Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
At the heart of the waves - Electromagnetic fields in question
International Nuclear Information System (INIS)
Ndagijimana, Fabien; Gaudaire, Francois
2013-01-01
This document briefly presents a book in which the author describes what an electromagnetic wave is, the use of electromagnetic waves, how an information is transmitted by means of an electromagnetic wave, what wave modulation is, what multiplexing is, what the characteristics of an antenna are, how waves propagate, how electromagnetic shielding works, what the CEM (electromagnetic compatibility) is, and how a cellular phone network works, in the framework of electromagnetic fields risk assessment
International Nuclear Information System (INIS)
2009-01-01
The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)
International Nuclear Information System (INIS)
Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin
2010-01-01
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
International Nuclear Information System (INIS)
Tao Fuzhen; He Zhiqiang
1983-01-01
If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)
Electromagnetic waves in optical fibres in a magnetic field
International Nuclear Information System (INIS)
Gorelik, V S; Burdanova, M G
2016-01-01
A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er 3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion–polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field. (paper)
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
International Nuclear Information System (INIS)
Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.
1989-12-01
Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Electromagnetic cyclotron harmonic waves
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.; Hamamatsu, K.
1981-09-01
Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)
Carcione, José M
2014-01-01
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and ...
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field
International Nuclear Information System (INIS)
Chajkovskij, I.A.
1974-01-01
A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers
Analysis of wave equation in electromagnetic field by Proca equation
International Nuclear Information System (INIS)
Pamungkas, Oky Rio; Soeparmi; Cari
2017-01-01
This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Energy Technology Data Exchange (ETDEWEB)
Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)
2013-01-15
Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.
Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse
International Nuclear Information System (INIS)
Milant'ev, V.P.; Turikov, V.A.
2006-01-01
In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done
Wave fronts of electromagnetic cyclotron harmonic waves
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.
1982-01-01
In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed
Electromagnetic fields in biological systems
National Research Council Canada - National Science Library
Lin, James C
2012-01-01
"Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...
Grobbe, N.
2016-01-01
In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:
1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.
2. Investigate the potential of
Nonstationary random acoustic and electromagnetic fields as wave diffusion processes
International Nuclear Information System (INIS)
Arnaut, L R
2007-01-01
We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It o-hat and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
International Nuclear Information System (INIS)
Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu
2004-01-01
We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)
International Nuclear Information System (INIS)
Bell, T.F.; Ngo, H.D.
1990-01-01
Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength
International Nuclear Information System (INIS)
Shapiro, B.Y.
1992-01-01
The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)
Multiphoton processes in the field of two-frequency circularly polarized plane electromagnetic waves
International Nuclear Information System (INIS)
Yu, An
1997-01-01
The authors solve Dirac's equation for an electron in the field of a two-frequency plane electromagnetic wave, deriving general formulae for the probabilities of radiation of a photon by the electron, and for the probabilities for pair production by a photon when the two-frequency wave is circularly polarized. In contrast to the case of a monochromatic-plane electromagnetic wave, when an electron is in the field of a two-frequency circularly polarized wave, besides the absorption of multiphotons and emission of simple harmonics of the individual waves, stimulated multiphoton emission processes and various composite harmonic-photon emission processes are occurred: when a high-energy photon is in a such a field, multiphoton processes also follow the pair production processes
Wave propagation in electromagnetic media
International Nuclear Information System (INIS)
Davis, J.L.
1990-01-01
This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
To the theory of quantum processes in the field of an intense electromagnetic wave
International Nuclear Information System (INIS)
Bajer, V.N.; Katkov, V.M.; Mil'shtejn, A.I.; Strakhovenko, V.M.
1975-01-01
The operator diagram technique, developed earlier for considering phenomena in a homogeneous external field, is applied to processes occurring in a plane electromagnetic wave field. Calculations are carried out on the basis of a specific technique of ''entangling'' of operator expressions. The mass operator of scalar and spinor particles determined by a double integral is found in the field of an elliptically polarized wave of a general type. Imaginary part of the operator presents a new concept of the full probability of a particle emission in a wave field. Polarization effects are analyzed for spinor particles
International Nuclear Information System (INIS)
Maraghechi, B.; Willett, J.e.
1979-01-01
The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)
Electromagnetic wave matching device
International Nuclear Information System (INIS)
Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.
1997-01-01
The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)
Anisotropic effects of background fields on Born-Infeld electromagnetic waves
International Nuclear Information System (INIS)
Aiello, Matias; Bengochea, Gabriel R.; Ferraro, Rafael
2007-01-01
We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory
Anisotropic effects of background fields on Born-Infeld electromagnetic waves
Energy Technology Data Exchange (ETDEWEB)
Aiello, Matias [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: aiello@iafe.uba.ar; Bengochea, Gabriel R. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: gabriel@iafe.uba.ar; Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: ferraro@iafe.uba.ar
2007-01-22
We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory.
Bulakhov, M. G.; Buyanov, Yu. I.; Yakubov, V. P.
1996-10-01
It has been shown that a full vector measurement of the total field allows one to uniquely distinguish the incident and reflected waves at each observation point without the use of a spatial difference based on an analysis of the polarization structure of the interference pattern which arises during reflection of electromagnetic waves from an intermedia boundary. We have investigated the stability of these procedures with respect to measurement noise by means of numerical modeling.
Electromagnetic Fields and Public Health: Mobile Phones
... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ... waves through a network of fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation ...
Induced Electromagnetic Field by Seismic Waves in Stratified Media in Earth's Magnetic Field
Yamazaki, K.
2017-12-01
Seismic waves accompany electromagnetic (EM) variations because Earth's crust involves a variety of EM properties such as finite electrical conductivity and ion contents. If we can catch the EM variations just after the earthquake rupture, we will know the occurrence of earthquake before the arrival of seismic waves at observation point. However, quantitative aspects of EM variations arising from seismic waves have not sufficiently understood. Together with observational works, theoretical works have been made to simulate EM variations arising from seismic waves. The generation mechanisms of EM variations include electrokinetic effect (Pride, 1994), motional induction (Gao et al., 2014), piezo-electric effect (Ogawa and Utada, 2000), piezo-magnetic effect (Yamazaki, 2016), etc. It is widely accepted that the electrokinetic effect is the dominant mechanism. Theoretical calculation of EM variations assuming the electrokinetic effect roughly explains the observed EM variations accompanying with earthquake ground motions (e.g. Gao et al. 2016). However, there are a significant disagreement between observed and predicted EM variations. In the present study, I focus on the motional induction mechanism that possibly explain some parts of EM variations accompanying with seismic waves. A theoretical work on EM variations arising from the motional induction has been presented by Gao et al. (2014), but their work assumed uniform full-space medium. In contrast, the present work assumes stratified media which correctly incorporate the effect of the ground surface. I apply a calculating method developed in seismology (e.g. Kennett, 2013) and in EM studies (Haartsen and Pride, 1997), and derive a set of expressions describing the spatial-temporal variations of the EM field after the onset of rupture. The derived formula is used to calculate EM variations for actual earthquakes to compare the theoretical prediction to observed EM variations.
Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass
International Nuclear Information System (INIS)
Dorofeev, O.F.; Lobanov, A.E.
2005-01-01
Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'
Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.; Litskevich, I.K.
1990-01-01
The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
Relativistic wave equations for particles in electromagnetic fields
International Nuclear Information System (INIS)
Good, R.H. Jr.
1989-01-01
A new type of generalization of the Dirac equation of higher spin particles and antiparticles is given, in case only the terms proportional to the external fields need to be retained. copyright 1989 Academic Press, Inc
On the creation of gravitational wave by photon in external electromagnetic field
International Nuclear Information System (INIS)
Hoang Ngoc Long; Le Khac Huong
1989-08-01
The creation of the gravitational wave by the photon in an electromagnetic field is considered. We show that when the momentum of the photon is perpendicular to the field, the probability of the gravitational wave creation is largest in the direction of the motion of the photon. A numerical evaluation shows that the probability of creation in the direction mentioned is much larger than that in the direction considered, namely in the direction perpendicular to the photon momentum and may have the observable value in the present technical conditions. (author). 10 refs
Electromagnetic wave matching device
International Nuclear Information System (INIS)
Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.
1997-01-01
The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)
Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.
Bozeman, Steven Paul
The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in
Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space.
Alonso, Miguel A
2004-11-01
New representations are defined for describing electromagnetic wave fields in free space exactly in terms of rays for any wavelength, level of coherence or polarization, and numerical aperture, as long as there are no evanescent components. These representations correspond to tensors assigned to each ray such that the electric and magnetic energy densities, the Poynting vector, and the polarization properties of the field correspond to simple integrals involving these tensors for the rays that go through the specified point. For partially coherent fields, the ray-based approach provided by the new representations can reduce dramatically the computation times for the physical properties mentioned earlier.
International Nuclear Information System (INIS)
Skoblin, A.A.
1994-01-01
Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs
Charge symmetry of electron wave functions in a quantized electromagnetic wave field
Energy Technology Data Exchange (ETDEWEB)
Fedorov, M V [AN SSSR, Moscow. Fizicheskij Inst.
1975-01-01
An attempt to clear up the reasons of the electron charge symmetry violation in the quantum wave field was made in this article. For this purpose the connection between the Dirac equation and the electron wave functions in the external field with the exact equation of quantum electrodynamics is established. Attention is paid to the fact that a number of equations for single-electron wave functions can be used in the framework of the same assumptions. It permits the construction of the charge-symmetric solutions in particular.
Radiation and propagation of electromagnetic waves
Tyras, George; Declaris, Nicholas
1969-01-01
Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a
Energy Technology Data Exchange (ETDEWEB)
Aivazyan, Yu M; Mergelyan, O S; Poulatov, M P
1974-01-01
Aproblem for the diffraction of a plane electromagnetic wave on a dielectric plate between two other dielectrics is solved. The dielectric constant of the plate depends periodically on three coordinates. From this solution it is possible to obtain the equations for fields and the angular distribution of diffracted waves for the particular cases of a crystal plate and a dielectric surface fluted in all directions. If the expansion is made in the variable of the electron density in crystals, the results will correspond to the problem for the X-ray diffraction on a crystal lattice, the values of the coefficient ..cap alpha -->..sub(tau) being determined by the lattice parameters.
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
Carcione, José M
2007-01-01
This book examines the differences between an ideal and a real description of wave propagation, where ideal means an elastic (lossless), isotropic and single-phase medium, and real means an anelastic, anisotropic and multi-phase medium. The analysis starts by introducing the relevant stress-strain relation. This relation and the equations of momentum conservation are combined to give the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. The book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may als...
Production of gravitation waves by electromagnetic radiation
International Nuclear Information System (INIS)
Buchner, K.; Rosca, R.
1980-01-01
An exact solution of Einstein's equations is presented that corresponds to an axisymmetric bundle of electromagnetic waves with finite cross section. Outside this bundle, there is gravitational radiation parallel to the electromagnetic radiation. If no static electromagnetic fields are present, the frequency of the gravitational waves is twice the frequency of the electromagnetic waves. Einstein's energy complex vanishes identically. The covariant energy complex, however, yields also a radial momentum. (author)
Focusing of electromagnetic waves
International Nuclear Information System (INIS)
Dhayalan, V.
1996-01-01
The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs
International Nuclear Information System (INIS)
Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.
1980-01-01
The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed
Dynamics of electrons in a parabolic magnetic field perturbed by an electromagnetic wave
International Nuclear Information System (INIS)
Neishtadt, Anatoly; Vainchtein, Dmitri; Vasiliev, Alexei
2011-01-01
In this paper we study the resonance interaction between monochromatic electromagnetic waves and fully magnetized electrons in a model parabolic magnetic field (like, e.g., in the Earth's magnetotail). The smallness of certain physical parameters allows us to approach this problem using perturbation theory for multiscale (slow-fast) systems: the study of the global interaction is reduced to the analysis of slow passages of particles through a resonance. At the resonance, two important phenomena occur: capture into resonance and scattering on resonance. We show that while the primary adiabatic invariant (magnetic moment or Larmor radius) remains conserved, these processes result in destruction of the second, longitudinal, adiabatic invariant. We find significant acceleration of particles by capture into resonance, while the scatterings on resonances lead to decrease in energy and chaotization of particles.
Proposed electromagnetic wave energy converter
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2014-01-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using
Effect of radio frequency waves of electromagnetic field on the tubulin.
Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi
2013-09-01
Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.
International Nuclear Information System (INIS)
Khalil, Sh.M.; El-Sherif, N.; El-Siragy, N.M.; Tanta Univ.; El-Naggar, I.A.; Alexandria Univ.
1985-01-01
Investigation is made for nonlinear interaction between incident radiation and a surface wave in a magnetized plasma layer. Both interacting waves are of P polarization. The generated currents and fields at combination frequencies are obtained analytically. Unlike the S-polarized interacting waves, the magnetic field affects the fundamental waves and leads to an amplification of generated waves when their frequencies approach the cyclotron frequency. (author)
International Nuclear Information System (INIS)
Kousaka, Hiroyuki; Ono, Kouichi
2003-01-01
The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy
Kahlon, L. Z.; Kaladze, T. D.
2017-12-01
We review the excitation of zonal flow and magnetic field by coupled electromagnetic (EM) ULF planetary waves in the Earth's ionospheric E layer. Coupling of different planetary low-frequency electromagnetic waves under the typical ionospheric E-layer conditions is revealed. Propagation of coupled internal-gravity-Alfvén (CIGA), coupled Rossby-Khantadze (CRK) and coupled Rossby-Alfvén-Khantadze (CRAK) waves is shown and studied. A set of appropriate nonlinear equations describing the interaction of such waves with sheared zonal flow is derived. The conclusion on the instability of short wavelength turbulence of such coupled waves with respect to the excitation of low-frequency and large-scale perturbation of the sheared zonal flow and sheared magnetic field is inferred. This nonlinear instability's mechanism is depended on the parametric excitation of triple finite-amplitude coupled waves leading to the inverse energy cascade towards the longer wavelength. The possibility of generation of the intense mean magnetic field is shown. Obtained growth rates are discussed for each considered coupled waves.
Electromagnetic wave in a relativistic magnetized plasma
International Nuclear Information System (INIS)
Krasovitskiy, V. B.
2009-01-01
Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.
International Nuclear Information System (INIS)
Intrator, T.; Meassick, S.; Browning, J.; Majeski, R.; Ferron, J.R.; Hershkowitz, N.
1989-01-01
It is shown that the predictions of a numerical code (ANTENA) and the data of wave field measurements in the Phaedrus-B tandem mirror are consistent (±25%) for right-handed (B-vector - ) wave fields and less so (±40%) for left-handed (B-vector + ) wave fields in the plasma core, and that they disagree for B-vector + fields near the column edge. Shorting out or reduction of the wave azimuthal electric fields by limiters is the probable cause of this discrepancy. The ICRF fluctuating wave B-vector fields are shown as |B-vector| contour maps in the r-z plane, where the B-vector + data peak at a smaller radius than predicted. The waves are characterized by different dominant axial wave numbers for the left- and right-handed circularly polarized fields. (author). 28 refs, 20 figs, 1 tab
Hoenders, B.J.
1982-01-01
The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.
Interaction between electromagnetic waves and plasma waves in motional plasma
International Nuclear Information System (INIS)
Chen, S. Y.; Gao, M.; Tang, C. J.; Peng, X. D.
2009-01-01
The electromagnetic wave (EM wave) behavior and the electromagnetic instability caused by the interaction between an EM wave and a plasma wave in motional plasma are studied. The dispersion relation of EM waves and the dielectric tensor of motional plasma are derived by magnetohydrodynamics, and the wave phenomenon in motional plasma is displayed. As a result, the electromagnetic instability, which is excited by the interaction between the EM waves and the plasma waves, is revealed. The mechanism of the instability is the coupling between high frequency electromagnetic field and the transverse electron oscillation derived from the deflection of longitudinal electron oscillation due to self-magnetic field. The present research is useful with regard to the new type of plasma radiation source, ion-focusing accelerator, and plasma diagnostic technique.
Electromagnetic resonance waves
International Nuclear Information System (INIS)
Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.
1994-01-01
We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs
Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo
2014-12-01
With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Colavita, E.; Hacyan, S.
2014-01-01
We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle
Golbach, L.A.
2015-01-01
In this thesis we investigated possible modulatory roles of low frequency electromagnetic fields (LF EMFs) exposure on the innate immune system. Recent decades have seen a huge increase in the use of electronic devices that nowadays enable us to communicate with distant family, enjoy
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Electromagnetic waves in stratified media
Wait, James R; Fock, V A; Wait, J R
2013-01-01
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne
Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band
Directory of Open Access Journals (Sweden)
B. Lundin
Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.
Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous
Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band
Directory of Open Access Journals (Sweden)
B. Lundin
2002-08-01
Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Geža, V.; Venčels, J.; Zāģeris, Ģ.; Pavlovs, S.
2018-05-01
One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus, therefore, approach under development will address this problem. An approach of creating surface waves on silicon melt’s surface is proposed in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which include coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.
2009-01-01
Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
Particle physics in intense electromagnetic fields
International Nuclear Information System (INIS)
Kurilin, A.V.
1999-01-01
The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed
Radiation Safety of Electromagnetic Waves
International Nuclear Information System (INIS)
Hussein, A.Z.
2009-01-01
The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.
On dynamics of resonant charged particles in cyclotron electromagnetic wave field
International Nuclear Information System (INIS)
Shyutte, N.M.; Izhovkina, N.I.
1989-01-01
The model of time and spatial separation of resonance and nonresonance particles with quasimonochromatic wave packets during their propagation in the magnetosphere is presented. In regions with elevated geomagnetic field gradients and.or in waveguide channels such separation can result in diffusion increase of resonance particles by the pitch angle and create ''little peaks'' in the distribution function tail
Covariant electromagnetic field lines
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Current generation by monochromatic electromagnetic waves
International Nuclear Information System (INIS)
Belikov, V.S.; Kolesnichenko, Ya.I.; Plotnik, I.S.
1983-01-01
The generation of longitudinal currents in a magnetically confined plasma with travelling monochromatic electromagnetic waves of finite amplitude propagating at some angle to the external magnetic field is considered. By averaging over the particle cyclotron gyration period, the kinetic equation for the distribution function of electrons interacting with an electromagnetic wave is derived. This equation is solved for the case of low-frequency waves, on the assumption that the bounce period of electrons trapped by the wave field is small compared to the typical times of Coulomb collisions (in which case, the driving current is largest). From the solution obtained, analytic expressions for the driving current and the absorbed power, which are valid for a wide range of wave phase velocities, are found. The current drive method considered and the method using the wave packet are compared. (author)
Electromagnetic wave energy conversion research
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
Propagation of SLF/ELF electromagnetic waves
Pan, Weiyan
2014-01-01
This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
Ji, XueBin; Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing
2015-05-01
Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects. When two point sources with the separation distance of λ0 / 4 are covered with the illusion media (λ0 is the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point sources with the separation distance larger than λ0 / 2 in free space, leading to the far-field high resolution effects (in free space, the separation distance of λ0 / 4 is less than half-wavelength, and thus the two point sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simulations are carried out to verify the performance of our device.
Sayed, Sadeed Bin
2014-07-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.
Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen
2016-06-01
Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.
International Nuclear Information System (INIS)
Kaufman, R.N.
1988-01-01
Waveguide propagation of electromagnetic waves in axial symmetric ducts with increased plasma density aligned along the constant external magnetic field is considered for frequencies, being higher than low-hybrid, in the WKB approximation. In this case tunnel effects leading to captured wave damping are taken into account. Conditions for waveguide propagation and the logarithmic decrement of damping are found. Field construction is performed using the systems of axially symmetric WKB solutions of the Maxwell equations
Pregnancy and electromagnetic fields
International Nuclear Information System (INIS)
Bisseriex, Ch.; Laurent, P.; Cabaret, Ph.; Bonnet, C.; Marteau, E.; Le Berre, G.; Tirlemont, S.; Castro, H.; Becker, A.; Demaret, Ph.; Donati, M.; Ganem, Y.; Moureaux, P.
2011-07-01
This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields
Electromagnetic fields and their impacts
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
Electromagnetic fields in stratified media
Li, Kai
2009-01-01
Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.
Fundamentals of electromagnetics 2 quasistatics and waves
Voltmer, David
2007-01-01
This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundame
2D full wave simulation on electromagnetic wave propagation in toroidal plasma
International Nuclear Information System (INIS)
Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi
2002-01-01
Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)
MMS Observations of Harmonic Electromagnetic Cyclotron Waves
Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.
2017-12-01
Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.
Geometry of wave electromagnetics
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E. C.G.
1980-10-27
A challenge to the commonly held view of light as a wave phenomenon is presented. An exact realization of light as generalized pencils or rays is constructed, with stress placed on using pencils of rays rather than single rays. Exact equations of motion are presented for the rays in the pencil, and these rays tend to travel in straight lines in empty space (not too near the edge of the beam). (GHT)
Millimeter waves: acoustic and electromagnetic.
Ziskin, Marvin C
2013-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.
Coherent states of an electron in a quantized electromagnetic wave
International Nuclear Information System (INIS)
Bagrov, V.G.; Bukhbinder, I.L.; Gitman, D.M.; Lavrov, P.M.
1977-01-01
Coherent states for interacting electrons and photons in a plane elecmagnetic wave are found. Trajectories of the electron and the characteristics of the electromagnetic field are investigated. Limiting transition to the given external field is studied
Absorption of low-frequency electromagnetic waves by plasma in electromagnetic trap
International Nuclear Information System (INIS)
D'yakov, V.E.
