On nonlinear periodic drift waves
International Nuclear Information System (INIS)
Kauschke, U.; Schlueter, H.
1990-09-01
Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)
Autoresonant control of drift waves
DEFF Research Database (Denmark)
Shagalov, A.G.; Rasmussen, Jens Juul; Naulin, Volker
2017-01-01
The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined...... on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear...... waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes....
Collisional drift fluids and drift waves
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1995-05-01
The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effect of which is extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter is important as concerns charge separation and resulting electric fields which are possibly related to the L-H transition. Energy conservation is crucial for the stability behaviour; it will be discussed via an example. New collisional multispecies drift-fluid equations were derived by a new method which yields in a transparent way conservation of energy and total angular momentum, and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The method is based primarily on a Lagrangian for dissipationless fluids in drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. Their relation to the ideal equations imply, however, also a relation to the ideal Lagrangian of which one can take advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T ν (x)=const. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theories; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. Linear instability is investigated via energy considerations and the implications of taking ohmic resistivity into account are discussed. (orig./WL)
Mean Lagrangian drift in continental shelf waves
Drivdal, M.; Weber, J. E. H.
2012-04-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.
Parametric decay of lower hybrid wave into drift waves
International Nuclear Information System (INIS)
Sanuki, Heiji.
1976-12-01
A dispersion relation describing the parametric decay of a lower hybrid wave into an electrostatic drift wave and a drift Alfven wave is derived for an inhomogeneous magnetized plasma. Particularly the stimulated scattering of a drift Alfven wave in such a plasma was investigated in detail. The resonance backscattering instability is found to yield the minimum threshold. (auth.)
International Nuclear Information System (INIS)
Bhattacharjee, A.; Sedlak, J.E.; Similon, P.L.; Rosenbluth, M.N.; Ross, D.W.
1982-11-01
We investigate the eigenmode structure of drift waves in a straight stellarator using the ballooning mode formalism. The electrons are assumed to be adiabatic and the ions constitute a cold, magnetized fluid. The effective potential has an overall parabolic envelope but is modulated strongly by helical ripples along B. We have found two classes of solutions: those that are strongly localized in local helical wells, and those that are weakly localized and have broad spatial extent. The weakly localized modes decay spatially due to the existence of Mathieu resonances between the periods of the eigenfunction and the effective potential
International Nuclear Information System (INIS)
Vlad, G.
1988-01-01
The linear stability of the electrostatic drift waves in slab geometry has been studied analytically and numerically. The effects of magnetic field with shear, of the finite Larmor radius, of an electron streaming, of a temperature gradient and of collisions have been retained. The analytical solution has been obtained using the matched asymptotic expansion technique, and an expression for the critical streaming parameter has been derived. Finally, assuming that the transport in the Reversed Field Pinches is dominated by this instability, a scaling law for the temperature in such machine is derived
Strange Attractors in Drift Wave Turbulence
International Nuclear Information System (INIS)
Lewandowski, J.L.V.
2003-01-01
A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects
Drift waves in a weakly ionized plasma
DEFF Research Database (Denmark)
Popovic, M.; Melchior, H.
1968-01-01
A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....
Radiation stress and mean drift in continental shelf waves
Weber, Jan Erik H.; Drivdal, Magnus
2012-03-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.
The Absence of Stokes Drift in Waves
Chafin, Clifford
2015-01-01
Stokes drift has been as central to the history of wave theory as it has been distressingly absent from experiment. Neither wave tanks nor experiments in open bodies detect this without nearly canceling "eulerian flows." Acoustic waves have an analogous problem that is particularly problematic in the vorticity production at the edges of beams. Here we demonstrate that the explanation for this arises from subtle end-of-packet and wavetrain gradient effects such as microbreaking events and wave...
Point vortex description of drift wave vortices: Dynamics and transport
International Nuclear Information System (INIS)
Kono, M.; Horton, W.
1991-05-01
Point-vortex description for drift wave vortices is formulated based on the Hasegawa-Mima equation to study elementary processes for the interactions of vortices as well as statistical properties like vortex diffusion. Dynamical properties of drift wave vortices known by numerical experiments are recovered. Furthermore a vortex diffusion model discussed by Horton based on numerical simulations is shown to be analytically obtained. A variety of phenomena arising from the short-range nature of the interaction force of point vortices are suggested. 12 refs., 10 figs
Collisional drift fluid equations and implications for drift waves
International Nuclear Information System (INIS)
Pfirsch, Dieter; Correa-Restrepo, Dario
1996-01-01
The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effects of which are extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter law is important in relation to charge separation and the resulting electric fields, which are possibly related to the L-H transition. Energy conservation is crucial to the stability behaviour, it will be discussed by means of an example. New collisional multi-species drift-fluid equations were derived by a new method which yields, in a transparent way, conservation of energy and total angular momentum and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The only restriction involved is the validity of the drift approximation; in particular, there are no assumptions restricting the geometry of the system. The method is based primarily on a Lagrangian for dissipationless fluids in the drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. However, their relation to the ideal equations also implies a relation to the ideal Lagrangian, which can be used to advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T v (x) = constant. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theory; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. (author)
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....
Resistive drift wave turbulence and transport
International Nuclear Information System (INIS)
Wakatani, M.
1986-01-01
Our efforts for studying the properties of resistive drift wave turbulence by using model mode-coupling equations are shown. It may be related to the edge turbulence and the associated anomalous transport in tokamaks or in stellarator/heliotron. (author)
Indian Academy of Sciences (India)
ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.
Nonlinear radial propagation of drift wave turbulence
International Nuclear Information System (INIS)
Prakash, M.
1985-01-01
We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem
Solitary drift waves in the presence of magnetic shear
International Nuclear Information System (INIS)
Meiss, J.D.; Horton, W.
1982-07-01
The two-component fluid equations describing electron drift and ion acoustic waves in a nonuniform magnetized plasma are shown to possess nonlinear two-dimensional solitary wave solutions. In the presence of magnetic shear, radiative shear damping is exponentially small in L/sub s//L/sub n/ for solitary drift waves, in contrast to linear waves
Energy Technology Data Exchange (ETDEWEB)
Brandt, C; Grulke, O; Klinger, T, E-mail: christian.brandt@lpmi.uhp-nancy.f [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)
2010-05-15
Experiments in a cylindrical magnetized plasma on the control of drift waves by means of two different spatiotemporal open-loop control systems-an electrostatic and an electromagnetic exciter-are reported. The drift wave dynamics is controlled by a mode-selective signal created with azimuthal arrangements of eight electrodes and eight saddle coils, respectively. Nonlinear interaction between the control signals and drift waves is observed, leading to synchronization of coherent drift waves and suppression of broadband drift wave turbulence. The cross-phase between density and potential fluctuations reduces from {approx}{pi}/2 in turbulence to {approx}0 in controlled turbulence. Hence, the cross-field transport is reduced to the level of coherent drift waves. For both control systems the coupling to the drift wave can be ascribed to the drive of parallel currents, on the one hand via direct electric contact and, on the other hand, via electromagnetic induction.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Nonlinear drift waves in a dusty plasma with sheared flows
Energy Technology Data Exchange (ETDEWEB)
Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.
Nonlinear drift waves in a dusty plasma with sheared flows
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, R.K.
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented
Drift wave vortices and anomalous transport
International Nuclear Information System (INIS)
Horton, W.
1990-01-01
Many plasma equations for drift waves and other modes possess vortex solutions, so it is important to consider the transport associated with vortex structures and their mutual interactions. Vortex structures occur when the amplitude of the fluctuation is sufficient to trap and circulate plasma around the vortex in one wave period. The vortex contribution of the diffusion of the passively convected scalar field was calculated. It was found that the field can be represented by the superposition of vortices and wave fluctuation components. For transport the computer solutions for the vortex-vortex collisions with various impact parameters while carrying along the passively convected scalar thermodynamic field were used. As the result, the inelastic collisions with b≅r 0 ≅1/k x cross-section σ(b)≅b exp(-b/r 0 )≅r 0 give the strongest transport. An example is shown in figure. As the final result, the anomalous diffusion D was derived in dimensional form. (M.T.)
Nonlinear excitation of geodesic acoustic modes by drift waves
International Nuclear Information System (INIS)
Chakrabarti, N.; Singh, R.; Kaw, P. K.; Guzdar, P. N.
2007-01-01
In this paper, two mode-coupling analyses for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by drift waves are presented. The first approach is a coherent parametric process, which leads to a three-wave resonant interaction. This investigation allows for the drift waves and the GAMs to have comparable scales. The second approach uses the wave-kinetic equations for the drift waves, which then couples to the GAMs. This requires that the GAM scale length be large compared to the wave packet associated with the drift waves. The resonance conditions for these two cases lead to specific predictions of the radial wave number of the excited GAMs
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...
Collisional drift waves in the H-mode edge
International Nuclear Information System (INIS)
Sen, S.
1994-01-01
The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs
Parametric excitation of drift waves in a sheared slab geometry
International Nuclear Information System (INIS)
Vranjes, J.; Weiland, J.
1992-01-01
The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)
Energy of linear quasineutral electrostatic drift waves
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1993-01-01
Certain kinds of nonlinear instabilities are related to the existence of negative-energy perturbations. In this paper, an exact energy expression for linear quasineutral electrostatic perturbations is derived within the framework of dissipationless multifluid theory that is valid for any geometry. Taking the mass formally as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat in a convenient way different approximations such as the full dynamics and restriction to parallel dynamics or the completely adiabatic case. Application to slab configurations yields the result that the adiabatic approximation does not allow negative energy for perturbations which are perfectly localized at a mode resonant surface, whereas inclusion of the parallel dynamics does. This is in agreement with a recent numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott [Phys. Rev. Lett. 65, 3289 (1990); Phys. Fluids B 4, 2468 (1992)]. A dissipationless theory can be formulated in terms of a Lagrangian, from which the energy is immediately obtained. We start with the nonlinear theory. The theory is formulated via a Lagrangian which is written in terms of displacement vectors ξ ν (x,t) such that all constraints are taken into account. The nonlinear energy is obtained from the Lagrangian by standard methods. The procedure used is the same as that developed in a forthcoming paper by Pfirsch and Sudan [Phys. Fluids B (to be published)] for ideal nonlinear magnetohydrodynamics theory. From the exact Lagrangian one obtains the Lagrangian of the linearized theory by simple expansion to second order in ξ ν . This Lagrangian then yields the energy of the linearized theory
Influence of an octupole arrangement of electrodes on drift waves
International Nuclear Information System (INIS)
Block, D.; Piel, A.; Schroeder, Ch.; Klinger, T.
2001-01-01
In order to influence drift waves an octupole arrangement of electrodes is placed in direct vicinity of the plasma. By applying sinusoidal signals with proper phase shift to the electrodes synchronisation of drift waves is observed. The width of the synchronisation area is taken to quantify the interaction of the electrodes with the plasma. It turns out that the synchronisability strongly depends on the frequency, amplitude and phase shift and has to be interpreted as spatiotemporal effect. (orig.)
Collisional drift waves in a plasma with electron temperature inhomogeneity
International Nuclear Information System (INIS)
Drake, J.F.; Hassam, A.B.
1981-01-01
A fluid theory of collisional electrostatic drift waves in a plasma slab with magnetic shear is presented. Both electron temperature and density gradients are included. The equations are solved analytically in all relevant regions of the parameter space defined by the magnetic shear strength and the perpendicular wavelength and explicit expressions for the growth rates are given. For shear strengths appropriate for present-day tokamak discharges the temperature gradient produces potential wells which localize the mode in the electron resistive region, well inside the ion sound turning points. Mode stability arises from a competition between the destabilizing influence of the time dependent thermal force and the stabilizing influence of electron energy dissipation. Convective energy loss is not important for shear parameters of present-day fusion devices
Unsteady force estimation using a Lagrangian drift-volume approach
McPhaden, Cameron J.; Rival, David E.
2018-04-01
A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.
Effect of drift-acoustic waves on magnetic island stability in slab geometry
International Nuclear Information System (INIS)
Fitzpatrick, R.; Waelbroeck, F.L.
2005-01-01
A mathematical formalism is developed for calculating the ion polarization term in the Rutherford island width evolution equation in the presence of drift-acoustic waves. The calculation is fully nonlinear, includes both ion and electron diamagnetic effects, as well as ion compressibility, but is performed in slab geometry. Magnetic islands propagating in a certain range of phase velocities are found to emit drift-acoustic waves. Wave emission gives rise to rapid oscillations in the ion polarization term as the island phase velocity varies, and also generates a net electromagnetic force acting on the island region. Increasing ion compressibility is found to extend the range of phase velocities over which drift-acoustic wave emission occurs in the electron diamagnetic direction
Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.
Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F
2014-02-07
Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.
Drift of Spiral Waves in Complex Ginzburg-Landau Equation
International Nuclear Information System (INIS)
Yang Junzhong; Zhang Mei
2006-01-01
The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.
Turbulent spectra from three drift-wave interactions
International Nuclear Information System (INIS)
Terry, P.W.; Horton, W.
1982-02-01
Hydrodynamic equations for the drift-wave instability containing the rvec E x rvec B convective nonlinearity are used to show that the three wave interactions lead to temporal chaos with broad-band frequency spectra in the saturated state. 7 refs., 2 figs
Plasma particle drifts due to traveling waves with cyclotron frequencies
International Nuclear Information System (INIS)
Hatakeyama, Rikizo; Sato, Naoyuki; Sato, Noriyoshi
1991-01-01
A particle orbit theory yields that traveling waves with cyclotron frequencies give rise to charged particle drifts perpendicular both to the wave propagation and external magnetic field lines. The result is applicable to particle-flux control of magnetized plasmas. (author)
Coherent Structure Phenomena in Drift Wave-Zonal Flow Turbulence
International Nuclear Information System (INIS)
Smolyakov, A. I.; Diamond, P. H.; Malkov, M.
2000-01-01
Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence that manifests itself by the intermittent distribution of regions with a reduced level of anomalous transport. (c) 2000 The American Physical Society
Toroidal effects on drift wave turbulence
Energy Technology Data Exchange (ETDEWEB)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-09-23
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.
Toroidal effects on drift wave turbulence
International Nuclear Information System (INIS)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-01-01
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
Energy Technology Data Exchange (ETDEWEB)
Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N. [Consorzio RFX, Padova (Italy); Adámek, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic)
2014-10-15
A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
International Nuclear Information System (INIS)
Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.; Adámek, J.
2014-01-01
A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved
Drift Wave Test Particle Transport in Reversed Shear Profile
International Nuclear Information System (INIS)
Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.
1998-01-01
Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Kim, Chang-Bae; Horton, W.
1990-05-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab
Fluctuation and thermal energy balance for drift-wave turbulence
International Nuclear Information System (INIS)
Changbae Kim; Horton, W.
1991-01-01
Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)
Strange Attractors in Drift Wave Turbulence
International Nuclear Information System (INIS)
Lewandowski, Jerome L.V.
2003-01-01
There are growing experimental, numerical and theoretical evidences that the anomalous transport observed in tokamaks and stellarators is caused by slow, drift-type modes (such as trapped electron modes and ion-temperature gradient-driven modes). Although typical collision frequencies in hot, magnetized fusion plasmas can be quite low in absolute values, collisional effects are nevertheless important since they act as dissipative sinks. As it is well known, dissipative systems with many (strictly speaking more than two) degrees of freedom are often chaotic and may evolve towards a so-called attractor
Gas scintillation drift chambers with wave shifter fiber readout
International Nuclear Information System (INIS)
Sadoulet, B.; Weiss, S.; Parsons, A.; Lin, R.P.; Smith, G.
1988-01-01
The authors present results from their prototype xenon gas scintillation drift chamber. They discuss its operation with two types of light detection schemes: one based on a Anger camera geometry and one based on an array of wave shifting light fibers. The results demonstrate some of the instruments's tremendous potential
Drift waves in a nonuniform plasma. Research report
International Nuclear Information System (INIS)
Sanuki, H.; Schmidt, G.
1975-02-01
An eigenvalue equation describing the propagation of collisionless electrostatic drift waves in a magnetoplasma, with an arbitrary one dimensional density profile is derived. It is shown that in general several different waveforms exist each with its respective dispersion relation. A special density profile was analyzed in detail. (U.S.)
Absolute dissipative drift-wave instabilities in tokamaks
International Nuclear Information System (INIS)
Chen, L.; Chance, M.S.; Cheng, C.Z.
1979-07-01
Contrary to previous theoretical predictions, it is shown that the dissipative drift-wave instabilities are absolute in tokamak plasmas. The existence of unstable eigenmodes is shown to be associated with a new eigenmode branch induced by the finite toroidal couplings
Coherent structures and transport in drift wave plasma turbulence
DEFF Research Database (Denmark)
Korsholm, Søren Bang
-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......-localized-modes can be detected by the relatively simple diagnostic system....
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
Czech Academy of Sciences Publication Activity Database
Martines, E.; Zuin, M.; Cavazzana, R.; Adámek, Jiří; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.
2014-01-01
Roč. 21, č. 10 (2014), s. 102309-102309 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : Drift waves * Magnetron sputtering plasma * Spatiotemporal synchronization Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4898693
Unsteady steady-states: central causes of unintentional force drift.
Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L
2016-12-01
We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.
Observation of Ion Acoustic Waves Excited by Drift Waves in a Weakly Magnetized Plasma
International Nuclear Information System (INIS)
Tsukabayashi, Isao; Sato, Sugiya; Nakamura, Yoshiharu
2003-01-01
Spontaneous fluctuations excited by drift waves are investigated experimentally in magnetic multi-pole plasma. The magnetic multi-pole has been widely used in DP devices and so on. It was observed that the high level of density fluctuations was generated by the drift instability near a magnetic multi-pole or a dipole magnet. The waves propagate to the middle plasma region forming the envelope train waves
Force illusions and drifts observed during muscle vibration.
Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L
2018-01-01
We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with
Drift wave coherent vortex structures in inhomogeneous plasmas
International Nuclear Information System (INIS)
Su, X.N.
1992-01-01
Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations
Drift wave dispersion relation for arbitrarily collisional plasma
International Nuclear Information System (INIS)
Angus, Justin R.; Krasheninnikov, Sergei I.
2012-01-01
The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.
Drift wave dispersion relation for arbitrarily collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Angus, Justin R.; Krasheninnikov, Sergei I. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093-0417 (United States)
2012-05-15
The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.
Geodesic acoustic modes excited by finite beta drift waves
DEFF Research Database (Denmark)
Chakrabarti, Nikhil Kumar; Guzdar, P.N.; Kleva, R.G.
2008-01-01
Presented in this paper is a mode-coupling analysis for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by finite beta drift waves. The finite beta effects give rise to a strong stabilizing influence on the parametric excitation process. The dominant finite beta...... effect is the combination of the Maxwell stress, which has a tendency to cancel the primary drive from the Reynolds stress, and the finite beta modification of the drift waves. The zonal magnetic field is also excited at the GAM frequency. However, it does not contribute to the overall stability...... of the three-wave process for parameters of relevance to the edge region of tokamaks....
Extremal bounds on drift wave growth rates and transport
International Nuclear Information System (INIS)
Fowler, T.K.
1990-03-01
A variational technique is used to obtain bounds on the growth constant γ versus wave number κ for plasma drift waves. We find, for T i = T e , γ * (1 + 3/√2 η) in usual notation. This agrees closely with dispersion---relation results that have had good success in explaining global confinement times in tokamaks based on transport coefficients of the form (γ/κ 2 ). The present method is easier to calculate and results are of such general nature as to give greater assurance that nothing has been missed. The method is based on the time behavior of a free energy function that is chosen to be a constant of motion for an idealized Maxwellian plasma without currents, and almost constant for small departures from this ideal state. The underlying premise associating the variational technique with drift waves remains conjectural. 6 refs
Validation of Mean Drift Forces Computed with the BEM Code NEMOH
DEFF Research Database (Denmark)
Thomsen, Jonas Bjerg
This report covers a simple investigation of mean drift forces found by use of the boundary element method code NEMOH. The results from NEMOH are compared to analytical results from literature and to numerical values found from the commercial software package WADAM by DNV-GL. The work was conduct...... under the project ”Mooring Solutions for Large Wave Energy Converters”, during", Work Package 4: Full Dynamic Analysis". The validation compares results from a simple sphere and from a vertical cylinder....
Instability of drift Alfven wave accompanying polar magnetic storm
International Nuclear Information System (INIS)
Higuchi, Yoshihiro
1974-01-01
As the micro plasma instability due to the plasma non-uniformity in magnetosphere, there is the instability of drift Alfven wave. With the data obtained with the network of multiple observation points for geomagnetism, attempt was made to prove the hypothesis that the instability of drift Alfven wave due to the electron temperature gradient at the inner boundary of plasma sheet may be one of the causes for the geomagnetic pulsation (Pi 1) accompanying polar magnetic storm. Up to date, final conclusion is yet impossible as to the problems in it due to the discussion based on the data from widely separated observation points. The installation of economically efficient multi-point observation network is necessary for the solution. (Mori, K.)
Radial extension of drift waves in presence of velocity profiles
International Nuclear Information System (INIS)
Sen, S.; Weiland, J.
1994-01-01
The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability
Simulations of drift waves in 3D magnetic configurations
International Nuclear Information System (INIS)
Jost, G.
2000-06-01
Drift waves are commonly held responsible for anomalous transport in tokamak configurations and in particular for the anomalously high heat loss. The next generation of stellarators on the other hand are hoped to be characterized by a much smaller neo-classical transport and by particle confinement close to that of tokamaks. There is nevertheless a strong interest in the stellarator community to study the properties of drift waves in 3D magnetic configurations. To serve this interest we have developed the first global gyrokinetic code, EUTERPE, aimed at the investigation of linear drift wave stability in general toroidal geometry. The physical model assumes electrostatic waves and adiabatic electrons. EUTERPE is a particle-in-cell (PIC) code in which the gyrokinetic Poisson equation is discretized with the finite element method defined in the PEST -1 system of magnetic coordinates. The magnetic geometry is provided by the magnetohydrodynamic (MHD) equilibrium code VMEC. The complete 3D model has been successfully validated in toroidal axisymmetric and straight helical geometries and has permitted the first simulation of unstable global ITG driven modes in non-axisymmetric toroidal configurations. As a first application, two configurations have been studied, the Quasi-Axially symmetric Stellarator with three fields periods (QAS3) currently one system under consideration at the Princeton Plasma Physics Laboratory and the Helically Symmetric experiment (HSX) which has recently started operation at the University of Wisconsin. QAS3 is characterized by a tokamak-Iike field in the outer part of the torus. In this structure the drift waves are mainly affected by the magnetic shear and barely by the shape of the plasma. Also, the results are very close to those obtained for a tokamak. On the other hand, results for the HSX configuration, which is characterized by a dominant helical magnetic field, show a clear 3D effect, namely a strong toroidal variation of the drift wave
Self similar asymptotics of the drift ion acoustic waves
International Nuclear Information System (INIS)
Taranov, V.B.
2004-01-01
A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is determined in the presence of the magnetic shear as well as in the shear less case. Some of the most symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal flow interaction with monochromatic waves are presented and corresponding frequency shifts are determined
Generation of zonal magnetic fields by drift waves in a current carrying nonuniform magnetoplasma
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
It is shown that zonal magnetic fields (ZMFs) can be nonlinearly excited by incoherent drift waves (DWs) in a current carrying nonuniform magnetoplasma. The dynamics of incoherent DWs in the presence of ZMFs is governed by a wave-kinetic equation. The governing equation for ZMFs in the presence of nonlinear advection force of the DWs is obtained from the parallel component of the electron momentum equation and the Faraday law. Standard techniques are used to derive a nonlinear dispersion relation, which depicts instability via which ZMFs are excited in plasmas. ZMFs may inhibit the turbulent cross-field particle and energy transport in a nonuniform magnetoplasma.
Shock drift acceleration in the presence of waves
Decker, R. B.; Vlahos, L.
1985-01-01
Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.
Wave Forces on Windturbine Foundations
DEFF Research Database (Denmark)
Larsen, Brian Juul; Frigaard, Peter
A testprogramme has been performed to determine the wave forces on two types of foundations for an offshore windturbine. the tested foundation types are a monopile and cone. Furthermore the shaft of the cone has been tested....
DEFF Research Database (Denmark)
Pedersen, Jan; Burcharth, H. F.
1993-01-01
This paper presents some of the results from a large parametric laboratory study including more than 200 long-duration model tests. The study addresses both the wave forces imposed on the breakwater crown wall as well as the performance of the structure in reducing the wave overtopping. The testing...
Nonlinear damping of drift waves by strong flow curvature
International Nuclear Information System (INIS)
Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.
1993-01-01
A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method
Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence
International Nuclear Information System (INIS)
Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.
2008-01-01
Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments
Atomic physics effects on dissipative toroidal drift wave stability
International Nuclear Information System (INIS)
Beer, M.A.; Hahm, T.S.
1992-02-01
The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry both numerically and analytically. For typical TFTR and TEXT edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, η e crit , is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
International Nuclear Information System (INIS)
Wang Dong; Chen Yinhua; Wang Ge
2008-01-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromagnetic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (k i a || 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then k i a || 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Coherent structures and transport in drift wave plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Coherent structures and transport in drift wave plasma turbulence
International Nuclear Information System (INIS)
Bang Korsholm, S.
2011-12-01
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)
Almost two-dimensional treatment of drift wave turbulence
International Nuclear Information System (INIS)
Albert, J.M.; Similon, P.L.; Sudan, R.N.
1990-01-01
The approximation of two-dimensionality is studied and extended for electrostatic drift wave turbulence in a three-dimensional, magnetized plasma. It is argued on the basis of the direct interaction approximation that in the absence of parallel viscosity, purely 2-D solutions exist for which only modes with k parallel =0 are excited, but that the 2-D spectrum is unstable to perturbations at nonzero k parallel . A 1-D equation for the parallel profile g k perpendicular (k parallel ) of the saturated spectrum at steady state is derived and solved, allowing for parallel viscosity; the spectrum has finite width in k parallel , and hence finite parallel correlation length, as a result of nonlinear coupling. The enhanced energy dissipation rate, a 3-D effect, may be incorporated in the 2-D approximation by a suitable renormalization of the linear dissipation term. An algorithm is presented that reduces the 3-D problem to coupled 1- and 2-D problems. Numerical results from a 2-D spectral direct simulation, thus modified, are compared with the results from the corresponding 3-D (unmodified) simulation for a specific model of drift wave excitation. Damping at high k parallel is included. It is verified that the 1-D solution for g k perpendicular (k parallel ) accurately describes the shape and width of the 3-D spectrum, and that the modified 2-D simulation gives a good estimate of the 3-D energy saturation level and distribution E(k perpendicular )
Wave Forces on Offshore Windturbine Foundations
DEFF Research Database (Denmark)
Larsen, Brian Juul; Frigaard, Peter
The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations.......The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations....
Dynamics of zonal flows and self-regulating drift-wave turbulence
International Nuclear Information System (INIS)
Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.
1999-01-01
We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)
Dynamics of zonal flows and self-regulating drift-wave turbulence
International Nuclear Information System (INIS)
Diamond, P.H.; Fleischer, J.; Rosenbluth, M.; Hinton, F.L.; Malkov, M.; Smolyakov, A.
2001-01-01
We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)
Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.
Studies of drift waves in a toroidal heliac
International Nuclear Information System (INIS)
Shi, X.H.; Blackwell, B.D.; Hamberger, S.M.
1989-01-01
Low frequency, coherent density fluctuations have been studied for three typical magnetic configurations in the helical axis stellarator SHEILA using Langmuir probe techniques. The parametric dependence, the threshold magnetic field, the frequency spectrum and the spatial structure of the fluctuations are measured experimentally. Mode analyses are made in a magnetic coordinate system. Both the mode numbers thus obtained and the smallness of the directly measured values of the wavenumber along the magnetic field lines indicate a close correspondence between the helicity of the fluctuations and the field lines. These experimental results are consistent with a collisional drift wave model, derived from a linearized two-fluid theory, related to the heliac geometry. Density reduction associated with the fluctuations is clearly observed and is consistent with rough estimates of the cross-filed particle flux due to the fluctuations. 17 refs., 18 figs., 1 tab
Analytic moment method calculations of the drift wave spectrum
International Nuclear Information System (INIS)
Thayer, D.R.; Molvig, K.
1985-11-01
A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA
Drift wave instability and turbulence in advanced stellarator configurations
International Nuclear Information System (INIS)
Kendl, A.
