WorldWideScience

Sample records for wattage

  1. Design and performance of low-wattage electrical heater probe

    International Nuclear Information System (INIS)

    Biddle, R.; Wetzel, J.R.; Cech, R.

    1997-01-01

    A mound electrical calibration heater (MECH) has been used in several EG and G Mound developed calorimeters as a calibration tool. They are very useful over the wattage range of a few to 500 W. At the lower end of the range, a bias develops between the MECH probe and calibrated heat standards. A low-wattage electrical calibration heater (L WECH) probe is being developed by the Safeguards Science and Technology group (NIS-5) of Los Alamos National Laboratory based upon a concept proposed by EG and G Mound personnel. The probe combines electrical resistive heating and laser-light powered heating. The LWECH probe is being developed for use with power settings up to 2W. The electrical heater will be used at the high end of the range, and laser-light power will be used low end of the wattage range. The system consists of two components: the heater probe and a control unit. The probe is inserted into the measuring cavity through an opening in the insulating baffle, and a sleeve is required to adapt to the measuring chamber. The probe is powered and controlled using electronics modules located separately. This paper will report on the design of the LWECH probe, initial tests, and expected performance

  2. Harmonics Study of Common Low Wattage LED Lamps

    Directory of Open Access Journals (Sweden)

    Ioan Dragoş Deaconu

    2017-11-01

    Full Text Available This article presents experimental data on Light Emitting Diode (LED lamps of low wattage that are commonly found both in commercial and residential applications. A comparison with the existing regulations is performed. The measurements are performed using power and energy quality analyzer intended also for avionic and military systems.

  3. Lighting system with a device for reducing system wattage

    NARCIS (Netherlands)

    1996-01-01

    A lighting system having a high pressure gas discharge lamp intended to be operated on a stabilization ballast further includes a low loss device to reduce the current through the ballast and lamp, thereby reducing system wattage for energy savings. For a lead-type ballast, the current reducing

  4. High-Wattage Pulsed Irradiation of Linearly Polarized Near-Infrared Light to Stellate Ganglion Area for Burning Mouth Syndrome

    Directory of Open Access Journals (Sweden)

    Yukihiro Momota

    2014-01-01

    Full Text Available The purpose of this study was to apply high-wattage pulsed irradiation of linearly polarized near-infrared light to the stellate ganglion area for burning mouth syndrome (BMS and to assess the efficacy of the stellate ganglion area irradiation (SGR on BMS using differential time-/frequency-domain parameters (D parameters. Three patients with BMS received high-wattage pulsed SGR; the response to SGR was evaluated by visual analogue scale (VAS representing the intensity of glossalgia and D parameters used in heart rate variability analysis. High-wattage pulsed SGR significantly decreased the mean value of VAS in all cases without any adverse event such as thermal injury. D parameters mostly correlated with clinical condition of BMS. High-wattage pulsed SGR was safe and effective for the treatment of BMS; D parameters are useful for assessing efficacy of SGR on BMS.

  5. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  6. Analysis to evaluate predictors of fiberboard aging to guide surveillance sampling for the 9975 life extension program

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Daugherty, William L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hackney, Elizabeth R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-09

    During surveillance of the 9975 shipping package at the Savannah River Site K-Area Complex, several package dimensions are recorded. The analysis described in this report shows that, based on the current data analysis, two of these measurements, Upper Assembly Outer Diameter (UAOD) and Upper Assembly Inside Height (UAIH), do not have statistically significant aging trends regardless of wattage levels. In contrast, this analysis indicates that the measurement of Air Shield Gap (ASGap) does show a significant increase with age. It appears that the increase is greater for high wattage containers, but this result is dominated by two measurements from high-wattage containers. For all three indicators, additional high-wattage, older containers need to be examined before any definitive conclusions can be reached. In addition, the current analysis indicates that ASGap measurements for low and medium wattage containers are increasing slowly over time. To reduce uncertainties and better capture the aging trend for these containers, additional low and medium wattage older containers should also be examined. Based on this analysis, surveillance guidance is to augment surveillance containers resulting from 3013 surveillance with 9975-focused sampling that targets older, high wattage containers and also includes some older, low and medium wattage containers. This focused sampling began in 2015 and will continue in 2016. The UAOD, UAIH and ASGap data are highly variable. It is possible that additional factors such as seasonal variation and packaging site location might reduce variability and be useful for focusing surveillance and predicting aging.

