As an application example, this paper focuses on the prediction of the wave elevation inside the chamber of the...

  17. Optimized Latching Control of Floating Point Absorber Wave Energy Converter

    Science.gov (United States)

    Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om

    2018-03-01

    There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.

  18. Power output from Tage Basse's Wave Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossen, E.A.; Mikkelsen, R.

    2000-10-01

    Tage Basse's Wave Turbine is a floating, slack moored device, placed in deep water. Via a long vertical shaft a Wells turbine is connected to a circular horizontal plate, below the turbine. The plate is in still water, preventing the device from moving up and down in the waves. At the top end of the shaft there is a float containing the power take off. The efficiency was measured to 5.1 % as an average over the year. This is measured with a rigid suspension of the turbine. If the bottom plate, in the floating version, is designed properly the result is still applicable. One reason for the large increase in efficiency shown could be that when the vertical kinetic energy in the wave is tapped by the turbine, part of the potential energy in the wave is transformed into vertical kinetic energy and is then accessible to the turbine. Turbine efficiency might increase in a full-scale device due to more favorable Reynolds number. Reynolds number in the model tests is approx. 80,000. (EHS)

  19. Over-the-air Radiated Testing of Millimeter-Wave Beam-steerable Devices in a Cost-Effective Measurement Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Rumney, Moray

    2018-01-01

    antenna selection scheme is proposed. This setup is suitable for evaluation of beam-steerable devices, including both base station (BS) and user equipment (UE) devices. The requirements for the test system design are analyzed, including the measurement range, number of OTA antennas, number of active OTA...... conditions. In this article, radiated testing methods are reviewed, with a focus on their principle and applicability for beam steerable mmWave devices. To explore the spatial sparsity of mmWave channel profiles, a cost-effective simplified 3D sectored multi-probe anechoic chamber (MPAC) system with an OTA......With the severe spectrum congestion of sub-6GHz cellular systems, large-scale antenna systems in the millimeter-wave (mmWave) bands can potentially meet the high data rate envisioned for fifth generation (5G) communications. Performance evaluation of antenna systems is an essential step...

  20. Optimization of relativistic backward wave oscillator with non-uniform slow wave structure and a resonant reflector

    International Nuclear Information System (INIS)

    Chen, Zaigao; Wang, Jianguo; Wang, Yue

    2015-01-01

    This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM 020 mode of reflector to higher-order TM 021 mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device

  1. Transformation of Elastic Wave Energy to the Energy of Motion of Bodies

    Science.gov (United States)

    Vesnitskiĭ, A. I.; Lisenkova, E. E.

    2002-01-01

    The motion of a body along an elastic guide under the effect of an incident wave is considered. An equation describing the longitudinal motion of a body along an arbitrary guide is derived from the laws governing the energy and momentum variations for the case when the incident wave generates a single reflected wave. The equations that describe the motion of a body along a string and along a beam corresponding to the Bernoulli-Euler model are considered as examples. The process of the body acceleration along a beam of the aforementioned type is investigated. For the subcritical velocities, the law governing the motion of the body and the ratio of the kinetic energy variation to the energy supplied to the body are determined.

  2. Maximum gravitational-wave energy emissible in magnetar flares

    Science.gov (United States)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (˜1049erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc.MNRAA40035-8711 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 1048-1049erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  3. Maximum gravitational-wave energy emissible in magnetar flares

    International Nuclear Information System (INIS)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-01-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (∼10 49 erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10 48 -10 49 erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  4. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    Science.gov (United States)

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  5. A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site

    Directory of Open Access Journals (Sweden)