2001-08-01
In the following chapter, an overview and references on the physics and geometry of helical advanced stellarators is given. On the basis of this configuration, the influence of magnetic field geometry is then discussed in a basic model of drift-Alfven wave turbulence which contains the necessary physics that applies to the plasma edge. By means of linear models, core physics in the form of ITG and dissipative trapped electron modes is further included in our survey. These models are, of course, by far not comprehensive in order to cover the complex physics of plasma turbulence in three-dimensional fusion devices, where a large range of parameter and mode regimes is present. Optimization criteria for a possible systematic minimization of turbulent transport in Helias configurations therefore still have to be regarded as tentative. The results presented here should, however, encourage for more detailed future computations. (orig.)
Numerical and theoretical investigations of resistive drift wave turbulence
International Nuclear Information System (INIS)
Sunn Pedersen, T.
1995-07-01
With regard to the development of thermonuclear fusion utilizing a plasma confined in a magnetic field, anomalous transport is a major problem and is considered to be caused by electrostatic drift wave turbulence. A simplified quasi-two-dimensional slab model of resistive drift wave turbulence is investigated numerically and theoretically. The model (Hasegawa and Wakatani), consists of two nonlinear partial differential equations for the density perturbation n and the electrostatic potential perturbation φ. It includes the effect of a background density gradient perpendicular to the magnetic field and a generalized Ohm's law for the electrons in the direction parallel to the magnetic field. It may be used to model the basic features of electrostatic turbulence and the associated transport in an edge plasma. Model equations are derived and some important properties of the system are discussed. It is described how the Fourier spectral method is applied to the Hasegawa-Wakatani equations, how the time integration is developed to ensure accurate and fast simulations in a large parameter regime, and how the accuracy of the code is checked. Numerical diagnostics are developed to verify and extend the results in publications concerning quasi-stationary turbulent states and to give an overview of the properties of the quasi-stationary turbulent state. The use of analysis tools, not previously applied to the Hasegawa-Wakatani system, and the results obtained are described. Fluid particles are tracked to obtain Lagrangian statistics for the turbulence. A new theoretical analysis of relative dispersion leads to a decomposition criterion for the particles. The significance of this is investigated numerically and characteristic time scales for particles are determined for a range of parameter values. It is indicated that the turbulent state can be characterized in the context of nonlinear dynamics and chaos theory as an attractor with a large basin of attraction. The basic
Theory of modulational interaction of trapped ion convective cells and drift wave turbulence
International Nuclear Information System (INIS)
Shapiro, V.D.; Diamond, P.H.; Lebedev, V.; Soloviev, G.; Shevchenko, V.
1993-01-01
Theoretical and computational studies of the modulational interaction between trapped ion convective cells and short wavelength drift wave turbulence are discussed. These studies are motivated by the fact that cells and drift waves are expected to coexist in tokamaks so that: (a) cells strain and modulate drift waves, and (b) drift waves open-quote ride on close-quote a background of cells. The results of the authors' investigation indicate that: (1) (nonlinear) parametric growth rates of trapped ion convective cells can exceed linear predictions (for drift wave levels at the mixing length limit); (2) a set of coupled envelope equations, akin to the Zakharov equations from Langmuir turbulence, can be derived and used to predict the formation of a dipole pair of convective cells trapped by the drift wave envelope. This dipole pair is strongly anisotropic, due to the structure of the drift wave Reynolds stress which drives the cell flow. Numerical solutions of the envelope equations are in good agreement with theoretical predictions, and indicate the persistence of the structure in time; (3) strong modulation and trapping of drift waves with k perpendicular ρ > 1 occurs. Extensions to magnetically sheared systems and the broader implications of this work as a paradigm for the dynamics of persistent structures in shearing flows are discussed
van den Bremer, T. S.; Breivik, Ø.
2017-12-01
During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc. 8, 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections. This article is part of the theme issue 'Nonlinear water waves'.
Stabilizing effects of hot electrons on low frequency plasma drift waves
International Nuclear Information System (INIS)
Huang Chaosong; Qiu Lijian; Ren Zhaoxing
1988-01-01
The MHD equation is used to study the stabilization of low frequency drift waves driven by density gradient of plasma in a hot electron plasma. The dispersion relation is derived, and the stabilizing effects of hot electrons are discussed. The physical mechanism for hot electron stabilization of the low frequency plasma perturbations is charge uncovering due to the hot electron component, which depends only on α, the ratio of N h /N i , but not on the value of β h . The hot electrons can reduce the growth rate of the interchange mode and drift wave driven by the plasma, and suppress the enomalous plasma transport caused by the drift wave. Without including the effectof β h , the stabilization of the interchange mode requires α≅2%, and the stabilization of the drift wave requires α≅40%. The theoretical analyses predict that the drift wave is the most dangerous low frequency instability in the hot electron plasma
Drift wave transport and origin of the disruption phenomenon
International Nuclear Information System (INIS)
Hasselberg, G.; Rogister, A.
1983-02-01
Nonlinear ion Landau damping of drift waves yields a splitting of the spectrum into a long and a short wavelength branch. The latter contributes most (> 90%) of the transport and permits to explain the observed relaxation of Tokamak plasma profiles to a weakly unstable state, in the occurence with regard to the dissipative trapped electron mode. The fluxes indeed increase much more rapidly than the linear growth rates. This result and surprising coincidences between the linear theory and empirical laws concerning the high density limit lead us to propose that the slow rise of the sawtooth pulsations of the core occurs whilst the transport in the surrounding layer is insufficient to evacuate the power deposited. The sudden relaxation takes place once the released heat pulses are capable - much as in collisionless shock waves - of exciting the trapped electron mode to a sufficient level to ensure adequate transport. The model explains many experimental features associated with these sawteeth as well as with the related plasma disruptions: contraction of the current channel, high density limit (both the scaling and the order of magnitude are predicted), etc. ... (orig.)
Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin
2018-03-01
Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.
Energy Technology Data Exchange (ETDEWEB)
Maeda, H; Miyajima, S [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K; Ikoma, T [Nihon University, Tokyo (Japan). College of Science and Technology
1997-12-31
Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.
Energy Technology Data Exchange (ETDEWEB)
Maeda, H.; Miyajima, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K.; Ikoma, T. [Nihon University, Tokyo (Japan). College of Science and Technology
1996-12-31
Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.
Height drift correction in non-raster atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Meyer, Travis R. [Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 (United States); Ziegler, Dominik [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Brune, Christoph [Institute for Computational and Applied Mathematics, University of Münster (Germany); Chen, Alex [Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC 27709 (United States); Farnham, Rodrigo; Huynh, Nen; Chang, Jen-Mei [Department of Mathematics and Statistics, California State University Long Beach, Long Beach, CA 90840 (United States); Bertozzi, Andrea L., E-mail: bertozzi@math.ucla.edu [Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 (United States); Ashby, Paul D., E-mail: pdashby@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2014-02-01
We propose a novel method to detect and correct drift in non-raster scanning probe microscopy. In conventional raster scanning drift is usually corrected by subtracting a fitted polynomial from each scan line, but sample tilt or large topographic features can result in severe artifacts. Our method uses self-intersecting scan paths to distinguish drift from topographic features. Observing the height differences when passing the same position at different times enables the reconstruction of a continuous function of drift. We show that a small number of self-intersections is adequate for automatic and reliable drift correction. Additionally, we introduce a fitness function which provides a quantitative measure of drift correctability for any arbitrary scan shape. - Highlights: • We propose a novel height drift correction method for non-raster SPM. • Self-intersecting scans enable the distinction of drift from topographic features. • Unlike conventional techniques our method is unsupervised and tilt-invariant. • We introduce a fitness measure to quantify correctability for general scan paths.
Statistical theory of resistive drift-wave turbulence and transport
International Nuclear Information System (INIS)
Hu, G.; Krommes, J.A.; Bowman, J.C.
1997-01-01
Resistive drift-wave turbulence in a slab geometry is studied by statistical closure methods and direct numerical simulations. The two-field Hasegawa endash Wakatani (HW) fluid model, which evolves the electrostatic potential and plasma density self-consistently, is a paradigm for understanding the generic nonlinear behavior of multiple-field plasma turbulence. A gyrokinetic derivation of the HW model is sketched. The recently developed Realizable Markovian Closure (RMC) is applied to the HW model; spectral properties, nonlinear energy transfers, and turbulent transport calculations are discussed. The closure results are also compared to direct numerical simulation results; excellent agreement is found. The transport scaling with the adiabaticity parameter, which measures the strength of the parallel electron resistivity, is analytically derived and understood through weak- and strong-turbulence analyses. No evidence is found to support previous suggestions that coherent structures cause a large depression of saturated transport from its quasilinear value in the hydrodynamic regime of the HW model. Instead, the depression of transport is well explained by the spectral balance equation of the (second-order) statistical closure when account is taken of incoherent noise. copyright 1997 American Institute of Physics
Nonlinear mechanisms for drift wave saturation and induced particle transport
International Nuclear Information System (INIS)
Dimits, A.M.; Lee, W.W.
1989-12-01
A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E x B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional (''pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs
Coherent drift wave structures in sheared magnetic fields
International Nuclear Information System (INIS)
Morrison, P.J.; Horton, W.
1993-01-01
For the problem of calculating the coherent drift wave structures in sheared magnetic fields, the authors have found it useful to derive the governing nonlinear pde from a variational principle. The variational principle is based on the free energy functional F[var-phi] = ∫ V F(var-phi, ∇ var-phi, x)dx dy. The method is applied to the vortex with speed u derived in Su et al., given by ∇ 2 var-phi = (1 - v d /u) var-phi - S m 2 /u 2 (x - var-phi/u) (x - var-phi/2u) var-phi where space is measured in units of ρ s , var-phi = (eΦ/T e )(L n /ρ s ) and the magnetic shear parameter is S m . While the linearized problem (var-phi much-lt ux) describes the usual shear induced damping, nonlinear solutions with trapped flow (var-phi > ur 0 ) form nonlinear self-bound states, which are maxima of the free energy F. The authors discuss the analytic properties and the numerical procedures for solving these types of nonlinear pde's
Dynamical scaling law in the development of drift wave turbulence
International Nuclear Information System (INIS)
Watanabe, T.; Fujisaka, H.; Iwayama, T.
1997-01-01
The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region, which is set to be slightly larger than the characteristic wave number λ, evaluating the inverse ion Larmor radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys a dynamic scaling law for k 1/2 ε 5/4 t 7/4 F(k/bar k(t))[bar k(t)∼λ 3/4 ε -1/8 t -3/8 ] with a scaling function F(x), which turns out to be in good agreement with numerical experiments. copyright 1997 The American Physical Society
Thermal-wave balancing flow sensor with low-drift power feedback
Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt
2014-01-01
A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the
Energy of linear quasi-neutral electrostatic drift waves
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1992-01-01
An exact energy expression for linear quasi-neutral electrostatic perturbations is derived within the framework of dissipationless multi-fluid theory, valid for any geometry. Taking the mass as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat the full dynamics and also to restrict consideration to parallel dynamics or to the completely adiabatic case. Application to slab configurations yields the result that in plane geometry the adiabatic approximation does not allow negative-energy perturbations, whereas inclusion of the parallel dynamics does. This is in agreement with a numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott. Unlike Scott, we consider a dissipationless theory. Whereas the nonlinear energy is just kinetic plus potential plus thermal energy, the energy of perturbations depends on constraints. In a multi-fluid quasi-neutral electrostatic theory, from which we start, such constraints are mass conservation and entropy conservation. The latter is violated if heat conduction, heat sources (e.g. Joule heating) and heat sinks play a role. Hence, the energy expressions obtained are, valid only when situations where this is not the case or where these phenomena do not influence the entropy constraint. The latter is the case if the heat conduction is infinitely large such that the equilibrium temperature profiles T ν (x) of the various particle species ν are independent of x and δT ν =0. A vanishing temperature perturbation results in an entropy-conserving theory if one takes the adiabatic coefficients γ ν =1. This is possible, however, only for the perturbations; the equilibrium energy would diverge. When we consider this case, we do it in the way that the γs are put equal to 1 only after having obtained the perturbed energy for general γs. (author) 7 refs
External excitation of ion cyclotron drift waves in a two-ion species plasma
International Nuclear Information System (INIS)
Kando, M.; Ikezawa, S.; Sugai, H.
1984-01-01
Ion cyclotron drift waves propagating across a density gradient and a magnetic field have been excited externally in a two-ion species plasma, with its concentration ratio controlled. The measured dispersion relations agree with the theoretical predictions. (author)
Drift forces on vacancies and interstitials in alloys with radiation-induced segregation
International Nuclear Information System (INIS)
Wolfer, W.G.
1983-01-01
Radiation-induced segregation in alloys leads to compositional gradients around point defect sinks such as voids and dislocations. These compositional gradients in turn affect the drift forces on both interstitials and vacancies and thereby modify the bias. Linear irreversible thermodynamics is employed to derive the total drift force on interstitials and vacancies in substitutional binary alloys. The obtained results are evaluated for binary Fe-Ni alloys. It is shown that radiation-induced segregation produces new drift forces which can be of the same order of magnitude as the stress-induced drift force produced by edge dislocations in an alloy with uniform composition. Hence, segregation results in a significant modification of the bias for void nucleation and swelling. The additional drift forces on interstitials and vacancies are due to the compositional dependence of the formation and migration energies; due to the dependence of the point defect's strain energy on the local elastic properties; due to a coherency strain field caused by lattice parameter variations; and finally due to the Kirkendall force produced by the difference in tracer mobilities. Estimates of these forces given for Fe-Ni alloys indicate that the Kirkendall force is small compared to the other segregation-induced forces on interstitials. In contrast, the Kirkendall force seems to be the dominant one for vacancies. (orig.)
Electron-temperature-gradient-driven drift waves and anomalous electron energy transport
International Nuclear Information System (INIS)
Shukla, P.K.; Murtaza, G.; Weiland, J.
1990-01-01
By means of a kinetic description for ions and Braginskii's fluid model for electrons, three coupled nonlinear equations governing the dynamics of low-frequency short-wavelength electrostatic waves in the presence of equilibrium density temperature and magnetic-field gradients in a two-component magnetized plasma are derived. In the linear limit a dispersion relation that admits new instabilities of drift waves is presented. An estimate of the anomalous electron energy transport due to non-thermal drift waves is obtained by making use of the saturated wave potential, which is deduced from the mixing-length hypothesis. Stationary solutions of the nonlinear equations governing the interaction of linearly unstable drift waves are also presented. The relevance of this investigation to wave phenomena in space and laboratory plasmas is pointed out. (author)
High pressure gas scintillation drift chambers with wave-shifter fiber readout
International Nuclear Information System (INIS)
Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.
1990-01-01
The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)
Analysis of zonal flow bifurcations in 3D drift wave turbulence simulations
International Nuclear Information System (INIS)
Kammel, Andreas
2012-01-01
The main issue of experimental magnetic fusion devices lies with their inherently high turbulent transport, preventing long-term plasma confinement. A deeper understanding of the underlying transport processes is therefore desirable, especially in the high-gradient tokamak edge which marks the location of the drift wave regime as well as the outer boundary of the still badly understood high confinement mode. One of the most promising plasma features possibly connected to a complete bifurcation theory for the transition to this H-mode is found in large-scale phenomena capable of regulating radial transport through vortex shearing - i.e. zonal flows, linearly stable large-scale poloidal vector E x vector B-modes based on radial flux surface averages of the potential gradient generated through turbulent self-organization. Despite their relevance, few detailed turbulence studies of drift wave-based zonal flows have been undertaken, and none of them have explicitly targeted bifurcations - or, within a resistive sheared-slab environment, observed zonal flows at all. In this work, both analytical means and the two-fluid code NLET are used to analyze a reduced set of Hasegawa-Wakatani equations, describing a sheared collisional drift wave system without curvature. The characteristics of the drift waves themselves, as well as those of the drift wave-based zonal flows and their retroaction on the drift wave turbulence are examined. The single dimensionless parameter ρ s proposed in previous analytical models is examined numerically and shown to divide the drift wave scale into two transport regimes, the behavioral characteristics of which agree perfectly with theoretical expectations. This transport transition correlates with a transition from pure drift wave turbulence at low ρ s into the high-ρ s zonal flow regime. The associated threshold has been more clearly identified by tracing it back to a tipping of the ratio between a newly proposed frequency gradient length at
Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma
DEFF Research Database (Denmark)
Schröder, C.; Grulke, O.; Klinger, T.
2004-01-01
In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...... radial bending. The experimental observations are compared with numerical solutions of a linear nonlocal cylindrical model for drift waves [ Ellis , Plasma Phys. 22, 113 (1980) ]. In the numerical model, a transition to bended mode structures is found if the plasma collisionality is increased....... This finding proves that the experimentally observed bended mode structures are the result of high electron collisionality. (C) 2004 American Institute of Physics....
International Nuclear Information System (INIS)
Robertson, J.A.
1986-12-01
Electron motion in a single electrostatic wave in a sheared magnetic field is shown to become stochastic in the presence of a second wave at an amplitude well below that obtained from the overlapping pendulum resonance approximation. The enhanced stochasticity occurs for low parallel velocity electrons for which the parallel trapping motion from eE/sub parallel//m interacts strongly with the E x B trapping motion due to the presence of magnetic shear. The guiding-center equations for single particle electron orbits in given fields are investigated using both analytical and numerical techniques. The model assumes a slab magnetic field geometry with shear and two electrostatic plane waves propagating at an angle with respect to each other. Collisions and the self-consistent effect of the electron motion upon the fields are ignored. The guiding-center motion in an inertial reference frame moving in phase with the two waves is given by a two degree-of-freedom, autonomous Hamiltonian system. The single wave particle motion may be reduced to a two parameter family of one degree-of-freedom Hamiltonians which bifurcate from a pendulum phase space to a topology with three chains of elliptic and hyperbolic fixed points separated in radius about the mode-rational surface. In the presence of a perturbing wave with a different helicity, electrons in the small parallel velocity regime become stochastic at an amplitude scaling as the fourth root of the wave potential. The results obtained for stochastic motion apply directly to the problem of electron diffusion in drift waves occurring in toroidal fusion confinement devices. The effect of an adiabatically changing radial electric field upon guiding-center orbits in tokamaks is also investigated. This perturbation causes a radial polarization drift of trapped particle tokamak orbits
Kolmogorov spectra of long wavelength ion-drift waves in dusty plasmas
International Nuclear Information System (INIS)
Onishchenko, O.G.; Pokhotelov, O.A.; Sagdeev, R.Z.; Pavlenko, V.P.; Stenflo, L.; Shukla, P.K.; Zolotukhin, V.V.
2002-01-01
Weakly turbulent Kolmogorov spectra of ion-drift waves in dusty plasmas with an arbitrary ratio between the ion-drift and the Shukla-Varma frequencies are investigated. It is shown that in the long wavelength limit, when the contribution to the wave dispersion associated with the inhomogeneity of the dust component is larger than that related to the plasma inhomogeneity, the wave dispersion and the matrix interaction element coincide with those for the Rossby or the electron-drift waves described by the Charney or Hasegawa-Mima equations with an accuracy of unessential numerical coefficients. It is found that the weakly turbulent spectra related to the conservation of the wave energy are local and thus the energy flux is directed towards smaller spatial scales
Evolution of wave turbulence under "gusty" forcing.
Annenkov, S Y; Shrira, V I
2011-09-09
We consider nonlinear evolution of a random wave field under gusty forcing, fluctuating around a constant mean. Here the classical wave turbulence theory that assumes a proximity to stationarity is not applicable. We show by direct numerical simulation that the self-similarity of wave field evolution survives under fluctuating forcing. The wave field statistical characteristics averaged over fluctuations of forcing evolve as if there were a certain constant "effective wind." The results justify the use of the kinetic equations with forcing averaged over gusts as a good first approximation.
Experiment and theory of a drift wave in the levitated octupole
International Nuclear Information System (INIS)
Rose, E.A.
1982-08-01
A very coherent 30 kHz drift wave is observed in the Levitated Toroidal Octupole at the University of Wisconsin - Madison. The density and floating potential fluctuations have a well-defined spatial structure in the poloidal magnetic field. Radially the wave has a standing wave structure with amplitude peaked in regions of locally bad magnetic curvature. Poloidally the wave has a standing wave structure with odd symmetry; nodes are located in the regions of locally good magnetic curvature. The wave propagates toroidally in the electron diamagnetic drift direction with a wavelength of 20 centimeters. No changes occur in the wave structure as the plasma is varied over three orders of magnitude in density and beta
A Laboratory Experiment on EM Backscatter from Farley-Buneman and Gradient Drift Waves
DEFF Research Database (Denmark)
Alport, M. J.; D'Angelo, N.; Pécseli, Hans
1981-01-01
Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent i...... ideas on EM scattering by equatorial and high-latitude ionospheric waves and irregularities.......Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent...
Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves
DEFF Research Database (Denmark)
Guzdar, P.N.; Kleva, R.G.; Chakrabarti, N.
2009-01-01
The geodesic acoustic modes (GAMs) are typically observed in the edge region of toroidal plasmas. Drift waves have been identified as a possible cause of excitation of GAMs by a resonant three wave parametric process. A nonlocal theory of excitation of these modes in inhomogeneous plasmas typical...... of the edge region of tokamaks is presented in this paper. The continuum GAM modes with coupling to the drift waves can create discrete "global" unstable eigenmodes localized in the edge "pedestal" region of the plasma. Multiple resonantly driven unstable radial eigenmodes can coexist on the edge pedestal....
Effect of different parameters governing the stability of drift wave in a magnetised plasma
International Nuclear Information System (INIS)
Elashkar, F.F.
1990-01-01
Influence of the governing parameters, such as electron drift parallel speed, parallel wave length, electron-neutral and ion-neutral collision frequencies, electron temperature and magnetic field, on the stability of drift wave in a magnetized plasma has been studied experimentally and theoretically using a full numerical solution of the exact equation. Drift wave has been excited by a positively biased grid; at a threshold grid potential secondary excitation and ionisation processes take place in the ejected beam of plasma. Effect of the applied magnetic field on the probability of these processes is discussed. Grid positive potential, electron-neutral collision, parallel wave length, electron temperature and speed are found to be destabilizing, While ion neutral collision is stabilizing. Using a new parameter β, the effect of magnetic field is investigated and it is destabilizing only upto a certain limit. (author). 11 figs., 21 refs
Destabilization of hydromagnetic drift-Alfven waves in a finite pressure collisional plasma
International Nuclear Information System (INIS)
Tang, J.T.
1974-01-01
In a finite beta (β = 8πn 0 kT 0 /B 0 2 ) plasma, where the plasma pressure n 0 kT 0 is an appreciable fraction of the confining magnetic field energy-density B 0 2 /8π, density-gradient driven drift waves couple with Alfven waves when the phase velocities of the two waves become comparable. The resulting hydromagnetic drift-Alfven waves separate into two branches--a drift mode and an Alfven mode, with both modes exhibiting magnetic field and localized density fluctuations near the coupling point. The dispersion relation of the collisional drift-Alfven wave is derived by using a slab-geometry, two-fluid model which includes finite beta, electron-ion collisions, ion-ion collisions, finite ion larmar radius, temperature fluctuations, and an axial electron current. A hydromagnetic drift mode is found to be unstable in a moderately dense plasma. A localized ''Alfven'' mode is destabilized only with the passage of an axial current along the plasma column. In order to check the theoretical predictions an experiment is performed in a finite-beta plasma of density n 0 = 10 13 -10 15 cm -3 and temperature T/sub e/ approximately T/sub i/ = 1-7 eV. (U.S.)
Secondary instability in drift wave turbulence as a mechanism for avalanche and zonal flow formation
International Nuclear Information System (INIS)
Diamond, P.H.; Champeaux, S.; Malkov, M.
2001-01-01
We report on recent developments in the theory of secondary instability in drift-ITG turbulence. Specifically, we explore secondary instability as a mechanism for avalanche formation. A theory of radially extended streamer cell formation and self-regulation is presented. Aspects of streamer structure and dynamics are used to estimate the variance of the drift-wave induced flux. The relation between streamer cell structures and the avalanche concept is discussed, as are the implications of our results for transport modeling. (author)
The launching and propagation of drift waves in a steady-state plasma
International Nuclear Information System (INIS)
Sandeman, J.; Elliott, J.A.; Sutcliffe, M.; Rusbridge, M.G.
1992-01-01
The UMIST linear quadrupole GOLUX is a steady-state device in which hydrogen plasma is continuously injected axially, at one end, from an external duoplasmatron source. The electron temperature in the drift wave region is about 1 eV, and the density about 10 15 m -3 . Self-excited intrinsic drift modes are observed in the shared flux region of GOLUX, forming a broad band between 30 and 50 kHz. Drift waves may also be launched into the system, by passing an AC current through the plasma between the two flag antennae. These coherent launched waves present a powerful means of studying drift wave phenomena. We obtain information about the launched wave by detecting both density and potential fluctuations, using a small cylindrical Langmuir probe and lock-in amplifier techniques. Scanning the probe in the longitudinal (z) direction yields the spatial variation of amplitude and phase with respect to the launching signal; the ratio of the wave potential, extrapolated back to the probe, to the launching current gives the launching impedance, a measure of the effectiveness of the launching process. (author) 5 refs., 6 figs
Hydrodynamic Forces from Steep Waves in Rivers
Energy Technology Data Exchange (ETDEWEB)
Loevoll, A.
1996-12-31
The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter {alpha} is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield`s relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs.
Hydrodynamic Forces from Steep Waves in Rivers
International Nuclear Information System (INIS)
Loevoll, A.
1996-01-01
The reservoir behind a hydroelectric power production dam has an enormous potential for destruction in case of a dam break. The present doctoral thesis evaluates the hydrodynamic forces from steep waves in rivers. In the laboratory, forces on a structure shaped as a vertical cylinder of rectangular cross section were measured, and the threshold condition for the bed sediment was investigated. A wave parameter α is introduced to describe the gradient of a wave front. The flow condition in the flume was reproduced by a 3-D numerical model. For various values of the wave parameter the forces were measured and compared to the drag force calculated from measured depth and velocity. From these comparisons the hydrodynamic force can be calculated as drag only, even in the case of a breaking wave front. The contribution from inertia relative to drag depends on the size of the structure. For larger structures the contributions may be important in steep waves. To study the initiation of motion (of sediments) under unsteady flow, waves of various parameter values were passed over a gravel covered bed. The initiation of motion starts before the peak of the wave, and is given by Shield's relation if the friction slope is applied. No dependence upon the wave gradient was found. A relation was established which gives the critical shear stress if the friction slope is estimated by the bottom slope. 65 refs., 41 figs., 10 tabs
Self-sustained collisional drift-wave turbulence in a sheared magnetic field
International Nuclear Information System (INIS)
Scott, B.D.
1990-01-01
Although collisional drift waves in a sheared slab configuration are linearly damped, it is found that the corresponding turbulence is self-sustaining if initialized at nonlinear amplitude. The influence of the free-energy source represented by the temperature and density gradients on the turbulent system involving bidirectional spectral energy transfer is responsible for this change of regime. Several important features of tokamak edge fluctuations are reproduced by these single-rational-surface nonlinear dynamics. As a result, drift-wave turbulence must still be considered as an underlying dynamic of anomalous transport in tokamak edges
Three dimensional particle simulation of drift wave fluctuations in a sheared magnetic field
International Nuclear Information System (INIS)
Sydora, R.D.; Leboeuf, J.N.; Thayer, D.R.; Diamond, P.H.; Tajima, T.
1985-08-01
Three dimensional particle simulations of collisionless drift waves in sheared magnetic fields were performed in order to determine the nonlinear behavior of inverse electron resonance dynamics in the presence of thermal fluctuations. It is found that stochastic electron diffusion in the electron resonance overlap region can destabilize the drift wave eigenmodes. Numerical evaluations based on a nonlinear electron resonance broadening theory give predictions in accord with the frequency and growth rates found in the simulation of short wavelength modes (k/sub y/rho/sub s/ greater than or equal to1)
Temperature effects on drift of suspended single-domain particles induced by the Magnus force
Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.
2018-03-01
We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.
Observation of drift wave propagation as a source of tokamak edge turbulence
International Nuclear Information System (INIS)
Wang Guiding; Liu Wandong; Yu Changxuan
1998-01-01
Core and edge turbulences were measured by Langmuir probe arrays in the KT-5C tokamak plasma. The radial wavenumber spectra show a quasimode like structure which results in a net radial outward propagation of the turbulent fluctuations. The measured fluctuation levels and wave action fluxes are in good agreement with model predictions by Mattor et al., suggesting that drift wave propagation could be a source of edge turbulence
Diffusion and drift regimes of plasma ionization wave propagation in a microwave field
International Nuclear Information System (INIS)
Khodataev, K.V.; Gorelik, B.R.