1984-01-01
Absorption of electromagnetic waves in plasma of the electromagnetic trap is investigated. An integro-differential equation describing the behaviour of the electrical and magnetic fields of the wave is obtained. The wave has a component along the plasma inhomogeneity axis. Solution of this equation is found within the low frequency range corresponding to the anomalous skin-effect. The possibility of ion-acoustic waves excitation is demonstrated. Expressions are found for reflection, absorption and transformation coefficients
Electromagnetic wave scattering by aerial and ground radar objects
Sukharevsky, Oleg I
2014-01-01
Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
International Nuclear Information System (INIS)
Benova, E.; Staikov, P.; Zhelyazkov, I.
1992-01-01
A set of equations modelling a low-pressure plasma column sustained by a travelling electromagnetic wave in the dipolar mode in the presence of a constant external magnetic field is presented. It is shown that, from a practical point of view, only the m = 1 mode (the right-hand-polarized wave) can sustain plasma columns in a wide region of gas-discharge conditions: plasma radius R, wave frequency ω, magnetic field B 0 and low pressures, irrespective of the nature of the gas. The main result of this study is that the magnetic field makes it possible to sustain a plasma column for values of σ smaller than σ cr = 0.3726, below which, in the absence of a magnetic field, the dipolar wave cannot produce a plasma. Moreover, at a fixed wave power, the magnetic field - in contrast with the case of plasma columns sustained by azimuthally symmetric waves - increases the plasma density and its axial gradient. The limit of an infinite external magnetic field (Ω → ∞) is also considered. A three-dimensional wave structure is obtained, and it indicates that the wave can be a generalized surface mode, a pure surface or a pseudosurface one. (author)
Electromagnetic fields, environment and health
Perrin, Anne
2013-01-01
A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r
Interacting electromagnetic waves in general relativity
International Nuclear Information System (INIS)
Griffiths, J.B.
1976-01-01
The problem is considered of finding exact solutions of the Einstein-Maxwell equations which describe the physical situation of two colliding and subsequently interacting electromagnetic waves. The general theory of relativity predicts a nonlinear interaction between electromagnetic waves. The situation is described using an approximate geometrical method, and a new exact solution describing two interacting electromagnetic waves is given. This describes waves emitted from two sources mutually focusing each other on the opposite source. (author)
Electromagnetic waves in single- and multi-Josephson junctions
International Nuclear Information System (INIS)
Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko
2008-01-01
The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed
Low frequency electromagnetic field sensor
International Nuclear Information System (INIS)
Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun
2000-01-01
The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz
Electromagnetic Fields in Reverberant Environments
Vogt-Ardatjew, Robert Andrzej
2017-01-01
The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical
International Nuclear Information System (INIS)
Li Xizeng; Shan Ying; Mandel, L.
1988-11-01
It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of degenerate four-wave mixing exhibits higher-order squeezing to all even order. The degree of squeezing increases with the order N, and the higher-order squeeze parameter q N may approach -1. (author). 3 refs, 2 figs
Electromagnetic fields and life
Presman, A S
1970-01-01
A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also all most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...
Science 101: Can Electromagnetic Waves Affect Emotions?
Robertson, Bill
2017-01-01
The answer to this month's question, "Can electromagnetic waves affect emotions," is yes. Wherever there are electromagnetic (EM) waves (basically everywhere!), there is the potential for them directly or indirectly to affect the emotions. But what about the likely motivation behind the originally-posed question? Can EM waves affect your…
Generating gravity waves with matter and electromagnetic waves
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P A.
2008-01-01
If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision
Width of electromagnetic wave instability spectrum in tungsten plate
International Nuclear Information System (INIS)
Rinkevich, A.B.
1995-01-01
Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs
International Nuclear Information System (INIS)
Sati, Priti; Tripathi, V. K.
2012-01-01
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Electromagnetic fields and cancer
International Nuclear Information System (INIS)
Singh, Neeta; Mathur, R.; Behari, J.
1997-01-01
Several studies in recent years have raised the possibility that exposure to electromagnetic fields (EMFs) may be hazardous to human health, in particular by promotion or initiation of cancer. Recent reports have indicated increased cancer risk from industrial and domestic exposure to environmental ELF fields and to RF fields that are amplitude modulated at ELF. EMF fields have been reported to affect biological systems in various ways, affecting changes in the morphology and or functional behavior of cells, which have been observed in a variety of tissues. Although the mechanism of interaction of EMFs with living cells are not known, it has been proposed that they have multiple effects and can affect cell signalling, including modification of plasma membrane permeability and ion transport. Our findings suggest that EMFs can affect post translational modification of proteins such as poly ADP-ribosylation by epigenetic mechanism and that the effect of EMFs are highly specific regarding both the cell type and the frequency and amplification of the applied field. (author)
Parametric trapping of electromagnetic waves in an inhomogeneous plasma
International Nuclear Information System (INIS)
Silin, V.P.; Starodub, A.N.
1977-01-01
Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients
Electromagnetic radiation accompanying gravitational waves from black hole binaries
Energy Technology Data Exchange (ETDEWEB)
Dolgov, A. [Dept. of Physics, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr. 13, 119234 Moscow (Russian Federation)
2017-09-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Electromagnetic radiation accompanying gravitational waves from black hole binaries
International Nuclear Information System (INIS)
Dolgov, A.; Postnov, K.
2017-01-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Do electromagnetic waves always propagate along null geodesics?
International Nuclear Information System (INIS)
Asenjo, Felipe A; Hojman, Sergio A
2017-01-01
We find exact solutions to Maxwell equations written in terms of four-vector potentials in non–rotating, as well as in Gödel and Kerr spacetimes. We show that Maxwell equations can be reduced to two uncoupled second-order differential equations for combinations of the components of the four-vector potential. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non–rotating spherical symmetric spacetimes, electromagnetic waves travel along null geodesics. However, electromagnetic waves on Gödel and Kerr spacetimes do not exhibit that behavior. (paper)
Electromagnetic field effects in explosives
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
Parametric excitation of electromagnetic waves by electron Bernstein waves
International Nuclear Information System (INIS)
Kuo, S.P.
1992-01-01
A parametric instability involving the decay of a standing electron Bernstein pump into electromagnetic sidebands and lower-hybrid decay waves is studied. A general dispersion relation is derived and analyzed. Threshold fields and growth rates are obtained for the two cases that the electron Bernstein pump is introduced near the X-mode cutoff layer or introduced in the region between the upper-hybrid resonance layer and the O-mode cutoff layer. Applications of these results to the recent observation [P. Stubbe and H. Kopka, Phys. Rev. Lett. 65, 183 (1990)] of stimulated electromagnetic emission (SEE) with a broad symmetrical structure (BSS) in the ionospheric modifications by powerful high-frequency (HF) wave are discussed
Small discussion of electromagnetic wave anomalies preceding earthquakes
Energy Technology Data Exchange (ETDEWEB)
1980-01-01
Six brief pieces on various aspects of electromagnetic wave anomalies are presented. They cover: earthquake electromagnetic emanations; the use of magnetic induction information for earthquake forecasting; electromagnetic pulse emissions as pre-earthquake indicators; the use of magnetic sensors to determine medium-wavelength field strength for earthquake prediction purposes; magnetic deviation indicators inside reinforced-concrete buildings; and a discussion of the general physical principles involved.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
International Nuclear Information System (INIS)
Choi, C.-R.; Dokgo, K.; Min, K.-W.; Woo, M.-H.; Choi, E.-J.; Hwang, J.; Park, Y.-D.; Lee, D.-Y.
2015-01-01
The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
The classical electromagnetic field
Eyges, Leonard
2010-01-01
This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM
2008-08-26
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Electromagnetic Fields Exposure Limits
2018-01-01
Mr. T.P. (Tjerk) KUIPERS Senior Adviser Health Physics Military Healthcare & Occupational Health Expertise Co-ordination Centre Support...Test of Biological Integrity in Dogs Exposed to an Electromagnetic Pulse Environment”, Health Physics 36:159-165, 1979. [11] Baum, S.J., Ekstrom, M.E...Electromagnetic Radiation”, Health Physics 30:161-166, 1976. [12] Baum, S., Skidmore, W. and Ekstrom, M., “Continuous Exposure of Rodents to 108 Pulses
Coupled elasto-electromagnetic waves in bounded piezoelectric structures
Energy Technology Data Exchange (ETDEWEB)
Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Clezio, E Le [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)
2007-12-15
The work studies theoretically the effect of electromagnetic wave generation on the acoustic wave reflection/transmission in anisotropic materials possessing piezoelectric properties. We are concerned with quasi-normal incidence at angles {theta}{sub i} {>=} v{sub a}/v{sub el} {approx} 10{sup -3} to 10{sup -5}, where v{sub a} and v{sub el} are the typical velocities of the acoustic and electromagnetic waves. It is shown that electromagnetic and acoustic waves are able to interact strongly despite a huge difference in velocities so that the wave behavior of time-dependent electric fields can drastically change the coefficients of mode conversion. In particular, examples exist of the situations where the acoustic wave must be totally reflected but quasi-electrostatic calculations predict almost total transmission.
The electromagnetic interferent antennae for gravitational waves detection
International Nuclear Information System (INIS)
Kulak, A.
1984-01-01
An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Chui, S. T.; Chen, Xinzhong; Liu, Mengkun; Lin, Zhifang; Zi, Jian
2018-02-01
We study the response of a conical metallic surface to an external electromagnetic (em) field by representing the fields in basis functions containing the integrable singularity at the tip of the cone. A fast analytical solution is obtained by the conformal mapping between the cone and a round disk. We apply our calculation to the scattering-type scanning near-field optical microscope (s-SNOM) and successfully quantify the elastic light scattering from a vibrating metallic tip over a uniform sample. We find that the field-induced charge distribution consists of localized terms at the tip and the base and an extended bulk term along the body of the cone far away from the tip. In recent s-SNOM experiments at the visible and infrared range (600 nm to 1 μ m ) the fundamental of the demodulated near-field signal is found to be much larger than the higher harmonics whereas at THz range (100 μ m to 3 mm) the fundamental becomes comparable to the higher harmonics. We find that the localized tip charge dominates the contribution to the higher harmonics and becomes larger for the THz experiments, thus providing an intuitive understanding of the origin of the near-field signals. We demonstrate the application of our method by extracting a two-dimensional effective dielectric constant map from the s-SNOM image of a finite metallic disk, where the variation comes from the charge density induced by the em field.
Electromagnetic field sources in radiofrequency
International Nuclear Information System (INIS)
Oliveira, C.; Sebastiao, D.; Ladeira, D.; Antunes, M.; Correia, L.M.
2010-01-01
In the scope of the monIT Project, several measurements were made of electromagnetic fields in Portugal. This paper presents an analysis of the sources operating in the radiofrequency range, resulting from 2429 measurements in 466 locations.
Electromagnetic wave analogue of electronic diode
Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.
2010-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...
Characteristic wave velocities in spherical electromagnetic cloaks
International Nuclear Information System (INIS)
Yaghjian, A D; Maci, S; Martini, E
2009-01-01
We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.
Coupled seismic and electromagnetic wave propagation
Schakel, M.D.
2011-01-01
Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed,
Scattering of electromagnetic waves by obstacles
Kristensson, Gerhard
2016-01-01
The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.
International Nuclear Information System (INIS)
Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Madsen, L. B.
2007-01-01
We present a method for spectral (bound and continuum) and partial-wave analysis of a three-dimensional time-dependent wave function, defined on a grid, without projecting onto the field-free eigenstates of the system. The method consists of propagating the time-dependent Schroedinger equation to obtain its autocorrelation function C(t)= after the end of the interaction, at time T, of the system with an external time-dependent field. The Fourier spectrum of this correlation function is directly related to the expansion coefficients of the wave function on the field-free bound and continuum energy eigenstates of the system. By expanding on a spherical harmonics basis we show how to calculate the contribution of the various partial waves to the total photoelectron energy spectrum
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Directory of Open Access Journals (Sweden)
T. R. Robinson
Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.
Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation
Resonant emission of electromagnetic waves by plasma solitons
International Nuclear Information System (INIS)
Mironov, V.A.; Sergeev, A.M.; Khimich, A.V.
1988-01-01
The ability of plasma-wave solitons to radiate electromagnetic waves at the frequency of the natural oscillations of the field is considered. It is shown that this radiation is the main energy dissipation channel for strong plasma turbulence in a magnetoactive plasma. An interpretation is proposed for the artificial radio emission produced when the ionosphere is acted upon by beams of strong electromagnetic waves. The use of this phenomenon for plasma turbulence, particularly in the outer-space plasma near the earth, is discussed
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-01-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in…
Energy Technology Data Exchange (ETDEWEB)
Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir [Space Physics Group, Institute of Geophysics, University of Tehran (Iran, Islamic Republic of); Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp [Department of Geophysics, Graduate School of Science, Tohoku University (Japan)
2016-07-15
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Moving Manifolds in Electromagnetic Fields
Directory of Open Access Journals (Sweden)
David V. Svintradze
2017-08-01
Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
Terrestrial propagation of long electromagnetic waves
Galejs, Janis; Fock, V A
2013-01-01
Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte
Clinical importance of electromagnetic fields
International Nuclear Information System (INIS)
Ruppe, I.
1993-01-01
The clinical importance of most of the electromagnetic fields is not highly. Mostly they only have thermal effects, produced by energy-absorption. About 1 C increase of whole-body-temperature is valid for tolerable limit. For measuring is used the SAR-Value (Specific Absorption Rate) in W/kg body mass. SAR = 0,8W/kg for the whole body is valid to be safety. For the evaluation of possible other effects of electromagnetic fields the scientific knowledges are till now not sufficient to allow a final statement. That could be impacts of electromagnetic fields to conduction or switch processes in the nerves or brains, in the framwork of cellular regulations, in the genetic reactions are occurig is little, but if is necessary to find it out in scinentific investigations. (orig.) [de
Electromagnetic solitary waves in magnetized plasmas
International Nuclear Information System (INIS)
Hazeltine, R.D.; Holm, D.D.; Morrison, P.J.
1985-03-01
A Hamiltonian formulation, in terms of noncanonical Poisson bracket, is presented for a nonlinear fluid system that includes reduced magnetohydrodynamics and the Hasegawa-Mima equation as limiting cases. The single-helicity and axisymmetric versions possess three nonlinear Casimir invariants, from which a generalized potential can be constructed. Variation of the generalized potential yields a description of exact nonlinear stationary states. The new equilibria, allowing for plasma flow as well as partial electron adiabaticity, are distinct from those found in conventional magnetohydrodynamic theory. They differ from electrostatic stationary states in containing plasma current and magnetic field excitation. One class of steady-state solutions is shown to provide a simple electromagnetic generalization of drift-solitary waves
Electromagnetic wave analogue of an electronic diode
International Nuclear Information System (INIS)
Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I
2011-01-01
An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of rotation of the polarization state and is also a key component in optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinarily strong nonlinear wave propagation effect in the same way as the electronic diode function is provided by the nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differs by a factor of 65.
Electromagnetic forces and torques in nanoparticles irradiated by plane waves
International Nuclear Information System (INIS)
Garcia de Abajo, F.J.
2004-01-01
Optical tweezers and optical lattices are making it possible to control small particles by means of electromagnetic forces and torques. In this context, a method is presented in this work to calculate electromagnetic forces and torques for arbitrarily-shaped objects in the presence of other objects illuminated by a plane wave. The method is based upon an expansion of the electromagnetic field in terms of multipoles around each object, which are in turn used to derive forces and torques analytically. The calculation of multipole coefficients are obtained numerically by means of the boundary element method. Results are presented for both spherical and non-spherical objects
Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities
International Nuclear Information System (INIS)
Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.
2001-01-01
Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
David, E.
1993-01-01
In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de
Electron beam injection during active experiments. I - Electromagnetic wave emissions
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
Electromagnetic wave propagating along a space curve
Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi
2018-03-01
By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Electromagnetic Fields and Cancer
... and magnetic fields (1 Hz to 100 kHz) . Health Physics 2010; 99(6):818-36. doi: 10.1097/ ... and health: review of current status of research. Health Physics 2013; 105(6):561-75. [PubMed Abstract] AGNIR. ...
What Are Electromagnetic Fields?
... field causes a compass needle to orient in a North-South direction and is used by birds and fish for navigation. Human-made sources of ... and form the basis of telecommunications as well as radio and television ... In microwaves ovens, we use them to quickly heat food. At ...
FDTD Modelling of Electromagnetic waves in Stratified Medium ...
African Journals Online (AJOL)
The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm in mathematica environment is presented. Source implementation and the effect of conductivity on the incident field ...
Forces in electromagnetic field and gravitational field
Weng, Zihua
2008-01-01
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
International Nuclear Information System (INIS)
Villalon, E.
1989-01-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency
[Mechanisms of primary reception of electromagnetic waves of optical range].
Huliar, S O; Lymans'kyĭ, Iu P
2003-01-01
An existence of separate functional system of regulation of electromagnetic balance of organism has been substantiated and a working conception of light therapy has been formulated. As a basis, there is a possibility to use the acupuncture points for input of biologically necessary electromagnetic waves into the system of their conductors in a body that might be considered as a transport facility for energy of the polarized electromagnetic waves. Zones-recipients are organs having an electromagnetic disbalance due to excess of biologically inadequate radiation and being the targets for peroxide oxidation. Foremost, a body has the neurohormonal and immune regulatory systems. Electromagnetic stimulation or modification of functions of the zones-recipients determines the achievement of therapeutic and useful effects, and their combination with local reparative processes allows to attain a clinical goal. We represent own and literary experimental data about the development of physiological responses (analgesia) to BIOPTRON-light exposure on the acupuncture points or biologically active zones. We show the experimental facts in support of a hypothesis that a living organism can perceive an action of the electromagnetic fields of optical range not only via the visual system, but also through the off-nerve receptors (specific energy-sensitive proteins detecting critical changes of energy in cells and functioning as the "sensory" cell systems), as well as via the acupuncture points. It confirms an important role of the electromagnetic waves of optical range in providing normal vital functions of living organisms. A current approach to BIOPTRON light therapy (by polarized polychromatic coherent low energy light) consists in combined (local and system) exposure of the electromagnetic waves within the biologically necessary range.
Electromagnetic fields with vanishing quantum corrections
Ortaggio, Marcello; Pravda, Vojtěch
2018-04-01
We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.
Design of a bounded wave EMP (Electromagnetic Pulse) simulator
Sevat, P. A. A.
1989-06-01
Electromagnetic Pulse (EMP) simulators are used to simulate the EMP generated by a nuclear weapon and to harden equipment against the effects of EMP. At present, DREO has a 1 m EMP simulator for testing computer terminal size equipment. To develop the R and D capability for testing larger objects, such as a helicopter, a much bigger threat level facility is required. This report concerns the design of a bounded wave EMP simulator suitable for testing large size equipment. Different types of simulators are described and their pros and cons are discussed. A bounded wave parallel plate type simulator is chosen for it's efficiency and the least environmental impact. Detailed designs are given for 6 m and 10 m parallel plate type wire grid simulators. Electromagnetic fields inside and outside the simulators are computed. Preliminary specifications for a pulse generator required for the simulator are also given. Finally, the electromagnetic fields radiated from the simulator are computed and discussed.
Electromagnetic aquametry electromagnetic wave interaction with water and moist substances
Kupfer, Klaus
2006-01-01
This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.
Electromagnetic Wave Propagation in Random Media
DEFF Research Database (Denmark)
Pécseli, Hans
1984-01-01
The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...
A System for Electromagnetic Field Conversion
DEFF Research Database (Denmark)
2003-01-01
A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...
Czech Academy of Sciences Publication Activity Database
Prikner, Karel; Feygin, F. Z.; Raita, T.
2014-01-01
Roč. 58, č. 2 (2014), s. 326-337 ISSN 0039-3169 Grant - others:European Commission(XE) HPRI 200100132 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * full-wave numerical simulation * EISCAT measurements * standing wave oscillations Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sé bastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.
Electromagnetic wave collapse in a radiation background
International Nuclear Information System (INIS)
Marklund, Mattias; Brodin, Gert; Stenflo, Lennart
2003-01-01
The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed
International Nuclear Information System (INIS)
Dragila, R.; Vukovic, S.
1988-01-01
The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave
Response of thermal ions to electromagnetic ion cyclotron waves
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Transmission of electromagnetic waves through sub-wavelength channels
DEFF Research Database (Denmark)
Zhang, Jingjing; Luo, Yu; Mortensen, Asger
2010-01-01
We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-ε isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel...... without being cut off, as if it has just passed through the original empty waveguide. Both the magnitude and phase information of the EM fields can be effectively restored after passing this channel, regardless of the polarization of the incoming wave. The performance of this subwavelength channel, which...
Pair production of arbitrary spin particles by electromagnetic fields
International Nuclear Information System (INIS)
Kruglov, S.I.
2006-01-01
The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied
Adrian, Mark L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.
Effect of electromagnetic waves on human reproduction.
Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona
2017-03-31
Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.
Czech Academy of Sciences Publication Activity Database
Prikner, Karel; Feygin, F. Z.; Raita, T.
2014-01-01
Roč. 58, č. 2 (2014), s. 338-341 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * EMIC waves * EISCAT measurements Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
International Nuclear Information System (INIS)
Bahar, E.
1976-01-01
The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important
International Nuclear Information System (INIS)
Kim, Se Yun
2009-01-01
This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.
