WorldWideScience

Sample records for wave device integrable

  1. Integrated Ultrasonic-Photonic Devices

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva

    This thesis deals with the modeling, design, fabrication and characterization of integrated ultrasonic-photonic devices, with particular focus on the use of standard semiconductor materials such as GaAs and silicon. The devices are based on the use of guided acoustic waves to modulate the light...

  2. Analysis of transient electromagnetic wave interactions on graphene-based devices using integral equations

    KAUST Repository

    Shi, Yifei

    2015-10-26

    Graphene is a monolayer of carbon atoms structured in the form of a honeycomb lattice. Recent experimental studies have revealed that it can support surface plasmons at Terahertz frequencies thanks to its dispersive conductivity. Additionally, characteristics of these plasmons can be dynamically adjusted via electrostatic gating of the graphene sheet (K. S. Novoselov, et al., Science, 306, 666–669, 2004). These properties suggest that graphene can be a building block for novel electromagnetic and photonic devices for applications in the fields of photovoltaics, bio-chemical sensing, all-optical computing, and flexible electronics. Simulation of electromagnetic interactions on graphene-based devices is not an easy task. The thickness of the graphene sheet is orders of magnitude smaller than any other geometrical dimension of the device. Consequently, discretization of such a device leads to significantly large number of unknowns and/or ill-conditioned matrix systems.

  3. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power......'s first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  4. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  5. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2005-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  6. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2000-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  7. Next Generation Mid-Wave Infrared Cascaded Light Emitting Diodes: Growth of Broadband, Multispectral, and Single Color Devices on Gaas and Integrated Circuits

    Science.gov (United States)

    Provence, Sydney R.

    InAs/GaSb superlattices are an attractive material system for infrared light emitting diodes, due to the ability to tune the band gap throughout most of the infrared regime. A key consideration in the epitaxial growth of these heterostructures is crystalline material quality. In developing thick layers of epitaxially grown material, there are moderate amounts of elastic strain that can be incorporated into a heterostructure, beyond which deformations will form that will alleviate the lattice mismatch. This thesis investigates the optical and electronic properties of lattice-mismatched and strained materials through the study of thick dual-color light emitting diodes, broadband light emitting diodes, and InAs/GaSb superlattice devices developed on GaAs substrates and GaAs integrated circuits. A dual-color infrared light emitting diode is demonstrated emitting in the mid-wave infrared band at 3.81 mum and 4.72 mum. The design of the device stacks two independently operable InAs/GaSb superlattices structures on top of one another, so that 10 mum of material is grown with molecular beam epitaxy. Each layer is lattice-matched to a GaSb substrate. At quasi-continuous operation, radiances of 5.48 W/cm2-sr and 2.67 W/cm 2-sr are obtained. A broadband light emitting diode spanning the mid-wave infrared is demonstrated with eight stages of InAs/GaSb superlattices individually tuned to a different color. The performance of the device is compared with an identical eight stage device emitting in the middle of the mid-wave infrared. The emission of the fabricated broadband device spans from 3.2 ?m to 6 mum with peak radiance of 137.1 mW/cm2-sr. Growth of antimonide-based devices on GaAs is desirable to the relative transparency of semi-insulating substrates throughout the infrared, and as semi-insulating GaSb substrates are not available. The growth of bulk GaSb on GaAs is explored through different techniques in order to confine relaxation due to lattice mismatch strain to the

  8. TIME TEMPERATURE INTEGRATION DEVICE

    Science.gov (United States)

    JET ENGINES, * THERMOCOUPLES , AGING(PHYSIOLOGY), BONDING, CHROMIUM, ELECTRICAL CONDUCTIVITY, EXHAUST GASES, GOLD, IRON, MANUFACTURING, MEASUREMENT...PALLADIUM, PLATINUM, PREPARATION, ELECTRICAL RESISTANCE, SILVER, THERMAL DIFFUSION, THIN FILM STORAGE DEVICES , TURBOFAN ENGINES.

  9. Radial Shock Wave Devices Generate Cavitation.

    Science.gov (United States)

    Császár, Nikolaus B M; Angstman, Nicholas B; Milz, Stefan; Sprecher, Christoph M; Kobel, Philippe; Farhat, Mohamed; Furia, John P; Schmitz, Christoph

    2015-01-01

    Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice.

  10. Radial Shock Wave Devices Generate Cavitation.

    Directory of Open Access Journals (Sweden)

    Nikolaus B M Császár

    Full Text Available Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.We used laser fiber optic probe hydrophone (FOPH measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA. To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans worms.FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical

  11. Photonic Integrated Devices for Nonlinear Optics

    CERN Document Server

    Caspani, Lucia; Dolgaleva, Ksenia; Wagner, Sean; Ferrera, Marcello; Razzari, Luca; Pasquazi, Alessia; Peccianti, Marco; Moss, David J; Aitchison, J Stewart; Morandotti, Roberto

    2014-01-01

    We review our recent progresses on frequency conversion in integrated devices, focusing primarily on experiments based on strip-loaded and quantum-well intermixed AlGaAs waveguides, and on CMOS-compatible high-index doped silica glass waveguides. The former includes both second- and third-order interactions, demonstrating wavelength conversion by tunable difference-frequency generation over a bandwidth of more than nm, as well as broadband self-phase modulation and tunable four-wave mixing. The latter includes four-wave mixing using low-power continuous-wave light in microring resonators as well as hyper-parametric oscillation in a high quality factor resonator, towards the realization of an integrated multiple wavelength source with important applications for telecommunications, spectroscopy, and metrology.

  12. Radial Shock Wave Devices Generate Cavitation

    OpenAIRE

    Nikolaus B M Császár; Angstman, Nicholas B.; Stefan Milz; Sprecher, Christoph M.; Philippe Kobel; Mohamed Farhat; Furia, John P.; Christoph Schmitz

    2015-01-01

    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical...

  13. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  14. Guided-wave acousto-optics interactions, devices, and applications

    CERN Document Server

    1990-01-01

    The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in­ tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap­ plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in­ tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in thr...

  15. Reliability assessment of wave Energy devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten; Kofoed, Jens Peter

    2014-01-01

    Energy from waves may play a key role in sustainable electricity production in the future. Optimal reliability levels for components used for Wave Energy Devices (WEDs) need to be defined to be able to decrease their cost of electricity. Optimal reliability levels can be found using probabilistic...... near Hanstholm (DK). In the present paper, a generic example for an extreme limit state is considered. The extreme limit state case considers important failure modes of the system which are determined by a Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA). The resulting reliability...

  16. Connector device for building integrated photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  17. SU-8 Guiding Layer for Love Wave Devices

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2007-11-01

    Full Text Available SU-8 is a technologically important photoresist used extensively for thefabrication of microfluidics and MEMS, allowing high aspect ratio structures to beproduced. In this work we report the use of SU-8 as a Love wave sensor guiding layerwhich allows the possibility of integrating a guiding layer with flow cell during fabrication.Devices were fabricated on ST-cut quartz substrates with a single-single finger design suchthat a surface skimming bulk wave (SSBW at 97.4 MHz was excited. SU-8 polymer layerswere successively built up by spin coating and spectra recorded at each stage; showing afrequency decrease with increasing guiding layer thickness. The insertion loss andfrequency dependence as a function of guiding layer thickness was investigated over thefirst Love wave mode. Mass loading sensitivity of the resultant Love wave devices wasinvestigated by deposition of multiple gold layers. Liquid sensing using these devices wasalso demonstrated; water-glycerol mixtures were used to demonstrate sensing of density-viscosity and the physical adsorption and removal of protein was also assessed usingalbumin and fibrinogen as model proteins.

  18. Electromagnetic wave scattering on imperfect cloaking devices

    Directory of Open Access Journals (Sweden)

    Isić G.

    2008-01-01

    Full Text Available Cloaking devices based on the coordinate transform approach enable, in principle, a perfect concealment of a region in space provided that the material composing the cloaking shell meets certain criteria. To achieve ideal cloaking it is necessary that the shell material parameters have singular values on the surface bounding the cloaked region which is unphysical. In this paper we assume finite values of cloak parameters and apply the scattering theory formalism to give an estimate of the overall performance of an 'imperfect' cloak. We perform full-wave numerical calculations and use our theoretical results to discuss them.

  19. Preliminary Load Estimations for DEXA Wave Energy Device - Hanstholm, Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    by DEXA Wave Energy ApS, in regular and irregular wave states, as described in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The length scale of the model was 1:20 compared to a full scale device suitable fro the Danish part of the North Sea, according...

  20. Underwater Noise Modelling of Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.

  1. Porous Si as a substrate for the monolithic integration of RF and millimeter-wave passive devices (transmission lines, inductors, filters, and antennas): Current state-of-art and perspectives

    Science.gov (United States)

    Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2017-09-01

    The increasing need for miniaturization, reliability, and cost efficiency in modern telecommunications has boosted the idea of system-on-chip integration, incorporating the RF front-end circuitry and the passive elements such as RF transmission lines, inductors, antennas, and filters. However, the performance of the passive elements of these circuits is highly degraded when integrated on standard CMOS Si, due to its low resistivity. Porous silicon (PSi) has emerged as a promising local substrate material for the on-chip monolithic integration of high performance passive RF and mm-wave devices, because it combines high resistivity and low permittivity along with CMOS compatibility. This review paper aims at summarizing the obtained results so far in the above area, including transmission lines, inductors, filters, and miniaturized antennas, monolithically integrated on porous Si in a CMOS-compatible environment. In this respect, we first present the requirements for a low-loss, CMOS-compatible RF substrates and we then argue on how PSi fulfills the set requirements. Then, we present the methods used so far to extract the dielectric properties of PSi, which are necessary inputs for designing RF devices. The performance of different passive RF devices such as coplanar waveguides, inductors, filters, and antennas on the local porous Si substrate is then reviewed and compared with the performance of other state-of-the-art RF passive devices based on different technologies. Finally, we discuss the progress made so far towards the industrialization of PSi local RF substrate technology and the challenges that are currently faced towards this objective.

  2. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  3. Experimental Investigation of a Novel Blast Wave Mitigation Device

    Directory of Open Access Journals (Sweden)

    Zhenbi Su

    2009-01-01

    Full Text Available A novel blast wave mitigation device was investigated experimentally in this paper. The device consists of a piston-cylinder assembly. A shock wave is induced within the cylinder when a blast wave impacts on the piston. The shock wave propagates inside the device and is reflected repeatedly. The shock wave propagation process inside the device lengthens the duration of the force on the base of the device to several orders of magnitude of the duration of the blast wave, while it decreases the maximum pressure over an order of magnitude. Two types of experiments were carried out to study the blast wave mitigation device. The first type of experiments was done with honeycomb structures protected by the blast wave mitigation device. Experimental results show that the device can adequately protect the honeycomb structure. A second type of experiments was done using a Hopkinson bar to measure the pressure transmitted through the blast wave mitigation device. The experimental results agree well with results from a theoretical model.

  4. Spin-wave logic devices based on isotropic forward volume magneto-static waves

    OpenAIRE

    Klingler, Stefan; Pirro, Philipp; Brächer, Thomas; Leven, Britta; Hillebrands, Burkard; Chumak, Andrii V.

    2015-01-01

    We propose the utilization of isotropic forward volume magneto-static spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Mor...

  5. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  6. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  7. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  8. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  9. 40 CFR 610.22 - Device integrity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Device integrity. 610.22 Section 610.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Evaluation Criteria for the Preliminary Analysis...

  10. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    Directory of Open Access Journals (Sweden)

    Kewei Zhang

    2015-09-01

    Full Text Available It is introduced that the mass sensitivity (Sm of an acoustic wave (AW device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices.

  11. Integrated electrically driven surface plasmon resonance device for biosensing applications.

    Science.gov (United States)

    Jimenez, Alvaro; Lepage, Dominic; Beauvais, Jacques; Dubowski, Jan J

    2015-07-27

    Compact and portable surface plasmon resonance (SPR) biosensors of high sensitivities can be made through integration of discrete components in a single device. We report on a device comprising a vertical cavity light emitting diode (VLED) integrated with gold-based biosensing nanostructures fabricated atop its surface. Coupling of surface plasmon waves was achieved by the introduction of a spacer SiO2 layer located between the light source and the functionalized Au thin film. The SPR signal was extracted in far field with a Au-based nanograting and detected using a custom designed hyperspectral imager. We discuss the performance of a VLED-based SPR device employed for detection of different concentration saltwater solutions.

  12. Floating attenuator wave energy device: Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes research funded by the Department of Trade and Industry (DTI) into the feasibility of developing and constructing a floating attenuator wave energy device known as HYDRA following initial studies by Wavegen. HYDRA is a floating externally tensioned articulated raft wave energy generator based on work by Professor FJM Farley and colleagues during the 1980s. The project's first four work tasks confirmed the theoretical potential of the device but also highlighted significant practical problems in translating that potential into a viable design. It was therefore decided not to proceed further, i.e. not to construct and test a prototype device. The report provides a general description of the device and describes the results of the initial analysis and the first series of model tests. It then discusses device design and component testing and explains the methodology for determining device performance at a particular site and mathematical modelling of a one-third scale device. To help future research and development programmes, the report emphasises the generic problems associated with the development of wave devices.

  13. Photonic bandgap quasi-crystals for integrated WDM devices

    Science.gov (United States)

    Yankov, Vladimir V.; Babin, Sergey; Ivonin, Igor; Goltsov, Alexander Y.; Morozov, Anatolii; Polonskiy, Leonid; Spector, Michael; Talapov, Andrei; Kley, Ernst-Bernhard; Schmidt, Holger; Dahlgren, Robert P.

    2003-06-01

    A novel concept of Photonic Bandgap Quasi-Crystal (PBQC) as a platform for planar integrated WDM optical devices is proposed. The PBQC can be lithographically fabricated in a planar waveguide as a computer-generated two-dimensional hologram. In this approach the spectral selectivity of Bragg gratings, focusing properties of elliptical mirrors, superposition properties of thick holograms, photonic bandgaps of periodic structures, and flexibility of lithography on planar waveguides are combined. In distinction to conventional combination of independent planar Bragg gratings, in PBQC we create multiple bandgaps by synthesizing a synergetic super-grating of a number of individual sub-gratings. The device spectral selectivity is determined by those of the sub-gratings. The super-grating comprises million(s) of dashes etched on an interface of a planar waveguide. Each dash is a binary feature placed by a computer program to serve simultaneously many channels. For realization of PBQC devices the software for generating super-gratings (GDS-II format) and 2-D simulation of its transfer function was developed. Direct e-beam writing and photolithography were used for manufacturing PBQC structures. For verification of the ideas behind the concept a number of multichannel MUX/DEMUX devices have been manufactured and experimentally tested. The results of detailed experimental study of 4- and 16-channel devices will be presented. Channel isolation ~30 dB was achieved in the 4-channel devices. The applications of PBQC platform for integrated light wave circuits are discussed.

  14. Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology.

    Science.gov (United States)

    Li, Y; Fu, Y Q; Brodie, S D; Alghane, M; Walton, A J

    2012-03-01

    This paper presents integrated microfluidic lab-on-a-chip technology combining surface acoustic wave (SAW) and electro-wetting on dielectric (EWOD). This combination has been designed to provide enhanced microfluidic functionality and the integrated devices have been fabricated using a single mask lithographic process. The integrated technology uses EWOD to guide and precisely position microdroplets which can then be actuated by SAW devices for particle concentration, acoustic streaming, mixing and ejection, as well as for sensing using a shear-horizontal wave SAW device. A SAW induced force has also been employed to enhance the EWOD droplet splitting function.

  15. Metamaterial Waveguide Devices for Integrated Optics

    Science.gov (United States)

    Kanazawa, Toru; Yamasaki, Satoshi; Arai, Shigehisa

    2017-01-01

    We show the feasibility of controlling the magnetic permeability of optical semiconductor devices on InP-based photonic integration platforms. We have achieved the permeability control of GaInAsP/InP semiconductor waveguides by combining the waveguide with a metamaterial consisting of gate-controlled split ring resonators. The split-ring resonators interact magnetically with light travelling in the waveguide and move the effective relative permeability of the waveguide away from 1 at optical frequencies. The variation in permeability can be controlled with the gate voltage. Using this variable-permeability waveguide, we have built an optical modulator consisting of a GaInAsP/InP Mach–Zehnder interferometer for use at an optical communication wavelength of 1.55 μm. The device changes the permeability of its waveguide arm with controlling gate voltage, thereby varying the refractive index of the arm to modulate the intensity of light. For the study of variable-permeability waveguide devices, we also propose a method of extracting separately the permittivity and permeability values of devices from the experimental data of light transmission. Adjusting the permeability of optical semiconductors to the needs of device designers will open the promising field of ‘permeability engineering’. Permeability engineering will facilitate the manipulation of light and the management of photons, thereby contributing to the development of novel devices with sophisticated functions for photonic integration. PMID:28872621

  16. Silicon light emitting devices for integrated applications

    NARCIS (Netherlands)

    Le Minh, P.

    2003-01-01

    This thesis brings up new facts on the integration capability, photochemistry, and properties of the prototype devices based on the light emitting diode antifuse. The chapters are arranged with increasing level of sophistication. The fist chapter also reviews the current trends of the research on

  17. Wireless Passive Strain Sensor Based on Surface Acoustic Wave Devices

    OpenAIRE

    Nomura, T.; Kawasaki, K.; Saitoh, A

    2008-01-01

    Surface acoustic wave (SAW) devices offer many attractive features for applications as chemical and physical sensors. In this paper, a novel SAW strain sensor that employs SAW delay lines has been designed. Two crossed delay lines were used to measure the two-dimensional strain. A wireless sensing system is also proposed for effective operation of the strain sensor. In addition, an electronic system for accurately measuring the phase characteristics of the signal wave from the passive strain ...

  18. Research on a new wave energy absorption device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  19. Wave regularity in curve integrable spacetimes

    CERN Document Server

    Sanchez, Yafet Sanchez

    2015-01-01

    The idea of defining a gravitational singularity as an obstruction to the dynamical evolution of a test field (described by a PDE) rather than the dynamical evolution of a particle (described by a geodesics) is explored. In particular, the concept of wave regularity is introduced which serves to show that the classical singularities in curve integrable spacetimes do not interrupt the well-posedness of the wave equation. The techniques used also provide arguments that can be extended to establish when a classically singular spacetime remains singular in a semi-classical picture.

  20. Guided wave opto-acoustic device

    Energy Technology Data Exchange (ETDEWEB)

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  1. Connectivity Analysis of Millimeter-Wave Device-to-Device Networks with Blockage

    Directory of Open Access Journals (Sweden)

    Haejoon Jung

    2016-01-01

    Full Text Available We consider device-to-device (D2D communications in millimeter-wave (mm Wave for the future fifth generation (5G cellular networks. While the mm Wave systems can support multiple D2D pairs simultaneously through beamforming with highly directional antenna arrays, the mm Wave channel is significantly more susceptible to blockage compared to microwave; mm Wave channel studies indicate that if line-of-sight (LoS paths are blocked, reliable mm Wave communications may not be achieved for high data-rate applications. Therefore, assuming that an outage occurs in the absence of the LoS path between two wireless devices by obstructions, we focus on connectivity of the mm Wave D2D networks. We consider two types of D2D communications: direct and indirect schemes. The connectivity performances of the two schemes are investigated in terms of (i the probability to achieve a fully connected network PFC and (ii the average number of reliably connected devices γ. Through analysis and simulation, we show that, as the network size increases, PFC and γ decrease. Also, PFC and γ decrease, when the blockage parameter increases. Moreover, simulation results indicate that the hybrid direct and indirect scheme can improve both PFC and γ up to about 35% compared to the nonhybrid scheme.

  2. Heterogeneous MEMS device assembly and integration

    Science.gov (United States)

    Topart, Patrice; Picard, Francis; Ilias, Samir; Alain, Christine; Chevalier, Claude; Fisette, Bruno; Paultre, Jacques E.; Généreux, Francis; Legros, Mathieu; Lepage, Jean-François; Laverdière, Christian; Ngo Phong, Linh; Caron, Jean-Sol; Desroches, Yan

    2014-03-01

    In recent years, smart phone applications have both raised the pressure for cost and time to market reduction, and the need for high performance MEMS devices. This trend has led the MEMS community to develop multi-die packaging of different functionalities or multi-technology (i.e. wafer) approaches to fabricate and assemble devices respectively. This paper reports on the fabrication, assembly and packaging at INO of various MEMS devices using heterogeneous assembly at chip and package-level. First, the performance of a giant (e.g. about 3 mm in diameter), electrostatically actuated beam steering mirror is presented. It can be rotated about two perpendicular axes to steer an optical beam within an angular cone of up to 60° in vector scan mode with an angular resolution of 1 mrad and a response time of 300 ms. To achieve such angular performance relative to mirror size, the microassembly was performed from sub-components fabricated from 4 different wafers. To combine infrared detection with inertial sensing, an electroplated proof mass was flip-chipped onto a 256×1 pixel uncooled bolometric FPA and released using laser ablation. In addition to the microassembly technology, performance results of packaged devices are presented. Finally, to simulate a 3072×3 pixel uncooled detector for cloud and fire imaging in mid and long-wave IR, the staggered assembly of six 512×3 pixel FPAs with a less than 50 micron pixel co-registration is reported.

  3. Vector wave diffraction pattern of slits masked by polarizing devices

    Indian Academy of Sciences (India)

    Polarization property is important to the optical imaging system. It has recently been understood that the polarization properties of light can be fruitfully used for improving the characteristics of imaging system that includes polarizing devices. The vector wave imagery lends an additional degree of freedom that can be utilized ...

  4. Source illusion devices for flexural Lamb waves using elastic metasurfaces

    CERN Document Server

    Liu, Yongquan; Liu, Fu; Diba, Owen; Lamb, Alistair; Li, Jensen

    2016-01-01

    Metamaterials with the transformation method has greatly promoted the development in achieving invisibility and illusion for various classical waves. However, the requirement of tailor-made bulk materials and extreme constitutive parameters associated to illusion designs hampers its further progress. Inspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form-invariance in usual transformation methods. We demonstrate metasurfaces for shifting, transforming and splitting a point source with "space-coiling" structures. The effects are found to be broadband and robust against a change of source position, with agreement from numerical simulations and Huygens-Fresnel theory. The proposed approach provides an avenue to generically manipulate guided elastic waves in solids, and is...

  5. Medical device integration using mobile telecommunications infrastructure.

    Science.gov (United States)

    Moorman, Bridget A; Cockle, Richard A

    2013-01-01

    Financial pressures, an aging population, and a rising number of patients with chronic diseases, have encouraged the use of remote monitoring technologies. This usually entails at least one physiological parameter measurement for a clinician. Mobile telecommunication technologies lend themselves to this functionality, and in some cases, avoid some of the issues encountered with device integration. Moreover, the inherent characteristics of the mobile telecommunications infrastructure allow a coupling of business and clinical functions that were not possible before. Table I compares and contrasts some key aspect of device integration in and out of a healthcare facility. An HTM professional may be part of the team that acquires and/or manages a system using a mobile telecommunications technology. It is important for HTM professionals to ensure the data is in a standard format so that the interfaces across this system don't become brittle and break easily if one part changes. Moreover, the security and safety considerations of the system and the data should be a primary consideration in and y purchase, with attention given to the proper environmental and encryption mechanisms. Clinical engineers and other HTM professionals are unique in that they understand the patient/clinician/device interface and the need to ensure its safety and effectiveness regardless of geographical environment.

  6. Wireless Passive Strain Sensor Based on Surface Acoustic Wave Devices

    Directory of Open Access Journals (Sweden)

    T. Nomura

    2008-04-01

    Full Text Available Surface acoustic wave (SAW devices offer many attractive features for applications as chemical and physical sensors. In this paper, a novel SAW strain sensor that employs SAW delay lines has been designed. Two crossed delay lines were used to measure the two-dimensional strain. A wireless sensing system is also proposed for effective operation of the strain sensor. In addition, an electronic system for accurately measuring the phase characteristics of the signal wave from the passive strain sensor is proposed.

  7. Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces

    Science.gov (United States)

    Liu, Yongquan; Liang, Zixian; Liu, Fu; Diba, Owen; Lamb, Alistair; Li, Jensen

    2017-07-01

    Inspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form invariance in usual transformation methods. We demonstrate compact and simple-to-implement metasurfaces for shifting, transforming, and splitting a point source. The effects are measured to be broadband and robust against a change of source positions, with agreement from numerical simulations and the Huygens-Fresnel theory. The proposed method is potentially useful for applications such as nondestructive testing, high-resolution ultrasonography, and advanced signal modulation.

  8. Physics of thermal wave NDE of semiconductor materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Opsal, J.; Rosencwaig, A.

    1988-04-01

    The fundamental physics of a modulated-reflectance thermal-wave NDE technique for semiconductor materials and devices is explored. In this method, an intensity-modulated laser beam produces a thermal wave in the material and in the air above it; the thermal expansion of the material is detected by a probe-beam interferometer or by the deflection of a probe beam by the thermoelastic deformation of the surface. The governing equations for these basic processes are examined in detail, with a focus on the sensitivity of thermal and plasma waves to variations in thermal and electrical transport properties and recombination effects. The applicability of this technique to on-line monitoring of ion implantation, measurement of near-surface damage from wafer polishing or dry etching, and detection of defect-related electronic surface states is indicated. 23 references.

  9. The MMI Device Ontology: Enabling Sensor Integration

    Science.gov (United States)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e

  10. The 'CETO' wave power generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Profitt, Michael

    2007-07-01

    Renewable Energy Holdings plc (REH) is an international company established to be an operator of, and undertake active investments in both proven and innovative renewable energy technologies. The CETO devices have been developed in Western Australia by Seapower Pacific PTY Ltd (SPPL), a subsidiary of Renewable Energy Holdings Plc (REH). This paper reports on the technology and also includes the findings from an independent technical appraisal undertaken by PB Power. The CETO device consists primarily of a novel pump anchored to the seabed and driven by a spherical buoyant actuator that collects wave energy and transmits it to the pump. High pressure seawater is delivered ashore where it can be used to drive a turbine to generate electricity or passed through a reverse osmosis desalination unit to produce fresh water. The competitive edge of CETO against other current wave and tidal generation devices: Electricity generated onshore (using well-proven hydro-power technology); Low cost mass produced device; Simplified infrastructure from pumping pressurised sea water ashore rather than electricity; Allows shore-based desalination; Modular design and self deployment; and, Transport in standard containers.

  11. Traveling-wave device with mass flux suppression

    Science.gov (United States)

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2000-01-01

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  12. Innovative wave energy device applied to coastal observatory systems

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Piermattei, Viviana; Scanu, Sergio; Paladini de Mendoza, Francesco; Martellucci, Riccardo; Maximo, Peviani

    2017-04-01

    Marine environment is one of the most promising sources of renewable energy, whose exploitation could have an effect on several application fields. This work presents the design of an innovative device based on the Oscillating Water Column (OWC), that allows to convert wave energy into electricity, suitable for the typical Mediterranean wave climate. The flexibility of the device permits its installation either in deep or shallow waters, with reduced costs of deployment, maintenance and connection to the grid. Furthermore, the replicability of the design allows the device to be installed in array of several number of similar units. The technical concept is to convey the sea water within a vertical pipe, in which the water movements activate a rotor connected to a generator that transforms the energy of the water motion into electricity. The hydrodynamic design of the pipe is built to minimize the losses due to friction and turbulence and to exploit the maximum possible energy from wave motion. The wave energy is directly absorbed by the rotational movement of the turbine blades located in the water itself allowing a further reduction of the energy losses associated with the transformation of the linear water motion into electrical generation in the air phase (typical configuration of the OWC devices). In this work the device components are described considering two possible configurations that use a Wells turbine or a Bulb type turbine. The system can be realized at a low cost, because of the modularity of the device project, which allows large freedom of sizes and placements, being able to be installed both individually and in arrays. The modularity, associated with the fact that the main elements of the system are available on the market, makes the device particularly attractive from the economic point of view. Finally, it is realized with a high constructive flexibility: the proposed system can be transported floating and moored to existing coastal structures or

  13. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    Science.gov (United States)

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  14. Omnidirectional broadband insulating device for flexural waves in thin plates

    CERN Document Server

    Climente, Alfonso; Sánchez-Dehesa, José

    2013-01-01

    This work presents a gradient index device for insulating from vibrations a circular area of a thin plate. The gradient of the refractive index is achieved by locally changing the thickness of the plate, exploiting in this way the thickness-dependence of the dispersion relation of flexural waves in thin plates. A well-like thickness profile in an annular region of the plate is used to mimic the combination of an attractive and repulsive potentials, focusing waves at its bottom and dissipating them by means of a properly designed absorptive layer placed on top of the plate. The central area is therefore isolated from vibrations while they are dissipated at the bottom of the well. Simulations have been done using the multilayer multiple scattering method and the results prove their broadband efficiency and omnidirectional properties.

  15. Integrated Computational System for Electrochemical Device Design and Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Illinois Rocstar LLC proposes to develop and demonstrate the use of an integrated computational environment and infrastructure for electrochemical device design and...

  16. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  17. Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva; Hvam, Jørn Märcher

    2010-01-01

    Optical frequency shifters are essential components of many systems. In this paper, a compact integrated optical frequency shifter is designed making use of the combination of surface acoustic waves and Mach-Zehnder interferometers. It has a very simple operation setup and can be fabricated...... in standard semiconductor materials. The performance of the device is analyzed in detail, and by using multi-branch interferometers, the sensitivity of the device to fabrication tolerances can be drastically reduced....

  18. PREFACE: Nanoscale Devices and System Integration Conference (NDSI-2004)

    Science.gov (United States)

    Khizroev, Sakhrat; Litvinov, Dmitri

    2004-10-01

    The inaugural conference on Nanoscale Devices and System Integration (NDSI-2004) was held in Miami, Florida, 15-19 February, 2004. The focus of the conference was `real-life' devices and systems that have recently emerged as a result of various nanotechnology initiatives in chemistry and chemical engineering, physics, electrical engineering, materials science and engineering, biomedical engineering, computer science, robotics, and environmental science. The conference had a single session all-invited speaker format, with the presenters making the `Who's Who in Nanotechnology' list. Contributed work was showcased at a special poster session. The conference, sponsored by the Institute of Electrical and Electronics Engineers (IEEE) and the US Air Force, and endorsed by Materials Research Society (MRS), drew more than 160 participants from fourteen countries. To strengthen the connection between fundamental research and `real-life' applications, the conference featured a large number of presenters from both academia and industry. Among the participating companies were NEC, IBM, Toshiba, AMD, Samsung, Seagate, and Veeco. Nanotechnology has triggered a new wave of research collaborations between researchers from academia and industry with a broad range of specializations. Such a global approach has resulted in a number of breakthrough accomplishments. One of the main goals of this conference was to identify these accomplishments and put the novel technology initiatives and the emerging research teams on the map. Among the key nanotechnology applications demonstrated at NDSI-2004 were carbon-nanotube-based transistors, quantum computing systems, nanophotonic devices, single-molecule electronic devices and biological magnetic sources. Due to the unprecedented success of the conference, the organizing committee of NDSI has unanimously chosen to turn NDSI into an annual international nanotechnology event. The next NDSI is scheduled for 4-6 April, 2005, in Houston, Texas

  19. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    Science.gov (United States)

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  20. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    Directory of Open Access Journals (Sweden)

    Shozo Okasaka

    2016-08-01

    Full Text Available The fifth-generation mobile networks (5G will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP and user plane (UP will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  1. Intense switchable fluorescence in light wave coupled electrowetting devices

    Science.gov (United States)

    Heikenfeld, J.; Steckl, A. J.

    2005-01-01

    Switchable fluorescence has been obtained from light wave coupled (LWC) electrowetting (EW) devices fabricated on an optical waveguide substrate. The LWC device structure contains a polar water component and a nonpolar oil component that compete for placement on a hydrophobic surface under the influence of an applied electric field. The oil film contains organic lumophores that fluoresce intense red (608nm), green (503nm), and blue (433nm) light with ˜90% quantum efficiency when excited by violet light. Violet InGaN light-emitting diodes (LEDs) couple ˜405nm excitation light into the waveguide substrate. EW of the water layer displaces the fluorescent oil film such that it is either optically coupled to, or decoupled from, the underlying waveguide. The output luminance can be modulated from >100cd/m2to<5cd/m2 as a dc voltage ranging from 0to-24V is applied to the water layer. Maximum luminance of 15×30 arrays of the devices may exceed ˜500cd/m2 by simply increasing the output of the InGaN LEDs.

  2. Medicine Delivery Device with Integrated Sterilization and Detection

    Science.gov (United States)

    Shearn, Michael J.; Greer, Harold F.; Manohara, Harish

    2013-01-01

    or identification of the medicine itself. This constrained volume that is located immediately prior to delivery into a patient, ensures that the medicine delivery device is inherently sterile. An additional benefit to integrating a high-surface-area template within the fluid channel of a medicine delivery device is that one can envision a number of different functional coatings that could facilitate the capture and analysis of either microbial contaminants or the medicine itself. For example, one could attach antibodies or some other binding agent with a specific affinity to the silicon nanotip template. Once a target molecule or microbe is bound to the high-surface- area template, one could use an optical analytical technique such as fluorescence or adsorption to determine the identity and potentially the concentration of the species of interest. By illuminating the bound species from the back, it may also be possible to probe only the molecules with an evanescent wave, making detection of the species from the front side of the device much simpler.

  3. The Wave Field around DEXA Devices and Implications for Coastal Protection

    DEFF Research Database (Denmark)

    Zanuttigh, Barbara; Angelelli, Elisa; Castagnetti, Mirko

    2011-01-01

    The purpose of this paper is to examine the hydrodynamics around floating wave energy converters (f-WECs). In particular, the paper considers the case of the f-WEC of the Wave Activated Body type, named DEXA. Based on 3D wave experiments in the Laboratory of the Aalborg University (DK), the modif......The purpose of this paper is to examine the hydrodynamics around floating wave energy converters (f-WECs). In particular, the paper considers the case of the f-WEC of the Wave Activated Body type, named DEXA. Based on 3D wave experiments in the Laboratory of the Aalborg University (DK......), the modified wave field around a wave energy farm (composed by three 1:60 scale models) and around a single device (1:30 scale model) is investigated. Specific results include wave reflection, wave transmission and wave disturbance around the device. The results are examined considering scale effects...

  4. CMOS and BiCMOS process integration and device characterization

    CERN Document Server

    El-Kareh, Badih

    2009-01-01

    Covers both the theoretical and practical aspects of modern silicon devices and the relationship between their electrical properties and processing conditions. This book also covers silicon devices and integrated process technologies. It discusses modern silicon devices, their characteristics, and interactions with process parameters.

  5. FISHprep: A Novel Integrated Device for Metaphase FISH Sample Preparation

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    a novel device with an integrated expansion chamber to culture, arrest and fix metaphase cells followed by a subsequent splashing protocol leading to ample metaphase chromosome spreads on a glass slide for metaphase FISH analysis. The device provides an easy, disposable, low cost, integrated solution...... with minimal handling for metaphase FISH slide preparation....

  6. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  7. Reliability and Maintenance for Offshore Wind Turbines and Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines are in some countries contributing significantly the production of electricity and wave energy devices have the potential to be developed in a similarway. For both offshore wind turbines and wave energy devices reliability is a key issue since costs to operation and maintenance may...... and wave energy device structural components is discussed together with uncertainty modeling of the main uncertainties related to structural wind turbine components. Two examples are presented related to reliability-based calibration of partial safety factors....

  8. Neutron Imaging Device Using Wave Length Shifting Fibre Technique

    CERN Document Server

    Gorin, A; Kiyanagi, Y

    2002-01-01

    A high resolution imaging device for cold neutrons detection has been constructed for the neutron optics (nop) Group in RIKEN, and tested with thermal neutrons at the Laue-Langevin Institute in Grenoble. It consists of a thin plate of ZnS(Ag)+6LiF scintillator optically coupled with Y11(400) wave-length shifting (WLS) fibres. The space resolution was found to be ~ 0.45 mm in FWHM as expected from the pitch of WLS fibres with a crossection of 0.4 ´ 0.4 mm2. The detection efficiency for thermal neutrons (l = 2.5 ) was estimated with respect to 3He monitor, and found to be ~ 10 %, which ensured a reasonable efficiency for cold neutrons (l = 10 ).

  9. Optoelectronic Device Integration in Silicon (OpSIS)

    Science.gov (United States)

    2015-10-26

    AFRL-AFOSR-VA-TR-2016-0066 OPTOELECTRONIC DEVICE INTEGRATION IN SILICON Xiaodong Xu UNIVERSITY OF WASHINGTON Final Report 10/26/2015 DISTRIBUTION A... Optoelectronic Device Integration in Silicon 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0439 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr...Delaware in the development of fundamental design tools and methodologies for optoelectronic devices in silicon photonics. We proposed to develop

  10. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  11. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  12. III-V semiconductor devices integrated with silicon III-V semiconductor devices integrated with silicon

    Science.gov (United States)

    Hopkinson, Mark; Martin, Trevor; Smowton, Peter

    2013-09-01

    The integration of III-V semiconductor devices with silicon is one of the most topical challenges in current electronic materials research. The combination has the potential to exploit the unique optical and electronic functionality of III-V technology with the signal processing capabilities and advanced low-cost volume production techniques associated with silicon. Key industrial drivers include the use of high mobility III-V channel materials (InGaAs, InAs, InSb) to extend the performance of Si CMOS, the unification of electronics and photonics by combining photonic components (GaAs, InP) with a silicon platform for next-generation optical interconnects and the exploitation of large-area silicon substrates and high-volume Si processing capabilities to meet the challenges of low-cost production, a challenge which is particularly important for GaN-based devices in both power management and lighting applications. The diverse nature of the III-V and Si device approaches, materials technologies and the distinct differences between industrial Si and III-V processing have provided a major barrier to integration in the past. However, advances over the last decade in areas such as die transfer, wafer fusion and epitaxial growth have promoted widespread renewed interest. It is now timely to bring some of these topics together in a special issue covering a range of approaches and materials providing a snapshot of recent progress across the field. The issue opens a paper describing a strategy for the epitaxial integration of photonic devices where Kataria et al describe progress in the lateral overgrowth of InP/Si. As an alternative, Benjoucef and Reithmaier report on the potential of InAs quantum dots grown direct onto Si surfaces whilst Sandall et al describe the properties of similar InAs quantum dots as an optical modulator device. As an alternative to epitaxial integration approaches, Yokoyama et al describe a wafer bonding approach using a buried oxide concept, Corbett

  13. Integrating Sphere-based Weathering Device

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  14. Rapid Salmonella detection using an acoustic wave device combined with the RCA isothermal DNA amplification method

    Directory of Open Access Journals (Sweden)

    Antonis Kordas

    2016-12-01

    Full Text Available Salmonella enterica serovar Typhimurium is a major foodborne pathogen that causes Salmonellosis, posing a serious threat for public health and economy; thus, the development of fast and sensitive methods is of paramount importance for food quality control and safety management. In the current work, we are presenting a new approach where an isothermal amplification method is combined with an acoustic wave device for the development of a label free assay for bacteria detection. Specifically, our method utilizes a Love wave biosensor based on a Surface Acoustic Wave (SAW device combined with the isothermal Rolling Circle Amplification (RCA method; various protocols were tested regarding the DNA amplification and detection, including off-chip amplification at two different temperatures (30 °C and room temperature followed by acoustic detection and on-chip amplification and detection at room temperature, with the current detection limit being as little as 100 Bacteria Cell Equivalents (BCE/sample. Our acoustic results showed that the acoustic ratio, i.e., the amplitude over phase change observed during DNA binding, provided the only sensitive means for product detection while the measurement of amplitude or phase alone could not discriminate positive from negative samples. The method's fast analysis time together with other inherent advantages i.e., portability, potential for multi-analysis, lower sample volumes and reduced power consumption, hold great promise for employing the developed assay in a Lab on Chip (LoC platform for the integrated analysis of Salmonella in food samples.