    Reduan Atan

    2016-11-01

    Full Text Available Wave characteristic assessments of wave energy test sites provide a greater understanding of prevailing wave conditions and are therefore extremely important to both wave energy test site operators and clients as they can inform wave energy converter design, optimisation, deployment, operation and maintenance. This research presents an assessment of the wave resource at the Atlantic Marine Energy Test Site (AMETS on the west coast of Ireland based on 12-years of modelled data from January 2004 to December 2015. The primary aim is to provide an assessment of annual and seasonal wave characteristics and resource variability at the two deployment berths which comprise the site. A nested model has been developed using Simulating WAves Nearshore (SWAN to replicate wave propagations from regional to local scale with a 0.05° resolution model covering the northeast Atlantic and a 0.0027° resolution model covering AMETS. The coarse and fine models have been extensively validated against available measured data within Irish waters. 12-year model outputs from the high resolution model were analysed to determine mean and maximum conditions and operational, high and extreme event conditions for significant wave height, energy period and power. Annual and seasonal analyses are presented. The 12-year annual mean P were 68 kW/m at Berth A (BA and 57 kW/m at Berth B (BB. The resource shows strong seasonal and annual variations and the winter mean power levels were found to be strongly correlated with the North Atlantic Oscillation (NAO.

  6. Energy Relations for Plane Waves Reflected from Moving Media

    DEFF Research Database (Denmark)

    Daly, P.; Gruenberg, Harry

    1967-01-01

    When a plane wave is obliquely incident from vacuum on a semi-infinite moving medium, the energy flow carried by the incident wave, is in general, not carried away by the reflected and transmitted waves. This is only the case when the medium velocity is parallel to its vacuum interface. Otherwise...... there is a net inflow or outflow of electromagnetic energy, which can be accounted for by the change of stored energy in the system, and the work done by the mechanical forces acting on the medium. A detailed energy balance is drawn up for two different media moving normal to their vacuum interfaces: (a...

  7. Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Orikasa, S.; Takayama, K.

    1991-06-01

    A new device to prevent erroneously focused shock waves to the renal parenchyma during extracorporeal shock wave lithotripsy (ESWL) has been developed; an anti-miss-shot control device (AMCD) and experiments have been conducted to evaluate its effectiveness. For shock wave generation and stone localization, piezoceramic elements (PSE) and ultrasound localization, respectively were used. After stone localization, probing ultrasounds (PU) were emmitted from the PSE towards the focal region and the reflected sound levels (RSL) were monitored by the PSE which also functioned as a microphone. A direct hit by the PU to the stone or a miss was judged from the RSL, i.e. a high RSL indicates a direct hit and a low RSL indicates a miss. Shock waves were generated only when the RSL exceeded the level which indicated a direct hit. The experimental results showed that the injury to the renal parenchyma was decreased by using the AMCD. Clinical application of the AMCD is expected to increase the safety of ESWL.

  8. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter

    International Nuclear Information System (INIS)

    Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín

    2014-01-01

    Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power

  9. Energy harvesting: an integrated view of materials, devices and applications

    Science.gov (United States)

    Radousky, H. B.; Liang, H.

    2012-12-01

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  10. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  11. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  12. Towards Flexibility Detection in Device-Level Energy Consumption

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2014-01-01

    The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility and operat......The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility...... and operation patterns of the devices in a set of real households. We propose a number of specific pre-processing steps such as operation stage segmentation, and aberrant operation duration removal to clean device level data. Further, we demonstrate various device operation properties such as hourly and daily...... regularities and patterns and the correlation between operating different devices. Subsequently, we show the existence of detectable time and energy flexibility in device operations. Finally, we provide various results providing a foundation for load- and flexibility-detection and -prediction at the device...

  13. Enhancement of particle-wave energy exchange by resonance sweeping

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation

  14. Interaction of two walkers: wave-mediated energy and force.

    Science.gov (United States)

    Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

    2014-12-01

    A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

  15. Riding the ocean waves

    International Nuclear Information System (INIS)

    Yemm, Richard

    2000-01-01

    It is claimed that important developments over the past five years mean that there will be a range of competing pre-commercial wave-energy systems by 2002. The generation costs should be on a par with biomass schemes and offshore wind systems. The environmental advantages of wave energy are extolled. Ocean Power Delivery (OPD) have produced a set of criteria to be satisfied for a successful wave power scheme and these are listed. OPD is responsible for the snake-like Pelamis device which is a semi-submerged articulated series of cylindrical sections connected through hinged joints. How the wave-induced movement of the hinges is used to generate electricity is explained. The system is easily installed and can be completely removed at the end of its life