Electromagnetic Wave Attenuation in Atmospheric Pressure Plasma
International Nuclear Information System (INIS)
Zhang Shu; Hu Xiwei; Liu Minghai; Luo Fang; Feng Zelong
2007-01-01
When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter-the product of the line average electron density n-bar and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n-bar and d with various collision frequencies between electrons and neutrals is presented
Numerical analysis of electromagnetic fields
Zhou Pei Bai
1993-01-01
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...
International Nuclear Information System (INIS)
Leyser, T.B.
1994-01-01
A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission
The solitary electromagnetic waves in the graphene superlattice
International Nuclear Information System (INIS)
Kryuchkov, Sergey V.; Kukhar', Egor I.
2013-01-01
d’Alembert equation written for the electromagnetic waves propagating in the graphene superlattice is analyzed. The possibility of the propagation of the solitary electromagnetic waves in the graphene superlattice is discussed. The amplitude and the width of the electromagnetic pulse are calculated. The drag current induced by such wave across the superlattice axis is investigated. The numerical estimate of the charge dragged by the solitary wave is made.
Conversion of electromagnetic to gravitational waves in the Reissner-Nordstroem spacetime
International Nuclear Information System (INIS)
Crispino, Luis C.B.; Oliveira, Ednilton S.; Higuchi, Atsushi
2011-01-01
Full text: Wave scattering by black holes is a subject that has received much attention in the 1970s, and has been extensively studied since then. Some recent works have been devoted to computing the scalar absorption and scattering cross sections of charged black holes. The presence of a background electromagnetic field leads to a coupling between electromagnetic and gravitational perturbations. To study the propagation of the electromagnetic field in Reissner-Nordstroem spacetime, one has to take into account this electromagnetic-gravitational mixing. In this work we compute numerically the absorption cross section of Reissner-Nordstroem black holes for the electromagnetic field for arbitrary frequencies, taking into account the coupling of the electromagnetic and gravitational perturbations. We also compute the conversion coefficients of electromagnetic to gravitational waves by scattering from a Reissner-Nordstroem black hole. (author)
Low-frequency electromagnetic field in a Wigner crystal
Stupka, Anton
2016-01-01
Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.
Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach
International Nuclear Information System (INIS)
Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R
2015-01-01
Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)
Dispersion relation of linearly polarized strong electromagnetic waves
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio
1975-12-15
A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.
Algebraic structure of general electromagnetic fields and energy flow
International Nuclear Information System (INIS)
Hacyan, Shahen
2011-01-01
Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.
Electromagnetic resonance waves. Resonancias de ondas electromagneticas
Energy Technology Data Exchange (ETDEWEB)
Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.
1994-01-01
We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Electromagnetic fields on a quantum scale. I.
Grimes, Dale M; Grimes, Craig A
2002-10-01
This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.
Teaching Electromagnetic Waves in College Physics Laboratory
Kezerashvili, Roman Y.; Leng, L.
2006-12-01
One of the important educational advantages of the simultaneous study of the electromagnetic waves and light is to show that light and the electromagnetic radiation have the same properties so that the students can visualize the properties of the electromagnetic radiation through observation of light propagation. In our approach we are suggest to study the properties of a microwave radiation and light in parallel. The following experiments can be easily designed and they provide a methodical introduction to electromagnetic theory using the microwave radiation and light: the study of the inverse square law of the dependence of the intensity of radiation (microwave and light) on the distance, the law of reflection and refraction, investigation of the phenomenon of polarization and how a polarizer can be used to alter the polarization of microwave radiation and light, measuring the Brewster's angle, studying interference by performing double-slit experiment for microwave radiation and light. Finally students measure the wavelength of the laser light and microwave radiation using the corresponding versions the Michelson’s interferometer, and recognize that these two radiations only differ by the wavelength or frequency.
Spontaneous generation of electromagnetic waves in plasmas with electron thermal flux
International Nuclear Information System (INIS)
Okada, Toshio
1977-01-01
Spontaneous generation of propagating electromagnetic fields due to a microinstability is investigated for plasmas which convey electron thermal fluxes. The following two cases are examined: 1) Electromagnetic fields spontaneously excited by electrons in a velocity distribution of skewed Maxwellian type. 2) Electromagnetic waves generated by electrons in a velocity distribution which consists of a main part and a high energy part. In this case, the electron thermal flux can be very high. In both cases, induced electromagnetic waves with relatively low frequencies propagate parallel to the direction of Thermal flux. (auth.)
Electromagnetic fields in cased borehole
International Nuclear Information System (INIS)
Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro
2001-01-01
Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Energy Technology Data Exchange (ETDEWEB)
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
International Nuclear Information System (INIS)
Castejon, F.; Eguilior, S.
2003-01-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Studies on anti-tumor effect of electromagnetic waves
International Nuclear Information System (INIS)
Kadota, Ikuhito; Wakabayashi, Toshio; Ogoshi, Kyoji; Kamijo, Akemi
1995-01-01
Hyperthermia have treated cancer with thermal effect of electromagnetic waves for biological systems, but the expected effect is not shown. Also non-thermal effect of electromagnetic waves is out of consideration. If irradiation conditions of electromagnetic waves with non-thermal anti-tumor effect are obtained, we can expect newly spread in cancer therapy. We had in vivo experiments that electromagnetic waves were irradiated to mice. In some irradiation conditions, the non-thermal anti-tumor effect of electromagnetic waves showed. In order to specify the irradiation conditions, we had in vitro experiments. We found that activity ratio of tumor cells which was measured by MTT method depended on irradiation time and power of electromagnetic waves. These results are useful for the cancer therapy. (author)
Stimulated brillouin scattering of electromagnetic waves in a dusty plasma
International Nuclear Information System (INIS)
Salimullah, M.; Sen, A.
1991-08-01
The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs
Electromagnetic wave scattering by many small particles
International Nuclear Information System (INIS)
Ramm, A.G.
2007-01-01
Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
Gabriel, C.
1996-01-01
The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)
A differentiated plane wave as an electromagnetic vortex
International Nuclear Information System (INIS)
Hannay, J H; Nye, J F
2015-01-01
Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here. (paper)
International Nuclear Information System (INIS)
Hu, Y.D.; Fraser, B.J.; Olson, J.V.
1990-01-01
In this report, the authors consider the amplification of electromagnetic ion cyclotron waves along a geomagnetic field line in the multicomponent magnetosphere, assuming that the waves propagate parallel to the background magnetic field. The find it is possible for the ring-current protons (energy ∼ 10-100 keV), which supply the free energy to stimulate the waves, to resonate with the waves not only in the equatorial region but also off the equator. An instability, caused by a thermal anisotropy, may occur in separated regions on and/or off the equator. The positions of the source regions along the wave path depend on the concentration of cold heavy ion species. The significant off-equator source regions may be located at geomagnetic latitudes where the waves, with frequencies greater than the He + gyrofrequency on the equator, are in a local He + pass band
Local electromagnetic waves in layered superconductors
International Nuclear Information System (INIS)
Gvozdikov, V.M.; Vega-Monroy, R.
1999-01-01
A dispersion equation for electromagnetic waves localized on a defect layer of a layered superconductor is obtained in the frame of a model which neglects electron hopping between layers but assumes an arbitrary current-current response function within the layers. The defect layer differs from the rest of the layers by density and mass of charge carriers. It is shown that near the critical temperature in the London limit the local mode lies within the superconducting gap and has a wave vector threshold depending on the layered crystal and defect layer parameters. In the case of highly anisotropic layered superconductors, like Bi- or Tl-based high-T c cuprates, the local mode exists within a narrow range of positive variations of the mass and charge carriers. (author)
Propagation of an ionizing surface electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Boev, A.G.; Prokopov, A.V.
1976-11-01
The propagation of an rf surface wave in a plasma which is ionized by the wave itself is analyzed. The exact solution of the nonlinear Maxwell equations is discussed for the case in which the density of plasma electrons is an exponential function of the square of the electric field. The range over which the surface wave exists and the frequency dependence of the phase velocity are found. A detailed analysis is given for the case of a plasma whose initial density exceeds the critical density at the wave frequency. An increase in the wave amplitude is shown to expand the frequency range over which the plasma is transparent; The energy flux in the plasma tends toward a certain finite value which is governed by the effective ionization field.
Electromagnetic signals produced by elastic waves in the Earth's crust
Sgrigna, V.; Buzzi, A.; Conti, L.; Guglielmi, A. V.; Pokhotelov, O. A.
2004-03-01
The paper describes the excitation of geoelectromagnetic-field oscillations caused by elastic waves propagating in the Earth's crust and generated by natural and anthropogenic phenomena, such as earthquakes, explosions, etc. Two mechanisms of electromagnetic signal generation, i.e. induction and electrokinetics ones, are considered and a comparative analysis between them is carried out. The first mechanism is associated with the induction of Foucault currents due to movements of the Earth's crust in the core geomagnetic field. The second mechanism is connected with movements of liquids filling pores and cracks of rocks. An equation is derived for describing in a uniform way these two manifestations of seismomagnetism. The equation is solved for body and surface waves. The study shows that a magnetic precursor signal is moving in the front of elastic waves.
Energy Technology Data Exchange (ETDEWEB)
Gulyaev, Yu.V. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation); Barabanenkov, Yu.N. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)]. E-mail: yu.barab@mail.ip.sitek.net; Barabanenkov, M.Yu. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Nikitov, S.A. [Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 125009 Moscow (Russian Federation)
2005-02-21
We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes. The optical theorem shows that an energy flux at scattering is emitted in the direction of incident evanescent wave decay.
Localized structures of electromagnetic waves in hot electron-positron plasma
International Nuclear Information System (INIS)
Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.
1995-08-01
The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs
Medical applications of electromagnetic fields
Lai, Henry C.; Singh, Narendra P.
2010-04-01
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Medical applications of electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lai, Henry C; Singh, Narendra P, E-mail: hlai@u.washington.ed [Department of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States)
2010-04-15
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Medical applications of electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry C; Singh, Narendra P
2010-01-01
In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.
Electron beam injection during active experiments. 1. Electromagnetic wave emissions
International Nuclear Information System (INIS)
Winglee, R.M.; Kellogg, P.J.
1990-01-01
During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.; Liu, Yang; Bagci, Hakan; Michielssen, Eric
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier
Genetic effects of nonionizing electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry
2001-01-01
Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)
Interactions between electromagnetic fields and matter
Steiner, Karl-Heinz
2013-01-01
Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.
Biological effects from electromagnetic fields: Research progress and exposure measurements
International Nuclear Information System (INIS)
Mauro, F.; Lovisolo, G.A.; Raganella, L.
1992-01-01
Although it is commonly accepted that exposure to high levels of electromagnetic, micro- and radiofrequency waves produces harmful effects to the health of man, the formulation of exposure limits is still an open process and dependent upon the evolving level of knowledge in this field. This paper surveys the current level of knowledge gained through 'in vitro' and 'in vivo' radiological and epidemiological studies on different types of electromagnetic radiation derived effects - chromosomal, mutagenic, carcinogenic. It then reviews efforts by international organizations, e. g., the International Radiation Protection Association, to establish exposure limits for radiofrequency electromagnetic fields. Brief notes are given on the electromagnetic radiation monitoring campaign being performed by public health authorities in the Lazio Region of Italy
The classical theory of fields electromagnetism
Helrich, Carl S
2012-01-01
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...
Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor
Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen
2018-02-01
We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-04-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in an elementary school that uses digital textbooks. Electric and magnetic fields from TPCs were measured using the HI-3603 Visual Display Terminal/ Very Low Frequency (VDT/VLF) radiation measurement system. Electromagnetic field values from TPCs measured at a student's seat and at a teacher's computer were deemed not harmful to health. However, electromagnetic field values varied based on the distance between students, other electronic devices such as a desktop computers, and student posture while using a TPC. Based on these results, it is necessary to guide students to observe proper posture and to arrange seats at an appropriate distance in the classroom.
Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept
Directory of Open Access Journals (Sweden)
M. Y. Barabanenkov
2012-07-01
Full Text Available If a scatterer and an observation point (receive both approach the so-called near field zone of a source of electromagnetic waves, the scattering process becomes singular one which is mathematically attributed to the spatial singularity of the free space Green function at the origin. Starting from less well known property of left-handed material slab to transfer the singularity of the free space Green function by implementing coordinate transformation, we present a phenomenon of virtual singular scattering of electromagnetic wave on an inhomogeneity located in the volume of left – handed material slab. Virtual singular scattering means that a scatterer is situated only virtually in the near field zone of a source, being, in fact, positioned in the far field zone. Such a situation is realized if a scatterer is embedded into a flat Veselago’s lens and approaches the lens’s inner focus because a slab of Veselago medium produces virtual sources inside and behind the slab and virtual scatterer (as a source of secondary waves from both slab sides. Considering a line-like dielectric scatterer we demonstrate that the scattering efficiency is proportional to product of singular quasistatic parts of two empty space Green functions that means a multiplicative quasistatic singularity of the Green function for a slab of inhomogeneous Veselago medium. We calculate a resonance value of the scattering amplitude in the regime similar to the known Mie resonance scattering.
Electromagnetic waves in a layer of hot plasma with negligible collisions
International Nuclear Information System (INIS)
Vacca, J.
1975-01-01
The propagation of electromagnetic waves in a plane plasma layer in a uniform magnetic field has been studied, following the hypothesis of immoble ions and negligible ion-electron interactions. Waves dependent on one spatial coordinate are considered and all the parameters of the problems are considered. The cases of perpendicular and parallel magnetic field are treated
Electromagnetic-gravitational conversion cross sections in external electromagnetic fields
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.
1994-09-01
The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs
Nanomechanical electric and electromagnetic field sensor
Datskos, Panagiotis George; Lavrik, Nickolay
2015-03-24
The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.
Biological effects of electromagnetic fields
African Journals Online (AJOL)
2012-02-28
Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...
Reflection and transmission of electromagnetic waves in planarly stratified media
International Nuclear Information System (INIS)
Caviglia, G.
1999-01-01
Propagation of time-harmonic electromagnetic waves in planarly stratified multilayers is investigated. Each layer is allowed to be inhomogeneous and the layers are separated by interfaces. The procedure is based on the representation of the electromagnetic field in the basis of the eigenvectors of the matrix characterizing the first-order system. Hence the local reflection and transmission matrices are defined and the corresponding differential equations, in the pertinent space variable are determined. The jump conditions at interfaces are also established. The present model incorporates dissipative materials and the procedure holds without any restrictions to material symmetries. Differential equations appeared in the literature are shown to hold in particular (one-dimensional) cases or to represent homogeneous layers only
Studying Lorentz-violating electromagnetic waves in confined media
International Nuclear Information System (INIS)
Viana, Davidson R.; Gomes, Andre H.; Fonseca, Jakson M.; Moura-Melo, Winder A.
2009-01-01
Full text. Planck energy scale is still far beyond current possibilities. A question of interest is whether the Lorentz symmetry remains valid at these extremely high energies, whose answer certainly would be useful whenever building grand unified theories, in which general relativity is consistently accommodated. Here, we study a reminiscent of this possible symmetry violation, incorporated in the body of the so-called Standard Model Extension (SME). More precisely, we deal with the pure (Abelian) gauge sector, so that we have a modified classical electromagnetism in (3+1) dimensions, whose Lagrangian include a term proportional to a (constant) background tensor that breaks the Lorentz symmetry, but respecting CPT. Our attention is devoted to the wave-like solutions constrained to propagate inside confined media, like waveguides and resonant cavities. Our preliminary findings indicate that Lorentz-breaking implies in modifications of the standard results which are proportional to the (very small) violating parameters, but could be largely enhanced by diminishing the size of the confined media. Under study is the case of a toroidal cavity where the electromagnetic field should respect the additional requirement of being single-valued in the (toroidal) angular variable. Perhaps, such an extra feature combined with the usual boundary conditions could lead us to large effects of this violation, somewhat similar to those predicted for CPT- and Lorentz-odd electromagnetic waves constrained to propagate along a hollow conductor waveguide. (author)
Diffraction of Electromagnetic Waves on a Waveguide Joint
Directory of Open Access Journals (Sweden)
Malykh Mikhail
2018-01-01
Full Text Available In general, the investigation of the electromagnetic field in an inhomogeneous waveguide doesn’t reduce to the study of two independent boundary value problems for the Helmholtz equation. We show how to rewrite the Helmholtz equations in the “Hamiltonian form” to express the connection between these two problems explicitly. The problem of finding monochromatic waves in an arbitrary waveguide is reduced to an infinite system of ordinary differential equations in a properly constructed Hilbert space. The calculations are performed in the computer algebra system Sage.
Combination transition radiation in a medium excited by an electromagnetic field
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.
1976-01-01
The radiation emitted by a uniformly moving charged particle in a medium excited by an electromagnetic field is considered by taking into account the interaction between the electromagnetic waves and optical phonon wave. The frequencies are found, in the vicinity of which the two-wave approximation should be applied in order to determine the radiation field. It is shown that in the vicinity of these frequencies the radiation considerably differs from the Cherenkov radiation
Electromagnetic fields: the new European directive
International Nuclear Information System (INIS)
Moureaux, Patrick
2014-01-01
A European directive is specifying the thresholds for exposure to electromagnetic fields. The risk assessment approach proposed should enable worker health to be taken better into account. An overview of the new provisions. (author)
Electromagnetic field computation by network methods
Felsen, Leopold B; Russer, Peter
2009-01-01
This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.
Electromagnetic waves in dusty magnetoplasmas using two-potential theory
International Nuclear Information System (INIS)
Zubia, K.; Jamil, M.; Salimullah, M.
2009-01-01
The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.
Effects of chronic exposure to electromagnetic waves on the auditory system.
Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Kalkan, Yıldıray; Erdivanlı, Özlem Çelebi; Dursun, Engin
2015-08-01
The results support that chronic electromagnetic field exposure may cause damage by leading to neuronal degeneration of the auditory system. Numerous researches have been done about the risks of exposure to the electromagnetic fields that occur during the use of these devices, especially the effects on hearing. The aim of this study is to evaluate the effects of the electromagnetic waves emitted by the mobile phones through the electrophysiological and histological methods. Twelve adult Wistar albino rats were included in the study. The rats were divided into two groups of six rats. The study group was exposed to the electromagnetic waves over a period of 30 days. The control group was not given any exposure to the electromagnetic fields. After the completion of the electromagnetic wave application, the auditory brainstem responses of both groups were recorded under anesthesia. The degeneration of cochlear nuclei was graded by two different histologists, both of whom were blinded to group information. The histopathologic and immunohistochemical analysis showed neuronal degeneration signs, such as increased vacuolization in the cochlear nucleus, pyknotic cell appearance, and edema in the group exposed to the electromagnetic fields compared to the control group. The average latency of wave in the ABR was similar in both groups (p > 0.05).
Scattering of electromagnetic waves into plasma oscillations via plasma particles
International Nuclear Information System (INIS)
Lin, A.T.; Dawson, J.M.
1975-01-01
A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations
Narrow field electromagnetic sensor system and method
International Nuclear Information System (INIS)
McEwan, T.E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs
Wireless data transmission from inside electromagnetic fields.
Huertas, José Ignacio; Barraza, Roberto; Echeverry, Julian Mauricio
2010-01-01
This paper describes analytical and experimental work developed to evaluate the effects of the electromagnetic fields produced by high-voltage lines (400 kV) on wireless data transmission at the 900MHz band. In this work the source of the data transmission is located inside the electromagnetic field and the reception station is located at different distances from the power lines. Different atmospheric conditions are considered.
Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields
Hipp, Susanne
2015-01-01
This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...
Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves
International Nuclear Information System (INIS)
Benova, E.; Zhelyazkov, I.
1997-01-01
The paper considers the conditions for sustaining low-pressure plasma columns by travelling electromagnetic waves in symmetric and dipolar modes, respectively. The treatment is fully electrodynamic. It is shown that the wave energy flux along the plasma column determines the conditions for sustaining the discharge. In particular as the plasma is sustained by a symmetric wave whose flux depends mainly on the radial distribution of the wave electric field whilst for a dipolar wave sustained plasma the flux is specified by the magnitude of the axial wave field component at the plasma-dielectric interface. (orig.)
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems
International Nuclear Information System (INIS)
Wang, Ken Kang-Hsin; Ye Zhen
2003-01-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Le Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M. R.; Graham, D. B.; Fischer, D.; Retinò, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Norgren, C.; Ergun, R. E.; Goodrich, K. A.; Burch, J. L.; Torbert, R. B.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H. Y.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Turner, D. L.; Fennell, J. F.; Leonard, T.; Jaynes, A. N.
2017-12-01
We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
International Nuclear Information System (INIS)
Pogorel'tsev, A.I.; Bidlingmajer, E.R.