  15. Scattering of surface waves modelled by the integral equation method

    Science.gov (United States)

    Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng

    2008-09-01

    The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.

  16. Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control

    CERN Document Server

    Guclu, Caner; Capolino, Filippo

    2015-01-01

    The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...

  17. Analysis and Synthesis of Leaky-Wave Devices in Planar Technology

    Science.gov (United States)

    Martinez Ros, Alejandro Javier

    The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip. El trabajo llevado a cabo durante la realizacion de esta tesis doctoral, se ha centrado en el analisis y sintesis de dispositivos de microondas en tecnologia planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiacion por ondas de fuga "leaky waves", en los cuales las propiedades de radiacion

  18. Multiphoton quantum interference in a multiport integrated photonic device.

    Science.gov (United States)

    Metcalf, Benjamin J; Thomas-Peter, Nicholas; Spring, Justin B; Kundys, Dmytro; Broome, Matthew A; Humphreys, Peter C; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Gates, James C; Smith, Brian J; Langford, Nathan K; Smith, Peter G R; Walmsley, Ian A

    2013-01-01

    Increasing the complexity of quantum photonic devices is essential for many optical information processing applications to reach a regime beyond what can be classically simulated, and integrated photonics has emerged as a leading platform for achieving this. Here we demonstrate three-photon quantum operation of an integrated device containing three coupled interferometers, eight spatial modes and many classical and nonclassical interferences. This represents a critical advance over previous complexities and the first on-chip nonclassical interference with more than two photonic inputs. We introduce a new scheme to verify quantum behaviour, using classically characterised device elements and hierarchies of photon correlation functions. We accurately predict the device's quantum behaviour and show operation inconsistent with both classical and bi-separable quantum models. Such methods for verifying multiphoton quantum behaviour are vital for achieving increased circuit complexity. Our experiment paves the way for the next generation of integrated photonic quantum simulation and computing devices.

  19. Numerical Modeling of Fluid Structure Interactions of a Floating Wave Energy Extraction Device

    Science.gov (United States)

    Lee, J.; Kang, S.

    2014-12-01

    In recent years there has been increased attention towards developing the strategies for harnessing hydrokinetic and wave energy from the ocean. There exists several hydrokinetic energy devices designed to extract energy from the ocean current but few wave energy devices are available. The moored floating cylinder-like structure that has been recently developed in South Korea is one of such devices. We carry out numerical simulation of the three-dimensional interactions of a floating cylinder and incoming waves using the level-set curvilinear immersed boundary method of Kang and Sotiropoulos (2012) to improve the understanding the wave energy extraction mechanisms of that device. The results demonstrate the potential of our numerical model as a powerful engineering tool for predicting complex wave-structure interaction phenomena associated with energy extraction devices.

  20. Multicomponent integrable wave equations: II. Soliton solutions

    Energy Technology Data Exchange (ETDEWEB)

    Degasperis, A [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Lombardo, S [School of Mathematics, University of Manchester, Alan Turing Building, Upper Brook Street, Manchester M13 9EP (United Kingdom)], E-mail: antonio.degasperis@roma1.infn.it, E-mail: sara.lombardo@manchester.ac.uk, E-mail: sara@few.vu.nl

    2009-09-25

    The Darboux-dressing transformations developed in Degasperis and Lombardo (2007 J. Phys. A: Math. Theor. 40 961-77) are here applied to construct soliton solutions for a class of boomeronic-type equations. The vacuum (i.e. vanishing) solution and the generic plane wave solution are both dressed to yield one-soliton solutions. The formulae are specialized to the particularly interesting case of the resonant interaction of three waves, a well-known model which is of boomeronic type. For this equation a novel solution which describes three locked dark pulses (simulton) is introduced.

  1. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  2. Evanescent-wave Johnson noise in small devices

    Science.gov (United States)

    Premakumar, Vickram N.; Vavilov, Maxim G.; Joynt, Robert

    2018-01-01

    In many quantum computer architectures, the qubits are in close proximity to metallic device elements. The fluctuating currents in the metal give rise to noisy electromagnetic fields that leak out into the surrounding region. These fields are known as evanescent-wave Johnson noise. The noise can decohere the qubits. We review and update the general theory of this effect for charge qubits subject to electric noise and for spin and magnetic qubits subject to magnetic noise. A mapping of the quantum-mechanical problem onto a problem in classical electrodynamics simplifies the calculations. The focus is on relatively simple geometries in which analytical calculations can be done. Results are presented for the local noise spectral density in the vicinity of cylindrical conductors such as small antennae, noise from objects that can be treated as dipoles, and noise correlation functions for several geometries. We summarize the current state of the comparison of theory with experimental results on decoherence times of qubits. Emphasis is placed on qualitative understanding of the basic concepts and phenomena.

  3. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  4. Integrated microfluidic device for single-cell trapping and spectroscopy

    KAUST Repository

    Liberale, Carlo

    2013-02-13

    Optofluidic microsystems are key components towards lab-on-a-chip devices for manipulation and analysis of biological specimens. In particular, the integration of optical tweezers (OT) in these devices allows stable sample trapping, while making available mechanical, chemical and spectroscopic analyses.

  5. Integration of Wave Power in Hadai Gwaii

    NARCIS (Netherlands)

    Boronowski, S.; Rowe, A.; Wild, Peter

    2010-01-01

    Remote communities, such as Haida Gwaii, Canada, often have high energy costs due to their dependence on diesel fuel for generation. Haida Gwaii's lengthy coastline, exposed to the northeast Pacific Ocean, provides opportunities for capturing wave energy to potentially reduce energy costs. A mixed

  6. Omnidirectional refractive devices for flexural waves based on graded phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel, E-mail: daniel.torrent@iemn.univ-lille1.fr; Pennec, Yan; Djafari-Rouhani, Bahram [Institut d' Electronique, de Microléctronique et de Nanotechnologie, UMR CNRS 8520, Université de Lille 1, 59655 Villeneuve d' Ascq (France)

    2014-12-14

    Different omnidirectional refractive devices for flexural waves in thin plates are proposed and numerically analyzed. Their realization is explained by means phononic crystal plates, where a previously developed homogenization theory is employed for the design of graded index refractive devices. These devices consist of a circular cluster of inclusions with a properly designed gradient in their radius. With this approach, the Luneburg and Maxwell lenses and a family of beam splitters for flexural waves are proposed and analyzed. Results show that these devices work properly in a broadband frequency region, being therefore an efficient approach for the design of refractive devices specially interesting for nano-scale applications.

  7. 77 FR 35426 - Certain Radio Frequency Integrated Circuits and Devices Containing Same; Institution of...

    Science.gov (United States)

    2012-06-13

    ... COMMISSION Certain Radio Frequency Integrated Circuits and Devices Containing Same; Institution of... within the United States after importation of certain radio frequency integrated circuits and devices... after importation of certain radio frequency integrated circuits and devices containing same that...

  8. Surface acoustic wave devices as passive buried sensors

    Science.gov (United States)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  9. Integrated Multiscale Modeling of Molecular Computing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Bernholc

    2011-02-03

    photolithography will some day reach a miniaturization limit, forcing designers of Si-based electronics to pursue increased performance by other means. Any other alternative approach would have the unenviable task of matching the ability of Si technology to pack more than a billion interconnected and addressable devices on a chip the size of a thumbnail. Nevertheless, the prospects of developing alternative approaches to fabricate electronic devices have spurred an ever-increasing pace of fundamental research. One of the promising possibilities is molecular electronics (ME), self-assembled molecular-based electronic systems composed of single-molecule devices in ultra dense, ultra fast molecular-sized components. This project focused on developing accurate, reliable theoretical modeling capabilities for describing molecular electronics devices. The participants in the project are given in Table 1. The primary outcomes of this fundamental computational science grant are publications in the open scientific literature. As listed below, 62 papers have been published from this project. In addition, the research has also been the subject of more than 100 invited talks at conferences, including several plenary or keynote lectures. Many of the goals of the original proposal were completed. Specifically, the multi-disciplinary group developed a unique set of capabilities and tools for investigating electron transport in fabricated and self-assembled nanostructures at multiple length and time scales.

  10. Medical Device Integration Model Based on the Internet of Things.

    Science.gov (United States)

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  11. Medical Device Integration Model Based on the Internet of Things

    Science.gov (United States)

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  12. Wave-plate structures, power selective optical filter devices, and optical systems using same

    Science.gov (United States)

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  13. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    Science.gov (United States)

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  14. Video integrated measurement system. [Diagnostic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  15. Wave and tidal generation devices reliability and availability

    CERN Document Server

    Tavner, Peter John

    2017-01-01

    To some extent the wave and tidal generation industry is following in the wake of the wind industry, learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry.

  16. Hydrodynamic analysis of oscillating water column wave energy devices

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Ducasse, Damien; Nielsen, Kim

    2015-01-01

    for wave-body interactions, 2014, http://​www.​wamit.​com) is used for the basic wave-structure interaction analysis. The damping applied to each chamber by the power take off is modeled in the experiment by forcing the air through a hole with an area of about 1 % of the chamber water surface area...

  17. Wafer Fusion for Integration of Semiconductor Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  18. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    Science.gov (United States)

    Ivry, Yachin; Wang, Nan; Durkan, Colm

    2014-03-01

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  19. SH-wave seismic reflection at a landslide (Patigno, NW Italy) integrated with P-wave

    Science.gov (United States)

    Stucchi, E.; Tognarelli, A.; Ribolini, A.

    2017-11-01

    The aim of this paper is to present the acquisition and processing up to the depth migrated section of an SH-wave reflection seismic profile. This experience is conducted on a deep-seated gravitational slope deformation located in the Northern Apennines in Italy. The SH-wave depth-migrated image in the investigated area provides a detailed description of the small reactivation slip surfaces delineating minor landslides at shallow depths, which are responsible for the major damages observed. These results are integrated with a recently acquired P-wave seismic reflection profile investigating the same slope and delineating the highly deformed layer at depth, liable for the deep-seated gravitational slope deformation. The combined use of P-waves and SH-waves allows to gain a deeper knowledge of the landslide internal setting that is necessary to mitigate the risk associated with the mass movement.

  20. FISHprep: A Novel Integrated Device for Metaphase FISH Sample Preparation

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    We present a novel integrated device for preparing metaphase chromosomes spread slides (FISHprep). The quality of cytogenetic analysis from patient samples greatly relies on the efficiency of sample pre-treatment and/or slide preparation. In cytogenetic slide preparation, cell cultures...... are routinely used to process samples (for culture, arrest and fixation of cells) and/or to expand limited amount of samples (in case of prenatal diagnostics). Arguably, this expansion and other sample pretreatments form the longest part of the entire diagnostic protocols spanning over 3–4 days. We present here...... a novel device with an integrated expansion chamber to culture, arrest and fix metaphase cells followed by a subsequent splashing protocol leading to ample metaphase chromosome spreads on a glass slide for metaphase FISH analysis. The device provides an easy, disposable, low cost, integrated solution...

  1. Si light-emitting device in integrated photonic CMOS ICs

    Science.gov (United States)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  2. Variational approach to radiofrequency waves in magnetic fusion devices

    Science.gov (United States)

    Dumont, R. J.

    2009-07-01

    Magnetic fusion plasmas feature two major classes of low frequency electromagnetic oscillations: waves in the ion cyclotron range of frequencies (ICRFs) constitute a well established method employed for plasma heating and current drive, whereas waves in the Alfvén range of frequencies naturally occur in the form of modes in close interaction with fast particles. The propagation of these waves is characterized by significant space-dispersion, making it necessary to incorporate non-local effects in the global kinetic full-wave codes which are often employed for their simulation. We present here a variational approach to this problem, which has the advantage of providing a common framework to the wave calculation and to the quasilinear response description. Two important points are discussed: firstly, we show that the irreversible part of the power transferred from the wave to the plasma particles is directly available and does not require an explicit evaluation of the kinetic flux; secondly, it is demonstrated that the symmetry of the obtained plasma functional ensures that these energy transfers are described in a consistent fashion, regardless of the level of approximation employed to evaluate the particle Hamiltonian. Finally, quasi-local, finite Larmor radius expressions are derived in the framework of this formalism and implemented in a new multi-dimensional full-wave code, named EVE, which is employed to analyse two ICRF heating scenarios for ITER.

  3. Bloch-surface-waves based photonic devices studied by leakage radiation microscopy

    Science.gov (United States)

    Gulkin, D. N.; Abrashitova, K. A.; Safronov, K. R.; Kokareva, N. G.; Antropov, I. M.; Bessonov, V. O.; Fedyanin, A. A.

    2017-09-01

    The Bloch-surface-wave photonic devices were for the first time manufactured by the two-photon polymerization lithography. Bloch-surface-wave modes excitation and propagation were visualized by the leakage radiation microscopy. The mode structure of the guided light was characterized by the back-focal-plane imaging. It was demonstrated that the photonic devices are able to guide light in multimode regime.

  4. Highly functional tunnelling devices integrated in 3D

    DEFF Research Database (Denmark)

    Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter

    2003-01-01

    a new type of tunnelling transistor, namely a resonant-tunnelling permeable base transistor. A simple model based on a piece-wise linear approximation is used in Cadence to describe the current-voltage characteristics of the transistor. This model is further introduced into a small signal equivalent...... circuit in order to optimize the performance of the device. In addition to the tunnelling structure below the grating, these transistors may be integrated in 3D by the introduction of another tunnelling structure directly over the metal grating. In the integrated device structure, the gate acts...

  5. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    Science.gov (United States)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  6. Estimation of Overtopping Rates on Slopes in Wave Power Devices and Other Low Crested Structures

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Burcharth, Hans Falk

    2002-01-01

    Motivated by questions raised by developers of wave energy devices based on wave overtopping concepts, model tests have been performed to study overtopping of structures with limited draught, low crest freeboards and slope geometries designed to increase overtopping and thereby also the captured...

  7. Potential applications of microstrip devices with traveling wave resonators

    Directory of Open Access Journals (Sweden)

    Glushechenko E. N.

    2013-05-01

    Full Text Available The shortcomings of the known microwave filters in microstrip lines are considered, the advantages of the use of directional traveling-wave filters in microstrip performance and examples of their potential applications are shown.

  8. Modeling and design for electromagnetic surface wave devices

    Science.gov (United States)

    La Spada, Luigi; Haq, Sajad; Hao, Yang

    2017-09-01

    A great deal of interest has reemerged recently in the study of surface waves. The possibility to control and manipulate electromagnetic wave propagations at will opens many new research areas and leads to lots of novel applications in engineering. In this paper, we will present a comprehensive modeling and design approach for surface wave cloaks, based on graded-refractive-index materials and the theory of transformation optics. It can be also applied to any other forms of surface wave manipulation, in terms of amplitude and phase. In this paper, we will present a general method to illustrate how this can be achieved from modeling to the final design. The proposed approach is validated to be versatile and allows ease in manufacturing, thereby demonstrating great potential for practical applications.

  9. Hydrodynamic analysis of oscillating water column wave energy devices

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Ducasse, Damien; Nielsen, Kim

    2015-01-01

    A 40-chamber I-Beam attenuator-type, oscillating water column, wave energy converter is analyzed numerically based on linearized potential flow theory, and experimentally via model test experiments. The high-order panel method WAMIT by Newman and Lee (WAMIT; a radiation–diffraction panel program...... for wave-body interactions, 2014, http://​www.​wamit.​com) is used for the basic wave-structure interaction analysis. The damping applied to each chamber by the power take off is modeled in the experiment by forcing the air through a hole with an area of about 1 % of the chamber water surface area....... In the numerical model, this damping is modeled by an equivalent linearized damping coefficient which extracts the same amount of energy over one cycle as the experimentally measured quadratic damping coefficient. The pressure in each chamber in regular waves of three different height-to-length ratios is measured...

  10. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...

  11. Bioluminescent bioreporter integrated circuit devices and methods for detecting ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN

    2007-04-24

    Monolithic bioelectronic devices for the detection of ammonia includes a microorganism that metabolizes ammonia and which harbors a lux gene fused with a heterologous promoter gene stably incorporated into the chromosome of the microorganism and an Optical Application Specific Integrated Circuit (OASIC). The microorganism is generally a bacterium.

  12. Variational characterization of resonant states in some integrated optical devices

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Joshi, M.C.; Pani, A.K.; Sanjeev, V.S.

    2006-01-01

    Two examples from integrated optics are described that motivate the use of explicit variational characterizations for physical parameters that are relevant for the functioning of optical devices. For 1D optical gratings the boundary of the bandgaps, and for 2D square micro-resonators the resonant

  13. Photonic Integration on the Hybrid Silicon Evanescent Device Platform

    Directory of Open Access Journals (Sweden)

    Hyundai Park

    2008-01-01

    Full Text Available This paper reviews the recent progress of hybrid silicon evanescent devices. The hybrid silicon evanescent device structure consists of III-V epitaxial layers transferred to silicon waveguides through a low-temperature wafer bonding process to achieve optical gain, absorption, and modulation efficiently on a silicon photonics platform. The low-temperature wafer bonding process enables fusion of two different material systems without degradation of material quality and is scalable to wafer-level bonding. Lasers, amplifiers, photodetectors, and modulators have been demonstrated with this hybrid structure and integration of these individual components for improved optical functionality is also presented. This approach provides a unique way to build photonic active devices on silicon and should allow application of silicon photonic integrated circuits to optical telecommunication and optical interconnects.

  14. Integrated Solar-Energy-Harvesting and -Storage Device

    Science.gov (United States)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  15. Optimization design of a Lamb wave device for density sensing of nonviscous liquid.

    Science.gov (United States)

    Chen, Zhijun; Li, Lianger; Shi, Wenkang; Guo, Huawei

    2007-10-01

    A Lamb wave device composed of a piezoelectric plate loaded with a nonviscous liquid layer is presented. The relation between the Lamb wave phase velocity and the liquid density can be used for liquid density sensing. In this paper, utilizing the partial wave theory, the concept of effective permittivity is introduced to analyze the Lamb wave's excitation and the phase velocity calculation under a certain liquid density. The interface between the Lamb wave device and the liquid layer is metallized to eliminate the influence of liquid electrical properties when sensing liquid density. Based on the theory model, the phase difference measurement method is adopted to study the device's sensitivity to liquid density. In order to achieve high sensitivity to liquid density with sufficient excitation efficiency of Lamb wave, the optimal parameters of the Lamb wave device including plate thickness and cut orientation are obtained by numerical calculation. The experimental results are found to be in agreement with the theoretical simulations, verifying the validity of the theory model and the practicability of the optimization design.

  16. Floating attenuator wave energy device. Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Wavegen Project which set out to develop a floating externally tensioned articulated wave-energy generator based on work carried out at RMCS Shrivenham in the 1980s has been abandoned until further notice. The computer modelling carried out in the early days indicated much promise, but the promise turned to disappointment when difficulties cropped-up in attempting to put the design into practice. A particular problem arose in matching the external tension to an equivalent beam stiffness to tune the natural bending frequency of the raft to that of the driving waves. A further eleven practical problems encountered are discussed.

  17. The wave vane - A device to measure the breaker angle

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; Anand, N.M.

    can easily be fabricated and used to measure the breaker angle. ERROR IN VISUAL ESTIMATION Three trained persons were asked to stand at the same location on the Kar- war beach on the west coast of India, and observe independently the breaker angle... and parallel, the wave directions measured at 16 m water depth were corrected for refraction effects using Snell's law (Shore TABLE 1 Measurement of breaker angles by various methods Date Buoy Visual Wave vane OL b O~ b Hs Tz o~ b (m) (s) (~) (~) (~) 20...

  18. A 3D printed fluidic device that enables integrated features.

    Science.gov (United States)

    Anderson, Kari B; Lockwood, Sarah Y; Martin, R Scott; Spence, Dana M

    2013-06-18

    Fluidic devices fabricated using conventional soft lithography are well suited as prototyping methods. Three-dimensional (3D) printing, commonly used for producing design prototypes in industry, allows for one step production of devices. 3D printers build a device layer by layer based on 3D computer models. Here, a reusable, high throughput, 3D printed fluidic device was created that enables flow and incorporates a membrane above a channel in order to study drug transport and affect cells. The device contains 8 parallel channels, 3 mm wide by 1.5 mm deep, connected to a syringe pump through standard, threaded fittings. The device was also printed to allow integration with commercially available membrane inserts whose bottoms are constructed of a porous polycarbonate membrane; this insert enables molecular transport to occur from the channel to above the well. When concentrations of various antibiotics (levofloxacin and linezolid) are pumped through the channels, approximately 18-21% of the drug migrates through the porous membrane, providing evidence that this device will be useful for studies where drug effects on cells are investigated. Finally, we show that mammalian cells cultured on this membrane can be affected by reagents flowing through the channels. Specifically, saponin was used to compromise cell membranes, and a fluorescent label was used to monitor the extent, resulting in a 4-fold increase in fluorescence for saponin treated cells.

  19. Method for integrating microelectromechanical devices with electronic circuitry

    Science.gov (United States)

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  20. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    . The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between......Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system...... to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems...

  1. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: apapp@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088 (Hungary); Porod, W., E-mail: porod@nd.edu; Csaba, G., E-mail: gcsaba@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  2. Review of 3D Printed Millimeter-Wave and Terahertz Passive Devices

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-01-01

    Full Text Available The 3D printing technology is catching attention nowadays. It has certain advantages over the traditional fabrication processes. We give a chronical review of the 3D printing technology from the time it was invented. This technology has also been used to fabricate millimeter-wave (mmWave and terahertz (THz passive devices. Though promising results have been demonstrated, the challenge lies in the fabrication tolerance improvement such as dimensional tolerance and surface roughness. We propose the design methodology of high order device to circumvent the dimensional tolerance and suggest specific modelling of the surface roughness of 3D printed devices. It is believed that, with the improvement of the 3D printing technology and related subjects in material science and mechanical engineering, the 3D printing technology will become mainstream for mmWave and THz passive device fabrication.

  3. Vector wave diffraction pattern of slits masked by polarizing devices

    Indian Academy of Sciences (India)

    Amplitude and phase step filters were used on the pupil of the optical system to achieve ... of polarization Fourier optics dealing with vector wave imagery and image processing. [8–10]. Recently, Moreno et al have ..... obtained in circular aperture using. Gaussian modulation of the transmission function of a circular aperture.

  4. RFID and Memory Devices Fabricated Integrally on Substrates

    Science.gov (United States)

    Schramm, Harry F.

    2004-01-01

    Electronic identification devices containing radio-frequency identification (RFID) circuits and antennas would be fabricated integrally with the objects to be identified, according to a proposal. That is to say, the objects to be identified would serve as substrates for the deposition and patterning of the materials of the devices used to identify them, and each identification device would be bonded to the identified object at the molecular level. Vacuum arc vapor deposition (VAVD) is the NASA derived process for depositing layers of material on the substrate. This proposal stands in contrast to the current practice of fabricating RFID and/or memory devices as wafer-based, self-contained integrated-circuit chips that are subsequently embedded in or attached to plastic cards to make smart account-information cards and identification badges. If one relies on such a chip to store data on the history of an object to be tracked and the chip falls off or out of the object, then one loses both the historical data and the means to track the object and verify its identity electronically. Also, in contrast is the manufacturing philosophy in use today to make many memory devices. Today s methods involve many subtractive processes such as etching. This proposal only uses additive methods, building RFID and memory devices from the substrate up in thin layers. VAVD is capable of spraying silicon, copper, and other materials commonly used in electronic devices. The VAVD process sprays most metals and some ceramics. The material being sprayed has a very strong bond with the substrate, whether that substrate is metal, ceramic, or even wood, rock, glass, PVC, or paper. An object to be tagged with an identification device according to the proposal must be compatible with a vacuum deposition process. Temperature is seldom an issue as the substrate rarely reaches 150 F (66 C) during the deposition process. A portion of the surface of the object would be designated as a substrate for

  5. The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures

    Directory of Open Access Journals (Sweden)

    Lin Shu

    2016-04-01

    Full Text Available We report in this paper on the study of surface acoustic wave (SAW resonators based on an AlN/titanium alloy (TC4 structure. The AlN/TC4 structure with different thicknesses of AlN films was simulated, and the acoustic propagating modes were discussed. Based on the simulation results, interdigital transducers with a periodic length of 24 μm were patterned by lift-off photolithography techniques on the AlN films/TC4 structure, while the AlN film thickness was in the range 1.5–3.5 μm. The device performances in terms of quality factor (Q-factor and electromechanical coupling coefficient (k2 were determined from the measure S11 parameters. The Q-factor and k2 were strongly dependent not only on the normalized AlN film thickness but also on the full-width at half-maximum (FWHM of AlN (002 peak. The dispersion curve of the SAW phase velocity was analyzed, and the experimental results showed a good agreement with simulations. The temperature behaviors of the devices were also presented and discussed. The prepared SAW resonators based on AlN/TC4 structure have potential applications in integrated micromechanical sensing systems.

  6. The preparation method of terahertz monolithic integrated device

    Science.gov (United States)

    Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.

  7. Deformable devices with integrated functional nanomaterials for wearable electronics

    Science.gov (United States)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-03-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  8. Ultrafast laser inscribed integrated photonics: material science to device development

    Directory of Open Access Journals (Sweden)

    Gross S.

    2013-11-01

    Full Text Available Detailed studies of intense light – material interactions has led to new insights into fs laser induced refractive index change in a range of glass types. This body of knowledge enables the development of advanced processing methodologies, resulting in novel planar and 3D guided wave devices. We will review the chemistry and morphology associated with fs laser induced refractive index change in multi-component glasses such as ZBLAN, phosphates and silicates, and discuss how these material changes inform our research programs developing a range of active and passive lightwave systems.

  9. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    Science.gov (United States)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  10. Organic Materials for Time-Temperature Integrator Devices.

    Science.gov (United States)

    Cavallini, Massimiliano; Melucci, Manuela

    2015-08-12

    Time-temperature integrators (TTIs) are devices capable of recording the thermal history of a system. They have an enormous impact in the food and pharmaceutical industries. TTIs exploit several irreversible thermally activated transitions such as recrystallization, dewetting, smoothening, chemical decomposition, and polymorphic transitions, usually considered drawbacks for many technological applications. The aim of this article is to sensitize research groups working in organic synthesis and surface science toward TTI devices, enlarging the prospects of many new materials. We reviewed the principal applications highlighting the need and criticisms of TTIs, which offer a new opportunity for the development of many materials.

  11. Enabling Medical Device Interoperability for the Integrated Clinical Environment

    Science.gov (United States)

    2016-02-01

    is interested in helping provide a framework for the use of those who wish to integrate their iOS (iPad and iPhone ) devices. He would like to...JM, Lee I, Llukacej E, Whitehead S, “Use Case Demonstration: X - Ray/Ventilator,” Proceedings of the Joint Workshop on High-Confidence Medical Devices...Safety & Quality Healthcare 6:1, Jan-Feb 2009. 21. Arney D, Goldman JM, Whitehead SF, Lee I, "Synchronizing an X -ray and Anesthesia Machine Ventilator: A

  12. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    Science.gov (United States)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  13. Theory of Evanescent-Wave Johnson Noise in Qubit Devices

    Science.gov (United States)

    2015-05-28

    interaction with energy splitting 2.87 GHz between ms=0 and ms=+/-1, and a fluctuating magnetic field causes transition between spin states. Devices...Delaney, Fedor Jelezko, Joerg Wrachtrup, Lloyd C.L. Hollenberg, Physics Reports 528 , 1 (2013). 8. S. Kolkowitz, A. Safira, A. A. High, R. C. Devlin

  14. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    Science.gov (United States)

    2007-09-30

    Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics A. R. Osborne Dipartimento di Fisica Generale , Università di Torino Via...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dipartimento di Fisica Generale , Universit?i Torino,Via Pietro Giuria 1,10125...data. The approach may be viewed as a generalization of linear Fourier analysis and is loosely referred to as "Nonlinear Fourier Analysis or

  15. Integrated wave-current-sediment numerical tools in coastal areas

    Science.gov (United States)

    Carniel, S.; Bever, A.; Tondello, M.; Kantha, L. H.; Sclavo, M.

    2010-09-01

    The possibility of employing complex, integrated wave-current-sediment numerical models to correctly simulate near-shore processes requires the high-fidelity description of relevant issues such as wave-current interactions, turbulent mixing, wetting and drying processes, bottom-boundary layer interactions and sediment re-suspension and transport. The achievement of these capabilities is mostly welcome in a variety of applications ranging from beach protection to "search and rescue" activities and support to maritime engineering operations. In the last decade there has been a considerable advance in the development of these integrated models, both thanks to improvements in the theoretical background and to recent advances in the computer performances that allowed higher-resolution, long-term integrations and ensemble runs. The growing availability of long time-series and large forcing from meteorological and sea-state numerical models are now allowing to employ complex, integrated numerical tools to model coastal dynamical processes and to support decision makers in the field of coastal erosion and vulnerability. The contribution aims at presenting an application focused on the western Adriatic context, with appropriate links to state-of-the-art and cutting-edge research issues that represent the challenges for the next decades. Namely, the morphological modeling of a river outlet area near Ravenna (Northern Adriatic Sea) will be discussed. The numerical model adopted is ROMS,in its 3-D coupled version with the wave model SWAN and a sediment transport module, including wetting/drying and wave current interactions. The coupled model adopts a very high horizontal resolution, order of 5 meters, to model the hydrodynamic and morphological conditions of the river mouth under synthetic but realistic forcings, i.e. tidal cycle, river flooding and severe wind storms. Model results show how it is becoming possible to provide useful support for planning effective management

  16. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić

    2011-01-01

    Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception

  17. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...

  18. Silicon integrated circuits advances in materials and device research

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Silicon Integrated Circuits, Part B covers the special considerations needed to achieve high-power Si-integrated circuits. The book presents articles about the most important operations needed for the high-power circuitry, namely impurity diffusion and oxidation; crystal defects under thermal equilibrium in silicon and the development of high-power device physics; and associated technology. The text also describes the ever-evolving processing technology and the most promising approaches, along with the understanding of processing-related areas of physics and chemistry. Physicists, chemists, an

  19. Integrated optical NIR-evanescent wave absorbance sensorfor chemical analysis.

    Science.gov (United States)

    Bürck, J; Zimmermann, B; Mayer, J; Ache, H J

    1996-01-01

    A new, long-path integrated optical (IO) sensor for the detection of non-polar organic substances is described. The sensing layer deposited on a planar multimode IO structure is built by a suitable silicone polymer with lower refractive index (RI). It acts as a hydrophobic matrix for the reversible enrichment of non-polar organic contaminants from water or air. Light from the near-infrared (NIR) range is coupled into the planar structure and the evanescent wave part of the light field penetrating into the silicone layer interacts with the enriched organic species. As a result, light is absorbed at the characteristic frequencies of the corresponding C-H, N-H or O-H overtone and combination band vibrations of the analytes. To perform evanescent field absorbance (EFA) measurements, the arc-shaped strip waveguide structure of 172 mm interaction length was adapted to a tungsten-halogen lamp and an InGaAs diode array spectrograph over gradient index fibers. Dimethyl-co-methly(phenyl)polysiloxanes with varying degrees of phenylation were prepared and used as sensitive coating materials for the IO structure. Light attenuation in the arc-shaped waveguides is high and typical insertion losses in the range of 14-18 dB were obtained. When the coated sensors were brought in contact with aqueous samples, the light transmission decreases, which is due to the formation of H(2)O micro-emulsions in the silicone superstrates. Nevertheless, after reaching constant light transmissions, absorbance spectra of aqueous trichloroethene samples were successfully collected. For gas measurements, where water cross sensitivity problems are absent, the sensitivity of the IO device for trichloroethene was tested as a function of the RI of the silicone superstrate. The slope of the TCE calibration function increases by a factor of 10 by using a poly(methylphenylsiloxane) layer with a RI of 1.449 instead of poly(dimethylsiloxane) (RI: 1.41). A comparison of the IO-EFA and an earlier developed fiber

  20. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    Science.gov (United States)

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  1. Self-oscillation of standing spin wave in ring resonator with proportional-integral-derivative control

    Energy Technology Data Exchange (ETDEWEB)

    Peng, B.; Urazuka, Y.; Chen, H.; Oyabu, S.; Otsuki, H.; Tanaka, T., E-mail: t-tanaka@ed.kyushu-u.ac.jp; Matsuyama, K. [ISEE, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan)

    2014-05-07

    We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The result indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.

  2. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices

    Directory of Open Access Journals (Sweden)

    Lee Carroll

    2016-12-01

    Full Text Available Dedicated multi-project wafer (MPW runs for photonic integrated circuits (PICs from Si foundries mean that researchers and small-to-medium enterprises (SMEs can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved.

  3. Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    Science.gov (United States)

    Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Lee, Charles Y.; Chen, Ray T.

    2015-03-01

    The detection and measurement of electromagnetic fields have attracted significant amounts of attention in recent years. Traditional electronic electromagnetic field sensors use large active conductive probes which perturb the field to be measured and also make the devices bulky. In order to address these problems, integrated photonic electromagnetic field sensors have been developed, in which an optical signal is modulated by an RF signal collected by a miniaturized antenna. In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300μm, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the

  4. Low-threshold parametric decay of the ordinary wave in ECRH experiments at toroidal devices

    Science.gov (United States)

    Gusakov, E. Z.; Popov, A. Yu; Saveliev, A. N.; Sysoeva, E. V.

    2017-07-01

    In this paper we analyse low-threshold parametric decay instability (PDI) of the ordinary wave in first harmonic O-mode ECRH experiments at toroidal devices. The corresponding expressions for the PDI power threshold and its growth rate are derived analytically and evaluated numerically for the conditions of the ECRH experiments on the W7-A stellarator. The possibility of low-threshold parametric decay of the pump ordinary wave on the FTU tokamak is also considered.

  5. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    Science.gov (United States)

    Egel, Eugen; Meier, Christian; Csaba, György; Breitkreutz-von Gamm, Stephan

    2017-05-01

    Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF) receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz) signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA). Then, it is down-converted by a mixer to Intermediate Frequency (IF). Finally, an Operational Amplifier (OpAmp) brings the IF signal to higher voltages (50-300 mV). The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO) is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  6. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    Directory of Open Access Journals (Sweden)

    Eugen Egel

    2017-05-01

    Full Text Available Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA. Then, it is down-converted by a mixer to Intermediate Frequency (IF. Finally, an Operational Amplifier (OpAmp brings the IF signal to higher voltages (50-300 mV. The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  7. A Numerical Analysis of Phononic-Assisted Control of Ultrasound Waves in Acoustofluidic Device

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Bruus, Henrik

    2015-01-01

    diffractors, which can be introduced in acoustofluidic structures. These diffractors can be applied in the design of efficient resonant cavities, directional sound waves for new types of particle sorting methods, or acoustically controlled deterministic lateral displacement. The PnC-diffractor-based devices...... and streaming has received much attention, since it relies solely on mechanical properties such as particle size and contrast in density and compressibility. We present a theoretical study of phononic-assisted control of ultrasound waves in acoustofluidic devices. We propose the use of phononic crystal...

  8. Design of Passive Acoustic Wave Shaping Devices and Their Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole; Fernandez Grande, Efren

    We discuss a topology optimization based approach for designing passive acoustic wave shaping devices and demonstrate its application to; directional sound emission [1], sound focusing and wave splitting. Optimized devices, numerical and experimental results are presented and benchmarked against...... by the Helmholtz equation. An exterior 2D model domain is used and an array of point sources is considered as sound emitters. The optimization goal is to identify a distribution of solid material in a design sub-domain which produces a desired spatial sound feld pattern across a frequency band of interest...

  9. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ivry, Yachin, E-mail: ivry@mit.edu, E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm, E-mail: ivry@mit.edu, E-mail: cd229@eng.cam.ac.uk [Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF (United Kingdom)

    2014-03-31

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  10. Contactless Remote Induction of Shear Waves in Soft Tissues Using a Transcranial Magnetic Stimulation Device

    CERN Document Server

    Grasland-Mongrain, Pol; Tang, An; Catheline, Stefan; Cloutier, Guy

    2016-01-01

    This study presents the first observation of shear wave induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitude of 5 and 0.5 micrometers were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.

  11. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    Science.gov (United States)

    Pavlidis, Dimitris

    1991-01-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  12. Nanoscale transfer printing for heterogeneous device integration (Conference Presentation)

    Science.gov (United States)

    Hurtado, Antonio; Guilhabert, Benoit J. E.; Strain, Michael J.; Laurand, Nicolas; Jagadish, Chennupati; Dawson, Martin D.

    2017-02-01

    We present a novel nanoscale transfer printing (TP) technology which combines a customized nanolithography system with bespoke elastomeric μ-stamps to controllably pick and place diverse semiconductor structures, e.g. nanowires (NWs), Light Emitting Diodes (LEDs) and thin films, onto targeted locations on heterogeneous material surfaces (e.g. polymers, metals, silica, diamond). Notably, our technique allows the parallel printing of semiconductor structures of different materials onto a large area (of 10cm x 10cm) whilst simultaneously yielding sub-micrometric positioning control (down to below 100nm) and low printing time ( 20s per print step). In the talk, we will present a variety of hybrid integrated devices fabricated with our TP technique. Emphasis will be given to our recent work using Gallium Nitride (GaN) LEDs and Indium Phosphide (InP) NW lasers as building blocks. Using TP protocols, GaN LEDs fabricated from GaN-on-Si have been integrated onto polymer and thin glass surfaces and onto diamond substrates for mechanically flexible optoelectronic devices and effective device heat management respectively. Additionally, ultra-small InP NW lasers ( 5μm long and 500nm diameter) have been integrated onto multiple heterogeneous substrates, including mechanically flexible (polymers), transparent (silica) and metallic (gold) surfaces. Furthermore, complex spatial patterns with micrometric dimensions have been defined with these nanolasers acting as localised emitters. Finally, we will also introduce our very recent results demonstrating the coupling of InP NW lasers with planar waveguide technology as a back-end hybrid integration technique.

  13. The numerical analysis of general SAW and leaky wave devices using approximate Green's function representations.

    Science.gov (United States)

    Peach, Robert C

    2009-10-01

    The Green's function or boundary element method (BEM) is the best available technique for rigorous surface acoustic wave (SAW) device analysis. However, its computational cost usually means that it cannot be applied directly to devices with complex, nonperiodic electrode structures. In this paper, approximate forms for the Green's function are employed. They are based on rigorous representations, they can represent the Green's function to any required degree of accuracy, and they can be applied to any type of substrate and acoustic wave. The use of this type of approximation for practical device analysis is considered, and computational procedures are presented that can exploit the special approximate Green's function structure. It is shown that highly efficient computational algorithms can be constructed, in which the computational effort increases linearly with the number of electrodes in the device. These methods can be applied to any type of device structure, and they do not require any empirically derived parameters. The practical application of the methods is illustrated by examples of longitudinally coupled resonator filter (LCRF) designs implemented using leaky wave cuts of lithium tantalate. Agreement between theory and experiment is excellent, even for devices of this complexity.

  14. Integration, aggregation and exchange of farming device data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem

    2009-01-01

    Most of the farming devices produce massive amounts of data. In most of the cases, it is necessary to store this data at a central location for further processing. Due to the huge volumes of data, strategies for data aggregation procedures are very important, in order to avoid oversized data sets...... at different granularity levels and exchange data bi-directionally with other farming systems. The paper also describes the implementation strategy based on a case study using farming standards and open source technologies.......Most of the farming devices produce massive amounts of data. In most of the cases, it is necessary to store this data at a central location for further processing. Due to the huge volumes of data, strategies for data aggregation procedures are very important, in order to avoid oversized data sets....... There is also an increasing need to share or exchange data with other stack holders in the farming business based on farming standards. This paper presents an integrated, effective, easy-to-use and flexible solution, which enables the farmers to integrate data from several farming devices, aggregate data...

  15. 76 FR 58041 - Certain Digital Televisions Containing Integrated Circuit Devices and Components Thereof; Notice...