1997-01-01
Investigation into diffusion and drift modes of a plasma ionization wave propagation in the microwave field are conducted within the framework of a one-dimensional model with regard to gas ionization by electron shock in an electrical field, adhesion, mobility and diffusion of electrons
Tripolar vortices of dust-drift waves in dusty plasma with shear flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge
2002-01-01
Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content
Possible effects of drift wave turbulence on magnetic structure and plasma transport in tokamaks
International Nuclear Information System (INIS)
Callen, J.D.
1977-07-01
A new mechanism is proposed by which low level, drift wave type fluctuations, such as those observed in the ATC and TFR experiments, can cause anomalous radial electron heat transport in tokamaks. The model is based on the fact that since transport processes parallel to the magnetic field are many orders of magnitude more rapid than perpendicular ones, very small helically resonant magnetic perturbations that cause field lines to move radially allow the parallel transport process to contribute to radial electron heat transport. It is hypothesized that the small magnetic perturbations accompanying drift waves at any nonzero plasma β are large enough to produce significant effects in present tokamak experiments. The helical magnetic component of drift waves produces magnetic island structures whose spatial widths can easily exceed the ion gyroradius. In a drift wave oscillation period, electrons circumnavigate a magnetic island, whereas the slower moving ions see only a tilt of the magnetic field lines. Thus, electrons try to diffuse radially more rapidly than ions; however, a radialpotential builds up on a very short time scale to confine the electrons electrostatically and thereby keep the particle diffusion ambipolar. Nonetheless, this parallel electron diffusion process does cause net radial electron heat conduction through an ensemble of closely packed island structures. The heat conduction coefficient is estimated. Other effects that these magnetic flutters may have on plasma transport and runaway electron processes are also discussed
Forced cooling of a nuclear waste repository mine drift - a scoping analysis
Energy Technology Data Exchange (ETDEWEB)
Boyd, R D [Sandia National Labs., Albuquerque, NM (USA)
1982-12-01
Nuclear waste repositories, with decay heat generation beneath the mine drift floors, are force-cooled with air so that re-entrance is possible many years after the waste has been buried. A numerical model has been developed which uses heat transfer coefficients as input. It has been demonstrated that mixed (forced and free) convective and surface roughness effects are significant and must be included in future experiments if reliable predictions are to be made of the time required to cool the repository. For example, when repository mine drifts in volcanic tuff are force-cooled, with forced convection being the only energy transport mechanism, it takes approx.= 0.1 year to cool the mine surface to a safe temperature. However, when mixed convection is the primary transport mechanism it takes approx.= 1.0 year to cool the mine. In addition to mixed convection, other effects are delineated.
Complete classification of discrete resonant Rossby/drift wave triads on periodic domains
Bustamante, Miguel D.; Hayat, Umar
2013-09-01
We consider the set of Diophantine equations that arise in the context of the partial differential equation called "barotropic vorticity equation" on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These wavenumbers come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the physically sensible limit when the Rossby deformation radius is infinite. The method is completely new, and relies on mapping the unknown variables via rational transformations, first to rational points on elliptic curves and surfaces, and from there to rational points on quadratic forms of "Minkowski" type (such as the familiar space-time in special relativity). Classical methods invented centuries ago by Fermat, Euler, Lagrange, Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Computationally speaking, our method has a clear advantage over brute-force numerical search: on a 10,0002 grid, the brute-force search would take 15 years using optimised C codes on a cluster, whereas our method takes about 40 min using a laptop. Moreover, the method is extended to generate so-called quasi-resonant triads, which are defined by relaxing the resonant condition on the frequencies, allowing for a small mismatch. Quasi-resonant triads' distribution in wavevector space is robust with respect to physical perturbations, unlike resonant triads' distribution. Therefore, the extended method is really valuable in practical terms. We show that the set of quasi-resonant triads form an intricate network of connected triads, forming
Interactions of disparate scales in drift-wave turbulence
International Nuclear Information System (INIS)
Krommes, John A.; Kim, Chang-Bae
2000-01-01
Renormalized statistical theory is used to calculate the interactions between short scales (wave vector k) and long scales (wave vector q parallel =0 fluctuations). The calculations include the zonal-flow growth rate as a special case, but also describe long-wavelength fluctuations with q oriented at an arbitrary angle to the background gradient. The results are fully renormalized. They are subtly different from those of previous authors, in both mathematical form and physical interpretation. A term arising in previous treatments that is related to the propagation of short-scale wave packets is shown to be a higher-order effect that must consistently be neglected to lowest order in a systematic expansion in q/k. Rigorous functional methods are used to show that the long-wavelength growth rate γ q is related to second-order functional variations of the short-wavelength energy and to derive a heuristic algorithm. The principal results are recovered from simple estimates involving the first-order wave-number distension rate tilde γ k (1) dot eqdot kdeltilde Omega k /k 2 , where tilde Ω k is a nonlinear random advection frequency. Fokker-Planck analysis involving tilde γ k (1) is used to heuristically recover the evolution equation for the small scales, and a random-walk flux argument that relates tilde γ k (1) to an effective autocorrelation time is used to give an independent calculation of γ q . Both the rigorous and heuristic derivations demonstrate that the results do not depend on, and cannot be derived from, properties of linear normal modes; they are intrinsically nonlinear. The importance of random-Galilean-invariant renormalization is stressed
Lion roars and nonoscillatory drift mirror waves in the magnetosheath
International Nuclear Information System (INIS)
Tsurutani, B.T.; Smith, E.J.; Anderson, R.R.; Ogilvie, K.W.; Scudder, J.D.; Baker, D.N.; Bame, S.J.
1982-01-01
A complete set of ISEE plasma wave, plasma, and field data are used to identify the plasma instability responsible for the generation of extremely low frequency (ELF) electromagnetic lion roars. Lion roars detected close to the magnetopause are generated by the cyclotron instability of anisotropic (T - /sub perpendicular//T - /sub parallel/approx. =1.2) thermal electrons when the local plasma critical energy, E/sub M/ = B 2 /8πN, falls to values (E/sub M/ approx.10--30 eV) close to or below the electron thermal energy, 25 eV, as a result of decreases in B. The lion roars are terminated by increases in the ambient magnetic field magnitude and consequential increases in E/sub M/ to values greater than 100 eV. Because there are few resonant particles at these high energies, the growth rate decreases by 3 orders of magnitude and measurable growth ceases. The value of the absolute upper limit of the frequency of unstable waves predicted by theory, ω/sub max/ = A - Ω - /(A - +1), is compared with observations. The predictions and observations are found to be in general, but not exact, agreement. Several possible explanations are explored. The quasi-periodic, approx.20-s magnetic and plasma oscillations which cause the variations in E/sub M/ and hence alternately drive the cyclotron waves unstable and then stable are also investigated
Effect of Resonant Magnetic Perturbations on secondary structures in Drift-Wave turbulence
Leconte, Michael
2011-10-01
In this work, we study the effects of RMPs on turbulence, flows and confinement, in the framework of two paradigmatic models, resistive ballooning and resistive drift waves. For resistive ballooning turbulence, we use 3D global numerical simulations, including RMP fields and (externally-imposed) sheared rotation profile. Without RMPs, relaxation oscillations of the pressure profile occur. With RMPs, results show that long-lived convection cells are generated by the combined effects of pressure modulation and toroidal curvature coupling. These modify the global structure of the turbulence and eliminate relaxation oscillations. This effect is due mainly to a modification of the pressure profile linked to the presence of residual magnetic island chains. Hence convection-cell generation increases for increasing δBr/B0. For RMP effect on zonal flows in drift wave turbulence, we extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large δBr/B0. Both the vorticity flux (Reynolds stress), and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolution of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters, and predicts a novel type of transport bifurcation in the presence of RMPs. We find a novel set of system states that are similar to the Hmode-like state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude and low collisionality, both the ambient turbulence and zonal flow energy increase with δBr/B0. For larger RMP strength, the turbulence energy increases, but the energy of zonal flows decreases with δBr/B0, corresponding to a damping of zonal flows. At high
Dissipative-drift wave instability in the presence of impurity radiation
International Nuclear Information System (INIS)
Bharuthram, R.; Shukla, P.K.
1992-01-01
It is believed that electrostatic fluctuations in edge plasmas are usually triggered by micro and macroscopic plasma instabilities. The latter involve dissipative-drift waves as well as tearing and rippling modes in nonuniform plasmas. However, if the plasma edge contains impurity radiation, then the radiative condensation instability could be the cause of nonthermal fluctuations. The radiative condensation instabilities have been extensively investigated in a homogeneous plasma by many authors. The effect of equilibrium density and electron temperature inhomogeneities in the study of radiative condensation instabilities has been examined by Shukla and Yu. They found new drift-like modes driven by the combined effect of impurity radiation loss and the equilibrium density and temperature gradients. The analyses of Shukla and Yu is, however, limited to low-frequency, long wavelength collisionless drift waves. Since the edge plasma of toroidal devices is highly collisional, the results of collisionless theories cannot be directly applied to explain the origin of nonthermal fluctuations. In this paper, we study the influence of impurity radiation on the dissipative-drift wave instability in a collision-dominated nonuniform plasma embedded in a homogeneous magnetic field. (author) 6 refs
Stability and magnetic tearing of finite-β modified drift waves
International Nuclear Information System (INIS)
Chen, L.; Hsu, J.; Kaw, P.K.; Rutherford, P.H.
1977-10-01
A new simplified approach to the analysis of radial eigenmodes of finite-β modified drift waves in a sheared magnetic field is described. Applying this approach to the universal drift mode, one recovers, for the lowest (n = 0) radial eigenmode, the previous result that finite-β effects are stabilizing. For the next (n = 1) radial eigenmode, however, one finds that finite-β effects further destabilize the mode. Moreover, the corresponding mode structure exhibits nonzero radial (tearing) magnetic perturbations around the mode-rational surface. The consequences of a structure of microscopic magnetic islands, created in this way, for plasma transport are also briefly discussed
Multiple scattering of electromagnetic waves by a collection of plasma drift turbulent vortices
International Nuclear Information System (INIS)
Resendes, D.
1995-01-01
An application of the self-consistent multiple-scattering theory of electro-magnetic waves to drift turbulent vortices is presented. Using the known single-vortex solution, the integral equation describing the scattering from a finite density of drift turbulent vortices is obtained. Rather than solving this equation and then averaging, the averaging operation is taken first to obtain statistical moment equations, from which the coherent and incoherent scattering follow. These results are expressed in a Fourier basis, and the cross-section is evaluated. Limiting forms of the theory and straightforward generalizations are discussed. (Author)
Destabilization of drift waves due to nonuniform density gradient
International Nuclear Information System (INIS)
Hirose, A.; Ishihara, O.
1985-01-01
It is shown that the conventional mode differential equation for low frequency electrostatic waves in a tokamak does not contain full ion dynamics. Both electrons and ions contribute to the ballooning term, which is subject to finite ion Larmor radius effects. Also, both fluid ion approximation and kinetic ion model yield the same correction. Reexamined are the density gradient universal mode and ion temperature gradient instability employing the lowest order Pearlstein-Berk type radial eigenfunctions. No unstable, bounded, energy outgoing eigenfunctions have been found. In particular, a large ion temperature gradient (eta/sub i/) tends to further stabilize the temperature gradient driven mode
Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)
International Nuclear Information System (INIS)
Mendonca, J. T.; Hizanidis, K.
2011-01-01
We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.
Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)
2014-05-15
Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.
Early stages of wind wave and drift current generation under non-stationary wind conditions.
Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert
2016-04-01
Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we
Nonuniform charging effects on ion drag force in drifting dusty plasmas
International Nuclear Information System (INIS)
Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae
2006-01-01
The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length
Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons
Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.
2015-12-01
Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.
Nonlinear wave forces on large ocean structures
Huang, Erick T.
1993-04-01
This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.
Impurity and neutral effects on the dissipative drift wave in tokamak edge plasmas
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1991-05-01
Possible destabilizing mechanisms for the liner electrostatic dissipative drift waves (in tokamak edge plasmas) are investigated in slab geometry. The effects of processes such as ionization, charge exchange, radiation, and rippling are examined. In particular, the impurity condensation associated with radiation cooling is evaluated appropriately for the drift wave ordering, which is found to be an important driving mechanism in contrast to the results of earlier studies. It also shown that the role of ionization is quite complicated, and depends strongly on the manner in which the equilibrium is achieved. The linear eigenmode equation is studied both analytically and numerically. For the range of parameters relevant to TEXT tokamak, both the charge exchange of the rippling effect are found to be unimportant for instability. 25 refs., 6 figs
Structure and damping of toroidal drift waves (and their implications for anomalous transport)
International Nuclear Information System (INIS)
Taylor, J.B.; Connor, J.; Wilson, H.R.
1993-05-01
The conventional theory of high-n toroidal drift waves, based on the ballooning representation, indicates that shear-damping is generally reduced in a torus compared to its plane-slab value. It therefore describes the most unstable class of toroidal drift waves. However, modes of this type occur only i f the diamagnetic frequency ω*(r) has a maximum in r, and they affect only a small fraction, Ο(1/n l/2 ), of the plasma radius around this maximum. Consequently they may produce little anomalous transport. In the present work we show that, within the ballooning description, there is another class of toroidal drift waves with very different properties to the conventional ones. The new modes have greater shear-damping (closer to that in a plane-slab) than the conventional ones and so have a higher instability threshold. However, they occur for any plasma profile and at all radii, and they have larger radial extent. Consequently they may produce much greater anomalous transport than the possibly benign conventional modes. This suggests a picture of anomalous transport in which the plasma profile is determined by marginal stability, but marginal to the new class of modes not to the conventional ones. This might explain why marginally stable profiles calculated for drift waves with plane-slab damping sometimes agree well with the profiles in toroidal experiments. It is also consistent with the fact that experimental profiles may exceed conventional toroidal instability thresholds. The new modes may also be related to the tong radial structures which appear in some plasma simulations and in experiments
Real-space quasilinear theory of drift waves in a sheared magnetic field
International Nuclear Information System (INIS)
1977-02-01
A real-space quasilinear theory is developed for the collisional and the collisionless drift waves in a plasma with a sheared magnetic field of slab geometry. The equation obtained describes the interaction between many localized modes around different rational surfaces through the density modulation of the energy source region of each mode. The wave amplitudes approach to the stationary values through a relaxation oscillation process. When the width x sub(s) of the energy source region becomes comparable to the spacing Δx of the two adjacent rational surfaces, diffusion coefficient due to the wave is enhanced over the classical value, while the nonlocal heat transport due to the wave propagation is shown to be negligible compared to that associated with the diffusion process. (auth.)
International Nuclear Information System (INIS)
Bulgakov, A.A.; Shramkova, O.V.
2006-01-01
In terms of the assumption that the structure period is essentially shorter than the electromagnetic radiation wavelength one considers attenuation of waves of carrier concentration in a periodic semiconducting structure within an external electric field resulting in drift of different sign carriers. One determined conditions of occurrence of instability of carrier concentration waves propagating orthogonally to current direction. One predicts a resistive instability occurrence of which does not require increase of drift velocity in contrast to phase velocity of a plasmon [ru
Spiral waves in excitable media due to noise and periodic forcing
Energy Technology Data Exchange (ETDEWEB)
Yuan Guoyong, E-mail: g-y-yuan@sohu.com [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China); Xu Lin [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Xu Aiguo; Wang Guangrui [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Yang Shiping [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China)
2011-09-15
Highlights: > Excitable media jointly driven by periodic forcing and Gaussian white noise. > The joint driving leads to many unique tip motions. > New type of spiral wave breakup occurs between entrainment bands with 1:1 and 2:1. > Arnold tongues for different noise intensities exhibit stochastic resonance. > Fourier spectrum analysis can interpret tip motions and formation of entrainments. - Abstract: We investigate the jointly driven effects of external periodic forcing and Gaussian white noise on meandering spiral waves in excitable media with FitzHugh-Nagumo local dynamics. Interesting phenomena resulted from various forcing periods are found, for example, piece-wise line drift, intermittent straight-line drift and so on. We also observe new type of breakup of spiral wave between entrainment bands with 1:1 and 2:1. It is believed that the occurrence of the new type is relevant to the appearance of local bidirectional propagation window. There exist optimized noise intensities which can induce the broadest entrainments and Arnold tongues. Such a phenomenon is referred to as stochastic resonance. It is also observed that the noise makes significant effects on the spiral wave with straight-line drift. Via the tip Fourier spectrum, the varying of tip motion with external periods on the resonance band is interpreted.
Transition from flute modes to drift waves in a magnetized plasma column
International Nuclear Information System (INIS)
Brochard, F.; Gravier, E.; Bonhomme, G.
2005-01-01
Recent experiments performed on the low β plasma device Mirabelle [T. Pierre, G. Leclert, and F. Braun, Rev. Sci. Instrum. 58, 6 (1987)] using a limiter have shown that transitions between various gradient driven instabilities occurred on increasing the magnetic field strength. New thorough measurements allow to identify unambiguously three instability regimes. At low magnetic field the strong ExB velocity shear drives a Kelvin-Helmholtz instability, whereas at high magnetic field drift waves are only observed. A centrifugal (Rayleigh-Taylor) instability is also observed in between when the ExB velocity is shearless and strong enough. A close connection is made between the ratio ρ s /L perpendicular of the drift parameter to the radial density gradient length and each instability regime
Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System
Directory of Open Access Journals (Sweden)
Changhoon Lee
2010-06-01
Full Text Available In this paper, we developed a local oscillator (LO system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI receiver and single dish radio astronomy receiver at the 3 mm frequency band.
Time development of drift wave with loss-cone in an inhomogeneous low β plasma
International Nuclear Information System (INIS)
Pandey, R.P.; Sharan, R.R.; Prasad, Ramesh; Mishra, S.P.; Tiwari, M.S.
1995-01-01
Using particle aspect analysis, a generalized dispersion relation for the time-dependent electrostatic drift waves propagating through inhomogeneous low β magnetoplasma (β being the ratio of plasma pressure to the magnetic pressure) has been derived in the presence of the loss-cone distribution index (J). The dispersion characteristics and time-dependent growth/damping rates of the wave have been computed. The distribution index seems to modify the dispersion characteristics and hence the growth rate. The computed growth rate is time-dependent, increasing with the increase of time, while the growth rate decreases with the increase of the loss-cone distribution index. In the case when growth rate increasing sufficiently with time, becomes comparable to the real frequency of the wave, the present linear theory loses its validity. The applicability of the result for the space plasma has been indicated particularly for the parameters suited to plasmapause region. (author). 30 refs., 5 figs
Two-dimensional aspects of toroidal drift waves in the ballooning representation
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.; Zhang, X.D.
1992-01-01
By systematically doing the higher-order theory, the predictions of the conventional ballooning theory (CBT) are examined for nonideal systems. For the complex solvability condition to be satisfied, radial variation of the lowest-order mode amplitude needs to be invoked. It turns out, however, that even this procedure with its concomitant modifications of eigenvalues and eigenstructures, is not sufficient to justify the predictions of many CBT solutions; only a small set of the CBT solutions could be put on firm footing. To demonstrate this work's general conclusions, theoretical and numerical results are presented for a system of fluid drift waves with nonadiabatic electron response
Two dimensional aspects of toroidal drift waves in the ballooning representation
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.; Zhang, X.D.
1992-05-01
By systematically doing the higher order theory, the predictions of the conventional ballooning theory (CBT) are examined for non-ideal systems. For the complex solvability condition to be satisfied, radial variation of the lowest order mode amplitude needs to be invoked. It turns out, however, that even this procedure with its concomitant modifications of eigenvalues and eigenstructures, is not sufficient to justify the predictions of many CBT solutions; only a small set of CBT solutions could be put on a firm footing. To demonstrate our general conclusions, theoretical and numerical results are presented for system of fluid drift waves non-adiabatic electron response
Chaotic diffusion across a magnetic island due to a single electrostatic drift wave
International Nuclear Information System (INIS)
Misguich, J.H.
1990-05-01
It is shown that the guiding center motion around a single chain of magnetic islands in a Tokamak can become chaotic in the presence of a single electrostatic drift wave. This process leads to radial diffusion across the islands without magnetic braiding. The chaotic diffusion appears to be selective in velocity space. Realistic values of the physical parameters are considered to deduce that this process can be effective in usual conditions: with the observed islands, and electrostatic field values corresponding to measured density fluctuations, this diffusion concerns ions with velocities higher than thermal, and almost all of the electron population. The consequences for radial diffusion are discussed
Drift wave stabilized by an additional streaming ion or plasma population
Bashir, M. F.; Vranjes, J.
2015-03-01
It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vp h-vf 0) exp[-(vph-vf 0) 2] , where vf 0 is the flow speed and vp h is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf 0
Drift waves and counter rotating vortices in pair-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Haque, Q., E-mail: qamar_haque@hotmail.co [Theoretical Plasma Physics Division, PINSTECH P.O. Nilore, Islamabad (Pakistan)
2010-07-19
Linear dispersion relation has been found for drift and acoustic waves in pair-ion-electron plasmas. The stationary solution in the form of counter rotating vortices has been obtained in the presence of equilibrium potential profile. It is noticed that the speed of nonlinear structures is reduced with the increase of electrons concentration in pair-ion plasmas. Linear instability condition has also been found in the presence of shear flow. It is pointed out that the present results can be useful for future pair-ion plasma experiments.
International Nuclear Information System (INIS)
Andrews, P.L.; Perkins, F.W.
1983-01-01
The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field
Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.
2017-01-01
We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of approximately 0.86. We assume that the correlation is the result of LHFR wave generation by the ions polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD)parallel and perpendicular to the ambient magnetic eld to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions polarization drift in the electric field of an EMIC wave.
Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping
2018-05-01
We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.
Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai
2016-04-01
The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.
Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.
2018-05-01
Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.
Directory of Open Access Journals (Sweden)
F. Ardhuin
2018-05-01
Full Text Available We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.
International Nuclear Information System (INIS)
Saitou, Y.; Yonesu, A.; Shinohara, S.; Ignatenko, M. V.; Kasuya, N.; Kawaguchi, M.; Terasaka, K.; Nishijima, T.; Nagashima, Y.; Kawai, Y.; Yagi, M.; Itoh, S.-I.; Azumi, M.; Itoh, K.
2007-01-01
The importance of reducing the neutral density to reach strong drift wave turbulence is clarified from the results of the extended magnetohydrodynamics and Monte Carlo simulations in a linear magnetized plasma. An upper bound of the neutral density relating to the ion-neutral collision frequency for the excitation of drift wave instability is shown, and the necessary flow velocity to excite this instability is also estimated from the neutral distributions. Measurements of the Mach number and the electron density distributions using Mach probe in the large mirror device (LMD) of Kyushu University [S. Shinohara et al., Plasma Phys. Control. Fusion 37, 1015 (1995)] are reported as well. The obtained results show a controllability of the neutral density and provide the basis for neutral density reduction and a possibility to excite strong drift wave turbulence in the LMD
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
International Nuclear Information System (INIS)
Chang, L.; Hole, M. J.; Corr, C. S.
2011-01-01
A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature, and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetized plasma [WOMBAT (waves on magnetized beams and turbulence)], with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalized rotation frequency, lower temperature, and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These results consolidate earlier claims that the density and floating potential oscillations are a resistive drift mode, driven by the density gradient. To our knowledge, this is the first detailed physics model of flowing plasmas in the diffusion region away from the RF source. Possible extensions to the model, including temperature nonuniformity and magnetic field oscillations, are also discussed.
Drift-Alfven wave mediated particle transport in an elongated density depression
International Nuclear Information System (INIS)
Vincena, Stephen; Gekelman, Walter
2006-01-01
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii ρ s =c s /ω ci . The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k perpendicular ρ s ∼0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles
Drift-Alfvén wave mediated particle transport in an elongated density depression
Vincena, Stephen; Gekelman, Walter
2006-06-01
Cross-field particle transport due to drift-Alfvén waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28ρs=cs/ωci. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k ⊥ρs˜0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.
A mini-max principle for drift waves and mesoscale fluctuations
International Nuclear Information System (INIS)
Itoh, S-I; Itoh, K
2011-01-01
A mini-max principle for the system of the drift waves and mesoscale fluctuations (e.g. zonal flows, etc) is studied. For the system of model equations a Lyapunov function is constructed, which takes the minimum when the stationary state is realized. The dynamical evolution describes the access to the state that is realized. The competition between different mesoscale fluctuations is explained. The origins of irreversibility that cause an approach to the stationary state are discussed. A selection rule among fluctuations is derived, and conditions, under which different kinds of mesocale fluctuations coexist, are investigated. An analogy of this minimum principle to the principle of 'minimum Helmholtz free energy' in thermal equilibrium is shown.
International Nuclear Information System (INIS)
Ware, A.S.; Diamond, P.H.
1993-01-01
The effects of a poloidally asymmetric ionization source on both dissipative toroidal drift wave stability and the generation of mean sheared parallel flow are examined. The first part of this work extends the development of a local model of ionization-driven drift wave turbulence [Phys. Fluids B 4, 877 (1992)] to include the effects of magnetic shear and poloidal source asymmetry, as well as poloidal mode coupling due to both magnetic drifts and the source asymmetry. Numerical and analytic investigation confirm that ionization effects can destabilize collisional toroidal drift waves. However, the mode structure is determined primarily by the magnetic drifts, and is not overly effected by the poloidal source asymmetry. The ionization source drives a purely inward particle flux, which can explain the anomalously rapid uptake of particles which occurs in response to gas puffing. In the second part of this work, the role poloidal asymmetries in both the source and turbulent particle diffusion play in the generation of sheared mean parallel flow is examined. Analysis indicates that predictions of sonic parallel shear flow [v parallel (r)∼c s ] are an unphysical result of the assumption of purely parallel flow (i.e., v perpendicular =0) and the neglect of turbulent parallel momentum transport. Results indicate that the flow produced is subcritical to the parallel shear flow instability when diamagnetic effects are properly considered
International Nuclear Information System (INIS)
Bulgakov, A. A.; Shramkova, O. V.
2006-01-01
The damping of waves of the charge carrier density in a periodic semiconductor structure in an external electric field is investigated under the assumption that the period of the structure is much smaller than the electromagnetic radiation wavelength. The threshold conditions for the instability of carrier density waves propagating obliquely to the direction of the electric current are obtained. The existence of a resistive instability that can develop at drift velocities both higher and lower than the plasmon phase velocity is predicted
van den Bremer, Ton S.; Taylor, Paul H.
2014-11-01
Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.
Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Adnan, Muhammad; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); Physics Institute, Federal University of Rio Grande do Sul (UFRGS), 915051-970, Porto Alegre, RS (Brazil)
2014-09-15
Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.
Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas
Adnan, Muhammad; Mahmood, S.; Qamar, Anisa
2014-09-01
Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.
Coupled energy-drift and force-balance equations for high-field hot-carrier transport
International Nuclear Information System (INIS)
Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.
2005-01-01
Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation, which depends on the distribution of electrons interacting with phonons. The work done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field direction. The importance of this anisotropic distribution is demonstrated through a comparison with the isotropic energy-balance equation, from which we find that defining a state-independent electron temperature becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation and the Boltzmann scattering equation for hot phonons
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
International Nuclear Information System (INIS)
Birkenmeier, Gregor
2012-01-01
For more than 60 years, fusion scientists try to confine a plasma by means of external magnetic fields in order to achieve appropriately high densities and temperatures for the ignition of nuclear fusion. Despite of great progress in the design of confinement concepts, which are considered for the confinement of burning plasmas in the near future, theoretical plasma physics promises further confinement improvements using novel magnetic field geometries. Therefor, the key is the minimization of turbulent transport by choosing appropiate magnetic field geometries, which necessitates a fundamental understanding of the influence of magnetic field geometry on plasma turbulence. There are several theoretical works on turbulent plasma dynamics in three-dimensional geometries, but only a few experimental studies for validation of the theoretical results exist. Hence, the present work aims at providing experimental data for comparison with theory and to gain insights into the interplay between drift-wave turbulence and magnetic field geometry. By means of two multi-probe arrays, local density and potential fluctuations are measured in low-temperature plasmas at 128 positions on a single flux surface of the stellarator TJ-K with high temporal resolution. Using methods of statistical timeseries analysis structure sizes and dynamic properties of the drift-wave turbulence in TJ-K are determined. Thereby, it is shown that the size of turbulent structures perpendicular to the magnetic field is reduced in regions of high absolute local magnetic shear. In addition, a poloidal displacement with respect to the magnetic field lines and a complex propagation pattern of parallelly extended turbulent structures is found. Also, poloidal profiles of turbulent transport are calculated from the probe data. The maximum transport is found to be poloidally localized in a region of negative normal curvature (unfavourable curvature). In addition, the results point to an influence of geodesic
Nonlinear nonresonant forces by radio-frequency waves in plasmas
International Nuclear Information System (INIS)
Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.