1992-01-01
A numeric model of electromagnetic field disturbances generated under the interaction of acoustic-gravitational waves with ionospheric plasma is elaborated and vertical structure of the above disturbances is calculated. The estimates shown that electromagnetic disturbances can penetrate into neutral atmosphere and can be recorded through measurements of the variation of magnetic field and electron field vertical component near the earth is surface. A conclusion is made on a feasibility of monitoring of acoustic-gravitational wave activity in the lower thermosphere through land measurements of magnetic and electric field variations
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Energy Technology Data Exchange (ETDEWEB)
Brandt, C; Grulke, O; Klinger, T, E-mail: christian.brandt@lpmi.uhp-nancy.f [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)
2010-05-15
Experiments in a cylindrical magnetized plasma on the control of drift waves by means of two different spatiotemporal open-loop control systems-an electrostatic and an electromagnetic exciter-are reported. The drift wave dynamics is controlled by a mode-selective signal created with azimuthal arrangements of eight electrodes and eight saddle coils, respectively. Nonlinear interaction between the control signals and drift waves is observed, leading to synchronization of coherent drift waves and suppression of broadband drift wave turbulence. The cross-phase between density and potential fluctuations reduces from {approx}{pi}/2 in turbulence to {approx}0 in controlled turbulence. Hence, the cross-field transport is reduced to the level of coherent drift waves. For both control systems the coupling to the drift wave can be ascribed to the drive of parallel currents, on the one hand via direct electric contact and, on the other hand, via electromagnetic induction.
Electromagnetically Induced Transparency in Four Wave Mixing Process
International Nuclear Information System (INIS)
Kucukkara, I.
2008-01-01
We have theoretically studied Four Wave Mixing (FWM) process in VUV (Vacuum Ultraviolet) region enhanced by Electromagnetically Induced Transparency in Krypton gas medium at room temperature. One of the mixing fields, in the ultraviolet region at 212.5 nm was in two-photon resonance with the 4p 6 1 S 0 -4p 5 5p[0,1/2] transition of Krypton and the second field (coupling field) at 759 nm was resonant with the 4p 5 5p[0,1/2]-4p 5 5s[1,1/2] transition in scheme. This coupling field produced an electromagnetically induced transparency and thus the efficiency of the generation of the field at 123.6 nm on the 4p 5 5s[1,1/2] to 4p 6 1 S 0 transition is enhanced. We modified the computer program previously written by changing some variables like pressure, interaction region length, UV energy, IR energy. As demonstrated by the intensity generated VUV light versus Krypton pressure graphic, the most efficient intensity value, which was approximately 4.2x10 1 6 arbitrary units, was obtained while IR energy was 3x10 - 4 J and the pressure was 2x10 - 3 bar
Electron Bernstein wave excitation by counterpropagating electromagnetic waves in a plasma
International Nuclear Information System (INIS)
Kumar, Asheel; Tripathi, V.K.
2005-01-01
Two high-power counterpropagating electromagnetic waves (ω 1 ,k 1 x) and (ω 2 ,-k 2 x) in a low-density plasma in the presence of a static magnetic field B s z, drive an electron Bernstein wave at the beat frequency ω=ω 1 -ω 2 and k=(k 1 +k 2 )x, when ω∼ω c 1 ,ω 2 and kρ≥1, where ω c is the electron cyclotron frequency and ρ is the Larmor radius. The electromagnetic waves exert a ponderomotive force on the electrons and resonantly drive the Bernstein mode(ω,k). When the pump waves have finite z extent, the Bernstein wave has an effective k z and a component of group velocity in the direction of the magnetic field, leaking it out of the interaction region, limiting the level of the Bernstein mode. Plasma inhomogeneity also introduces convection losses. However, the electron Bernstein mode potential could still be significantly greater than the ponderomotive potential
Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere
Directory of Open Access Journals (Sweden)
Yu. Rapoport
2014-04-01
Full Text Available In this paper we develop a new method for the analysis of excitation and propagation of planetary electromagnetic waves (PEMW in the ionosphere of the Earth. The nonlinear system of equations for PEMW, valid for any height, from D to F regions, including intermediate altitudes between D and E and between E and F regions, is derived. In particular, we have found the system of nonlinear one-fluid MHD equations in the β-plane approximation valid for the ionospheric F region (Aburjania et al., 2003a, 2005. The series expansion in a "small" (relative to the local geomagnetic field non-stationary magnetic field has been applied only at the last step of the derivation of the equations. The small mechanical vertical displacement of the media is taken into account. We have shown that obtained equations can be reduced to the well-known system with Larichev–Reznik vortex solution in the equatorial region (see e.g. Aburjania et al., 2002. The excitation of planetary electromagnetic waves by different initial perturbations has been investigated numerically. Some means for the PEMW detection and data processing are discussed.
INVESTIGATION OF ELECTROMAGNETIC FIELDS IN RESIDENTIAL AREAS
Directory of Open Access Journals (Sweden)
Dušan MEDVEĎ
2017-09-01
Full Text Available This article is devoted to investigation of impact of electromagnetic fields around the electrical equipment used in a residential area and their impact on the human body. This paper was based on sets of measurements of magnetic induction B with magnetometer and on computational simulations in ANSYS for particular appliances often used in household. The results from measurements and simulations led to setting out the recommendations for practical action in the form of elimination of harmful electromagnetic radiation.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Electromagnetic Lead Screw for Potential Wave Energy Application
DEFF Research Database (Denmark)
Lu, Kaiyuan; Wu, Weimin
2014-01-01
This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...
Beta decay and other processes in strong electromagnetic fields
International Nuclear Information System (INIS)
Akhmedov, E. Kh.
2011-01-01
We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear β decay as an example, we study the weak- and strong-field limits, as well as the field-induced β decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear β decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total β-decay rates are unobservably small.
Electromagnetic fields in fractal continua
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)
2013-04-01
Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.
Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.
2011-12-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
On electromagnetic wave propagation through a plasma sheath produced by a moving ionization source
International Nuclear Information System (INIS)
Semenova, V.I.
1977-01-01
Features of the interaction of electromagnetic waves are considered with a nonstationary plasma layer of a finite thickness, produced in an immovable gas by a movable ionization source. It is shown that a static magnetic field excited on the ionization front in build-up of electrons produced in the incident wave field reemits the energy to the electromagnetic wave during the plasma relaxation caused by recombination processes. As a result the electromagnetic wave of a finite amplitude may propagate behind the nonstationary layer of an ''opaque'' (ωsub(p)sup(2)>>ωsub(urc)sup((0))sup(2)) plasma as distinct from the layer of a movable stationary plasma with the same parameters
Quantum processes in an intense electromagnetic field
International Nuclear Information System (INIS)
Gitman, D.M.
1976-01-01
An approach is proposed to the consideration of processes in an external electromagnetic field which produces real pairs. Interaction with the field is taken into account precisely with the aid of solutions of the Dirac's equation. Processes of arbitrary order with respect to electron-photon interaction are considered
Charged particles in external electromagnetic fields
International Nuclear Information System (INIS)
Giovannini, N.P.D.
1976-01-01
The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential
International Nuclear Information System (INIS)
Saito, Yukimasa
1977-01-01
The transient reflection and transmission waves of E polarized electromagnetic waves coming into the boundary surface between air and moving isotropic plasma were theoretically investigated. By using the Laplace transformation in the moving system, the formulae of Lorentz and inverse Lorentz transformations concerning electromagnetic field were transformed, thus the transient reflection and transmission waves were obtained. These waves were normalized with the angular frequency of the incident waves, and the variation of the wave form was obtained. Examples of the numerical calculation of reflected waves are shown for the plasma moving in parallel to the boundary surface. (Kato, T.)
Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations
International Nuclear Information System (INIS)
He Qiong; Xiao Shi-Yi; Li Xin; Song Zheng-Yong; Sun Wu-Jiong; Zhou Lei; Sun Shu-Lin
2014-01-01
Our recent efforts in manipulating electromagnetic (EM) waves using metamaterials (MTMs) are reviewed with emphasis on 1) manipulating wave polarization and transporting properties using homogeneous MTMs, 2) manipulating surface-wave properties using plasmonic MTMs, and 3) bridging propagating and surface waves using inhomogeneous meta-surfaces. For all these topics, we first illustrate the physical concepts and then present several typical practical realizations and applications in the microwave regime. (topical review - plasmonics and metamaterials)
Differential form representation of stochastic electromagnetic fields
Directory of Open Access Journals (Sweden)
M. Haider
2017-09-01
Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Differential form representation of stochastic electromagnetic fields
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
National Research Council Canada - National Science Library
Steenman, Daryl
1999-01-01
.... In the far-field of these tested objects, actual sources of high reflectivity or "Hot Spots" on the tested objects can be isolated to within only one half the wavelength of the electromagnetic wave used for testing...
Research on levitation coupled with standing wave levitation and electromagnetic levitation:
Jiao, Xiao Yang; Li, Xinbo; Liu, GuoJun; Liu, JianFang; Liu, XiaoLun; Lu, Song
2013-01-01
In order to solve the problem caused by metal materials' inability to be cooled without contact with other materials after being heated by electromagnetic levitation, a new method is proposed: using a standing wave levitator to levitate the melted metal. The standing wave levitator adopts a concave spherical surface on the emitter and the reflector. Using ANSYS software, the transducer and the standing wave fields were simulated. Based on the simulation, the distribution and the maximum acous...
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Zhamaletdinov, A. A.; Shevtsov, A. N.; Velikhov, E. P.; Skorokhodov, A. A.; Kolesnikov, V. E.; Korotkova, T. G.; Ryazantsev, P. A.; Efimov, B. V.; Kolobov, V. V.; Barannik, M. B.; Prokopchuk, P. I.; Selivanov, V. N.; Kopytenko, Yu. A.; Kopytenko, E. A.; Ismagilov, V. S.; Petrishchev, M. S.; Sergushin, P. A.; Tereshchenko, P. E.; Samsonov, B. V.; Birulya, M. A.; Smirnov, M. Yu.; Korja, T.; Yampolski, Yu. M.; Koloskov, A. V.; Baru, N. A.; Poljakov, S. V.; Shchennikov, A. V.; Druzhin, G. I.; Jozwiak, W.; Reda, J.; Shchors, Yu. G.
2015-12-01
This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth's crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth's crust and upper mantle. According to the results of these studies clarifying the parameters of "normal" (standard) geoelectric section of the lithosphere to a depth of 60-70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF-LLF waves (0.1-200 Hz) in an "Earth-Ionosphere" waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF-ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.
Atom collisions in a strong electromagnetic field
International Nuclear Information System (INIS)
Smirnov, V.S.; Chaplik, A.V.
1976-01-01
It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed
Magnetization of a warm plasma by the nonstationary ponderomotive force of an electromagnetic wave
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P. K.; Stenflo, L.
2009-01-01
It is shown that magnetic fields can be generated in a warm plasma by the nonstationary ponderomotive force of a large-amplitude electromagnetic wave. In the present Brief Report, we derive simple and explicit results that can be useful for understanding the origin of the magnetic fields that are produced in intense laser-plasma interaction experiments.
Nonstationary self-action of electromagnetic wave beams in the beat accelerator
International Nuclear Information System (INIS)
Abramyan, L.A.; Litvak, A.G.; Mironov, V.A.
1990-01-01
The resonance excitation of a plasma wave in a modified accelerator using the beats of two electromagnetic waves permits to increase considerably the intensity of the accelerating field and, consequently, the rate of the accumulation of the energy by charged particles. The efficiency of the electromagnetic radiation conversion to the longitudinal wave is defined by nonlinear processes. The saturation of the accelerating field is considered which is due to the appearance of multiflux motion of electrons oscillating in the wave field with overturn of waves, due to the development of parametric instabilities and due to the change of natural frequency of plasma oscillations caused by the relativistic increase of electron mass. The effects of self-action which change the form of the electromagnetic radiation pulse and the wave beam structure play a significant role in the most promising laser plasma beat accelerator. We consider dynamics of space distribution of the plasma wave in a self-consistent field of the wave beam. (author) 5 refs., 2 figs
Planar passive electromagnetic deflector for millimeter-wave frequencies
Kastelijn, M.C.T.; Akkermans, J.A.G.
2008-01-01
A novel passive planar structure is proposed that is able to deflect an incoming electromagnetic (EM) wave into a desired direction. The direction of the outgoing EM wave is determined by the design of this deflector. The deflector can be used to extend coverage of a steerable source with limited
On scattering of electromagnetic waves by a wormhole
International Nuclear Information System (INIS)
Kirillov, A.A.; Savelova, E.P.
2012-01-01
We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.
On scattering of electromagnetic waves by a wormhole
Energy Technology Data Exchange (ETDEWEB)
Kirillov, A.A., E-mail: ka98@mail.ru [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation); Savelova, E.P. [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation)
2012-04-20
We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.
On new electromagnetic waves in a multicomponent insulator
Dubovik, V. M.
The dispersion equation for additional transverse electromagnetic waves in a multicomponent amorphous insulator is analyzed in the vicinity of a narrow absorption line. Such waves can be excited due to spatial dispersion associated with fluctuation of the polarizability of insulator molecules. The
Electromagnetic waves near the proton cyclotron frequency: Stereo observations
Energy Technology Data Exchange (ETDEWEB)
Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)
2014-05-10
Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.
Scattering of electromagnetic plane waves by a buried vertical dike
Directory of Open Access Journals (Sweden)
Batista Lurimar S.
2003-01-01
Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.
Li, Jia; Wu, Pinghui; Chang, Liping
2015-08-24
Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
International Nuclear Information System (INIS)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.
2011-01-01
Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.
O Electromagnetic Power Waves and Power Density Components.
Petzold, Donald Wayne
1980-12-01
On January 10, 1884 Lord Rayleigh presented a paper entitled "On the Transfer of Energy in the Electromagnetic Field" to the Royal Society of London. This paper had been authored by the late Fellow of Trinity College, Cambridge, Professor J. H. Poynting and in it he claimed that there was a general law for the transfer of electromagnetic energy. He argued that associated with each point in space is a quantity, that has since been called the Poynting vector, that is a measure of the rate of energy flow per unit area. His analysis was concerned with the integration of this power density vector at all points over an enclosing surface of a specific volume. The interpretation of this Poynting vector as a true measure of the local power density was viewed with great skepticism unless the vector was integrated over a closed surface, as the development of the concept required. However, within the last decade or so Shadowitz indicates that a number of prominent authors have argued that the criticism of the interpretation of Poynting's vector as a local power density vector is unjustified. The present paper is not concerned with these arguments but instead is concerned with a decomposition of Poynting's power density vector into two and only two components: one vector which has the same direction as Poynting's vector and which is called the forward power density vector, and another vector, directed opposite to the Poynting vector and called the reverse power density vector. These new local forward and reverse power density vectors will be shown to be dependent upon forward and reverse power wave vectors and these vectors in turn will be related to newly defined forward and reverse components of the electric and magnetic fields. The sum of these forward and reverse power density vectors, which is simply the original Poynting vector, is associated with the total electromagnetic energy traveling past the local point. Another vector which is the difference between the forward
Health protection guidelines for electromagnetic field exposures
International Nuclear Information System (INIS)
Taki, Masao
1999-01-01
In order to protect human health from excessive exposure to electromagnetic fields safety guidelines have been established by national and international organizations. The International Commission on Nonionization Radiation Protection is one of these organizations, whose guidelines are briefly regarded as typical. The activities on this issue in various countries are reviewed. Recent situations and the problems still unsolved are also discussed. (author)
Simple economical stabilizer for electromagnet field
International Nuclear Information System (INIS)
Vas'kov, O.S.; Domanevskij, D.S.; Zinkevich, Yu.V.; Soroka, E.V.; Shavel', N.N.
1988-01-01
Field stabilizer within high-power electromagnet gap at direct current up to 75 A and up to 100 V voltage in the winding is described. 15 parallel-connected KT 945A transistors, operation mode of which allows to do without radiators and forced cooling are used as controlling element of pulsed stabilizer
Second harmonic electromagnetic emission via Langmuir wave coalescence
International Nuclear Information System (INIS)
Willes, A.J.; Robinson, P.A.; Melrose, D.B.
1996-01-01
The coalescence of Langmuir waves to produce electromagnetic waves at twice the plasma frequency is considered. A simplified expression for the rate of production of second harmonic electromagnetic waves is obtained for a broad class of Langmuir spectra. In addition, two different analytic approximations are considered. The validity of the commonly used head-on approximation is explored, in which the two coalescing Langmuir waves are assumed to approach from opposite directions. This approximation breaks down at low Langmuir wavenumbers, and for narrow Langmuir wave spectra. A second, more general, approximation is introduced, called the narrow-spectrum approximation, which requires narrow spectral widths of the Langmuir spectra. The advantages of this approximation are that it does not break down at low Langmuir wavenumbers, and that it remains valid for relatively broad Langmuir wave spectra. Finally, the applicability of these approximations in treating harmonic radiation in type III solar radio bursts is discussed. copyright 1996 American Institute of Physics
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail
Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi
2018-02-01
Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.
Attenuation bands and cut-off frequencies for ELF electromagnetic waves
International Nuclear Information System (INIS)
Rauch, J.L.; Lefeuvre, F.; Cerisier, J.C.; Berthelier, J.J.; Boud'ko, N.; Michailova, G.; Kapustina, O.
1985-01-01
The propagation characteristic of ELF (10 Hz - 1500 Hz) electromagnetic waves observed on ARCAD 3, in three different zones: low L value (L 6). Unambiguous determinations of the wave normal directions are obtained from the interpretations of the measurements of four (3 magnetic, 1 electric) wave field components. The technique that is used, is based on the Means method in the cases of highly polarized waves and on the Storey and Lefeuvre WDF method in the other cases. A particular emphasis is put on the propagation characteristics of the waves, in a multiple ion plasma, and on the cut-off frequencies which appear at and below the local proton gyrofrequency
Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu
2017-09-01
Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.
Amin, M R
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
International Nuclear Information System (INIS)
Benova, E.; Ghanashev, I.; Zhelyazkov, I.
1992-01-01
The modelling of isotropic plasma columns sustained by travelling electromagnetic waves in the dipolar mode (angular dependence exp imφ, m=±1) shows that the m=±1 modes have identical dispersion characteristics. In the presence of an external static magnetic field, however, the modes behave rather differently. This observation arose in studying the axial structures of magnetized plasma columns surrounded by vacuum and produced by travelling electromagnetic waves in the dipolar modes. We examine the propagation of electromagnetic waves along a homogeneous cold plasma column of radius R and electron number density n immersed in an axial constant magnetic field. (author) 3 refs., 3 figs
International Nuclear Information System (INIS)
Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.
2007-01-01
Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency
Radiation of Electron in the Field of Plane Light Wave
International Nuclear Information System (INIS)
Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.
2006-01-01
Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity
Electromagnetic wave propagation in relativistic magnetized plasmas
International Nuclear Information System (INIS)
Weiss, I.
1985-01-01
An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored
International Nuclear Information System (INIS)
Shvets, G.; Tushentsov, M.; Tokman, M.D.; Kryachko, A.
2005-01-01
Propagation of electromagnetic waves in magnetized plasma near the electron cyclotron frequency can be strongly modified by adding a weak magnetic undulator. For example, both right- and left-hand circularly polarized waves can propagate along the magnetic field without experiencing resonant absorption. This effect of entirely eliminating electron cyclotron heating is referred to as the undulator-induced transparency (UIT) of the plasma, and is the classical equivalent of the well-known quantum mechanical effect of electromagnetically induced transparency. The basics of UIT are reviewed, and various ways in which UIT can be utilized to achieve exotic propagation properties of electromagnetic waves in plasmas are discussed. For example, UIT can dramatically slow down the waves' group velocity, resulting in the extreme compression of the wave energy in the plasma. Compressed waves are polarized along the propagation direction, and can be used for synchronous electron or ion acceleration. Strong coupling between the two wave helicities are explored to impart the waves with high group velocities ∂ω/∂k for vanishing wave numbers k. Cross-helicity coupling for realistic density and magnetic field profiles are examined using a linearized fluid code, particle-in-cell simulations, and ray-tracing WKB calculations
Capture of charged particles by transverse electromagnetic waves
Energy Technology Data Exchange (ETDEWEB)
Davydovskii, V Ya; Sapogin, V G; Ukolov, A S
1975-01-01
An estimate is made of the maximum possible number of resonance particles interacting with a plane, transverse electromagnetic wave. The estimate is obtained by means of a distribution function, which is expressed in terms of the integrals of motion of the particles in the wave. Values of proton fluxes accelerated by an amplitude-modulated wave in the solar corona coincide with those observed during bursts of sporadic radioemission. (SJR)
New theory of radiative energy transfer in free electromagnetic fields
International Nuclear Information System (INIS)
Wolf, E.
1976-01-01
A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-09-10
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser
Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.
2018-05-01
Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.
Novel Aspects of Evolution of the Stokes Parameters for an Electromagnetic Wave in Anisotropic Media
Botet, R.; Kuratsuji, H.; Seto, R.
2006-08-01
Polarization of a plane electromagnetic wave travelling through a medium is studied in the slowly-varying field envelope approximation. It is shown that the problem is identical to the 4-momentum evolution of a negatively-charged massless relativistic particle in an electromagnetic field. The approach is exemplified by the resonant oscillations of circular polarization in a medium embedded in a static magnetic field and a modulated electric field. The effect of dissipation in the medium is discussed. It is shown that the Rabi oscillations are stable below a threshold depending on the absorption coefficient. Above it, oscillations disappear.
Electromagnetic fields in an expanding universe
International Nuclear Information System (INIS)
Hogan, P.A.; Ellis, G.F.R.