    Science.gov (United States)

    2011-09-19

    ... COMMISSION Certain Digital Televisions Containing Integrated Circuit Devices and Components Thereof; Notice... certain digital televisions containing integrated circuit devices and components thereof by reason of... the sale within the United States after importation of certain digital televisions containing...

  16. GaAs integrated circuits and heterojunction devices

    Science.gov (United States)

    Fowlis, Colin

    1986-06-01

    The state of the art of GaAs technology in the U.S. as it applies to digital and analog integrated circuits is examined. In a market projection, it is noted that whereas analog ICs now largely dominate the market, in 1994 they will amount to only 39 percent vs. 57 percent for digital ICs. The military segment of the market will remain the largest (42 percent in 1994 vs. 70 percent today). ICs using depletion-mode-only FETs can be constructed in various forms, the closest to production being BFL or buffered FET logic. Schottky diode FET logic - a lower power approach - can reach higher complexities and strong efforts are being made in this direction. Enhancement type devices appear essential to reach LSI and VLSI complexity, but process control is still very difficult; strong efforts are under way, both in the U.S. and in Japan. Heterojunction devices appear very promising, although structures are fairly complex, and special fabrication techniques, such as molecular beam epitaxy and MOCVD, are necessary. High-electron-mobility-transistor (HEMT) devices show significant performance advantages over MESFETs at low temperatures. Initial results of heterojunction bipolar transistor devices show promise for high speed A/D converter applications.

  17. Integrated biocircuits: engineering functional multicellular circuits and devices.

    Science.gov (United States)

    Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang

    2018-01-19

    Novel in vitro platforms are currently revolutionizing the study and reconstruction of cellular circuitry to bypass the pertaining obstacles of data retrieval in vivo. While earlier approaches have provided great insights into culturing circuits in planar dissociated cell culture systems, the lack of full control over network activity and formation limits our understanding of their functionality. Thus, integrating various controllable parameters are required in creating a suitable microenvironment including cell patterning, highly-specified electrical and chemical stimuli, and rational circuit formation via logic functions. Recent advancements in organoid and 3D culture systems account for another major microenvironment factor of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain and other neural structures and compare them to disease models to identify the underlying principles of pathology. This perspective focuses on exploring the current state of the art of living multicellular device technologies to provide knowledge of the advancements of the fabrication processes and identify the current biological principles that are applied in designing these devices. It then provides perspectives and proposes new insights into the future of these devices within the scope of living cellular devices that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics. © 2018 IOP Publishing Ltd.

  18. Integrated Microfibre Device for Refractive Index and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun

    2012-08-01

    Full Text Available A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships.

  19. Design considerations for achieving high vacuum integrity in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, G.M.; Haines, J.R.

    1983-01-01

    Achieving high vacuum integrity in fusion devices requires close attention to both the overall system configuration and the design details of joints and seals. This paper describes the factors in selecting the system configuration, from a vacuum standpoint, for the Princeton Plasma Physics Laboratory (PPPL) DCT-8 Tokamak device. The DCT-8 (driven current tokamak) is the eighth design in a series of tokamak concepts defined to cover the magnetic confinement and development gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor (ETR). Leak detection concept development is considered a vital activity, as well as the definition of a configuration that minimizes the consequences of leaks. A major part of the vacuum boundaries of the magnet system and the plasma system is common. For the major penetrations, primary and secondary seals are provided with vacuum control over the region between seals. The intent is to instrument these cavities and provide automated recordings of these measurements for leak maintenance.

  20. Brain Computer Interface-Controlling Devices Utilizing The Alpha Brain Waves

    Directory of Open Access Journals (Sweden)

    Rohan Hundia

    2015-01-01

    Full Text Available Abstract This paper describes the development and testing of an interface system whereby one can control external devices by voluntarily controlling alpha waves that is through eye movement. Such a system may be used for the control of prosthetics robotic arms and external devices like wheelchairs using the alpha brain waves and the Mu rhythm. The response generated through the movement of the eye detecting and controlling the amplitude of the alpha brain waves is interfaced and processed to control Robotic systems and smart home control. In order to measure the response of alpha waves over different lobes of the brain initially I measured these signals over 32 regions using silver chloride plated electrodes. By the opening and the closure of the eyes and the movement in the up-down left-right directions and processing these movements measuring them over the occipital region I was able to differentiate the amplitude of the alpha waves generated due to these several movements. In the First session testing period subjects were asked to close and open their eyes and they were able to control limited movements of a Robot and a prosthetic arm. In the Second 2session the movement of the eyes was also considered left-right up-down along with the opening and closure during this time span they were able to control more dimensions of the robot several devices at the same time using different eye movements.

  1. Integration of thin film giant magnetoimpedance sensor and surface acoustic wave transponder

    KAUST Repository

    Li, Bodong

    2012-03-09

    Passive and remote sensing technology has many potential applications in implantable devices, automation, or structural monitoring. In this paper, a tri-layer thin film giant magnetoimpedance (GMI) sensor with the maximum sensitivity of 16%/Oe and GMI ratio of 44% was combined with a two-port surface acoustic wave(SAW) transponder on a common substrate using standard microfabrication technology resulting in a fully integrated sensor for passive and remote operation. The implementation of the two devices has been optimized by on-chip matching circuits. The measurement results clearly show a magnetic field response at the input port of the SAW transponder that reflects the impedance change of the GMI sensor.

  2. Mechanical Characterization of Ultralow Interfacial Tension Oil-in-Water Droplets by Thermal Capillary Wave Analysis in a Microfluidic Device.

    Science.gov (United States)

    Bolognesi, Guido; Saito, Yuki; Tyler, Arwen I I; Ward, Andrew D; Bain, Colin D; Ces, Oscar

    2016-04-19

    Measurements of the ultralow interfacial tension and surfactant film bending rigidity for micron-sized heptane droplets in bis(2-ethylhexyl) sodium sulfosuccinate-NaCl aqueous solutions were performed in a microfluidic device through the analysis of thermally driven droplet interface fluctuations. The Fourier spectrum of the stochastic droplet interface displacement was measured through bright-field video microscopy and a contour analysis technique. The droplet interfacial tension, together with the surfactant film bending rigidity, was obtained by fitting the experimental results to the prediction of a capillary wave model. Compared to existing methods for ultralow interfacial tension measurements, this contactless, nondestructive, all-optical approach has several advantages, such as fast measurement, easy implementation, cost-effectiveness, reduced amount of liquids, and integration into lab-on-a-chip devices.

  3. Holographic video display based on guided-wave acousto-optic devices

    Science.gov (United States)

    Smalley, Daniel E.; Smithwick, Quinn Y. J.; Bove, V. Michael, Jr.

    2007-02-01

    We introduce a new holo-video display architecture ("Mark III") developed at the MIT Media Laboratory. The goal of the Mark III project is to reduce the cost and size of a holo-video display, making it into an inexpensive peripheral to a standard desktop PC or game machine which can be driven by standard graphics chips. Our new system is based on lithium niobate guided-wave acousto-optic devices, which give twenty or more times the bandwidth of the tellurium dioxide bulk-wave acousto-optic modulators of our previous displays. The novel display architecture is particularly designed to eliminate the high-speed horizontal scanning mechanism that has traditionally limited the scalability of Scophony- style video displays. We describe the system architecture and the guided-wave device, explain how it is driven by a graphics chip, and present some early results.

  4. Portable blood extraction device integrated with biomedical monitoring system

    Science.gov (United States)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  5. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  6. Lithography for enabling advances in integrated circuits and devices.

    Science.gov (United States)

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  7. Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices.

    Science.gov (United States)

    Cai, Jinguang; Lv, Chao; Watanabe, Akira

    2018-01-10

    Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.

  8. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    Science.gov (United States)

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  9. Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard.

    Science.gov (United States)

    Janß, Armin; Thorn, Johannes; Schmitz, Malte; Mildner, Alexander; Dell'Anna-Pudlik, Jasmin; Leucker, Martin; Radermacher, Klaus

    2018-02-23

    Nowadays, only closed and proprietary integrated operating room systems (IORS) from big manufacturers are available on the market. Hence, the interconnection of components from third-party vendors is only possible with increased time and costs. In the context of the German Federal Ministry of Education and Research (BMBF)-funded project OR.NET (2012-2016), the open integration of medical devices from different manufacturers was addressed. An integrated operating theater based on the open communication standard IEEE 11073 shall give clinical operators the opportunity to choose medical devices independently of the manufacturer. This approach would be advantageous especially for hospital operators and small- and medium-sized enterprises (SME) of medical devices. Actual standards and concepts regarding technical feasibility and the approval process do not cope with the requirements for a modular integration of medical devices in the operating room (OR), based on an open communication standard. Therefore, innovative approval strategies and corresponding certification and test procedures, which cover actual legal and normative standards, have to be developed in order to support the future risk management and the usability engineering process of open integrated medical devices in the OR. The use of standardized device and service profiles and a three-step testing procedure, including conformity, interoperability and integration tests are described in this paper and shall support the manufacturers to integrate their medical devices without disclosing the medical devices' risk analysis and related confidential expertise or proprietary information.

  10. On integrable models from pp-wave string backgrounds

    CERN Document Server

    Bakas, Ioannis; Bakas, Ioannis; Sonnenschein, Jacob

    2002-01-01

    We construct solutions of type IIB supergravity with non-trivial Ramond-Ramond 5-form in ten dimensions by replacing the transverse flat space of pp-wave backgrounds with exact $N=(4,4)$ $c=4$ superconformal field theory blocks. These solutions, which also include a dilaton and (in some cases) an anti-symmetric tensor field, lead to integrable models on the world-sheet in the light-cone gauge of string theory. In one instance we demonstrate explicitly the emergence of the complex sine-Gordon model, which coincides with integrable perturbations of the corresponding superconformal building blocks in the transverse space. In other cases we arrive at the supersymmetric Liouville theory or at the complex sine-Liouville model. For axionic instantons in the transverse space, as for the (semi)-wormhole geometry, we obtain an entire class of supersymmetric pp-wave backgrounds by solving the Killing spinor equations as in flat space, supplemented by the appropriate chiral projections; as such, they generalize the usual...

  11. Scalable approach for vertical device integration of epitaxial nanowires.

    Science.gov (United States)

    Lugstein, A; Steinmair, M; Henkel, C; Bertagnolli, E

    2009-05-01

    In this letter, we demonstrate the simultaneous vertical integration of self-contacting and highly oriented nanowires (NWs) into airbridge structures, which have been developed into surround gated metal oxide semiconductor field effect transistors (MOSFETs). With the use of conventional photolithography, reactive ion etching (RIE), and low pressure chemical vapor deposition, a suspended vertical NW architecture is formed on a silicon on insulator (SOI) substrate where the nanodevice will later be fabricated on. The vapor-liquid-solid (VLS) grown Si-NWs are contacted to prepatterned airbridges by a self-aligned process, and there is no need for postgrowth NW assembly or alignment. Such vertical NW architecture can be easily integrated into existing ICs processes opening the path to a new generation of nonconventional nano devices. To demonstrate the potential of this method, surround gated vertical MOSFETs have been fabricated with a highly simplified integration scheme combining top-down and bottom-up approaches, but in the same way, one can think about the realization of integrated nano sensors on the industrial scale.

  12. WaveSAX device: design optimization through scale modelling and a PTO strategical control system

    Science.gov (United States)

    Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto

    2017-04-01

    WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench

  13. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  14. Integrability: mathematical methods for studying solitary waves theory

    Science.gov (United States)

    Wazwaz, Abdul-Majid

    2014-03-01

    In recent decades, substantial experimental research efforts have been devoted to linear and nonlinear physical phenomena. In particular, studies of integrable nonlinear equations in solitary waves theory have attracted intensive interest from mathematicians, with the principal goal of fostering the development of new methods, and physicists, who are seeking solutions that represent physical phenomena and to form a bridge between mathematical results and scientific structures. The aim for both groups is to build up our current understanding and facilitate future developments, develop more creative results and create new trends in the rapidly developing field of solitary waves. The notion of the integrability of certain partial differential equations occupies an important role in current and future trends, but a unified rigorous definition of the integrability of differential equations still does not exist. For example, an integrable model in the Painlevé sense may not be integrable in the Lax sense. The Painlevé sense indicates that the solution can be represented as a Laurent series in powers of some function that vanishes on an arbitrary surface with the possibility of truncating the Laurent series at finite powers of this function. The concept of Lax pairs introduces another meaning of the notion of integrability. The Lax pair formulates the integrability of nonlinear equation as the compatibility condition of two linear equations. However, it was shown by many researchers that the necessary integrability conditions are the existence of an infinite series of generalized symmetries or conservation laws for the given equation. The existence of multiple soliton solutions often indicates the integrability of the equation but other tests, such as the Painlevé test or the Lax pair, are necessary to confirm the integrability for any equation. In the context of completely integrable equations, studies are flourishing because these equations are able to describe the

  15. Simulation of a Love wave device with ZnO nanorods for high mass sensitivity.

    Science.gov (United States)

    Trivedi, Shyam; Nemade, Harshal B

    2018-03-01

    The paper presents 3D finite element simulation and analysis of Love wave resonator with different guiding layer materials and investigation of the coupled resonance effect with ZnO nanorods on the device surface. Analytical estimation of phase velocity and mass sensitivity of Love wave device with SiO2, ZnO, gold, SU-8, and parylene-C as guiding layer materials is performed for comparative analysis. Simulations are carried out to study the variation in electromechanical coupling coefficient, displacement profile and frequency response of the Love wave resonator. SU-8 offers high mass sensitivity of 1044 m2/kg while gold layer provides maximum K2 of 8.6%. In comparison to SiO2 and ZnO, polymers exhibit sharp rise and fall in K2 within a narrow range of normalized layer thickness (0.03-0.1). ZnO nanorods of varying height and surface nanorod density are designed over the Love wave resonator with SiO2 as the waveguiding layer. In the presence of coupled resonance, the nanorods and substrate vibrate in unison causing an increase in average stress and mass sensitivity but leads to decrease in the electromechanical coupling coefficient of the device. Surface nanorod packing density of 25 μm-2 offers high mass sensitivity of 1304 m2/kg that is 20 times greater in comparison to the mass sensitivity of a plain Love wave device. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analogical device for a rough localization of gravitational-wave sources

    Energy Technology Data Exchange (ETDEWEB)

    Frasca, S. (Rome Univ. (Italy). Ist. di Fisica)

    The response of a gravitational cylindrical antenna depends, besides on the values of the intensity of the wave and the sensitivity of the antenna, on the angle between the direction of the source and the axis of the antenna and on the polarization angle of the wave. In this paper, a device (gravitational astrolabe) than can roughly compute the angular part of the response is presented. It gives the zone of the sky toward which a given antenna is ''directed'' at a certain time, the angle of polarization that is best ''received'' and solves easily a number of similar problems.

  17. Analogical device for a rough localization of gravitational-wave sources

    Energy Technology Data Exchange (ETDEWEB)

    Frasca, S.

    The response of a gravitational cylindrical antenna depends, besides on the values of the intensity of the wave and the sensitivity of the antenna, on the angle between the direction of the source and the axis of the antenna and on the polarization angle of the wave. In this paper a device (gravitational astrolabe) that can roughly compute the angular part of the response is presented. It gives the zone of the sky toward which a given antenna is directed at a certain time, the angle of polarization that is best received and solves easily a number of similar problems.

  18. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.

    Science.gov (United States)

    Çetin, Barbaros; Özer, Mehmet Bülent; Çağatay, Erdem; Büyükkoçak, Süleyman

    2016-01-01

    In this study, acoustophoresis and dielectrophoresis are utilized in an integrated manner to combine the two different operations on a single polydimethylsiloxane (PDMS) chip in sequential manner, namely, particle wash (buffer exchange) and particle separation. In the washing step, particles are washed with buffer solution with low conductivity for dielectrophoretic based separation to avoid the adverse effects of Joule heating. Acoustic waves generated by piezoelectric material are utilized for washing, which creates standing waves along the whole width of the channel. Coupled electro-mechanical acoustic 3D multi-physics analysis showed that the position and orientation of the piezoelectric actuators are critical for successful operation. A unique mold is designed for the precise alignment of the piezoelectric materials and 3D side-wall electrodes for a highly reproducible fabrication. To achieve the throughput matching of acoustophoresis and dielectrophoresis in the integration, 3D side-wall electrodes are used. The integrated device is fabricated by PDMS molding. The mold of the integrated device is fabricated using high-precision mechanical machining. With a unique mold design, the placements of the two piezoelectric materials and the 3D sidewall electrodes are accomplished during the molding process. It is shown that the proposed device can handle the wash and dielectrophoretic separation successfully.

  19. Planar resonator and integrated oscillator using magnetostatic waves.

    Science.gov (United States)

    Kinoshita, Y; Kubota, S; Takeda, S; Nakagoshi, A

    1990-01-01

    A simple planar resonator using a magnetostatic wave (MSW) excited by aluminum finger electrodes with two bonding pads was realized on YIG/GGG (yttrium-iron-garnet film on a gadolinium-gallium-garnet crystal) substrate with two reflection edges. The tunable MSW resonator chip (2 mmx5 mm) exhibited a sharp notch filter response, as deep as 20-35 dB, and a high loaded Q up to 2000, which was tunable over the microwave frequency range from 2 to 4 GHz. A small tunable oscillator (8 cm(3)) was experimentally demonstrated using the MSW planar resonator and a silicon bipolar transistor integrated on a ceramic microwave circuit substrate. Microwave oscillation with spectral purity, at the same level as that of YIG sphere technology, was observed at 3 GHz. The experimental results indicate the technical areas where improvement must be made to realize a practical oscillator configuration.

  20. The Gate Hysteresis in Single Electron Transport Driven by Surface Acoustic Wave (SAW/SET) Devices

    Science.gov (United States)

    Song, Li; Chen, Shuwei

    2017-11-01

    We study the gate hysteresis behavior in single electron transport driven by surface acoustic wave (SAW/SET) devices over a wide temperature range from 1.7 to 200 K. From the temperature dependence, we come to the conclusion that the gate hysteresis in SAW/SET devices arises from a combination of the screening effect of the surface state and the electron tunneling between the moving quantum dot and the impurity quantum dot. In addition, when a perpendicular magnetic field is applied to the sample, the behavior of the gate hysteresis changes substantially. A competition between the magnetic field and the gate voltage on determining the electronic wave function is considered as the reason for the experimental results.

  1. Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave

    Science.gov (United States)

    Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.

    2017-08-01

    In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.

  2. 77 FR 25747 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of...

    Science.gov (United States)

    2012-05-01

    ... COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of... devices and products containing same by reason of infringement of certain claims of U.S. Patent No. 7,225... semiconductor integrated circuit devices and products containing same that infringe one or more of claims 1, 2...

  3. Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port

    Directory of Open Access Journals (Sweden)

    Stefania Naty

    2016-12-01

    Full Text Available A feasibility study for installing Wave Energy Converters (WECs in a Mediterranean port is presented here. The final aim is to evaluate the possibility of building a green touristic infrastructure in a site having ordinary wave energy. In particular, the site of interest is Giardini Naxos, which is located in the northern Ionian coast of the island of Sicily (Italy. A preliminary estimation of the available energy has been carried out. The chosen type of WEC device is the Oscillating Water Column (OWC system, which is found here to allow for good integration with the vertical breakwater needed for the extension of the existing port. Its feasibility is evaluated from the structural and economic point of view. Towards this aim, the system is tested in the laboratory for estimating the reflection coefficients and the pressures on the structure, which allow us to carry out the optimization of the OWC breakwater. Furthermore, the air turbine noise is estimated and an attenuation chamber is designed to reduce such noise to within acceptable levels. The economic feasibility study allows for an evaluation of the recuperation period of the investment, which is slightly less than the service life of the WEC device.

  4. Power spectrum analysis for defect screening in integrated circuit devices

    Science.gov (United States)

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  5. Re-thinking Reading in the Context of a New Wave of Electronic Reading Devices

    Science.gov (United States)

    Kratky, Andreas

    We are currently witnessing a new wave of digital reading devices that will probably significantly change the way we read and publish. This is not the first digital revolution of aspects of cultural production and perception. This paper compares the previous digital revolutions of the music, film and publishing industries and attempts a prognosis of coming changes in the way we will work with digital texts. As a conclusion a new notion of interface design for the emerging reading ecology is proposed.

  6. Arch-Shaped triboelectric nanogenerator as a facile device for water-wave vibrational energy

    Science.gov (United States)

    Ko, Young Joon; Kim, Hyun Soo; Jung, Jong Hoon

    2017-11-01

    We report an arch-shaped triboelectric nanogenerator (A-TENG) as for a simple and effective water-wave energy harvesting device. The A-TENG consists of arch-shaped polyethylene terephthalate (PET) polymer film and flat Al metal electrode. Especially, the arch-shape of PET provides an inherent restoring force after the contact with Al; which significantly reduces the weight and volume of the TENG. For a mild mechanical impact of water waves with an amplitude of 5 cm and frequency of 1 Hz, the single A-TENG unit generates an open-circuit voltage of 8 V and closedcircuit current of 200 nA. In addition, two A-TENG units connected in parallel generate almost double the voltage and current. These results imply that the scaled-up A-TENG units could be used at water-breakers in coastal areas for effective harvesting of ocean wave mechanical energy.

  7. Diffraction analysis for digital micromirror device scene projectors in the long-wave infrared

    Science.gov (United States)

    Han, Qing; Wang, Jian; Zhang, Jianzhong; Sun, Qiang

    2016-08-01

    Diffraction effects play a significant role in scene projectors by digital micromirror devices (DMDs) in the long-wave infrared (IR) band (8 to 12 μm). The contrast provided by these projector systems can become noticeably worse because of the diffraction characteristics of the DMD. The actual diffraction characteristics of the DMD deviate significantly from the predictions of scalar diffraction theory in the long-wave IR. To address this issue, we built a vector diffraction-grating model of the DMD; the diffraction grating model is simulated with MATLAB. Furthermore, we analyze the effect of incident angle and polarization, which are the main factors that decrease the contrast of DMD-based scene projectors in the long-wave IR. Finally, an effective method to improve the contrast of the scene projector system is given, and the maximum contrast of the scene projector system is ˜0.7.

  8. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 77 FR 19032 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same Notice of Receipt...

    Science.gov (United States)

    2012-03-29

    ... Certain Semiconductor Integrated Circuit Devices and Products Containing Same, DN 2888; the Commission is... importation of certain semiconductor integrated circuit devices and products containing same. The complaint...] [FR Doc No: 2012-7567] INTERNATIONAL TRADE COMMISSION [DN 2888] Certain Semiconductor Integrated...

  10. Design, Construction, Reliability and Hydraulic Performance of an Innovative Wave Overtopping Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke; Margheritini, Lucia

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A yearly energy production of 320 MWh is foreseen for a 10 meter wide section. A key to success for the SSG will be the low cost of the structure and its robustness. During the last 2 years such a 1350 tonnes...... is that some breakwaters under design are being investigated as a possible places for integrating the SSG structure. The paper describes the concept of the SSG wave energy converter, the structure and the studies that led to its design....

  11. Photolithography of Integrated Optic Devices in Porous Glasses

    Science.gov (United States)

    Mendoza, Edgar Alfredo

    Collaborative studies in our laboratories, and those of Corning Inc., have established that highly resolved patterns of refractive index gradients ranging from 0.01 to 0.001 can be produced by photolysis of organotin compounds physisorbed onto Corning's code 7930 porous Vycor glass (PVG) followed by thermal consolidation of the glass at 1200^circC. Photolysis binds the metal compound to the glass and thermal activation removes the unreacted adsorbate and converts the photoproduct to a transparent metal oxide. Deposition of the metal oxide changes the density of the glass and in turn, its refractive index. Although applications of gradient refractive index patterns within glass matrices in the field of integrated optics have been recognized for many years, full utilization of this technology requires a fundamental understanding of the chemistry involved during the photochemical and thermal reactions leading to metal oxide formation on the surface of PVG. The research described in this thesis focuses on the study of the photochemistry of organotin compounds of the general formula R(4-n)SnXn where R = alkyl and aryl and X = halides and pseudohalides. Photochemical studies in solution are compared to those on PVG. The experiments take advantage of the transparency of PVG to characterize the photochemical reactions of the adsorbed compounds using conventional spectroscopic techniques. The goal of these studies is to develop a methodology capable of fabricating a wide range of integrated optical devices in a glass matrix. Examples of different optical components that have been produced by these photodeposition techniques are presented.

  12. 77 FR 39510 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Determination Not...

    Science.gov (United States)

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Determination Not... the sale within the United States after importation of certain semiconductor integrated circuit...

  13. Approximate Green's function representations for the analysis of SAW and leaky wave devices.

    Science.gov (United States)

    Peach, Robert C

    2009-10-01

    The Green's function or boundary element method (BEM) is the preferred technique for rigorous SAW device analysis. However, because of its computational cost, its principal application is the analysis of mode propagation in periodic structures to determine parameters that can then be used in simplified coupling of modes (COM) or P-matrix models. In this paper, rigorous representations are derived that express the Green's function in terms of a continuous superposition of modes. The derivations include detailed analysis of the Green's function properties as a function of both frequency and wavenumber, and representations are obtained for both the slowness and spatial domains. Approximate forms are then generated by replacing the continuous mode superposition by a discrete one. The Green's function can be approximated to any required degree of accuracy, and the resulting approximations are applicable to any type of wave on any type of substrate. The long-range spatial components in the approximate forms are represented by exponential terms. The separable properties of these terms allow this class of approximation to be applied to general SAW and leaky wave device analysis in such a way that the computational effort increases only linearly with device size.

  14. Mapping of electromagnetic waves generated by free-running self-oscillating devices.

    Science.gov (United States)

    Hisatake, Shintaro; Nakajima, Hikaru; Nguyen Pham, Hai Huy; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2017-08-23

    Near-field mapping has proven to be a powerful technique for characterizing and diagnosing antennas in the microwave frequency range. However, conventional measurement methods based on a network analyzer cannot be applied to on-chip antenna devices extensively studied for future wireless communication in the millimeter wave (mm-wave) (30-300 GHz) and terahertz (THz) wave (0.1-10 THz) frequency regions. Here, we present a new asynchronous mapping technique to investigate the spatial distribution of not only the amplitude but also the phase of the electric field generated by free-running, self-oscillating generators including CMOS oscillators, Gunn oscillators, resonant tunneling diodes, and quantum cascaded lasers. Using a photonic-electronic hybrid measurement system, a wide frequency coverage, minimal invasiveness of the field to be measured, and phase distribution measurements with a theoretically-limited sensitivity are simultaneously achieved. As a proof-of-concept experiment, we demonstrate the mapping of a mm-wave (77 GHz) generated by a free-running Gunn oscillator and antenna characterization based on near-to-far field transformation.

  15. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    Science.gov (United States)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  16. A rotational traveling wave based levitation device - Modeling, design, and control

    CERN Document Server

    Gabai, Ran; Shaham, Ran; Cohen, Nadav; Bucher, Izhak

    2016-01-01

    Described is a device acting on an acoustically levitated object by manipulating the pressure and flow of a thin layer of air such that its rotation can be precisely controlled without mechanical contact. Virtual work analysis assists in simplifying the multi-actuator control problem into a problem governed by a controllable parameter. Actuation is done with a vibrating ring capable of producing ultrasonic standing and traveling waves, creating the acoustic excitation that affects the pressure in a thin, intermediate layer of gas. A distinctive vibration pattern is required to generate the temporal and spatial pressure field of the squeezed air layer that gives rise to both acoustic levitation force and rotational torque. Described are the physical and design development stages leading to an optimized structure, all followed by verifying and dynamics-calibration experiments. Moreover, by precisely controlling the ratio of standing and traveling waves in a closed-loop, one can affect the shear forces applied b...

  17. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  18. On the development and testing of a guided ultrasonic wave array for structural integrity monitoring.

    Science.gov (United States)

    Fromme, Paul; Wilcox, Paul D; Lowe, Michael J S; Cawley, Peter

    2006-04-01

    The prototype of a guided ultrasonic wave array for the structural integrity monitoring of large, plate-like structures has been designed, built, and tested. The development of suitably small transducers for the excitation and measurement of the first antisymmetric Lamb wave mode Ao is described. The array design consists of a ring of 32 transducers, permanently bonded to the structure with a protective membrane, in a compact housing with the necessary multiplexing electronics. Using a phased addition algorithm with dispersion compensation and deconvolution in the wavenumber domain, a good dynamic range can be achieved with a limited number of transducers. Limitations in the transducer design and manufacture restricted the overall dynamic range achieved to 27 dB. Laboratory measurements for a steel plate containing various defects have been performed. The results for standard defects are compared to theoretical predictions and the sensitivity of the array device for defect detection has been established. Simulated corrosion pitting and a defect cut with an angle grinder simulating general corrosion were detected.

  19. Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education

    Science.gov (United States)

    Meletiou-Mavrotheris, Maria, Ed.; Mavrou, Katerina, Ed.; Paparistodemou, Efi, Ed.

    2015-01-01

    Despite increased interest in mobile devices as learning tools, the amount of available primary research studies on their integration into mathematics teaching and learning is still relatively small due to the novelty of these technologies. "Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education" presents…

  20. Integrated Diagnostic and Treatment Devices for Enroute Critical Care of Patients within Theater

    Science.gov (United States)

    2010-04-01

    external defibrillator and blood chemistry analysis system. Figure 1: Patient Being Transported with the Life Support for Trauma and Transport...These devices possess central processing units that integrate medical functions and automatically record patient physiological data and provider...patient breathing circuit and patient lead connectors. In addition to the standard PMI devices, the LSTAT also featured an integrated semi- automatic

  1. 77 FR 60721 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of...

    Science.gov (United States)

    2012-10-04

    ... COMMISSION Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of... importation, and the sale within the United States after importation of certain semiconductor integrated circuit devices and products containing same by reason of infringement of certain claims of U.S. Patent...

  2. Energy Systems Integration: Demonstrating the Grid Benefits of Connected Devices

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and the University of Delaware Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  3. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  4. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO2 devices.

    Science.gov (United States)

    Han, Chunrui; Parrott, Edward P J; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2017-10-05

    Broadband modulation of terahertz (THz) light is experimentally realized through the electrically driven metal-insulator phase transition of vanadium dioxide (VO2) in hybrid metal antenna-VO2 devices. The devices consist of VO2 active layers and bowtie antenna arrays, such that the electrically driven phase transition can be realized by applying an external voltage between adjacent metal wires extended to a large area array. The modulation depth of the terahertz light can be initially enhanced by the metal wires on top of VO2 and then improved through the addition of specific bowties in between the wires. As a result, a terahertz wave with a large beam size (~10 mm) can be modulated within the measurable spectral range (0.3-2.5 THz) with a frequency independent modulation depth as high as 0.9, and the minimum amplitude transmission down to 0.06. Moreover, the electrical switch on/off phase transition depends very much on the size of the VO2 area, indicating that smaller VO2 regions lead to higher modulation speeds and lower phase transition voltages. With the capabilities in actively tuning the beam size, modulation depth, modulation bandwidth as well as the modulation speed of THz waves, our study paves the way in implementing multifunctional components for terahertz applications.

  5. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    Directory of Open Access Journals (Sweden)

    Hyeonju Yu

    2016-05-01

    Full Text Available To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel thickness of 10∼800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR. Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  6. Multimode quantum interference of photons in multiport integrated devices

    Science.gov (United States)

    Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.

    2011-01-01

    Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits. PMID:21364563

  7. Switchable and Tunable Bulk Acoustic Wave Devices Based on Ferroelectric Material

    Science.gov (United States)

    Mansour, Almonir

    The explosive development of personal communications systems, navigation, satellite communications as well as personal computer and data processing systems together with the constant demand for higher speeds and larger bandwidths has driven fabrication technology to its limits. This, in turn, necessitates the development of novel functional materials for the fabrication of devices with superior performance and higher capacity at reduced manufacturing costs. Ferroelectric materials such as barium strontium titanate (BST) and strontium titanium oxide (STO) have received more attention by researchers and industry because of their field-induced piezoelectric property. This property gives these types of ferroelectric materials the ability to be switchable and tunable in the presence of an electric field. These features have allowed the ferroelectric materials to be used in many applications such as non-volatile memory and DRAMs, sensors, pyroelectric detectors, and tunable microwave devices. Therefore, with the ever increasing complexity in RF front-end receivers, and the demand for services (which in turn requires more functionalities), ferroelectric bulk acoustic wave (BAW) resonators and filters that are intrinsically switchable and tunable promise to reduce the size and complexity of component parts. In this work, we present the design, fabrication and experimental evaluation of switchable and tunable thin film bulk acoustic wave (BAW) resonators, filters and duplexers for radio frequency (RF) applications. The switchability and tunability of these devices come from utilizing the electrostrictive effect of ferroelectric materials such as barium strontium titanate (BST) with the application of an external DC-bias voltage. The BAW resonators, filters and duplexers in this work were fabricated on different substrates as solidly mounted resonator (SMR) structure with number of periodic layers of silicon dioxide and tantalum oxide as a Bragg reflector in order to

  8. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: A pilot study

    Directory of Open Access Journals (Sweden)

    Patnaik Amar

    2005-08-01

    Full Text Available Abstract Background Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operator skills. It requires intensive resource involvement. For epidemiological studies these methods are not suitable. The aim of our study was to clinically evaluate the validity and reproducibility of a new automatic device for measurement of pulse wave velocity that can be used in such studies. Methods In 44 subjects including normal healthy control and patients with coronary artery disease, heart brachial, heart ankle, brachial ankle and carotid femoral pulse wave velocities were recorded by using a new oscillometric device. Lead I and II electrocardiogram and pressure curves were simultaneously recorded. Two observers recorded the pulse wave velocity for validation and one observer recorded the velocity on two occasions for reproducibility. Results and Discussion Pulse wave velocity and arterial stiffness index were recorded in 24 control and 20 coronary artery disease patients. All the velocities were significantly high in coronary artery disease patients. There was highly significant correlation between the values noted by the two observers with low standard deviation. The Pearson's correlation coefficient for various velocities ranged from (r = 0.88–0.90 with (p Conclusion The new device "PeriScope" based on oscillometric technique has been found to be a simple, non-invasive and reproducible device for the assessment of pulse wave velocity and can be used to determine arterial stiffness in large population based studies.

  9. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  10. Enabling Medical Device Interoperability for the Integrated Clinical Environment

    Science.gov (United States)

    2016-12-01

    Reference source not found. vi Error ! Reference source not found. Introduction MEDICAL DEVICES are essential for the practice of modern medicine . The...experts, the CRICO risk management foundation, and the ISO TC 121 international medical device standards development committee.  Open-Source Code-Sharing...2016 – JPC-1 Medical Simulation & Information Sciences Internal Project Review, Ft Detrick, MD Presentations on behalf of the PI:  December 6

  11. Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device

    Science.gov (United States)

    Rosydi Zakaria, Mohd; Johari, Shazlina; Hafiz Ismail, Mohd; Hashim, Uda

    2017-11-01

    In fabricating Surface Acoustic Wave (SAW) biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO) with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam) and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM) for surface morphology and X-ray Diffraction (XRD) for phase structure.

  12. The Innovated Flexible Surface Acoustic Wave Devices on Fully InkJet Printing Technology

    Directory of Open Access Journals (Sweden)

    Cha’o-Kuang Chen

    2013-09-01

    Full Text Available An innovated fabricated process of the flexible surface acoustic wave (SAW device is proposed in this study. Fully inkjet printing and sol-gel technology are used in this fabricated process. The flexible SAW device is composed of a ZnO layer sandwiched in between a flexible polyimide plastic sheet and two sets of interdigital transducers layer. The material of the top interdigital transducer layer is nano silver. The ZnO solution is prepared by sol-gel technology. Both the ZnO and top interdigital transducer layers are deposited by inkjet printing. The fully inkjet printing process possesses the advantages of direct patterning and low-cost. It does not require photolithography and etching processes since the pattern is directly printed on the flexible sheet. The center frequency of this prototype is matched with the design frequency. The prototype demonstrates that the presented flexible SAW device is available for the possible application in future. It may be applied to the sensing on curve surface.

  13. Structural characterisations of AlN/diamond structures used for surface acoustic wave device applications

    Science.gov (United States)

    Mortet, V.; Elmazria, O.; Nesládek, M.; Elhakiki, M.; Vanhoyland, G.; D'Haen, J.; D'Olieslaeger, M.; Alnot, P.

    2003-09-01

    Diamond based surface acoustic wave (SAW) devices are extremely versatile devices that are just beginning to realize their commercial potential for use from sensors till high frequency (HF) filters for wireless telecommunications. One of the most promising piezoelectric materials for diamond based HF-SAW devices is aluminium nitride (AlN) thin film. The ability of AlN and diamond to be used for SAW applications depends both on the piezoelectric AlN layer properties and the diamond substrate properties. In this work, optimised piezoelectric (002) oriented AlN layers have been deposited on polycrystalline diamond substrates aiming at HF-SAW filter applications. CVD Polycrystalline diamond layers were deposited on silicon substrates by microwave plasma enhanced chemical vapour deposition (MW-PECVD). SAW filters with unique characteristics have been obtained due to exceptional diamond's mechanical properties [1, 2]. One of the important characteristics of CVD diamond substrate is concerns its surface roughness. Smooth diamond surfaces were obtained without polishing by a wet chemical etching of the silicon substrate at the diamond layer nucleation side. Very low surface roughness (RMS 1 nm) can be achieved by this technique for bias enhanced nucleated (BEN) (BEN) samples. In this paper, we report the structural characterization of the AlN films and diamond substrates by X-ray diffraction, atomic force microscopy, and transmission electron microscopy methods. (

  14. Structural characterisations of AlN/diamond structures used for surface acoustic wave device applications

    Energy Technology Data Exchange (ETDEWEB)

    Mortet, V.; Vanhoyland, G. [Institute for Materials Research (IMO), Limburgs Universitair Centrum, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Elmazria, O.; Elhakiki, M.; Alnot, P. [LPMIA - Universite H. Poincare - Nancy I, F-54506 Vandoeuvre-les-Nancy Cedex (France); Nesladek, M.; D' Olieslaeger, M. [Institute for Materials Research (IMO), Limburgs Universitair Centrum, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Division IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); D' Haen, J. [Division IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

    2003-09-01

    Diamond based surface acoustic wave (SAW) devices are extremely versatile devices that are just beginning to realize their commercial potential for use from sensors till high frequency (HF) filters for wireless telecommunications. One of the most promising piezoelectric materials for diamond based HF-SAW devices is aluminium nitride (AlN) thin film. The ability of AlN and diamond to be used for SAW applications depends both on the piezoelectric AlN layer properties and the diamond substrate properties. In this work, optimised piezoelectric (002) oriented AlN layers have been deposited on polycrystalline diamond substrates aiming at HF-SAW filter applications. CVD Polycrystalline diamond layers were deposited on silicon substrates by microwave plasma enhanced chemical vapour deposition (MW-PECVD). SAW filters with unique characteristics have been obtained due to exceptional diamond's mechanical properties [1, 2]. One of the important characteristics of CVD diamond substrate is concerns its surface roughness. Smooth diamond surfaces were obtained without polishing by a wet chemical etching of the silicon substrate at the diamond layer nucleation side. Very low surface roughness (R{sub MS} {<=}1 nm) can be achieved by this technique for bias enhanced nucleated (BEN) (BEN) samples. In this paper, we report the structural characterization of the AlN films and diamond substrates by X-ray diffraction, atomic force microscopy, and transmission electron microscopy methods. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Characterization of Zinc Oxide (ZnO piezoelectric properties for Surface Acoustic Wave (SAW device

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd Rosydi

    2017-01-01

    Full Text Available In fabricating Surface Acoustic Wave (SAW biosensors device, the substrate is one of important factors that affected to performance device. there are many types of piezoelectric substrate in the markets and the cheapest is zinc Oxide substrate. Zinc Oxide (ZnO with its unique properties can be used as piezoelectric substrate along with SAW devices for detection of DNA in this research. In this project, ZnO thin film is deposited onto silicon oxide substrate using electron beam evaporation (E-beam and Sol-Gel technique. Different material structure is used to compare the roughness and best piezoelectric substrate of ZnO thin film. Two different structures of ZnO target which are pellet and granular are used for e-beam deposition and one sol-gel liquid were synthesize and compared. Parameter for thickness of ZnO e-beam deposition is fixed to a 0.1kÅ for both materials structure and sol-gel was coat using spin coat technique. After the process is done, samples are annealed at temperature of 500°C for 2 hours. The structural properties of effect of post annealing using different material structure of ZnO are studied using Atomic Force Microscopic (AFM for surface morphology and X-ray Diffraction (XRD for phase structure.