  7. Fabrication of 12% 240Pu calorimetry standards

    International Nuclear Information System (INIS)

    Long, S.M.; Hildner, S.; Gutierrez, D.; Mills, C.; Garcia, W.; Gurule, C.

    1995-01-01

    Throughout the DOE complex, laboratories are performing calorimetric assays on items containing high burnup plutonium. These materials contain higher isotopic range and higher wattages than materials previously encountered in vault holdings. Currently, measurement control standards have been limited to utilizing 6% 240 Pu standards. The lower isotopic and wattage value standards do not complement the measurement of the higher burnup material. Participants of the Calorimetry Exchange (CALEX) Program have identified the need for new calorimetric assay standards with a higher wattage and isotopic range. This paper describes the fabrication and verification measurements of the new CALEX standard containing 12% 240 Pu oxide with a wattage of about 6 to 8 watts

  8. The use of filtered bags to increase waste payload capacity

    International Nuclear Information System (INIS)

    Dustin, D.F.; Thorp, D.T.; Rivera, M.A.

    1998-01-01

    For the past few years, the Department of Energy has favored the direct disposal of low plutonium content residue materials from Rocky Flats rather than engage in expensive and time consuming plutonium recovery operations. One impediment to direct disposal has been the wattage limit imposed by the Waste Isolation Pilot Plant on hydrogenous materials such as combustibles and sludges. The issue of concern is the radiolytic generation and accumulation of hydrogen and other explosive gases in waste containers. The wattage limits that existed through 1996 restricted the amount of plutonium bearing hydrogenous materials that could be packaged in a WIPP bound waste drum to only a fraction of the capacity of a drum. Typically, only about one kilogram of combustible residue could be packaged in a waste drum before the wattage limit was exceeded resulting in an excessively large number of drums to be procured, stored, shipped, and interred. The Rocky Flats Environmental Technology Site has initiated the use of filtered plastic bags (called bag-out bags) used to remove transuranic waste materials from glove box lines. The bags contain small, disk like HEPA filters which are effective in containing radioactively contaminated particulate material but allow for the diffusion of hydrogen gas. Used in conjunction with filtered 55 gallon drums, filtered bag-out bags were pursued as a means to increase the allowable wattage limits for selected residue materials. In February 1997, the Nuclear Regulatory Commission approved the use of filtered bag-out bags for transuranic waste materials destined for WIPP. The concomitant increase in wattage limits now allows for approximately four times the payload per waste drum for wattage limited materials

  9. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  10. Light emitting diodes for today's energy conscious world

    Energy Technology Data Exchange (ETDEWEB)

    Papanier, J

    2000-10-01

    The role played by light emitting diodes in back lighting, decorative illumination, emergency lighting, and automated signage are described as indicators of the many benefits and advantages of LED technology. The basic principles underlying the functioning of LEDs are explained, including the reasons behind their high efficiency in applications requiring colour. The difference between wattage and lumens is clarified; wattage refers to power consumption, whereas lumens measure brightness or light output, the measure most significant in the case of LEDs.

  11. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2002-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  12. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2002-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  13. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2003-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  14. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours.