1989-01-01
The asymptotic form of the electromagnetic field due to a bounded distribution of charge current in an open, expanding Friedmann--Lemaitre--Robertson--Walker universe is studied. The technique used is to first describe a mechanism for passing from a solution of Maxwell's vacuum field equations on Minkowskian space-time to a solution of Maxwell's field equations in a region free of charge current on the cosmological background. This is tested on the field of an accelerating point charge and then applied to the rigorous treatment of the asymptotic electromagnetic field of a bounded charge-current distribution in Minkowskian space-time given by Goldberg and Kerr [J. Math. Phys. 5, 172 (1964)]. A ''peeling expansion'' of the electromagnetic field in the expanding universe is obtained in inverse powers of a parameter that is proportional to the area distance along the generators of future null cones with vertices on the world line of a fundamental observer. The algebraic character of the two leading coefficients in the expansion is the same as that of the two leading coefficients in the Goldberg--Kerr expansion in Minkowskian space-time. In addition, bounds can be calculated, at any instant in the history of a fundamental observer, on all the coefficients in the peeling expansion, as a consequence of the evaluation of such bounds by Goldberg and Kerr in the case treated by them
Occupational exposure to electromagnetic fields in physiotherapy departments
International Nuclear Information System (INIS)
Macca, I.; Scapellato, M. L.; Carrieri, M.; Di Bisceglie, A. P.; Saia, B.; Bartolucci, G. B.
2008-01-01
To assess occupational exposure to electromagnetic fields, 11 microwave (MW), 4 short-wave diathermy and 15 magneto therapy devices were analysed in eight physiotherapy departments. Measurements taken at consoles and environmental mapping showed values above European Directive 2004/40/EC and ACGIH exposure limits at ∼50 cm from MW applicators (2.45 GHz) and above the Directive magnetic field limit near the diathermy unit (27.12 MHz). Levels in front of MW therapy applicators decreased rapidly with distance and reduction in power; this may not always occur in work environments where nearby metal structures (chairs, couches, etc.) may reflect or perturb electromagnetic fields. Large differences in stray field intensities were found for various MW applicators. Measurements of power density strength around MW electrodes confirmed radiation fields between 30 deg. and 150 deg., with a peak at 90 deg., in front of the cylindrical applicator and maximum values between 30 deg. and 150 deg. over the whole range of 180 deg. for the rectangular parabolic applicator. Our results reveal that although most areas show substantially low levels of occupational exposure to electromagnetic fields in physiotherapy units, certain cases of over-occupational exposure limits do exist. (authors)
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
2016-05-01
The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .
On the generation of electromagnetic waves in the terahertz frequency range
International Nuclear Information System (INIS)
Namiot, V.A.; Shchurova, L.Yu.
2011-01-01
It is shown that a thin dielectric plate, which can act as an open dielectric waveguide, it is possible to produce amplification and generation of electromagnetic waves with frequencies in the terahertz range. For this purpose, we propose using a dielectric plate with a corrugated surface, in which case the electric field of the transverse electromagnetic wave in the waveguide has a periodic spatial structure in the local area near to the corrugation. Terahertz electromagnetic waves are excited by a beam of electrons moving in vacuum along the dielectric plate at a small distance from its corrugated surface. Corrugation period is chosen in order to ensure the most effective interaction of the electron beam with the first harmonic of the electric field induced by the corrugation. Amplification and generation of electromagnetic waves propagating in a dielectric waveguide is realized as a result of deceleration of the electron beam by a wave electric field induced by a corrugated dielectric surface in the zone near the corrugation. We discuss possible ways to create electron beams with the desired characteristics. We offer a way to stabilize the beam position above the plate, avoiding the bombardment of the plate by electrons. It is shown that it is possible to significantly increase the efficiency of the device through the recovery of energy that remains in the electrons after their interaction with the wave. -- Highlights: → We propose a scheme of a generator of radio waves in the terahertz range. → This scheme includes a corrugated dielectric plate, which can act as an open waveguide. → A strip electron beam is in vacuum near the dielectric corrugated surface. → Generation is achieved by converting electrons' energy into electromagnetic energy. → The waveguide wave extends perpendicularly to electron motion.
Control of the electromagnetic drag using fluctuating light fields
Pastor, Víctor J. López; Marqués, Manuel I.
2018-05-01
An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.
Electromagnetic fields - introduction to relevant issues
International Nuclear Information System (INIS)
Brueggemeyer, H.; Csicsaky, M.
1993-01-01
This introductory paper surveys potential sources of electric magnetic, and electro-magnetic fields. Various cases are discussed to exemplify the total frequency range: nuclear magnetic resonance tomography, high-voltage transmission lines, transformer stations, effect lighting balls, military transmitters, transmitter towers of the Postal Services and other operators, mobile radiotelephone equipment, large broadcasting transmitters, radar radiation, high-frequency heat therapy. There is evidence suggesting that electric, magnetic and electro-magnetic fields may possibly represent a certain nuisance or health hazard even at field strength occuring in equipment used for every-day-life purposes, with an emphasis on their possible actions and effects in children and adolescents. The author discusses, in conclusion, the aerial equipment ordinance issued by Lower Saxony. (Uhe) [de
Radiofrequency Electromagnetic Field Map of Timisoara
Stefu, N.; Solyom, I.; Arama, A.
2015-12-01
There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.
Ionization in a quantized electromagnetic field
International Nuclear Information System (INIS)
Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.
2007-01-01
An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field
PROBABILISTIC APPROACH OF STABILIZED ELECTROMAGNETIC FIELD EFFECTS
Directory of Open Access Journals (Sweden)
FELEA. I.
2017-09-01
Full Text Available The effects of the omnipresence of the electromagnetic field are certain and recognized. Assessing as accurately as possible these effects, which characterize random phenomena require the use of statistical-probabilistic calculation. This paper aims at assessing the probability of exceeding the admissible values of the characteristic sizes of the electromagnetic field - magnetic induction and electric field strength. The first part justifies the need for concern and specifies how to approach it. The mathematical model of approach and treatment is presented in the second part of the paper and the results obtained with reference to 14 power stations are synthesized in the third part. In the last part, are formulated the conclusions of the evaluations.
Cellular and molecular effects of electromagnetic radiation and sonic waves
Directory of Open Access Journals (Sweden)
Patricia Froes Meyer
2013-07-01
Full Text Available Electromagnetic radiation (in the form of pulsed magnetic fields, radiofrequency and intense pulsed light and mechanical agents (such as sonic waves have been used in physical therapy. The aim of this study was to assess the effects of low-intensity magnetic fields, sonic and radiofrequency waves, and intense pulsed light on the survival of Escherichia coli cultures and on the electrophoretic mobility of plasmid DNA. Exponentially growing E. coli AB1157 cultures and plasmid DNA samples were exposed to these physical agents and 0.9% NaCl (negative control and SnCl2 (positive control solutions. Aliquots of the cultures were diluted and spread onto a solidified rich medium. The colony-forming units were counted after overnight incubation and the survival fraction was calculated. Agarose gel electrophoresis was performed to visualise and quantify the plasmid topological forms. The results suggest that these agents do not alter the survival of E. coli cells or plasmid DNA electrophoresis mobility. Moreover, they do not protect against the lesive action of SnCl2. These physical agents therefore had no cytotoxic or genotoxic effects under the conditions studied.
Coherent polarization driven by external electromagnetic fields
International Nuclear Information System (INIS)
Apostol, M.; Ganciu, M.
2010-01-01
The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.
Manipulating the loss in electromagnetic cloaks for perfect wave absorption.
Argyropoulos, Christos; Kallos, Efthymios; Zhao, Yan; Hao, Yang
2009-05-11
We examine several ways to manipulate the loss in electro-magnetic cloaks, based on transformation electromagnetics. It is found that, by utilizing inherent electric and magnetic losses of metamaterials, perfect wave absorption can be achieved based on several popular designs of electromagnetic cloaks. A practical implementation of the absorber, consisting of ten discrete layers of metamaterials, is proposed. The new devices demonstrate super-absorptivity over a moderate wideband range, suitable for both microwave and optical applications. It is corroborated that the device is functional with a subwavelength thickness and, hence, advantageous compared to the conventional absorbers.
Calibration and uncertainty in electromagnetic fields measuring methods
International Nuclear Information System (INIS)
Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.
1999-01-01
Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it
Topology optimization of nanoparticles for localized electromagnetic field enhancement
DEFF Research Database (Denmark)
Christiansen, Rasmus Ellebæk; Vester-Petersen, Joakim; Madsen, Søren Peder
2017-01-01
We consider the design of individual and periodic arrangements of metal or semiconductor nanoparticles for localized electromagnetic field enhancement utilizing a topology optimization based numerical framework as the design tool. We aim at maximizing a function of the electromagnetic field...
On the possibility of the autoresonant motion of an electron in a slow electromagnetic wave
International Nuclear Information System (INIS)
Milantiev, V.P.
1994-01-01
By autoresonant motion one usually means the motion when the condition of cyclotron resonance of gyrating particle with electromagnetic wave is conserved during all the time of the motion in spite of the relativistic mass increase. Such a motion takes place only in the case of vacuum wave, when the phase velocity ν p is equal to the speed of light in a vacuum C. Otherwise autoresonance is impossible, and energy of the particle oscillates in time. The authors now discuss the possibility of the autoresonance in a slow electromagnetic wave (ν p < c) propagating along the straight lines of the external magnetic field. It turns out that the autoresonant regime of the motion in a slow electromagnetic wave possible if some rather restrictive relations between the electric drift velocity and the phase velocity of wave take place. It depends also on the polarization of wave. The general case of the elliptical polarization is considered. The optimal regime corresponds to the wave with linear polarization in the direction of the constant electric field. For this case the calculations show that energy of the particle can unlimitedly increase (or decrease). The rate of acceleration can be even larger than in the case of vacuum wave. Radiation forces will restrict this process
Electromagnetic field induced biological effects in humans.
Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J
2015-01-01
Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-29
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
Electromagnetic internal gravity waves in the Earth's ionospheric E-layer
International Nuclear Information System (INIS)
Kaladze, T.D.; Tsamalashvili, L.V.; Kaladze, D.T.
2011-01-01
In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves. -- Highlights: ► Existence of electromagnetic internal gravity waves in the ionospheric E-layer is shown. ► Electromagnetic nature of internal gravity waves is described. ► Appearance of the new dispersive Alfven waves is shown.
Effect of electromagnetic fields on the bacteria bioluminescent activity
International Nuclear Information System (INIS)
Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.
1995-01-01
The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs
Interaction of gravitational waves with magnetic and electric fields
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P. A.
2010-01-01
The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.
WKB solution 4×4 for electromagnetic waves in a planar magnetically anisotropic inhomogeneous layer
Moiseeva, Natalya Michailovna; Moiseev, Anton Vladimirovich
2018-04-01
In the paper, an oblique incidence of a plane electromagnetic wave on a planar magnetically anisotropic inhomogeneous layer is considered. We consider the case when all the components of the magnetic permeability tensor are non zero and vary with distance from the interface of media. The WKB method gives a matrix 4 × 4 solution for the projections of the electromagnetic wave fields during its propagation. The dependence of the cross-polarized components on the orientation of the anisotropic medium relative to the plane of incidence of the medium is analyzed.
Transversality of electromagnetic waves in the calculus-based introductory physics course
International Nuclear Information System (INIS)
Burko, Lior M
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes
Transversality of electromagnetic waves in the calculus-based introductory physics course
Burko, Lior M.
2008-11-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.
Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course
Burko, Lior M.
2009-05-01
Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.
Propagation Characteristics of Electromagnetic Waves Recorded by the Four CLUSTER Satellites
International Nuclear Information System (INIS)
Parrot, M.; Santolik, O.; Cornilleau-Wehrlin, N.; Maksimovic, M.; Harvey, Ch.
2001-01-01
This paper will describe the methods we use to determine the propagation characteristics of electromagnetic waves observed by the four CLUSTER satellites. The data is recorded aboard CLUSTER by the STAFF (Spatio-Temporal Analysis of Field Fluctuations) spectrum analyser. This instrument has several modes of operation, and can provide the spectral matrix of three magnetic and two electric components. This spectral matrix is processed by a dedicated software (PRASSADCO: Propagation Analysis of STAFF-SA Data with Coherency Tests) in order to determine the wave normal directions with respect to the DC magnetic field. PRASSADCO also provides a number of alternative methods to estimate wave polarisation and propagation parameters, such as the Poynting vector, and the refractive index. It is therefore possible to detect the source extension of various electromagnetic waves using the 4 satellites. Results of this data processing will be shown here for one event observed by one satellite. (author)
Self-reflection of intense electromagnetic waves in plasmas
Energy Technology Data Exchange (ETDEWEB)
Tewari, D P; Kumar, A; Sharma, J K [Indian Inst. of Tech., New Delhi. Dept. of Physics
1977-10-01
A uniform electromagnetic wave of high power density, propagating in a collisional plasma gives rise to a modification in temperature-dependent collision frequency and in turn induces a gradient in the complex refractive index of the medium. A WKB solution of the problem predicts a backward propagating wave on account of the self-induced inhomogeneity. The amplitude of the backward (i.e. reflected) wave increases with increasing power density of the wave. This is a volume nonlinear effect and is appreciable for usually employed power densities.
Electromagnetic fields with vanishing scalar invariants
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2016-01-01
Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein-Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010
THOR Fields and Wave Processor - FWP
Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud
2017-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the
The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma
International Nuclear Information System (INIS)
Pavlenko, V.N.; Panchenko, V.G.
1993-01-01
Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Scattering of electromagnetic waves by anomalous fluctuations of a magnetized plasma
Pavlenko, V. N.; Panchenko, V. G.
1990-04-01
Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.
Birefringence induced by pp-wave modes in an electromagnetically active dynamic aether
International Nuclear Information System (INIS)
Alpin, Timur Yu.; Balakin, Alexander B.
2017-01-01
In the framework of the Einstein-Maxwell-aether theory we study the birefringence effect, which can occur in the pp-wave symmetric dynamic aether. The dynamic aether is considered to be a latently birefringent quasi-medium, which displays this hidden property if and only if the aether motion is non-uniform, i.e., when the aether flow is characterized by the non-vanishing expansion, shear, vorticity or acceleration. In accordance with the dynamo-optical scheme of description of the interaction between electromagnetic waves and the dynamic aether, we shall model the susceptibility tensors by the terms linear in the covariant derivative of the aether velocity four-vector. When the pp-wave modes appear in the dynamic aether, we deal with a gravitationally induced degeneracy removal with respect to hidden susceptibility parameters. As a consequence, the phase velocities of electromagnetic waves possessing orthogonal polarizations do not coincide, thus displaying the birefringence effect. Two electromagnetic field configurations are studied in detail: longitudinal and transversal with respect to the aether pp-wave front. For both cases the solutions are found, which reveal anomalies in the electromagnetic response on the action of the pp-wave aether mode. (orig.)
Birefringence induced by pp-wave modes in an electromagnetically active dynamic aether
Energy Technology Data Exchange (ETDEWEB)
Alpin, Timur Yu.; Balakin, Alexander B. [Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)
2017-10-15
In the framework of the Einstein-Maxwell-aether theory we study the birefringence effect, which can occur in the pp-wave symmetric dynamic aether. The dynamic aether is considered to be a latently birefringent quasi-medium, which displays this hidden property if and only if the aether motion is non-uniform, i.e., when the aether flow is characterized by the non-vanishing expansion, shear, vorticity or acceleration. In accordance with the dynamo-optical scheme of description of the interaction between electromagnetic waves and the dynamic aether, we shall model the susceptibility tensors by the terms linear in the covariant derivative of the aether velocity four-vector. When the pp-wave modes appear in the dynamic aether, we deal with a gravitationally induced degeneracy removal with respect to hidden susceptibility parameters. As a consequence, the phase velocities of electromagnetic waves possessing orthogonal polarizations do not coincide, thus displaying the birefringence effect. Two electromagnetic field configurations are studied in detail: longitudinal and transversal with respect to the aether pp-wave front. For both cases the solutions are found, which reveal anomalies in the electromagnetic response on the action of the pp-wave aether mode. (orig.)
On the polarization and depolarization of the electromagnetic waves
International Nuclear Information System (INIS)
Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Cecchi-Pestellini, Cesare
2005-01-01
We discuss a general description of the polarization of monochromatic electromagnetic waves that proves useful when the customary description in terms of Stokes parameters does not apply. We also show how this description can be exploited to study the depolarization of linearly polarized waves in the interior of porous model cosmic dust grains. The results that we discuss may affect our understanding of several problems that are relevant for astrobiology
Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei
2018-03-01
We conduct numerical simulations and theoretical analyses to quantitatively study the amplitude decay characteristic of the evanescent electromagnetic (EM) waves, which has been neglected in previous studies on the seismoelectric conversion occurring at a porous-porous interface. Time slice snapshots of seismic and EM wave-fields generated by a vertical single force point source in a two-layer porous model show that evanescent EM waves can be induced at a porous-porous interface. The seismic and EM wave-fields computed for a receiver array located in a vertical line nearby the interface are investigated in detail. In addition to the direct and interface-response radiation EM waves, we identify three groups of coseismic EM fields and evanescent EM waves associated with the direct P, refracted SV-P and direct SV waves, respectively. Thereafter, we derive the mathematical expression of the amplitude decay factor of the evanescent EM waves. This mathematical expression is further validated by our numerical simulations. It turns out the amplitude decay of the evanescent EM waves generated by seismoelectric conversion is greatly dependent on the horizontal wavenumber of seismic waves. It is also found the evanescent EM waves have a higher detectability at a lower frequency range. This work provides a better understanding on the EM wave-fields generated by seismoelectric conversion, which probably will help improve the interpretation of the seismoelectric coupling phenomena associated with natural earthquakes or possibly will inspire some new ideas on the application of the seismoelectric coupling effect.
Induced photoassociation in the field of a strong electomagnetic wave
International Nuclear Information System (INIS)
Zaretskij, D.F.; Lomonosov, V.V.; Lyul'ka, V.A.
1979-01-01
The quantum-mechanical problem of the stimulated transition of a system in the field of a strong electromagnetic wave from the continuous spectrum to a bound state possessing a finite lifetime is considered. The expressions obtained are employed to calculate stimulated production of mesic atoms and mesic molecules (ddμ). It is demonstrated that in an external electromagnetic field the probability for production of this type may considerably increase
International Nuclear Information System (INIS)
Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua
2015-01-01
We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)
INTEGRAL results on the electromagnetic counterparts of gravitational waves
DEFF Research Database (Denmark)
Mereghetti, S.; Savchenko, V.; Ferrigno, C.
2018-01-01
Thanks to its high orbit and a set of complementary detectors providing continuous coverage of the whole sky, the INTEGRAL satellite has unique capabilities for the identification and study of the electromagnetic radiation associated to gravitational waves signals and, more generally, for multi...
THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.
Directory of Open Access Journals (Sweden)
P. A. Preobrazhensky
2017-02-01
Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.
High range electromagnetic fields. Experimental investigations
International Nuclear Information System (INIS)
Comino, E.; Boccardo, D.; Quaglino, A.
2001-01-01
It has been often discussed on the health effects from the electromagnetic fields, and nowadays this theme is particularly controlled and studied by the research-workers. It needs to know what is the risk connected to the exposure to the electromagnetism during a short or a long quantity of time and what are the health pathologies caused by the continue exposure. On one hand the results from epidemiological research can not still define the effect of the dose, on the other hand the legislative frame is variously fragmented and based on cautious concepts. But in this work, under the collaboration of Energy Resources Laboratory in Lausanne and the Geo resources and Territory Department in Turin University, are presented the early results on the experiments got out on high frequency (950 MHZ) in order to give a contribution to the debate between the scientific community and the public opinion [it
The Mathematics of Charged Particles interacting with Electromagnetic Fields
DEFF Research Database (Denmark)
Petersen, Kim
In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...... in Coulomb gauge and we show that the one-body Maxwell-Schrödinger system as well as the related one-body Maxwell-Pauli system both admit travelling wave solutions....
On the Possibility of the Existence of a Surface Electromagnetic Wave in the Permafrost Area
Balkhanov, V. K.; Bashkuev, Yu. B.; Advokatov, V. R.
2018-01-01
The results of measurements of the vertical component of electric field at a radio path with the permafrost at a frequency of 255 kHz have been interpreted. An analysis of the results has shown that the considered radio path exhibits the properties of a two-part impedance surface, i.e., it consists of two sections. At a distance of 70 km from a radiation source and at a frequency of 255 kHz of the electromagnetic wave, the field decreases with the distance R according to the power law as R -1.5 and a power index takes an intermediate value between the power indices for decreasing the field in free space R -2 and for the decrease in the field above an ideal conducting surface R -1. With further propagation at a distance of 70-220 km, the field shows the specific behavior of a surface electromagnetic wave.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
International Nuclear Information System (INIS)
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu
2015-01-01
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.
Soliton emission stimulated by sound wave or external field
International Nuclear Information System (INIS)
Malomed, B.A.
1987-01-01
Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated
Electromagnetic ion cyclotron waves in the plasma depletion layer
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Nuclear β decay with a massive neutrino in an external electromagnetic field
International Nuclear Information System (INIS)
Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.