  16. Future oriented light-wave cable devices for energy supply. Zukunftssichere LWL-Kabelanlagen fuer Energieversorgungsunternehmen

    Energy Technology Data Exchange (ETDEWEB)

    Rittich, D. (ANT-Nachrichtentechnik G.m.b.H., Backnang (Germany, F.R.))

    1989-02-01

    Cable systems in electricity utilities require high investment and are schedulled for a service life of 20 years and over. Today, telecommunications technology is undergoing rapid changes which is indicated by terms like digital technology, integrated networks and light-wave conductors to name but a few. Hence, operators are faced with the difficult task to select on economic system solution from among the component available on today's market. These systems expected to technically handle a relatively small amount of information at present but also to keep abreast with the foreseeable rise in telecommunications. (orig.).

  17. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  18. Electrode modification and the response of the acoustic shear wave device operating in liquids.

    Science.gov (United States)

    Ghafouri, S; Thompson, M

    2001-12-01

    The effect of electrode polarity, geometry, and stray capacitance on the performance of the thickness-shear mode acoustic wave sensor operating in electrolytes and solutions of biomolecules has been studied. In contrast to the well-known mass-based response of the device operating in the gas phase, the response in a liquid is governed by several factors including acoustoelectric and fringing field effects, which are known to be active at the edges of the electrodes. In order to investigate and utilize these effects, we modified the electrode geometry to increase the edge length, which, in turn, raises the sensitivity of the device. These changes which constituted either complete coverage of the back of the device with electrode material, or the removal of disks and lines from the electrode surface, resulted in a two to three times enhancement of sensor response. Such modifications that extend device sensitivity beyond the electrode area to the quartz region of the sensing structure also provide a better surface for the immobilization of various probes. We verified the enhancing ability of the modified electrodes for the case of adsorption of the protein avidin and neutravidin, followed by their affinity reactions with biotinylated biomolecules. It was found that the active electrode in contact with electrolyte exhibits a sensitivity of about twice that of the grounded electrode. The existence of stray capacitance around the cell was confirmed by shielding the cell assembly with a bath of concentrated KCl solution. This shielding effect was measured to be about 25-60 Hz in series resonant frequency and -1000 Hz in parallel resonant frequency.

  19. New Regionalism in Africa: Waves of Integration | Bachinger | Africa ...

    African Journals Online (AJOL)

    The international trading environment is shaped by the so-called 'new regionalism', an increasingly complex phenomenon with a rapid proliferation of Regional Integration Agreements (RIAs), overlapping memberships, deeper integration efforts and trade blocs signed between developing and industrialised countries.

  20. Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines

    Directory of Open Access Journals (Sweden)

    M. A. Banaja

    2015-01-01

    Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.

  1. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Natalucci, L.

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo Collaboration. The omnidirectional view of the INTEGRAL...... MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW gravitational wave...

  2. Silicon analog components device design, process integration, characterization, and reliability

    CERN Document Server

    El-Kareh, Badih

    2015-01-01

    This book covers modern analog components, their characteristics, and interactions with process parameters. It serves as a comprehensive guide, addressing both the theoretical and practical aspects of modern silicon devices and the relationship between their electrical properties and processing conditions. Based on the authors’ extensive experience in the development of analog devices, this book is intended for engineers and scientists in semiconductor research, development and manufacturing. The problems at the end of each chapter and the numerous charts, figures and tables also make it appropriate for use as a text in graduate and advanced undergraduate courses in electrical engineering and materials science.

  3. User centered integration of Internet of Things devices

    Science.gov (United States)

    Manione, Roberto

    2017-06-01

    This paper discusses an IoT framework which allows rapid and easy setup and customization of end-to-end solutions for field data collection and presentation; it is effective in the development of both informative and transactional applications for a wide range of application fields, such as home, industry and environment. On the "far-end" of the chain are the IoT devices gathering the signals; they are developed used a full Model Based approach, where programming is not required: the TaskScript technology is used to this purpose, which supports a choice of physical boards and boxes equipped with a range of Input and Output interfaces, and with a Tcp/Ip interface. The development of the needed specific IoT devices takes advantage of the available "standard" hardware; the software development of the algorithms for sampling, conditioning and uploading signals to the Cloud is supported by a graphical-only IDE. On the "near-end" of the chain is the presentation Interface, through which users can browse through the information provided by their IoT devices; it is implemented in a Conversational way, using the Bot paradigm: Bots are conversational automatons, to whom users can "chat". They are accessed via mainstream Messenger programs, such as Telegram(C), Skype(C) or others, available on smartphones, tablets or desktops; unlike apps, bots do not need installation on the user device. A message Broker has been implemented, to mediate among the far-end and the near-end of the chain, providing the needed services; its behavior is driven by a set of rules provided on a per-device basis, at configuration level; the Broker is able to store messages received from the devices, process and forward them to the specified recipient(s) according to the provided rules; finally, finally is it is able to send transactional commands, from users back to the requested device, to implement not only field observation but also field control. IoT solutions implemented with the proposed

  4. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  5. An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation.

    Science.gov (United States)

    Modestino, Miguel A; Haussener, Sophia

    2015-01-01

    Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.

  6. Integrated Coherent Radio-over-Fiber Units for Millimeter-Wave Wireless Access

    DEFF Research Database (Denmark)

    Stöhr, A.; Babiel, S.; Chuenchom, M.

    2015-01-01

    to provide wireless services within the E-band (60-90 GHz). In detail, GaAs-based single-sideband millimeter-wave Mach-Zehnder modulators, InP-based millimeter-wave photodiodes featuring rectangular waveguide outputs and monolithically integrated low-linewidth tunable laser diodes as well as Si......Ge-based millimeter-wave RF amplifier technology will be reported. In addition, a new coherent optical heterodyne radio-over–fiber scheme is proposed for seamless integration of next generation millimeter-wave wireless access systems into a next generation passive optical network employing dense or even ultra......-dense WDM. We propose and demonstrate novel radio access units (RAU) using coherent optical heterodyne detection for the generation of the millimeter-wave radio signals in the RAUs. The proposed CRoF concept supports the provision of multiple services over a single optical distribution network including...

  7. 5 GHz surface acoustic wave devices based on aluminum nitride/diamond layered structure realized using electron beam lithography

    Science.gov (United States)

    Kirsch, P.; Assouar, M. B.; Elmazria, O.; Mortet, V.; Alnot, P.

    2006-05-01

    Very high frequency surface acoustic wave (SAW) devices based on AlN/diamond layered structures were fabricated by direct writing using e-beam lithography on the nucleation side of chemical vapor deposition diamond. The interdigital transducers made in aluminum with resolutions down to 500nm were patterned on AlN/diamond layered structure with an adapted technological process. Experimental results show that the Rayleigh wave and the higher modes are generated. The fundamental frequency around 5GHz was obtained for this layered structure SAW device and agrees well with calculated results from dispersion curves of propagation velocity and electromechanical coupling coefficient.

  8. Geometry Optimization of an Overtopping Wave Energy Device Implemented into the New Breakwater of the Hanstholm Port Expansion

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Stratigaki, Vasiliki; Troch, Peter

    2012-01-01

    The study presented here describes the geometry optimization of the Sea wave Slot cone Generator (SSG) overtopping wave energy converter as part of the feasibility study for the implementation of the device in the development plan of Hanstholm harbour in Denmark. The total length of the new planned...... breakwater is 1.5 km and the water depth ranges approximately from 8.0 m up to 14 m with localized influences on the wave climate. The study is conducted numerically in order to present the expected power production and overall performance of the SSG breakwater in Hanstholm. The price par kWh is also...

  9. Final technical report for DOE Computational Nanoscience Project: Integrated Multiscale Modeling of Molecular Computing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, P. T.

    2010-02-08

    This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.

  10. Multicomponent integrable wave equations. I. Darboux-dressing transformation

    NARCIS (Netherlands)

    Degasperis, A.; Lombardo, S.

    2007-01-01

    The Darboux-dressing transformations are applied to the Lax pair associated with systems of coupled nonlinear wave equations in the case of boundary values which are appropriate to both bŕight' and dárk' soliton solutions. The general formalism is set up and the relevant equations are explicitly

  11. Integrated graphene-based devices for optoelectronic applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. Here I present novel integrated grapheneplasmonic waveguide modulator showing high modulation depth, thus giving a promising way...

  12. A Case Study of Short-term Wave Forecasting Based on FIR Filter: Optimization of the Power Production for the Wavestar Device

    DEFF Research Database (Denmark)

    Ferri, Francesco; Sichani, Mahdi Teimouri; Frigaard, Peter

    2012-01-01

    Short-term wave forecasting plays a crucial role for the control of a wave energy converter (WEC), in order to increase the energy harvest from the waves, as well as to increase its life time. In the paper it is shown how the surface elevation of the waves and the force acting on the WEC can...... be predicted using FIR filter. The predictors have been validated in laboratory with unidirectional regular and irregular waves. Here a single point absorber, (1:20) scale of the Wavestar device, is used. The results show that it is possible to predict wave and forces acting on the device using a properly...

  13. Opto-Electromechanical Devices for Low-Noise Detection of Radio Waves

    DEFF Research Database (Denmark)

    Bagci, Tolga

    of our device for optical detection of radio waves. We demonstrate an actual Johnson noise-limited voltage sensitivity of ≈ 800 pV/√Hz and beyond that, we infer a sensitivity of 60 pV/√Hz both for the thermal noise of the membrane and shot noise (quantum) of the optical readout, at the optimal...... factors. For example, a hybrid system like this, would enable the use of well-established shot-noise limited optical sensing technologies for detecting weak radio-frequency (rf) signals, rf-to-optical photon conversion and transmission of information in low-loss fiber-optic links over long distances...... of parameters, we have achieved Cem =6800 meaning that the membrane noise can be suppressed down to Tm /Cem=40 mK. We believe our device will be of interest in sensing applications (NMR, radio astronomy etc.) where it is coupled to a cold signal input and the Johnson noise is strongly suppressed...

  14. Large microwave phase shift and small distortion in an integrated waveguide device

    DEFF Research Database (Denmark)

    Öhman, Filip; Sales, Salvador; Chen, Yaohui

    2007-01-01

    We have obtained a tunable phase shift of 150 degrees in an integrated semiconductor waveguide by optimizing the interplay of fast and slow light effects. Furthermore, the distortions imposed by device nonlinearities have been quantified.......We have obtained a tunable phase shift of 150 degrees in an integrated semiconductor waveguide by optimizing the interplay of fast and slow light effects. Furthermore, the distortions imposed by device nonlinearities have been quantified....

  15. Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)

    Science.gov (United States)

    Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.

    2012-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997

  16. Monolithic integration of a novel microfluidic device with silicon light emitting diode-antifuse and photodetector

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Berenschot, Johan W.; Tas, Niels Roelof; van den Berg, Albert

    2002-01-01

    Light emitting diode antifuse has been integrated into a microfluidic device that is realized with extended standard CMOS technological steps. The device comprises of a microchannel sandwiched between a photodiode detector and a nanometer-scale diode antifuse light emitter. Within this contribution,

  17. Integration of a novel microfluidic device with silicon light emitting diode-antifuse and photodetector

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Berenschot, Johan W.; Tas, Niels Roelof; van den Berg, Albert

    2002-01-01

    Light emitting diode antifuse has been integrated into a microfluidic device that is realized with extended standard CMOS technological steps. The device comprises of a microchannel sandwiched between a photodiode detector and a nanometer-scale diode antifuse light emitter. Within this contribution,

  18. Integration of metal oxide nanowires in flexible gas sensing devices.

    Science.gov (United States)

    Comini, Elisabetta

    2013-08-15

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field.

  19. Silicon-based technology for integrated waveguides and mm-Wave systems

    NARCIS (Netherlands)

    Jovanovic, Vladimir; Gentile, Gennaro; Dekker, R.; de Graaf, Pascal; de Vreede, Leo C.N.; Nanver, Lis Karen; Spirito, Marco

    2015-01-01

    IC processing is used to develop technology for silicon-filled millimeter-wave-integrated waveguides. The frontend process defines critical waveguide sections and enables integration of dedicated components, such as RF capacitors and resistors. Wafer gluing is used to strengthen the mechanical

  20. Ultrasonic longitudinal waves to monitor the integration of titanium rods with host bone

    Science.gov (United States)

    Wang, Wentao; Lynch, Jerome P.

    2017-04-01

    Osseointegrated prostheses which integrate the prosthesis directly to the limb bone are being developed for patients that are unable to wear traditional socket prostheses. While osseointegration of the prosthesis offers amputees improvement in their quality of life, there remains a need to better understand the integration process that occurs between the bone and the prosthesis. Quantification of the degree of integration is important to track the recuperation process of the amputee, guide physical therapy regimes, and to identify when the state of integration may change (due to damage to the bone). This study explores the development of an assessment strategy for quantitatively assessing the degree of integration between an osseointegrated prosthesis and host bone. Specifically, the strategy utilizes a titanium rod prosthesis as a waveguide with guided waves used to assess the degree of integration. By controlling waveforms launched by piezoelectric wafers bonded on the percutaneous tip of the prosthesis, body waves are introduced into the waveguide with wave reflections at the boneprosthesis interface recorded by the same array. Changes in wave energy are correlated to changes at the contact interface between the titanium rod and the bone material. Both simulation and experimental tests are presented in this paper. Experimental testing is performed using a high-density polyethylene (HDPE) host because the elastic modulus and density of HDPE are close to that of human and animal bone. Results indicate high sensitivity of the longitudinal wave energy to rod penetration depth and confinement stress issued by the host bone.

  1. VLSI (Very Large Scale Integrated Circuits) Device Reliability Models.

    Science.gov (United States)

    1984-12-01

    Arrhenius relationship is as follows; b=Ae ( -j Tr where . A normalization constant for a specific technology cea = equivalent activation energy (as a...ln(Xp) = nA - cea (l/KT) This relationship is shown for two different activation energies in Figure 6.1. The example depicted in...W.E., "Microcircuit Device Reliability: Memory/Digital LSI", RAC Publication MDR -18, Winter 1981/82. 16. MIL-HDBK-217D, Military Handbook

  2. Devices and architectures for photonic chip-scale integration

    Science.gov (United States)

    Ahn, J.; Fiorentino, M.; Beausoleil, R. G.; Binkert, N.; Davis, A.; Fattal, D.; Jouppi, N. P.; McLaren, M.; Santori, C. M.; Schreiber, R. S.; Spillane, S. M.; Vantrease, D.; Xu, Q.

    2009-06-01

    Silicon nanophotonics holds the promise of dramatically advancing the state of the art in computing by enabling parallel architectures that combine unprecedented performance and ease of use with affordable power consumption. This paper presents a design study for a many-core architecture called Corona which utilizes dense wavelength division multiplexing (DWDM) for on- and off-chip communication together with the devices which will be needed to implement such a communication infrastructure.

  3. Advances in nonlinear characterization of millimetre-wave devices for telecommunications

    Science.gov (United States)

    Parker, Anthony E.

    2007-12-01

    Field Effect Transistors exhibit a variety of complicated dynamic and nonlinear interactions that affect millimetre-wave devices used for telecommunications. The dynamics include self heating, bias dependent change in trapped charge, and variations due to impact ionization. These are feedback mechanisms that contribute to intermodulation as a memory effect does. A FET is better viewed as a nonlinear system with feedback, bias dependent rates, and high-order nonlinear conductance and charge storage with specific terminal to terminal interaction. Identifying and characterizing FET dynamics and linearity is a key step in the design process. Extraction of true intrinsic characteristics is an important first step to understanding the physics of trapping and heating within the device. Standard measurement techniques tend to derive access networks with an emphasis on scaling with layout geometry. The intrinsic device is then modelled as whatever is left after de-embedding the measurements. As such, the intrinsic model exhibits significant frequency dispersions and behaviour that is not easily related to the operation of the transistor. A correct determination of the access network reveals that the dispersions within the intrinsic data are related to physical process, such as heating and trapping. Recent work has been carried out to accurately implement trapping within a circuit simulator. This is key to correct prediction of intermodulation and bias dependence effects generated by a FET. It is shown that heating significantly affects trapping and is an important factor in the transient rate dependence of the characteristics. The implementation of trapping within a circuit model, and its consequences on linearity are explored.

  4. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of the thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.

  5. Reliable Integration of Terascale Systems with Nanoscale Devices

    Science.gov (United States)

    Naeimi, Helia

    Nanotechnology design has attracted considerable attention in recent years and seems to be the technology for the future generation of the electronic devices, either as scaled and more restricted conventional lithographic technology, or as emerging sublithographic technologies, such as nanowires, carbon nanotubes, NDR (Negative Differential Resistance) devices, or other nanotechnology devices. Each of these technologies provides one or more design benefits including feature-size scaling, high on-off ratios, and faster devices. However, all of these techniques share their most challenging design issue: reliability. Providing reliability is becoming constantly more challenging due to increases in both the device failure rate and system complexity. This work develops techniques that make achieving reliability in such systems feasible with practical area overhead and considerable improvement in area overhead and system reliability compared to related techniques. Conventional reliability techniques focus on low defect and fault rates, i.e., single event upset (SEU). These techniques cannot simply be scaled to larger systems with more unreliable devices. If these techniques are directly applied to the high defect and fault rate of the nanotechnology regime, they suffer impractically high overhead, or they may not achieve the desired reliability. Our approach in this thesis exploits the following design patterns to achieve a considerable area reduction compared to related works and achieve high reliability: (1) Fine-grained reliability: In this technique, the system is partitioned into fine-grained blocks, and the reliability is provided for each block. This technique is used to contain the area overhead and bound the impact on the throughput. (2) Using alternative resources: This technique improves the design quality by sparing other resources when system is tight on one resource. In our work we replace some of the spacial redundancies with temporal redundancy to limit

  6. Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology

    National Research Council Canada - National Science Library

    Li, Y; Fu, Y. Q; Brodie, S. D; Alghane, M; Walton, A. J

    2012-01-01

    ...) and electro-wetting on dielectric (EWOD). This combination has been designed to provide enhanced microfluidic functionality and the integrated devices have been fabricated using a single mask lithographic process...

  7. Numerical Time Integration Methods for a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten

    2012-01-01

    The objective of this abstract is to provide a review of models for motion simulation of marine structures with a special emphasis on wave energy converters. The time-domain model is applied to a point absorber system working in pitch mode only. The device is similar to the well-known Wavestar...

  8. Silicon photonic integrated devices for datacenter optical networks

    Science.gov (United States)

    Fiorentino, Marco; Chen, Chin-Hui; Kurczveil, Géza; Liang, Di; Peng, Zhen; Beausoleil, Raymond

    2014-03-01

    The evolution of computing infrastructure and workloads has put an enormous pressure on datacenter networks. It is expected that bandwidth will scale without increases in the network power envelope and total cost of ownership. Networks based on silicon photonic devices promise to help alleviate these problems, but a viable development path for these technologies is not yet fully outlined. In this paper, we report our progress on developing components and strategies for datacenter silicon photonics networks. We will focus on recent progress on compact, low-threshold hybrid Si lasers and the CWDM transceivers based on these lasers as well as DWDM microring resonator-based transceivers.

  9. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  10. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562)....... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm......In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...

  11. Thermal Isolation and Differential Cooling of Heterogeneously Integrated Devices

    Science.gov (United States)

    2016-07-01

    It is also large enough to avoid surface tension-driven air bubble trapping identified in prior single-phase microgap experiments at UMD. The...DAHI) at northrop grumman aerospace systems (NGAS)," in 36th IEEE Compound Semiconductor Integrated Circuit Symposium , CSICS 2014, 2014, . [3] A...IEEE MTT-S International Microwave Symposium , IMS 2009, Boston, MA, 2009, pp. 1109-1112. [4] T. E. Kazior, J. Laroche and W. Hoke, "Heterogeneous

  12. An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Integrative Wave model for the Marginal Ice Zone...people.clarkson.edu/~hhshen LONG-TERM GOALS To enhance wave forecasting models such as WAVEWATCH III (WW3) so that they can predict the marginal ice zone (MIZ...Antarctic marginal ice zone were used to evaluate the viscoelastic ice damping models. The 2012 data came from two buoys separated by over 100km

  13. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.

    2016-01-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, which was discovered by the LIGO/Virgo Collaboration. The omnidirectional view...... in the 75 keV-2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW ... of the gravitational wave source, based on the available predictions for prompt electromagnetic emission....

  14. Design and Integration of Wearable Devices in Textiles

    Directory of Open Access Journals (Sweden)

    Isabel G. TRINDADE

    2014-12-01

    Full Text Available In this article, the design, production method, integration and characterization of textile sensors for the continuous monitoring of cardiac and respiration vital signals are presented. Textile electrodes, capacitive and piezoresistive sensors and respective interconnect plate were developed and integrated in elastic and adjustable chest bands, using a 6-needle digital embroidery machine and electrically conductive commercial threads. The signal's waveforms were recorded via PC with a data acquisition module and a LabView program. The signal to noise ratio of textile electrodes, having distinctive surface morphologies, that were either textured or smooth accordingly with the embroidery pattern used, were analyzed with Matlab. The quantitative method indicated differences between the two types of textile electrodes but performances comparable to standard Ag/AgCl gel electrodes. The sensors and interconnect plate were fully realized with the embroidery stitching method with textile fabrics and threads, and have a compact design, are lightweight and washable. The method offers great versatility for custom demand, in terms of sensor design and materials.

  15. Generalized Generators of Very-High-Frequency Gravitational Waves Including Ring Devices

    Science.gov (United States)

    Woods, R. C.; Baker, R. M. L.

    2009-03-01

    A number of researchers have previously proposed methods of generating very-high frequency gravitational waves (VHFGWs) using various interactions and mechanisms. These included mechanical devices, electromagnetic actuators, film bulk acoustic resonators (FBARs) using magnetron excitation, and nuclear explosions. In most cases the generated VHFGW power is a minute fraction of the input power needed to create the required excitation. Only on using a nuclear interaction is the output power significant; however, this appears not to be a practical generation method that can potentially achieve wide usage, at least in the near future. When a number of sources interfere constructively the amplitudes add in direct proportion to the number of radiation-element pairs or sources, N, and the radiation pattern narrows correspondingly in proportion to 1/N. Thus, the generated radiation flux (power per unit cross-sectional area) is proportional to the square of the number of sources or radiation element pairs, N2. Therefore, far greater GW power is obtained by using a larger number of smaller sources (consisting of mass pairs) excited (or "jerked") in phase rather than by using a smaller number of large excited (jerked) masses. The present paper examines the consequences of this scaling law to find how to optimize the generation of VHFGW power from a general set of jerked masses so that the result derives from the combination of all the individual excitations. Extreme cases that can be readily achieved using conventional known technology are firstly to jerk a set of atomic nuclei in phase, and secondly to jerk a set of electrons in phase. The former case uses most of the available mass and the second case sacrifices the excitations available from the masses of the corresponding nuclei. Specific devices, consisting of a ring or tube formed of rings of infra-red-excited molecules or electrons, are suggested. Algebraic and numerical estimates are given of the corresponding VHFGW

  16. A novel optimal sensitivity design scheme for yarn tension sensor using surface acoustic wave device.

    Science.gov (United States)

    Lei, Bingbing; Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Haoxin

    2014-08-01

    In this paper, we propose a novel optimal sensitivity design scheme for the yarn tension sensor using surface acoustic wave (SAW) device. In order to obtain the best sensitivity, the regression model between the size of the SAW yarn tension sensor substrate and the sensitivity of the SAW yarn tension sensor was established using the least square method. The model was validated too. Through analyzing the correspondence between the regression function monotonicity and its partial derivative sign, the effect of the SAW yarn tension sensor substrate size on the sensitivity of the SAW yarn tension sensor was investigated. Based on the regression model, a linear programming model was established to gain the optimal sensitivity of the SAW yarn tension sensor. The linear programming result shows that the maximum sensitivity will be achieved when the SAW yarn tension sensor substrate length is equal to 15 mm and its width is equal to 3mm within a fixed interval of the substrate size. An experiment of SAW yarn tension sensor about 15 mm long and 3mm wide was presented. Experimental results show that the maximum sensitivity 1982.39 Hz/g was accomplished, which confirms that the optimal sensitivity design scheme is useful and effective. Copyright © 2014. Published by Elsevier B.V.

  17. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs Microfluidic Devices: Analysis and Simulation

    Directory of Open Access Journals (Sweden)

    Ahmed M. Soliman

    2017-03-01

    Full Text Available The separation of blood components (WBCs, RBCs, and platelets is important for medical applications. Recently, standing surface acoustic wave (SSAW microfluidic devices are used for the separation of particles. In this paper, the design analysis of SSAW microfluidics is presented. Also, the analysis of SSAW force with Rayleigh angle effect and its attenuation in liquid-loaded substrate, viscous drag force, hydrodynamic force, and diffusion force are explained and analyzed. The analyses are provided for selecting the piezoelectric material, width of the main microchannel, working area of SAW, wavelength, minimum input power required for the separation process, and widths of outlet collecting microchannels. The design analysis of SSAW microfluidics is provided for determining the minimum input power required for the separation process with appropriated the displacement contrast of the particles.The analyses are applied for simulation the separation of blood components. The piezoelectric material, width of the main microchannel, working area of SAW, wavelength, and minimum input power required for the separation process are selected as LiNbO3, 120 μm, 1.08 mm2, 300 μm, 371 mW. The results are compared to other published results. The results of these simulations achieve minimum power consumption, less complicated setup, and high collecting efficiency. All simulation programs are built by MATLAB.

  18. Vertical III-V nanowire device integration on Si(100).

    Science.gov (United States)

    Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike

    2014-01-01

    We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.

  19. Integration of SH seismic reflection and Love-wave dispersion data for shear wave velocity determination over quick clays

    Science.gov (United States)

    Comina, Cesare; Krawczyk, Charlotte M.; Polom, Ulrich; Socco, Laura Valentina

    2017-09-01

    Quick clay is a water-saturated formation originally formed through flocculation and deposition in a marine to brackish environment. It is subsequently leached to low salinity by freshwater flow. If its strength decreases, then the flocculated structure collapses leading to landslides of varying destructiveness. Leaching can result in a reduction of the undisturbed shear strength of these clays and suggestions exist that a reduction in shear wave velocities is also possible. Integration of SH seismic reflection and Love-wave dispersion data was undertaken, in an area near the Göta River in southwest Sweden, to evaluate the potential of shear wave velocity imaging for detecting quick clays. Seismic reflection processing evidenced several geologically interesting interfaces related to the probable presence of quick clays (locally confirmed by boreholes) and sand-gravelly layers strongly contributing to water circulation within them. Dispersion data were extracted with a Gaussian windowing approach and inverted with a laterally constrained inversion using a priori information from the seismic reflection imaging. The inversion of dispersion curves has evidenced the presence of a low velocity layer (lvl, with a velocity reduction of ca. 30 per cent) probably associable to quick clays. This velocity reduction is enough to produce detectable phase-velocity differences in the field data and to achieve a better velocity resolution if compared to reflection seismic velocity analyses. The proposed approach has the potential of a comprehensive determination of the shear wave velocity distribution in the shallow subsurface. A sensitivity analysis of Love-wave dispersion data is also presented underlining that, despite limited dispersion of the data set and the velocity-reducing effect of quick-clay leaching, the proposed interpretation procedure arises as a valuable approach in quick clay and other lvl identification.

  20. Integrating nanostructured electrodes in organic photovoltaic devices for enhancing near-infrared photoresponse

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, Alexandre M.; Ahn, Sungmo; Rourke, Devin; Mao, Chenchen; van de Lagemaat, Jao; Ferguson, Andrew J.; Park, Wounjhang; Kopidakis, Nikos

    2016-12-01

    We introduce a simple methodology to integrate prefabricated nanostructured-electrodes in solution-processed organic photovoltaic (OPV) devices. The tailored 'photonic electrode' nanostructure is used for light management in the device and for hole collection. This approach opens up new possibilities for designing photonically active structures that can enhance the absorption of sub-bandgap photons in the active layer. We discuss the design, fabrication and characterization of photonic electrodes, and the methodology for integrating them to OPV devices using a simple lamination technique. We demonstrate theoretically and experimentally that OPV devices using photonic electrodes show a factor of ca. 5 enhancement in external quantum efficiency (EQE) in the near infrared region. We use simulations to trace this observed efficiency enhancement to surface plasmon polariton modes in the nanostructure.

  1. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Interface Analysis Center, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Sun, Huarui; Pomeroy, James W.; Kuball, Martin, E-mail: Martin.Kuball@bristol.ac.uk [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Francis, Daniel; Faili, Firooz; Twitchen, Daniel J. [Element-Six Technologies, Santa Clara, California 95054 (United States)

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  2. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Petersen, Nickolaj Jacob; Hübner, Jörg

    2001-01-01

    The fabrication and performance of an electrophoretic separation chip with integrated of optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The wavegui.......2 mum rhodamine 110, 8 mum 2,7-dichlorofluorescein, 10 mum fluorescein and 18 mum 5-carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm....

  3. Nonlinear Excitation of Acoustic Modes by Large Amplitude Alfvén waves in the Large Plasma Device (LAPD)

    Science.gov (United States)

    Dorfman, S. E.; Carter, T. A.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.; Sydora, R. D.

    2013-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. While the linear behavior of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar corona and solar wind. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in the coronal heating problem. Specifically, the decay of large-amplitude Alfvén waves propagating outward from the photosphere could lead to heating of the corona by the daughter ion acoustic modes [2]. As direct observational evidence of parametric decay is limited [3], laboratory experiments may play an important role in validating simple theoretical predictions and aiding in the interpretation of space measurements. Recent counter-propagating Alfvén wave experiments in the Large Plasma Device (LAPD) have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability [4]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. Strong damping observed after the pump Alfvén waves are turned off is under investigation; a novel ion acoustic wave launcher is under development to launch the mode directly for damping studies. New experiments also aim to identify decay instabilities from a single large-amplitude Alfvén wave. In conjunction with these experiments, gyrokinetic simulation efforts are underway to scope out the relevant parameter space. [1] W. Gekelman, et. al., Phys. Plasmas 18, 055501 (2011). [2] F

  4. Integrating mobile devices into nursing curricula: opportunities for implementation using Rogers' Diffusion of Innovation model.

    Science.gov (United States)

    Doyle, Glynda J; Garrett, Bernie; Currie, Leanne M

    2014-05-01

    To identify studies reporting mobile device integration into undergraduate and graduate nursing curricula. To explore the potential use of Rogers' Diffusion of Innovation model as a framework to guide implementation of mobile devices into nursing curricula. Literature review and thematic categorization. Literature published up until June 2013 was searched using EBSCO, PubMed, and Google Scholar. The literature was reviewed for research articles pertaining to mobile device use in nursing education. Research articles were grouped by study design, and articles were classified by: 1) strategies for individual adopters and 2) strategies for organizations. Rogers' Diffusion of Innovation theory was used to categorize reported implementation strategies. Fifty-two research studies were identified. Strategies for implementation were varied, and challenges to integrating mobile devices include lack of administrative support and time/funding to educate faculty as well as students. Overall, the use of mobile devices appears to provide benefits to nursing students; however the research evidence is limited. Anticipating challenges and ensuring a well laid out strategic plan can assist in supporting successful integration of mobile devices. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Analysis of the depth of field of integral imaging displays based on wave optics

    OpenAIRE

    Luo, Cheng-Gao; Xiao, Xiao; Martínez Corral, Manuel; Chen, Chih-Wei; Javidi, Bahram; Wang, Qiong-Hua

    2013-01-01

    In this paper, we analyze the depth of field (DOF) of integral imaging displays based on wave optics. With considering the diffraction effect, we analyze the intensity distribution of light with multiple microlenses and derive a DOF calculation formula for integral imaging display system. We study the variations of DOF values with different system parameters. Experimental results are provided to verify the accuracy of the theoretical analysis. The analyses and experimental results presented i...

  6. Device- and service profiles for integrated or systems based on open standards

    Directory of Open Access Journals (Sweden)

    Mildner Alexander

    2015-09-01

    Full Text Available Integrated OR systems nowadays are closed and proprietary, so that the interconnection of components from third-party vendors is only possible with high time and cost effort. An integrated operating theatre with open interfaces, giving clinical operators the opportunity to choose individual medical devices from different manufacturers, is currently being developed in the framework of the BMBF (Federal Ministry of Education and Research funded project OR.NET [1]. Actual standards and concepts regarding technical feasibility and accreditation process do not cope with the requirements for modular integration based on an open standard. Therefore, strategies as well as service and device profiles to enable a procedure for risk management and certifiability are in the focus of the project work. Amongst others, a concept for User Interface Profiles (UI-Profiles has been conceived in order to describe medical device functions and the entire user interface regarding Human-Machine-Interaction (HMI characteristics with the aim to identify human-induced risks of central user interfaces. The use of standardized device and service profiles shall allow the manufacturers to integrate their medical devices in the OR.NET network, without disclosing the medical devices’ risk analysis and related confidential knowledge or proprietary information.

  7. Performing derivative and integral operations for optical waves with optical metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Cun-Li [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China); Zhao, Zhi-Gang; Li, Xiao-Lin [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); Yang, Hong-Wei, E-mail: phd_hwyang@njau.edu.cn [College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China)

    2016-12-01

    The graded refractive index waveguides can perform Fourier transform for an optical wave. According to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in which all of the waveguides are materials with a positive refractive index. By selecting the appropriate refractive index and structure size, the theory and simulations demonstrated that these metamaterials can perform mathematical operations for the outline of incident optical waves, including the first-order derivative, second-order derivative and the integral. - Highlights: • The derivative and integral operations of optical waves are achieved with a simpler model. • Both negative and positive refractive index boast the same functions. • The mathematical operations can be implemented only by changing the refractive index of the intermediate material. • The results will greatly expand the possible applications, including photon computers, picture processing, video displays and data storage.

  8. Integrated CARS source based on seeded four-wave mixing in silicon nitride

    NARCIS (Netherlands)

    Epping, J.P.; Kues, M.; van der Slot, Petrus J.M.; Lee, Christopher James; Fallnich, C.; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of an integrated nonlinear light source for coherent anti-Stokes Raman scattering (CARS) based on silicon nitride waveguides. Wavelength tunable and temporally synchronized signal and idler pulses are obtained by using seeded four-wave mixing. We find that the

  9. Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applicability...

  10. mm-Wave Wireless Communications based on Silicon Photonics Integrated Circuits

    DEFF Research Database (Denmark)

    Rommel, Simon; Heck, Martijn; Vegas Olmos, Juan José

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical...

  11. Rogue waves, rational solutions, the patterns of their zeros and integral relations

    Energy Technology Data Exchange (ETDEWEB)

    Ankiewicz, Adrian; Akhmediev, Nail [Optical Sciences Group, Research School of Physics and Engineering, Institute of Advanced Studies, Australian National University, Canberra ACT 0200 (Australia); Clarkson, Peter A [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom)], E-mail: ana124@rsphysse.anu.edu.au, E-mail: P.A.Clarkson@kent.ac.uk, E-mail: nna124@rsphysse.anu.edu.au

    2010-03-26

    The focusing nonlinear Schroedinger equation, which describes generic nonlinear phenomena, including waves in the deep ocean and light pulses in optical fibres, supports a whole hierarchy of recently discovered rational solutions. We present recurrence relations for the hierarchy, the pattern of zeros for each solution and a set of integral relations which characterizes them. (fast track communication)

  12. Integration of a wind farm with a wave- and an aquaculture farm

    DEFF Research Database (Denmark)

    He, W.; Weissenberger, J.; Bergh, Ø.

    with other marine energy producers such as wave energy and other maritime users such as aquaculture farms may result in significant benefits in terms of economics, optimising spatial utilization, and minimising the environmental impact. In this research project, the integration benefits and disadvantages...

  13. Over-the-air Radiated Testing of Millimeter-Wave Beam-steerable Devices in a Cost-Effective Measurement Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Rumney, Moray

    2018-01-01

    With the severe spectrum congestion of sub-6GHz cellular systems, large-scale antenna systems in the millimeter-wave (mmWave) bands can potentially meet the high data rate envisioned for fifth generation (5G) communications. Performance evaluation of antenna systems is an essential step...... in the product design and development stage. However, conventional cable conducted test methods are not applicable for mmWave devices. There is a strong need for over-the-air (OTA) radiated methods, where mmWave device performance can be evaluated in a reliable, repeatable, and feasible way in laboratory...... conditions. In this article, radiated testing methods are reviewed, with a focus on their principle and applicability for beam steerable mmWave devices. To explore the spatial sparsity of mmWave channel profiles, a cost-effective simplified 3D sectored multi-probe anechoic chamber (MPAC) system with an OTA...

  14. ContactLess Integrated Photonic Probe for light monitoring in InP-based devices

    CERN Document Server

    Melati, Daniele; Grillanda, Stefano; Ferrari, Giorgio; Morichetti, Francesco; Sampietro, Marco; Melloni, Andrea

    2014-01-01

    The increasing complexity of photonic integrated circuits requires the possibility to monitor the state of the circuit in order to stabilize the working point against environmental fluctuations or to perform reliable reconfiguration procedures. Although InP technologies can naturally integrate high-quality photodiodes, their use as tap monitors necessarily affects the circuit response and is restricted to few units per chip. They are hence unsuited for very large circuits, where transparent power monitors become key components. In this paper we present the implementation of a ContactLess Integrated Photonic Probe (CLIPP) realizing a non invasive integrated light monitor on InP-based devices. We describe an innovative vertical scheme of the CLIPP monitor which exploits the back side of the chip as a common electrode, thus enabling a reduction of the device footprint and a simplification of the electrical connectivity. We characterize the response of the CLIPP and demonstrate its functionality as power monitor....

  15. Fully integrated miniature device for automated gene expression DNA microarray processing.

    Science.gov (United States)

    Liu, Robin Hui; Nguyen, Tai; Schwarzkopf, Kevin; Fuji, H Sho; Petrova, Alla; Siuda, Tony; Peyvan, Kia; Bizak, Michael; Danley, David; McShea, Andy

    2006-03-15

    A DNA microarray with 12,000 features was integrated with a microfluidic cartridge to automate the fluidic handling steps required to carry out a gene expression study of the human leukemia cell line (K562). The fully integrated microfluidic device consists of microfluidic pumps/mixers, fluid channels, reagent chambers, and a DNA microarray silicon chip. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated into the cartridge to provide pumping of liquid solutions. The device was completely self-contained: no external pressure sources, fluid storage, mechanical pumps, mixers, or valves were necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Fluidic experiments were performed to study the on-chip washing efficiency and uniformity. A single-color transcriptional analysis of K562 cells with a series of calibration controls (spiked-in controls) to characterize this new platform with regard to sensitivity, specificity, and dynamic range was performed. The device detected sample RNAs with a concentration as low as 0.375 pM. Experiment also showed that the performance of the integrated microfluidic device is comparable with the conventional hybridization chambers with manual operations, indicating that the on-chip fluidic handling (washing and reaction) is highly efficient and can be automated with no loss of performance. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps in genomic analysis.

  16. [The effect of low-intensity pulsed sound waves delivered by the Exogen device on Staphylococcus aureus morphology and genetics].