  16. Energy-Based Devices in Treatment of Acne Vulgaris.

    Science.gov (United States)

    Handler, Marc Z; Bloom, Bradley S; Goldberg, David J

    2016-05-01

    Acne vulgaris is a chronic dermatologic complaint with a multifactorial cause. Traditionally, antibiotics and retinoids have been used to manage the condition; patient compliance has been an ongoing issue. A variety of energy-based devices have been reported to be effective in the treatment of acne vulgaris. To review and summarize the current literature specific to treatment of acne vulgaris with energy-based devices. A review of the current literature of energy-based devices used for the treatment of acne vulgaris. Although limited randomized controlled trials for the treatment of acne have been performed, significant clinical improvement of acne vulgaris, especially of inflammatory lesions, has been demonstrated with a variety of energy-based devices. Newer approaches may lead to even better results.

  17. Survivability Mode and Extreme Loads on the Mooring Lines of the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment of the surviva......This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment...... of the department of Civil Engineering at Aalborg University. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator....

  18. Heat Transfer Characteristics of a Focused Surface Acoustic Wave (F-SAW Device for Interfacial Droplet Jetting

    Directory of Open Access Journals (Sweden)

    Donghwi Lee

    2018-06-01

    Full Text Available In this study, we investigate the interfacial droplet jetting characteristics and thermal stability of a focused surface acoustic wave device (F-SAW. An F-SAW device capable of generating a 20 MHz surface acoustic wave by applying sufficient radio frequency power (2–19 W on a 128°-rotated YX-cut piezoelectric lithium niobate substrate for interfacial droplet jetting is proposed. The interfacial droplet jetting characteristics were visualized by a shadowgraph method using a high-speed camera, and a heat transfer experiment was conducted using K-type thermocouples. The interfacial droplet jetting characteristics (jet angle and height were analyzed for two different cases by applying a single interdigital transducer and two opposite interdigital transducers. Surface temperature variations were analyzed with radio frequency input power increases to evaluate the thermal stability of the F-SAW device in air and water environments. We demonstrate that the maximum temperature increase of the F-SAW device in the water was 1/20 of that in the air, owing to the very high convective heat transfer coefficient of the water, resulting in prevention of the performance degradation of the focused acoustic wave device.

  19. Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces.

    Science.gov (United States)

    Liu, Yongquan; Liang, Zixian; Liu, Fu; Diba, Owen; Lamb, Alistair; Li, Jensen

    2017-07-21

    Inspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form invariance in usual transformation methods. We demonstrate compact and simple-to-implement metasurfaces for shifting, transforming, and splitting a point source. The effects are measured to be broadband and robust against a change of source positions, with agreement from numerical simulations and the Huygens-Fresnel theory. The proposed method is potentially useful for applications such as nondestructive testing, high-resolution ultrasonography, and advanced signal modulation.

  20. Analysis of Wave Reflection from Wave Energy Converters Installed as Breakwaters in Harbour

    DEFF Research Database (Denmark)

    Zanuttigh, B.; Margheritini, Lucia; Gambles, L.

    2009-01-01

    loads on the structure, i.e. better survivability. Nevertheless these devices must comply with the requirements of harbour protection structures and thus cope with problems due to reflection of incoming waves, i.e. dangerous sea states close to harbors entrances and intensified sediment scour, which can...

  1. Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    WEN Fan

    2000-01-01

    A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland's. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot

  2. An array effect of wave energy farm buoys

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2012-12-01

    Full Text Available An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion. Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

  3. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  4. Double system wave energy converter for the breaker zone

    International Nuclear Information System (INIS)

    Malavasi, Stefano; Negri; Marco

    2015-01-01

    In this paper a particular type of wave energy converter, namely EDS (Energy Double System) is presented. It is a two-body point absorber composed by a heaving float and a surging paddle, mounted on the same structure and aligned along the wave propagation direction. The system is designed for working in the breaker zone, where waves close to breaking can generate a considerable surging force on the paddle. A scale EDS model has been built and tested in the wave flume of the Hydraulics Laboratory of the 'Politecnico' of Milan. The power absorbed by the system, varying its configuration, position and wave, has been measured, and interesting efficiencies have been found.