1986-01-01
Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)
Energy Technology Data Exchange (ETDEWEB)
Guiguet, J.C. [Agence Nationale des Frequences (ANFR), 94 - Maisons Alfort (France); Dodinot, B.; Sadoul, N.; Blangy, H. [Centre Hospitalier Universitaire Nancy-Brabois, Clinique Cardiologique, 54 - Vandoeuvre Brabois (France); Nadi, M.; Hedjiedj, A.; Schmitt, P. [Universite Henri Poincare-Nancy, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France); Joly, L.; Dodinot, B.; Aliot, E. [Centre Hospitalier Universitaire Nancy-Brabois, Service de Cardiologie, 54 - Vandoeuvre-les-Nancy (France); Silny, J. [Aachen University (Germany); Franck, R.; Himbert, C.; Hidden-Lucet, F.; Petitot, J.C.; Fontaine, G. [Hopital Pitie-Salpetriere, Institut de Cardiologie, Service de Rythmologie, 75 - Paris (France); Souques, M.; Lambrozo, J. [Electricite de France (EDF-Gaz de France), Service des Etudes Medicales, 75 - Paris (France); Magne, I.; Bailly, J.M. [Electricite de France (EDF-Gaz de France), Div. Recherche Developpement, 77 - Moret sur Loing (France); Trigano, J.A. [Centre Hospitalier Universitaire, Hopital Nord, 13 - Marseille (France); Burais, N. [CEGELY, Ecole Centrale de Lyon, 69 - Ecully (France); Gaspard, J.Y. [Magtech, 69 - Ecully (France); Andrivet, Ph. [Societe Medtronic France, 92 - Boulogne-Billancourt (France)
2004-07-01
Presentation of electromagnetic sources constituted by various radio transmitters contributing to different radio communication services in the environment. Results of a measures campaign to assess the electromagnetic field in the close neighbourhood of various stations. Analysis by frequency domains. (author)
Parametric mechanisms for detecting gravitational waves
International Nuclear Information System (INIS)
Pustovoit, V.I.; Chernozatonskii, L.A.
1981-01-01
An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation
Low frequency electromagnetic fields and health problems
International Nuclear Information System (INIS)
Zahedi, A.; Cosic, I.
1996-01-01
Full text: Electromagnetic fields developed around the electric circuits are considered as magnetic pollution and these fields are produced wherever electric appliances or machinery are used at home as well as at workplace. Electric fields and magnetic fields around the home are produced by anything with electric current flowing through it including: the street power lines, the home wiring system, electric ovens, refrigerators, washing machines, electric clothes dryers, vacuum cleaners, television sets, video cassette recorders, toasters, light bulbs, clock radios, electric blankets, mobile phones, etc. In the workplace they would be produced by: nearby power lines, factory machinery, computers/video display units, lights, photocopiers, electrical cabling etc. As one can see, human life is strongly dependent on using-electric appliance. A large number of studies have been undertaken to find out the correlation between electromagnetic fields and health problems. The following significant results have been reported [Lerner E.J., IEEE Spectrum, 57-67, May 1984]: (a) Induction of chromosomal defects in mice spermatogenetic cells following microwave radiation in the Ghz range; (b) Changes in the calcium balance of living cats' brains exposed to microwaves modulated at extremely low frequencies; (c) Alternation of nerve and bone cells exposed to extremely low frequency fields; (d) Decreased activity of the immune cells of mice exposed to modulated microwaves; (e) Apparent increase in deformed foetuses among miniature swine exposed to intense power-line frequency fields. The mostly investigated effect is the effect of electromagnetic irradiation in particular one produced by power lines, and cancer. More than 100 epidemiological studies have been reported but no conclusive result was achieved. A number of studies with laboratory animals were also inconclusive. However, some of these experiments have shown improvements in immune system and tumour suppression when
Precision cosmology from future lensed gravitational wave and electromagnetic signals.
Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong
2017-10-27
The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.
Self field electromagnetism and quantum phenomena
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
Electromagnetic Waves Broadcast by a VCR.
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Success of electromagnetic shock wave lithotripter asmonotherapy ...
African Journals Online (AJOL)
Objectives: To evaluate the success of shock wave lithotripsy (SWL) as monotherapy for solitary renalstones larger than 2 cm without ureteral stenting. Hence, if our study result demonstrates acceptable successand safety, we can recommend ESWL as a treatment option for patients with large renal calculi. Subjects and ...
Directory of Open Access Journals (Sweden)
Vojkan M. Radonjić
2011-01-01
Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception
Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field
International Nuclear Information System (INIS)
Prepelitsa, O.B.
1999-01-01
This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation
Child leukaemia and low frequency electromagnetic fields
International Nuclear Information System (INIS)
Clavel, J.
2009-01-01
The author discusses the possible causes of child leukaemia: exposure to natural ionizing radiation (notably radon), to pesticides, and to hydrocarbons emitted by road traffic. Some studies suggested that an inadequate reaction of the immune system to an ordinary infection could result in leukaemia. Other factors are suspected, notably extremely low frequency electromagnetic fields, the influence of which is then discussed by the author. She evokes and discusses results of different investigations on this topic which have been published since the end of the 1970's. It appears that a distance less than 50 meters from high voltage lines or the vicinity of transformation stations may double the risk of child leukaemia
Measurement of the environmental broadband electromagnetic waves in a mid-size European city.
Fernández-García, R; Gil, I
2017-10-01
In this paper, the level of exposure to broadband radiofrequency electromagnetic field in a mid-size European city was evaluated in accordance with the International Commission on Non-ionizing Radiation Protection guidelines from 1998. With the aim to analyse all the potential electromagnetic waves present in the city up to 18GHz, a total of 271 locations distributed along Terrassa (Spain) have been measured. To show the results in an easy-to-interpret way by the citizen, the results have been represented in a set of raster maps. The measurement results obtained showed that the electromagnetic wave measured in all broadband frequency range along the city is much lower than the safety level according to the international regulations for both public and occupational sectors. Copyright © 2017 Elsevier Inc. All rights reserved.
The Biological Effects of Weak Electromagnetic Fields
International Nuclear Information System (INIS)
Algattawi, A.; Elshyrih, H.
2010-01-01
Many studies investigated that weak electromagnetic fields remove calcium ions bound to the membranes of living cells, making them more likely to tear,. There is an enzyme that destroys DNA this enzyme leaking through the membranes of lysosomes explains the fragmentation of DNA. This case was seen in cells exposed to mobile phone signals. When this occurs in the germ line it reduces fertility and predicts genetic damage in future generations. Although leakage of calcium ions into the cytosol (the main part of the cell) accelerates the growth, but it also promotes the growth of tumors. Leakage of calcium ions into neurons (brain cells) makes nerve impulses accounting for pain and other neurological symptoms in electro sensitive. It also reduces the signal to noise ratio of the brain making it less likely to respond. This may be partially responsible for the increased accident rate of drivers using mobile phones. More details for the molecular mechanisms to explain characteristics of electromagnetic exposure are needed, e.g. I) why weak fields are more effective than strong ones, II) why some frequencies such as 16 Hz are especially potent and III) why pulsed fields do more damage
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
International Nuclear Information System (INIS)
Erofeev, V. I.
2015-01-01
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena
International Nuclear Information System (INIS)
Rao, N.N.
1998-01-01
A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known Hacute enon endash Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. copyright 1998 American Institute of Physics
Electromagnetic processes in strong crystalline fields
2007-01-01
We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.
The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave
Finster, Felix; Reintjes, Moritz
2017-05-01
We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.
Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
International Nuclear Information System (INIS)
Li Ming-Liang; Deng Ming-Xi; Gao Guang-Jian
2016-01-01
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. (special topic)
Electromagnetic fields of rotating magnetized NUT stars
International Nuclear Information System (INIS)
Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.
2004-01-01
Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit
Selective wave-transmitting electromagnetic absorber through composite metasurface
Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun
2017-11-01
Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.
Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2
International Nuclear Information System (INIS)
Fraser, B.J.; Samson, J.C.; Hu, Y.D.; McPherron, R.L.; Russell, C.T.
1992-01-01
Pc 2 electromagnetic ion cyclotron waves at 0.1 waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE 1 and 2 between L = 7.6 and 5.8 on an inbound near-equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ∼ 1.5 R E and penetrated ∼1 R E into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He + and the warm (0.1-16 keV/e) O + and He + heavy ion populations. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities (E x B)/B 2 were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Poynting fluxes calculated during the first 15 min of the event show wave energy propagation directions both parallel and antiparallel to the field. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event may be attributed to the modulation of this energy source by the Pc 5 waves seen at the same time. Overall, the results are considered an example of an electromagnetic ion cyclotron wave-particle interaction occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase
International Nuclear Information System (INIS)
Shiozawa, Toshiyuki
2010-01-01
For the purpose of providing for a theoretical background for the study of electromagnetic fields generated by precursory effects of earthquakes, the problem of transmission and total reflection at the earth-atmosphere interface is investigated in detail for a subhertz plane electromagnetic wave incident from the earth's crust. The term ''subhertz'' means 'below 1 Hz'. First, for the special case of normal incidence, the overall power transmission coefficient at the earth-atmosphere interface is found to take a maximum value at a definite frequency f 0 which is inversely proportional to the square of the depth of a virtual hypocenter. A typical value of f 0 falls around 0.01 Hz. For oblique incidence as well, this feature of the overall power transmission coefficient is retained except in the vicinity of the critical angle of incidence for the H-wave. At the critical angle of incidence, the power flow carried by a surface wave along the interface becomes anomalously large for the H-wave. However, over a wide range of angles of incidence greater than the critical angle, the power flow carried by the E-wave exceeds that carried by the H-wave by orders of magnitude. Finally, the energy conservation relations for the incident, reflected, and transmitted waves at the earth-atmosphere interface are discussed. For an incident wave coming from the earth's crust, the interactive power between the incident and reflected waves plays a crucial role for the conservation of energy at the interface.
Ultra-low-frequency electromagnetic waves in the Earth's crust and magnetosphere
International Nuclear Information System (INIS)
Guglielmi, A V
2007-01-01
Research on natural intra- and extraterrestrially produced electromagnetic waves with periods ranging from 0.2 to 600 s is reviewed. The way in which the energy of rock movements transforms into the energy of an alternating magnetic field is analyzed. Methods for detecting seismomagnetic signals against a strong background are described. In discussing the physics of ultra-low-frequency waves in the magnetosphere, the 11-year activity modulation of 1-Hz waves and ponderomotive forces affecting plasma distribution are emphasized. (reviews of topical problems)
International Nuclear Information System (INIS)
Sugaya, Reiji
1989-01-01
General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)
International Nuclear Information System (INIS)
Denisov, V.I.; Krivchenkov, I.V.; Denisov, I.P.
2002-01-01
The study on the electromagnetic waves propagation in the neutron star magnetic dipole and gravitation fields, taking place according to the vacuum nonlinear electrodynamics laws, is carried out. It is shown that depending on the polarization the electromagnetic signals in this field propagate by different beams and with various velocities. The law on these signals motion by beams is established. The calculation of differences in the times of the electromagnetic signals propagation, having the same source up to the detector, is presented. It is shown that this difference in some cases may reach enough measurable value of 1 μs [ru
Scattering of Electromagnetic Waves by Many Nano-Wires
Directory of Open Access Journals (Sweden)
Alexander G. Ramm
2013-07-01
Full Text Available Electromagnetic wave scattering by many parallel to the z−axis, thin, impedance, parallel, infinite cylinders is studied asymptotically as a → 0. Let Dm be the cross-section of the m−th cylinder, a be its radius and xˆm = (xm1, xm2 be its center, 1 ≤ m ≤ M , M = M (a. It is assumed that the points, xˆm, are distributed, so that N (∆ = (1 / 2πa * ∫∆ N (xˆdxˆ[1 + o(1], where N (∆ is the number of points, xˆm, in an arbitrary open subset, ∆, of the plane, xoy. The function, N (xˆ ≥ 0, is a continuous function, which an experimentalist can choose. An equation for the self-consistent (effective field is derived as a → 0. A formula is derived for the refraction coefficient in the medium in which many thin impedance cylinders are distributed. These cylinders may model nano-wires embedded in the medium. One can produce a desired refraction coefficient of the new medium by choosing a suitable boundary impedance of the thin cylinders and their distribution law.
Dispersion of linearly polarized electromagnetic wave in magnetized quantum plasma
International Nuclear Information System (INIS)
Singh, Abhisek Kumar; Kumar, Punit
2015-01-01
The generation of harmonic radiation is significant in terms of laser-plasma interaction and has brought interesting notice due to the diversity of its applications. The odd harmonics of laser frequency are generated in the majority of laser interactions with homogenous plasma. It has been remarked that second harmonic generation takes place in the presence of density gradient which gives rise to perturbation in the electron density at the laser frequency. The density perturbation coupled with the quiver motion of the electrons produces a source current at the second harmonic frequency. Second harmonic generation has also been related with filamentation. In the present paper, a study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first. (author)
International Nuclear Information System (INIS)
Sugaya, Reija
1991-01-01
The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)
Application of microwave cell system in calibration of electromagnetic field meters
International Nuclear Information System (INIS)
Abu-Kassem, I.
2012-11-01
The aim of this work is to improve radiation measurements of electromagnetic field (EMF) through realizing tests and calibrations of measurement devices by intercomparison within the microwaves (MW) range according to EMF wave cell properties. Actually, the calibration facility in electromagnetic field is not available in Syria; therefore, realizing an experimental system for electromagnetic field radiometer calibration is very important at national level. This study showed the possibility of using EMF wave cell in intercomparison of electromagnetic field radiometers in order to achieve a direct calibration via standard radiometer. The EMF wave cell properties were studied and the homogeneity of its EMF was tested using the EF Cube probe. Results showed that the field homogeneity inside the cell is good and the variation of electric field strength, within the comparison position, is less than 10% of measured values. It was recognized that the probe form and dimensions influence the comparison results; and measurement results showed that it's possible to achieve comparison in the working domain of EMF wave cell (10 - 3000 MHz) with a relative deviation of result values between 10% and 30% according to the measurement device and frequency range. Development of comparison process in order to obtain accurate results needs to improve mechanical supports of tested probes and to introduce a correction factor related to studied probe form and dimensions. From another side, it is better to carry out measurements at frequencies around the central frequency, and not close to frequency range borders, of the EMF wave cell working frequency domain. (author)
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.
Zhang, Chao; Chen, Dong; Jiang, Xuefeng
2017-11-13
An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.
ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.
Energy Technology Data Exchange (ETDEWEB)
BELEGGIA,M.; POZZI, G.; TONOMURA, A.
2007-01-01
It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.
Interaction of the electromagnetic waves and non-magnetized plasmas
International Nuclear Information System (INIS)
Sun Aiping; Qiu Xiaoming; Dong Yuying; Li Liqiong
2002-01-01
The propagation of electromagnetic waves with 0.5 - 10 GHz in a non-magnetized collisional plasma slab is studied numerically. The change in the absorbed power, reflected power and transmitted power of the electromagnetic wave with collisional frequency of electrons and neutral atoms in plasma from 0.1 - 10 GHz, is calculated, in the condition of the uniform plasma with density of 10 10 or 10 11 cm -3 and depth of 10 cm, and the non-uniform plasma with density distribution of n = n 0 exp[2(z/d-1)] and depth of 10 cm, respectively. The results show that the absorbed power in either uniform or non-uniform plasma is large when the plasma density is large and collision frequency is high, and the peak value is 90%
On absorption of low frequency electromagnetic fields
International Nuclear Information System (INIS)
Brunner, S.; Vaclavik, J.
1993-03-01
The drift kinetic equation (DKE) is used to establish a formula for power absorption of small amplitude, low frequency electromagnetic (EM) fields in a hot toroidal axisymmetric plasma. The stationary plasma is first considered. Electrons and ions are described by local Maxwellian distributions, alpha particles by a local slowing-down distribution. The fluctuating part of the distribution function for each species is then evaluated from the linearized DKE in terms of the EM fields using a perturbation method. The parameter b p =B p /B o , where B p is the poloidal component of the magnetostatic field B o , and the parameter v d /λω, where v d is the magnetic curvature drift, λ the wavelength perpendicular to B o and ω the frequency of the EM fields, are considered to be small. By integrating the resulting distribution function over velocity space, an explicit formula for the power absorbed by each species is obtained. To obtain an expression suitable for direct implementation in an ideal-MHD code, the electric field component parallel to the magnetostatic field is evaluated using the quasi-neutrality equation. (author) 4 refs
On the self-trapping of an electromagnetic wave in magnetized plasma
International Nuclear Information System (INIS)
El-Ashry, M.Y.; Berezhiani, V.I.; Pichkhadze, Sh.D.
1987-06-01
The possibility of relativistic self-trapping of an electromagnetic wave in magnetized plasma is studied. It is shown that in the case of propagation of fast wave packet of electromagnetic wave in plasma, self-trapping is possible due to the effect of relativistic non-linearity, which is effective even for small amplitudes of the pumping wave. (author). 7 refs
Saldanha, Pablo L
2010-02-01
It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the form epsilon(0)E x B, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.
International Nuclear Information System (INIS)
Zimbovskaya, Natalya A
2011-01-01
We theoretically analyze weakly attenuated electromagnetic waves in quasi-two-dimensional (Q2D) metals in high magnetic fields. Within the chosen geometry, the magnetic field is directed perpendicular to the conducting layers of a Q2D conductor. We have shown that longitudinal collective modes could propagate along the magnetic field provided that the Fermi surface is moderately corrugated. The considered wave speeds strongly depend on the magnetic field magnitude. Also, we have analyzed interactions of these quantum waves with sound waves of suitable polarization and propagation direction, and we have shown that such interaction may bring significant changes to the low temperature magnetoacoustic response of Q2D conductors.
Adrian, M. L.; Wendel, D. E.
2011-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X- and O-nulls, as well as their correlation to the amount of magnetic energy converted by the process of magnetic reconnection.
Detecting electromagnetic cloaks using backward-propagating waves
Salem, Mohamed
2011-08-01
A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.
Detecting electromagnetic cloaks using backward-propagating waves
Salem, Mohamed; Bagci, Hakan
2011-01-01
A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.
Evaluation of uncertainty in the measurement of environmental electromagnetic fields
International Nuclear Information System (INIS)
Vulevic, B.; Osmokrovic, P.
2010-01-01
With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty. (authors)
The Characteristics of Electromagnetic Fields Induced by Different Type Sources
Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.
2011-12-01
method is reliable and effective for modeling models including ionosphere, atmosphere and earth media. In order to discuss EM fields' characters for complicate earth-ionosphere media excited by long bipole, "L" shape bipole and circle current sources in the far-field and wave-guide zones, we modeled the frequency responses and decay characters of EM fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields' decay curves with given frequency show that the fields of Ex and Hy , excited by a long bipole and "L" shape bipole, can be divided into an extra wave-guide field with slower attenuation and strong amplititude than that in half space, but the EM fields of circle current source does not show the same characteristics, ionosphere makes the amplitude of the EM field weaker for the circle current source. For this reason, it is better to use long bipole source while working in the wave-guide field with a fixed large power source.
Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption
Energy Technology Data Exchange (ETDEWEB)
Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang, E-mail: chenxg83@zju.edu.cn
2015-11-15
The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400–800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<−5 dB and −10 dB. For RN samples, the maximum bandwidth for −5 dB and −10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400–800 for EM absorption is 1.5–2.0 mm, with maximum RL of between −28.9 and −68.4 dB, bandwidth of 6.7–13 GHz for RL<−5 dB and 3.2–6.2 GHz for RL<−10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400–800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers. - Highlights: • RN400–800 samples are potential light-weight electromagnetic absorbers. • Carbon and SiC are considered as dominating contributions for the dielectric loss. • Magnesiumothermic reduction extends the EM wave absorption potential of RHN.
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
Global Characteristics of Electromagnetic Ion Cyclotron Waves Deduced From Swarm Satellites
Kim, Hyangpyo; Hwang, Junga; Park, Jaeheung; Bortnik, Jacob; Lee, Jaejin
2018-02-01
It is well known that electromagnetic ion cyclotron (EMIC) waves play an important role in controlling particle dynamics inside the Earth's magnetosphere, especially in the outer radiation belt. In order to understand the results of wave-particle interactions due to EMIC waves, it is important to know how the waves are distributed and what features they have. In this paper, we present some statistical analyses on the spatial distribution of EMIC waves in the low Earth orbit by using Swarm satellites from December 2013 to June 2017 ( 3.5 years) as a function of magnetic local time, magnetic latitude, and magnetic longitude. We also study the wave characteristics such as ellipticity, wave normal angle, peak frequency, and wave power using our automatic wave detection algorithm based on the method of Bortnik et al. (2007, https://doi.org/10.1029/2006JA011900). We also investigate the geomagnetic control of the EMIC waves by comparing with geomagnetic activity represented by Kp and Dst indices. We find that EMIC waves are detected with a peak occurrence rate at midlatitude including subauroral region, dawn sector (3-7 magnetic local time), and linear polarization dominated with an oblique propagating direction to the background magnetic field. In addition, our result shows that the waves have some relation with geomagnetic activity; that is, they occur preferably during the geomagnetic storm's late recovery phase at low Earth orbit.
Open bosonic string in background electromagnetic field
International Nuclear Information System (INIS)
Nesterenko, V.V.
1987-01-01
The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found
Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field
Bethe, H. A.
1972-09-01
The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.
Electromagnetic radiation of protons in edge fields of synchrotron dipole magnets
International Nuclear Information System (INIS)
Smolyakov, N.V.
1986-01-01
Effect of the edge shape of magnetic field of a dipole on the short-wave part of electromagnetic radiation spectrum of a proton beam is investigated. In some cases short-wave photons are shown to be shaped in the ranges of largest edge curvature of the magnetic field. Universality of edge radiation spectrum is proved. Spectral characteristics of proton edge radiation in a superconducting magnetic dipole of the storage-accelerator complex are obtained
Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy
2017-06-01
ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled Air Sea Processes and Electromagnetic (EM) ducting Research (CASPER), to understand air-sea interaction processes and their representation
International Nuclear Information System (INIS)
Tagirov, Eh.A.