    Science.gov (United States)

    Ayan, Irfan; Aslan, Gönül; Cömelekoğlu, Ulkü; Yilmaz, Nejat; Colak, Mehmet

    2008-01-01

    We investigated the effect of low-intensity pulsed sound waves delivered by the Exogen device, which is recommended for the treatment of delayed union and nonunion in orthopedic surgery, on the colony number, antimicrobial susceptibility, bacterial morphology, and genetics of Staphylococcus aureus, which is a frequent pathogen in orthopedic infections. Thirty tubes containing 0.5 McFarland suspensions of S. aureus (ATCC 25923) were used. Fifteen tubes forming the test group were subjected to low-intensity sound waves by the Exogen device for 20 minutes. The remaining 15 tubes were untreated as controls. The two groups were then compared with respect to colony number, antibiotic susceptibility, and genotypic properties. The tubes were examined histologically by electron microscopy. The test tubes treated with sound waves showed a significantly lower number of bacteria colonies compared to the control tubes (psound waves may be beneficial as a prophylactic measure to prevent infections in primary orthopedic operations and as an adjuvant therapy for infected nonunions.

  17. Design of a non-linear power take-off simulator for model testing of rotating wave energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.F.P.; Henriques, J.C.C.; Lopes, Miguel C.; Gato, L.M.C. [IDMEC - Instituto de Engenharia Mecanica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Dente Antonio [CIE3 - Center for Innovation in Electrical and Energy Engineering, Lisboa (Portugal)

    2009-07-01

    Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in the model testing of wave energy converters at small scale. These are based on the principle that a conductive material moving perpendicularly to a magnetic field generates a braking force proportional to its velocity. This was applied in the design of the PTO simulator of a bottom-hinged flap wave energy converter model, at 1/16 scale. The efforts put into the accurate dynamic simulation of the device led to the development of a controllable PTO simulator, which can be applied to other small scale rotating wave energy device models. A special power source was built to provide the required controllable current intensity to feed the magnetic field generating coils. Different non-linear damping PTO characteristic curves can be simulated by basing the current control on real-time velocity measurement. The calibration of the system was done by connecting the device to a constant rotating speed motor and measuring the resistent torque produced by the PTO with a torquemeter for different values of current intensity through the coils.

  18. Diffraction of Elastic Waves in Fluid-Layered Solid Interfaces by an Integral Formulation

    Directory of Open Access Journals (Sweden)

    J. E. Basaldúa-Sánchez

    2013-01-01

    Full Text Available In the present communication, scattering of elastic waves in fluid-layered solid interfaces is studied. The indirect boundary element method is used to deal with this wave propagation phenomenon in 2D fluid-layered solid models. The source is represented by Hankel’s function of second kind and this is always applied in the fluid. Our method is an approximate boundary integral technique which is based upon an integral representation for scattered elastic waves using single-layer boundary sources. This approach is typically called indirect because the sources’ strengths are calculated as an intermediate step. In addition, this formulation is regarded as a realization of Huygens’ principle. The results are presented in frequency and time domains. Various aspects related to the different wave types that emerge from this kind of problems are emphasized. A near interface pulse generates changes in the pressure field and can be registered by receivers located in the fluid. In order to show the accuracy of our method, we validated the results with those obtained by the discrete wave number applied to a fluid-solid interface joining two half-spaces, one fluid and the other an elastic solid.

  19. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  20. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive orthogonal frequency coded (OFC) surface acoustic wave (SAW) based hydrogen sensors for NASA application...

  1. An integrated microfludic device for culturing and screening of Giardia lamblia.

    Science.gov (United States)

    Zheng, Guo-Xia; Zhang, Xue-Mei; Yang, Yu-Suo; Zeng, Shu-Rui; Wei, Jun-Feng; Wang, Yun-Hua; Li, Ya-Jie

    2014-02-01

    In vitro culturing of trophozoites was important for research of Giardia lamblia (G. lamblia), especially in discovery of anti-Giardia agents. The current culture methods mainly suffer from lab-intension or the obstacle in standardizing the gas condition. Thus, it could benefit from a more streamlined and integrated approach. Microfluidics offers a way to accomplish this goal. Here we presented an integrated microfluidic device for culturing and screening of G. lamblia. The device consisted of a polydimethylsiloxane (PDMS) microchip with an aerobic culture system. In the microchip, the functionality of integrated concentration gradient generator (CGG) with micro-scale cell culture enables dose-response experiment to be performed in a simple and reagent-saving way. The diffusion-based culture chambers allowed growing G. lamblia at the in vivo like environment. It notable that the highly air permeable material of parallel chambers maintain uniform anaerobic environment in different chambers easily. Using this device, G. lamblia were successfully cultured and stressed on-chip. In all cases, a dose-related inhibitory response was detected. The application of this device for these purposes represents the first step in developing a completely integrated microfluidic platform for high-throughput screening and might be expanded to other assays based on in vitro culture of G. lamblia with further tests. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    Science.gov (United States)

    Vawter, G Allen [Corrales, NM

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  3. 77 FR 67833 - Certain Radio Frequency Integrated Circuits and Devices Containing Same; Notice of Commission...

    Science.gov (United States)

    2012-11-14

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Radio Frequency Integrated Circuits and Devices Containing Same; Notice of Commission Determination Not To Review an Initial Determination Terminating the Investigation in its Entirety AGENCY: U.S...

  4. 77 FR 40381 - Certain Digital Televisions Containing Integrated Circuit Devices and Components Thereof, Notice...

    Science.gov (United States)

    2012-07-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Digital Televisions Containing Integrated Circuit Devices and Components Thereof, Notice... conditions in the U.S. economy or U.S. consumers. No petitions for review were received.The Commission has...

  5. A City Parking Integration System Combined with Cloud Computing Technologies and Smart Mobile Devices

    Science.gov (United States)

    Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun

    2016-01-01

    The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…

  6. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  7. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L-1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Integration of Wave and Offshore Wind Energy in a European Offshore Grid

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M.

    2010-01-01

    High wave and offshore wind energy potentials are located along the West and North coasts of Europe, respectively. In the near future, these resources should significantly contribute to the European electricity mix, but there is hardly any grid infrastructure available for large scale integration...... of offshore renewable energy sources. According to this, the paper covers i) public and private initiatives for offshore transmission networks, ii) the synergies between the wave and the offshore wind energy sector within an offshore grid, iii) power transmission options for offshore generation and iv...

  9. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  10. Integrable, oblique travelling waves in quasi-charge-neutral two-fluid plasmas

    Directory of Open Access Journals (Sweden)

    G. M. Webb

    2008-02-01

    Full Text Available A Hamiltonian description of oblique travelling waves in a two-fluid, charge-neutral, electron-proton plasma reveals that the transverse momentum equations for the electron and proton fluids are exactly integrable in cases where the total transverse momentum flux integrals, Py(d and Pz(d, are both zero in the de Hoffman Teller (dHT frame. In this frame, the transverse electric fields are zero, which simplifies the transverse momentum equations for the two fluids. The integrable travelling waves for the case Py(d=Pz(d=0, are investigated based on the Hamiltonian trajectories in phase space, and also on the longitudinal structure equation for the common longitudinal fluid velocity component ux of the electron and proton fluids. Numerical examples of a variety of travelling waves in a cold plasma, including oscillitons, are used to illustrate the physics. The transverse, electron and proton velocity components ujy and ujz (j=e, p of the waves exhibit complex, rosette type patterns over several periods for ux. The role of separatrices in the phase space, the rotational integral and the longitudinal structure equation on the different wave forms are discussed.

  11. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi [Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China); Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich [Institute of Sensor and Actuator Systems, Vienna University of Technology, Floragasse, 7/2/366-MST, A-1040 Vienna (Austria); Luo, J. K., E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk [Institute of Renewable Energy Environmental Technology, University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Department of Information Science and Electronic Engineering, Zhejiang University and Cyrus Tang Centre for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027 (China)

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  12. Integrated fountain effect pump device for fluid management at low gravity

    Science.gov (United States)

    Yuan, S. W. K.; Frank, D. J.

    1988-01-01

    A new device for fluid management at low gravity is described. The system is basically the same as the enclosed capillary device using screens, in which the screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping of He II; in this device, no downstream pump is needed. The plugs in contact with liquid He on both sides act as a fountain-effect pumps (FEPs), while plugs exposed to vapor on one side behave as vapor-liquid phase separators (VLPSs). The total net rate of He II transfer into the receiving tank equals the mass flow rate through the FEP plugs minus the liquid loss from the VLPS plugs. The results of the performance analysis of this integrated FEP device are presented together with its schematic diagram.

  13. Closed-loop model: An optimization of integrated thin-film magnetic devices

    Science.gov (United States)

    El-Ghazaly, Amal; Sato, Noriyuki; White, Robert M.; Wang, Shan X.

    2017-06-01

    A generic analytical model has been developed to fully describe the flux closure through magnetic inductors. The model was applied to multiple device topologies including solenoidal single return path and dual return path inductors as well as spiral magnetic inductors for a variety of permeabilities and dimensions. The calculated inductance values from the analytical model were compared with simulated results for each of the analyzed device topologies and found to agree within 0.1 nH for the range of typical thin-film magnetic permeabilities (∼102 to 103). Furthermore, the model can be used to evaluate behavior in other integrated or discrete magnetic devices with either non-isotropic or isotropic permeability and used to produce more efficient device designs in the future.

  14. Rapid detection of Hendra virus antibodies: an integrated device with nanoparticle assay and chaotic micromixing.

    Science.gov (United States)

    Petkovic, K; Metcalfe, G; Chen, H; Gao, Y; Best, M; Lester, D; Zhu, Y

    2016-12-20

    Current diagnosis of infectious diseases such as Hendra virus (HeV) relies mostly on laboratory-based tests. There is an urgent demand for rapid diagnosis technology to detect and identify these diseases in humans and animals so that disease spread can be controlled. In this study, an integrated lab-on-a-chip device using a magnetic nanoparticle immunoassay is developed. The key features of the device are the chaotic fluid mixing, achieved by magnetically driven motion of nanoparticles with the optimal mixing protocol developed using chaotic transport theory, and the automatic liquid handling system for loading reagents and samples. The device has been demonstrated to detect Hendra virus antibodies in dilute horse serum samples within a short time of 15 minutes and the limit of detection is about 0.48 ng ml -1 . The device platform can potentially be used for field detection of viruses and other biological and chemical substances.

  15. Integration of human factors and ergonomics during medical device design and development: it's all about communication.

    Science.gov (United States)

    Vincent, Christopher James; Li, Yunqiu; Blandford, Ann

    2014-05-01

    Manufacturers of interactive medical devices, such as infusion pumps, need to ensure that devices minimise the risk of unintended harm during use. However, development teams face challenges in incorporating Human Factors. The aim of the research reported here was to better understand the constraints under which medical device design and development take place. We report the results of a qualitative study based on 19 semi-structured interviews with professionals involved in the design, development and deployment of interactive medical devices. A thematic analysis was conducted. Multiple barriers to designing for safety and usability were identified. In particular, we identified barriers to communication both between the development organisation and the intended users and between different teams within the development organisation. We propose the use of mediating representations. Artefacts such as personas and scenarios, known to provide integration across multiple perspectives, are an essential component of designing for safety and usability. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    Science.gov (United States)

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  17. Integrating the results of user research into medical device development: insights from a case study

    Directory of Open Access Journals (Sweden)

    Martin Jennifer L

    2012-07-01

    Full Text Available Abstract Background It is well established that considering users is an important aspect of medical device development. However it is also well established that there are numerous barriers to successfully conducting user research and integrating the results into product development. It is not sufficient to simply conduct user research, it must also be effectively integrated into product development. Methods A case study of the development of a new medical imaging device was conducted to examine in detail how users were involved in a medical device development project. Two user research studies were conducted: a requirements elicitation interview study and an early prototype evaluation using contextual inquiry. A descriptive in situ approach was taken to investigate how these studies contributed to the product development process and how the results of this work influenced the development of the technology. Data was collected qualitatively through interviews with the development team, participant observation at development meetings and document analysis. The focus was on investigating the barriers that exist to prevent user data from being integrated into product development. Results A number of individual, organisational and system barriers were identified that functioned to prevent the results of the user research being fully integrated into development. The user and technological aspects of development were seen as separate work streams during development. The expectations of the developers were that user research would collect requirements for the appearance of the device, rather than challenge its fundamental concept. The manner that the user data was communicated to the development team was not effective in conveying the significance or breadth of the findings. Conclusion There are a range of informal and formal organisational processes that can affect the uptake of user data during medical device development. Adopting formal decision

  18. Low-Loss Flexible Dielectric Waveguide for Millimeter-Wave Transmission and Its Application to Devices.

    Science.gov (United States)

    1984-08-01

    New York, 1958. 11-3. S. Ratio, J.R. Whinnery, and T. Van Duzer , FIELDS AND WAVES IN II COHMUNICATION ELECTRONICS, Wiley, New York, 1966, pp. 432...October, 1974. 111-2. S. Ramo, J.R. Whinnery, and T. Van Duzer , FIELDS AND WAVES 11. COMMUNICATION ELECTRONICS, Wiley, New York, 1966, Chapter 7. 111-3. H.G

  19. Linearized potential flow analysis of a 40 chamber, oscillating water column wave energy device

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Read, Robert

    This abstract presents an analysis of an attenuator-type Wave Energy Converter (WEC) with 40 Os- cillating Water Column (OWC) chambers for the extraction of wave energy. Linearized potential flow calculations are made in the frequency-domain using WAMIT [8]. An equivalent linearized damping...

  20. Analysis of a novel device-level SINS/ACFSS deeply integrated navigation method

    Science.gov (United States)

    Zhang, Hao; Qin, Shiqiao; Wang, Xingshu; Jiang, Guangwen; Tan, Wenfeng; Wu, Wei

    2017-02-01

    The combination of the strap-down inertial navigation system(SINS) and the celestial navigation system(CNS) is one of the popular measures to constitute the integrated navigation system. A star sensor(SS) is used as a precise attitude determination device in CNS. To solve the problem that the star image obtained by SS is motion-blurred under dynamic conditions, the attitude-correlated frames(ACF) approach is presented and the star sensor which works based on ACF approach is named ACFSS. Depending on the ACF approach, a novel device-level SINS/ACFSS deeply integrated navigation method is proposed in this paper. Feedback to the ACF process from the error of the gyro is one of the typical characters of the SINS/CNS deeply integrated navigation method. Herein, simulation results have verified its validity and efficiency in improving the accuracy of gyro and it can be proved that this method is feasible.

  1. Design of a plasmonic-organic hybrid slot waveguide integrated with a bowtie-antenna for terahertz wave detection

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Pan, Zeyu; Chen, Chin-Ta; Chen, Ray T

    2016-01-01

    Electromagnetic (EM) wave detection over a large spectrum has recently attracted significant amount of attention. Traditional electronic EM wave sensors use large metallic probes which distort the field to be measured and also have strict limitations on the detectable RF bandwidth. To address these problems, integrated photonic EM wave sensors have been developed to provide high sensitivity and broad bandwidth. Previously we demonstrated a compact, broadband, and sensitive integrated photonic EM wave sensor, consisting of an organic electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW) modulator integrated with a gold bowtie antenna, to detect the X band of the electromagnetic spectrum. However, due to the relative large RC constant of the silicon PCW, such EM wave sensors can only work up to tens of GHz. In this work, we present a detailed design and discussion of a new generation of EM wave sensors based on EO polymer refilled plasmonic slot waveguides in conjunction with bowtie ...

  2. Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.

    Science.gov (United States)

    Kim, Gyungock; Park, Jeong Woo; Kim, In Gyoo; Kim, Sanghoon; Kim, Sanggi; Lee, Jong Moo; Park, Gun Sik; Joo, Jiho; Jang, Ki-Seok; Oh, Jin Hyuk; Kim, Sun Ae; Kim, Jong Hoon; Lee, Jun Young; Park, Jong Moon; Kim, Do-Won; Jeong, Deog-Kyoon; Hwang, Moon-Sang; Kim, Jeong-Kyoum; Park, Kyu-Sang; Chi, Han-Kyu; Kim, Hyun-Chang; Kim, Dong-Wook; Cho, Mu Hee

    2011-12-19

    We present high performance silicon photonic circuits (PICs) defined for off-chip or on-chip photonic interconnects, where PN depletion Mach-Zehnder modulators and evanescent-coupled waveguide Ge-on-Si photodetectors were monolithically integrated on an SOI wafer with CMOS-compatible process. The fabricated silicon PIC(off-chip) for off-chip optical interconnects showed operation up to 30 Gb/s. Under differential drive of low-voltage 1.2 V(pp), the integrated 1 mm-phase-shifter modulator in the PIC(off-chip) demonstrated an extinction ratio (ER) of 10.5dB for 12.5 Gb/s, an ER of 9.1dB for 20 Gb/s, and an ER of 7.2 dB for 30 Gb/s operation, without adoption of travelling-wave electrodes. The device showed the modulation efficiency of V(π)L(π) ~1.59 Vcm, and the phase-shifter loss of 3.2 dB/mm for maximum optical transmission. The Ge photodetector, which allows simpler integration process based on reduced pressure chemical vapor deposition exhibited operation over 30 Gb/s with a low dark current of 700 nA at -1V. The fabricated silicon PIC(intra-chip) for on-chip (intra-chip) photonic interconnects, where the monolithically integrated modulator and Ge photodetector were connected by a silicon waveguide on the same chip, showed on-chip data transmissions up to 20 Gb/s, indicating potential application in future silicon on-chip optical network. We also report the performance of the hybrid silicon electronic-photonic IC (EPIC), where a PIC(intra-chip) chip and 0.13μm CMOS interface IC chips were hybrid-integrated.

  3. Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging

    Science.gov (United States)

    Wright, Andrew A.; Martin, Richard D.; Schuetz, Christopher A.; Shi, Shouyuan; Zhang, Yifei; Yao, Peng; Shreve, Kevin P.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2016-05-01

    This paper will discuss the development of a millimeter-wave (mm-wave) receiver module used in a sparse array passive imaging system. Using liquid crystal polymer (LCP) technology and low power InP low noise amplifiers (LNA), enables the integration of the digital circuitry along with the RF components onto a single substrate significantly improves the size, weight, power, and cost (SWaP-C) of the mm-wave receiver module compared to previous iterations of the module. Also comparing with previous generation modules, the operating frequency has been pushed from 77 GHz to 95 GHz in order to improve the resolution of the captured image from the sparse array imaging system.

  4. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.

    Science.gov (United States)

    Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-01-01

    One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Integrating Six Sigma into a Quality Management System in the Medical Device Industry

    Directory of Open Access Journals (Sweden)

    Nadica Hrgarek

    2009-06-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Six Sigma is a valuable management strategy to improve business processes, reduce development and production costs, increase profit margin and improve customer satisfaction. The purpose of this paper is to describe how applicable Six Sigma concepts may complement and support formal quality management systems (QMS in the medical device industry.A significant number of issues, which increase the development costs and times, is often found during different phases of a medical device life cycle. Some defects with high patient safety risk may result in dangerous and very costly product recalls.The basic idea of this paper is to explore the possibilities of integrating Six Sigma techniques with an existing QMS throughout the entire life cycle of a medical device. This paper addresses how Six Sigma techniques, when appropriately integrated into the QMS at medical device companies, can eliminate defects earlier in the medical device life cycle, identify major opportunities for cost savings, focus on customer needs and expectations, and improve the overall business processes.

  6. A Printed Equilibrium Dialysis Device with Integrated Membranes for Improved Binding Affinity Measurements.

    Science.gov (United States)

    Pinger, Cody W; Heller, Andrew A; Spence, Dana M

    2017-07-18

    Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn2+ and human serum albumin (Kd = (5.62 ± 0.93) × 10-7 M) under physiological conditions that is statistically equal to the constants reported in the literature.

  7. A new method to solve non-homogeneous wave equations of electromagnetic fields by fourier’s triple integral transform

    Science.gov (United States)

    Hu, Wenjing

    2017-08-01

    This paper uses Fourier’s triple integral transform method to simplify the calculation of the non-homogeneous wave equations of the time-varying electromagnetic field. By adding several special definite conditions to the wave equation, it becomes a mathematical problem of definite condition. Then by using Fourier’s triple integral transform method, this three-dimension non-homogeneous partial differential wave equation is changed into an ordinary differential equation. Through the solution to this ordinary differential equation, the expression of the relationship between the time-varying scalar potential and electromagnetic wave excitation source is developed precisely. This method simplifies the solving process effectively.

  8. Broadband multiple-cascaded integration of electroabsorption modulators and high impedance transmission lines by lowering standing-wave effect.

    Science.gov (United States)

    Wu, Jui-Pin; Chen, Rui-Ren; Chiu, Yi-Jen

    2012-04-09

    Standing wave effect of applied electrical field on optical modulation in multiple-cascaded integration (CI) electroabsorption modulator (EAM) and high-impedance transmission line (HITL) has been investigated in this paper. As modulation frequency is increased to the scale that electrical wavelength is in the order of optical modulator length, multiple electrical reflection and self-interference on impedance-mismatch boundaries becomes significant, leading to strong position-dependent field distribution and degrading modulation bandwidth. Sharp bandwidth roll of electrical-optical (EO) conversion by standing wave has been found experimentally in CI structure, consistent with simulation results. By comparing different segment number and length of CI- structure, larger section number of design can overcome such problem to get more flatten bandwidth response. Such simple CI for 300μm long EAM has been demonstrated with flat EO response of -3dB drop 45GHz and -10dB microwave reflection (up to 65GHz) in 6-segement device, suggesting this scheme design is quite useful for efficient broad band modulation.

  9. The Integration of GPS Navigator Device with Vehicles Tracking System for Rental Cars Firms

    OpenAIRE

    Omarah O. Alharaki; Fahad S. Alaieri; Zeki, Akram M.

    2010-01-01

    The aim of this research is to integrate the GPS tracking system (tracking device and web-based application) with GPS navigator for rental cars, allowing the company to use various applications to monitor and manage the cars. This is enable the firms and customers to communicate with each other via the GPS navigator. The system should be developed by applying new features in GPS tracking application devices in vehicles. This paper also proposes new features that can be applied to the GPS Navi...

  10. Integrated Microfluidic Devices for Automated Microarray-Based Gene Expression and Genotyping Analysis

    Science.gov (United States)

    Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew

    Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed

  11. Fast integral equation algorithms for the solution of electromagnetic wave propagation over general terrains

    Directory of Open Access Journals (Sweden)

    Ibrahim K. Abu Seif

    2015-01-01

    Full Text Available In this paper a fast numerical algorithm to solve an integral equation model for wave propagation along a perfectly conducting two-dimensional terrain is suggested. It is applied to different actual terrain profiles and the results indicate very good agreement with published work. In addition, the proposed algorithm has achieved considerable saving in processing time. The formulation is extended to solve the propagation over lossy dielectric surfaces. A combined field integral equation (CFIE for wave propagation over dielectric terrain is solved efficiently by utilizing the method of moments with complex basis functions. The numerical results for different cases of dielectric surfaces are compared with the results of perfectly conducting surface evaluated by the IE conventional algorithm.

  12. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid...

  13. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  14. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  15. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid level...

  16. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    National Research Council Canada - National Science Library

    Yu, Hyeonju; Yoh, Jack J

    2016-01-01

    ...m, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR...

  17. Integration of a wave rotor to an ultra-micro gas turbine (UmuGT)

    Science.gov (United States)

    Iancu, Florin

    2005-12-01

    Wave rotor technology has shown a significant potential for performance improvement of thermodynamic cycles. The wave rotor is an unsteady flow machine that utilizes shock waves to transfer energy from a high energy fluid to a low energy fluid, increasing both the temperature and the pressure of the low energy fluid. Used initially as a high pressure stage for a gas turbine locomotive engine, the wave rotor was commercialized only as a supercharging device for internal combustion engines, but recently there is a stronger research effort on implementing wave rotors as topping units or pressure gain combustors for gas turbines. At the same time, Ultra Micro Gas Turbines (UmuGT) are expected to be a next generation of power source for applications from propulsion to power generation, from aerospace industry to electronic industry. Starting in 1995, with the MIT "Micro Gas Turbine" project, the mechanical engineering research world has explored more and more the idea of "Power MEMS". Microfabricated turbomachinery like turbines, compressors, pumps, but also electric generators, heat exchangers, internal combustion engines and rocket engines have been on the focus list of researchers for the past 10 years. The reason is simple: the output power is proportional to the mass flow rate of the working fluid through the engine, or the cross-sectional area while the mass or volume of the engine is proportional to the cube of the characteristic length, thus the power density tends to increase at small scales (Power/Mass=L -1). This is the so-called "cube square law". This work investigates the possibilities of incorporating a wave rotor to an UmuGT and discusses the advantages of wave rotor as topping units for gas turbines, especially at microscale. Based on documented wave rotor efficiencies at larger scale and subsidized by both, a gasdynamic model that includes wall friction, and a CFD model, the wave rotor compression efficiency at microfabrication scale could be estimated

  18. Setup of an experimental device for high-speed debris flows generating 2D impulse waves

    OpenAIRE

    Bateman Pinzón, Allen; Bregoli, Francesco; Medina Iglesias, Vicente César de; Rast, Manuel; Bentz, Clara

    2011-01-01

    Landslides and debris flows falling into reservoirs, natural lakes, fjords or seas can generate impulse waves, which can be assimilated to tsunami-water waves. Such wave’s behavior can be highly destructive regarding dams and other structures and infrastructures as well as people living along shorelines. Destructive observed past events, such Vajont Dam in Italy (1963) or Lituya Bay in Alaska (1958), are not enough to describe and finally properly prevent the phenomenon. Experimental studies ...

  19. Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applicability...... of such photonic-wireless hybrid links by reduction in complexity, size and – most importantly – cost....

  20. An Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients

    Science.gov (United States)

    Ming, Kevin

    Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.9 billion subscriptions globally, handheld mobile-cellular devices can be programmed to spatially map, temporally track, and transmit information on infections over wide geographical space and boundaries. Current cell phone diagnostic technologies have poor limit of detection, dynamic range, and cannot detect multiple pathogen targets simultaneously, limiting their utility to single infections with high load. Here we combined recent advances in quantum dot barcode technology for molecular detection with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We validated our device using a variety of synthetic genomic targets for the respiratory virus and blood-borne pathogens, and demonstrated that it could detect clinical samples after simple amplification. More importantly, we confirmed that the device is capable of detecting patients infected with a single or multiple infectious pathogens (e.g., HIV and hepatitis B) in a single test. This device advances the capacity for global surveillance of infectious diseases and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.

  1. Silicon-Based Technology for Integrated Waveguides and mm-Wave Systems

    DEFF Research Database (Denmark)

    Jovanovic, Vladimir; Gentile, Gennaro; Dekker, Ronald

    2015-01-01

    IC processing is used to develop technology for silicon-filled millimeter-wave-integrated waveguides. The front-end process defines critical waveguide sections and enables integration of dedicated components, such as RF capacitors and resistors. Wafer gluing is used to strengthen the mechanical...... insertion loss is only 0.12 dB/mm at 105 GHz. The optimized planar transition, the components of a beam-forming network, and a slotted waveguide antenna array are fabricated as further technology demonstrators. The broadside radiation of the antenna array has a beam steering of 63° using a frequency...

  2. Integrating a Traveling Wave Tube into an AECR-U ion source

    Energy Technology Data Exchange (ETDEWEB)

    Covo, Michel Kireeff; Benitez, Janilee Y.; Ratti, Alessandro; Vujic, Jasmina L.

    2011-07-01

    An RF system of 500W - 10.75 to 12.75 GHz was designed and integrated into the Advanced Electron Cyclotron Resonance - Upgrade (AECR-U) ion source of the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The AECR-U produces ion beams for the Cyclotron giving large flexibility of ion species and charge states. The broadband frequency of a Traveling Wave Tube (TWT) allows modifying the volume that couples and heats the plasma. The TWT system design and integration with the AECR-U ion source and results from commissioning are presented.

  3. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  4. Experimentally Based Model to Size the Geometry of a New OWC Device, with Reference to the Mediterranean Sea Wave Environment

    Directory of Open Access Journals (Sweden)

    Piero Ruol

    2013-09-01

    Full Text Available This note presents the Seabreath wave energy converter, basically a multi-chamber floating oscillating water column device, and the lumped model used to size its chambers, the ducts and the turbine. The model is based on extensive testing carried out in the wave flume of the University of Padova using fixed and floating models with a dummy power take off and indirect measurement of the produced power. A map with the available energy in the Mediterranean Sea is also proposed, showing possible ideal application sites. The Seabreath is finally dimensioned for a quarter scale test application in the Adriatic Sea, with a 3 kW turbine, and a capacity factor of 40%.

  5. Chitosan: an integrative biomaterial for lab-on-a-chip devices.

    Science.gov (United States)

    Koev, S T; Dykstra, P H; Luo, X; Rubloff, G W; Bentley, W E; Payne, G F; Ghodssi, R

    2010-11-21

    Chitosan is a naturally derived polymer with applications in a variety of industrial and biomedical fields. Recently, it has emerged as a promising material for biological functionalization of microelectromechanical systems (bioMEMS). Due to its unique chemical properties and film forming ability, chitosan serves as a matrix for the assembly of biomolecules, cells, nanoparticles, and other substances. The addition of these components to bioMEMS devices enables them to perform functions such as specific biorecognition, enzymatic catalysis, and controlled drug release. The chitosan film can be integrated in the device by several methods compatible with standard microfabrication technology, including solution casting, spin casting, electrodeposition, and nanoimprinting. This article surveys the usage of chitosan in bioMEMS to date. We discuss the common methods for fabrication, modification, and characterization of chitosan films, and we review a number of demonstrated chitosan-based microdevices. We also highlight the advantages of chitosan over some other functionalization materials for micro-scale devices.

  6. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  7. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.

    Science.gov (United States)

    Sterkenburgh, T; Michels, R M; Dress, P; Franke, H

    1997-02-20

    An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.

  8. [Evaluation of the dustiness of a bakery: an integrated system with an experimental electronic device].

    Science.gov (United States)

    Dario, R; Uva, J; Trani, G; Falco, S; Ancona, V; Petrera, L

    2012-01-01

    In this paper we describe a novel approach to environmental control in a bakery, based on an integration system of qualitative and quantitative information. The aim is to identify prevention policy for allergic disease. Specifically, the dust concentration evaluated continuously by deposimeters and the realization of chemical-analytical investigations on flours samples, used in the production cycle, have given qualitative evaluation on powders dispersion; the integration of an electronic device, characterized by measurement reliability and low cost implementation, supported the development and evaluation of an environmental monitoring system in a bakery. The environmental control system could be used in other work environments where occupational asthma occurred.

  9. Functionalization of embedded thiol-ene waveguides for evanescent wave induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Jensen, Thomas Glasdam; Lafleur, Josiane P.

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol−ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol−ene waveguide was selectively...... functionalized with biotin using photografting. The biotin was used for immobilization of fluorescently labelled streptavidin, and experiments revealed a linear correlation between streptavidin concentration and fluorescent intensity. To further demonstrate the attractiveness of using thiol−ene for optofluidic...... devices, the optical properties of thiol−ene was evaluated by determining the transparency and refractive index of the cured polymer....

  10. Functionalization of embedded thiol-ene waveguides for evanescent wave-induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans, Nikolaj A.; Jensen, Thomas Glasdam; Lafleur, Josiane P.

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol-ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol-ene waveguide was selectively...... functionalized with biotin using photografting. The biotin was used for immobilization of fluorescently labelled streptavidin, and experiments revealed a linear correlation between streptavidin concentration and fluorescent intensity. To further demonstrate the attractiveness of using thiol-ene for optofluidic...... devices, the optical properties of thiol-ene was evaluated by determining the transparency and refractive index of the cured polymer....

  11. An integrated and multi-purpose microscope for the characterization of atomically thin optoelectronic devices

    Science.gov (United States)

    De Sanctis, Adolfo; Jones, Gareth F.; Townsend, Nicola J.; Craciun, Monica F.; Russo, Saverio

    2017-05-01

    Optoelectronic devices based on graphene and other two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), are the focus of wide research interest. They can be the key to improving bandwidths in telecommunications, capacity in data storage, and new features in consumer electronics, safety devices, and medical equipment. The characterization of these emerging atomically thin materials and devices strongly relies on a set of measurements involving both optical and electronic instrumentation ranging from scanning photocurrent mapping to Raman and photoluminescence (PL) spectroscopy. Furthermore, proof-of-concept devices are usually fabricated from micro-meter size flakes, requiring microscopy techniques to characterize them. Current state-of-the-art commercial instruments offer the ability to characterize individual properties of these materials with no option for the in situ characterization of a wide enough range of complementary optical and electrical properties. Presently, the requirement to switch atomically thin materials from one system to another often radically affects the properties of these uniquely sensitive materials through atmospheric contamination. Here, we present an integrated, multi-purpose instrument dedicated to the optical and electrical characterization of devices based on 2D materials which is able to perform low frequency electrical measurements, scanning photocurrent mapping, and Raman, absorption, and PL spectroscopy in one single setup with full control over the polarization and wavelength of light. We characterize this apparatus by performing multiple measurements on graphene, transition metal dichalcogenides (TMDs), and Si. The performance and resolution of each individual measurement technique is found to be equivalent to that of commercially available instruments. Contrary to nowadays' commercial systems, a significant advantage of the developed instrument is that for the first time the integration of a wide

  12. Integration of the Density Gradient Model into a General Purpose Device Simulator

    Directory of Open Access Journals (Sweden)

    Andreas Wettstein

    2002-01-01

    Full Text Available A generalized Density Gradient model has been implemented into the device simulator Dessis [DESSIS 7.0 reference manual (2001. ISE Integrated Systems Engineering AG, Balgriststrasse 102, CH-8008 Zürich].We describe the multidimensional discretization scheme used and discuss our modifications to the standard Density Gradient model. The evaluation of the model shows good agreement to results obtained by the Schro¨dinger equation.

  13. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.

    Science.gov (United States)

    Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua

    2016-12-01

    State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  15. Integrated electrochemical DNA biosensors for lab-on-a-chip devices.

    Science.gov (United States)

    Mir, Mònica; Homs, Antoni; Samitier, Josep

    2009-10-01

    Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

  16. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    Science.gov (United States)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  17. Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device.

    Science.gov (United States)

    Ii, T; Kubo, S; Shimozuma, T; Kobayashi, S; Okada, K; Yoshimura, Y; Igami, H; Takahashi, H; Ito, S; Mizuno, Y; Okada, K; Makino, R; Kobayashi, K; Goto, Y; Mutoh, T

    2015-02-01

    The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φλ/8, Φλ/4) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

  18. Monolithically integrated Si gate-controlled light-emitting device: science and properties

    Science.gov (United States)

    Xu, Kaikai

    2018-02-01

    The motivation of this study is to develop a p–n junction based light emitting device, in which the light emission is conventionally realized using reverse current driving, by voltage driving. By introducing an additional terminal of insulated gate for voltage driving, a novel three-terminal Si light emitting device is described where both the light intensity and spatial light pattern of the device are controlled by the gate voltage. The proposed light emitting device employs injection-enhanced Si in avalanche mode where electric field confinement occurs in the corner of a reverse-biased p+n junction. It is found that, depending on the bias conditions, the light intensity is either a linear or a quadratic function of the applied gate voltage or the reverse-bias. Since the light emission is based on the avalanching mode, the Si light emitting device offers the potential for very large scale integration-compatible light emitters for inter- or intra-chip signal transmission and contactless functional testing of wafers.

  19. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Suk Won Jung

    2016-12-01

    Full Text Available This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1 mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.

  20. On exact solutions of the regularized long-wave equation: A direct approach to partially integrable equations. II. Periodic solutions

    Science.gov (United States)

    Parker, A.

    1995-07-01

    In this second of two articles (designated I and II), the bilinear transformation method is used to obtain stationary periodic solutions of the partially integrable regularized long-wave (RLW) equation. These solutions are expressed in terms of Riemann theta functions, and this approach leads to a new and compact expression for the important dispersion relation. The periodic solution (or cnoidal wave) can be represented as an infinite sum of sech2 ``solitary waves'': this remarkable property may be interpreted in the context of a nonlinear superposition principle. The RLW cnoidal wave approximates to a sinusoidal wave and a solitary wave in the limits of small and large amplitudes, respectively. Analytic approximations and error estimates are given which shed light on the character of the cnoidal wave in the different parameter regimes. Similar results are presented in brief for the related RLW Boussinesq (RLWB) equation.

  1. Cost-Efficient DWDM-PON / Mm-Wave Wireless Integration using Coherent Radio-over-Fiber (CRoF)

    DEFF Research Database (Denmark)

    Thakur, Manoj P.; Mikroulis, S.; Renaud, C. C.

    2015-01-01

    This work aims to investigate the performance of millimetre wave (mm-wave) broadband wireless access for seamless integration with the (ultra-dense) WDM infrastructure. By using two uncorrelated lasers, this system concept allows simple implementation that can additionally be improved, if thermal...

  2. Integrated Lateral Flow Device for Flow Control with Blood Separation and Biosensing

    Directory of Open Access Journals (Sweden)

    Veronica Betancur

    2017-12-01

    Full Text Available Lateral flow devices are versatile and serve a wide variety of purposes, including medical, agricultural, environmental, and military applications. Yet, the most promising opportunities of these devices for diagnosis might reside in point-of-care (POC applications. Disposable paper-based lateral flow strips have been of particular interest, because they utilize low-cost materials and do not require expensive fabrication instruments. However, there are constraints on tuning flow rates and immunoassays functionalization in papers, as well as technical challenges in sensors’ integration and concentration units for low-abundant molecular detection. In the present work, we demonstrated an integrated lateral flow device that applied the capillary forces with functionalized polymer-based microfluidics as a strategy to realize a portable, simplified, and self-powered lateral flow device (LFD. The polydimethylsiloxane (PDMS surface was rendered hydrophilic via functionalization with different concentrations of Pluronic F127. Controlled flow is a key variable for immunoassay-based applications for providing enough time for protein binding to antibodies. The flow rate of the integrated LFD was regulated by the combination of multiple factors, including Pluronic F127 functionalized surface properties and surface treatments of microchannels, resistance of the integrated flow resistor, the dimensions of the microstructures and the spacing between them in the capillary pump, the contact angles, and viscosity of the fluids. Various plasma flow rates were regulated and achieved in the whole device. The LFD combined the ability to separate high quality plasma from human whole blood by using a highly asymmetric plasma separation membrane, and created controlled and steady fluid flow using capillary forces produced by the interfacial tensions. Biomarker immunoglobulin G (IgG detection from plasma was demonstrated with a graphene nanoelectronic sensor integrated

  3. Diffraction of convergent spherical waves with all possible polarization states using the Luneburg integral method.

    Science.gov (United States)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2013-04-01

    We present a complete electromagnetic study, which includes electric, magnetic, and Poynting vector fields of diffracted convergent spherical waves under all possible polarization states compatible with Maxwell's equations. Exit pupil boundary conditions for these polarizations were obtained by means of Hertz potentials. Using these boundary conditions, two-dimensional Luneburg diffraction integrals for the three components of electric and magnetic fields were formulated, and after some approximations, we showed that the complete electromagnetic description of the inhomogeneous polarization states of spherical waves is reduced to the knowledge of seven one-dimensional integrals. The consistency of the method was tested by comparison with other previously reported methods for linearly polarized (LP), TE, and TM polarizations, while the versatility of the method was showed with the study of nonstandard polarization states, for example, that resulting from the superposition of TE and TM dephased spherical waves, which shows a helicoidal behavior of the Poynting vector at the focalization region, or the inhomogeneous LP state that exhibits a ring structure for the Poynting vector at the focal plane.

  4. The short-wave broadband communication device for transmission the analog narrowband signals

    Directory of Open Access Journals (Sweden)

    Andreyev O.V.

    2016-12-01

    Full Text Available The transmission of information via the radio channel always involves the selection of radio waves modulation and the frequency band occupied by the radio signal. For the narrowband analog signals, the transmission via the radio channels in areas with difficult terrain the short-wave range is widely used. The majority of radio stations use frequency modulation of the transmitter without any message encryption. This gives the opportunity to detect and intercept messages that are transmitted. The use of the voice scramblers allows to hide information that is transmitted via the communication channel, but it is impossible to hide the radiation of the transmitter. The article suggests the use of a broadband signal with a modulation which is not associated with the change of the frequency of the transmitter in accordance with information, which is transmitted. The calculations showed that the proposed communication system can operate in a common frequency band with existing narrowband means of the short-wave range not creating them the substantial interference. The calculated signal/noise ratio on the input of the radio signals monitoring receiver is almost two orders less than for existing narrowband means of the short-wave range.