  5. External shading devices for energy efficient building

    Science.gov (United States)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  6. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  7. Energy-flux characterization of conical and space-time coupled wave packets

    International Nuclear Information System (INIS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-01-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  8. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    Science.gov (United States)

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  9. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  10. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    International Nuclear Information System (INIS)

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  11. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  12. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  13. Spin-Wave Diode

    Directory of Open Access Journals (Sweden)

    Jin Lan (兰金

    2015-12-01

    Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  14. Study on storage energy devices: supercapacitors, a green alternative

    OpenAIRE

    Rancaño Fernandez, Ariadna

    2011-01-01

    Nowadays, it is increasingly common to hear about environmental issues. This fact keep us to continually try to improve energy optimization, either through new storage devices that pollute less or improvements in the environmental energy generation systems. Recent new types of devices under study are those called supercapacitors. Supercapacitors are electronic devices able to store charge in form of electrical energy. This energy is stored as an electric field, so supercapacitors are less pol...

  15. Probabilistic Forecasting of the Wave Energy Flux

    DEFF Research Database (Denmark)

    Pinson, Pierre; Reikard, G.; Bidlot, J.-R.

    2012-01-01

    Wave energy will certainly have a significant role to play in the deployment of renewable energy generation capacities. As with wind and solar, probabilistic forecasts of wave power over horizons of a few hours to a few days are required for power system operation as well as trading in electricit......% and 70% in terms of Continuous Rank Probability Score (CRPS), depending upon the test case and the lead time. It is finally shown that the log-Normal assumption can be seen as acceptable, even though it may be refined in the future....

  16. uFLIP: Understanding the Energy Consumption of Flash Devices

    DEFF Research Database (Denmark)

    Bjørling, Matias; Bonnet, Philippe; Bouganim, Luc

    2010-01-01

    Understanding the energy consumption of flash devices is important for two reasons. First, energy is emerging as a key metric for data management systems. It is thus important to understand how we can reason about the energy consumption of flash devices beyond their approximate aggregate...... consumption (low power consumption in idle mode, average Watt consumption from the data sheets). Second, when measured at a sufficiently fine granularity, the energy consumption of a given device might complement the performance characteristics derived from its response time profile. Indeed, background work...... which is not directly observable with a response time profile appears clearly when energy is used as a metric. In this paper, we discuss the results from the {uFLIP} benchmark applied to four different {SSD} devices using both response time and energy as metric....

  17. Assessment of Wave Energy in the South China Sea Based on GIS Technology

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-01-01

    Full Text Available China is now the world’s largest user of coal and also has the highest greenhouse gas emissions associated with the mining and use of coal. Under today’s enormous pressures of the growing shortage of conventional energy sources and the need for emission reductions, the search for clean energy is the most effective strategy to address the energy crisis and global warming. This study utilized satellite remote sensing technology, geographic information system (GIS technology, and simulated wave data for the South China Sea. The characteristic features of the wave energy were obtained by analysis through the wave resource assessment formula and the results were stored in a GIS database. Software for the evaluation of wave energy in the South China Sea was written. The results should provide accurate, efficient references for wave energy researchers and decision-makers. Based on a 24-year WW3 model simulation wave data and GIS technology, this study presented the characteristic of the wave energy in the SCS; results demonstrated that the SCS has the feasibility and viability for wave energy farming.

  18. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  19. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  20. Transmission of wave energy in curved ducts

    Science.gov (United States)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  1. Design and fabrication of an energy-harvesting device using vibration absorber

    Science.gov (United States)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  2. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. LiH thermal energy storage device

    Science.gov (United States)

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  4. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  5. Hybrid radical energy storage device and method of making

    Science.gov (United States)

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  6. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    Energy exchange between potential energy and ion kinetic energy in an ion acoustic wave is considered. In order to investigate the linear Landau damping or growth, the energy is calculated by use of first‐order quantities only so that nonlinear effects are not involved. It is found that for ion...... acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions...... of all velocities exchange energy with the wave....