2007-01-01
Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas
May, Jody C; McLean, John A
2003-06-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.
Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere
International Nuclear Information System (INIS)
Li Ziliang
2008-01-01
By introducing a new transformation, a new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system, which extends Fan's direct algebraic method to the case when r > 4. The solutions of a first-order nonlinear ordinary differential equation with a higher degree nonlinear term and Fan's direct algebraic method of obtaining exact solutions to nonlinear partial differential equations are applied to the combined KdV-mKdV-GKdV equation, which is derived from a simple incompressible non-hydrostatic Boussinesq equation with the influence of thermal forcing and is applied to investigate internal gravity waves in the atmosphere. As a result, by taking advantage of the new first-order nonlinear ordinary differential equation with a fifth-degree nonlinear term and an eighth-degree nonlinear term, periodic wave solutions associated with the Jacobin elliptic function and the bell and kink profile solitary wave solutions are obtained under the effect of thermal forcing. Most importantly, the mechanism of propagation and generation of the periodic waves and the solitary waves is analysed in detail according to the values of the heating parameter, which show that the effect of heating in atmosphere helps to excite westerly or easterly propagating periodic internal gravity waves and internal solitary waves in atmosphere, which are affected by the local excitation structures in atmosphere. In addition, as an illustrative sample, the properties of the solitary wave solution and Jacobin periodic solution are shown by some figures under the consideration of heating interaction
Model Testing of Forces in the Reflector Joint and Mooring Forces on Wave Dragon
DEFF Research Database (Denmark)
Gilling, Lasse; Kofoed, Jens Peter; Tedd, James
This report aims to present the results of a test series analysing the forces in the redesigned reflector joint and the forces in the main mooring link. The resluts presented are intended to be used by WD project partners, for the design and construction of the joint on the prototype Wave Dragon...... at Nissum Bredning and for future North Sea scale Wave Dragon. Lengths, forces and other dimentions presented are scaled to the North sea Wave Dragon unless otherwise specified....
BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL
International Nuclear Information System (INIS)
KINSEY, J.E.; ONJUN, T.; BATEMAN, G.; KRITZ, A.; PANKIN, A.; STAEBLER, G.M.; WALTZ, R.E.
2002-01-01
OAK-B135 The GLF23 and Multi-Mode (MM95) transport models are used along with a model for the H-mode pedestal to predict the fusion performance for the ITER, FIRE, and IGNITOR tokamak designs. The drift-wave predictive transport models reproduce the core profiles in a wide variety of tokamak discharges, yet they differ significantly in their response to temperature gradient (stiffness). Recent gyro-kinetic simulations of ITG/TEM and ETG modes motivate the renormalization of the GLF23 model. The normalizing coefficients for the ITG/TEM modes are reduced by a factor of 3.7 while the ETG mode coefficient is increased by a factor of 4.8 in comparison with the original model. A pedestal temperature model is developed for type I ELMy H-mode plasmas based on ballooning mode stability and a theory-motivated scaling for the pedestal width. In this pedestal model, the pedestal density is proportional to the line-averaged density and the pedestal temperature is inversely related to the pedestal density
Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E
2012-10-16
There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.
A statistical study of gyro-averaging effects in a reduced model of drift-wave transport
da Fonseca, J. D.; del-Castillo-Negrete, D.; Sokolov, I. M.; Caldas, I. L.
2016-08-01
A statistical study of finite Larmor radius (FLR) effects on transport driven by electrostatic drift-waves is presented. The study is based on a reduced discrete Hamiltonian dynamical system known as the gyro-averaged standard map (GSM). In this system, FLR effects are incorporated through the gyro-averaging of a simplified weak-turbulence model of electrostatic fluctuations. Formally, the GSM is a modified version of the standard map in which the perturbation amplitude, K0, becomes K0J0(ρ ̂ ) , where J0 is the zeroth-order Bessel function and ρ ̂ is the Larmor radius. Assuming a Maxwellian probability density function (pdf) for ρ ̂ , we compute analytically and numerically the pdf and the cumulative distribution function of the effective drift-wave perturbation amplitude K0J0(ρ ̂ ) . Using these results, we compute the probability of loss of confinement (i.e., global chaos), Pc, and the probability of trapping in the main drift-wave resonance, Pt. It is shown that Pc provides an upper bound for the escape rate, and that Pt provides a good estimate of the particle trapping rate. The analytical results are compared with direct numerical Monte-Carlo simulations of particle transport.
International Nuclear Information System (INIS)
Ribeiro, T.; Scott, B.
2007-01-01
The field line connection of a tokamak sheared magnetic field has an important impact on turbulence, by ensuring a finite parallel dynamical response for every degree of freedom available in the system. This constitutes the main property which distinguishes closed from open flux surfaces in such a device. In the latter case, the poloidal periodicity of the magnetic field is replaced by a Debye sheath arising where the field lines strike the limiter/divertor plates. This is enough to break the field line connection constraint and allow the existence of convective cell modes, leading to a change in the character of the turbulence from drift wave- (closed flux surfaces) to interchange-type (open flux surfaces), and hence increasing the turbulent transport observed. Here we study the effect of changing the poloidal position of the limiter/divertor plates, using the three-dimensional electromagnetic gyrofluid turbulence code GEM, which has time dependently self consistent field aligned flux tube coordinates. For the closed flux surfaces, the globally consistent periodic boundary conditions are invoked, and for open flux surfaces a standard Debye sheath is used at the striking points. In particular, the use of two limiter positions simultaneously, top and bottom, is in order, such to allow a separation between the inboard and outboard sides of the tokamak. This highlights the differences between those two regions of the tokamak, where the curvature is either favourable (former) or unfavourable (latter), and further makes room for future experimental qualitative comparisons, for instance, on double null configurations of the tokamak ASDEX Upgrade. (author)
Validation study of a drift-wave turbulence model for CSDX linear plasma device
Vaezi, P.; Holland, C.; Thakur, S. C.; Tynan, G. R.
2017-09-01
A validation study of self-regulating drift-wave turbulence/zonal flow dynamics in the Controlled Shear Decorrelation Experiment linear plasma device using Langmuir probe synthetic diagnostics is presented in this paper. We use a set of nonlocal 3D equations, which evolve density, vorticity, and electron temperature fluctuations, and include proper sheath boundary conditions. Nonlinear simulations of these equations are carried out using BOUndary Turbulence (BOUT++) framework. To identify the dominant parametric dependencies of the model, a linear growth rate sensitivity analysis is performed using input parameter uncertainties, which are taken from the experimental measurements. For the direct comparison of nonlinear simulation results to experiment, we use synthetic Langmuir probe diagnostics to generate a set of synthetic ion saturation current and floating potential fluctuations. In addition, comparisons of azimuthal velocities determined via time-delay estimation, and nonlinear energy transfer are shown. We observe a significant improvement of model-experiment agreement relative to the previous 2D simulations. An essential component of this improved agreement is found to be the effect of electron temperature fluctuations on floating potential measurements, which introduces clear amplitude and phase shifts relative to the plasma potential fluctuations in synthetically measured quantities, where the simulations capture the experimental measurements in the core of plasma. However, the simulations overpredict the fluctuation levels at larger radii. Moreover, systematic simulation scans show that the self-generated E × B zonal flows profile is very sensitive to the steepening of density equilibrium profile. This suggests that evolving both fluctuations and equilibrium profiles, along with the inclusion of modest axial variation of radial profiles in the model are needed for further improvement of simulation results against the experimental measurements.
Polarization-dependent ponderomotive gradient force in a standing wave
Smorenburg, P.W.; Kanters, J.H.M.; Lassise, A.; Brussaard, G.J.H.; Kamp, L.P.J.; Luiten, O.J.
2011-01-01
The ponderomotive force is derived for a relativistic charged particle entering an electromagnetic standing wave with a general three-dimensional field distribution and a nonrelativistic intensity, using a perturbation expansion method. It is shown that the well-known ponderomotive gradient force
Ponderomotive modification of drift tearing modes
International Nuclear Information System (INIS)
Urquijo, G.; Singh, R.; Sen, A.
1997-01-01
The linear characteristics of drift tearing modes are investigated in the presence of a significant background of radio-frequency (RF) waves in the ion cyclotron range of frequencies. The ponderomotive force, arising from the radial gradients in the RF field energy, is found to significantly modify the inner layer solutions of the drift tearing modes. It can have a stabilizing influence, even at moderate RF powers, provided the field energy has a decreasing radial profile at the mode rational surface. (author)
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Wave forces on cylinder submerged horizontally in shallow water
Energy Technology Data Exchange (ETDEWEB)
Mitani, H; Sasaki, K; Kobayashi, T; Nomura, N; Kawabe, H; Sugimoto, H
1976-12-01
To estimate the wave forces on offshore and/or coastal structures, the ideal method is undoubtedly to obtain the more accurate solution of hydrodynamic equations under suitable boundary conditions. However, in practice, it is difficult to introduce precise solutions under present technical levels because some important problems still remain. Among them is the unsteady boundary layers with separation around the objects. Consequently, every effort is being made in this field to approximate these conditions. Among these approximations, the Diffraction Wave Theory and the Morrison's Method are the most famous means in practice, although both still have some problems. Some problems with the traditional Finite Amplitude Wave Theories such as Stokes and Cnoidal Wave Theories are examined, and by applying additional computed results to the Morrison's formula, the estimated formula for wave forces on a cylinder submerged horizontally in shallow water is introduced. Subsequently, the applicability of the formula and also the specific characteristics of wave forces on a horizontally settled cylinder are investigated in detail, attaching first importance to the distinctions from the vertically settled cylinder, based on the comparison of computed results with experimental results. The experiments were carried out on two different diameters of cylinder, 70 mm and 140 mm, and bottom slopes of the experimental tanks, /sup 1///sub 100/ and /sup 1///sub 30/, under various conditions varying water depth, wave period, wave height and also setting position of cylinder.
Generation of intermittent gravitocapillary waves via parametric forcing
Castillo, Gustavo; Falcón, Claudio
2018-04-01
We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.
Directory of Open Access Journals (Sweden)
L. J. Baddeley
Full Text Available HF radar backscatter, which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø, has provided coherent radar ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by both the CUTLASS HF radars and the EISCAT UHF radar. Data from the SP-UK-OUCH experiment have revealed small-scale (high azimuthal wave number, m
Key words. Ionosphere (active experiments; wave-particle interactions Magnetospheric physics (MHD waves and instabilities
Directory of Open Access Journals (Sweden)
L. J. Baddeley
2002-09-01
Full Text Available HF radar backscatter, which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø, has provided coherent radar ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by both the CUTLASS HF radars and the EISCAT UHF radar. Data from the SP-UK-OUCH experiment have revealed small-scale (high azimuthal wave number, m
International Nuclear Information System (INIS)
Kim, Eun-jin; Diamond, P.H.; Malkov, M.
2003-01-01
Two examples of non-perturbative models of intermittency in drift-wave (DW) turbulence are presented. The first is a calculation of the probability distribution function (PDF) of ion heat flux due to structures in ion temperature gradient turbulence. The instanton calculus predicts the PDF to be a stretched exponential. The second is a derivation of a bi-variate Burgers equation for the evolution of the DW population density in the presence of radially extended streamer flows. The PDF of fluctuation intensity avalanches is determined. The relation of this to turbulence spreading, observed in simulations, is discussed. (author)
International Nuclear Information System (INIS)
Boie, R.A.; Radeka, V.; Rehak, P.; Xi, D.M.
1980-11-01
The feasibility of using an anode wire and surrounding electrodes in drift chambers as a transmission line for second coordinate readout has been studied. The method is based on propagation of the electromagnetic wave along the anode wire is determined by measurement, in an optimized electronic readout system, of the time difference between the arrivals of the signal to the ends of the wire. The resolution obtained on long wires (approx. 2 meters) is about 2 cm FWHM for minimum ionizing particles at a gas gain of approx. = 10 5
Circuit Design of Surface Acoustic Wave Based Micro Force Sensor
Directory of Open Access Journals (Sweden)
Yuanyuan Li
2014-01-01
Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.
Numerical method for wave forces acting on partially perforated caisson
Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou
2015-04-01
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.
Understanding Rossby wave trains forced by the Indian Ocean Dipole
McIntosh, Peter C.; Hendon, Harry H.
2018-04-01
Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.
Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity
Kiladis, G. N.; Biello, J. A.; Straub, K. H.
2012-12-01
It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG
International Nuclear Information System (INIS)
Kim, Eun-jin; Diamond, P.H.
2003-01-01
The dynamics of and an interplay among structures (mean shear flows, zonal flows, and generalized Kelvin-Helmholtz modes) are studied in drift wave turbulence. Mean shear flows are found to inhibit the nonlinear generation of zonal flows by weakening the coherent modulation response of the drift wave spectrum. Based on this result, a minimal model for the L→H (low- to high-confinement) transition is proposed, which involves the amplitude of drift waves, zonal flows, and the density gradient. A transition to quiescent H-mode sets in as the profile becomes sufficiently steep to completely damp out drift waves, following an oscillatory transition phase where zonal flows regulate drift wave turbulence. The different roles of mean flows and zonal flows are elucidated. Finally, the effect of poloidally nonaxisymmetric structures (generalized Kelvin-Helmholtz mode) on anomalous transport is investigated, especially in reference to damping of collisionless zonal flows. Results indicate that nonlinear excitation of this structure can be potentially important in enhancing anomalous transport as well as in damping zonal flows
International Nuclear Information System (INIS)
Horton, W.; Correa, C.; Chagelishvili, G. D.; Avsarkisov, V. S.; Lominadze, J. G.; Perez, J. C.; Kim, J.-H.; Carter, T. A.
2009-01-01
According to recent experiments, magnetically confined fusion plasmas with ''drift wave-zonal flow turbulence'' (DW-ZF) give rise to broadband electromagnetic waves. Sharapov et al. [Europhysics Conference Abstracts, 35th EPS Conference on Plasma Physics, Hersonissos, 2008, edited by P. Lalousis and S. Moustaizis (European Physical Society, Switzerland, 2008), Vol. 32D, p. 4.071] reported an abrupt change in the magnetic turbulence during L-H transitions in Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] plasmas. A broad spectrum of Alfvenic-like (electromagnetic) fluctuations appears from ExB flow driven turbulence in experiments on the large plasma device (LAPD) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. Evidence of the existence of magnetic fluctuations in the shear flow region in the experiments is shown. We present one possible theoretical explanation of the generation of electromagnetic fluctuations in DW-ZF systems for an example of LAPD experiments. The method used is based on generalizing results on shear flow phenomena from the hydrodynamics community. In the 1990s, it was realized that fluctuation modes of spectrally stable nonuniform (sheared) flows are non-normal. That is, the linear operators of the flows modal analysis are non-normal and the corresponding eigenmodes are not orthogonal. The non-normality results in linear transient growth with bursts of the perturbations and the mode coupling, which causes the generation of electromagnetic waves from the drift wave-shear flow system. We consider shear flow that mimics tokamak zonal flow. We show that the transient growth substantially exceeds the growth of the classical dissipative trapped-particle instability of the system.
Modelling of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, M.; Schmidt, J.; Salo, H.
2014-04-01
saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.
Nonlinear correlations in phase-space resolved fluctuations at drift wave frequencies
Energy Technology Data Exchange (ETDEWEB)
Skiff, F [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Uzun, I [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Diallo, A [Centre de Recherches en Physique des Plasams EPF, Lausanne (Switzerland)
2007-12-15
In an effort to better understand plasma transport, we measure fluctuations associated with drift instabilities resolved in the ion phase-space. Primary attention is given to fluctuations near the electron drift frequency where there are two general components to the observed fluctuations. From two (spatial) point measurements of the ion distribution function with a variable separation along the magnetic field, a number of statistical measures of the fluctuations are calculated including cross-correlation and cross-bicoherence. Both fluid ({omega}/k >> v{sub ti}) and kinetic ({omega}/k {approx} v{sub ti}) components are observed in the fluctuations. The nonlinear interactions are found to depend strongly on the ion particle velocity.
Analyses of Current And Wave Forces on Velocity Caps
DEFF Research Database (Denmark)
Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.
2015-01-01
Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...
Electromagnetic forces and torques in nanoparticles irradiated by plane waves
International Nuclear Information System (INIS)
Garcia de Abajo, F.J.
2004-01-01
Optical tweezers and optical lattices are making it possible to control small particles by means of electromagnetic forces and torques. In this context, a method is presented in this work to calculate electromagnetic forces and torques for arbitrarily-shaped objects in the presence of other objects illuminated by a plane wave. The method is based upon an expansion of the electromagnetic field in terms of multipoles around each object, which are in turn used to derive forces and torques analytically. The calculation of multipole coefficients are obtained numerically by means of the boundary element method. Results are presented for both spherical and non-spherical objects
Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo
2018-04-01
This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.
Directory of Open Access Journals (Sweden)
Florian Pielmeier
2014-04-01
Full Text Available In frequency modulation atomic force microscopy (FM-AFM the stability of the eigenfrequency of the force sensor is of key importance for highest precision force measurements. Here, we study the influence of temperature changes on the resonance frequency of force sensors made of quartz, in a temperature range from 4.8–48 K. The sensors are based on the qPlus and length extensional principle. The frequency variation with temperature T for all sensors is negative up to 30 K and on the order of 1 ppm/K, up to 13 K, where a distinct kink appears, it is linear. Furthermore, we characterize a new type of miniaturized qPlus sensor and confirm the theoretically predicted reduction in detector noise.
International Nuclear Information System (INIS)
Woo, Sung-Jae; Hong, Jin Hee; Kim, Tae Yun; Bae, Byung Wook; Lee, Kyoung J
2008-01-01
Understanding spiral reentry wave dynamics in cardiac systems is important since it underlies various cardiac arrhythmia including cardiac fibrillation. Primary cultures of dissociated cardiac cells have been a convenient and useful system for studying cardiac wave dynamics, since one can carry out systematic and quantitative studies with them under well-controlled environments. One key drawback of the dissociated cell culture is that, inevitably, some spatial inhomogeneities in terms of cell types and density, and/or the degree of gap junction connectivity, are introduced to the system during the preparation. These unintentional spatial inhomogeneities can cause some non-trivial wave dynamics, for example, the entrainment dynamics among different spiral waves and the generation of complex-oscillatory spiral waves. The aim of this paper is to quantify these general phenomena in an in vitro cardiac system and provide explanations for them with a simple physiological model having some realistic spatial inhomogeneities incorporated
Hwu, E-T; Illers, H; Wang, W-M; Hwang, I-S; Jusko, L; Danzebrink, H-U
2012-01-01
In this work, an anti-drift and auto-alignment mechanism is applied to an astigmatic detection system (ADS)-based atomic force microscope (AFM) for drift compensation and cantilever alignment. The optical path of the ADS adopts a commercial digital versatile disc (DVD) optical head using the astigmatic focus error signal. The ADS-based astigmatic AFM is lightweight, compact size, low priced, and easy to use. Furthermore, the optical head is capable of measuring sub-atomic displacements of high-frequency AFM probes with a sub-micron laser spot (~570 nm, FWHM) and a high-working bandwidth (80 MHz). Nevertheless, conventional DVD optical heads suffer from signal drift problems. In a previous setup, signal drifts of even thousands of nanometers had been measured. With the anti-drift and auto-alignment mechanism, the signal drift is compensated by actuating a voice coil motor of the DVD optical head. A nearly zero signal drift was achieved. Additional benefits of this mechanism are automatic cantilever alignment and simplified design.
Liang, Hui; Chen, Xiaobo
2017-10-01
A novel multi-domain method based on an analytical control surface is proposed by combining the use of free-surface Green function and Rankine source function. A cylindrical control surface is introduced to subdivide the fluid domain into external and internal domains. Unlike the traditional domain decomposition strategy or multi-block method, the control surface here is not panelized, on which the velocity potential and normal velocity components are analytically expressed as a series of base functions composed of Laguerre function in vertical coordinate and Fourier series in the circumference. Free-surface Green function is applied in the external domain, and the boundary integral equation is constructed on the control surface in the sense of Galerkin collocation via integrating test functions orthogonal to base functions over the control surface. The external solution gives rise to the so-called Dirichlet-to-Neumann [DN2] and Neumann-to-Dirichlet [ND2] relations on the control surface. Irregular frequencies, which are only dependent on the radius of the control surface, are present in the external solution, and they are removed by extending the boundary integral equation to the interior free surface (circular disc) on which the null normal derivative of potential is imposed, and the dipole distribution is expressed as Fourier-Bessel expansion on the disc. In the internal domain, where the Rankine source function is adopted, new boundary integral equations are formulated. The point collocation is imposed over the body surface and free surface, while the collocation of the Galerkin type is applied on the control surface. The present method is valid in the computation of both linear and second-order mean drift wave loads. Furthermore, the second-order mean drift force based on the middle-field formulation can be calculated analytically by using the coefficients of the Fourier-Laguerre expansion.
The drift force on an object in an inviscid weakly-varying rotational flow
Energy Technology Data Exchange (ETDEWEB)
Wallis, G.B. [Dartmouth College, Hanover, NH (United States)
1995-12-31
The force on any stationary object in an inviscid incompressible extensive steady flow is derived in terms of the added mass tensor and gradient of velocity of the undisturbed fluid. Taylor`s theorem is extended to flows with weak vorticity. There are possible applications to constitutive equations for two-phase flow.
Reading drift in flow rate sensors caused by steady sound waves
International Nuclear Information System (INIS)
Maximiano, Celso; Nieble, Marcio D.; Migliavacca, Sylvana C.P.; Silva, Eduardo R.F.
1995-01-01
The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs
Large-scale laboratory observations of wave forces on a highway bridge superstructure.
2011-10-01
The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...
SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
He, Jiansen; Pei, Zhongtian; Wang, Linghua; Tu, Chuanyi; Zhang, Lei [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Salem, Chadi, E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)
2015-06-01
Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover, no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.
The SPS acceleration system: travelling wave drift-tube structure for the CERN SPS
International Nuclear Information System (INIS)
Dome, G.
1976-01-01
The SPS accelerating structure is essentially a high energy proton linac, except for a small frequency swing during the acceleration cycle. It is operated almost CW with a travelling wave giving an energy gain around 0.1 MeV/m. The guide-lines for the design of such a structure are explained, and practical solutions are described. (author)
Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation
Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.
2015-12-01
> ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.
Drift-Alfven waves induced optical emission fluctuations in Aditya tokamak
International Nuclear Information System (INIS)
Manchanda, R.; Ghosh, J.; Chattopadhyay, P. K.; Chowdhuri, M. B.; Banerjee, Santanu; Ramasubramanian, N.; Patel, Ketan M.; Kumar, Vinay; Vasu, P.; Tanna, R. L.; Paradkar, B.; Gupta, C. N.; Bhatt, S. B.; Raju, D.; Jha, R.; Atrey, P. K.; Joisa, S.; Rao, C. V. S.; Saxena, Y. C.
2010-01-01
In Aditya tokamak [S. B. Bhatt et al. Indian J. Pure Appl. Phys. 27, 710 (1989)], an increase in the H α and C 2+ intensity fluctuations from the edge region is observed with an increase in the magnetohydrodynamic (MHD) activity. Very small fluctuation amplitudes of H α and C 2+ intensity are observed in discharges where there is no MHD activity compared to the discharges with MHD activity. These fluctuations in the H α and C 2+ , measured by optical filter--photomultiplier tube combination--are modulated by Mirnov oscillations having a dominant peak with a common frequency ∼7-10 kHz. Further investigation reveals the presence of strong coherent fluctuations in density and floating potential at same frequency as well. These observations indicate the existence of a nonelectrostatic instability, which may be based on the coupled mode of the drift mode and the Alfven mode. The coherent density fluctuations give rise to the experimentally observed coherent H α and C 2+ intensity fluctuations.
International Nuclear Information System (INIS)
Leconte, M.; Diamond, P.H.; Xu, Y.
2014-01-01
We study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows and confinement in the framework of resistive drift-wave turbulence. This work was motivated, in parts, by experiments reported at the IAEA 2010 conference (Xu et al 2011 Nucl. Fusion 51 062030) which showed a decrease of long-range correlations during the application of RMPs. We derive and apply a zero-dimensional predator–prey model coupling the drift-wave–zonal-mode system (Leconte and Diamond 2012 Phys. Plasmas 19 055903) to the evolution of mean quantities. This model has both density-gradient drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. This model allows a description of the full L–H transition evolution with RMPs, including the mean sheared flow evolution. The key results are the following: (i) the L–I and I–H power thresholds both increase with RMP amplitude | b-tilde x |, the relative increase of the L–I threshold scales as ΔP LI ∝| b-tilde x | 2 ν ∗ −2 ρ s −2 , where ν * is edge collisionality and ρ s is the sound gyroradius. (ii) RMPs are predicted to decrease the hysteresis between the forward and back-transition. (iii) Taking into account the mean density evolution, the density profile—sustained by the particle source—has an increased turbulent diffusion compared with the reference case without RMPs which provides one possible explanation for the density pump-out effect. (paper)
Energy Technology Data Exchange (ETDEWEB)
Maneva, Y. G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Araneda, J. A. [Departamento de Física, Universidad de Concepción, 4070386 (Chile); Marsch, E., E-mail: yana.g.maneva@nasa.gov [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany)
2014-03-10
We study the preferential heating and differential acceleration of minor ions by dissipation of ion-acoustic waves (IAWs) generated by parametric instabilities of a finite-amplitude monochromatic Alfvén-cyclotron pump wave. We consider the associated kinetic effects of Landau damping and nonlinear pitch-angle scattering of protons and α particles in the tenuous plasma of coronal holes and the fast solar wind. Various data collected by Wind spacecraft show signatures for a local transverse heating of the minor ions, presumably by Alfvén-cyclotron wave dissipation, and an unexpected parallel heating by a so far unknown mechanism. Here, we present the results from a set of 1.5 dimensional hybrid simulations in search for a plausible explanation for the observed field-aligned kinetic features in the fast solar wind minor ions. We investigate the origin and regulation of ion relative drifts and temperature anisotropies in low plasma β, fast solar wind conditions. Depending on their initial drifts, both ion species can heat up not only transversely through cyclotron resonance and non-resonant wave-particle interactions, but also strongly in the parallel direction by Landau damping of the daughter IAWs. We discuss the dependence of the relative ion drifts and temperature anisotropies on the plasma β of the individual species and we describe the effect of the pump wave amplitude on the ion heating and acceleration.
International Nuclear Information System (INIS)
Karlicky, M.
1978-01-01
After the proton flare of July 3, 1974 a hitherto unclassified phenomenon with a diffusion ''banner'' and with a considerably decelerating drift within the type II and III burst drifts range was observed in the radio dynamic spectrum between 410 and 470 MHz. The hypothesis is presented that the phenomenon is due to the collision of two shock waves, propagating against one another, during which the flux of electromagnetic radiation is considerably enhanced relative to the sum of the fluxes of the electromagnetic radiation of the individual shock waves. The Newkirk 4-density model of the corona is used to describe the phenomenon, the mechanism of plasmon-plasmon conversion in electromagnetic radiation with a double plasma frequency is considered and, according to the parameters derived from the dynamic spectrum, the velocities, radii of curvature and direction of propagation of the anticipated shock waves are analysed in a simplifed symmetric case. (author)
International Nuclear Information System (INIS)
Eliseev, Yu.N.; Stepanov, K.N.
1983-01-01
In the drift motion approximation solution of the problem is obtained on the motion of a nonrelativistic charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave under cherenkov and modified cyclotron resonances. The static radial electric field potential is supposed to be close to the parabolic one. The drift motion equations and their integrals are preseOted. The experimentally obtained effect of plasma ionic component division in the crossed fields under the excitation of ion cyclotron oscillations is explained with the help of the theory developed in the paper
Institute of Scientific and Technical Information of China (English)
DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian
2012-01-01
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14％ of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14％,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75％ on average.
Theory of second order tide forces and gravitational wave experiment
International Nuclear Information System (INIS)
Tammelo, R.R.