  5. Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-01-01

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  6. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.

  7. Process automation system for integration and operation of Large Volume Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2016-11-15

    Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

  8. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  9. An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response

    KAUST Repository

    Ruzziconi, Laura

    2013-02-20

    In this study we deal with a microelectromechanical system (MEMS) and develop a dynamical integrity analysis to interpret and predict the experimental response. The device consists of a clamped-clamped polysilicon microbeam, which is electrostatically and electrodynamically actuated. It has non-negligible imperfections, which are a typical consequence of the microfabrication process. A single-mode reduced-order model is derived and extensive numerical simulations are performed in a neighborhood of the first symmetric natural frequency, via frequency response diagrams and behavior chart. The typical softening behavior is observed and the overall scenario is explored, when both the frequency and the electrodynamic voltage are varied. We show that simulations based on direct numerical integration of the equation of motion in time yield satisfactory agreement with the experimental data. Nevertheless, these theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because these theoretical curves represent the ideal limit case where disturbances are absent, which never occurs under realistic conditions. A reliable prediction of the actual (and not only theoretical) range of existence of each attractor is essential in applications. To overcome this discrepancy and extend the results to the practical case where disturbances exist, a dynamical integrity analysis is developed. After introducing dynamical integrity concepts, integrity profiles and integrity charts are drawn. They are able to describe if each attractor is robust enough to tolerate the disturbances. Moreover, they detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable, i.e. they provide valuable information to operate the device in safe conditions according to the desired outcome and depending on the expected disturbances

  10. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication.

    Science.gov (United States)

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  11. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    Science.gov (United States)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  12. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    Science.gov (United States)

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  13. PDR/INS/WiFi Integration Based on Handheld Devices for Indoor Pedestrian Navigation

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    2015-06-01

    Full Text Available Providing an accurate and practical navigation solution anywhere with portable devices, such as smartphones, is still a challenge, especially in environments where global navigation satellite systems (GNSS signals are not available or are degraded. This paper proposes a new algorithm that integrates inertial navigation system (INS and pedestrian dead reckoning (PDR to combine the advantages of both mechanizations for micro-electro-mechanical systems (MEMS sensors in pedestrian navigation applications. In this PDR/INS integration algorithm, a pseudo-velocity-vector, which is composed of the PDR-derived forward speed and zero lateral and vertical speeds from non-holonomic constraints (NHC, works as an update for the INS to limit the velocity errors. To further limit the drift of MEMS inertial sensors, trilateration-based WiFi positions with small variances are also selected as updates for the PDR/INS integrated system. The experiments illustrate that positioning error is decreased by 60%–75% by using the proposed PDR/INS integrated MEMS solution when compared with PDR. The positioning error is further decreased by 15%–55% if the proposed PDR/INS/WiFi integrated solution is implemented. The average accuracy of the proposed PDR/INS/WiFi integration algorithm achieves 4.5 m in indoor environments.

  14. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    Science.gov (United States)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  15. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  16. Development of an Integrated Countermeasure Device for Long Duration Space Flight and Exploration Missions

    Science.gov (United States)

    Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.

    2010-01-01

    Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can

  17. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    Science.gov (United States)

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.

  18. Wave-actuated power take-off device for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Chertok, Allan

    2013-01-31

    Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME's power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels e.g., 10 to 100kW?

  19. CFD based Investigation of Wave-Structure Interaction and Hydrodynamics of an Oscillating Water Column Device

    OpenAIRE

    Kamath, Arun

    2015-01-01

    The application of computational fluid dynamics (CFD) methods to various problems in the field of coastal and ocean engineering is gaining importance due to the level of detail and accuracy offered by these methods. With the advances made in the computing power over the last decade and anticipated future increase in computational power, large and complex problems can be handled using CFD modeling. The PhD study aims at the development of a CFD-based numerical wave tank, vali...

  20. Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device

    Science.gov (United States)

    Duperron, Matthieu; Carroll, Lee; Rensing, Marc; Collins, Sean; Zhao, Yan; Li, Yanlu; Baets, Roel; O'Brien, Peter

    2017-02-01

    The cost-effective integration of laser sources on Silicon Photonic Integrated Circuits (Si-PICs) is a key challenge to realizing the full potential of on-chip photonic solutions for telecommunication and medical applications. Hybrid integration can offer a route to high-yield solutions, using only known-good laser-chips, and simple freespace micro-optics to transport light from a discrete laser-diode to a grating-coupler on the Si-PIC. In this work, we describe a passively assembled micro-optical bench (MOB) for the hybrid integration of a 1550nm 20MHz linewidth laser-diode on a Si-PIC, developed for an on-chip interferometer based medical device. A dual-lens MOB design minimizes aberrations in the laser spot transported to the standard grating-coupler (15 μm x 12 μm) on the Si-PIC, and facilitates the inclusion of a sub-millimeter latched-garnet optical-isolator. The 20dB suppression from the isolator helps ensure the high-frequency stability of the laser-diode, while the high thermal conductivity of the AlN submount (300/W=m.°C), and the close integration of a micro-bead thermistor, ensure the stable and efficient thermo-electric cooling of the laser-diode, which helps minimise low-frequency drift during the approximately 15s of operation needed for the point-of-care measurement. The dual-lens MOB is compatible with cost-effective passively-aligned mass-production, and can be optimised for alternative PIC-based applications.

  1. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.

    Science.gov (United States)

    Wu, Min-Hsien; Cai, Haoyuan; Xu, Xia; Urban, Jill P G; Cui, Zhan-Feng; Cui, Zheng

    2005-12-01

    A microfluidic device with integrated optical fibres was developed for online monitoring of lactate. The device consists of a SU-8 waveguide, microfluidic channels and grooves for the insertion of optic fibres. It was fabricated by one-step photolithography of SU-8 polymer resist. Different channel widths (50-300 microm) were tested in terms of detection sensitivity. A wide range of flow rates were applied to investigate the influence of flow rate on signal fluctuations. The separation between optical fibre sensor and microfluidic channel and the width of fluidic channel have been optimized to maximize the detection sensitivity. It was revealed that 250 microm of channel width is the optimum light path length for a compromise between detection sensitivity and interference of ambient light. The independence of detection signals on flow rates was demonstrated within the range of flow rate (0.5-5 ml/hr) tested. Compared with conventional lactate detection, the device is proved to have high accuracy, relatively low limit of detection (50 mg/L) and reasonably fast response time (100 sec). The fabrication of device is simple and low cost. The present work has provided some fundamental data for further system optimization to meet specific detection requirements.

  2. High-throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps.

    Science.gov (United States)

    Patabadige, Damith E W; Mickleburgh, Tom; Ferris, Lorin; Brummer, Gage; Culbertson, Anne H; Culbertson, Christopher T

    2016-05-01

    The ability to accurately control fluid transport in microfluidic devices is key for developing high-throughput methods for single cell analysis. Making small, reproducible changes to flow rates, however, to optimize lysis and injection using pumps external to the microfluidic device are challenging and time-consuming. To improve the throughput and increase the number of cells analyzed, we have integrated previously reported micropumps into a microfluidic device that can increase the cell analysis rate to ∼1000 cells/h and operate for over an hour continuously. In order to increase the flow rates sufficiently to handle cells at a higher throughput, three sets of pumps were multiplexed. These pumps are simple, low-cost, durable, easy to fabricate, and biocompatible. They provide precise control of the flow rate up to 9.2 nL/s. These devices were used to automatically transport, lyse, and electrophoretically separate T-Lymphocyte cells loaded with Oregon green and 6-carboxyfluorescein. Peak overlap statistics predicted the number of fully resolved single-cell electropherograms seen. In addition, there was no change in the average fluorescent dye peak areas indicating that the cells remained intact and the dyes did not leak out of the cells over the 1 h analysis time. The cell lysate peak area distribution followed that expected of an asynchronous steady-state population of immortalized cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. III-V/Ge MOS device technologies for low power integrated systems

    Science.gov (United States)

    Takagi, S.; Noguchi, M.; Kim, M.; Kim, S.-H.; Chang, C.-Y.; Yokoyama, M.; Nishi, K.; Zhang, R.; Ke, M.; Takenaka, M.

    2016-11-01

    CMOS utilizing high mobility III-V/Ge channels on Si substrates is expected to be one of the promising devices for high performance and low power integrated systems in the future technology nodes, because of the enhanced carrier transport properties. In addition, Tunneling-FETs (TFETs) using Ge/III-V materials are regarded as one of the most important steep slope devices for the ultra-low power applications. In this paper, we address the device and process technologies of Ge/III-V MOSFETs and TFETs on the Si CMOS platform. The channel formation, source/drain (S/D) formation and gate stack engineering are introduced for satisfying the device requirements. The plasma post oxidation to form GeOx interfacial layers is a key gate stack technology for Ge CMOS. Also, direct wafer bonding of ultrathin body quantum well III-V-OI channels, combined with Tri-gate structures, realizes high performance III-V n-MOSFETs on Si. We also demonstrate planar-type InGaAs and Ge/strained SOI TFETs. The defect-less p+-n source junction formation with steep impurity profiles is a key for high performance TFET operation.

  4. Integration of augmented reality and assistive devices for post-stroke hand opening rehabilitation.

    Science.gov (United States)

    Luo, Xun; Kline, Tiffany; Fischer, Heidi; Stubblefield, Kathy; Kenyon, Robert; Kamper, Derek

    2005-01-01

    Impairment of hand function is prevalent among stroke survivors, motivating the search for effective rehabilitation therapy. Recent studies have suggested that for upper extremity functional recovery, repetitive training with virtual reality is helpful. Repetitive training can be facilitated with assistance from mechanical devices. Thus, we have developed a training environment that integrates augmented reality (AR) with assistive devices for post-stroke hand rehabilitation. The AR element of our environment utilizes head mounted display and virtual objects for reach-and-grasp task training. The assistive device consists of either a body-powered orthosis (BPO) or a pneumatic-powered device (PPD), both of which are incorporated into gloves. This environment can be easily set up and calibrated, is customizable for individual users, and requires active user participation. Additionally, it can be used with both real and virtual objects, as desired. We are currently conducting pilot case studies to assess ease of use and efficacy. At present, one stroke survivor from each of the three training conditions, AR-with-BPO, AR-with-PPD and AR-only (acting as the control), has completed the 6-week training paradigm. Preliminary findings suggest user acceptance of the technology and some potential for beneficial effects.

  5. Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics

    Science.gov (United States)

    Kaprou, G.; Papadakis, G.; Kokkoris, G.; Papadopoulos, V.; Kefala, I.; Papageorgiou, D.; Gizeli, E.; Tserepi, A.

    2015-06-01

    Microfluidics is an emerging technology enabling the development of Lab-on-a-chip (LOC) systems for clinical diagnostics, drug discovery and screening, food safety and environmental analysis. LOC systems integrate and scale down one or several laboratory functions on a single chip of a few mm2 to cm2 in size, and account for many advantages on biochemical analyses, such as low sample and reagent consumption, low cost, reduced analysis time, portability and point-of-need compatibility. Currently, available nucleic acid diagnostic tests take advantage of Polymerase Chain Reaction (PCR) that allows exponential amplification of portions of nucleic acid sequences that can be used as indicators for the identification of various diseases. Here, we present a comparison between static chamber and continuous flow miniaturized PCR devices, in terms of energy consumption for devices fabricated on the same material stack, with identical sample volume and channel dimensions. The comparison is implemented by a computational study coupling heat transfer in both solid and fluid, mass conservation of species, and joule heating. Based on the conclusions of this study, we develop low-cost and fast DNA amplification devices for both PCR and isothermal amplification, and we implement them in the detection of mutations related to breast cancer. The devices are fabricated by mass production amenable technologies on printed circuit board (PCB) substrates, where copper facilitates the incorporation of on-chip microheaters, defining the thermal zones necessary for PCR or isothermal amplification methods.

  6. Assessment of risks of EMI for personal medical electronic devices (PMEDs) from emissions of millimeter-wave security screening systems

    Science.gov (United States)

    Witters, Donald; Bassen, Howard; Guag, Joshua; Addissie, Bisrat; LaSorte, Nickolas; Rafai, Hazem

    2013-06-01

    This paper describes research and testing of a representative group of high priority body worn and implantable personal medical electronic devices (PMEDs) for exposure to millimeter wave (MMW) advanced imaging technology (AIT) security systems used at airports. The sample PMEDs included in this study were implantable cardiac pacemakers, ICDs, neurostimulators and insulin pumps. These PMEDs are designed and tested for susceptibility to electromagnetic interference (EMI) under the present standards for medical device electromagnetic compatibility (EMC). However, the present standards for medical equipment do not address exposure to the much higher frequency fields that are emitted by MMW security systems. Initial AIT emissions measurements were performed to assess the PMED and passenger exposures. Testing protocols were developed and testing methods were tailored to the type of PMED. In addition, a novel exposure simulation system was developed to allow controlled EMC testing without the need of the MMW AIT system. Methodology, test results, and analysis are presented, along with an assessment of the human exposure and risks for PMED users. The results on this study reveal no effects on the medical devices from the exposure to the MMW security system. Furthermore, the human exposure measurements and analysis showed levels well below applicable standard, and the risks for PMED users and others we assessed to be very low. These findings apply to the types of PMEDs used in the study though these findings might suggest that the risks for other, similar PMEDs would likely be similar.

  7. Mechanical integrity evaluation of low-k device with bump shear

    Science.gov (United States)

    Su, Peng; Zhao, Jie-Hua; Pozder, Scott; Wontor, David

    2006-05-01

    The mechanical integrity of low-k dielectric films has brought many process challenges in both front-end integration and back-end assembly, mostly due to possible interfacial delamination and fractures within the low-k films. From a packaging point of view, it is important to have an assessment of the integrity of the low-k stack before the device is fully assembled and the time-consuming full package evaluation is started. Some of the methods that are presently used to evaluate devices with low-k films either do not reflect the real stress situation in a package (such as 4-point bend), or introduce a mixed die-solder failure mode (such as die pull), which makes the results hard to interpret. In this paper, an evaluation method using solder bump shear is introduced. The solder joints are electroplated with a Cu stud as part of the under bump metallization. When the testing parameters are carefully optimized, bump shear can induce a failure in the low-k stack. By analyzing the maximum load of the shear test and the characteristics of the load curves, die with different interlayer dielectric materials and locations on the die with different interconnect metal densities can be effectively differentiated. A finite-element model is established and fracture mechanics methodologies are utilized to interpret the results of the bump shear.

  8. Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators

    Directory of Open Access Journals (Sweden)

    Han Du

    2016-04-01

    Full Text Available This article reviews mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators. With related reports mostly published within the last decade, this review focuses on the tuning mechanisms of various passive silicon photonic devices, including tunable waveguides, couplers, ring/disk resonators, and photonic crystal cavities, and their results are selectively elaborated upon and compared. Applications of the mechanisms are also discussed. Future development of mechanically-tunable photonics is considered and one possible approach is based on plasmonics, which can confine light energy in the nano-scale space. Optomechanics is another innovation, derived from the strong coupling of optical and mechanical degrees of freedom. State-of-the-art studies of mechanically-tunable plasmonics and on-chip optomechanics are also selectively reviewed.

  9. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    CERN Document Server

    He, Li; Li, Mo

    2016-01-01

    Photons carry linear momentum, and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, while angular momentum transfer induces optical torque. Optical forces including radiation pressure and gradient forces have long been utilized in optical tweezers and laser cooling. In nanophotonic devices optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect remain unexplored in integrated photonics. Here, we demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mecha...

  10. Electrochemical Motion Tracking of Microorganisms Using a Large-Scale-Integration-Based Amperometric Device.

    Science.gov (United States)

    Ino, Kosuke; Kanno, Yusuke; Inoue, Kumi Y; Suda, Atsushi; Kunikata, Ryota; Matsudaira, Masahki; Shiku, Hitoshi; Matsue, Tomokazu

    2017-06-06

    Motion tracking of microorganisms is useful to investigate the effects of chemical or physical stimulation on their biological functions. Herein, we describe a novel electrochemical imaging method for motion tracking of microorganisms using a large-scale integration (LSI)-based amperometric device. The device consists of 400 electrochemical sensors with a pitch of 250 μm. A convection flow caused by the motion of microorganisms supplies redox species to the sensors and increases their electrochemical responses. Thus, the flow is converted to electrochemical signals, enabling the electrochemical motion tracking of the microorganisms. As a proof of concept, capillary vibration was monitored. Finally, the method was applied to monitoring the motion of Daphnia magna. The motions of these microorganisms were clearly tracked based on the electrochemical oxidation of [Fe(CN)6 ](4-) and reduction of O2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An integrated device for coprecipitation and filtration of radiocesium in seawater.

    Science.gov (United States)

    He, Jianhua

    2016-12-01

    To improve the pretreatment efficiency of radiocesium in seawater, a prototype machine based on a new design of an integrated device for coprecipitation and filtration was developed and tested in the laboratory for its possibility and efficiency, the results show the that the efficiency of pretreatment of radiocesium can be improved more than one orders of magnitude compared to traditional methods. And the results from experiments on effect of settle time show that immediately filtration of solution after reaction will not affect the absorption of AMP to radiocesium in seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Glass/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs to ultrasensitive electrochemical determinations.

    Science.gov (United States)

    Moraes, Fernando Cruz; Lima, Renato Sousa; Segato, Thiago Pinotti; Cesarino, Ivana; Cetino, Jhanisus Leonel Melendez; Machado, Sergio Antonio Spinola; Gomez, Frank; Carrilho, Emanuel

    2012-05-08

    This communication reports a promising platform for rapid, simple, direct, and ultrasensitive determination of serotonin. The method is related to integration of vertically aligned single-walled carbon nanotubes (SWCNTs) in electrochemical microfluidic devices. The required microfabrication protocol is simple and fast. In addition, the nanomaterial influenced remarkably the obtained limit-of-detection (LOD) values. Our system achieved a LOD of 0.2 nmol L(-1) for serotonin, to the best of our knowledge one of the lowest values reported in the literature.

  13. Integrated Channel Selector for Directing Fluid Flow Using Thermoreversible Gelation Controlled by a Digital Mirror Device

    Directory of Open Access Journals (Sweden)

    Yoshitaka Shirasaki

    2013-01-01

    Full Text Available An integrated channel selector system employing thermoreversible gelation of a polymer was developed. Here, we show a system with 3×3 arrayed microchannels having nine crossing points. Infrared laser irradiation was used to form gel areas at several crossing points in arranging a flow path from the inlet to one of the nine outlets passing through certain junctions and channels. The multipoint irradiation by the infrared laser was realized using a personal-computer-controlled digital mirror device. The system was demonstrated to be able to direct flow to all nine outlets. Finally, we achieved to produce flexible paths for flowing particles including side trips.

  14. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Pablo [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040 (United States); Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Conicyt Regional/CIEP R10C1003, Universidad Austral de Chile, Ignacio Serrrano 509, Coyhaique (Chile); Lew, Adrian J., E-mail: lewa@stanford.edu [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040 (United States)

    2014-01-15

    This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green–Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three dimensions, and demonstrate its performance with numerical examples.

  15. Decoupling of Getting Up Detection Device Using Ultrasonic Radar by Changing Duty Ratio of Transmission Wave

    Science.gov (United States)

    Yamada, Yo; Tanaka, Kanya; Haruyama, Kazuo; Wakasa, Yuji; Akashi, Takuya

    The decline in the quality of patient's safety control is a problem, because the number of caretakers is reduced by the acceleration of demographic aging in an elder care facility. Especially, the detection of getting up from the bed is very important for preventing patients from falling and wandering unbreakable. In our previous study, we have developed the getting up detection device with an ultrasonic radar, which is safe, cheap, and break-proof. However, if there are many patients in a ward, it is difficult to use some ultrasonic radars. The reason is that if some ultrasonic radars, which have the same frequency, are used in same ward, the ultrasonic signals are coherent with each other. To solve this problem, we propose a novel incoherent method. This method is achieved by improving the software in the device at a low cost.

  16. Metamaterial CRLH Antennas on Silicon Substrate for Millimeter-Wave Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Gheorghe Ioan Sajin

    2012-01-01

    Full Text Available The paper presents two composite right/left-handed (CRLH coplanar waveguide (CPW zeroth-order resonant (ZOR antennas which were designed, processed, and electrically characterized for applications in the millimetric wave frequency range. Two CRLH antennas were developed for f=27 GHz and f=38.5, GHz, respectively. The CRLH antenna on f=27 GHz shows a return loss of RL<−18.78 dB at f=26.88 GHz. The −3 dB radiation characteristic beamwidth was approximately 37° and the gain was Gi=2.82 dBi. The CRLH antenna on f=38.5 GHz has a return loss of RL<−38.5 dB at f=38.82 GHz and the −3 dB radiation characteristic beamwidth of approximately 17°. The gains were Gi=1.08 dBi at f=38 GHz and Gi=1.2 dBi at f=38.6 GHz. The maximum measured gain was Gi=1.75 dBi at f=38.2 GHz. It is, upon the authors' knowledge, the first report of millimeter wave CRLH antennas on silicon substrate in CPW technique for use in mm-wave monolithic integrated circuit.

  17. Infrared two-wave mixing technique for characterization of graphene THz plasmonic devices

    Science.gov (United States)

    Drew, Dennis; Jadidi, Mohammad; Sushkov, Andrei; Cai, Xinghan; Suess, Ryan; Mittendorff, Martin; Murphy, Thomas; Fuhrer, Michael; Daniels, Kevin; Gaskill, Kurt

    We have studied the heterodyne mixing of two beams from infrared lasers on graphene plasmonic devices and detectors. The nonlinear thermal response of graphene allows us to measure a DC photovoltage that depends on the heterodyne difference frequency and gate voltage. The inversion symmetry of the graphene device is broken by using dissimilar metal contacts to allow a net photo-thermoelectric signal. The power, frequency, and temperature dependence of the photoresponse are used to probe the graphene hot-electron cooling rates and mechanisms. We will discuss the use of photothermal effects in graphene to excite surface plasmons at the difference frequency. The high mobility of the free carriers in graphene is important for this experiment. We have measured exfoliated graphene on SiO2/Si substrate detector and we are working on BN graphene and intercalated SiC graphene devices. This work was sponsored by the U.S. ONR (N000141310865) and the U.S. NSF (ECCS 1309750).

  18. Integrated photonic devices using self-assembled and optically defined photonic crystal superstructures

    Science.gov (United States)

    Wang, Ying

    Photonic crystals are structures with dielectric constants modulated in one, two, or three dimensions. They are an interesting subject of active research due to their ability to control the flow of light on a very small-length scale. In the research for this thesis, two integrated photonic devices were designed, fabricated and characterized which utilize the special optical properties of photonic crystals. The first device is a photonic crystal-photodiode micro-electro-optic filter, where a vertical self-assembly method was employed to grow a 3D face-centered cubic (FCC) photonic crystal over a working electro-optic device, a photodiode and a photodiode-plus-preamplifier made using conventional CMOS techniques. The objective of this project was to judge the practicality of the process and to observe the effect of the photonic crystal on the spectral response of the photodiode and photodiode-amplifier. Spectral measurements taken using a grating monochrometer confirmed that a stop band exists in the photocurrent response of this integrated photonic device, photonic crystal photodiode filter, at the predicted wavelength of 600 nm. These results were consistent with the simulation results made by using a 1D slab structure model. Although many groups have developed procedures to successfully grow self-assembled photonic crystals on substrates, we believe this is the first application of grown opals over functioning integrated electronics. This work explored the ability to include photonic functionality on the wafer with integrated electronic circuitry, and demonstrated a simple, practical and economic way to achieve it. The second device is a tunable planar waveguide with an optically defined 1D photonic crystal cladding layer. In this section a planar waveguide with a photosensitive cladding layer (mixture of PMMA co DR1 and side-chain nematic liquid crystal polymer) that is optically addressable and reversible is presented. The maximum of intensity decrease of the

  19. A functional integral approach to shock wave solutions of Euler equations with spherical symmetry

    Science.gov (United States)

    Yang, Tong

    1995-08-01

    For n×n systems of conservation laws in one dimension without source terms, the existence of global weak solutions was proved by Glimm [1]. Glimm constructed approximate solutions using a difference scheme by solving a class of Riemann problems. In this paper, we consider the Cauchy problem for the Euler equations in the spherically symmetric case when the initial data are small perturbations of the trivial solution, i.e., u≡0 and ρ≡ constant, where u is velocity and ρ is density. We show that this Cauchy problem can be reduced to an ideal nonlinear problem approximately. If we assume all the waves move at constant speeds in the ideal problem, by using Glimm's scheme and an integral approach to sum the contributions of the reflected waves that correspond to each path through the solution, we get uniform bounds on the L ∞ norm and total variational norm of the solutions for all time. The geometric effects of spherical symmetry leads to a non-integrable source term in the Euler equations. Correspondingly, we consider an infinite reflection problem and solve it by considering the cancellations between reflections of different orders in our ideal problem. Thus we view this as an analysis of the interaction effects at the quadratic level in a nonlinear model problem for the Euler equations. Although it is far more difficult to obtain estimates in the exact solutions of the Euler equations due to the problem of controlling the time at which the cancellations occur, we believe that this analysis of the wave behaviour will be the first step in solving the problem of existence of global weak solutions for the spherically symmetric Euler equations outside of fixed ball.

  20. Organic Optical Sensor Based on Monolithic Integration of Organic Electronic Devices

    Directory of Open Access Journals (Sweden)

    Hoi Lam Tam

    2015-09-01

    Full Text Available A novel organic optical sensor that integrates a front organic light-emitting diode (OLED and an organic photodiode (OPD is demonstrated. The stripe-shaped cathode is used in the OLED components to create light signals, while the space between the stripe-shaped cathodes serves as the detection window for integrated OPD units. A MoO3 (5 nm/Ag (15 nm bi-layer inter-electrode is interposed between the vertically stacked OLED and OPD units, serving simultaneously as the cathode for the front OLED and an anode for the upper OPD units in the sensor. In the integrated sensor, the emission of the OLED units is confined by the area of the opaque stripe-shaped cathodes, optimized to maximize the reflected light passing through the window space for detection by the OPD components. This can ensure high OLED emission output, increasing the signal/noise ratio. The design and fabrication flexibility of an integrated OLED/OPD device also has low cost benefits, and is light weight and ultra-thin, making it possible for application in wearable units, finger print identification, image sensors, smart light sources, and compact information systems.

  1. Immobilization Techniques and Integrated Signal Enhancement for POC Nanocolor Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Marlies Schlauf

    2015-01-01

    Full Text Available Resonance enhanced absorption (REA nanocolor microfluidic devices are new promising bioassay platforms, which employ nanoparticle- (NP- protein conjugates for the immunodetection of medically relevant markers in biologic samples such as blood, urine, and saliva. The core component of a REA test device is a PET chip coated with aluminum and SiO2 thin layers, onto which biorecognitive molecules are immobilized. Upon addition of a sample containing the analyte of interest, a NP-protein-analyte complex is formed in the test device that is captured on the REA chip, for example, via streptavidin-biotin interaction. Thereby, a colored symbol is generated, which allows optical readout. Silver enhancement of the bound nanoparticles may be used to increase the sensitivity of the assay. Herein, we demonstrate that adsorptive immobilization via a cationic polymeric interlayer is a competitive and fast technique for the binding of the capture protein streptavidin onto planar SiO2 surfaces such as REA biochips. Moreover, we report the development of a silver enhancement technology that operates even in the presence of high chloride concentrations as may be encountered in biologic samples. The silver enhancement reagents may be integrated into the microfluidic assay platform to be released upon sample addition. Hereby, a highly sensitive one-step assay can be realized.

  2. Electrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles

    Directory of Open Access Journals (Sweden)

    Muhammad Asraf Mansor

    2017-02-01

    Full Text Available In this study, we introduce novel method of flow cytometry for cell detection based on impedance measurements. The state of the art method for impedance flow cytometry detection utilizes an embedded electrode in the microfluidic to perform measurement of electrical impedance of the presence of cells at the sensing area. Nonetheless, this method requires an expensive and complicated electrode fabrication process. Furthermore, reuse of the fabricated electrode also requires an intensive and tedious cleaning process. Due to that, we present a microfluidic device with integrated microneedles. The two microneedles are placed at the half height of the microchannel for cell detection and electrical measurement. A commercially-available Tungsten needle was utilized for the microneedles. The microneedles are easily removed from the disposable PDMS (Polydimethylsiloxane microchannel and can be reused with a simple cleaning process, such as washing by ultrasonic cleaning. Although this device was low cost, it preserves the core functionality of the sensor, which is capable of detecting passing cells at the sensing area. Therefore, this device is suitable for low-cost medical and food safety screening and testing process in developing countries.

  3. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells

    KAUST Repository

    Perozziello, Gerardo

    2013-11-01

    In this work we developed a microfluidic device integrating nanoplasmonic devices combined with fluidic trapping regions. The microfuidic traps allow to capture single cells in areas where plasmonic sensors are placed. In this way it is possible to perform Enhanced Raman analysis on the cell membranes. Moreover, by changing direction of the flux it is possible to change the orientation of the cell in the trap, so that it is possible to analyze different points of the membrane of the same cell. We shows an innovative procedure to fabricate and assembly the microfluidic device which combine photolithography, focused ion beam machining, and hybrid bonding between a polymer substrate and lid of Calcium fluoride. This procedure is compatible with the fabrication of the plasmonic sensors in close proximity of the microfluidic traps. Moreover, the use of Calcium fluoride as lid allows full compatibility with Raman measurements producing negligible Raman background signal and avoids Raman artifacts. Finally, we performed Raman analysis on cells to monitor their oxidative stress under particular non physiological conditions. © 2013 Elsevier B.V. All rights reserved.

  4. Diagnostic precision of a microscope-integrated intraoperative OCT device in patients with epiretinal membranes.

    Science.gov (United States)

    Leisser, Christoph; Hirnschall, Nino; Hackl, Christoph; Döller, Birgit; Varsits, Ralph; Findl, Oliver

    2017-10-18

    Preoperative and postoperative optical coherence tomography (OCT) of macular pathologies can be regarded as the gold standard diagnostic technique, providing detailed information on the microstructures of the macula for planning the surgical procedure and comparing improvements after surgery in the follow-up period. Intraoperative use of OCT is a novel application to support surgeons during macular surgery. The aim of this study was to examine the diagnostic precision of a microscope-integrated intraoperative spectral-domain OCT (i-OCT) device and compare imaging results to a stand-alone spectral-domain OCT (SD-OCT) device. This prospective study included 41 eyes of 41 patients scheduled for pars plana vitrectomy with membrane peeling due to an idiopathic epiretinal membrane (ERM). Intraoperative imaging with the i-OCT device was performed at the beginning of the surgery and compared to preoperative SD-OCT images. Preoperative and intraoperative SD-OCT evaluations showed high intraobserver and interobserver reproducibility for the presence of ERM, lamellar macular hole, and vitreomacular traction. For intraretinal cystoid changes, intraobserver and interobserver reproducibility for both OCTs was rather poor, mainly due to microcystic changes. Intraoperative spectral-domain OCT offers high reproducibility regarding the visibility of ERM, lamellar macular holes, and vitreomacular traction. Microcystic changes cause discrepancies in interpretation, often simply diagnosed as retinal thickening.

  5. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide.

    Science.gov (United States)

    Ferrier, L; Romeo, P Rojo; Letartre, X; Drouard, E; Viktorovitch, P

    2010-07-19

    Two integrated devices based on the vertical coupling between a photonic crystal microcavity and a silicon (Si) ridge waveguide are presented in this paper. When the resonator is coupled to a single waveguide, light can be spectrally extracted from the waveguide to free space through the far field emission of the resonator. When the resonator is vertically coupled to two waveguides, a vertical add-drop filter can be realized. The dropping efficiency of these devices relies on a careful design of the resonator. In this paper, we use a Fabry-Perot (FP) microcavity composed of two photonic crystal (PhC) slab mirrors. Thanks to the unique dispersion properties of slow Bloch modes (SBM) at the flat extreme of the dispersion curve, it is possible to design a FP cavity exhibiting two quasi-degenerate modes. This specific configuration allows for a coupling efficiency that can theoretically achieve 100%. Using 3D FDTD calculations, we discuss the design of such devices and show that high dropping efficiency can be achieved between the Si waveguides and the PhC microcavity.

  6. Helping To Integrate The Visually Challenged Into Mainstream Society Through A Low-Cost Braille Device

    Directory of Open Access Journals (Sweden)

    Desirée Jordan

    2013-06-01

    Full Text Available The visually challenged are often alienated from mainstream society because of their disabilities. This problem is even more pronounced in developing countries which often do not have the resources necessary to integrate this people group into their communities or even help them to become independent. It should therefore be the aim of governments in developing countries to provide this vulnerable people group with access to assistive technologies at a low cost. This paper describes an ongoing project that aims to provide low-cost assistive technologies to the visually challenged in Barbados. As a part of this project a study was conducted on a sample of visually challenged members of the Barbados Association for the Blind and Deaf to determine their ICT skills, knowledge of Braille and their use of assistive technologies. An analysis of the results prompted the design and creation of a low-cost Braille device prototype. The cost of this prototype was about one-half that of a commercially available device and can be used without a screen reader. This device should help create equal opportunities for the visually challenged in Barbados and other developing countries. It should also allow the visually challenged to become more independent.

  7. OC ToGo: bed site image integration into OpenClinica with mobile devices

    Science.gov (United States)

    Haak, Daniel; Gehlen, Johan; Jonas, Stephan; Deserno, Thomas M.

    2014-03-01

    Imaging and image-based measurements nowadays play an essential role in controlled clinical trials, but electronic data capture (EDC) systems insufficiently support integration of captured images by mobile devices (e.g. smartphones and tablets). The web application OpenClinica has established as one of the world's leading EDC systems and is used to collect, manage and store data of clinical trials in electronic case report forms (eCRFs). In this paper, we present a mobile application for instantaneous integration of images into OpenClinica directly during examination on patient's bed site. The communication between the Android application and OpenClinica is based on the simple object access protocol (SOAP) and representational state transfer (REST) web services for metadata, and secure file transfer protocol (SFTP) for image transfer, respectively. OpenClinica's web services are used to query context information (e.g. existing studies, events and subjects) and to import data into the eCRF, as well as export of eCRF metadata and structural information. A stable image transfer is ensured and progress information (e.g. remaining time) visualized to the user. The workflow is demonstrated for a European multi-center registry, where patients with calciphylaxis disease are included. Our approach improves the EDC workflow, saves time, and reduces costs. Furthermore, data privacy is enhanced, since storage of private health data on the imaging devices becomes obsolete.

  8. Slow wave structures integrated with ferromagnetic and ferro-electric thin films for smart RF applications

    Science.gov (United States)

    Rahman, B. M. Farid

    Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter

  9. Usage of international standards for integrating extramural monitoring and personal health device data into medical information infrastructure.

    Science.gov (United States)

    Mense, A; Sauermann, S; Gerbovic, G; Frohner, M; Pohn, B; Bruckner, R; Urbauer, Ph; Eckkrammer, F; Wahl, H

    2010-01-01

    Integrating extramural measured devices data into medical information systems is becoming more and more attractive for integrated medical care. A lot of devices already have the ability to transfer measured data to mobile devices or computers and a few systems offer submitting data to a centralized information database or information system. Unfortunately, all of these devices use proprietary protocols and processes which makes integration into other systems a major problem. To address this problem the Healthy Interoperability project has been created with the objective of creating a framework for transferring health data based on international standards. The paper outlines how the framework architecture takes full advantage from the definitions of the international standards ISO 11073, HL7, IHE and CEN 13606. Even the definition of the user profiles and the security framework is based on standards from ETSI, ISO and CEN. By using these standards the framework can also perfectly be used for intramural communication.

  10. Integrated base stations and a method of transmitting data units in a communications system for mobile devices

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Narlikar, G.J.; Samuel, L.G.; Yagati, L.N.

    2006-01-01

    Integrated base stations and a method of transmitting data units in a communications system for mobile devices. In one embodiment, an integrated base station includes a communications processor having a protocol stack configured with a media access control layer and a physical layer.

  11. Microfluidics & nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers

    KAUST Repository

    Perozziello, Gerardo

    2014-01-01

    In this paper, we describe an innovative modular microfluidic platform allowing filtering, concentration and analysis of peptides from a complex mixture. The platform is composed of a microfluidic filtering device and a superhydrophobic surface integrating surface enhanced Raman scattering (SERS) sensors. The microfluidic device was used to filter specific peptides (MW 1553.73 D) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancers, from albumin (66.5 KD), the most represented protein in human plasma. The filtering process consisted of driving the complex mixture through a porous membrane having a cut-off of 12-14 kD by hydrodynamic flow. The filtered samples coming out of the microfluidic device were subsequently deposited on a superhydrophobic surface formed by micro pillars on top of which nanograins were fabricated. The nanograins coupled to a Raman spectroscopy instrument acted as a SERS sensor and allowed analysis of the filtered sample on top of the surface once it evaporated. By using the presented platform, we demonstrate being able to sort small peptides from bigger proteins and to detect them by using a label-free technique at a resolution down to 0.1 ng μL-1. The combination of microfluidics and nanotechnology to develop the presented microfluidic platform may give rise to a new generation of biosensors capable of detecting low concentration samples from complex mixtures without the need for any sample pretreatment or labelling. The developed devices could have future applications in the field of early diagnosis of severe illnesses, e.g. early cancer detection. This journal is

  12. Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, M., E-mail: m.spindler@ifw-dresden.de [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany); Herold, S.; Acker, J. [BTU Cottbus – Senftenberg, Faculty of Sciences, P.O. Box 101548, 01968 Senftenberg (Germany); Brachmann, E.; Oswald, S.; Menzel, S.; Rane, G. [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany)

    2016-08-01

    Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > 300 °C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10{sup −1} Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. - Highlights: • We fabricated Tungsten SAW Electrodes by magnetron sputtering technology. • An etching process removes sidewall covering of photoresist, which allows lift-off. • Tungsten etching rates based on a hydrogen peroxide solutions were determined.

  13. Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic backreflector.

    Science.gov (United States)

    Solano, Manuel E; Faryad, Muhammad; Lakhtakia, Akhlesh; Monk, Peter B

    2014-10-01

    Optimal design of photovoltaic devices with a periodically corrugated metallic backreflector requires a rapid and reliable way to simulate the optical characteristics for wide ranges of wavelengths and angles of incidence. Two independent numerical techniques are needed for confidence in numerical results. We compared the rigorous coupled-wave approach (RCWA) and the finite element method (FEM), the former being fast and flexible, but the latter having predictable convergence even for discontinuous constitutive properties. Depending on the shape of the corrugation and the constitutive properties of the metal and dielectric materials making up the device, both techniques can exhibit slow convergence rates for p-polarized light. The chosen model problem in this paper is of this type. As rapid spatial variations of the fields are the underlying cause, suitable selective refinement of the FEM mesh can overcome this slow convergence. Therefore, it would be desirable to have a self-adaptive scheme for choosing the mesh in the FEM. This will slow down the algorithm but give a reliable way to check the RCWA results.