  7. Novel device (AirWave) to assess endotracheal tube migration: a pilot study.

    Science.gov (United States)

    Nacheli, Gustavo Cumbo; Sharma, Manish; Wang, Xiaofeng; Gupta, Amit; Guzman, Jorge A; Tonelli, Adriano R

    2013-08-01

    Little is known about endotracheal tube (ETT) migration during routine care among critically ill patients. AirWave is a novel device that uses sonar waves to measure ETT migration and obstructions in real time. The aim of the present study is to assess the accuracy of the AirWave to evaluate ETT migration. In addition, we determined the degree of variation in ETT position and tested whether more pronounced migration occurs in specific clinical scenarios. After institutional review board approval, we included mechanically ventilated patients from February 2012 to May 2012. A chest radiography (CXR) was obtained at baseline and 24 hours when clinically indicated. The ETT distance at the lips was recorded at baseline and every 4 hours. The AirWave system continuously recorded ETT position changes from baseline, and luminal obstructions. A total of 42 patients (age: 61 [SD ±13] years, men: 52%) were recruited. A total of 19 patients had measurements of ETT migration at 24 hours by the 3 methodologies used in this study. The mean (SD) of the ETT migration at 24 hours was +0.04 (1.2), -0.42 (0.7) and +0.34 (1.81) cm when measured by portable CXR, ETT distance at the teeth and AirWave device, respectively. Bland-Altman analysis of tube migration at 24 hours comparing the AirWave with CXR readings showed a bias of 0.1 cm with 95% limit of agreement of -3.8 and +4.3 cm. Comparison of tube migration at 24 hours determined by AirWave with ETT distance at the lips revealed a bias of -0.4 with 95% limit of agreement -3.7 to +3 cm, similar to the values observed between CXR and ETT distance at the lips (bias of -0.3 cm, 95% limit of agreement of -3.4 to +2.8 cm). Factors associated with ETT migration at 24 hours were ETT size and initial measurement from ETT tip to carina by portable CXR. AirWave detected in eight patients some degree of ETT obstruction (30% ± 9.6%) that resolved with prompt ETT catheter suction. The AirWave may provide useful information regarding ETT

  8. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  9. Energy cascading in the beat-wave accelerator

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Batha, S.H.

    1987-01-01

    A review is given of energy cascading in the beat-wave accelerator. The properties of the electromagnetic cascade and the corresponding plasma-wave evolution are well understood within the framework of an approximate analytic model. Based on this model, idealized laser-plasma coupling efficiencies of the order of 10% do not seem unreasonable. 28 refs

  10. Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    OpenAIRE

    Karenowska, Alexy D.; Tiberkevich, Vasil S.; Chumak, Andrii V.; Serga, Alexander A.; Gregg, John F.; Slavin, Andrei N.; Hillebrands, Burkard

    2011-01-01

    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency differen...

  11. Wave conditions North of Brandsø island, DK

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    This report was prepared under the ForskVE project WEPTOS#1 aiming at testing for the first time the wave energy device at sea. The results of this report are used to give an indication on the wave conditions at the selected location of testing and may also further be used for extrapolation of wave...

  12. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)

    2007-11-15

    This chapter presents an overview of current hydro, ocean, wave and tidal initiatives. Large hydro remains one of the lowest-cost generating technologies, although environmental constraints, resettlement impacts and the limited availability of sites have restricted further growth in many countries. Large hydro supplied 16 % of global electricity in 2004, down from 19 % a decade ago. Large hydro capacity totalled about 720 GW worldwide in 2004 and has grown historically at slightly more than 2 % annually. China installed nearly 8 GW of large hydro in 2004, taking the country to number one in terms of installed capacity (74 GW). With the completion of the Three Gorges Dam, China will add some 18.2 GW of hydro capacity in 2009. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic cost of hydro includes displacements and submergence. Further hydro can improve peak-capacity management. Ocean currents, some of which runs close to European coasts, carry a lot of kinetic energy. Part of this energy can be captured by sub-marine windmills and converted into electricity. These are more compact than the wind turbines used on land, simply because water is much denser than air. The main European countries with useful current power potential are France and the UK. Ocean tides are driven by the gravitational pull of the moon. With one high tide every 12 hours, a tidal power plant can operate for only four or five hours per cycle, so power from a single plant is intermittent. A suitably-designed tidal plant can, however, operate as a pimped storage system, using electricity during periods of low demand to store energy that can be recovered later. The only large, modern example of a tidal power plant is the 240 MW La Rance plant, built in France in the 1960s, which represents 91 % of the world tidal power capacity. Wave energy can be seen as