1989-01-01
Theory of tide forces square by vector radius is presented. The mechanism of 10 18 time gravitational wave pressure increase in case of radiation from pulsars and 10 15 time one in case of standard burst of radiation from astrophysical catastrophe is proposed. This leads to secular shifts of longitudinally free receivers by 10 -16 cm during 10 5 s in the first case and by 10 -19 cm during 10 s in the second one. A possibility of increase effect modulation is available. It is indicated that it is possible to construct a device which produces more energy at the expense of square tide forces than at the expense of linear ones. 21 refs
Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence
International Nuclear Information System (INIS)
Uzawa, K.; Li Jiquan; Kishimoto, Y.
2009-01-01
The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determined not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.
Development of a wave-induced forcing threshold for nearshore impact of Wave Energy Converter arrays
O'Dea, A.; Haller, M. C.; Ozkan-Haller, H. T.
2016-02-01
Wave-induced forcing is a function of spatial gradients in the wave radiation stresses and is the main driver of alongshore currents, rip currents, and nearshore sediment transport. The installation of nearshore Wave Energy Converter (WEC) arrays may cause significant changes in the surf zone radiation stresses and could therefore impact nearshore littoral processes. In the first part of this study, a new threshold for nearshore hydrodynamic impact due to the presence of WEC devices is established based on changes in the alongshore radiation stress gradients shoreward of WEC arrays. The threshold is defined based on the relationship between nearshore radiation stresses and alongshore currents as observed in field data. Next, we perform a parametric study of the nearshore impact of WEC arrays using the SWAN wave model. Trials are conducted on an idealized, alongshore-uniform beach with a range of WEC array configurations, locations, and incident wave conditions, and conditions that generate radiation stress gradients above the impact threshold are identified. Finally, the same methodology is applied to two wave energy test sites off the coast of Newport, OR with more complicated bathymetries. Although the trends at the field sites are similar to those seen in the parametric study, the location and extent of the changes in the alongshore radiation stress gradients appear to be heavily influenced by the local bathymetry.
Wave kinematics and response of slender offshore structures. Vol 5: Wave forces and responses
Energy Technology Data Exchange (ETDEWEB)
Pedersen, L.M.; Riber, H.J.
1999-08-01
A load measuring system (LMS) and a wave measuring system (WMS) has been used on the North Sea platform Tyra. The LMS consists of an instrumented pipe placed vertically in the crest zone of high and steep waves. The WMS consists of an unique sonar system placed on the sea floor. Simultaneous measurements are carried out of the kinematics of waves and currents and the response of the instrumented pipe during a period of five month in the winter 1994/95. Numerical calculations with LIC22 are carried out of the response of the LMS applying the measured wave and current kinematics. The responses are compared to the measured responses of the LMS. The comparison is based on the statistical main properties of the calculated and measured response as the kinematic field is measured 150 metres away from the instrumented pipe. From the analyses the main parameters (reduced velocity V{sub R} and correlation length l{sub c}) for vortex induced vibrations (VIV) are calibrated and the main environmental conditions for VIV are determined. The hydrodynamic coefficients determining the wave and current forces on slender structures are studied (drag coefficient C{sub D} and added mass coefficient C{sub M}). Further, the effect on the drag coefficient due to air blending in the upper part of the wave is determined. (au)
Paraskevov, A V; Zendrikov, D K
2017-03-23
We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.
Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.
2017-07-01
Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.
3-D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Z.
1998-01-01
The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...
An experimental study of irregular wave forces on multiple quasi-ellipse caissons
Ren, Xiaozhong; Zhang, Peng; Ma, Yuxiang; Meng, Yufan
2014-09-01
An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.
Le Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M. R.; Graham, D. B.; Fischer, D.; Retinò, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Norgren, C.; Ergun, R. E.; Goodrich, K. A.; Burch, J. L.; Torbert, R. B.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H. Y.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Turner, D. L.; Fennell, J. F.; Leonard, T.; Jaynes, A. N.
2017-12-01
We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
Newton force from wave function collapse: speculation and test
International Nuclear Information System (INIS)
Diósi, Lajos
2014-01-01
The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.
Approximate Stokes Drift Profiles in Deep Water
Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond
2014-09-01
A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.
Breaking wave impact forces on truss support structures for offshore wind turbines
Cieślikiewicz, Witold; Gudmestad, Ove T.; Podrażka, Olga
2014-05-01
Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Küste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gdańsk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Ghadirian, Amin
2017-01-01
Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values are co...... to the average shapes. For more nonlinear wave shapes, higher order terms has to be considered in order for the NewForce model to be able to predict the expected shapes.......Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values...... are compared across the sea states. It is found that the force shapes show a clear similarity when grouped after the values of the normalised peak force, F/(ρghR2), normalised depth h/(gT2p) and presented in a normalised time scale t/Ta. For the largest force events, slamming can be seen as a distinct ‘hat...
Energy Technology Data Exchange (ETDEWEB)
Imai, Y [Hiroshima University, Hiroshima (Japan); Okusu, M [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1997-12-31
A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Imai, Y. [Hiroshima University, Hiroshima (Japan); Okusu, M. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1996-12-31
A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.
Suppression of lower hybrid wave coupling due to the ponderomotive force
International Nuclear Information System (INIS)
Wilson, J.R.; Wong, K.L.
1980-04-01
The coupling efficiency from a slow-wave structure to lower hybrid waves is investigated experimentally. At moderate electric field strengths large edge density changes are observed. Wave trajectory modifications and departure from linear coupling are observed consistent with these changes and in good agreement with a simple nonlinear theory that includes the ponderomotive force
Approximate Stokes Drift Profiles and their use in Ocean Modelling
Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian
2016-04-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).
Horizontal Coherence of Wave Forces on Vertical Wall Breakwaters
DEFF Research Database (Denmark)
Archetti, Renata; Lamberti, Alberto; Martinelli, Luca
2001-01-01
Evaluation of spatial coherence of breaking waves is of great importance and of recent interest.......Evaluation of spatial coherence of breaking waves is of great importance and of recent interest....
Measurements of Waves in a Wind-wave Tank Under Steady and Time-varying Wind Forcing.
Zavadsky, Andrey; Shemer, Lev
2018-02-13
This manuscript describes an experimental procedure that allows obtaining diverse quantitative information on temporal and spatial evolution of water waves excited by time-dependent and steady wind forcing. Capacitance-type wave gauge and Laser Slope Gauge (LSG) are used to measure instantaneous water surface elevation and two components of the instantaneous surface slope at a number of locations along the test section of a wind-wave facility. The computer-controlled blower provides airflow over the water in the tank whose rate can vary in time. In the present experiments, the wind speed in the test section initially increases quickly from rest to the set value. It is then kept constant for the prescribed duration; finally, the airflow is shut down. At the beginning of each experimental run, the water surface is calm and there is no wind. Operation of the blower is initiated simultaneously with the acquisition of data provided by all sensors by a computer; data acquisition continues until the waves in the tank fully decay. Multiple independent runs performed under identical forcing conditions allow determining statistically reliable ensemble-averaged characteristic parameters that quantitatively describe wind-waves' variation in time for the initial development stage as a function of fetch. The procedure also allows characterizing the spatial evolution of the wave field under steady wind forcing, as well as decay of waves in time, once the wind is shut down, as a function of fetch.
Forcing of the ionosphere by waves from below
Czech Academy of Sciences Publication Activity Database
Laštovička, Jan
2006-01-01
Roč. 68, 3-5 (2006), s. 479-497 ISSN 1364-6826 R&D Projects: GA ČR GA205/04/2110 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Planetary waves * Tides * Gravity waves * Infrasound Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.448, year: 2006
Interaction of two walkers: wave-mediated energy and force.
Borghesi, Christian; Moukhtar, Julien; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves
2014-12-01
A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.
Stabilization of ion temperature gradient driven modes by lower hybrid wave in a tokamak
International Nuclear Information System (INIS)
Kuley, Animesh; Tripathi, V. K.
2009-01-01
A gyrokinetic formalism has been developed to study lower hybrid wave stabilization of ion temperature gradient driven modes, responsible for anomalous ion transport in the inner region of tokamak. The parametric coupling between lower hybrid and drift waves produce lower hybrid sideband waves. The pump and the sidebands exert a ponderomotive force on electrons, modifying the eigenfrequency of the drift wave and influencing the growth rate. The longer wavelength drift waves are destabilized by the lower hybrid wave while the shorter wavelengths are suppressed. The requiste lower hybrid power is in the range of ∼900 kW at 4.6 GHz.
International Nuclear Information System (INIS)
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-01-01
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.
Time-domain analysis of frequency dependent inertial wave forces on cylinders
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....
Bottom boundary layer forced by finite amplitude long and short surface waves motions
Elsafty, H.; Lynett, P.
2018-04-01
A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave
Ponderomotive force effects on slow-wave coupling
International Nuclear Information System (INIS)
Wilson, J.R.; Wong, K.L.
1982-01-01
Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω 2 /sub p/eVertical BarE/sub z/Vertical Bar 2 /8πω 2 nkappaT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value
Numerical simulation of nonlinear wave force on a quasi-ellipse caisson
Wang, Yongxue; Ren, Xiaozhong; Wang, Guoyu
2011-09-01
A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.
Aucan, Jérôme; Vendé-Leclerc, Myriam; Dumas, Pascal; Bricquir, Marianne
2017-10-01
In the present study, we examine how waves may contribute to the morphological changes of islets in the New Caledonia lagoon. We collected in situ wave data to investigate their characteristics. Three types of waves are identified and quantified: (1) high-frequency waves generated within the lagoon, (2) low-frequency waves originating from swells in the Tasman Sea, and (3) infragravity waves. We found out that high-frequency waves are the dominant forcing on the islets during typical wind events throughout the year, while infragravity waves, likely generated by the breaking of low-frequency waves, dominate during seasonal swell events. During swell events, low-frequency waves can also directly propagate to the islets through channels across the barrier reef, or be tidally modulated across the barrier reef before reaching the islets. Topographic surveys and beach profiles on one islet indicate areas with seasonal morphological changes and other areas with longer, interannual or decadal, erosion patterns. Although more data are needed to validate this hypothesis, we suspect that a relation exists between wave forcing and morphological changes of the islets.
Wave Forces on Offshore Windturbine Foundations on Borkum Riff
DEFF Research Database (Denmark)
Larsen, Brian Juul; Lykke Andersen, Thomas; Frigaard, Peter
This report is a summary of the reports by Juul Larsen and Frigaard (2004) and Lykke Andersen and Frigaard (November 2004) supplied with som additional force measurements on a cone shaped structure and some new force measurements on the concrete tripod....
DEFF Research Database (Denmark)
Burcharth, Hans F.; Liu, Zhou
1999-01-01
The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...
Effects of wave-induced forcing on a circulation model of the North Sea
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-04-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.
OpenDrift v1.0: a generic framework for trajectory modelling
Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn
2018-04-01
OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.
Calculation of the radiation force on a cylinder in a standing wave acoustic field
Energy Technology Data Exchange (ETDEWEB)
Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)
2005-04-15
We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.
Calculation of the radiation force on a cylinder in a standing wave acoustic field
International Nuclear Information System (INIS)
Haydock, David
2005-01-01
We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space
The deuteron bound state wave function with tensor forces
International Nuclear Information System (INIS)
Takemasa, Tadashi
1991-01-01
A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)
Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas
Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta
2018-04-01
Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.
Force-controlled absorption in a fully-nonlinear numerical wave tank
International Nuclear Information System (INIS)
Spinneken, Johannes; Christou, Marios; Swan, Chris
2014-01-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes
Stress Wave Propagation due to a Moving Force
DEFF Research Database (Denmark)
Rasmussen, K. M.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning
1999-01-01
In this paper the performance of two numerical methods of solving the problem of a time dependent moving force on the surface of an elastic continuum will be evaluated. One method is the finite element method (FEM) formulated in convected coordinates coupled with an absorbing boundary condition...
Elastic-wave propagation and the Coriolis force
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, E.N.
2016-01-01
In a coordinate system fixed with respect to the rotating Earth, the Coriolis force deflects an object sideways relative to its direction of motion. A beautiful demonstration of that effect is the Foucault pendulum, illustrated in figure 1a. As the long pendulum rocks back and forth, the Coriolis
Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
International Nuclear Information System (INIS)
Inagaki, Yosuke
1977-01-01
Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)
Estimation of excitation forces for wave energy converters control using pressure measurements
Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.
2017-08-01
Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.
Drag reduction by streamwise traveling wave-like Lorenz Force in channel flow
International Nuclear Information System (INIS)
Mamori, Hiroya; Fukagata, Koji
2011-01-01
Skin-friction drag reduction effect of traveling wave-like wall-normal Lorenz force in a fully developed turbulent channel flow is investigated by means of direct numerical simulation. A sinusoidal profile of the wall-normal body force is assumed as the Lorenz force. While upstream traveling waves reduce the drag in the case of blowing/suction, standing waves reduce it in the case of present forcing. Visualization of vortical structure under the standing wave-like wall-normal Lorenz force reveals that the near-wall streamwise vortices, which increase the skin-friction drag, disappear and spanwise roller-like vortices are generated instead. Three component decomposition of the Reynolds shear stress indicates that the spanwise roller-like vortices contribute to the negative Reynolds shear stress in the region near the wall, similarly to the case of laminar flows. While the analogy between the wall-normal and streamwise forcings can be expected, the statistics are found to exhibit different behaviors due to the difference in the energy flow.
Waves and instabilities in plasmas
International Nuclear Information System (INIS)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations
Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium
International Nuclear Information System (INIS)
Mori, W.B.; Katsouleas, T.
1992-01-01
A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with time varying dielectric properties [e.g., ε=ε(x-v 0 t)] is identified. In particular, when a laser ionizes a gas through which it propagates, a force is exerted on the medium at the ionization front that is proportional to (∇ε)E 2 rather than the usual (ε-1)∇E 2 . This force excites a wake in the plasma medium behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with 1D particle-in-cell simulations
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Z.
In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction....... The other is the force reduction due to the fact that the peak pressures do not occur simultaneously along the caisson, named peak-delay force reduction. These two reduction effects can also be expected with short-crested waves, as the short-crestedness of waves means the spreading of wave energy over...... a range of incident angles. The peak-delay force reduction, i.e. no simultaneous peak along caisson, is of particular interest because the equipment improvement in construction enables the building of considerably long caissons. In Japan length of caissons exceeds often 100m. This paper will concentrate...
International Nuclear Information System (INIS)
Qiu Kang; Tang Jun; Luo Jin-Ming; Ma Jun
2013-01-01
The cytosolic calcium system is inhomogenous because of the discrete and random distribution of ion channels on the ER membrane. It is well known that the spiral tip can be pinned by the heterogenous area, and the field can detach the spiral from the heterogeneity. We use the adventive field to counteract the attractive force exerting on the calcium spiral wave by the heterogeneity, then the strength of the adventive field is used to quantify the attractive force indirectly. Two factors determining the attractive force are studied. It is found that: (1) the attractive force sharply increases with size of the heterogeneity for small-size heterogeneity, whereas the force increases to a saturated value for large-size heterogeneity; (2) for large-size heterogeneity, the force almost remains constant unless the level of the heterogeneity vanishes, the force decreases to zero linearly and sharply, and for small-size heterogeneity, the force decreases successively with the level of the heterogeneity. Furthermore, it is found that the forces exist only when the spiral tip is very close to the heterogenous area. Our study may shed some light on the control or suppression of the calcium spiral wave
Self-induced dipole force and filamentation instability of a matter wave
DEFF Research Database (Denmark)
Saffman, M.
1998-01-01
The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...... forces leads, in the nonlinear regime, to filamentation of the atomic beam. Instability growth rates are calculated for atomic beams with both low and high phase space densities. In one transverse dimension an exact solution is found that describes a coupled optical and atomic soliton....
DEFF Research Database (Denmark)
Martinelli, Luca; Lamberti, Alberto; Frigaard, Peter
2007-01-01
This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under multidirectio......This paper addresses wave forces applied to vertical caisson breakwaters. Design diagrams are proposed to evaluate the reduction of the breaker wave force with increasing horizontal length of the units. A model in 1:100 scale of a typical Italian vertical breakwater was tested under...
Experimental Study of Wave Forces on Vertical Circular Cylinders in Long and Short Crested Sea
DEFF Research Database (Denmark)
Høgedal, Michael
on the safe side, as the directional spreading of the wave field Ieads to reduced horizontal velocities and acceleration; in the fluid and hence a reduction of the resultant and in-line wave forces on the structure. The directional spreading of the horizontal velocity field generally causes an increase...... with miniature pressure transducers. The experiments were carried out in the 3-D wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University and in the off-shore basin at the Danish Hydraulic Institute....
International Nuclear Information System (INIS)
Schoute-Vanneck, H.; Scourfield, M.W.J.; Nielsen, E.
1990-01-01
Characteristics of eastward drifting forms, previously described in the literature as black aurorae, have been identified in low-light level TV camera data. The TV field of view was within the field of view of STARE and that of an all-sky camera. On the basis of these observations the authors propose that these auroral forms are a manifestation of folds or waves on the borders of auroral bands propagating along the dark regions between neighboring auroral bands. Conditions under which the folds or waves occur are compatible with their formation by the Kelvin-Helmholtz electrostatic instability
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Digital Repository Service at National Institute of Oceanography (India)
Ram, P.S.; Rao, S.A.; Sadhuram, Y.
in the direction of geostrophic currents. It is found that the locations of these thermal fronts in the Bay of Bengal are primarily determined by the Oceanic Rossby waves and local Ekman pumping. Key Words: Bay of Bengal, Circulation, Cyclonic and Anti... drawn with black dots shows the meandering path of the rest of the three turtles. Locations of the turtles at different times are also shown as white stars. A strong anti-cyclonic gyre (warm core eddy) centered at 17º N with SSHD above 30 cm...
Long-wave forcing for regional atmospheric modelling
Energy Technology Data Exchange (ETDEWEB)
Storch, H. von; Langenberg, H.; Feser, F. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik
1999-07-01
A new method, named 'spectral nudging', of linking a regional model to the driving large-scale model simulated or analyzed by a global model is proposed and tested. Spectral nudging is based on the idea that regional-scale climate statistics are conditioned by the interplay between continental-scale atmospheric conditions and such regional features as marginal seas and mountain ranges. Following this 'downscaling' idea, the regional model is forced to satisfy not only boundary conditions, possibly in a boundary sponge region, but also large-scale flow conditions inside the integration area. We demonstrate that spectral nudging succeeds in keeping the simulated state close to the driving state at large scales, while generating smaller-scale features. We also show that the standard boundary forcing technique in current use allows the regional model to develop internal states conflicting with the large-scale state. It is concluded that spectral nudging may be seen as a suboptimal and indirect data assimilation technique. (orig.) [German] Eine neue Methode, genannt 'spektrales nudging', ein Regionalmodell an das durch ein Globalmodell simulierte grossskalige Antriebsfeld zu koppeln, wird vorgestellt und getestet. Das spektrale nudging basiert auf der Annahme, dass regionale Klimastatistik durch die Wechselwirkung zwischen dem kontinental-skaligen atmosphaerischen Zustand und regionalen Gegebenheiten, wie kleinere Seen und Gebirgszuege, bestimmt wird. Demnach muss das Regionalmodell nicht nur die Randbedingungen erfuellen, sondern auch die grossskaligen Zustaende innerhalb des Integrationsgebietes wiedergeben koennen. Wir zeigen, dass durch das spektrale nudging der grossskalige modellierte Zustand nahe an dem des Antriebsfeldes liegt, ohne die Modellierung regionaler Phaenomene zu beeintraechtigen. Ausserdem zeigen wir, dass das Regionalmodell durch die zur Zeit benutzte Antriebstechnik ueber den Modellrand interne Felder produzieren kann
A new variable transformation technique for the nonlinear drift vortex
International Nuclear Information System (INIS)
Orito, Kohtaro
1996-02-01
The dipole vortex solution of the Hasegawa-Mima equation describing the nonlinear drift wave is a stable solitary wave which is called the modon. The profile of the modon depends on the nonlinearity of the ExB drift. In order to investigate the nonlinear drift wave more accurately, the effect of the polarization drift needs to be considered. In case of containing the effect of the polarization drift the profile of the electrostatic potential is distorted in the direction perpendicular to the ExB drift. (author)
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
DEFF Research Database (Denmark)
Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe
2017-01-01
theory, that is, the most likely time history of inline force around a force peak of given value. The results of FORM and NewForce are linearly identical and show only minor deviations at second order. The FORM results are then compared to wave averaged measurements of the same criteria for crest height......In design of substructures for offshore wind turbines, the extreme wave loads which are of interest in Ultimate Limit States are often estimated by choosing extreme events from linear random sea states and replacing them by either stream function wave theory or the NewWave theory of a certain...... design wave height. As these wave theories super from limitations such as symmetry around the crest, other methods to estimate the wave loads are needed. In the present paper, the First Order Reliability Method, FORM, is used systematically to estimate the most likely extreme wave shapes. Two parameters...
Acoustic radiation force on cylindrical shells in a plane standing wave
International Nuclear Information System (INIS)
Mitri, F G
2005-01-01
In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders
Magnetization of a warm plasma by the nonstationary ponderomotive force of an electromagnetic wave
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P. K.; Stenflo, L.
2009-01-01
It is shown that magnetic fields can be generated in a warm plasma by the nonstationary ponderomotive force of a large-amplitude electromagnetic wave. In the present Brief Report, we derive simple and explicit results that can be useful for understanding the origin of the magnetic fields that are produced in intense laser-plasma interaction experiments.
Interference of Locally Forced Internal Waves in Non-Uniform Stratifications
Supekar, Rohit; Peacock, Thomas
2017-11-01
Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Effect of transient wave forcing on the behavior of arsenic in a sandy nearshore aquifer
Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.
2016-12-01
Waves cause large quantities of coastal water to recirculate across the groundwater-coastal water interface in addition to inducing complex groundwater flows in the nearshore aquifer. Due to the distinct chemical composition of recirculating coastal water compared with discharging terrestrial groundwater, wave-induced recirculations and flows can alter geochemical gradients in the nearshore aquifer which may subsequently affect the mobilization and transport of reactive pollutants (e.g., arsenic). The impact of seasonal geochemical and hydrological variability on the occurrence and mobility of arsenic near the groundwater-surface water interface has been shown previously in riverine settings, however, the impact of high frequency geochemical variations (e.g., varying wave conditions) on arsenic mobility in groundwater-surface water environments is unclear. The objective of the study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer to determine the factors regulating its mobility and transport to receiving coastal waters. Field investigations were conducted at a permeable beach on the Great Lakes during a period of intensified wave conditions (wave event). High spatial resolution pore water sampling captured the geochemical conditions in the nearshore aquifer prior to the wave event, immediately after the wave event and over a recovery period of 3 weeks following the wave event. Shifts in pH and redox potential (ORP) gradients in response to varying wave conditions caused shifts in the iron and arsenic distributions in the aquifer. Sediment analysis was combined with the pore water distributions to assess the release of sediment-bound arsenic in response to the varying wave conditions. Insight into the effect of transient forcing on arsenic mobility and transport in groundwater-surface water environments is important for evaluating the potential risks associated with this toxic metalloid. The findings of this
Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing
Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.
1996-01-01
An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.
Rixen, M.; Ferreira-Coelho, E.; Signell, R.
2008-01-01
Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).
Energy Technology Data Exchange (ETDEWEB)
Fourment, C; Hoang, G T; Eriksson, L-G; Garbet, X; Litaudon, X; Tresset, G [EURATOM-CEA Association, CEA/DSM/DRFC, CEA Cadarache, 13108 St Paul-lez-Durance (France)
2003-03-01
The role of the current density profile on drift wave stability is investigated using a linear electrostatic gyro-kinetic code. The growth rates are shown to have a linear dependence on the normalized temperature gradients above a certain threshold. A parametric study of the threshold shows a dramatic stabilizing effect of negative magnetic shear, especially for large scale instabilities. A set of handy formulae fitting the threshold as a function of the magnetic shear and the safety factor is proposed. Analysis of reversed magnetic shear discharges with internal transport barrier (ITB) in JET shows that ion ITBs can be triggered by the negative magnetic shear in the core of the plasma. Subsequently, the increase of the ExB shearing rate allows for the expansion of the ITB, despite the increase of the linear growth rates due to the temperature gradient peaking. In the case of the electron ITB obtained in the Tore Supra LHEP mode, the central increase of the confinement is associated with the stabilization of large scale trapped electron modes by the negative magnetic shear effect, whereas the steep electron temperature gradient destabilizes the small scale electron temperature gradient modes, which prevent the electron heat transport to reach neoclassical levels.
Mitri, F G
2016-03-01
This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings
International Nuclear Information System (INIS)
Lee, K.-H.; Lin, M.-W.; Pai, C.-H.; Ha, L.-C.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.
2007-01-01
Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings is demonstrated in the near-infrared regime. The quadratic dependence of the reflectivity of the probe pulse on plasma density indicates that the mixing is caused by the quasineutral plasma grating driven by the laser ponderomotive force. The experiment verifies that ponderomotive force is an effective means to produce a large-amplitude short-period plasma grating, which has many important applications in ultrahigh-intensity optics. In particular, such a grating is a crucial element for the development of plasma phase-conjugate mirrors that can be used to restore the wave-front distortion that is ubiquitous in nonlinear propagation
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.
2015-04-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.
A brute-force spectral approach for wave estimation using measured vessel motions
DEFF Research Database (Denmark)
Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.
2018-01-01
, and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2013-01-01
The effect from fully nonlinear irregular wave forcing on the fatigue life of the foundation and tower of an offshore wind turbine is investigated through aeroelastic calculations. Five representative sea states with increasing significant wave height are considered in a water depth of 40 m....... The waves are both linear and fully nonlinear irregular 2D waves. The wind turbine is the NREL 5-MW reference wind turbine. Fatigue analysis is performed in relation to analysis of the sectional forces in the tower and monopile. Impulsive excitation of the sectional force at the bottom of the tower is seen...
Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.
2015-12-01
The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate
Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.
2016-05-01
Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.
Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes
Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert
2018-05-01
Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.
Forced wave induced by an atmospheric pressure disturbance moving towards shore
Chen, Yixiang; Niu, Xiaojing
2018-05-01
Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
International Nuclear Information System (INIS)
Mitri, F. G.
2015-01-01
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
Mitri, F. G.
2015-12-01
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
Energy Technology Data Exchange (ETDEWEB)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Stem breakage of salt marsh vegetation under wave forcing: A field and model study
Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.
2018-01-01
One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.
A standing pressure wave hypothesis of oscillating forces generated during a steam line break
International Nuclear Information System (INIS)
Tinoco, H.
2001-01-01
A rapid glance at the figure depicting the net forces acting on the reactor vessel and internals, as obtained through a CFD simulation of a BWR steam line break, reveals an amazing oscillating regularity of these forces which is in glaring contrast to the chaotic behaviour of the steam pressure field in the steam annulus. Assuming that the decompression process excites and maintains standing pressure waves in the annular cylindrical region constituted by the steam annulus, it is possible to reconstruct the net forces acting on the reactor vessel and internals through the contribution of almost only the first dispersive mode. If a Neumann boundary condition is assumed at the section connecting the steam annulus to the steam dome, the frequency predicted is approximately % 5.9 higher than that of the CFD simulations. However, this connecting section allows wave transmission, and a more appropriate boundary condition should be one of the Robin type. Therefore, this section is modelled as an absorbing wall, and the corresponding normal impedance is calculated using the CFD simulations. Week non-linear effects can also be observed in the calculated forces through the presence of the first subharmonic. By the methodology described above, an estimate of the forces acting on the reactor vessel and internals of unit 3 of Forsmark Nuclear Power Plant has been obtained. (author)
International Nuclear Information System (INIS)
Dolesi, R.; Hueller, M.; Nicolodi, D.; Tombolato, D.; Vitale, S.; Wass, P. J.; Weber, W. J.; Evans, M.; Fritschel, P.; Weiss, R.; Gundlach, J. H.; Hagedorn, C. A.; Schlamminger, S.; Ciani, G.; Cavalleri, A.
2011-01-01
We present an analysis of Brownian force noise from residual gas damping of reference test masses as a fundamental sensitivity limit in small force experiments. The resulting acceleration noise increases significantly when the distance of the test mass to the surrounding experimental apparatus is smaller than the dimension of the test mass itself. For the Advanced LIGO interferometric gravitational wave observatory, where the relevant test mass is a suspended 340 mm diameter cylindrical end mirror, the force noise power is increased by roughly a factor 40 by the presence of a similarly shaped reaction mass at a nominal separation of 5 mm. The force noise, of order 20 fN/Hz 1/2 for 2x10 -6 Pa of residual H 2 gas, rivals quantum optical fluctuations as the dominant noise source between 10 and 30 Hz. We present here a numerical and analytical analysis for the gas damping force noise for Advanced LIGO, backed up by experimental evidence from several recent measurements. Finally, we discuss the impact of residual gas damping on the gravitational wave sensitivity and possible mitigation strategies.