    Science.gov (United States)

    Geiss, Otmar; Bianchi, Ivana; Barrero-Moreno, Josefa

    2016-05-01

    E-liquids generally contain four main components: nicotine, flavours, water and carrier liquids. The carrier liquid dissolves flavours and nicotine and vaporises at a certain temperature on the atomizer of the e-cigarette. Propylene glycol and glycerol, the principal carriers used in e-liquids, undergo decomposition in contact with the atomizer heating-coil forming volatile carbonyls. Some of these, such as formaldehyde, acetaldehyde and acrolein, are of concern due to their adverse impact on human health when inhaled at sufficient concentrations. The aim of this study was to correlate the yield of volatile carbonyls emitted by e-cigarettes with the temperature of the heating coil. For this purpose, a popular commercial e-liquid was machine-vaped on a third generation e-cigarette which allowed the variation of the output wattage (5-25W) and therefore the heat generated on the atomizer heating-coil. The temperature of the heating-coil was determined by infrared thermography and the vapour generated at each temperature underwent subjective sensorial quality evaluation by an experienced vaper. A steep increase in the generated carbonyls was observed when applying a battery-output of at least 15W corresponding to 200-250°C on the heating coil. However, when considering concentrations in each inhaled puff, the short-term indoor air guideline value for formaldehyde was already exceeded at the lowest wattage of 5W, which is the wattage applied in most 2nd generation e-cigarettes. Concentrations of acetaldehyde in each puff were several times below the short-term irritation threshold value for humans. Acrolein was only detected from 20W upwards. The negative sensorial quality evaluation by the volunteering vaper of the vapour generated at 20W demonstrated the unlikelihood that such a wattage would be realistically set by a vaper. This study highlights the importance to develop standardised testing methods for the assessment of carbonyl-emissions and emissions of other

  15. Proper indoor climate by the adoption of advanced wood burning stoves

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Skreiberg, Oeyvind

    2014-01-01

    The indoor emission of (ultra)fine particles and overheating from wood-burning stoves are crucial problems in modern houses when wood is used for heating. The main cause for indoor particle emission is the interaction between user and stove when lighting and refilling the stove. The main causes...... for overheating are a high thermal insulation level of the house and high (peak) wattage of the stove. This research aims to understand how low wattage stoves with a computer added device and water jacket will perform on the indoor air quality as proper heating appliances for low energy houses. Two field studies...... were designed to compare the influence of the auto-pilot device and water jacket on the indoor climate. The first experiments were conducted in 8 renovated detached houses using certified stoves while the following experiments were conducted in 4 low energy houses using modern and advanced stoves...

  16. 75 FR 11522 - Energy Conservation Program for Consumer Products: Publication of the Petition for Waiver and...

    Science.gov (United States)

    2010-03-11

    ... condensation. The existing test procedure does not take humidity or adaptive control technology into account... moisture. According to the petitioner, Haier's technology is similar to that used by General Electric... interact with controls that vary the effective wattage of anti-sweat heaters to evaporate excess moisture...

  17. Inherent limitations of fixed time servo-controlled radiometric calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Duff, M.F.; Lemming, J.F.

    1987-01-01

    There has been some interest in low precision, short run time calorimetry measurements. This type of calorimetry measurement has been proposed for use when high precision measurements are not required, for example, to screen scrap containers to determine if there is enough material to be measured more accurately of for confirmatory measurements that only require low precision results. The equipment needed to make these measurements is a servo-controlled calorimeter with a sample preequilibration bath. The preequilibration bath temperature is set to the internal temperature of the calorimeter running at a fixed servo-controlled wattage level. The sample power value is determined at a fixed time form the sample loading into the calorimeter. There are some limitations and areas of uncertainties in the use of data obtained by this method. Data collected under controlled conditions demonstrate the limitations. Sample packaging, preequilibration time, and item wattage were chosen as the variables most likely to be encountered in a plant environment

  18. SAVY 4000 Container Filter Design Life and Extension Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-23

    The SAVY 4000 is a general purpose, reusable container for the storage of solid nuclear material inside a nuclear facility. The canister has a permitted loading for material with a thermal output not to exceed 25 watts. This wattage limit applies to all containers, regardless of their size.