  13. Aiding Design of Wave Energy Converters via Computational Simulations

    Science.gov (United States)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  14. Crosstalk compensation in analysis of energy storage devices

    Science.gov (United States)

    Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M

    2014-06-24

    Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.

  15. Calculating buoy response for a wave energy converter—A comparison of two computational methods and experimental results

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2017-05-01

    Full Text Available When designing a wave power plant, reliable and fast simulation tools are required. Computational fluid dynamics (CFD software provides high accuracy but with a very high computational cost, and in operational, moderate sea states, linear potential flow theories may be sufficient to model the hydrodynamics. In this paper, a model is built in COMSOL Multiphysics to solve for the hydrodynamic parameters of a point-absorbing wave energy device. The results are compared with a linear model where the hydrodynamical parameters are computed using WAMIT, and to experimental results from the Lysekil research site. The agreement with experimental data is good for both numerical models.

  16. Impact of Tidal Level Variations on Wave Energy Absorption at Wave Hub

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2016-10-01

    Full Text Available The energy absorption of the wave energy converters (WEC characterized by a limited stroke length —like the point absorbers developed at Uppsala University—depends on the sea level variation at the deployment site. In coastal areas characterized by high tidal ranges, the daily energy production of the generators is not optimal. The study presented in this paper quantifies the effects of the changing sea level at the Wave Hub test site, located at the south-west coast of England. This area is strongly affected by tides: the tidal height calculated as the difference between the Mean High Water Spring and the Mean Low Water Spring in 2014 was about 6.6 m. The results are obtained from a hydro-mechanic model that analyzes the behaviour of the point absorber at the Wave Hub, taking into account the sea state occurrence scatter diagram and the tidal time series at the site. It turns out that the impact of the tide decreases the energy absorption by 53%. For this reason, the need for a tidal compensation system to be included in the design of the WEC becomes compelling. The economic advantages are evaluated for different scenarios: the economic analysis proposed within the paper allows an educated guess to be made on the profits. The alternative of extending the stroke length of the WEC is investigated, and the gain in energy absorption is estimated.

  17. Protective, Modular Wave Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  18. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    NARCIS (Netherlands)

    Ando, S.; Baret, B.; Bartos, I.; Bouhou, B.; Chassande-Mottin, E.; Corsi, A.; Di Palma, I.; Dietz, A.; Donzaud, C.; Eichler, D.; Finley, C.; Guetta, D.; Halzen, F.; Jones, G.; Kandhasamy, S.; Kotake, K.; Kouchner, A.; Mandic, V.; Márka, S.; Márka, Z.; Moscoso, L.; Papa, M.A.; Piran, T.; Pradier, T.; Romero, G.E.; Sutton, P.; Thrane, E.; van Elewyck, V.; Waxman, E.

    2013-01-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic

  19. Dynamic analysis of floating wave energy generation system with mooring system

    International Nuclear Information System (INIS)

    Choi, Gyu Seok; Sohn, Jeong Hyun

    2013-01-01

    In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load

  20. Device for converting electromagnetic radiation energy into electrical energy and method of manufacturing such a device

    NARCIS (Netherlands)

    2007-01-01

    Device (10) for converting electromagnetic radiation energy into electrical energy, comprising at least a photovoltaic element (11) with a radiation-sensitive surface, wherein a covering layer (12) of a material comprising a silicon compound, to which a rare earth element has been added, is present