On possible beneficial ponderomotive force effects on fast wave coupling in tokamaks
International Nuclear Information System (INIS)
Petrzilka, V.
1994-02-01
Ponderomotive forces at fast wave launching lead in the vicinity of the launching structure in tokamaks at lower hybrid frequencies typically to a boundary plasma density increase. This results in a decrease of the reflection coefficient, and in cases of detached plasmas, to an appearance of a local electric field maximum at a distance of several centimeters from the launching grill structure; this electric field maximum is connected to the reversal of the plasma density gradient near the grill mouth because of ponderomotive force effects. (author) 3 figs., 20 refs
Forced vibration and wave propagation in mono-coupled periodic structures
DEFF Research Database (Denmark)
Ohlrich, Mogens
1986-01-01
This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... and a general `closed form' solution is found for the forced harmonic response at element junctions. This `junction-receptance' is used to determine-discrete junction mode shapes of a finite system. Finally, the forced response of a finite structure with an internal obstruction is derived as a natural extension...... of the determination of the junction-receptance. The influence of such a disorder is illustrated by a simple example...
DEFF Research Database (Denmark)
Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.
2012-01-01
We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....
Estimating Wind and Wave Induced Forces On a Floating Wind Turbine
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong
2013-01-01
-principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....
Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth
DEFF Research Database (Denmark)
Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.
2014-01-01
of secondary load cycles. Special attention was paid to this secondary load cycle and the flow features that cause it. By visual observation and a simplified analytical model it was shown that the secondary load cycle was caused by the strong nonlinear motion of the free surface which drives a return flow......Forcing by steep regular water waves on a vertical circular cylinder at finite depth was investigated numerically by solving the two-phase incompressible Navier–Stokes equations. Consistently with potential flow theory, boundary layer effects were neglected at the sea bed and at the cylinder...... at the back of the cylinder following the passage of the wave crest. The numerical computations were further analysed in the frequency domain. For a representative example, the secondary load cycle was found to be associated with frequencies above the fifth- and sixth-harmonic force component. For the third...
MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS
Directory of Open Access Journals (Sweden)
Mario Dobrilović
2005-12-01
Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.
Dissipative drift instability in dusty plasma
Directory of Open Access Journals (Sweden)
Nilakshi Das
2012-03-01
Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.
Takata, Tomoaki; Koda, Masahiko; Sugihara, Takaaki; Sugihara, Shinobu; Okamoto, Toshiaki; Miyoshi, Kenichi; Matono, Tomomitsu; Hosho, Keiko; Mae, Yukari; Iyama, Takuji; Fukui, Takeaki; Fukuda, Satoko; Munemura, Chishio; Isomoto, Hajime
2016-12-01
Acoustic radiation force impulse is a noninvasive method for evaluating tissue elasticity on ultrasound. Renal shear wave velocity measured by this technique has not been fully investigated in patients with renal disease. The aim of the present study was to compare renal shear wave velocity in end-stage renal disease patients and that in patients without chronic kidney disease and to investigate influencing factors. Renal shear wave velocities were measured in 59 healthy young subjects (control group), 31 subjects without chronic kidney disease (non-CKD group), and 39 end-stage renal disease patients (ESRD group). Each measurement was performed 10 times at both kidneys, and the mean value of eight of 10 measurements, excluding the maximum and minimum values, was compared. Renal shear wave velocity could be measured in all subjects. Renal shear wave velocity in the control group was higher than in the non-CKD group and in the ESRD group, and no difference was found between the non-CKD group and the ESRD group. Age and depth were negatively correlated to the renal shear wave velocity. In multiple regression analysis, age and depth were independent factors for renal shear wave velocity, while renal impairment was not. There was no difference between the non-CKD group and the ESRD group, even when ages were matched and depth was adjusted. Renal shear wave velocity was not associated with advanced renal impairment. However, it reflected alteration of renal aging, and this technique may be useful to detect renal impairment in the earlier stages. © 2015 Asian Pacific Society of Nephrology.
A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves
Sassi, Fabrizio; Garcia, Rolando R.
1994-01-01
A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.
Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder
Liang, Shen; Chaohui, Wang
2018-03-01
In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.
Non-linear coupling of drift modes in a quadrupole
International Nuclear Information System (INIS)
Elliott, J.A.; Sandeman, J.C.; Tessema, G.Y.
1990-01-01
We report continuing experimental studies of non-linear interactions of drift waves, with direct evidence of a growth saturation mechanism by transfer of energy to lower frequency modes. Wave launching experiments show that the decay rate of drift waves can be strongly amplitude dependent. (author) 9 refs., 5 figs
Ding, Yang; Ming, Tingyu
2016-11-01
In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).
OpenDrift v1.0: a generic framework for trajectory modelling
Directory of Open Access Journals (Sweden)
K.-F. Dagestad
2018-04-01
Full Text Available OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships at the Norwegian Meteorological Institute.
Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F
2012-03-07
Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.
DEFF Research Database (Denmark)
Burcharth, H. F.; Sørensen, Jørgen S.; Christiani, E.
1994-01-01
Impulsive wave breaking forces on a vertical caisson breakwater has been included by Takahashi et al, (1994) in Goda's wave pressure formula (Goda et al. 1972 and Goda 1974). Based on these formulae a deterministic design method following the Japanese recommendations has been used for the design...
Generalized drift-flux correlation
International Nuclear Information System (INIS)
Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.
1991-01-01
A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve
Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill
Directory of Open Access Journals (Sweden)
M. Drivdal
2014-12-01
Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.
Directory of Open Access Journals (Sweden)
Z. Zhu
2017-06-01
Full Text Available Recent studies on the equatorial atmosphere–ionosphere coupling system have shown that planetary-wave-type oscillations, as an important seeding mechanism for equatorial spread F (ESF, play an important role in ESF irregularity development and its day-to-day variability in the equatorial latitudes. In this study, ionosonde virtual height and ESF measurements over Sanya (18.4° N, 109.6° E; 12.8° N dip latitude and meteor radar neutral-wind measurements over Fuke (19.5° N, 109.1° E; 14° N dip latitude during 2013 are used to investigate the features of planetary-wave-type oscillations in both the lower atmosphere and the ionosphere and their possible influences on ESF occurrence under the weak solar maximum year. The ∼ 3-day and ∼ 7-day planetary-wave-type oscillations have been observed in the neutral zonal winds and the time rate of change in F-layer virtual heights. According to the propagation characteristics, the 3-day and 7-day planetary-wave-type oscillations are basically recognized as ultrafast and fast Kelvin waves, respectively. With increasing heights, the 3-day wave oscillations are gradually amplified, while the 7-day wave oscillations are generally constant. By performing a cross-wavelet transform on the onsets of ESF and the vertical drifts of the F layer, we found that there are simultaneously occurring 7-day and 3-day common wave oscillations between them. The 7-day waves are mainly in the inversion phase, while the 3-day waves are mostly in an in-phase state, indicating that the 7-day waves may play a main role in ESF initiation. Approximate delays of 6 days for the 7-day waves and 5 days for the 3-day waves in their propagation upward from the lower atmosphere to the ionosphere are evaluated with wavelet power spectrum analysis. The estimated upward velocities from these time delays provide consistent evidence that the 7-day and 3-day waves propagate vertically upward with typical Kelvin wave
Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions
Timofeyuk, N. K.
2018-05-01
The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.
Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests
International Nuclear Information System (INIS)
Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama
2005-01-01
This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)
A study of wave forces on an offshore platform by direct CFD and Morison equation
Directory of Open Access Journals (Sweden)
Zhang D.
2015-01-01
The next step is the presentation of 3D multiphase RANS simulation of the wind-turbine platform in single-harmonic regular waves. Simulation results from full 3D simulation will be compared to the results from Morison’s equation. We are motivated by the challenges of a floating platform which has complex underwater geometry (e.g. tethered semi-submersible. In cases like this, our hypothesis is that Morison’s equation will result in inaccurate prediction of forces, due to the limitations of 2D coefficients of simple geometries, and that 3D multiphase RANS CFD will be required to generate reliable predictions of platform loads and motions.
Energy Technology Data Exchange (ETDEWEB)
Goertz, Ruediger S., E-mail: ruediger.goertz@uk-erlangen.de; Schuderer, Johanna, E-mail: Johanna@schuderer-floss.de; Strobel, Deike, E-mail: deike.strobel@uk-erlangen.de; Pfeifer, Lukas, E-mail: Lukas.Pfeifer@uk-erlangen.de; Neurath, Markus F., E-mail: Markus.Neurath@uk-erlangen.de; Wildner, Dane, E-mail: Dane.Wildner@uk-erlangen.de
2016-12-15
Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.
International Nuclear Information System (INIS)
Goertz, Ruediger S.; Schuderer, Johanna; Strobel, Deike; Pfeifer, Lukas; Neurath, Markus F.; Wildner, Dane
2016-01-01
Highlights: • ARFI elastography of the pancreas is feasible. • Shear wave velocities in patients with acute or chronic pancreatitis or carcinoma are higher than those occurring in normal tissue. • ARFI values considerable overlap between different pathologies. - Abstract: Introduction: Acoustic Radiation Force Impulse (ARFI) elastography evaluates tissue stiffness non-invasively and has rarely been applied to pancreas examinations so far. In a prospective and retrospective analysis, ARFI shear wave velocities of healthy parenchyma, pancreatic lipomatosis, acute and chronic pancreatitis, adenocarcinoma and neuroendocrine tumor (NET) of the pancreas were evaluated and compared. Material and methods: In 95 patients ARFI elastography of the pancreatic head, and also of the tail for a specific group, was analysed retrospectively. Additionally, prospectively in 100 patients ARFI was performed in the head and tail of the pancreas. Results: A total of 195 patients were included in the study. Healthy parenchyma (n = 21) and lipomatosis (n = 30) showed similar shear wave velocities of about 1.3 m/s. Acute pancreatitis (n = 35), chronic pancreatitis (n = 53) and adenocarcinoma (n = 52) showed consecutively increasing ARFI values, respectively. NET (n = 4) revealed the highest shear wave velocities amounting to 3.62 m/s. ARFI elastography showed relevant differences between acute pancreatitis and chronic pancreatitis or adenocarcinoma. With a cut-off value of 1.74 m/s for the diagnosis of a malignant disease the sensitivity was 91.1% whereas the specificity amounted to 60.4%. Conclusion: ARFI shear wave velocities present differences in various pathologies of the pancreas. Acute and chronic pancreatitis as well as neoplastic lesions show high ARFI values. Very high elasticity values may indicate malignant disease of the pancreas. However, there is a considerable overlap between the entities.
International Nuclear Information System (INIS)
Mitri, F.G.
2014-01-01
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves
Energy Technology Data Exchange (ETDEWEB)
Mitri, F.G., E-mail: mitri@chevron.com
2014-03-15
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.
Directory of Open Access Journals (Sweden)
Liu Yongjun
2015-01-01
Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.
Modelling alongshore flow in a semi-enclosed lagoon strongly forced by tides and waves
Taskjelle, Torbjørn; Barthel, Knut; Christensen, Kai H.; Furaca, Noca; Gammelsrød, Tor; Hoguane, António M.; Nharreluga, Bilardo
2014-08-01
Alongshore flows strongly driven by tides and waves is studied in the context of a one-dimensional numerical model. Observations from field surveys performed in a semi-enclosed lagoon (1.7 km×0.2 km) outside Xai-Xai, Mozambique, are used to validate the model results. The model is able to capture most of the observed temporal variability of the current, but sea surface height tends to be overestimated at high tide, especially during high wave events. Inside the lagoon we observed a mainly uni-directional alongshore current, with speeds up to 1 ms-1. The current varies primarily with the tide, being close to zero near low tide, generally increasing during flood and decreasing during ebb. The observations revealed a local minimum in the alongshore flow at high tide, which the model was successful in reproducing. Residence times in the lagoon were calculated to be less than one hour with wave forcing dominating the flushing. At this beach a high number of drowning casualties have occurred, but no connection was found between them and strong current events in a simulation covering the period 2011-2012.
Relativistic reversal of the ponderomotive force in a standing laser wave
International Nuclear Information System (INIS)
Pokrovsky, A.L.; Kaplan, A.E.
2005-01-01
Effect of relativistic reversal of the ponderomotive force (PF), reported earlier for a collinear configuration of electron and laser standing wave [A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett., 95, 053601 (2005)], is studied here theoretically for various types of polarizations of the laser beam. We demonstrated that the collinear configuration, in which the laser wave is linearly polarized with electric field E-vector parallel to the initial electron momentum p-vector 0 , is the optimal configuration for the relativistic reversal. In that case, the transverse PF reverses its direction when the incident momentum is p 0 =mc. The reversal effect vanishes in the cases of circular and linear with E-vector perpendicular p-vector 0 polarizations. We have discovered, however, that the counter-rotating circularly polarized standing waves develop attraction and repulsion areas along the axis of laser, in the laser field whose intensity is homogeneous in that axis, i.e., has no field gradient
Ponderomotive Forces in Cosmos
Lundin, R.; Guglielmi, A.
2006-12-01
This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various
State-Space Realization of the Wave-Radiation Force within FAST: Preprint
Energy Technology Data Exchange (ETDEWEB)
Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.
2013-06-01
Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.
Drift of nonequilibrium charge carriers in GaAs-crystals with traps in ultrasonic fields
International Nuclear Information System (INIS)
Zaveryukhina, N.N.; Zaveryukhin, B.N.; Zaveryukhina, E.B.
2007-01-01
Full text: The drift of nonequilibrium charge carriers in a semiconductor is one of the basic processes determining the efficiency of semiconductor photodetectors. Gallium arsenide possesses certain advantages to other semiconductors in this respect, which allow GaAs-photodetectors to be obtained which possess the maximum efficiency in comparison with all other systems. The purpose of this study was to deepen and expand our knowledge about the acoustic-drift processes in GaAs- crystals. As is known, the drift of nonequilibrium charge carriers in a semiconductor is determined either by external electric fields and/or by internal (built-in) electrostatic fields related to an impurity concentration gradient in the semiconductor. Gallium arsenide is a piezoelectric semiconductor with a structure possessing no center of symmetry. An electric field applied to such a crystal produces deformation of the crystal, and vice versa, any deformation of the crystal leads to the appearance of an induced electric field. Therefore, investigation of the effect of deformation on the drift of nonequilibrium charge carriers is a very important task. One of the possible straining factors is ultrasonic wave. Interaction of the charge carriers with ultrasonic waves in piezo-semiconductors is mediated by piezo exertion. Straining a semiconductor by an ultrasonic wave field gives rise to a force acting upon the charge carriers, which is proportional to the wave vector and the piezoelectric constant of the crystal. The physics of interaction between an ultrasonic wave and nonequilibrium charge carriers in GaAs, as well as in non-polar semiconductors (Si, Ge), consists in the energy and momentum exchange between the wave and the carriers. Besides the ultrasonic waves interact with the traps of carriers and devastate them. These both acoustic effects lead to rise of amplitude of signal of GaAs-photodetectors. (authors)
Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi
Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.
2017-12-01
It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.
Mitri, F G; Fellah, Z E A
2011-08-01
The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Duran, I.; Martinez Laso, L.
1989-01-01
A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)
International Nuclear Information System (INIS)
Duran, I.; Martinez laso, L.
1989-01-01
We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs
Sossey-Alaoui, Khalid
2013-04-01
WAVE3 belongs to the WASP/WAVE family of actin cytoskeleton remodeling proteins. These proteins are known to be involved in several biological functions ranging from controlling cell shape and movement, to being closely associated with pathological conditions such as cancer progression and metastasis. Last decade has seen an explosion in the literature reporting significant scientific advances on the molecular mechanisms whereby the WASP/WAVE proteins are regulated both in normal physiological as well as pathological conditions. The purpose of this review is to present the major findings pertaining to how WAVE3 has become a critical player in the regulation of signaling pathways involved in cancer progression and metastasis. The review will conclude with suggesting options for the potential use of WAVE3 as a therapeutic target to prevent the progression of cancer to the lethal stage that is the metastatic disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pitch Angle Dependence of Drift Resonant Ions Observed by the Van Allen Probes
Rankin, R.; Wang, C.; Wang, Y.; Zong, Q. G.; Zhou, X.
2017-12-01
Acceleration and modulation of ring current ions by poloidal mode ULF waves is investigated. A simplified MHD model of ULF waves in a dipole magnetic field is presented that includes phase mixing to perpendicular scales determined by the ionospheric Pedersen conductivity. The wave model is combined with a full Lorentz force test particle code to study drift and drift bounce resonance wave-particle interactions. Ion trajectories are traced backward-in-time to an assumed form of the distribution function, and Liouville's method is used to reconstruct the phase space density response (PSD) poloidal mode waves observed by the Van Allen Probes. In spite of its apparent simplicity, simulations using the wave and test particle models are able to explain the acceleration of ions and energy dispersion observed by the Van Allen Probes. The paper focuses on the pitch angle evolution of the initial PSD as it responds to the action of ULF waves. An interesting aspect of the study is the formation of butterfly ion distributions as ions make periodic radial oscillations across L. Ions become trapped in an effective potential well across a limited range of L and follow trajectories that cause them to surf along constant phase fronts. The impications of this new trapping mechanism for both ions and electrons is discussed.
International Nuclear Information System (INIS)
Petrzilka, V.
1991-09-01
The nonlinear changes of the reflection coefficient R of fast waves launched by waveguide arrays may be significant even for power densities S in the range of 3 or 4 kW/cm 2 . For the input parameters chosen in the computations, the effects of ponderomotive forces lead to an increase in plasma density in front of the grill , whereas for the slow wave the plasma density always decreases with growing S. For small plasma density in front of the grill, ponderomotive forces thus lead to the decrease of R, whereas for high plasma densities R grows with growing power density S. The heating of the edge plasma by the wave tends to weaken these changes. (Z.S.) 6 figs., 17 refs
The Anticipation of the ENSO: What Resonantly Forced Baroclinic Waves Can Teach Us (Part II
Directory of Open Access Journals (Sweden)
Jean-Louis Pinault
2018-06-01
Full Text Available The purpose of the paper is to take advantage of recent work on the study of resonantly forced baroclinic waves in the tropical Pacific to significantly reduce systematic and random forecasting errors resulting from the current statistical models intended to predict El Niño. Their major drawback is that sea surface temperature (SST, which is widely used, is very difficult to decipher because of the extreme complexity of exchanges at the ocean-atmosphere interface. In contrast, El Niño-Southern Oscillation (ENSO forecasting can be performed between 7 and 8 months in advance precisely and very simply from (1 the subsurface water temperature at particular locations and (2 the time lag of the events (their expected date of occurrence compared to a regular 4-year cycle. Discrimination of precursor signals from objective criteria prevents the anticipation of wrong events, as occurred in 2012 and 2014. The amplitude of the events, their date of appearance, as well as their potential impact on the involved regions are estimated. Three types of ENSO events characterize their climate impact according to whether they are (1 unlagged or weakly lagged, (2 strongly lagged, or (3 out of phase with the annual quasi-stationary wave (QSW (Central Pacific El Niño events. This substantial progress is based on the analysis of baroclinic QSWs in the tropical basin and the resulting genesis of ENSO events. As for cold events, the amplification of La Niña can be seen a few months before the maturation phase of an El Niño event, as occurred in 1998 and 2016.
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
Energy Technology Data Exchange (ETDEWEB)
Maximiano, Celso; Nieble, Marcio D. [Coordenadoria para Projetos Especiais (COPESP), Sao Paulo, SP (Brazil); Migliavacca, Sylvana C.P.; Silva, Eduardo R.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)
1995-12-31
The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs.
Long-lived force patterns and deformation waves at repulsive epithelial boundaries
Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier
2017-10-01
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
Energy Technology Data Exchange (ETDEWEB)
E. Gaffiney
2004-11-23
This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).
International Nuclear Information System (INIS)
Gaffiney, E.
2004-01-01
This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1)
Christensen, Kim; Oomen, Roel; Renò, Roberto
2016-01-01
The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the...
Rectangular drift tube characteristics
International Nuclear Information System (INIS)
Denisov, D.S.; Musienko, Yu.V.
1985-01-01
Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode
Particle transport model sensitivity on wave-induced processes
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
Energy Technology Data Exchange (ETDEWEB)
E.S. Gaffney
2003-10-08
This report documents the model of events associated with a potential intrusion of magma from a volcanic dike into a drift or drifts in the Yucca Mountain Nuclear Waste Repository. The following topics are included in this report: (1) A discussion of dike propagation, which provides the basis for describing the path that a representative dike, or swarm of dikes, would follow during an event. (2) A discussion of magma flow, which evaluates the interaction at the junction of the propagating dike with the drift and the movement of magmatic products into and down drifts and, potentially, through a drift to the surface by way of access drift or a secondary dike opened up along the drift. (3) A discussion of gas flow and conductive cooling of a magma-filled drift, describing how an adjacent drift that has not been intersected by a dike could be affected by post-intrusion phenomena. Note that a gas flow analysis is also addressed in ''Igneous Intrusion Impacts on Waste Form and Waste Packages'' (BSC 2003 [DIRS 161810]), and those results are consistent with the results presented in this report.
International Nuclear Information System (INIS)
E.S. Gaffney
2003-01-01
This report documents the model of events associated with a potential intrusion of magma from a volcanic dike into a drift or drifts in the Yucca Mountain Nuclear Waste Repository. The following topics are included in this report: (1) A discussion of dike propagation, which provides the basis for describing the path that a representative dike, or swarm of dikes, would follow during an event. (2) A discussion of magma flow, which evaluates the interaction at the junction of the propagating dike with the drift and the movement of magmatic products into and down drifts and, potentially, through a drift to the surface by way of access drift or a secondary dike opened up along the drift. (3) A discussion of gas flow and conductive cooling of a magma-filled drift, describing how an adjacent drift that has not been intersected by a dike could be affected by post-intrusion phenomena. Note that a gas flow analysis is also addressed in ''Igneous Intrusion Impacts on Waste Form and Waste Packages'' (BSC 2003 [DIRS 161810]), and those results are consistent with the results presented in this report
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Ghadirian, Amin
2017-01-01
the straight multiples of the peak frequency. Further, the higher harmonics of the multidirectional wave spectra contain less energy. Both effects can be explained by the second order wave theory. Finally, the computed wave kinematics are used to investigate the dynamic response of an offshore wind turbine...
Hypersonic drift-tearing magnetic islands in tokamak plasmas
International Nuclear Information System (INIS)
Fitzpatrick, R.; Waelbroeck, F. L.
2007-01-01
A two-fluid theory of long wavelength, hypersonic, drift-tearing magnetic islands in low-collisionality, low-β plasmas possessing relatively weak magnetic shear is developed. The model assumes both slab geometry and cold ions, and neglects electron temperature and equilibrium current gradient effects. The problem is solved in three asymptotically matched regions. The 'inner region' contains the island. However, the island emits electrostatic drift-acoustic waves that propagate into the surrounding 'intermediate region', where they are absorbed by the plasma. Since the waves carry momentum, the inner region exerts a net force on the intermediate region, and vice versa, giving rise to strong velocity shear in the region immediately surrounding the island. The intermediate region is matched to the surrounding 'outer region', in which ideal magnetohydrodynamic holds. Isolated hypersonic islands propagate with a velocity that lies between those of the unperturbed local ion and electron fluids, but is much closer to the latter. The ion polarization current is stabilizing, and increases with increasing island width. Finally, the hypersonic branch of isolated island solutions ceases to exist above a certain critical island width. Hypersonic islands whose widths exceed the critical width are hypothesized to bifurcate to the so-called 'sonic' solution branch
Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan
2018-07-10
Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Dwayne C. Kicker
2001-09-28
A statistical description of the probable block sizes formed by fractures around the emplacement drifts has been developed for each of the lithologic units of the repository host horizon. A range of drift orientations with the drift azimuth varied in 15{sup o} increments has been considered in the static analysis. For the quasi-static seismic analysis, and the time-dependent and thermal effects analysis, two drift orientations have been considered: a drift azimuth of 105{sup o} and the current emplacement drift azimuth of 75{sup o}. The change in drift profile resulting from progressive deterioration of the emplacement drifts has been assessed both with and without backfill. Drift profiles have been determined for four different time increments, including static (i.e., upon excavation), 200 years, 2,000 years, and 10,000 years. The effect of seismic events on rock fall has been analyzed. Block size distributions and drift profiles have been determined for three seismic levels, including a 1,000-year event, a 5,000-year event, and a 10,000-year event. Data developed in this modeling and analysis activity have been entered into the TDMS (DTN: MO0109RDDAAMRR.003). The following conclusions have resulted from this drift degradation analysis: (1) The available fracture data are suitable for supporting a detailed key block analysis of the repository host horizon rock mass. The available data from the north-south Main Drift and the east-west Cross Drift provide a sufficient representative fracture sample of the repository emplacement drift horizon. However, the Tptpln fracture data are only available from a relatively small section of the Cross Drift, resulting in a smaller fracture sample size compared to the other lithologic units. This results in a lower degree of confidence that the key block data based on the Tptpln data set is actually representative of the overall Tptpln key block population. (2) The seismic effect on the rock fall size distribution for all events
Energy Technology Data Exchange (ETDEWEB)
Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)
2016-07-25
A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.
Effect of magnetic shear on dissipative drift instabilities
International Nuclear Information System (INIS)
Guzdar, P.N.; Chen, L.; Kaw, P.K.; Oberman, C.
1978-03-01
In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator
Drift chamber performance in the field of a superconducting magnet: measurement of the drift angle
International Nuclear Information System (INIS)
Sanders, G.H.; Sherman, S.; McDonald, K.T.; Smith, A.J.S.; Thaler, J.J.
1977-01-01
Results are presented of the first measurements in a study of drift chamber performance in magnetic fields up to 6 tesla. The angle of the electron drift was measured as a function of electric and magnetic field intensity. It appears that even at the high fields of superconducting magnets (3 to 6 tesla) the drift angle induced by the Lorentz force can be corrected for with tilted electric drift fields and/or the use of Xenon gas. At 3 tesla a drift field tilted at 45 0 with a magnitude of 3.5 kV/cm should restore normal operating conditions. At 4 tesla, a 45 0 tilt field would have a magnitude 5 kV/cm
Digital Repository Service at National Institute of Oceanography (India)
Amol, P.; Shankar, D.; Aparna, S.G.; Shenoi, S.S.C.; Fernando, V.; Shetye, S.R.; Mukherjee, A.; Agarvadekar, Y.; Khalap, S.; Satelkar, N.P.
local response that masks the effect of remote forcing. Forced wave calculations using CTW theory show that remote forcing of the WICC is present at all times, but is most striking when the local winds are weak, as during March–April. The CTW...
International Nuclear Information System (INIS)
Bruinsma, J.; Wageningen, R. van
1977-01-01
Nucleon-deuteron breakup calculations at a nucleon bombarding energy of 22.7 MeV have been performed with separable interactions including a tensor force and P-wave interactions. Differential cross sections and a selection of polarization quantities have been computed for special regions of the phase space. The influence of a tensor force and P-wave interactions on the differential cross section is of the order of 20%. Large discrepancies between theory and experiment occur for the vector analyzing powers, both for the kinematically complete and for the incomplete situation. The calculations show that there are kinematical situations in which the differential cross sections and the tensor analyzing powers are sufficiently large to make measurements feasible. (Auth.)
An electrodeless drift chamber
International Nuclear Information System (INIS)
Allison, J.; Barlow, R.J.; Bowdery, C.K.; Duerdoth, I.; Rowe, P.G.
1982-01-01
We describe a chamber in which the drift field is controlled by the deposition of electrostatic charge on an insulating surface. The chamber operates with good efficiency and precision for observed drift distances of up to 45 cm, promises to be extremely robust and adaptable and offers a very cheap way of making particle detectors. (orig.)
DEFF Research Database (Denmark)
Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andrés R.
2015-01-01
An often used approach for detecting and adapting to concept drift when doing classification is to treat the data as i.i.d. and use changes in classification accuracy as an indication of concept drift. In this paper, we take a different perspective and propose a framework, based on probabilistic ...... data set from a Spanish bank....
Mencik , Jean-Mathieu
2014-01-01
International audience; The wave finite element (WFE) method is investigated to describe the harmonic forced response of onedimensional periodic structures like those composed of complex substructures and encountered in engineering applications. The dynamic behavior of these periodic structures is analyzed over wide frequency bands where complex spatial dynamics, inside the substructures, are likely to occur.Within theWFE framework, the dynamic behavior of periodic structures is described in ...