1985-01-01
A model of resonance parametric transformation of a gravitational wave to electromagnetic one is considered. Two plane monochromatic waves: a strong electromagnetic and weak gravitational - interacting in a medium generate at difference and sum frequencies an electromagnetic wave in a direction determined with the condition of spatial wave synchronism. Rarefied cold gas or beam of elementary emitters (''molecules'') serve as a medium model. Coefficients of parametric transformation have been determined
Absorption of Electro-magnetic Waves in a Magnetized Medium
Ganguly, Avijit K.; Konar, Sushan
2000-01-01
In continuation to our earlier work, in which the structure of the vacuum polarisation tensor in a medium was analysed in presence of a background electro-magnetic field, we discuss the absorptive part of the vacuum polarization tensor. Using the real time formalism of finite temperature field theory we calculate the absorptive part of 1-loop vacuum polarisation tensor in the weak field limit ($eB < m^2$). Estimates of the absorption probability are also made for different physical conditions...
Electromagnetic field and mechanical stress analysis code
International Nuclear Information System (INIS)
1978-01-01
Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem
The response of nuclei to electromagnetic fields
International Nuclear Information System (INIS)
Bernstein, A.M.
1987-01-01
The purpose of these lectures is to give a general introduction to intermediate energy electromagnetic physics at the graduate student level. The aim is to convey physical insight, to attempt to explain the motivation for the measurements, what the results are, what has been understood, and what puzzles remain for the future. The author hopes to give a panorama and to convey the present sense of excitement in this very active and developing field. The topics which are treated include: elastic and quasi-elastic electron scattering, electro excitation of the Δ in nuclei, (γ,π) reactions and a brief introduction to hypernuclear production by the (γ,Κ/sup +/) reaction. Time doses not allow the coverage of many important topics such as coincidence reactions, polarization phenomena, and inelastic scattering to discrete nuclear states
Visualizing electromagnetic fields in metals by MRI
Directory of Open Access Journals (Sweden)
Chandrika Sefcikova Chandrashekar
2017-02-01
Full Text Available Based upon Maxwell’s equations, it has long been established that oscillating electromagnetic (EM fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI utilizes radiofrequency (r.f. EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels of identical size (=Δx Δy Δz. By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI results that discriminate different faces (surfaces of a metal block according to their distinct nuclear magnetic resonance (NMR chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.
The electromagnetic field equations for moving media
International Nuclear Information System (INIS)
Ivezić, T
2017-01-01
In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F ( x ) and ℳ ( x ) are presented and then these equations are written with the 4D vectors E ( x ), B ( x ), P ( x ) and M ( x ). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime (paper)
International Nuclear Information System (INIS)
Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.
2011-01-01
We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.
Directory of Open Access Journals (Sweden)
Xiaoxing Zhang
2017-10-01
Full Text Available This study analyzed the transformer electromagnetic gap propagation characteristics. The influence of gap size is also analyzed, and the results experimentally verified. The obtained results indicated that the gap propagation characteristics of electromagnetic wave signals radiated by the partial discharge (PD source in different directions are substantially different. The intensity of the electromagnetic wave in the gap reaches a maximum at a gap height of 1 cm; and inside the gap, the intensity of the electromagnetic wave depicted an increasing trend at the tail area of the gap. Finally, from the obtained results, some suggestions on where to install sensors in practical systems for ultra high frequency (UHF PD signal detection in the transformer gap are provided. The obtained results confirmed the feasibility of using this approach. These results can be seen as a benchmark and a challenge for further research in this field.
Uncertainty principles for inverse source problems for electromagnetic and elastic waves
Griesmaier, Roland; Sylvester, John
2018-06-01
In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.
Motion of charged particles in a knotted electromagnetic field
International Nuclear Information System (INIS)
Arrayas, M; Trueba, J L
2010-01-01
In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.
Motion of charged particles in a knotted electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)
2010-06-11
In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.
Improved heat transfer modeling of the eye for electromagnetic wave exposures.
Hirata, Akimasa
2007-05-01
This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.
Energy Technology Data Exchange (ETDEWEB)
Aiello, Matias; Bengochea, Gabriel R; Ferraro, Rafael, E-mail: aiello@iafe.uba.ar, E-mail: gabriel@iafe.uba.ar, E-mail: ferraro@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)
2008-06-15
Born-Infeld electromagnetic waves interacting with a static magnetic background in an expanding universe are studied. The non-linear character of Born-Infeld electrodynamics modifies the relation between the energy flux and the distance to the source, which gains a new dependence on the redshift that is governed by the background field. We compute the luminosity distance as a function of the redshift and compare with Maxwellian curves for supernovae type Ia.
International Nuclear Information System (INIS)
Salimullah, M.; Rahman, M. M.; Zeba, I.; Shah, H. A.; Murtaza, G.; Shukla, P. K.
2006-01-01
The electromagnetic waves below the ion-cyclotron frequency have been examined in a collisionless and homogeneous dusty plasma in the presence of a dust beam parallel to the direction of the external magnetic field. The low-frequency mixed electromagnetic dust-lower-hybrid and purely transverse magnetosonic waves become unstable for the sheared flow of dust grains and grow in amplitude when the drift velocity of the dust grains exceeds the parallel phase velocity of the waves. The growth rate depends dominantly upon the thermal velocity and density of the electrons
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the
Energy Technology Data Exchange (ETDEWEB)
Tian, Yuan; Han, Yiping, E-mail: yphan@xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Ai, Xia [National Key Laboratory of Science and Technology on Test physics and Numerical Mathematical, Beijing 100076 (China); Liu, Xiuxiang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)
2014-12-15
In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.
Non linear dynamic of Langmuir and electromagnetic waves in space plasmas
International Nuclear Information System (INIS)
Guede, Jose Ricardo Abalde
1995-11-01
The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the
influence of electromagnetic waves produced by an amplitude
African Journals Online (AJOL)
PROF EKWUEME
m. 10 . The magnetotransport and continuity equations of excess minority carriers are solved with boundary conditions and led to new analytical expressions of minority carrier's density, photocurrent density, photovoltage and electric power depending on electromagnetic field intensity and wavelength λ. The dependence of.
Influence of electromagnetic waves produced by an amplitude ...
African Journals Online (AJOL)
The magnetotransport and continuity equations of excess minority carriers are solved with boundary conditions and led to new analytical expressions of minority carrier's density, photocurrent density, photovoltage and electric power depending on electromagnetic field intensity and wavelength λ. The dependence of the ...
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
International Nuclear Information System (INIS)
Frieman, E.A.; Chen, L.
1981-10-01
A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency
On propagation of electromagnetic and gravitational waves in the expanding Universe
International Nuclear Information System (INIS)
Gladyshev, V O
2016-01-01
The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object. (paper)
Geometrization of the electromagnetic field and dark matter
International Nuclear Information System (INIS)
Pestov, I.B.
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field
Interaction of electromagnetic and acoustic waves in a stochastic atmosphere
Bhatnagar, N.; Peterson, A. M.
1979-01-01
In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.
Utilization Of Carbon Nanotubes In Electromagnetic Wave Detectors
Directory of Open Access Journals (Sweden)
Muhammad Hanis Zakariah
2017-08-01
Full Text Available Direct detection of hydrocarbon by an active source using electromagnetic (EM energy termed seabed logging (SBL has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges include sensitivity and frequency matching. This paper presents development of the carbon nanotubes (CNTs as electromagnetic wave detector due to outstanding properties of carbon nanotubes. They are currently one of the desired materials for advanced technologies. Two types of detectors were developed in this work, carbon nanotube-based (D1 and without nanotube-based (D2 detectors. Various configuration and arrangement for each type of detector were investigated to determine the one with the highest detection measurement and stability of frequency stability of detection system. It was found that 20 turn-coils coil placed at its centre gives the maximum detection of induction voltage, 39.61 mV. However, the 20 turn- coils with CNTs which gives 36.50 mV is the preferred EM detectors due to the stability in frequency of the detection system.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
The Universal C*-Algebra of the Electromagnetic Field
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2016-02-01
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
Electromagnetic field, excited by monodirected X-radiation pulse
International Nuclear Information System (INIS)
Zhemerov, A.V.; Metelkin, E.V.
1994-01-01
Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
Optimizing searches for electromagnetic counterparts of gravitational wave triggers
Coughlin, Michael W.; Tao, Duo; Chan, Man Leong; Chatterjee, Deep; Christensen, Nelson; Ghosh, Shaon; Greco, Giuseppe; Hu, Yiming; Kapadia, Shasvath; Rana, Javed; Salafia, Om Sharan; Stubbs11, Christopher
2018-04-01
With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, with future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to optimize counterpart detection.
Propagation of electromagnetic waves in a weakly ionized dusty plasma
International Nuclear Information System (INIS)
Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi
2015-01-01
Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)
Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.
2014-12-01
Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].
Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime
Energy Technology Data Exchange (ETDEWEB)
Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China); Wang, Sai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)
2012-09-15
Recently, Kostelecky [V.A. Kostelecky, Phys. Lett. B 701, 137 (2011)] proposed that the spontaneous Lorentz invariance violation (sLIV) is related to Finsler geometry. Finsler spacetime is intrinsically anisotropic and naturally induces Lorentz invariance violation (LIV). In this paper, the electromagnetic field is investigated in locally Minkowski spacetime. The Lagrangian is presented explicitly for the electromagnetic field. It is compatible with the one in the standard model extension (SME). We show the Lorentz-violating Maxwell equations as well as the electromagnetic wave equation. The formal plane wave solution is obtained for the electromagnetic wave. The speed of light may depend on the direction of light and the lightcone may be enlarged or narrowed. The LIV effects could be viewed as influence from an anisotropic media on the electromagnetic wave. In addition, birefringence of light will not emerge at the leading order in this model. A constraint on the spacetime anisotropy is obtained from observations on gamma-ray bursts (GRBs). (orig.)
Current Understanding of the Health Effects of Electromagnetic Fields.
Miah, Tayaba; Kamat, Deepak
2017-04-01
There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.]. Copyright 2017, SLACK Incorporated.
Interacting massless scalar and source-free electromagnetic fields
International Nuclear Information System (INIS)
Ayyangar, B.R.N.; Mohanty, G.
1985-01-01
The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)
Egorov, V. A.; Makarov, G. I.
2006-12-01
[1] The influence of vegetable cover on propagation ofelectromagnetic waves in the Earth-ionosphere wave channel isstudied in the scope of the model of a homogeneous isotropic``forest layer'' with effective value of the dielectric permeabilityɛf=1.2 and electric conductivityσf (t oC)depending on theenvironmental temperature according to the results obtained in thispaper. It is shown that the character of the electromagnetic fieldbehavior in the presence of large forests is of a well-pronouncedseasonal character additionally complicated by the diurnalvariations of the field depending on the environmental temperaturevariations.
Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.
Kourakis, I; Shukla, P K
2005-07-01
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.
Exposure to power frequency electromagnetic fields
International Nuclear Information System (INIS)
Skotte, J.
1993-01-01
The purpose was to asses personal exposure to power frequency electromagnetic fields in Denmark. Exposure to electrical and magnetic 50 Hz fields were measured with personal dosimeters in periods of 24 hours covering both occupational and residential environments. The study included both highly exposed and 'normal' exposed jobs. Measurements were carried out with dosimeters, which sample electrical and magnetic fields every 5 sec. Participants also wore the dosimeter during transportation. The dynamic range of the dosimeters was 0.01-200 μT and 0.6-10000 V/m. The highest average exposure in homes near high power lines was 2.24 μT. In most homes without nearby high power lines the average exposure was below 0.05 μT. Average values of '24-hour-dose' (μT times hours) for the generator facility, transmission line and substation workers were approximately the same as for the people living near high power lines (5 μT x hours). Electric field measurements with personal dosimeters involve several factors of uncertainty, as the body, posture, position of dosimeter etc. influence the results. The highest exposed groups were transmission line workers (GM: 44 V/m) and substation workers (GM: 23 V/m) but there were large variations (GSD: 4.7-4.8). In the work time the exposure level was the same for office workers and workers in the industry groups (GM: 12-13 V/m). In homes near high power lines (GM: 23 V/m) there was a non-significant tendency to higher exposure compared to homes without nearby high power lines. (AB) (11 refs.)
Langmuir wave turbulence generated by electromagnetic waves in the laboratory and the ionosphere
International Nuclear Information System (INIS)
Lee, M.C.; Riddolls, R.J.; Moriarty, D.T.; Dalrymple, N.E.; Rowlands, M.J.
1996-01-01
The authors will present some recent results of the laboratory experiments at MIT, using a large plasma device known as the Versatile Toroidal Facility (VTF). These experiments are aimed at cross-checking the ionospheric plasma heating experiments at Arecibo, Puerto Rico using an HF heating facility (heater). The plasma phenomenon under investigation is the spectral characteristic of Langmuir wave turbulence produced by ordinary (o-mode) electromagnetic pump waves. The Langmuir waves excited by o-mode heaters waves at Arecibo have both a frequency-upshifted spectrum and a frequency-downshifted (viz., cascading) spectrum. While the cascading spectrum can be well explained in terms of the parametric decay instability (PDI), the authors have interpreted the frequency-upshifted Langmuir waves to be anti-Stokes Langmuir waves produced by a nonlinear scattering process as follows. Lower hybrid waves creates presumably by lightning-induced whistler waves can scatter nonlinearly the PDI-excited mother langmuir waves, yielding obliquely propagating langmuir waves with frequencies as the summation of the mother Langmuir wave frequencies and the lower hybrid wave frequencies. This suggested process has been confirmed in the laboratory experiments, that can reproduce the characteristic spectra of Langmuir wave turbulence observed in the Arecibo experiments
Quantizing the electromagnetic field near two-sided semitransparent mirrors
Furtak-Wells, Nicholas; Clark, Lewis A.; Purdy, Robert; Beige, Almut
2018-04-01
This paper models light scattering through flat surfaces with finite transmission, reflection, and absorption rates, with wave packets approaching the mirror from both sides. While using the same notion of photons as in free space, our model also accounts for the presence of mirror images and the possible exchange of energy between the electromagnetic field and the mirror surface. To test our model, we derive the spontaneous decay rate and the level shift of an atom in front of a semitransparent mirror as a function of its transmission and reflection rates. When considering limiting cases and using standard approximations, our approach reproduces well-known results but it also paves the way for the modeling of more complex scenarios.
Fung, Shing F.; Vinas, Adolfo F.
1994-01-01
The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.
Relativistic kinematics of the electromagnetic fields of a guided mode
International Nuclear Information System (INIS)
Rivlin, Lev A
2000-01-01
It is shown that during the observation of a wave in a waveguide from a comoving reference system travelling at a velocity equal to the group velocity of the wave, the wave propagation is halted and the electromagnetic energy contained in the waveguide proves to be stationary. The nonzero rest mass of the photons in the waveguide is equivalent to this rest energy and is identical with the rest mass measured in dynamic experiments. (laser applications and other topics in quantum electronics)
Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field
Directory of Open Access Journals (Sweden)
Bugay А.N.
2015-01-01
Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.
Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer
tumpf, M.; De Hoop, A.T.; Lager, I.E.
2010-01-01
Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two?dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave
Modified Clemmow-Mullaly-Allis diagram for large-amplitude electromagnetic waves in magnetoplasmas
International Nuclear Information System (INIS)
Minami, K.; Mori, Y.; Takeda, S.
1975-02-01
A possible modification to the well known Clemmow- Mullaly-Allis diagram is analysed taking into account the radiation pressure force due to a large-amplitude electromagnetic field E in magnetoplasmas. We restrict ourselves here to the propagations parallel (the right and left-hand circularly polarized waves) and/or perpendicular (the ordinary and extraordinary modes) to the static magnetic field Bsub(o). We analyse electromagnetic waves incident normally on a semi-infinite uniform plasma, on which Bsub(o) is applied parallel and/or perpendicular to the surface. Considerations are limited to a cold collisionless plasma where the incident waves are evanescent. Simple expressions are obtained for the cut-off conditions of the waves except the extraordinary mode. In the latter case, the cut-off condition is calculated numerically solving an integral equation. The results are demonstrated in the usual Clemmow-Mullaly-Allis diagram for the various values of b=2Esub(i) 2 e 2 /mω 2 kappaTsub(e') where Esub(i) and ω are, respectively, the amplitude and the angular frequency of the incident wave. The cut-off lines are shown to move towards the higher densities with increasing b. (auth.)
Yang, Chen
2018-05-01
The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.
Electromagnetic field in higher-dimensional black-hole spacetimes
International Nuclear Information System (INIS)
Krtous, Pavel
2007-01-01
A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved
Scattering of electromagnetic waves by a traversable wormhole
Directory of Open Access Journals (Sweden)
B. Nasr Esfahani
2005-09-01
Full Text Available Replacing the wormhole geometry with an equivalent medium using the perturbation theory of scattering and the Born approximation, we have calculated the differential scattering cross section of electromagnetic waves by a traversable wormhole. It is shown that scattering at long wavelenghts can essentially distinguish wormhole from ordinary scattering object. Some of the zeros of the scattering cross section are determined which can be used for estimating the radius of the throat of wormholes. The known result that in this kind of scattering the linear polarization remains unchanged is verified here.
RF electromagnetic wave absorbing properties of ferrite polymer composite materials
International Nuclear Information System (INIS)
Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir
2006-01-01
The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Application of electromagnetic and sound waves in nutritional assessment
International Nuclear Information System (INIS)
Heymsfield, S.B.; Rolandelli, R.; Casper, K.; Settle, R.G.; Koruda, M.
1987-01-01
Four relatively new techniques that apply electromagnetic or sound waves promise to play a major role in the study of human body composition and in clinical nutritional assessment. Computerized axial tomography, nuclear magnetic resonance, infrared interactance, and ultrasonography provide capabilities for measuring the following: total body and regional fat volume; regional skeletal muscle volume; brain, liver, kidney, heart, spleen, and tumor volume; lean tissue content of triglyceride, iron, and high-energy intermediates; bone density; and cardiac function. Each method is reviewed with regard to basic principles, research and clinical applications, strengths, and limitations.33 references
Model of the electromagnetic waves processing in ultrasound
International Nuclear Information System (INIS)
Abrego L, J.; Azorin N, J.; Siles A, S.; Cruz O, A.
2004-01-01
In this work, a model to process the electromagnetic waves in ultrasonic equipment is proposed and it is experimentally demonstrated that, the origin of the ultrasound is electronic and non mechanic. The above mentioned, it has been demonstrated when making in an electronic equipment a spectral analysis the one that indicated an unfolding of the original ultrasonic pulses of 17 K Hz., to 88 K Hz., and of 5 MHz., to 23 GHz. Also, it was obtained the degradation with ultrasound of particles of Hematite and of Galena, as well as the fading of the methylene blue and the generation of an electric current exciting with ultrasound. (Author)
New foundations for applied electromagnetics the spatial structure of fields
Mikki, Said
2016-01-01
This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
International Nuclear Information System (INIS)
Wang Dong; Chen Yinhua; Wang Ge
2008-01-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (k i a || 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then k i a || 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Near-Field Spectral Effects due to Electromagnetic Surface Excitations
Shchegrov , Andrei ,; Joulain , Karl; Carminati , Rémi; Greffet , Jean-Jacques
2000-01-01
International audience; We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can display remarkable differences in the near and the far zones. The spectral changes occur due to the loss of evanescent modes and are especially pronounced for systems which support surface waves. PACS numbers: 78.20. – e, 05.40. – a, 44.40. + a, 87.64.Xx Spectroscopy of electromagnetic radiation is perhaps the most powerful exploration tool employed in natural sciences: ast...
Exposure of Nurses to Electromagnetic Fields
International Nuclear Information System (INIS)
Zmyslony, M.; Mamrot, P.; Politanski, P.
2004-01-01
Devices that produce electromagnetic fields (EMF) within the range of 0-300 GHz are widely used in surgical and diagnostic procedures. As a result a large number of physicians and other groups of medical personnel may be exposed to EMF. Even if patients' exposure, sometimes quite high, is inevitable or even recommended, medical personnel should be substantially protected against EMF exposure. Evaluation of nurses' exposure to EMF was based on an analysis of EMF magnitudes in the surrounding of magnetic resonance imaging (MRI) and electrosurgical units. These two kinds of apparatus are the strongest EMF sources in health service facilities. The measurements were performed according to the norms and hygiene regulations binding in Poland. Measurements performed by the Nofer Institute of Medicine in Lodz, and data collected by the Central Database on EMF Sources were used in the analysis. The Central Database is run by the Nofer Institute of Medicine at the behest of the Chief Sanitary Inspector. The study showed that nurses' exposure to EMF emitted by MRI and electrosurgical units complies with Polish norms and hygiene regulations and can be classified as negligible or allowable. It was found that work of nurses in exposure to EMF emitted by MRI and electrosurgical units can be regarded as safe, which means that their health should not be endangered by the performed job. (author)
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
Energy Technology Data Exchange (ETDEWEB)
Dorofeenko, V. G. [Institute for Advanced Studies (Austria); Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.