  14. One-Step Fabrication of a Microfluidic Device with an Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing.

    Science.gov (United States)

    Li, Feng; Smejkal, Petr; Macdonald, Niall P; Guijt, Rosanne M; Breadmore, Michael C

    2017-04-18

    One of the largest impediments in the development of microfluidic-based smart sensing systems is the manufacturability of integrated, complex devices. Here we propose multimaterial 3D printing for the fabrication of such devices in a single step. A microfluidic device containing an integrated porous membrane and embedded liquid reagents was made by 3D printing and applied for the analysis of nitrate in soil. The manufacture of the integrated, sealed device was realized as a single print within 30 min. The body of the device was printed in transparent acrylonitrile butadiene styrene (ABS) and contained a 400 μm wide structure printed from a commercially available composite filament. The composite filament can be turned into a porous material through dissolution of a water-soluble material. Liquid reagents were integrated by briefly pausing the printing before resuming for sealing the device. The devices were evaluated by the determination of nitrate in a soil slurry containing zinc particles for the reduction of nitrate to nitrite using the Griess reagent. Using a consumer digital camera, the linear range of the detector response ranged from 0 to 60 ppm, covering the normal range of nitrate in soil. To ensure that the sealing of the reagent chamber is maintained, aqueous reagents should be avoided. When using the nonaqueous reagent, the multimaterial device containing the Griess reagent could be stored for over 4 days but increased the detection range to 100-500 ppm. Multimaterial 3D printing is a potentially new approach for the manufacture of microfluidic devices with multiple integrated functional components.

  15. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  16. Opto-Electromechanical Devices for Low-Noise Detection of Radio Waves

    DEFF Research Database (Denmark)

    Bagci, Tolga

    coated membrane and an LC circuit (at ≈ 0.7 MHz). We have characterized the electromechanical coupling by both optical and electrical means, along with the observation of mechanically induced transparency and normal mode splitting due to strong coupling. Finally, we have analyzed the noise performance......There is currently an increasing interest in developing hybrid devices that unite the desirable features of different systems. Opto-electromechanics has emerged as one of these promising hybrid fields, where the functionality of conventional electrical circuits can be combined with the salient...... factors. For example, a hybrid system like this, would enable the use of well-established shot-noise limited optical sensing technologies for detecting weak radio-frequency (rf) signals, rf-to-optical photon conversion and transmission of information in low-loss fiber-optic links over long distances...

  17. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.

    Science.gov (United States)

    Li, Honglang; He, Songbai; Hashimoto, Ken-ya; Omori, Tatsuya; Yamaguchi, Masatsune

    2006-12-22

    This paper describes a new approach of designing high Q surface acoustic wave (SAW) resonators as an inductive element in the matching network for W-CDMA power amplifiers (PAs). Spiral inductors based on CMOS/BiCMOS technologies presently possess relatively low Q (typically <10) and occupy a considerably large area. In order to break through the limitations of the spiral inductors, the authors attempt to apply higher Q and wideband SAW resonators employing Cu-grating/15 degrees YX-LiNbO(3)-substrate structure to the matching network for improved PA performance. An analysis was made on SAW resonators in detail, and an SAW resonator having a very small capacitance ratio of 3.28 and moderate Q of 147.8 was developed. After discussing the frequency dependence of the effective inductances, SAW resonators, which are used to be as inductive elements in the matching networks of PAs, were designed and fabricated. The PA including the matching circuit was simulated using the characteristics of the fabricated SAW resonators. The result showed that with better shape factor and good out-of-rejection, the SAW resonators definitely work as an inductive element and could replace widely used spiral inductors.

  18. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  19. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices.

    Science.gov (United States)

    Davanco, Marcelo; Liu, Jin; Sapienza, Luca; Zhang, Chen-Zhao; De Miranda Cardoso, José Vinícius; Verma, Varun; Mirin, Richard; Nam, Sae Woo; Liu, Liu; Srinivasan, Kartik

    2017-10-12

    Single-quantum emitters are an important resource for photonic quantum technologies, constituting building blocks for single-photon sources, stationary qubits, and deterministic quantum gates. Robust implementation of such functions is achieved through systems that provide both strong light-matter interactions and a low-loss interface between emitters and optical fields. Existing platforms providing such functionality at the single-node level present steep scalability challenges. Here, we develop a heterogeneous photonic integration platform that provides such capabilities in a scalable on-chip implementation, allowing direct integration of GaAs waveguides and cavities containing self-assembled InAs/GaAs quantum dots-a mature class of solid-state quantum emitter-with low-loss Si3N4 waveguides. We demonstrate a highly efficient optical interface between Si3N4 waveguides and single-quantum dots in GaAs geometries, with performance approaching that of devices optimized for each material individually. This includes quantum dot radiative rate enhancement in microcavities, and a path for reaching the non-perturbative strong-coupling regime.Effective use of single emitters in quantum photonics requires coherent emission, strong light-matter coupling, low losses and scalable fabrication. Here, Davanco et al. stride toward this goal by hybrid on-chip integration of Si3N4 waveguides and GaAs nanophotonic geometries with InAs quantum dots.

  20. Integration of Stable Droplet Formation on a CD Microfluidic Device for Extreme Point of Care Applications

    Science.gov (United States)

    Ganesh, Shruthi Vatsyayani

    With the advent of microfluidic technologies for molecular diagnostics, a lot of emphasis has been placed on developing diagnostic tools for resource poor regions in the form of Extreme Point of Care devices. To ensure commercial viability of such a device there is a need to develop an accurate sample to answer system, which is robust, portable, isolated yet highly sensitive and cost effective. This need has been a driving force for research involving integration of different microsystems like droplet microfluidics, Compact-disc (CD)microfluidics along with sample preparation and detection modules on a single platform. This work attempts to develop a proof of concept prototype of one such device using existing CD microfluidics tools to generate stable droplets used in point of care diagnostics (POC diagnostics). Apart from using a fairly newer technique for droplet generation and stabilization, the work aims to develop this method focused towards diagnostics for rural healthcare. The motivation for this work is first described with an emphasis on the current need for diagnostic testing in rural health-care and the general guidelines prescribed by WHO for such a sample to answer system. Furthermore, a background on CD and droplet microfluidics is presented to understand the merits and de-merits of each system and the need for integrating the two. This phase of the thesis also includes different methods employed/demonstrated to generate droplets on a spinning platform. An overview on the detection platforms is also presented to understand the challenges involved in building an extreme point of care device. In the third phase of the thesis, general manufacturing techniques and materials used to accomplish this work is presented. Lastly, design trials for droplet generation is presented. The shortcomings of these trials are solved by investigating mechanisms pertaining to design modification and use of agarose based droplet generation to ensure a more robust sample

  1. Study for Identification of Beneficial Uses of Space (BUS). Volume 2: Technical report. Book 4: Development and business analysis of space processed surface acoustic wave devices

    Science.gov (United States)

    1975-01-01

    Preliminary development plans, analysis of required R and D and production resources, the costs of such resources, and, finally, the potential profitability of a commercial space processing opportunity for the production of very high frequency surface acoustic wave devices are presented.

  2. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications

    Directory of Open Access Journals (Sweden)

    Chen S. Tsai

    2017-02-01

    Full Text Available An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  3. Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity.

    Science.gov (United States)

    Memon, Muhammad Usman; Lim, Sungjoon

    2016-10-31

    This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure.

  4. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Directory of Open Access Journals (Sweden)

    Randy L. Vander Wal

    2009-09-01

    Full Text Available A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC, controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems.

  5. Al transmon qubits on silicon-on-insulator for quantum device integration

    Science.gov (United States)

    Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar

    2017-07-01

    We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.

  6. Integrated optical devices for wavelength division multiplexing using PECVD and direct UV writing techniques

    DEFF Research Database (Denmark)

    Zauner, Dan; Leistiko, Otto

    1999-01-01

    channel waveguides are presented: a conventional method and direct UV writing. It is shown that an optimized three layer glass structure yields directly UV written waveguides with low insertion losses. Integrated optical structures have been designed and fabricated. The impact of process variations...... confirmed. The design and implementation of Bragg gratings are described. The fabrication and characterization of a 2x2 optical add-drop mulitplexer and a frequency to intensity conferter are presented. Trimming of optical components have been addressed. It was found, that thermal trimming offers a simple...... way of adjusting center frequencies opt optical filters to a grid. The draw-back is that the components need to be temperature stabilized. UV trimming have ben used to permanently change the refractive index in selected areas of a device. In this way, a novel way of trimmin arrayed waveguide gratings...

  7. Application and Integration of Quantum-Effect Devices for Cellular VLSI

    Science.gov (United States)

    Levy, Harold Joseph

    1995-01-01

    Cellular VLSI is that subclass of electronic systems for which small perturbations in a repeated cell design can dramatically influence the cost and performance of the entire system. This thesis presents examples of how the room-temperature quantum effects of tunneling and resonance may be used to condense the functionality of many conventional VLSI devices into a smaller and more efficient subunit, thus yielding tremendous benefits for the system as a whole. In particular, two and three-terminal applications of a complimentary pair of quantum-effect devices, the resonant-tunneling diode and the tunneling-switch diode, are presented. The first example is an image-segmentation network for machine vision, implemented by using resonant-tunneling diodes in one and two-dimensional networks to extract boundaries between regions of constant spatial texture. In this case a single quantum-effect device may replace up to thirty -three CMOS transistors per pixel. The second example is an artificial neural-network processor based on multistate resistors for synaptic conductances. These programmable resistors were produced by combining a vertically -integrated stack of resonant-tunneling diodes with a resistive load and a single MOSFET driven in its ohmic region. This macrostructure has the potential to provide synaptic changes on the picosecond time scale at length scales well below one micron. The third example is a current-mode transistorless memory array based on a two-dimensional network of cells containing only a single tunneling-switch diode and a resistive load. The resulting system has the potential for reaching more than an order-of-magnitude more cell density than state-of-the-art DRAM arrays, while operating at state -of-the-art SRAM speeds and reasonable power consumption.

  8. Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device

    Science.gov (United States)

    Sarusi, Gabby; Templeman, Tzvi; Hechster, Elad; Nissim, Nimrod; Vitenberg, Vladimir; Maman, Nitzan; Tal, Amir; Solodar, Assi; Makov, Guy; Abdulhalim, Ibrahim; Visoly-Fisher, Iris; Golan, Yuval

    2016-04-01

    A new concept of short wavelength infrared (SWIR) to visible upconversion integrated imaging device is proposed, modeled and some initial measured results are presented. The device is a hybrid inorganic-organic device that comprises six nano-metric scale sub-layers grown on n-type GaAs substrates. The first layer is a ~300nm thick PbSe nano-columnar absorber layer grown in (111) orientation to the substrate plan (100), with a diameter of 8- 10nm and therefore exhibit quantum confinement effects parallel to the substrate and bulk properties perpendicular to it. The advantage of this structure is the high oscillator strength and hence absorption to incoming SWIR photons while maintaining the high bulk mobility of photo-excited charges along the columns. The top of the PbSe absorber layer is coated with 20nm thick metal layer that serves as a dual sided mirror, as well as a potentially surface plasmon enhanced absorption in the PbSe nano-columns layer. The photo-excited charges (holes and electrons in opposite directions) are drifted under an external applied field to the OLED section (that is composed of a hole transport layer, an emission layer and an electron transport layer) where they recombine with injected electron from the transparent cathode and emit visible light through this cathode. Due to the high absorption and enhanced transport properties this architecture has the potential of high quantum efficiency, low cost and easy implementation in any optical system. As a bench-mark, alternative concept where InGaAs/InP heterojunction couple to liquid crystal optical spatial light modulator (OSLM) structure was built that shows a full upconversion to visible of 1550nm laser light.

  9. Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices

    Directory of Open Access Journals (Sweden)

    Sederberg Shawn

    2016-11-01

    Full Text Available As modern complementary-metal-oxide-semiconductor (CMOS circuitry rapidly approaches fundamental speed and bandwidth limitations, optical platforms have become promising candidates to circumvent these limits and facilitate massive increases in computational power. To compete with high density CMOS circuitry, optical technology within the plasmonic regime is desirable, because of the sub-diffraction limited confinement of electromagnetic energy, large optical bandwidth, and ultrafast processing capabilities. As such, nanoplasmonic waveguides act as nanoscale conduits for optical signals, thereby forming the backbone of such a platform. In recent years, significant research interest has developed to uncover the fundamental physics governing phenomena occurring within nanoplasmonic waveguides, and to implement unique optical devices. In doing so, a wide variety of material properties have been exploited. CMOS-compatible materials facilitate passive plasmonic routing devices for directing the confined radiation. Magnetic materials facilitate time-reversal symmetry breaking, aiding in the development of nonreciprocal isolators or modulators. Additionally, strong confinement and enhancement of electric fields within such waveguides require the use of materials with high nonlinear coefficients to achieve increased nonlinear optical phenomenon in a nanoscale footprint. Furthermore, this enhancement and confinement of the fields facilitate the study of strong-field effects within the solid-state environment of the waveguide. Here, we review current state-of-the-art physics and applications of nanoplasmonic waveguides pertaining to passive, magnetoplasmonic, nonlinear, and strong-field devices. Such components are essential elements in integrated optical circuitry, and each fulfill specific roles in truly developing a chip-scale plasmonic computing architecture.

  10. Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices

    Science.gov (United States)

    Sederberg, Shawn; Firby, Curtis J.; Greig, Shawn R.; Elezzabi, Abdulhakem Y.

    2017-01-01

    As modern complementary-metal-oxide-semiconductor (CMOS) circuitry rapidly approaches fundamental speed and bandwidth limitations, optical platforms have become promising candidates to circumvent these limits and facilitate massive increases in computational power. To compete with high density CMOS circuitry, optical technology within the plasmonic regime is desirable, because of the sub-diffraction limited confinement of electromagnetic energy, large optical bandwidth, and ultrafast processing capabilities. As such, nanoplasmonic waveguides act as nanoscale conduits for optical signals, thereby forming the backbone of such a platform. In recent years, significant research interest has developed to uncover the fundamental physics governing phenomena occurring within nanoplasmonic waveguides, and to implement unique optical devices. In doing so, a wide variety of material properties have been exploited. CMOS-compatible materials facilitate passive plasmonic routing devices for directing the confined radiation. Magnetic materials facilitate time-reversal symmetry breaking, aiding in the development of nonreciprocal isolators or modulators. Additionally, strong confinement and enhancement of electric fields within such waveguides require the use of materials with high nonlinear coefficients to achieve increased nonlinear optical phenomenon in a nanoscale footprint. Furthermore, this enhancement and confinement of the fields facilitate the study of strong-field effects within the solid-state environment of the waveguide. Here, we review current state-of-the-art physics and applications of nanoplasmonic waveguides pertaining to passive, magnetoplasmonic, nonlinear, and strong-field devices. Such components are essential elements in integrated optical circuitry, and each fulfill specific roles in truly developing a chip-scale plasmonic computing architecture.

  11. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    Science.gov (United States)

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  12. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    Science.gov (United States)

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-06-18

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  13. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    Directory of Open Access Journals (Sweden)

    David Díaz Pardo de Vera

    2014-06-01

    Full Text Available Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  14. The use of semiochemical slow-release devices in integrated pest management strategies

    Directory of Open Access Journals (Sweden)

    Heuskin, S.

    2011-01-01

    Full Text Available The development of integrated pest management (IPM strategies is increasing since many problems appeared with the use of synthetic pesticides. Semiochemicals – informative molecules used in insect-insect or plant-insect interaction – are more and more considered within IPM strategies as alternative or complementary approach to insecticide treatments. Indeed, these species-specific compounds do not present any related adversely affectation of beneficial organisms and do not generate any risk of pest insect resistance as observed with insecticides. Because of their complex biological activity, their dispersion in the environment to be protected or monitored needs the elaboration of slow-release devices ensuring a controlled release of the biologically active volatile compounds. These sensitive molecules also need to be protected from degradation by UV light and oxygen. Many studies were conducted on estimation of release-rate from commercialized or experimental slow-release devices. The influence of climatic parameters and dispenser type were estimated by previous authors in order to provide indications about the on-field longevity of lures. The present review outlines a list of slow-release studies conducted by many authors followed by a critical analysis of these studies.

  15. The development of differential inductors using double air-bridge structure based on integrated passive device technology

    Science.gov (United States)

    Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong

    2017-05-01

    Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.

  16. SPICE Level 3 and BSIM3v3.1 characterization of monolithic integrated CMOS-MEMS devices

    Science.gov (United States)

    Staple, Bevan D.; Watts, Herman A.; Dyck, Christopher W.; Griego, A. P.; Hewlett, F. W.; Smith, James H.

    1998-09-01

    Thy monolithic integration of MicroElectroMechanical Systems (MEMS) with the driving, controlling, and signal processing electronics promises to improve the performance of micromechanical devices as well as lower their manufacturing, packaging, and instrumentation costs. Key to this integration is the proper interleaving, combining, and customizing of the manufacturing processes to produce functional integrated micromechanical devices with electronics. We have developed a MEMS-first monolithic integrated process that first seals the micromechanical devices in a planarized trench and then builds the electronics in a conventional CMOS process. To date, most of the research published on this technology has focused on the performance characteristics of the mechanical portion of the devices, with little information on the attributes of the accompanying electronics. This work attempts to reduce this information void by presenting the results of SPICE Level 3 and BSIM3v3.1 model parameters extracted for the CMOS portion of the MEMS-first process. Transistor-level simulations of MOSFET current, capacitance, output resistance, and transconductance versus voltage using the extracted model parameters closely match the measured data. Moreover, in model validation efforts, circuit-level simulation values for the average gate propagation delay in a 101-stage ring oscillator are within 13 - 18% of the measured data. These results establish the following: (1) the MEMS-first approach produces functional CMOS devices integrated on a single chip with MEMS devices and (2) the devices manufactured in the approach have excellent transistor characteristics. Thus, the MEMS-first approach renders a solid technology foundation for customers designing in the technology.

  17. Vertically Aligned Nanostructured Arrays of Inorganic Materials: Synthesis, Distinctive Physical Phenomena, and Device Integration

    Science.gov (United States)

    Velazquez, Jesus Manuel

    The manifestation of novel physical phenomena upon scaling materials to finite size has inspired new device concepts that take advantage of the distinctive electrical, mechanical, and optical, properties of nanostructures. The development of fabrication approaches for the preparation of their 1D nanostructured form, such as nanowires and nanotubes, has contributed greatly to advancing fundamental understanding of these systems, and has spurred the integration of these materials in novel electronics, photonic devices, power sources, and energy scavenging constructs. Significant progress has been achieved over the last decade in the preparation of ordered arrays of carbon nanotubes, II---VI and III---V semiconductors, and some binary oxides such as ZnO. In contrast, relatively less attention has been focused on layered materials with potential for electrochemical energy storage. Here, we describe the catalyzed vapor transport growth of vertical arrays of orthorhombic V2O 5 nanowires. In addition, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to precisely probe the alignment, uniformity in crystal growth direction, and electronic structure of single-crystalline V2O5 nanowire arrays prepared by a cobalt-catalyzed vapor transport process. The dipole selection rules operational for core-level electron spectroscopy enable angle-dependant NEXAFS spectroscopy to be used as a sensitive probe of the anisotropy of these systems and provides detailed insight into bond orientation and the symmetry of the frontier orbital states. The experimental spectra are matched to previous theoretical predictions and allow experimental verification of features such as the origin of the split-off conduction band responsible for the n-type conductivity of V2O5 and the strongly anisotropic nature of vanadyl-oxygen-derived (V=O) states thought to be involved in catalysis. We have also invested substantial effort in obtaining shape and size control of metal oxide

  18. Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices.

    Science.gov (United States)

    Ciftlik, Ata Tuna; Gijs, Martin A M

    2012-01-21

    High pressure-rated channels allow microfluidic assays to be performed on a smaller footprint while keeping the throughput, thanks to the higher enabled flow rates, opening up perspectives for cost-effective integration of CMOS chips to microfluidic circuits. Accordingly, this study introduces an easy, low-cost and efficient method for realizing high pressure microfluidics-to-CMOS integration. First, we report a new low temperature (280 °C) Parylene-C wafer bonding technique, where O(2) plasma-treated Parylene-C bonds directly to Si(3)N(4) with an average bonding strength of 23 MPa. The technique works for silicon wafers with a nitride surface and uses a single layer of Parylene-C deposited only on one wafer, and allows microfluidic structures to be easily formed by directly bonding to the nitride passivation layer of the CMOS devices. Exploiting this technology, we demonstrated a microfluidic chip burst pressure as high as 16 MPa, while metal electrode structures on the silicon wafer remained functional after bonding.

  19. TiO2 nanowires for potential facile integration of solar cells and electrochromic devices

    Science.gov (United States)

    Qiang, Pengfei; Chen, Zhongwei; Yang, Peihua; Cai, Xiang; Tan, Shaozao; Liu, Pengyi; Mai, Wenjie

    2013-11-01

    Self-powered systems usually consist of energy-acquisition components, energy-storage components and functional components. The development of nanoscience and nanotechnology has greatly improved the performance of all the components of self-powered systems. However, huge differences in the materials and configurations in the components cause large difficulties for integration and miniaturization of self-powered systems. Design and fabrication of different components in a self-powered system with the same or similar materials/configurations should be able to make the above goal easier. In this work, a proof-of-concept experiment involving an integrated self-powered color-changing system consisting of TiO2 nanowire based sandwich dye-sensitized solar cells (DSSCs) and electrochromic devices (ECDs) is designed and demonstrated. When sunlight illuminates the entire system, the DSSCs generate electrical power and turn the ECD to a darker color, dimming the light; by switching the connection polarity of the DSSCs, the lighter color can be regained, implying the potential application of this self-powered color-changing system for next generation sun glasses and smart windows.

  20. TiO2 nanowires for potential facile integration of solar cells and electrochromic devices.

    Science.gov (United States)

    Qiang, Pengfei; Chen, Zhongwei; Yang, Peihua; Cai, Xiang; Tan, Shaozao; Liu, Pengyi; Mai, Wenjie

    2013-11-01

    Self-powered systems usually consist of energy-acquisition components, energy-storage components and functional components. The development of nanoscience and nanotechnology has greatly improved the performance of all the components of self-powered systems. However, huge differences in the materials and configurations in the components cause large difficulties for integration and miniaturization of self-powered systems. Design and fabrication of different components in a self-powered system with the same or similar materials/configurations should be able to make the above goal easier. In this work, a proof-of-concept experiment involving an integrated self-powered color-changing system consisting of TiO2 nanowire based sandwich dye-sensitized solar cells (DSSCs) and electrochromic devices (ECDs) is designed and demonstrated. When sunlight illuminates the entire system, the DSSCs generate electrical power and turn the ECD to a darker color, dimming the light; by switching the connection polarity of the DSSCs, the lighter color can be regained, implying the potential application of this self-powered color-changing system for next generation sun glasses and smart windows.

  1. Fast volumetric integral-equation solver for acoustic wave propagation through inhomogeneous media.

    Science.gov (United States)

    Bleszynski, E; Bleszynski, M; Jaroszewicz, T

    2008-07-01

    Elements are described of a volumetric integral-equation-based algorithm applicable to accurate large-scale simulations of scattering and propagation of sound waves through inhomogeneous media. The considered algorithm makes possible simulations involving realistic geometries characterized by highly subwavelength details, large density contrasts, and described in terms of several million unknowns. The algorithm achieves its competitive performance, characterized by O(N log N) solution complexity and O(N) memory requirements, where N is the number of unknowns, through a fast and nonlossy fast Fourier transform based matrix compression technique, the adaptive integral method, previously developed for solving large-scale electromagnetic problems. Because of its ability of handling large problems with complex geometries, the developed solver may constitute an efficient and high fidelity numerical simulation tool for calculating acoustic field distributions in anatomically realistic models, e.g., in investigating acoustic energy transfer to the inner ear via nonairborne pathways in the human head. Examples of calculations of acoustic field distribution in a human head, which require solving linear systems of equations involving several million unknowns, are presented.

  2. A Karaoke System with Real-Time Media Merging and Sharing Functions for a Cloud-Computing-Integrated Mobile Device

    Directory of Open Access Journals (Sweden)

    Her-Tyan Yeh

    2013-01-01

    Full Text Available Mobile devices such as personal digital assistants (PDAs, smartphones, and tablets have increased in popularity and are extremely efficient for work-related, social, and entertainment uses. Popular entertainment services have also attracted substantial attention. Thus, relevant industries have exerted considerable efforts in establishing a method by which mobile devices can be used to develop excellent and convenient entertainment services. Because cloud-computing technology is mature and possesses a strong computing processing capacity, integrating this technology into the entertainment service function in mobile devices can reduce the data load on a system and maintain mobile device performances. This study combines cloud computing with a mobile device to design a karaoke system that contains real-time media merging and sharing functions. This system enables users to download music videos (MVs from their mobile device and sing and record their singing by using the device. They can upload the recorded song to the cloud server where it is merged with real-time media. Subsequently, by employing a media streaming technology, users can store their personal MVs in their mobile device or computer and instantaneously share these videos with others on the Internet. Through this process, people can instantly watch shared videos, enjoy the leisure and entertainment effects of mobile devices, and satisfy their desire for singing.

  3. A new laryngeal mask supraglottic airway device with integrated balloon line: a descriptive and comparative bench study

    Directory of Open Access Journals (Sweden)

    Zhou YH

    2016-11-01

    Full Text Available YingHai Zhou,1 Korinne Jew2 1Research & Development, Patient Monitoring & Recovery, Medtronic Technology Center, Shanghai, People’s Republic of China; 2Medical Affairs, Minimally Invasive Therapies Group, Medtronic, Boulder, CO, USA Abstract: Laryngeal masks are invasive devices for airway management placed in the supraglottic position. The Shiley™ laryngeal mask (Shiley™ LM features an integrated inflation tube and airway shaft to facilitate product insertion and reduce the chance of tube occlusion when patients bite down. This study compared the Shiley LM to two other disposable laryngeal mask devices, the Ambu® AuraStraight™ and the LMA Unique™. Overall device design, tensile strength, flexibility of various structures, and sealing performance were measured. The Shiley LM is structurally stronger and its shaft is more resistant to compression than the other devices. The Shiley LM is generally less flexible than the other devices, but this relationship varies with device size. Sealing performance of the devices was similar in a bench assay. The results of this bench study demonstrate that the new Shiley LM resembles other commercially available laryngeal mask devices, though it exhibits greater tensile strength and lower flexibility. Keywords: laryngeal mask, supraglottic airway, supralaryngeal device

  4. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  5. The integration of the risk management process with the lifecycle of medical device software.

    Science.gov (United States)

    Pecoraro, F; Luzi, D

    2014-01-01

    The application of software in the Medical Device (MD) domain has become central to the improvement of diagnoses and treatments. The new European regulations that specifically address software as an important component of MD, require complex procedures to make software compliant with safety requirements, introducing thereby new challenges in the qualification and classification of MD software as well as in the performance of risk management activities. Under this perspective, the aim of this paper is to propose an integrated framework that combines the activities to be carried out by the manufacturer to develop safe software within the development lifecycle based on the regulatory requirements reported in US and European regulations as well as in the relevant standards and guidelines. A comparative analysis was carried out to identify the main issues related to the application of the current new regulations. In addition, standards and guidelines recently released to harmonise procedures for the validation of MD software have been used to define the risk management activities to be carried out by the manufacturer during the software development process. This paper highlights the main issues related to the qualification and classification of MD software, providing an analysis of the different regulations applied in Europe and the US. A model that integrates the risk management process within the software development lifecycle has been proposed too. It is based on regulatory requirements and considers software risk analysis as a central input to be managed by the manufacturer already at the initial stages of the software design, in order to prevent MD failures. Relevant changes in the process of MD development have been introduced with the recognition of software being an important component of MDs as stated in regulations and standards. This implies the performance of highly iterative processes that have to integrate the risk management in the framework of software

  6. High-Performance Radio Frequency Passive Devices on Plastic Substrates for Radio Frequency Integrated Circuit Application

    Science.gov (United States)

    Hung, Bing-Fang; Chen, Chia-Chung; Kao, Hsuan-Ling; Chin, Albert

    2007-04-01

    High-performance passive RF devices were fabricated on insulating plastic substrates. These passive devices included inductors, low-loss coplanar waveguide (CPW) and microstrip transmission lines, 30 GHz narrow-band filters, and 25 GHz CPW ring resonators. The characteristics of these devices agreed well with those of ideal devices, as predicted by electro-magnetic simulations.

  7. Application of a Reference Framework for Integration of Web Resources in Dotlrn--Case Study of Physics--Topic: Waves

    Science.gov (United States)

    Gomez, Fabinton Sotelo; Ordóñez, Armando

    2016-01-01

    Previously a framework for integrating web resources providing educational services in dotLRN was presented. The present paper describes the application of this framework in a rural school in Cauca--Colombia. The case study includes two web resources about the topic of waves (physics) which is oriented in secondary education. Web classes and…

  8. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Kuulkers, E.

    2017-01-01

    We report the INTernational Gamma-ray Astrophysics Laboratory (INTEGRAL) detection of the short gamma-ray burst GRB 170817A (discovered by Fermi-GBM) with a signal-to-noise ratio of 4.6, and, for the first time, its association with the gravitational waves (GWs) from binary neutron star (BNS...

  9. Modeling of bulk acoustic wave devices built on piezoelectric stack structures: impedance matrix analysis and network representation.

    Science.gov (United States)

    Zhang, Victor Y; Dubus, Bertrand; Lefebvre, Jean Etienne; Gryba, Tadeusz

    2008-03-01

    The fundamental electro-acoustic properties of a solid layer are deduced in terms of its impedance matrix (Z) and represented by a network for modeling the bulk acoustic wave devices built on piezoelectric stacked structures. A piezoelectric layer is described by a three-port equivalent network, a nonpiezoelectric layer, and a short- or open-circuit piezoelectric layer by a two-port one. Electrical input impedance of the resonator is derived in terms of the Z-matrix of both the piezoelectric layer and an external load, the unique expression applies whether the resonator is a mono- or electroded-layer or a solidly mounted resonator (SMR). The loading effects of Al-electrodes on the resonating frequencies of the piezoelectric ZnO-layer are analyzed. Transmission and reflection properties of Bragg mirrors are investigated along with the bulk radiation in SMR. As a synthesizing example, a coupled resonator filter (CRF) is analyzed using the associated two-port equivalent network and by calculating the power transmission to a 50Omega-load. The stacked crystal filter is naturally included in the model as a special case of CRF. Combining a comprehensive matrix analysis and an instructive network representation and setting the problem with a full vectorial formalism are peculiar features of the presented approach.

  10. Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection

    Directory of Open Access Journals (Sweden)

    D. Matatagui

    2014-01-01

    Full Text Available The goal of this work has been to study the polyvinylpyrrolidone (PVP fibers deposited by means of the electrospinning technique for using as sensitive layer in surface acoustic wave (SAW sensors to detect volatile organic compounds (VOCs. The electrospinning process of the fibers has been monitored and RF characterized in real time, and it has been shown that the diameters of the fibers depend mainly on two variables: the applied voltage and the distance between the needle and the collector, since all the electrospun fibers have been characterized by a scanning electron microscopy (SEM. Real-time measurement during the fiber coating process has shown that the depth of penetration of mechanical perturbation in the fiber layer has a limit. It has been demonstrated that once this saturation has been reached, the increase of the thickness of the fibers coating does not improve the sensitivity of the sensor. Finally, the parameters used to deposit the electrospun fibers of smaller diameters have been used to deposit fibers on a SAW device to obtain a sensor to measure different concentrations of toluene at room temperature. The present sensor exhibited excellent sensitivity, good linearity and repeatability, and high and fast response to toluene at room temperature.

  11. WC WAVE - Integrating Diverse Hydrological-Modeling Data and Services Into an Interoperable Geospatial Infrastructure

    Science.gov (United States)

    Hudspeth, W. B.; Baros, S.; Barrett, H.; Savickas, J.; Erickson, J.

    2015-12-01

    WC WAVE (Western Consortium for Watershed Analysis, Visualization and Exploration) is a collaborative research project between the states of Idaho, Nevada, and New Mexico that is funded under the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPSCoR). The goal of the project is to understand and document the effects of climate change on interactions between precipitation, vegetation growth, soil moisture and other landscape properties. These interactions are modeled within a framework we refer to as a virtual watershed (VW), a computer infrastructure that simulates watershed dynamics by linking scientific modeling, visualization, and data management components into a coherent whole. Developed and hosted at the Earth Data Analysis Center, University of New Mexico, the virtual watershed has a number of core functions which include: a) streamlined access to data required for model initialization and boundary conditions; b) the development of analytic scenarios through interactive visualization of available data and the storage of model configuration options; c) coupling of hydrological models through the rapid assimilation of model outputs into the data management system for access and use by sequent models. The WC-WAVE virtual watershed accomplishes these functions by provision of large-scale vector and raster data discovery, subsetting, and delivery via Open Geospatial Consortium (OGC) and REST web service standards. Central to the virtual watershed is the design and use of an innovative array of metadata elements that permits the stepwise coupling of diverse hydrological models (e.g. ISNOBAL, PRMS, CASiMiR) and input data to rapidly assess variation in outcomes under different climatic conditions. We present details on the architecture and functionality of the virtual watershed, results from three western U.S. watersheds, and discuss the realized benefits to watershed science of employing this integrated solution.

  12. Wave propagation speeds and source term influences in single and integral porosity shallow water equations

    Directory of Open Access Journals (Sweden)

    Ilhan Özgen

    2017-10-01

    Full Text Available In urban flood modeling, so-called porosity shallow water equations (PSWEs, which conceptually account for unresolved structures, e.g., buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model (SP model, which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model (AP model. The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.

  13. A broader view on ion heating in traveling-wave devices using fragmentation of CsI clusters and extent of H˙ migration as molecular thermometers.

    Science.gov (United States)

    Lermyte, Frederik; Sobott, Frank

    2017-09-08

    Electron transfer dissociation (ETD) is becoming increasingly important in mass spectrometry-based analysis of peptides and proteins. Supplemental collisional activation of undissociated electron transfer products can significantly increase fragmentation yield and sequence coverage, but hydrogen rearrangements - specifically, transfer of a hydrogen radical from a c to a z fragment - lead to distorted isotope distributions and increased potential for signal overlap. Concomitant collisional activation during the ion/ion reaction significantly reduces these rearrangements, but, in ion traps, also leads to lower reaction rates and reduced overlap of anion and cation clouds. In traveling-wave ion mobility devices, it has been reported - although not under ETD conditions - that significant ion activation can occur depending on the T-wave height and velocity. Here, we investigate this phenomenon in more detail using a commercial instrument (Waters Synapt G2) and report that a similar effect can be induced within the traveling-wave Trap cell where the ETD reaction occurs, using fairly typical T-wave settings. This ion 'heating' is demonstrated by analyzing the observed isotope distributions (sensitive to the aforementioned hydrogen rearrangements) of ETD fragments of ubiquitin and substance P. A more detailed investigation of ion activation using cesium iodide clusters (without ETD reagent anions present) shows that the observed behavior is consistent with the known dynamics of ions within traveling-wave devices. The insights gained in this work are potentially relevant both for 'native ETD' studies (in which tuning needs to be optimized to avoid unintentional ion activation) as well as the design of future T-wave ETD devices (where this 'heating' effect might be exploited to promote fragment release).

  14. Digital Cell Counting Device Integrated with a Single-Cell Array

    Science.gov (United States)

    Saeki, Tatsuya; Hosokawa, Masahito; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2014-01-01

    In this paper, we present a novel cell counting method accomplished using a single-cell array fabricated on an image sensor, complementary metal oxide semiconductor sensor. The single-cell array was constructed using a microcavity array, which can trap up to 7,500 single cells on microcavities periodically arranged on a plane metallic substrate via the application of a negative pressure. The proposed method for cell counting is based on shadow imaging, which uses a light diffraction pattern generated by the microcavity array and trapped cells. Under illumination, the cell-occupied microcavities are visualized as shadow patterns in an image recorded by the complementary metal oxide semiconductor sensor due to light attenuation. The cell count is determined by enumerating the uniform shadow patterns created from one-on-one relationships with single cells trapped on the microcavities in digital format. In the experiment, all cell counting processes including entrapment of non-labeled HeLa cells from suspensions on the array and image acquisition of a wide-field-of-view of 30 mm2 in 1/60 seconds were implemented in a single integrated device. As a result, the results from the digital cell counting had a linear relationship with those obtained from microscopic observation (r2 = 0.99). This platform could be used at extremely low cell concentrations, i.e., 25–15,000 cells/mL. Our proposed system provides a simple and rapid miniaturized cell counting device for routine laboratory use. PMID:24551208

  15. Lateral integration of vertical-cavity surface-emitting laser and slow light Bragg reflector waveguide devices.

    Science.gov (United States)

    Shimada, Toshikazu; Matsutani, Akihiro; Koyama, Fumio

    2014-03-20

    We present the modeling and the experiment on the lateral integration of a vertical-cavity surface-emitting laser (VCSEL) and slow light Bragg reflector waveguide devices. The modeling shows an efficient direct-lateral coupling from a VCSEL to an integrated slow light waveguide. The calculated result shows a possibility of 13 dB chip gain and an extinction ratio over 5 dB for a compact slow light semiconductor optical amplifier (SOA) and electroabsorption modulator integrated with a VCSEL, respectively. We demonstrate an SOA-integrated VCSEL, exhibiting the maximum output power over 6 mW. Also, we fabricate a sub-50-μm long electroabsorption modulator laterally integrated with a VCSEL. An extinction ratio of over 15 dB for a voltage swing of 2.0 V is obtained without noticeable change of threshold. In addition, we demonstrate an on-chip electrothermal beam deflector integrated with a VCSEL.

  16. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  17. Nanofabrication Technology for Production of Quantum Nano-Electronic Devices Integrating Niobium Electrodes and Optically Transparent Gates

    Science.gov (United States)

    2018-01-01

    TECHNICAL REPORT 3086 January 2018 Nanofabrication Technology for Production of Quantum Nano-electronic Devices Integrating Niobium Electrodes...work described in this report was performed for the by the Advanced Concepts and Applied Research Branch (Code 71730) and the Science and Technology ...Applied Sciences Division iii EXECUTIVE SUMMARY This technical report demonstrates nanofabrication technology for Niobium heterostructures and

  18. Optimization of Low-Loss AL2O3 Waveguide Fabrication for Application in Active Integrated Optical Devices

    NARCIS (Netherlands)

    Ay, F.; Pollnau, Markus; Masscher, P.; Worhoff, Kerstin; Misra, D

    2006-01-01

    In this paper we will present the fabrication and properties of reactively co-sputtered $AL_{2}O_{3}$ layers, being a very promising host material for active integrated optics applications such as rare-earth ion doped laser devices. The process optimization towards a reactive co-sputtering process,

  19. A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness.

    Science.gov (United States)

    Nunez, Paul L; Srinivasan, Ramesh

    2006-11-01

    We propose a theoretical framework for EEG and evoked potential studies based on the single postulate that these data are composed of a combination of waves (as this term is used in the physical sciences) and thalamocortical network activity. Using known properties of traveling and standing waves, independent of any neocortical dynamic theory, our simple postulate leads to experimental predictions, several of which have now been verified. A mathematical-physiological theory of "brain waves" based on known (but highly idealized) properties of cortical synaptic action and corticocortical fibers is used to support the framework. Brain waves are predicted with links between temporal frequencies and the spatial distributions of synaptic activity. Such dispersion relations, which essentially define more general phenomena as waves, are shown to restrict the spatial-temporal dynamics of synaptic action with many experimental EEG consequences. The proposed framework accounts for several salient features of spontaneous EEG and evoked potentials. We conjecture that wave-like behavior of synaptic action may facilitate interactions between remote cell assemblies, providing an important mechanism for the functional integration underlying conscious experience.

  20. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  1. A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO{sub 3} structures

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.-C. [Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan (China); Chu, S.-Y. [Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan (China)]. E-mail: chusy@mail.ncku.edu.tw; Hong, C.-S. [Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan (China); Department of Electrical Engineering, Chienkuo Technology University, Changhua, 500 Taiwan (China); Chuang, Y.-T. [Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan (China)

    2006-03-01

    Love wave devices are very promising for sensing applications because of high sensitivity. In this paper, ZnO thin films doped with lithium (Li) and magnesium (Mg) were deposited on the 42{sup o}45' ST-cut quartz and 36{sup o} YX-LiTaO{sub 3} substrates by RF magnetron sputtering technique. XRD, SEM, and AFM measurements investigated characteristics of the films. Under different conditions such as doping content, layer thickness, and substrate temperature, the phase velocity, temperature coefficient of frequency, electromechanical coupling coefficient and sensitivity of Love wave devices in ZnO/Quartz and ZnO/LiTaO{sub 3} structures are presented. The maximum sensitivities of ZnO/Quartz and ZnO/LiTaO{sub 3} are much higher than the SiO{sub 2}/Quartz and SiO{sub 2}/LiTaO{sub 3} structures reported.