Directory of Open Access Journals (Sweden)
Zhang Sheng
2015-01-01
Full Text Available In this paper, Painleve analysis is used to test the Painleve integrability of a forced variable-coefficient extended Korteveg-de Vries equation which can describe the weakly-non-linear long internal solitary waves in the fluid with continuous stratification on density. The obtained results show that the equation is integrable under certain conditions. By virtue of the truncated Painleve expansion, a pair of new exact solutions to the equation is obtained.
Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence
2018-04-01
Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).
Karavashkin, S B
2002-01-01
We analyse the exact analytical solutions for 1D elastic lumped lines under action of an external force inclined to the line axis. We show that in this case an inclined wave being described by an implicit function propagates along the line. We extend this conclusion both to free vibrations and to distributed lines. We prove that the presented solution in the form of implicit function is a generalizing for the wave equation. When taken into consideration exactly, the dynamical processes pattern leads to the conclusion that the divergence of a vector in dynamical fields is not zero but proportional to the scalar product of the partial derivative of the given vector with respect to time into the wave propagation direction vector.
Time dependent drift Hamiltonian
International Nuclear Information System (INIS)
Boozer, A.H.
1982-04-01
The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)
Stationary rotary force waves on the liquid-air core interface of a swirl atomizer
Chinn, J. J.; Cooper, D.; Yule, A. J.; Nasr, G. G.
2016-10-01
A one-dimensional wave equation, applicable to the waves on the surface of the air-core of a swirl atomizer is derived analytically, by analogy to the similar one-dimensional wave equation derivation for shallow-water gravity waves. In addition an analogy to the flow of water over a weir is used to produce an analytical derivation of the flow over the lip of the outlet of a swirl atomizer using the principle of maximum flow. The principle of maximum flow is substantiated by reference to continuity of the discharge in the direction of streaming. For shallow-water gravity waves, the phase velocity is the same expression as for the critical velocity over the weir. Similarly, in the present work, the wave phase velocity on the surface of the air-core is shown to be the same expression as for the critical velocity for the flow at the outlet. In addition, this wave phase velocity is shown to be the square root of the product of the radial acceleration and the liquid thickness, as analogous with the wave phase velocity for shallow water gravity waves, which is the square root of the product of the acceleration due to gravity and the water depth. The work revisits the weirs and flumes work of Binnie et al. but using a different methodology. The results corroborate with the work of Binnie. High speed video, Laser Doppler Anemometry and deflected laser beam experimental work has been carried out on an oversize Perspex (Plexiglas) swirl atomizer. Three distinctive types of waves were detected: helical striations, low amplitude random ripples and low frequency stationary waves. It is the latter wave type that is considered further in this article. The experimentally observed waves appear to be stationary upon the axially moving flow. The mathematical analysis allows for the possibility of a negative value for the phase velocity expression. Therefore the critical velocity and the wave phase velocity do indeed lead to stationary waves in the atomizer. A quantitative comparison
Directory of Open Access Journals (Sweden)
Zijun CHEN
2018-02-01
Full Text Available The problem of aeroelasticity and maneuvering of command surface and gust wing interaction involves a starting flow period which can be seen as the flow of an airfoil attaining suddenly an angle of attack. In the linear or nonlinear case, compressive Mach or shock waves are generated on the windward side and expansive Mach or rarefaction waves are generated on the leeward side. On each side, these waves are composed of an oblique steady state wave, a vertically-moving one-dimensional unsteady wave, and a secondary wave resulting from the interaction between the steady and unsteady ones. An analytical solution in the secondary wave has been obtained by Heaslet and Lomax in the linear case, and this linear solution has been borrowed to give an approximate solution by Bai and Wu for the nonlinear case. The structure of the secondary shock wave and the appearance of various force stages are two issues not yet considered in previous studies and has been studied in the present paper. A self-similar solution is obtained for the secondary shock wave, and the reason to have an initial force plateau as observed numerically is identified. Moreover, six theoretical characteristic time scales for pressure load variation are determined which explain the slope changes of the time-dependent force curve. Keywords: Force, Self-similar solution, Shock-shock interaction, Shock waves, Unsteady flow
International Nuclear Information System (INIS)
J.T. Birkholzer
2004-01-01
This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Webster, A.J.; Wilson, H.R.
2005-01-01
Tokamak discharges with internal transport barriers (ITBs) provide improved confinement, so it is important to understand their stability properties. The stability to an important class of modes with high wave-numbers perpendicular to the magnetic field, is usually studied with the standard ballooning transformation and eikonal approach. However, ITBs are often characterised by radial q profiles that have regions of negative or low magnetic shear and by radially sheared electric fields. Both these features affect the validity of the standard method. A new approach to calculating stability in these circumstances is developed and applied to ideal MHD ballooning modes and to micro-instabilities responsible for anomalous transport. (author)
Grechnev, V. V.; Uralov, A. M.; Chertok, I. M.; Slemzin, V. A.; Filippov, B. P.; Egorov, Y. I.; Fainshtein, V. G.; Afanasyev, A. N.; Prestage, N. P.; Temmer, M.
2014-04-01
We continue our study (Grechnev et al., 2013, doi:10.1007/s11207-013-0316-6; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07 - 08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earth's magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with "EUV waves" and dynamic radio spectra up to decameters.
Directory of Open Access Journals (Sweden)
Shilei Liu
2017-07-01
Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.
Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong
2017-01-01
Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955
Influence of excitability on unpinning and termination of spiral waves.
Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2014-11-01
Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.
Wave Forces on Transition Pieces for Bucket Foundations for Offshore Wind Turbines
DEFF Research Database (Denmark)
Nezhentseva, Anastasia; Andersen, Thomas Lykke; Andersen, Lars Vabbersgaard
to a bucket foundation (suction caisson) located at 35 m water depth in the North Sea. Several models of the TPs (wedge-shaped steel flange-reinforced shear panels, conical and doubly curved with or without cutaways) are tested in a wave flume and compared with respect to wave loading. Due to a larger size...
International Nuclear Information System (INIS)
G.H. Nieder-Westermann
2005-01-01
The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])
An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range
International Nuclear Information System (INIS)
Hantao Ji; Russell Kulsrud; William Fox; Masaaki Yamada
2005-01-01
By employing a local two-fluid theory, we investigate an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field current or relative drifts between electrons and ions. The theory self-consistently takes into account local cross-field current and accompanying pressure gradients. It is found that the instability is caused by reactive coupling between the backward propagating whistler (fast) waves in the moving electron frame, and the forward propagating sound (slow) waves in the ion frame when the relative drifts are large. The unstable waves we consider propagate obliquely to the unperturbed magnetic field and have mixed polarization with significant electromagnetic components. A physical picture of the instability emerges in the limit of large wave number characteristic of the local approximation. The primary positive feedback mechanism is based on reinforcement of initial electron density perturbations by compression of electron fluid via induced Lorentz force. The resultant waves are qualitatively consistent with the measured electromagnetic fluctuations in reconnecting current sheet in a laboratory plasma
Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki
2014-05-01
The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.
EU law revisions and legislative drift
DEFF Research Database (Denmark)
Borghetto, Enrico; Mäder, Lars Kai
2014-01-01
in force in their original form for several years while others are revised soon after their enactment. What factors account for this variation? We empirically analyze the proposition that in the presence of ‘legislative drift,’ i.e. the intertemporal variation of decision-makers’ preferences, major...
Mitri, F G
2009-04-01
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.
On the wave forcing of the semi-annual zonal wind oscillation
Nagpal, O. P.; Raghavarao, R.
1991-01-01
Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.
International Nuclear Information System (INIS)
Sydoruk, O.; Solymar, L.; Shamonina, E.; Kalinin, V.
2010-01-01
Traveling-wave interaction between optical phonons and electrons drifting in diatomic semiconductors has potential for amplification and generation of terahertz radiation. Existing models of this interaction were developed for infinite materials. As a more practically relevant configuration, we studied theoretically a finite semiconductor slab surrounded by a dielectric. This paper analyzes the optical-phonon instability in the slab including the Lorentz force and compares it to the instability in an infinite material. As the analysis shows, the slab instability occurs because of the interaction of surface optical-phonon polaritons with surface plasmon polaritons in the presence of electron drift. The properties of the instability depend on the slab thickness when the thickness is comparable to the wavelength. For large slab thicknesses, however, the dispersion relation of the slab is similar to that of an infinite material, although the coupling is weaker. The results could be used for the design of practical terahertz traveling-wave oscillators and amplifiers.
Forced solitary Rossby waves under the influence of slowly varying topography with time
International Nuclear Information System (INIS)
Yang Hong-Wei; Yin Bao-Shu; Yang De-Zhou; Xu Zhen-Hua
2011-01-01
By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg—de Vries (KdV)—Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves. (general)
Energy Technology Data Exchange (ETDEWEB)
Laming, J. Martin, E-mail: laming@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States)
2017-08-01
We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.
International Nuclear Information System (INIS)
Laming, J. Martin
2017-01-01
We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.
International Nuclear Information System (INIS)
Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C; Lopes, N C
2009-01-01
In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v f of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a 0 ≅ 1), 0.815 μm laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n e = 1.3 x 10 19 cm -3 ) showed no measurable changes in v f over 1.3 mm (and no accelerated electrons), a high-density plasma (n e = 5 x 10 19 cm -3 ) generated accelerated electrons and showed a continuous change in v f as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v f evolution are discussed.
International Nuclear Information System (INIS)
Rutqvist, J.
2004-01-01
This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because a sufficient amount of water must be available within a
2008-04-01
By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its
Energy Technology Data Exchange (ETDEWEB)
Love, LJL
2003-09-24
The decrease in manpower and increase in material handling needs on many Naval vessels provides the motivation to explore the modeling and control of Naval robotic and robotic assistive devices. This report addresses the design, modeling, control and analysis of position and force controlled robotic systems operating on the deck of a moving ship. First we provide background information that quantifies the motion of the ship, both in terms of frequency and amplitude. We then formulate the motion of the ship in terms of homogeneous transforms. This transformation provides a link between the motion of the ship and the base of a manipulator. We model the kinematics of a manipulator as a serial extension of the ship motion. We then show how to use these transforms to formulate the kinetic and potential energy of a general, multi-degree of freedom manipulator moving on a ship. As a demonstration, we consider two examples: a one degree-of-freedom system experiencing three sea states operating in a plane to verify the methodology and a 3 degree of freedom system experiencing all six degrees of ship motion to illustrate the ease of computation and complexity of the solution. The first series of simulations explore the impact wave motion has on tracking performance of a position controlled robot. We provide a preliminary comparison between conventional linear control and Repetitive Learning Control (RLC) and show how fixed time delay RLC breaks down due to the varying nature wave disturbance frequency. Next, we explore the impact wave motion disturbances have on Human Amplification Technology (HAT). We begin with a description of the traditional HAT control methodology. Simulations show that the motion of the base of the robot, due to ship motion, generates disturbances forces reflected to the operator that significantly degrade the positioning accuracy and resolution at higher sea states. As with position-controlled manipulators, augmenting the control with a Repetitive
Modeling waves forced by a drop bouncing on a vibrating bath
Turton, Sam; Rosales, Ruben; Bush, John
2017-11-01
We study the wavefield generated by a droplet bouncing on a bath of silicon oil undergoing vertical oscillations. Such droplets may bounce indefinitely below the Faraday threshold, and in certain parameter regimes destabilize into a walking state in which they are propelled by their own wavefield. While previous theoretical models have rationalize the behavior of single droplets, difficulties have arisen in rationalizing the behavior of multi-droplet systems. We here present a refined wave model that allows us to do so. In particular, we give a detailed account of the spatio-temporal decay of the waves, in addition to the couping between the wave amplitude and modulations in the droplet's vertical dynamics. Our analytic model is compared with the results of direct numerical simulations and experiments. We gratefully acknowledge the financial support of the NSF.
Drift of suspended ferromagnetic particles due to the Magnus effect
Denisov, S. I.; Pedchenko, B. O.
2017-01-01
A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the phenomenon of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.
International Nuclear Information System (INIS)
D. Kicker
2004-01-01
Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA
Energy Technology Data Exchange (ETDEWEB)
D. Kicker
2004-09-16
Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal
Spiral silicon drift detectors
International Nuclear Information System (INIS)
Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.
1988-01-01
An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs
Partial wave expansions for arbitrary spin and the role of non-central forces
International Nuclear Information System (INIS)
Johnson, R.C.
1976-09-01
The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and nondiagonal in orbital angular momentum can be distinguished in observables
Partial wave expansions for arbitrary spin and the role of non-central forces
International Nuclear Information System (INIS)
Johnson, R.C.
1977-01-01
The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and non-diagonal in orbital angular momentum can be distinguished in observables. (Auth.)
Radial semiconductor drift chambers
International Nuclear Information System (INIS)
Rawlings, K.J.
1987-01-01
The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)
Theoretical Studies of Drift-Alfven and Energetic Particle Physics in Fusion Plasmas
Energy Technology Data Exchange (ETDEWEB)
Liu Chen
2005-07-06
Nonlinear equations for the slow space-time evolution of the radial drift-wave envelope and zonal flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent four-wave drift wave-zonal flow modulation interaction model of Chen, Lin, and White [Phys. Plasmas 7, 3129 (2000)]. Solutions clearly demonstrate turbulence spreading due to nonlinearly dispersiveness and, consequently, the device-size dependence of the saturated wave intensities and transport coefficients.
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
DEFF Research Database (Denmark)
Christensen, Kim; Oomen, Roel; Renò, Roberto
are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the continuous-time Itô semi-martingale model in such a way that the fundamental arbitrage-free property is preserved......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....
The effect of plasma drift on the electromagnetic cyclotron instability
International Nuclear Information System (INIS)
Kulkarni, V.H.; Rycroft, M.J.
1979-01-01
It is shown that the drift of plasma across a homogeneous magnetic field causes the generation of a wave electric field which, for waves propagating along the magnetic field in the whistler mode, is in the direction of the magnetic field. This leads to Landau damping of the wave field by the background electron distribution, simultaneously with amplification via the electromagnetic cyclotron instability. The drift velocity of the plasma for zero net growth of a whistler mode signal is calculated. It is suggested that such a process occurs in the equatorial region of the magnetosphere during a geomagnetic storm and accounts for the missing band of emissions at half the equatorial gyrofrequency. (Auth.)
Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave
Czech Academy of Sciences Publication Activity Database
Zemánek, Pavel; Jonáš, Alexandr; Liška, M.
2002-01-01
Roč. 19, č. 5 (2002), s. 1025 - 1034 ISSN 0740-3232 R&D Projects: GA ČR GA101/98/P106; GA ČR GA202/99/0959; GA ČR GA101/00/0974 Institutional research plan: CEZ:AV0Z2065902 Keywords : Gaussian tanding wave Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.688, year: 2002
Ke, Ziming; Yankovsky, Alexander E.
2011-06-01
A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.
Energy Technology Data Exchange (ETDEWEB)
Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu
2009-02-15
In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.
Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H
2013-01-01
Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward
Tapping with intentional drift
Vardy, A.N.; Daffertshofer, A.; Beek, P.J.
2009-01-01
When tapping a desired frequency, subjects tend to drift away from this target frequency. This compromises the estimate of the correlation between inter-tap intervals (ITIs) as predicted by the two-level model of Wing and Kristofferson which consists of an internal timer ('clock') and motor delays.
International Nuclear Information System (INIS)
Ferrari, A.
2002-01-01
The design and construction of the large drift chamber of the KLOE experiment is presented. The track reconstruction is described, together with the calibration method and the monitoring systems. The stability of operation and the performance are studied with samples of e + e - , K S K L and K + K - events
High resolution drift chambers
International Nuclear Information System (INIS)
Va'vra, J.
1985-07-01
High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs
Energy Technology Data Exchange (ETDEWEB)
Danilov, M; Nagovizin, V; Hasemann, H; Michel, E; Schmidt-Parzefall, W; Wurth, R; Kim, P
1983-11-15
The ARGUS detector came into operation at the DORIS-II e/sup +/s/sup -/ storage ring at the end of 1982. Its two meter long drift chamber contains 5940 sense and 24588 field wires organized in uniform 18x18.8 mm/sup 2/ drift cells filling the whole volume. These cells form 36 layers, 18 of which provide stereo views. Each sense wire is equipped with a single hit TDC and ADC for coordinate and dE/dx measurements. The chamber is operated with propane to improve momentum and dE/dx resolution. The drift chamber design and initial performance are presented. With a very crude space-time relation approximation and without all the necessary corrections applied a spatial resolution of about 200 ..mu..m was obtained for half of the drift cell volume. Further corrections should improve this result. An intrinsic dE/dx resolution of 4.2% and an actual resolution of 5% were obtained for cosmic muons and also for Bhabha scattered electrons. An actual dE/dx resolution of 5.6% was obtained for pions from e/sup +/e/sup -/ annihilation data with almost no track selection. A relativistic rise of 30% was observed in good agreement with theory. The long-term stability is still to be investigated.
Fanta, J.; Siepel, H.
2010-01-01
Man has had a complex relationship with inland drift sands through the ages. For some centuries these landscapes were seen as a threat to society, especially agriculture and housing. At present we conserve these landscapes as important Natura 2000 priority habitats. In this book you may find these
Guiding center drift equations
International Nuclear Information System (INIS)
Boozer, A.H.
1979-03-01
The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem
Energy Technology Data Exchange (ETDEWEB)
D.M. Jolley
1999-12-02
As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.
International Nuclear Information System (INIS)
2002-01-01
The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M and O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M and O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report
Indian Academy of Sciences (India)
of charged particles in electromagnetic fields. The linear and nonlinear collective modes in electron-positron plasma have been investigated theoretically [3–6]. Recently, Oohara and Hatakeyama [7] have developed a novel method for generating a pair plasma con- sisting of only negative and positive ions with equal mass ...
Unconventional ballooning structures for toroidal drift waves
International Nuclear Information System (INIS)
Xie, Hua-sheng; Xiao, Yong
2015-01-01
With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas, gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal positions or with multiple peaks. It is found that these unconventional ballooning structures are associated with different eigen states for the most unstable mode. At weak gradient (low confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground eigen state and the ballooning mode structure becomes unconventional. This result implies that the pedestal of H-mode could have better confinement than L-mode
Anomalous momentum transport from drift waves
International Nuclear Information System (INIS)
Dominguez, R.R.; Staebler, G.M.
1993-01-01
A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
On forced oscillations of a simple model for a novel wave energy converter
Orazov, Bayram
2011-05-11
The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.
Suspended sediment drift and dispersion at Hibernia
International Nuclear Information System (INIS)
Tedford, T.; Drozdowski, A.; Hannah, C.G.
2003-01-01
Surface water waves and near-bottom currents around the Hibernia oil production platform on the Grand Banks of Newfoundland were examined to determine how the different seasons affect changes in wave magnitude and directions of water currents. Wave observations revealed a strong correlation with seasons, with the larger waves occurring in fall and early winter. There was no obvious seasonality in the size or direction of currents. The benthic boundary layer transport (BBLT) model was used to predict the drift and dispersion pathways of suspended drilling muds discharged from the Hibernia platform. The 2-year study from March 1998 to May 2000 involved 5-day BBLT model simulations covering the complete period of current meter deployment. The study focused on the sensitivity of the drift and dispersion to variability in the physical environment and uncertainty in the bottom stress calculation and particle settling velocity. The BBLT model incorporates a stress dependent particle settling velocity that includes the main features of the flocculations of drill mud fines under marine conditions. The study provides a better understanding of how drill mud concentration levels can change with variations in waves, currents, and bottom stress. It was determined that drift is generally oriented along the northwest/southeast axis, with a typical magnitude of 0.8 cm/sec for the fast settling velocity and 3.1 cm/sec for the slow settling velocity. It was concluded that near-surface or mid-depth discharges of drilling mud in the summer may not reach the sea floor. 17 refs., 13 tabs., 36 figs
Cumming, D.; Fleming, G.; Schwienbacher, A.
2009-01-01
We introduce the concept of style drift to private equity investment. We present theory and evidence pertaining to style drifts in terms of a fund manager's stated focus on particular stages of entrepreneurial development. We develop a model that derives conditions under which style drifts are less
Directory of Open Access Journals (Sweden)
Chhabra L
2013-05-01
Full Text Available Lovely Chhabra,1 Vinod K Chaubey,1 Chandrasekhar Kothagundla,1 Rishi Bajaj,1 Sudesh Kaul,1 David H Spodick2 1Department of Internal Medicine, 2Department of Cardiovascular Diseases, University of Massachusetts Medical School, Worcester, MA, USA Introduction: Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60° serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf, amplitude of initial positive component of P-waves in V1 (i-PV1, and interatrial block (IAB have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods: Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (- P wave in V1 or a biphasic (+/- P wave in V1. Results: s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03. s-Ptf also significantly correlated with IAB (P = 0.001; however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23. There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047; however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36. Conclusion: We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America
Diogene pictorial drift chamber
International Nuclear Information System (INIS)
Gosset, J.
1984-01-01
A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive)
Mitri, F G
2017-02-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
DEFF Research Database (Denmark)
Lehre, Per Kristian
2011-01-01
An important step in gaining a better understanding of the stochastic dynamics of evolving populations, is the development of appropriate analytical tools. We present a new drift theorem for populations that allows properties of their long-term behaviour, e.g. the runtime of evolutionary algorithms......, to be derived from simple conditions on the one-step behaviour of their variation operators and selection mechanisms....
Consistent guiding center drift theories
International Nuclear Information System (INIS)
Wimmel, H.K.
1982-04-01
Various guiding-center drift theories are presented that are optimized in respect of consistency. They satisfy exact energy conservation theorems (in time-independent fields), Liouville's theorems, and appropriate power balance equations. A theoretical framework is given that allows direct and exact derivation of associated drift-kinetic equations from the respective guiding-center drift-orbit theories. These drift-kinetic equations are listed. Northrop's non-optimized theory is discussed for reference, and internal consistency relations of G.C. drift theories are presented. (orig.)
Laboratory Course on Drift Chambers
International Nuclear Information System (INIS)
Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.
2006-01-01
Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas
Transient chaotic transport in dissipative drift motion
Energy Technology Data Exchange (ETDEWEB)
Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)
2016-04-22
Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.
Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves
DEFF Research Database (Denmark)
Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu
2014-01-01
This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...
Yang, Yiqun; Urban, Matthew W; McGough, Robert J
2018-05-15
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.
Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.
2018-05-01
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.
Longshore transport based on directional waves along north Tamilnadu Coast, India
Digital Repository Service at National Institute of Oceanography (India)
Jena, B.K.; Chandramohan, P.; SanilKumar, V.
the coastline tends to be a nodal drift regime. The temporary rise in wave activities during the cyclonic days often increases the southerly drift, which partly gets deposited in the Palk Bay and causes deficit for the northerly drift...
Quantification of Stokes Drift as a Mechanism for Surface Oil Advection in the DWH Oil Spill
Clark, M.
2013-12-01
Stokes drift has previously been qualitatively shown to be a factor in ocean surface particle transport, but has never been comprehensively quantified. In addition, most operational ocean particle advection models used during the Deepwater Horizon oil spill do not explicitly account for Stokes drift, instead using a simple parameterization based on wind drift (or ignoring it completely). This research works to quantify Stokes drift via direct calculation, with a focus on shallow water, where Stokes drift is more likely to have a relatively large impact compared to other transport processes such as ocean currents. For this study, WaveWatch III modeled waves in the Gulf of Mexico are used, from which Stokes drift is calculated using the peak wave period and significant wave height outputs. Trajectories are also calculated to examine the role Stokes drift plays in bringing surface particles (and specifically surface oil slicks) onshore. The impact of Stokes drift is compared to transport by currents and traditional estimates of wind drift.
Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.
2018-01-01
We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.
Lacoste, Deanna; Xiong, Yuan; Moeck, Jonas P.; Chung, Suk-Ho; Roberts, William L.; Cha, Min
2016-01-01
The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.
Lacoste, Deanna
2016-06-23
The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
2012-01-01
The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).
International Nuclear Information System (INIS)
Wilson, Michael L.
2001-01-01
Drift seepage refers to flow of liquid water into repository emplacement drifts, where it can potentially contribute to degradation of the engineered systems and release and transport of radionuclides within the drifts. Because of these important effects, seepage into emplacement drifts is listed as a ''principal factor for the postclosure safety case'' in the screening criteria for grading of data in Attachment 1 of AP-3.15Q, Rev. 2, ''Managing Technical Product Inputs''. Abstraction refers to distillation of the essential components of a process model into a form suitable for use in total-system performance assessment (TSPA). Thus, the purpose of this analysis/model is to put the information generated by the seepage process modeling in a form appropriate for use in the TSPA for the Site Recommendation. This report also supports the Unsaturated-Zone Flow and Transport Process Model Report. The scope of the work is discussed below. This analysis/model is governed by the ''Technical Work Plan for Unsaturated Zone Flow and Transport Process Model Report'' (CRWMS MandO 2000a). Details of this activity are in Addendum A of the technical work plan. The original Work Direction and Planning Document is included as Attachment 7 of Addendum A. Note that the Work Direction and Planning Document contains tasks identified for both Performance Assessment Operations (PAO) and Natural Environment Program Operations (NEPO). Only the PAO tasks are documented here. The planning for the NEPO activities is now in Addendum D of the same technical work plan and the work is documented in a separate report (CRWMS MandO 2000b). The Project has been reorganized since the document was written. The responsible organizations in the new structure are the Performance Assessment Department and the Unsaturated Zone Department, respectively. The work plan for the seepage abstraction calls for determining an appropriate abstraction methodology, determining uncertainties in seepage, and providing
Drift velocity monitoring of the CMS muon drift chambers
Sonnenschein, Lars
2010-01-01
The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented.
DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS
International Nuclear Information System (INIS)
J.T. Birkholzer; S. Mukhopadhyay
2005-01-01
The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report
World in the drift-ice; Ryuhyo no sekai
Energy Technology Data Exchange (ETDEWEB)
Aota, M. [Hokkaido Univ., Hokkaido (Japan)
1999-06-07
What freezes in the sea in the circumference in our country is only Sea of Okhotsk. What will be the drift-ice for the people who live in this beach? The distress by the drift-ice often occurred. The drift-ice spoils tearing, shell in the pickpocket in respect of the fishing gear in respect of destruction and kelp. The boat was landed, when the drift-ice came, the fisherman came out, and it went to the labor. The seafood processing field becomes also the closure condition. The drift-ice was a white demon for people of the beach, and it was a troublesome person. In the meantime, the drift-ice soothes the wave, and it becomes a natural float breakwater, the coast is kept, and the salt damage does be held. There is some that it is faced the sea off beach cleaning. People of the seashore in Okohtsk live with the drift-ice with merits and both demerit sideses. (NEDO)
Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D
2002-01-01
The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).
Electronics for proportional drift tubes
International Nuclear Information System (INIS)
Fremont, G.; Friend, B.; Mess, K.H.; Schmidt-Parzefall, W.; Tarle, J.C.; Verweij, H.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Geske, K.; Riege, H.; Schuett, J.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Semenov, Y.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration)
1980-01-01
An electronic system for the read-out of a large number of proportional drift tubes (16,000) has been designed. This system measures deposited charge and drift-time of the charge of a particle traversing a proportional drift tube. A second event can be accepted during the read-out of the system. Up to 40 typical events can be collected and buffered before a data transfer to a computer is necessary. (orig.)
Drift-Scale Radionuclide Transport
International Nuclear Information System (INIS)
Houseworth, J.
2004-01-01
The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the
Ocean modelling aspects for drift applications
Stephane, L.; Pierre, D.
2010-12-01
over the initial position of the drifting material. Works in the near future will explore that concept with ensemble of currents obtained with different initial conditions, phase shifted boundary forcings or perturbed atmospheric surface forcings.
Unstable drift eigenmode in slab geometry
International Nuclear Information System (INIS)
Tsotsonis, S.; Hirose, A.
1986-01-01
The unstable Pearlstein-Berk mode of drift waves in plane, sheared slab geometry has later been shown to be stable when electron Landau resonance is rigorously treated. Based on the variational method previously developed the authors have found that in addition to the absolutely stable Pearlstein-Berk mode, there exists an absolutely unstable eigenfunction characterized by ω ≤ ω/sub chemical bonde/, and weak ''radial'' dependence. Also, the growth rate, only weakly depends on the magnetic shear and ion/electron temperature ratio
MAGSAT anomaly map and continental drift
Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.
1981-01-01
Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.