Electromagnetic waves in complex systems selected theoretical and applied problems
Velychko, Lyudmyla
2016-01-01
This book gives guidance to solve problems in electromagnetics, providing both examples of solving serious research problems as well as the original results to encourage further investigations. The book contains seven chapters on various aspects of resonant wave scattering, each solving one original problem. All of them are unified by the authors’ desire to show advantages of rigorous approaches at all stages, from the formulation of a problem and the selection of a method to the interpretation of results. The book reveals a range of problems associated with wave propagation and scattering in natural and artificial environments or with the design of antennas elements. The authors invoke both theoretical (analytical and numerical) and experimental techniques for handling the problems. Attention is given to mathematical simulations, computational efficiency, and physical interpretation of the experimental results. The book is written for students, graduate students and young researchers. .
High-efficiency passive full wave rectification for electromagnetic harvesters
Yilmaz, Mehmet; Tunkar, Bassam A.; Park, Sangtak; Elrayes, Karim; Mahmoud, Mohamed A. E.; Abdel-Rahman, Eihab; Yavuz, Mustafa
2014-10-01
We compare the performance of four types of full-wave bridge rectifiers designed for electromagnetic energy harvesters based on silicon diodes, Schottky diodes, passive MOSFETs, and active MOSFETs. Simulation and experimental results show that MOSFET-type rectifiers are more efficient than diode-type rectifiers, reaching voltage and power efficiency of 99% for ideal voltage source with input amplitudes larger than 800 mV. Since active MOSFETs require extra components and an external DC power supply, we conclude that passive MOSFETs are superior for micro-power energy harvesting systems. We demonstrate passive MOSFET rectifiers implemented using discrete, off-shelf components and show that they outperform all electromagnetic harvester rectifiers hitherto reported obtaining a power efficiency of 95%. Furthermore, we show that passive MOSFET rectifiers do not affect the center frequency, harvesting bandwidth, or optimal resistance of electromagnetic harvesters. We demonstrate a complete power management module by adding a capacitor to the rectifier output terminal. We found that this configuration changed the optimal resistive load from 40 Ω to 55 Ω and decreased output power efficiency to 86%.
Electromagnetic multipole fields of neutron stars
International Nuclear Information System (INIS)
Roberts, W.J.
1979-01-01
There is now indisputable evidence that some pulsars possess space velocities so high that internal asymmetries in the dynamics of their formation are strongly implied. We develop in this paper a complete formalism for the calculation of the only such mechanism that has yet been subjected to quantitative analysis: electromagnetic recoil radiation. To make the general problem tractable without doing violence to the physics, we have made the following simplifying assumptions: (1) the magnetic induction B in athin shell enclosing the surface can be satisfactorily approximated by a sum of vacuum multipole fields; (2) the star is spherical, and all parts are in good electrical contact; (3) vertical-bar Ω X r vertical-barvery-much-less-thanc everywhere within the star; and (4) the star is surrounded by a vacuum. Our qualitative conclusions hold even if these assumptions are violated, but corrections to our quantitative results required by a relaxation of our assumptions are not easily computed.Given this simple electrodynamic model of a neutron star, we solve the following problems: (1) What electric multipoles are induced by each magnetic multipole. (2) What is the general formula for the recoil produced by the projection on the rotational axis of a net linear momentum flux produced by the rotation of any two magnetic multipoles. (3) What is the set of centered multipoles that represents the field of an arbitrary off-centered multipole. We use these general results go perform a detailed analysis of the linear momentum radiated by an off-centered dipole. We find a force larger by a factor 6 than that obtained for the special case treated in the best previous calculation. In spite of this considerable increase in the computed strengrh of the effect, we still believe it to be too weak to produce the large space velocities observed for pulsars. For the mechanism to be effective, the pulsar must be born rotating near the breakup velocity
International Nuclear Information System (INIS)
Dodin, E.P.; Zharov, A.A.
2003-01-01
The effect of the strong high-frequency electromagnetic field on the lateral semiconductor superlattice is considered on the basis of the quasi-classical theory on the electron transport in the self-consistent wave arrangement. It is theoretically identified, that the lateral superlattice in the strong feed-up wave field may emit the terahertz radiation wave trains, which are associated with the periodical excitation of the Bloch oscillations in the superlattice. The conditions, required for the Bloch oscillators radiation observation, are determined. The spectral composition of the radiation, passing through the superlattice, and energy efficiency of multiplying the frequency, related to the Bloch oscillator excitation, are calculated [ru
Estes, Robert D.
1989-01-01
A method is presented for calculating the electromagnetic wave field on the earth's surface associated with the operation of an electrodynamic tethered satellite system of constant or slowly varying current in the upper ionosphere. The wave field at the ionospheric boundary and on the earth's surface is obtained by numerical integration. The results suggest that the ionospheric waves do not propagate into the atmosphere and that the image of the Alfven wings from a steady-current tether should be greatly broadened on the earth's surface.
Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?
Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.
2012-01-01
In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...
Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves
Thorne, Richard M.; Horne, Richard B.
1994-01-01
Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.
[Dynamics of biomacromolecules in coherent electromagnetic radiation field].
Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I
2014-01-01
It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.
Overview on the standardization in the field of electromagnetic compatibility
Goldberg, Georges
1989-04-01
Standardization in the domain of electromagnetic compatibility (EMC) is discussed, with specific reference to the standards of the International Electrotechnical Commission, the Comite International Special des Perturbations Radioelectriques, and the Comite Europeen de Normalisation Electrotechnique. EMC fields considered include radiocommunications, telecommunications, biological effects, and data transmission. Standards are presented for such electromagnetic disturbances as low-frequency, high-frequency, conduction, and radiation phenomena.
Electromagnetic interactions in relativistic infinite component wave equations
International Nuclear Information System (INIS)
Gerry, C.C.
1979-01-01
The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
Spin and intrinsic angular momentum; application to the electromagnetic field
International Nuclear Information System (INIS)
Paillere, P.
1993-05-01
Within the framework of the field theory governed by a Lagrangian, function of the tensor quantities and their covariant first derivatives, and starting with the third order intrinsic angular momentum tensor obtained from a variational principle, the intrinsic angular momentum vector of the electromagnetic field in vacuum is determined. This expression leads to spin matrices for the electromagnetic field, with unity as eigenvalue, thus allowing to bridge the gap between continuous physics and quantum physics. 6 refs
Assessment of occupational exposure to radio frequency electromagnetic fields
Directory of Open Access Journals (Sweden)
Halina Aniołczyk
2015-06-01
Full Text Available Background: European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency electromagnetic field (RF EMF (range: 100 kHz – 300 GHz and indicate workplaces with the highest risk to employee health. Material and Methods: Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland were analyzed. The analysis covered the results of electric field intensity (E for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI values were also analyzed. The determinations and measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. Results: The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold and microwave diathermy units (up to 8-fold. Conclusions: Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio communication facilities (especially radio and TV broadcasting stations. Med Pr 2015;66(2:199–212
International Nuclear Information System (INIS)
Bhattacharyya, B.; Chakraborty, B.
1979-01-01
Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)
Schwinger mechanism in electromagnetic field in de Sitter spacetime
Directory of Open Access Journals (Sweden)
Bavarsad Ehsan
2018-01-01
Full Text Available We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.
Stimulated scattering of electromagnetic waves by magnetosonic modes in a plasma
International Nuclear Information System (INIS)
Stenflo, L.
1985-01-01
The dispersion relation for magnetosonic waves in a dissipative plasma, which is penetrated by a high-frequency electromagnetic wave, is derived. Previous results are generalized and discussed. (author)
Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge; Tan Liwei
2004-01-01
Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form
Electromagnetic wave absorption in high-Tc superconductors and its application
International Nuclear Information System (INIS)
Porjesz, T.; Khatiashvili, N.; Kovacs, Gy.; Leppavuori, S.; Uusimaki, A.; Kokkomaki, T.; Hagberg, J.
1995-08-01
The experimental study of the electromagnetic wave absorption of high-Tc superconductors subjected to small magnetic fields has been extended to a wide frequency range. The results obtained show an almost frequency independent behaviour in the 4 MHz - 20 GHz region. The measurement technique for the high frequency regime was developed in such a way that the sensitivity increased so much that the sample under investigation could be used as a very sensitive magnetic field detector, too. (author). 4 refs, 8 figs, 1 tab
Slowing of a fast electron beam in a plasma in an intense electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Karapetyan, R.V.; Fedorov, M.V.
1980-01-01
The slowing of a fast electron beam as it penetrates into a plasma in a strong external electromagnetic field is studied. The effective collision frequency ..nu../sub p/ which is responsible for the slowing is derived in the dipole approximation; many-photon stimulated bremsstrahlung and inverse bremsstrahlung are taken into account. The asymptotic behavior of ..nu../sub p/ in strong wave fields E/sub 0/ is found. The results show that ..nu../sub p/ falls off with increasing E/sub 0/, because of a decrease in the frequency of collisions with plasma ions proportional to E/sub 0//sup -1/.
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-04-01
Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.
Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces
Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan
2018-05-01
A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.
The Effect of Electromagnetic Waves on the General Health of Zahedan Gas Power Plant Personnel
Directory of Open Access Journals (Sweden)
Fereydoon Laal
2016-08-01
Full Text Available Abstract Introduction: With ever improving technology and increasing the use of high voltage power in industrial environments, concerns about the destructive effects of electromagnetic waves on human health have increased. Thus the present study aims to evaluate the effects of electromagnetic waves on the general health of Zahedan gas power plant personnel. Materials & Method: The present case-control study investigated the health of people at one point of time and their amount of exposure to electromagnetic waves at the same time. The data collection tool in this study was 28-item general health questionnaire (GHQ-28. After measuring the electromagnetic waves at distances of 1, 1.5 and 3 meters at high voltage power substations and data extraction, the data were entered to SPSS software and analyzed by descriptive statistics, t-test and chi-square. Results: In this study, the age and experience variables were not significantly different in two groups (p> 0.05. The highest magnetic fields in high voltage power substations was at a distance of 1 meter in the substation 607 (28/1 mG and in precision tool work units (7.03 mG. The results showed that the depressive and general health symptoms were significantly different between the exposed and unexposed groups (p = 0.04, however the difference was not significant in terms of physical performance, anxiety and social performance (p> 0.05. Conclusion: although the level of exposure was lower than standard level determined in Iran, the significant difference of the general health and depression between the two groups, explains the necessity of conducting more studies in this regard. Also by reducing the exposure time and increasing people’s awareness it is possible to take important steps to reduce exposure and complications.
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Ions cross-B collisional diffusion and electromagnetic wave scattering
International Nuclear Information System (INIS)
Tomchuk, B.P.; Gresillon, D.
2000-01-01
The calculation is presented of the averaged quadratic displacement of a collisional charged particle in a magnetic field. This calculation is used to obtain the statistical presentation of the electromagnetic field scattered by these particles. These results extend the previous calculations that were restricted to non-magnetized particles (Ornstein equation, Einstein diffusion, etc.). In addition this calculation foresees effects that are absent of the Ornstein equation: a modulation of the averaged quadratic displacement function at the cyclotron frequency and a maximum of the Cross-B diffusion coefficient when the cyclotron frequency is equal to the collision frequency (Bohm diffusion)
Development of a Ferrite-Based Electromagnetic Wave Detector
Directory of Open Access Journals (Sweden)
Muhammad Hanish Zakariah
2017-11-01
Full Text Available Direct detection of hydrocarbon by an active source using electromagnetic (EM wave termed Sea Bed Logging (SBL has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges including sensitivity and lapsed time. Our initial response to this issue is to develop a ferrite-based EM wave detector for Sea Bed Logging (SBL. Ferrite bar and copper rings in various diameters were used as detector 1 (D1. For Detector 2 (D2, toroid added with copper wires in different lengths at the centre of it were used. The first experiment is to determine the inductance and resistance for both detectors by using LCR meter. We obtained the highest inductance value of 0.02530 mH at the ferrite bar when it was paired with a 15 cm diameter copper ring and 0.00526 mH for D2 using a 100 cm copper wire placed at the centre of the toroid. The highest resistivity for D1 was measured at ferrite bar paired with a 15 cm diameter copper ring and 1.099 Ω when using 20 cm length of copper wire. The second interest deals with voltage peak-to-peak (Vp-p value for both detectors by using oscilloscope. The highest voltage value at the ferrite bar of D1 was 25.30 mV. While at D2, the highest voltage measured was 27.70 mV when using a 100 cm copper wire. The third premise is the comparison of sensitivity and lapsed time for both detectors. It was found that D1 was 61% more sensitive than D2 but had higher lapsed time than D2.
Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations
Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.
2014-12-01
Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.
Directory of Open Access Journals (Sweden)
Alexandra eGramowski-Voss
2015-07-01
Full Text Available In recent years, various stimuli were identified capable of enhancing neurogenesis, a process which is dysfunctional in the senescent brain and in neurodegenerative and certain neuropsychiatric diseases. Applications of electromagnetic fields to brain tissue have been shown to affect cellular properties and their importance for therapies in medicine is recognized.In this study, differentiating murine cortical networks on multiwell microelectrode arrays were repeatedly exposed to an extremely low electromagnetic field (ELEMF with alternating 10 and 16 Hz frequencies piggy-backed onto a 150 MHz carrier frequency. The ELEMF exposure stimulated the electrical network activity and intensified the structure of bursts. Further, the exposure with an electromagnetic field within the first 28 days of the differentiation the network activity induced also reorganization within the burst structure. This effect was already most pronounced at 14 days in vitro after 10 days of exposure. Overall, the development of cortical activity under these conditions was accelerated. These functional electrophysiological changes were accompanied by morphological ones. The percentage of neurons in the neuron glia co-culture was increased without affecting the total number of cells, indicating an enhancement of neurogenesis. The ELEMF exposure selectively promoted the proliferation of a particular population of neurons, evidenced by the increased proportion of GABAergic neurons. The results support the initial hypothesis that this kind of ELEMF stimulation is a treatment option for specific indications with promising potential for CNS applications, especially for degenerative diseases such as Alzheimer’s disease and other dementias.
Geometrization of the Electromagnetic Field and Dark Matter
Pestov, I B
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...
Impact of electromagnetic field on the pathogenicity of selected ...
African Journals Online (AJOL)
Rhipicephalus decoloratus) to variable intensities of electromagnetic field for different periods of time was examined on their pathogenicity on tick. Some bacterial isolates from the macerate of tick cadavers were used in the infection of healthy engorged ...
Effect of Mobile Phone Radiofrequency Electromagnetic Fields on ...
African Journals Online (AJOL)
olayemitoyin
Summary: Since cell phones emit radiofrequency electromagnetic fields (EMFs), this study tested the hypothesis that cell phones placed ... mobile phones on autonomic modulation of the heart. ..... Electrocardiogram and Its Technology. J. Am.
Influence of storm electromagnetic field on the aircraft crew
Directory of Open Access Journals (Sweden)
Э. Г. Азнакаев
2000-12-01
Full Text Available Considered is the biophysical influence of alternative electromagnetic fields, caused by electrical discharges in atmosphere. Analyzed are conditions which may provoke inadequate actions and errors of the crew in airplane flight control
On quantization of the electromagnetic field in radiation gauge
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)
The modulational and filamentational instabilities of two coupled electromagnetic waves in plasmas
International Nuclear Information System (INIS)
Shukla, P.K.
1992-01-01
The modulational and filamentational instabilities of two coupled electromagnetic waves have been investigated, taking into account the combined effect of relativistic electron mass variations and nonresonant density fluctuations that are driven by the ponderomotive force. The relevance of our investigation to phenomena related with nonlinear mixing of electromagnetic waves is pointed out. (orig.)
Association between electromagnetic field exposure and abortion in pregnant women living in Tehran
Abad, Masoumeh; Malekafzali, Hossein; Simbar, Masoumeh; Seyed Mosaavi, Hassan; Merghati Khoei, Effat
2016-01-01
Background: Health-related quality of life is affected by electromagnetic field exposure in each person everyday life. However, this is extremely controversial issue. Objective: Investigation of the associations between electromagnetic field exposure and miscarriage among women of Tehran. Materials and Methods: In this longitudinal study, 462 pregnant women with gestational age <12 wks from seven main regions of Tehran city in Iran with similar social and cultural status were participated. Women were interviewed face-to face to collect data. Reproductive information was collected using medical file recorded in those hospitals the subjects had delivery. The measuring device measured electromagnetic waves, Narda safety test solutions with valid calibration date at the entrance door of their houses. Results: A significant likelihood of miscarriage in women who exposed to significant level of electromagnetic wave. However, this association was not confirmed by Wald test. Conclusion: This study may not provide strong or consistent evidence that electromagnetic field exposure is associated or cause miscarriage. This issue may be due to small sample size in this study. PMID:27326421
The power and beauty of electromagnetic fields
Morgenthaler, Frederic R
2011-01-01
Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.
Temerin, M.; Roth, I.
1992-01-01
A new model is presented for the production of He-3 and heavy ion enrichments in He-3-rich flares using a direct single-stage mechanism. In analogy with the production of electromagnetic hydrogen cyclotron waves in earth's aurora by electron beams, it is suggested that such waves should exist in the electron acceleration region of impulsive solar flares. Both analytic and test-particle models of the effect of such waves in a nonuniform magnetic field show that these waves can selectively accelerate He-3 and heavy ions to MeV energies in a single-stage process, in contrast to other models which require a two-stage mechanism.
International Nuclear Information System (INIS)
Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.
2001-01-01
We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)
The Electromagnetic Field of Elementary Time-Dependent Toroidal Sources
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Stepanovskij, Yu.P.
1994-01-01
The radiation field of toroidal-like time-dependent current configurations is investigated. Time-dependent charge-current sources are found outside which the electromagnetic strengths disappear but the potentials survive. This can be used to carry out time-dependent Aharonov-Bohm-like experiments and the information transfer. Using the Neumann-Helmholtz parametrization of the current density we present the time-dependent electromagnetic field in a form convenient for applications. 17 refs
Rydberg atoms ionization by microwave field and electromagnetic pulses
International Nuclear Information System (INIS)
Kaulakys, B.; Vilutis, G.
1995-01-01
A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.
2018-04-01
The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.
Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas
International Nuclear Information System (INIS)
Mori, W.B.; Decker, C.D.; Leemans, W.P.
1993-01-01
The relativistic harmonic content of large amplitude electromagnetic waves propagating in underdense plasmas is investigated. The steady state harmonic content of nonlinear linearly polarized waves is calculated for both the very underdense (w p /w o ) much-lt 1 and critical density (w p /w o ) ≅ 1 limits. For weak nonlinearities, eE o /mcw o p /w o . Arguments are given for extending these results for arbitrary wave amplitudes. The authors also show that the use of the variable x-ct and the quasi-static approximation leads to errors in both magnitude and sign when calculating the third harmonic. In the absence of damping or density gradients the third harmonic's amplitude is found to oscillate between zero and twice the steady state value. Preliminary PIC simulation results are presented. The simulation results are in basic agreement with the uniform plasma predictions for the third harmonic amplitude. However, the higher harmonics are orders of magnitude larger than expected and the presence of density ramps significantly modifies the results
Self-modulation and filamentation of electromagnetic waves in a plasma
International Nuclear Information System (INIS)
Bingham, R.; Lashmore-Davies, C.N.
1976-01-01
Self-modulation and filamentation of an electromagnetic wave is considered as a problem of the non-linear interaction between electromagnetic and ion waves. A new electro-magnetic modulational instability is obtained, whose threshold is the same as that of the oscillating two-stream instability. A simple geometrical model is given of filamentation when the non-linearity is due to the ponderomotive force. The relationship between the filamentation and electromagnetic modulational instabilities and other parametric instabilities is considered. In particular, it is shown that both electromagnetic modulational and filamentation instabilities can occur at the critical density where they have the same threshold as the modulational instability of a Langmuir wave. Finally, a conservation relation (a generalization of the Manley-Rowe relation) for the wave action density is obtained for the filamentation instability. This shows clearly that this instability results from a four wave interaction. (author)
On the effects of geometry on guided electromagnetic waves
Directory of Open Access Journals (Sweden)
Tucker Robin W.
2007-01-01
Full Text Available The method of moving (Cartan coframes is used to analyze the influence of geometry on the behavior of electromagnetic fields in confining guides and the effect of such fields on their ultra-relativistic sources. Such issues are of relevance to a number of topical problems in accelerator science where the need to control the motion of high current-density micro-meter size bunches of relativistic radiating charge remains a technical and theoretical challenge. By dimensionally reducing the exterior equations for the sources and fields on spacetime using symmetries exhibited by the confining guides one achieves a unifying view that offers natural perturbative approaches for dealing with smooth non-uniform and curved guides. The issue of the back-reaction of radiation fields on the sources is approached in terms of a simple charged relativistic fluid model. .
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2018-01-01
of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...
Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations
Corato-Zanarella, Mateus; Zamboni-Rached, Michel
2016-11-01
Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.
Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator
International Nuclear Information System (INIS)
Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.
2009-01-01
A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.
Next wave EM technology : Electromagnetic communication technology continues to progress
International Nuclear Information System (INIS)
Ludwick, J.
1998-01-01
Alpine Oil Services Corp. and Ryan Energy Technologies Inc., have made technological advances in the use of real time electromagnetic (EM) data transmission, using low frequency radio waves to transmit well commands or geological information. The development of the telemetry activated tool was done in two steps. The first technology was real time EM data transmission from the subsurface which used the wellbore to transfer information. The second step was constructing a memory pack which involved an electronic instrument installed in the wellbore which was programmed to perform certain tasks at certain times by transmitting signals back and forth. The use of EM communication allows the geological steering information to come back faster. The EM signal is much faster compared to MWD systems for deeper directional wells. The EM technology also has immediate applications in underbalanced drilling. 1 fig