  2. Graphene and permalloy integration in functional fluidic and solid-state devices

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus

    2016-01-01

    The aim of the work of this thesis is to develop novel technologies for functional micro- and nanofluidic devices, as well as exploring the functionality of first examples of such devices. The research thereby is mainly centered round graphene,and involved its synthesis, device fabrication, raman

  3. Integrated and miniaturized endoscopic devices for use during high power infrared fiber laser surgery

    Science.gov (United States)

    Wilson, Christopher Ryan

    rates comparable to those of the 100-mum-core traditional fiber used in TFL lithotripsy while providing an additional safety feature for initial fiber insertion through the ureteroscope working channel. Working channel flow rates were explored in regards to diameter and geometry. Illumination sources and configurations were explored in regards to optimized wavelength selection as well as physical geometry of the ureteroscope tip. Ureteroscope designs were devised, modeled, fabricated, and tested, implementing a reduced working channel, and optimized illumination geometry, culminating in an integrated, miniaturized ureteroscope for use in TFL lithotripsy. This final device, coupled with the proven TFL and optimized laser parameters may establish the TFL as a viable replacement to the conventional Ho:YAG laser for treatment of kidney stones.

  4. Infrared and millimeter waves v.14 millimeter components and techniques, pt.V

    CERN Document Server

    Button, Kenneth J

    1985-01-01

    Infrared and Millimeter Waves, Volume 14: Millimeter Components and Techniques, Part V is concerned with millimeter-wave guided propagation and integrated circuits. In addition to millimeter-wave planar integrated circuits and subsystems, this book covers transducer configurations and integrated-circuit techniques, antenna arrays, optoelectronic devices, and tunable gyrotrons. Millimeter-wave gallium arsenide (GaAs) IMPATT diodes are also discussed. This monograph is comprised of six chapters and begins with a description of millimeter-wave integrated-circuit transducers, focusing on vario

  5. Integration of coastal inundation modeling from storm tides to individual waves

    Science.gov (United States)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  6. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

    Science.gov (United States)

    Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten

    2017-02-15

    The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    Science.gov (United States)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-09-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements.

  8. Use of mobile devices in nursing student-nurse teacher cooperation during the clinical practicum: an integrative review.

    Science.gov (United States)

    Strandell-Laine, Camilla; Stolt, Minna; Leino-Kilpi, Helena; Saarikoski, Mikko

    2015-03-01

    To identify and appraise study findings on the use of mobile devices, in particular for what purposes and how, in nursing student-nurse teacher cooperation during the clinical practicum. A systematic literature search was conducted using the PubMed/Medline, CINAHL, PsycINFO and ERIC for primary empirical studies published in English. An integrative literature review was undertaken. Quality appraisal of the included studies was conducted using design-specific standardized checklists. Studies were thematically analyzed. Based on the inclusion and exclusion criteria, eleven studies were included in the review. Weaknesses in designs, samples, questionnaires and results, compromised comparison and/or generalization of the findings of the studies. Three main themes were identified: (1) features of mobile devices (2) utility of mobile devices and (3) barriers to the use of mobile devices. Problems of connectivity were the main challenges reported in the use of mobile devices. Participants used mobile devices primarily as reference tools, but less frequently as tools for reflection, assessment or cooperation during the clinical practicum. Interest in mobile device use during the clinical practicum was reported, but training and ongoing support are needed. As only a small number of eligible primary empirical studies were found, it is not possible to draw firm conclusions on the results. In the future, rigorous primary empirical studies are needed to explore the potential of mobile devices in providing a supplementary pedagogical method in nursing student-nurse teacher cooperation during the clinical practicum. Robust study designs, including experimental ones, are clearly needed to assess the effectiveness of mobile devices in nursing student-nurse teacher cooperation during the clinical practicum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  10. Exploration of the affordances of mobile devices in integrating theory and clinical practice in an undergraduate nursing programme.

    Science.gov (United States)

    Willemse, Juliana J; Bozalek, Vivienne

    2015-09-28

    Promoting the quality and effectiveness of nursing education is an important factor, given the increased demand for nursing professionals. It is important to establish learning environments that provide personalised guidance and feedback to students about their practical skills and application of their theoretical knowledge. To explore and describe the knowledge and points of view of students and educators about introduction of new technologies into an undergraduate nursing programme. The qualitative design used Tesch's (1990) steps of descriptive data analysis to complete thematic analysis of the data collected in focus group discussions (FGDs) andindividual interviews to identify themes. Themes identified from the students' FGDs and individual interviews included:mobile devices as a communication tool; email, WhatsApp and Facebook as methods of communication; WhatsApp as a method of communication; nurses as role-models in the clinical setting; setting personal boundaries; and impact of mobile devices in clinical practiceon professionalism. Themes identified from the FGD, individual interviews and a discussion session held with educators included: peer learning via mobile devices; email, WhatsApp and Facebook as methods of communication; the mobile device as a positive learning method; students need practical guidance; and ethical concerns in clinical facilities about Internet access and use of mobile devices. The research project established an understanding of the knowledge and points of view of students and educators regarding introduction of new technologies into an undergraduate nursing programme with the aim of enhancing integration of theory and clinical practice through use of mobile devices.

  11. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device.

    Science.gov (United States)

    Elmenhorst, Julia; Hulpke-Wette, Martin; Barta, Christiane; Dalla Pozza, Robert; Springer, Stephan; Oberhoffer, Renate

    2015-01-01

    In adults with arterial hypertension, measuring arterial stiffness by pulse wave velocity (PWV) can determine the extent of cardiovascular subclinical organ damage. PWV has independent predictive value for cardiovascular events, but there are currently no recommendations for measuring PWV in children. In addition, central systolic blood pressure (cSBP) strongly reflects vascular changes. The aim of this study was to establish percentiles for cSBP and PWV in children and adolescents to evaluate and classify altered vascular function in youths. We measured PWV and cSBP with an oscillometric device with inbuilt ARCSolver-algorithm (estimated by using the brachial waveform) and calculated smoothed reference percentiles for 1445 children and young adults (49.5% female; 13.41 ± 2.80 years, range 8-22 years; PWV 4.67 ± 0.34 m/s; cSBP 100.7 ± 8.9 mmHg) using the LMS-method based on age and height. PWV and cSBP increased with age and height, but slightly differently for girls and boys, possibly reflecting different growth patterns. Between 8 and 21 years, PWV increased from 4.29 ± 0.32 to 4.98 ± 0.33 m/s in girls and from 4.27 ± 0.18 to 5.22 ± 0.46 m/s in boys. While girls showed a minor increase in cSBP (91.2 ± 7.5 to 109.1 ± 8.6 mmHg), the cSBP in boys ranged from 90.0 ± 5.8 to 110.5 ± 9.6 mmHg with a more pronounced increase between 14 and 17 years. These percentiles for PWV and cSBP can help define arterial stiffness in youths and contribute to risk stratification for cardiovascular disease. For example, in children with prehypertension or isolated systolic hypertension, PWV and cSBP can provide additional information about the function of the vascular system, thereby strengthening intervention strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. A miniaturized electrochemical device integrating a biconical microchannel and carbon fiber disk ultramicroelectrode.

    Science.gov (United States)

    Chang, Fengxia; Xie, Xia; Li, Meixian; Zhu, Zhiwei

    2016-08-02

    A simple, cheap and practicable miniaturized electrochemical device based on a biconical microchannel was developed, for which only 1 μL sample solution was needed to implement a typical electrochemical experiment. The practicability of the designed device was validated by detecting uric acid as a model molecule in human serum.

  13. Two-photon quantum interference in integrated multi-mode interference devices.

    Science.gov (United States)

    Poulios, Konstantinos; Fry, Daniel; Politi, Alberto; Ismail, Nur; Wörhoff, Kerstin; O'Brien, Jeremy L; Thompson, Mark G

    2013-10-07

    Multi-mode interference (MMI) devices fabricated in silicon oxynitride (SiON) with a refractive index contrast of 2.4% provide a highly compact and stable platform for multi-photon non-classical interference. MMI devices can introduce which-path information for photons propagating in the multi-mode section which can result in degradation of this non-classical interference. We theoretically derive the visibility of quantum interference of two photons injected in a MMI device and predict near unity visibility for compact SiON devices. We complement the theoretical results by experimentally demonstrating visibilities of up to 97.7% in 2×2 MMI devices without the requirement of narrow-band photons.

  14. Feasibility study on an integrated AEC-grid device for the optimization of image quality and exposure dose in mammography

    Science.gov (United States)

    Kim, Kyo-Tae; Yun, Ryang-Young; Han, Moo-Jae; Heo, Ye-Ji; Song, Yong-Keun; Heo, Sung-Wook; Oh, Kyeong-Min; Park, Sung-Kwang

    2017-10-01

    Currently, in the radiation diagnosis field, mammography is used for the early detection of breast cancer. In addition, studies are being conducted on a grid to produce high-quality images. Although the grid ratio of the grid, which affects the scattering removal rate, must be increased to improve image quality, it increases the total exposure dose. While the use of automatic exposure control is recommended to minimize this problem, existing mammography equipment, unlike general radiography equipment, is mounted on the back of a detector. Therefore, the device is greatly affected by the detector and supporting device, and it is difficult to control the exposure dose. Accordingly, in this research, an integrated AEC-grid device that simultaneously performs AEC and grid functions was used to minimize the unnecessary exposure dose while removing scattering, thereby realizing superior image quality.

  15. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    Science.gov (United States)

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  16. Integrated SDS removal and protein digestion by hollow fiber membrane based device for SDS-assisted proteome analysis.

    Science.gov (United States)

    Xia, Simin; Yuan, Huiming; Chen, Yuanbo; Liang, Zheng; Zhang, Lihua; Zhang, Yukui

    2015-08-15

    In this work, a novel integrated sample preparation device for SDS-assisted proteome analysis was developed, by which proteins dissolved in 4% (w/v) SDS were first diluted by 50% methanol, and then SDS was online removed by a hollow fiber membrane interface (HFMI) with 50mM ammonium bicarbonate (pH 8.0) as an exchange buffer, finally digested by an immobilized enzyme reactor (IMER). To evaluate the performance of such an integrated device, bovine serum albumin dissolved in 4% (w/v) SDS as a model sample was analyzed; it could be found that similar to that obtained by direct analysis of BSA digests without SDS (the sequence coverage of 60.3±1.0%, n=3), with HFMI as an interface for SDS removal, BSA was identified with the sequence coverage of 61.0±1.0% (n=3). However, without SDS removal by HFMI, BSA could not be digested by the IMER and none peptides could be detected. In addition, such an integrated sample preparation device was also applied for the analysis of SDS extracted proteins from rat brain, compared to those obtained by filter-aided sample preparation (FASP), not only the identified protein group and unique peptide number were increased by 12% and 39% respectively, but also the sample pretreatment time was shortened from 24h to 4h. All these results demonstrated that such an integrated sample preparation device would provide an alternative tool for SDS assisted proteome analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Millimeter-Wave Integrated Circuit Design for Wireless and Radar Applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens

    2006-01-01

    This paper describes a quadrature voltage-controlled oscillator (QVCO), frequency doubler, and sub-harmonic mixer (SHM) for a millimeter-wave (mm-wave) front-end implemented in a high-speed InP DHBT technology. The QVCO exhibits large tuning range from 38 to 47.8 GHz with an output power around -15...... from 40-50 GHz. To the authors knowledge the QVCO, frequency doubler, and SHM presents the first mm-wave implementations of these circuits in InP DHBT technology....

  18. Generating electricity at a breakwater in a moderate wave climate

    NARCIS (Netherlands)

    Schoolderman, J.; Reedijk, B.; Vrijling, J.K.; Molenaar, W.F.; Ten Oever, E.; Zijlema, M.

    2011-01-01

    A new concept for wave energy conversion is examined as a proof of concept for generating electricity in a moderate wave climate while being integrated in a caisson breakwater. Physical model testing is performed to analyse the preliminary efficiency of the device and to identify areas of

  19. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    Directory of Open Access Journals (Sweden)

    Mehmet Cengiz Onbasli

    2013-11-01

    Full Text Available Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4O3−δ and polycrystalline (CeY2Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  20. 1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit.

    Science.gov (United States)

    Jiang, Wen-Hao; Liu, Jian-Hong; Liu, Yin; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2017-12-15

    InGaAs/InP single-photon detectors (SPDs) are the key devices for applications requiring near-infrared single-photon detection. The gating mode is an effective approach to synchronous single-photon detection. Increasing gating frequency and reducing the module size are important challenges for the design of such a detector system. Here we present for the first time, to the best of our knowledge, an InGaAs/InP SPD with 1.25 GHz sine wave gating (SWG) using a monolithically integrated readout circuit (MIRC). The MIRC has a size of 15  mm×15  mm and implements the miniaturization of avalanche extraction for high-frequency SWG. In the MIRC, low-pass filters and a low-noise radio frequency amplifier are integrated based on the technique of low temperature co-fired ceramic, which can effectively reduce the parasitic capacitance and extract weak avalanche signals. We then characterize the InGaAs/InP SPD to verify the functionality and reliability of the MIRC, and the SPD exhibits excellent performance with 27.5% photon detection efficiency, a 1.2 kcps dark count rate, and 9.1% afterpulse probability at 223 K and 100 ns hold-off time. With this MIRC, one can further design miniaturized high-frequency SPD modules that are highly required for practical applications.

  1. Radiation effects and soft errors in integrated circuits and electronic devices

    CERN Document Server

    Fleetwood, D M

    2004-01-01

    This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes th

  2. Wave breaking over sloping beaches using a coupled boundary integral-level set method

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, M.; Adalsteinsson, D.; Gray, L.; Sethian, J.A.

    2003-12-08

    We present a numerical method for tracking breaking waves over sloping beaches. We use a fully non-linear potential model for in-compressible, irrotational and inviscid flow, and consider the effects of beach topography on breaking waves. The algorithm uses a Boundary Element Method (BEM) to compute the velocity at the interface, coupled to a Narrow Band Level Set Method to track the evolving air/water interface, and an associated extension equation to update the velocity potential both on and off the interface. The formulation of the algorithm is applicable to two and three dimensional breaking waves; in this paper, we concentrate on two-dimensional results showing wave breaking and rollup, and perform numerical convergence studies and comparison with previous techniques.

  3. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  4. Joint Environmental Data at Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices

    OpenAIRE

    Li, Lin; Gao, Zhen; Moan, Torgeir

    2013-01-01

    The costs for an offshore wind farm, especially with bottom fixed foundations increase significantly with increasing water depth. If costs can be reduced to a competitive level, the potential for wind farms in deep water is huge. One way of reducing costs might be to combine offshore wind with wave energy facilities at sites where these resources are concentrated. In order to design combined renewable energy concepts, it is important to choose sites where both wind and wave energy resourc...

  5. Integration of Leaky Waveguide Detection with Electrowetting on Dielectric Digital Microfluidic Devices

    Science.gov (United States)

    Gupta, Ruchi; Goddard, Nick

    2013-06-01

    Typically, Electrowetting on dielectric (EWOD) digital microfluidic devices consist of an array of metal electrodes covered with a continuous hydrophobic dielectric layer. The monitoring of droplet position and detection in EWOD is usually achieved via microscopy, thereby resulting in increasing the size and complexity of the instrumentation associated with such devices. This work for the first time demonstrates that metal clad leaky waveguide (MCLW) is suitable for detection in EWOD devices. MCLW devices typically consist of a metal layer covered with a dielectric layer in which the leaky waveguide mode propagates. The two structures are fundamentally compatible provided the metal and dielectric layer thicknesses and refractive indices can be optimised to permit both electrowetting and waveguiding. In this work, it has been shown that titanium electrodes covered with a fluoropolymer layer can be used to perform MCLW detection of droplets on EWOD platforms.

  6. Apparatus for gas sorption measurement with integrated gas composition measurement device and gas mixing

    Science.gov (United States)

    Micklash. II, Kenneth James; Dutton, Justin James; Kaye, Steven

    2014-06-03

    An apparatus for testing of multiple material samples includes a gas delivery control system operatively connectable to the multiple material samples and configured to provide gas to the multiple material samples. Both a gas composition measurement device and pressure measurement devices are included in the apparatus. The apparatus includes multiple selectively openable and closable valves and a series of conduits configured to selectively connect the multiple material samples individually to the gas composition device and the pressure measurement devices by operation of the valves. A mixing system is selectively connectable to the series of conduits and is operable to cause forced mixing of the gas within the series of conduits to achieve a predetermined uniformity of gas composition within the series of conduits and passages.

  7. A fast-multipole domain decomposition integral equation solver for characterizing electromagnetic wave propagation in mine environments

    KAUST Repository

    Yücel, Abdulkadir C.

    2013-07-01

    Reliable and effective wireless communication and tracking systems in mine environments are key to ensure miners\\' productivity and safety during routine operations and catastrophic events. The design of such systems greatly benefits from simulation tools capable of analyzing electromagnetic (EM) wave propagation in long mine tunnels and large mine galleries. Existing simulation tools for analyzing EM wave propagation in such environments employ modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), and full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of miners and their equipments, as well as wall roughness (especially when the latter is comparable to the wavelength). Full-wave methods do not suffer from such restrictions but require prohibitively large computational resources. To partially alleviate this computational burden, a 2D integral equation-based domain decomposition technique has recently been proposed (Bakir et. al., in Proc. IEEE Int. Symp. APS, 1-2, 8-14 July 2012). © 2013 IEEE.

  8. Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated into a Fixed Box-Type Breakwater

    Directory of Open Access Journals (Sweden)

    Xuanlie Zhao

    2017-01-01

    Full Text Available An oscillating buoy wave energy converter (WEC integrated to an existing box-type breakwater is introduced in this study. The buoy is installed on the existing breakwater and designed to be much smaller than the breakwater in scale, aiming to reduce the construction cost of the WEC. The oscillating buoy works as a heave-type WEC in front of the breakwater towards the incident waves. A power take-off (PTO system is installed on the topside of the breakwater to harvest the kinetic energy (in heave mode of the floating buoy. The hydrodynamic performance of this system is studied analytically based on linear potential-flow theory. Effects of the geometrical parameters on the reflection and transmission coefficients and the capture width ratio (CWR of the system are investigated. Results show that the maximum efficiency of the energy extraction can reach 80% or even higher. Compared with the isolated box-type breakwater, the reflection coefficient can be effectively decreased by using this oscillating buoy WEC, with unchanged transmission coefficient. Thus, the possibility of capturing the wave energy with the oscillating buoy WEC integrated into breakwaters is shown.

  9. Smart windows for building integration: a new architecture for photovoltachromic devices.

    Science.gov (United States)

    Malara, Francesco; Cannavale, Alessandro; Carallo, Sonia; Gigli, Giuseppe

    2014-06-25

    A new architecture for multifunctional photoelectrochemical devices, namely photovoltachromic devices, is disclosed here, capable of producing electric energy by solar conversion also modulating the devices' optical transmittance in a smart and aesthetically sounding fashion. These devices generally consist of a titanium dioxide photoelectrode and of a bifunctional patterned counter electrode made of platinum and amorphous tungsten oxide. The innovative configuration described hereafter proposes to split the single patterned counter electrode into two distinct electrodes, physically overlapped: the central one is suitably drilled in order to allow the electrolyte to fill both communicating chambers. These three electrode devices allow three independent operating modes: photovoltaic, photoelectrochromic, and photovoltachromic. In this paper, we report the optical, electrical, and electrochemical characterization of this innovative device, varying both available catalytic surface area and the type of sensitizing dye. We eventually obtained the following conversion efficiencies, 2.75%, 2.35%, and 1.91%, in samples having different catalytic areas (397, 360, and 320 mm(2), respectively). We inferred that the higher the platinum area on the interposed platinum-poly(ethylene naphthalate)-indium tin oxide counter electrode, the higher the photovoltaic conversion efficiency. On the other hand, a decrease of the intercommunication openings generates a slowdown of bleaching processes.

  10. Study of Shock Wave and Magnetic Pressure Effects on the Rail Gap Switch Surface Used at the APF Plasma Focus Device

    Science.gov (United States)

    Habibi, Morteza

    2011-04-01

    Whereas high voltage and current create a rough environment for switch electrodes in pulse power technology, the switch requires the most maintenance or replacement after a short time. In this paper we investigate the effects of magnetic and shock pressures created by high power electric arc between a rail gap switch with copper electrodes at the APF plasma focus device. As studied by others, the shock pressure is some order of magnitude higher than the magnetic pressure after electric arc generation. We calculated the magnetic pressure, electric arc radius, time dependent arc velocity, and also time dependent shock pressure created by an oscillating current discharge applied across the rail gap electrodes surface. Modeling included a MathCAD analysis of the diverging wave front through the electrode and the results show that the shock wave pressure induced after the electric arc has a serious destructive effect on our switch surface.

  11. Large-signal modeling of multi-finger InP DHBT devices at millimeter-wave frequencies

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Midili, Virginio; Squartecchia, Michele

    2017-01-01

    A large-signal modeling approach has been developed for multi-finger devices fabricated in an Indium Phosphide (InP) Double Heterojunction Bipolar Transistor (DHBT) process. The approach utilizes unit-finger device models embedded in a multi-port parasitic network. The unit-finger model is based...

  12. Modelling of the travelling wave piezoelectric motor stator: an integrated review and new perspective

    Directory of Open Access Journals (Sweden)

    Rodríguez, H.

    2004-06-01

    Full Text Available Articles from different areas which are closely related to the modelling of the stator of travelling wave ultrasonic motors (TWUMs are reviewed in this work. Thus, important issues relevant to this problem are identified from the areas of vibration of annular plates, laminated plate theories, and modelling of piezoelectric transducers. From this integrated point of view, it becomes clear that there are some very important issues yet to be addressed in the modelling of TWUMs. Firstly, the influence of material properties and stator dimensions on output efficiency, electromechanical coupling coefficients (EMCC and maximum output energy is to be investigated in more detail. Secondly, the modelling of the electric potential field (by explicitly including the charge equation for TWUMs seems to be a must for better prediction of displacements and electric fields close to the resonance, as suggested by some recent works [1]. Moreover, the improvement of current models by using shear deformation (or higher order laminated plate theories (LPTs in conjunction with approximated methods of solution are discussed. In addition to analytical models, those works using Finite Element and Finite difference Methods (FEM and FDM for the modelling and simulation of the TWUM stator dynamics are reviewed.

    En este trabajo se realiza una revisión de los trabajos de investigación realizados en diversas áreas sobre el modelado del estátor de los motores ultrasónicos de onda viajera (TWUMs. Entre los problemas relevantes que se han estudiado podemos citar la vibración de placas anulares, las teorías de placas laminadas y el modelado de transductores piezoeléctricos. A raíz de este punto de vista integral se hace manifiesto que todavía quedan asuntos importantes que estudiar en el modelado de los TWUMs. En primer lugar, la influencia de las propiedades del material y las dimensiones del estátor en la eficiencia del motor, los coeficientes de acoplamiento

  13. Shallow Water Waves and Solitary Waves

    OpenAIRE

    Hereman, Willy

    2013-01-01

    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  14. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  15. Improving the properties of zinc oxide thin-film surface acoustic wave device on glass substrate by introducing double alumina layers

    Science.gov (United States)

    Shih, Wen-Ching; Huang, Yi-Fan; Wu, Mu-Shiang

    2017-10-01

    ZnO films with c-axis (0002) orientation have been successfully grown by RF magnetron sputtering on Al2O3/glass substrates. The alumina films were firstly deposited on glass substrates, and then secondly deposited on interdigital transducer/ZnO film/alumina film/glass substrates by electron beam evaporation. The crystalline structure and surface roughness of the films were investigated by X-ray diffraction and atomic force microscopy, respectively. The phase velocity and coupling coefficient of the surface acoustic wave (SAW) device were both increased when we deposited the double alumina layers. On the other hand, the temperature coefficient of frequency becomes better if we increase the thickness of the lower alumina film. The experimental result is beneficial for improving the performance of the ZnO thin-film SAW devices on inexpensive glass substrates.

  16. Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform.

    Science.gov (United States)

    Klaseboer, Evert; Sepehrirahnama, Shahrokh; Chan, Derek Y C

    2017-08-01

    The general space-time evolution of the scattering of an incident acoustic plane wave pulse by an arbitrary configuration of targets is treated by employing a recently developed non-singular boundary integral method to solve the Helmholtz equation in the frequency domain from which the space-time solution of the wave equation is obtained using the fast Fourier transform. The non-singular boundary integral solution can enforce the radiation boundary condition at infinity exactly and can account for multiple scattering effects at all spacings between scatterers without adverse effects on the numerical precision. More generally, the absence of singular kernels in the non-singular integral equation confers high numerical stability and precision for smaller numbers of degrees of freedom. The use of fast Fourier transform to obtain the time dependence is not constrained to discrete time steps and is particularly efficient for studying the response to different incident pulses by the same configuration of scatterers. The precision that can be attained using a smaller number of Fourier components is also quantified.

  17. Polymer-based Hybrid Integrated Photonic Devices for Silicon On-chip Modulation and Board-level Optical Interconnects

    CERN Document Server

    Zhang, Xingyu; Lin, Xiaohui; Subbaraman, Harish; Chen, Ray T

    2014-01-01

    The accelerating increase in information traffic demands the expansion of optical access network systems that require cost reduction of optical and photonic components. Low cost, ease of fabrication, and integration capabilities of low optical-loss polymers make them attractive for photonic applications. In addition to passive wave-guiding components, electro-optic (EO) polymers consisting of a polymeric matrix doped with organic nonlinear chromophores have enabled wide-RF-bandwidth and low-power optical modulators. Beside board level passive and active optical components, compact on-chip modulators (a few 100 micronmeters to a few millimeters) have been made possible by hybrid integration of EO polymers onto the silicon platform. This paper summarizes some of the recent progress in polymer based optical modulators and interconnects. A highly linear, broadband directional coupler modulator for use in analog optical links and compact, and low-power silicon/polymer hybrid slot photonic crystal waveguide modulat...

  18. A well-conditioned integral-equation formulation for efficient transient analysis of electrically small microelectronic devices

    KAUST Repository

    Bagci, Hakan

    2010-05-01

    A hierarchically regularized coupled set of time-domain surface and volume electric field integral-equations (TD-S-EFIE and TD-V-EFIE) for analyzing electromagnetic wave interactions with electrically small and geometrically intricate composite structures comprising perfect electrically conducting surfaces and finite dielectric volumes is presented. A classically formulated coupled set of TD-S- and V-EFIEs is shown to be ill-conditioned at low frequencies owing to the hypersingular nature of the TD-S-EFIE. To eliminate low-frequency breakdown in marching-on-in-time solvers for these coupled equations, a hierarchical regularizer leveraging generalized RaoWiltonGlisson functions is applied to the TD-S-EFIE; no regularization is applied to the TD-V-EFIE as it is protected from low-frequency breakdown by an identity term. The resulting hierarchically regularized hybrid TD-S- and V-EFIE solver is applicable to the analysis of wave interactions with electrically small and densely meshed structures of arbitrary topology. The accuracy, efficiency, and applicability of the proposed solver are demonstrated by analyzing crosstalk in a six-port transmission line, radiation from a miniature radio-frequency identification antenna, and, plane-wave coupling onto a partially-shielded and fully loaded two-layer computer board. © 2006 IEEE.

  19. Exploration of the affordances of mobile devices in integrating theory and clinical practice in an undergraduate nursing programme

    Directory of Open Access Journals (Sweden)

    Juliana J. Willemse

    2015-07-01

    Full Text Available Background: Promoting the quality and effectiveness of nursing education is an important factor, given the increased demand for nursing professionals. It is important to establish learning environments that provide personalised guidance and feedback to students about their practical skills and application of their theoretical knowledge.Objective: To explore and describe the knowledge and points of view of students and educators about introduction of new technologies into an undergraduate nursing programme.Method: The qualitative design used Tesch’s (1990 steps of descriptive data analysis to complete thematic analysis of the data collected in focus group discussions (FGDs andindividual interviews to identify themes.Results: Themes identified from the students’ FGDs and individual interviews included:mobile devices as a communication tool; email, WhatsApp and Facebook as methods of communication; WhatsApp as a method of communication; nurses as role-models in the clinical setting; setting personal boundaries; and impact of mobile devices in clinical practiceon professionalism. Themes identified from the FGD, individual interviews and a discussion session held with educators included: peer learning via mobile devices; email, WhatsApp and Facebook as methods of communication; the mobile device as a positive learning method; students need practical guidance; and ethical concerns in clinical facilities about Internet access and use of mobile devices.Conclusion: The research project established an understanding of the knowledge and points of view of students and educators regarding introduction of new technologies into an undergraduate nursing programme with the aim of enhancing integration of theory and clinical practice through use of mobile devices.

  20. An assessment of hazards caused by electromagnetic interaction on humans present near short-wave physiotherapeutic devices of various types including hazards for users of electronic active implantable medical devices (AIMD).

    Science.gov (United States)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-01-01

    Leakage of electromagnetic fields (EMF) from short-wave radiofrequency physiotherapeutic diathermies (SWDs) may cause health and safety hazards affecting unintentionally exposed workers (W) or general public (GP) members (assisting patient exposed during treatment or presenting there for other reasons). Increasing use of electronic active implantable medical devices (AIMDs), by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators) were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users). Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated). Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both-GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment).

  1. An Assessment of Hazards Caused by Electromagnetic Interaction on Humans Present near Short-Wave Physiotherapeutic Devices of Various Types Including Hazards for Users of Electronic Active Implantable Medical Devices (AIMD

    Directory of Open Access Journals (Sweden)

    Jolanta Karpowicz

    2013-01-01

    Full Text Available Leakage of electromagnetic fields (EMF from short-wave radiofrequency physiotherapeutic diathermies (SWDs may cause health and safety hazards affecting unintentionally exposed workers (W or general public (GP members (assisting patient exposed during treatment or presenting there for other reasons. Increasing use of electronic active implantable medical devices (AIMDs, by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users. Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated. Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both—GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment.

  2. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    National Research Council Canada - National Science Library

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators...

  3. WindWaveFloat (WWF): Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Alla; Roddier, Dominique; Banister, Kevin

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  4. Fullerene-Containing Electrically Conducting Electron Beam Resist for Ultrahigh Integration of Nanometer Lateral-Scale Organic Electronic Devices.

    Science.gov (United States)

    Nakajima, Anri; Tabei, Tetsuo; Yasukawa, Tatsuya

    2017-06-27

    An outstanding issue with organic devices is the difficulty of simultaneously controlling the lateral size and position of structures at submicron or nanometer scales. In this study, nanocomposite electron beam (EB) organic resists are proved to be excellent candidates for electrically conductive and/or memory component materials for submicron or nanometer lateral-scale organic electronic devices. The memory and the resist patterning characteristics are investigated for a positive electron beam resist of ZEP520a containing [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). Regarding the memory characteristics, good programming and excellent retention characteristics are obtained for electrons. The carrier transfer and retention mechanisms are also investigated. Regarding the resist patterning characteristics, it is found that line patterns (square patterns) of ZEP520a containing PCBM can be made with widths (side lengths) of less than 200 nm by using an extremely simple process with only EB exposures and developments. The distribution of PCBM molecules or their aggregations is also clarified in ZEP520a containing PCBM. The results of this study open the door to the simple fabrication of highly integrated flexible memories and electrical wires as well as of single-electron or quantum devices, including quantum information devices and sensitive biosensors for multiplexed and simultaneous diagnoses.

  5. Time-splitting combined with exponential wave integrator fourier pseudospectral method for Schrödinger-Boussinesq system

    Science.gov (United States)

    Liao, Feng; Zhang, Luming; Wang, Shanshan

    2018-02-01

    In this article, we formulate an efficient and accurate numerical method for approximations of the coupled Schrödinger-Boussinesq (SBq) system. The main features of our method are based on: (i) the applications of a time-splitting Fourier spectral method for Schrödinger-like equation in SBq system, (ii) the utilizations of exponential wave integrator Fourier pseudospectral for spatial derivatives in the Boussinesq-like equation. The scheme is fully explicit and efficient due to fast Fourier transform. The numerical examples are presented to show the efficiency and accuracy of our method.

  6. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    Science.gov (United States)

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  7. Integration of smart wearable mobile devices and cloud computing in South African healthcare

    CSIR Research Space (South Africa)

    Mvelase, PS

    2015-11-01

    Full Text Available The acceptance of cloud computing is increasing in a fast pace in distributed computing environment. The use of cloud environments for storage and data processing needs is on the rise. On the other hand, mobile devices have been seen as one...

  8. Integrated Magneto-Optical Devices for On-Chip Photonic Systems

    Science.gov (United States)

    2017-09-01

    interferometer (MZI) isolator devices based on optical modeling, for both transverse- electric (TE) and transverse-magnetic (TM) polarization. 15. SUBJECT TERMS...ii 1. Summary of Key Project Results...Approved for public release; distribution is unlimited. 1. Summary of Key Project Results 1. Growth process developed for bismuth garnet (BiYIG) on

  9. Integrating health economics modeling in the product development cycle of medical devices: A Bayesian approach

    NARCIS (Netherlands)

    Vallejo-Torres, Laura; Steuten, Lotte Maria Gertruda; Buxton, Martin J.; Girling, Alan J.; Lilford, Richard J.; Young, Terry

    2008-01-01

    Objectives: Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of

  10. Integration of a piezoelectric layer on Si finFETs for tunable strained device applications

    NARCIS (Netherlands)

    Kaleli, B.; Hueting, Raymond Josephus Engelbart; Nguyen, Duc Minh; Wolters, Robertus A.M.

    2014-01-01

    Earlier theoretical reports predicted that the usage of a piezoelectric stressor layer around the FinFET, i.e., the PiezoFET, offers a great potential for steep subthreshold slope devices. For the first time, we analyzed the practical realization of such PiezoFETs comprising a piezoelectric stressor

  11. Integration of a Piezoelectric Layer on Si FinFETs for Tunable Strained Device Applications

    NARCIS (Netherlands)

    Kaleli, B.; Hueting, Raymond Josephus Engelbart; Nguyen, Duc Minh; Wolters, Robertus A.M.

    2014-01-01

    Earlier theoretical reports predicted that the usage of a piezoelectric stressor layer around the FinFET, i.e., the PiezoFET, offers a great potential for steep subthreshold slope devices. For the first time, we analyzed the practical realization of such PiezoFETs comprising a piezoelectric stressor

  12. Gallium arsenide integrated optical devices for high-speed diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    McWright, G.; Lowry, M.; Takeuchi, E.; Murphy, G.; Tindall, W.; Koo, J.; Roeske, F.

    1987-01-01

    The design, fabrication, and evaluation of waveguide electro-optic modulators in gallium arsenide for application to high-speed diagnostic systems are discussed specifically. This paper is focused on high bandwidth, single event analog modulation, and radiation susceptibility of these devices.

  13. Devices and architectures for large-scale integrated silicon photonics circuits

    Science.gov (United States)

    Beausoleil, Raymond G.; Faraon, Andrei; Fattal, David; Fiorentino, Marco; Peng, Zhen; Santori, Charles

    2011-01-01

    We present DWDM nanophotonics architectures based on microring resonator modulators and detectors. We focus on two implementations: an on chip interconnect for multicore processor (Corona) and a high radix network switch (HyperX). Based on the requirements of these applications we discuss the key constraints on the photonic circuits' devices and fabrication techniques as well as strategies to improve their performance.

  14. Periodic travelling waves in a non-integrable one-dimensional lattice

    NARCIS (Netherlands)

    Valkering, T.P.

    1982-01-01

    The existence of a one-parameter family of periodic solutions representing longitudinal travelling waves is established for a one-dimensional lattice of identical particles with nearest-neighbour interaction. The potential is not given in closed form but is specified by only a few global properties.

  15. Integrative approach to the problem of the rogue waves appearance and elimination of their consequences

    Science.gov (United States)

    Rodin, Artem; Rodina, Natalia

    2016-04-01

    Every year marine natural disasters claim thousands of lives. Only rogue waves during the last 10 years caused the death of 125 and injury of 169 people. In addition to studying the physical mechanisms of generation of rogue waves is important to study the mechanisms of human behavior in such extreme situations. The impact as large-scale natural disasters, as well as less severe (in its consequences) disaster strikes must be assessed on the basis of the entire set of conditions, in whose framework the community of people appears to be, taking into account both the power of the elements, and the available resources at their disposal to restore an acceptable level of life, including social and psychological context. Here particular relevance acquire interdisciplinary researches. This interaction is extremely important not only for sociologists and psychologists, but also for the representatives of the natural sciences (physics, chemistry, mathematics) since the ultimate goal of all efforts is to minimize the harm produced by any element or negative influence of technological progress.This also work contains statistical analysis of the appearance of rogue waves on the wind wave background in the shallow bay, obtained during the experiment in the Baltic Sea.

  16. An integrated shear-wave velocity model for the Groningen gas field, The Netherlands

    NARCIS (Netherlands)

    Kruiver, Pauline P.; van Dedem, Ewoud; Romijn, Remco; de Lange, Ger; Korff, M.; Stafleu, Jan; Gunnink, Jan L.; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2017-01-01

    A regional shear-wave velocity (VS) model has been developed for the Groningen gas field in the Netherlands as the basis for seismic microzonation of an area of more than 1000 km2. The VS model, extending to a depth of almost 1 km, is an essential input to the

  17. Handling of artificial membranes using electrowetting-actuated droplets on a microfluidic device combined with integrated pA-measurements.

    Science.gov (United States)

    Martel, Anne; Cross, Benjamin

    2012-03-01

    Artificial membranes, as a controllable environment, are an essential tool to study membrane proteins. Electrophysiology provides information about the ion transport mechanism across a membrane at the single-protein level. Unfortunately, high-throughput studies and screening are not accessible to electrophysiology because it is a set of not automated and technically delicate methods. Therefore, it is necessary to automate and parallelize electrophysiology measurement in artificial membranes. Here, we present a first step toward this goal: the fabrication and characterization of a microfluidic device integrating electrophysiology measurements and the handling of an artificial membrane which includes its formation, its displacement and the separation of its leaflets using electrowetting actuation of sub-μL droplets. To validate this device, we recorded the insertion of a model porin, α-hemolysin.

  18. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  19. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.; Schmid, U. [Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna (Austria); Shaposhnikov, K.; Kaltenbacher, M. [Institute of Mechanics and Mechatronics, TU Wien, 1040 Vienna (Austria)

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  20. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes.

    Science.gov (United States)

    Ryu, Koungmin; Badmaev, Alexander; Wang, Chuan; Lin, Albert; Patil, Nishant; Gomez, Lewis; Kumar, Akshay; Mitra, Subhasish; Wong, H-S Philip; Zhou, Chongwu

    2009-01-01

    Massive aligned carbon nanotubes hold great potential but also face significant integration/assembly challenges for future beyond-silicon nanoelectronics. We report a wafer-scale processing of aligned nanotube devices and integrated circuits, including progress on essential technological components such as wafer-scale synthesis of aligned nanotubes, wafer-scale transfer of nanotubes to silicon wafers, metallic nanotube removal and chemical doping, and defect-tolerant integrated nanotube circuits. We have achieved synthesis of massive aligned nanotubes on complete 4 in. quartz and sapphire substrates, which were then transferred to 4 in. Si/SiO(2) wafers. CMOS analogous fabrication was performed to yield transistors and circuits with features down to 0.5 mum, with high current density approximately 20 muA/mum and good on/off ratios. In addition, chemical doping has been used to build fully integrated complementary inverter with a gain approximately 5, and a defect-tolerant design has been employed for NAND and NOR gates. This full-wafer approach could serve as a critical foundation for future integrated nanotube circuits.