DEFF Research Database (Denmark)
Schløer, Signe
2013-01-01
wind farms. As wind farms are being moved further offshore the wave loads become larger compared to the wind loads and therefore more important in the design of offshore wind turbines. Yet, the water depth is still only shallow or intermediate where the waves should be described by nonlinear irregular...
2015-09-30
Low-Level Profiles, Pressure, Temperature, Humidity Rawinsonde (Kite, Tethered Balloon , Unmanned Aerial vehicle) Wave Characteristics, Wind wave and...Thermistor, Ship intake, Manual Bucket Tropospheric Profiles, 4/day – Pressure, Temperature, Humidity, Wind Vector Rawinsonde (Weather Balloon
Curvature-induced electrostatic drift modes in a toroidal plasma
International Nuclear Information System (INIS)
Venema, M.
1985-01-01
This thesis deals with a number of problems in the theory of linear stability of a hot, fully ionized plasma immersed in a strong magnetic field. The most widely used system to magnetically confine a plasma is the tokamak. This is a toroidal, current carrying device with a strong, externally imposed, magnetic field. The author discusses the linear theory of unstable, low-frequency waves in the gradient region, restricted to electrostatic waves. In that case the resulting radial fluxes of particles and energy are due to electric cross-field drifts. In the presence of magnetic fluctuations and small-scale reconnection phenomena, radial transport could also be predominantly along field lines. At present, it is not clear which of the two mechanisms is the dominant feature of the observed anomalous transport. First, the author introduces the theory of drift waves in toroidal geometry. Next, the electrostratic drift modes in toroidal geometry (weakly collisional regime), the equations for low-frequency waves in the strongly collisional regime and the electrostatic drift modes (strongly collisional regime) are discussed. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Inoue, Y.; Tabeta, S.; Takei, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1996-12-31
A rough design was performed on a floating airport. On this floating structure, environmental external force was estimated, mooring design was carried out, and discussions was given on the position retaining performance important for airport functions and behavior of the floating structure. The discussion was given on cases that the airport is surrounded and not surrounded by floating breakwaters. A floating structure which becomes super-large in size requires considerations on force due to sea level gradient as a result of a tide. Deriving flow condition changes and force acting on the floating structure simultaneously by using numerical calculations makes it possible to estimate current force given with considerations on influence of the flow conditions created by installing the floating airport. Estimation was carried out by using a zone dividing method on wave drifting force acting upon the floating airport. As a result, it was found that installing floating and permeating type breakwaters can reduce the wave drifting force acting on the floating airport. The wave drifting force working on the floating airport can be reduced by installing the floating and permeating type breakwaters to lower levels than when no such breakwaters are installed. The airport may be moored with less number of fenders when the fenders of the same type are used. 18 refs., 10 figs., 5 tabs.
Progress in semiconductor drift detectors
International Nuclear Information System (INIS)
Rehak, P.; Walton, J.; Gatti, E.
1985-01-01
Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements
CTF Void Drift Validation Study
Energy Technology Data Exchange (ETDEWEB)
Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)
2015-10-26
This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.
SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN
International Nuclear Information System (INIS)
JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG
1998-01-01
An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better
Directory of Open Access Journals (Sweden)
Paula B. Garcia-Rosa
2015-12-01
Full Text Available The energy cost for producing electricity via wave energy converters (WECs is still not competitive with other renewable energy sources, especially wind energy. It is well known that energy maximising control plays an important role to improve the performance of WECs, allowing the energy conversion to be performed as economically as possible. The control strategies are usually subsequently employed on a device that was designed and optimized in the absence of control for the prevailing sea conditions in a particular location. If an optimal unconstrained control strategy, such as pseudo-spectral optimal control (PSOC, is adopted, an overall optimized system can be obtained no matter whether the control design is incorporated at the geometry optimization stage or not. Nonetheless, strategies, such as latching control (LC, must be incorporated at the optimization design stage of the WEC geometry if an overall optimized system is to be realised. In this paper, the impact of device motion and force constraints in the design of control-informed optimized WEC geometries is addressed. The aim is to verify to what extent the constraints modify the connection between the control and the optimal device design. Intuitively, one might expect that if the constraints are very tight, the optimal device shape is the same regardless of incorporating or not the constrained control at the geometry optimization stage. However, this paper tests the hypothesis that the imposition of constraints will limit the control influence on the optimal device shape. PSOC, LC and passive control (PC are considered in this study. In addition, constrained versions of LC and PC are presented.
Energy Technology Data Exchange (ETDEWEB)
Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung [Severance Children' s Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)
2014-04-15
To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.
International Nuclear Information System (INIS)
Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung
2014-01-01
To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.
Wojcinski, Sebastian; Brandhorst, Kathrin; Sadigh, Gelareh; Hillemanns, Peter; Degenhardt, Friedrich
2013-01-01
Acoustic radiation force impulse imaging (ARFI) with Virtual Touch™ tissue quantification (VTTQ) enables the determination of shear wave velocity (SWV) in meters per second (m/s). The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign) and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s) (P breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s"). Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s) (P < 0.001). The best diagnostic accuracy (75.9%) was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved.
Toroidal drift magnetic pumping
International Nuclear Information System (INIS)
Canobbio, E.
1977-01-01
A set of azimuthal coils which carry properly dephased rf-currents in the KHz frequency range can be used to heat toroidal plasmas by perpendicular Landau damping of subsonic Alfven waves. The heating mechanism and the rf-field structure are discussed in some detail
Neoclassical and anomalous transport in toroidal plasmas with drift-ordered turbulence
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1996-01-01
Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electromagnetic drift wave fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear wave-particle interactions. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. For the microscale fluctuations k perpendicular ρ i ∼ 1 the parallel neoclassical fluxes remain invariant. For mesoscale fluctuations the mixing length fluctuation level with broken symmetry from (weak) shear flows the neoclassical banana-plateau fluxes are affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. The proof of the Onsager symmetry is carried out by splitting the response function up into the even and odd parts under the (t, B) → (-t,-B) transformation and using the self-adjointness of the linearized Landau collision operator and the quasilinear formalism. An explicit calculation of the symmetric transport coefficients is possible when the Krook collision model replaces the Landau collision operator. The importance of low aspect ratio tokamaks and helical systems for experimental investigations of the Onsager symmetries is emphasized
DEFF Research Database (Denmark)
Wang, Kai; Cheng, Zhengshun; Moan, Torgeir
2015-01-01
With increasing interests in the development of offshore floating vertical axis wind turbines (FVAWTs), a large amount of studies on the FVAWTs have been conducted. This paper focuses on evaluating the effect of second-order difference-frequency force on the dynamics of a 5 MW FVAWT in misaligned...... wave-wind condition. The studied FVAWT is composed of a 5 MW Darrieus rotor, a semi-submersible floater and a catenary mooring system. Fully coupled nonlinear time domain simulations were conducted using the state-of-art code Simo- Riflex-DMS. Several misaligned wave-wind conditions were selected...... to investigate the global dynamic responses of the FVAWT, such as the platform motions, structural responses and mooring line tensions. It has been found that the wave-wind misalignment does not significantly affect the mean values of the global responses since the global responses are primarily wind...
T20 measurements for 1H(d searrow,γ)3He and the P-wave component of the nucleon-nucleon force
International Nuclear Information System (INIS)
Schmid, G.J.; Chasteler, R.M.; Weller, H.R.; Tilley, D.R.; Fonseca, A.C.; Lehman, D.R.
1996-01-01
Measurements of T 20 (θ lab =90 degree) for 1 H(d searrow,γ) 3 He, in the energy range E d (lab)=12.7 endash 19.8 MeV, have been compared with the results of new exact three-body Faddeev calculations using the Paris and Bonn-A nucleon-nucleon (NN) potentials. This comparison indicates a strong sensitivity of the T 20 observable to the p-wave part of the NN force. In particular, we find that the 3 P 1 component of the P-wave interaction is the dominant P-wave term affecting the value of T 20 (θ lab =90 degree) at these energies. This contrasts with the results of polarized N-D scattering studies where the 3 P 0 component has been found to dominate. cents 1996 The American Physical Society
Seepage into drifts in unsaturated fractured rock at Yucca Mountain
International Nuclear Information System (INIS)
Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne
1998-01-01
An important issue for the long-term performance of underground nuclear waste repository is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%, as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, they have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better
Drifting oscillations in axion monodromy
Energy Technology Data Exchange (ETDEWEB)
Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)
2017-10-01
We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.
Drifting oscillations in axion monodromy
International Nuclear Information System (INIS)
Flauger, Raphael; Westphal, Alexander
2014-12-01
We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.
Energy Technology Data Exchange (ETDEWEB)
Cuperman, S.; Bruma, C.; Komoshvili, K
2003-05-12
The generation in low aspect ratio tokamaks (LARTs) of ponderomotive forces and non-inductive current drive by the resonant fast wave-plasma interaction with mode conversion to kinetic Alfven waves (KAWs) and subsequent deposition, mainly by resonant electron Landau damping, is considered. The calculations follow the rigorous solution of the full wave equations upon using a dielectric tensor operator consisting of (i) a parallel conductivity including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped electrons and passing electrons+ions and (ii) perpendicular components provided by the resistive two-fluid model equations. The fast waves are launched by an antenna located on the low field side and extending {+-}45 deg. about the equatorial plane. A parametric investigation of the structure and importance of the various components of the ponderomotive forces and current drive generated in START-like plasmas is carried out and their suitability for supplementing the required non-rf toroidal equilibrium current is demonstrated.
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411
Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).
Metocean input data for drift models applications: Loustic study
International Nuclear Information System (INIS)
Michon, P.; Bossart, C.; Cabioc'h, M.
1995-01-01
Real-time monitoring and crisis management of oil slicks or floating structures displacement require a good knowledge of local winds, waves and currents used as input data for operational drift models. Fortunately, thanks to world-wide and all-weather coverage, satellite measurements have recently enabled the introduction of new methods for the remote sensing of the marine environment. Within a French joint industry project, a procedure has been developed using basically satellite measurements combined to metocean models in order to provide marine operators' drift models with reliable wind, wave and current analyses and short term forecasts. Particularly, a model now allows the calculation of the drift current, under the joint action of wind and sea-state, thus radically improving the classical laws. This global procedure either directly uses satellite wind and waves measurements (if available on the study area) or indirectly, as calibration of metocean models results which are brought to the oil slick or floating structure location. The operational use of this procedure is reported here with an example of floating structure drift offshore from the Brittany coasts
Scaling observations of surface waves in the Beaufort Sea
Directory of Open Access Journals (Sweden)
Madison Smith
2016-04-01
Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.
Rippling and drift instabilities in the straight cylinder tokamak
International Nuclear Information System (INIS)
Rogister, A.
1984-01-01
It is shown that the electron and ion diamagnetic drifts stabilize the rippling mode in the straigth cylindrical tokamak model. Parallel electron heat conduction is further stabilizing if the parameter etasub(e) = dlnTsub(e)/dlnN is positive. This has a consequence that the mode does not survive at temperatures exceeding, typically, 50 eV for standard values of magnetic field and density. The collisional drift wave is found to be always stable even when the effect of the tokamak current is included in the calculation. (orig.)
Drift mode calculations for the Large Helical Device
International Nuclear Information System (INIS)
Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.
2000-01-01
A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for a case for the Large Helical Device (LHD) [A.Iiyoshi, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.Fusion 39, 1245 (1999)]. This calculation retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. Results for toroidal drift waves destabilized by trapped particle dynamics and ion temperature gradients are presented, using three-dimensional magnetohydrodynamics equilibria reconstructed from experimental measurements. The effects of helically-trapped particles and helical curvature are investigated
Lagrangians for plasmas in drift-fluid approximation
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1996-10-01
For drift waves and related instabilities conservation laws can play a crucial role. In an ideal theory these conservation laws are guaranteed when a Lagrangian can be found from which the equations for the various quantities result by Hamilton's principle. Such a Lagrangian for plasmas in drift-fluid approximation was obtained by a heuristic method in a recent paper by Pfirsch and Correa-Restrepo. In the present paper the same Lagrangian is derived from the exact multi-fluid Lagrangian via an iterative approximation procedure which resembles the standard method usually applied to the equations of motion. That method, however, does not guarantee all the conservation laws to hold. (orig.)
Gialafos, Elias J; Dilaveris, Polychronis E; Synetos, Andreas G; Tsolakidis, George F; Papaioannou, Theodoros G; Andrikopoulos, George K; Richter, Dimitris J; Triposkiadis, Filippos; Gialafos, John E
2003-01-01
P wave analysis from the 12-lead ECG is a recent contribution of noninvasive electrocardiology. P wave analysis indices (maximum and minimum P wave duration, P wave dispersion [Pdis = Pmax-Pmin], adjusted P wave dispersion [APdis = Pdis/square root of measured leads], summated P wave duration [Psum], standard deviation of P wave duration [Psd], mean P wave duration [Pmean]) can predict atrial arrhythmias. However, the definitions of all these indices are based on few studies. The aim of this analysis was to define normal values of these indices and the examine possible associations between P wave indices and clinical variables. The study included 1,353 healthy men, 24 +/- 3 years of age, who answered a questionnaire and underwent a detailed physical examination and a digitized 12-lead surface ECG. All P wave indices were analyzed by two independent investigators. Mean values of the ECG indices were: Pmax: 96 +/- 11 ms, Pmin: 57 +/- 9 ms, Pdis: 38 +/- 10 ms, Psum: 924 +/- 96 ms, Psd: 12 +/- 3, APdis: 11 +/- 3 ms, and Pmean: 77 +/- 8 ms. Age was significantly related with Pmax (r = 0.277, P < 0.01), Pmin (r = 0.255, P < 0.001), Psum (r = 0.074, P < 0.01), and Pmean (r = 0.074, P < 0.01). All ECG indices were significantly associated with the R-R interval, and among each other. This study defined normal indices of wave duration and correlations among them. These markers may play an important predictive role in patients with atrial conduction abnormalities.
Drift mode in a bounded plasma having two-ion species
International Nuclear Information System (INIS)
Ahmad, Ali; Sajid, M.; Saleem, H.
2008-01-01
The drift wave is investigated in a two-ion species plasma in several different cases. The global drift mode is studied in a plasma bounded in a cylinder having Gaussian density profile corresponding to different poloidal wavenumbers. The frequency of the mode becomes a little larger when it is investigated without including the ion cyclotron wave dynamics. The effect of magnetic shear on the wave propagation along the density gradient is studied in a Cartesian geometry assuming absorbing boundary. It is found that the wave amplitude is reduced when two-ion species are present (with the same concentration) compared to pure electron-ion plasma
Noise-induced drift in two-dimensional anisotropic systems
Farago, Oded
2017-10-01
We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2016-01-01
The response of an offshore wind turbine tower and its monopile foundation has been investigated when exposed to linear and fully nonlinear irregular waves on four different water depths. The investigation focuses on the consequences of including full nonlinearity in the wave kinematics. The line...
Drift chamber data readout system
International Nuclear Information System (INIS)
Basiladze, S.G.; Lokhonyai, L.
1980-01-01
An electronic system for processing drift chamber signals is described. The system consists of 4-channel fast amplifier-discriminators of low threshold, 16-channel time-expanders transforming 0.5 μs time intervals to 10 μs and a 9-bit time-to-digital converter (TDC) recording up to 16 expanded time intervals. If the average track multiplicity is small, TDC is capable to process signals from 4 time-expanders (i.e., 64 drift gaps). In order to record multiple tracks per drift gap discriminator outputs can be connected to a number of time-expander channels. The fast clear input enables the system to be cleared within 0.5 μs. Efficient readout from TDC is facilated by reading only those channels which contain non-zero data (9 bits - drift time; 6 bits - wire number)
Photographic Service
1977-01-01
Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.
Directory of Open Access Journals (Sweden)
Wojcinski S
2013-09-01
Full Text Available Sebastian Wojcinski,1 Kathrin Brandhorst,2 Gelareh Sadigh,3 Peter Hillemanns,1 Friedrich Degenhardt2 1Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany; 2Department of Obstetrics and Gynecology, Franziskus Hospital, Bielefeld, Germany; 3Department of Radiology, Emory University, Atlanta, GA, USA Abstract: Acoustic radiation force impulse imaging (ARFI with Virtual Touch™ tissue quantification (VTTQ enables the determination of shear wave velocity (SWV in meters per second (m/s. The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s (P < 0.001. Focusing on breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s". Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s (P < 0.001. The best diagnostic accuracy (75.9% was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved. Keywords: ARFI VTTQ, elastography, ultrasound, breast imaging
International Nuclear Information System (INIS)
Carter, J.R.; Elcombe, P.A.; Hill, J.C.; Roach, C.M.; Armitage, J.C.; Carnegie, R.K.; Estabrooks, P.; Hemingway, R.; Karlen, D.; McPherson, A.; Pinfold, J.; Roney, J.M.; Routenburg, P.; Waterhouse, J.; Hargrove, C.K.; Klem, D.; Oakham, F.G.; Carter, A.A.; Jones, R.W.L.; Lasota, M.M.B.; Lloyd, S.L.; Pritchard, T.W.; Wyatt, T.R.
1990-01-01
A high precision vertex drift chamber has been installed in the OPAL experiment at LEP. The design of the chamber and the associated readout electronics is described. The performance of the system has been studied using cosmic ray muons and the results of these studies are presented. A space resolution of 50 μm in the drift direction is obtained using the OPAL central detector gas mixture at 4 bar. (orig.)
Electro-mechanics of drift tube wires
International Nuclear Information System (INIS)
Milburn, R.H.
1997-01-01
The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)
McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.
2004-12-01
Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some
Read, P L; Morice-Atkinson, X; Allen, E J; Castrejón-Pita, A A
2017-12-01
A series of laboratory experiments in a thermally driven, rotating fluid annulus are presented that investigate the onset and characteristics of phase synchronization and frequency entrainment between the intrinsic, chaotic, oscillatory amplitude modulation of travelling baroclinic waves and a periodic modulation of the (axisymmetric) thermal boundary conditions, subject to time-dependent coupling. The time-dependence is in the form of a prescribed duty cycle in which the periodic forcing of the boundary conditions is applied for only a fraction δ of each oscillation. For the rest of the oscillation, the boundary conditions are held fixed. Two profiles of forcing were investigated that capture different parts of the sinusoidal variation and δ was varied over the range 0.1≤δ≤1. Reducing δ was found to act in a similar way to a reduction in a constant coupling coefficient in reducing the width of the interval in forcing frequency or period over which complete synchronization was observed (the "Arnol'd tongue") with respect to the detuning, although for the strongest pulse-like forcing profile some degree of synchronization was discernible even at δ=0.1. Complete phase synchronization was obtained within the Arnol'd tongue itself, although the strength of the amplitude modulation of the baroclinic wave was not significantly affected. These experiments demonstrate a possible mechanism for intraseasonal and/or interannual "teleconnections" within the climate system of the Earth and other planets that does not rely on Rossby wave propagation across the planet along great circles.
Parsa, Behnoosh; Terekhov, Alexander; Zatsiorsky, Vladimir M; Latash, Mark L
2017-02-01
We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force-moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task.
Modelling substorm chorus events in terms of dispersive azimuthal drift
Directory of Open Access Journals (Sweden)
A. B. Collier
2004-12-01
Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift.
A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE.
Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms
Modelling substorm chorus events in terms of dispersive azimuthal drift
Directory of Open Access Journals (Sweden)
A. B. Collier
2004-12-01
Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift. A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE. Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms
The Geodiversity in Drift Sand Landscapes of The Netherlands
van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel
2015-04-01
The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2
Characteristic parameters of drift chambers calculation
International Nuclear Information System (INIS)
Duran, I.; Martinez-Laso, L.
1989-01-01
We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs
In-Drift Microbial Communities
Energy Technology Data Exchange (ETDEWEB)
D. Jolley
2000-11-09
As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.
In-Drift Microbial Communities
International Nuclear Information System (INIS)
Jolley, D.
2000-01-01
As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses
Drift effects on electromagnetic geodesic acoustic modes
Energy Technology Data Exchange (ETDEWEB)
Sgalla, R. J. F., E-mail: reneesgalla@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-900 (Brazil)
2015-02-15
A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ∼ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λ{sub r} ∼ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs)
International Nuclear Information System (INIS)
Krebs, H.; Epelbaum, E.; Meissner, U.G.
2007-01-01
We study the two-nucleon force at next-to-next-to-leading order in a chiral effective field theory with explicit Δ degrees of freedom. Fixing the appearing low-energy constants from a next-to-leading-order calculation of pion-nucleon threshold parameters, we find an improved convergence of most peripheral nucleon-nucleon phases compared to the theory with pions and nucleons only. In the delta-full theory, the next-to-leading-order corrections are dominant in most partial waves considered. (orig.)
CERN PhotoLab
1977-01-01
With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.
Directory of Open Access Journals (Sweden)
V. M. Sinitskiy
2016-01-01
Full Text Available When operating the anvil hammers there occur impacts of die tooling and as a consequence, virtually instantaneous impact stops of motion of drop hammer parts. Such operating conditions come with accelerated failures of the anvil hammer rods because of emerging significant wave stresses. Engineering practice widely uses variation, difference, and integral methods to calculate wave stresses. However, to use them a researcher has to acquire certain skills, and the special programs should be available. The paper considers a method for estimating the wave stress changes in the anvil hammer rods, which is based on the wave equation of the Laplace transform. It presents a procedure for generating differential equations and their solution using the operator method. These equations describe the wave processes of strain and stress propagation in the anvil hammer rod under non-rigid impact with the compliance obstacle of the drop hammer parts. The work defines how the piston and rod mass and also the mechanical and geometric parameters of the rod influence on the stress level in the rod sealing of the hammer ram. Analysis of the results shows that the stresses in the rod sealing are proportional to the total amount of wave stresses caused by the rod and piston impact included in the total weight of the system. The piston influence on the stresses in the rod under impact is in direct proportion to the ratio of its mass to the mass of the rod. Geometric parameters of the rod and speed of drop parts before the impact influence on the stress value as well. It was found that if the time of impact is less than the time of the shock wave running in forward and backward direction, the impact with a compliance obstacle is equivalent to that of with a rigid obstacle, and the dependence of the wave stresses follows the Zhukovsky formula of direct pressure shock. The presented method of stress calculation can be successfully used to select the optimal mass and the rod
International Nuclear Information System (INIS)
Sarrafan, Atabak; Zareh, Seiyed Hamid; Khayyat, Amir Ali Akbar; Zabihollah, Abolghassem
2012-01-01
Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feed forward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse dynamics model, and the forward dynamics model of the MR dampers, respectively. The most important characteristic of the proposed intelligent control strategy is its inherent robustness and its ability to handle the non-linear behavior of the system. Besides, no mathematical model needed to calculate forces produced by MR dampers. According to linearized Morison equation, wave-induced forces are determined. The performance of the proposed neuro-fuzzy control system is compared with that of a traditional semi-active control strategy, i.e., clipped optimal control system with LQG-target controller, through computer simulations, while the uncontrolled system response is used as the baseline. It is demonstrated that the design of proposed control system framework is more effective than that of the clipped optimal control scheme with LQG-target controller to reduce the vibration of offshore structure. Furthermore, the control strategy is very important for semi-active control
Predicting public sector accountability : From agency drift to forum drift
Schillemans, Thomas|info:eu-repo/dai/nl/229913881; Busuioc, Madalina
2015-01-01
Principal-agent theory has been the dominant theory at the heart of public sector accountability research. The notion of the potentially drifting agent-such as independent public agencies, opaque transnational institutions, or recalcitrant street-level bureaucrats-has been the guiding paradigm in
Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.
2017-08-01
In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.
Job satisfaction and preference drift.
Maassen van den Brink, H.; Groot, W.J.N.
1999-01-01
Most empirical studies do not find that higher wages lead to more job satisfaction. In this paper we argue that the insignificant effect of wages on job satisfaction is due to preference drift. We adapt the standard ordered response model to allow for preference shifts. The empirical results support
Warm ion effects on kinetic drift cyclotron loss cone instabilities
International Nuclear Information System (INIS)
Guo Shichong; Shen Jiewu; Cai Shidong
1988-01-01
The effects of adding warm plasmas on the kinetic DCLC mode in high β loss cone plasmas are investigated in detail. It is found that when the fluid DCLC mode is stabilized by a small amount of warm plasma, the kinetic excitation still remains due to two different mechanisms, namely, (1) magnetic drift resonance dissipation excites the negative energy wave; (2) a new type of positive energy wave can become unstable as the resonance condition is met. Comparing with fluid approximation theory, more warm plasmas are needed to suppress the kinetic DCLC instabilities
Atomic physics effects on tokamak edge drift-tearing modes
International Nuclear Information System (INIS)
Hahm, T.S.
1993-01-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold Δ Th , produced by ion sound wave coupling [Phys. Rev. Lett. 40, 1500 (1978)] is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semicollisional regime, both ionization and charge exchange act as drag on the ion parallel velocity [Phys. Fluids B 4, 2567 (1992)], and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation
Studies of electron drift velocity in nitrogen and isobutane
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Univ. Catolica de Sao Paulo (PUC/SP), SP (Brazil); Vivaldini, Tulio C.; Lima, Iara B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas
2009-07-01
Full text: The electron drift velocity is one of the most important transport parameters used to describe the physical behaviour of gas discharges and the development of avalanches in gaseous detectors, mainly when temporal information is significant, as in drift chambers and in the recent Resistive Plate Chambers (RPCs). Although many filling gases, isobutane is frequently used in RPCs, due to its excellent timing properties, but at high electric fields conditions there are insufficient data available in literature. In the present work we report the preliminary results related to the dependence of the electron drift velocity for isobutane as function of the reduced electric field E/N, in the range of 100 Td up to 216 Td. There are different methods to determine electron drift velocity in a gas, and our measurements were based on the Pulsed Townsend technique, which consists of extracting electrons from a metallic cathode and accelerates them toward the anode by a uniform electric field. Once the drift distance and the transit time are known, the drift velocities can be determined. In our system, the incidence of a nitrogen laser beam (LTB MNL200-LD) liberates electron from the cathode made of aluminium (40mm diameter). By means of a high voltage supply (Bertan, 225-30), these electrons are accelerated toward the anode (made of a high resistivity glass - 2:10{sup 12}{omega} cm) and this movement produces a fast electric signal in the anode, which is digitalized in an oscilloscope (LeCroy WavePro 7000) with 1 GHz bandwidth and 10 GS/s. The values obtained were compared to that ones of a Bolsig+ simulation code. In order to validate the technique and to analyze non-uniformity effects, results for nitrogen are also presented. (author)
Studies of electron drift velocity in nitrogen and isobutane
International Nuclear Information System (INIS)
Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Vivaldini, Tulio C.; Lima, Iara B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio
2009-01-01
Full text: The electron drift velocity is one of the most important transport parameters used to describe the physical behaviour of gas discharges and the development of avalanches in gaseous detectors, mainly when temporal information is significant, as in drift chambers and in the recent Resistive Plate Chambers (RPCs). Although many filling gases, isobutane is frequently used in RPCs, due to its excellent timing properties, but at high electric fields conditions there are insufficient data available in literature. In the present work we report the preliminary results related to the dependence of the electron drift velocity for isobutane as function of the reduced electric field E/N, in the range of 100 Td up to 216 Td. There are different methods to determine electron drift velocity in a gas, and our measurements were based on the Pulsed Townsend technique, which consists of extracting electrons from a metallic cathode and accelerates them toward the anode by a uniform electric field. Once the drift distance and the transit time are known, the drift velocities can be determined. In our system, the incidence of a nitrogen laser beam (LTB MNL200-LD) liberates electron from the cathode made of aluminium (40mm diameter). By means of a high voltage supply (Bertan, 225-30), these electrons are accelerated toward the anode (made of a high resistivity glass - 2:10 12 Ω cm) and this movement produces a fast electric signal in the anode, which is digitalized in an oscilloscope (LeCroy WavePro 7000) with 1 GHz bandwidth and 10 GS/s. The values obtained were compared to that ones of a Bolsig+ simulation code. In order to validate the technique and to analyze non-uniformity effects, results for nitrogen are also presented. (author)
O'Brien, T. P., III; Claudepierre, S. G.
2017-12-01
During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.
Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud
International Nuclear Information System (INIS)
Kahnert, Michael; Sandvik, Anne Dagrun; Biryulina, Marina; Stamnes, Jakob J.; Stamnes, Knut
2008-01-01
We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility
Drift Chambers detectors; Detectores de deriva
Energy Technology Data Exchange (ETDEWEB)
Duran, I; Martinez laso, L
1989-07-01
We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.