  19. Examination of shipping packages 9975-01641, 9975-01692, 9975-03373, 9975-02101 AND 9975-02713

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-01

    SRNL has assisted in the examination of five 9975 shipping packages following storage of nuclear material in K-Area Complex (KAC). Two packages (9975-01641 and -01692) with water intrusion resulting from a roof leak were selected for detailed examination after internal fiberboard degradation (mold) was observed. 9975-01692 contained regions of saturated fiberboard and significant mold, while the second package was less degraded. A third package (9975-03373) was removed from storage for routine surveillance activities, and set aside for further examination after a musty odor was noted inside. No additional degradation was noted in 9975-03373, but the lower assembly could not be removed from the drum for detailed examination. Two additional packages (9975-02101 and -02713) identified for further examination were among a larger group selected for surveillance as part of a specific focus on high-wattage packages. These two packages displayed several non-conforming conditions, including the following: (1) the axial gap criterion was exceeded, (2) a significant concentration of moisture was found in the bottom fiberboard layers, with active mold in this area, (3) condensation and/or water stains were observed on internal components (drum, lid, air shield), and (4) both drums contained localized corrosion along the bottom lip. It is recommended that a new screening check be implemented for packages that are removed from storage, as well as high wattage packages remaining in storage. An initial survey for corrosion along the drum bottom lip of high wattage packages could identify potential degraded packages for future surveillance focus. In addition, after packages have been removed from storage (and unloaded), the drum bottom lip and underside should be inspected for corrosion. The presence of corrosion could signal the need to remove the lower fiberboard assembly for further inspection of the fiberboard and drum prior to recertification of the package.

  20. Photocatalytic degradation of methylene blue by C 3 N 4 /ZnO

    Indian Academy of Sciences (India)

    The photocatalytic activities of prepared samples were investigated under the illumination of blacklight and fluorescent lamps as the low wattage light source. The C 3 N 4 /ZnO showed a better photocatalytic activity than ZnO to degrade a methylene blue (MB) dye solution using blacklight lamps, but there is no significant ...

  1. Evaluation and Testing of the Suitability of a Coal-Based Jet Fuel

    Science.gov (United States)

    2008-06-01

    with a total wattage of 7980 watts. Each oven section has two K type thermocouples per zone with Inconel sheathed spring loaded bayonet type mounts...also exceeded the thermal stability goals (525°F bulk and 625 °F WWT) for the JP-8+225 fuel program. Tests were conducted on a JP-8 fuel to compare

  2. Outlining the project of the new RADAG hydro power plant; Projektueberblick ueber den Neubau des RADAG-Wehrkraftwerkes

    Energy Technology Data Exchange (ETDEWEB)

    Rost, Manfred; Schlageter, Guenter [Rheinkraftwerk Albbruck-Dogern AG, Laufenburg-Rhina (Germany)

    2010-07-01

    After expiration of the license in 2003 the Swiss Federal Council and the Freiburg District Government issued a new operating license for another 70 years. This new license first of all allows RADAG to continue operation of the existing power plant, situated at the end of a 3,8 km long channel. At the same time, however, it requires the company to commission a new plant besides the existing barrage by the end of 2012, which will increase the present day output from 528 GWh up to 650 GWh per year. RADAG immediately got down working on the project of what would be one of the largest run-of-river power stations in Germany. The new license provides and increase of the total turbine water flow from originally 1 100 m{sup 3}/s up to 1 400 m{sup 3}/s. The new power plant contains one large Kaplan turbine with an installed total wattage of 28 MW, thus increasing the overall wattage up to 108 MW. The total project costs of the new plant amount to about 68 Mio Euro (price level as per 2007), including 4 Mio Euro for environmental measures. (orig.)

  3. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1997-08-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed.

  4. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong

    1997-01-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed

  5. Microflow photochemistry: UVC-induced [2 + 2]-photoadditions to furanone in a microcapillary reactor

    Directory of Open Access Journals (Sweden)

    Sylvestre Bachollet

    2013-10-01

    Full Text Available [2 + 2]-Cycloadditions of cyclopentene and 2,3-dimethylbut-2-ene to furanone were investigated under continuous-flow conditions. Irradiations were conducted in a FEP-microcapillary module which was placed in a Rayonet chamber photoreactor equipped with low wattage UVC-lamps. Conversion rates and isolated yields were compared to analogue batch reactions in a quartz test tube. In all cases examined, the microcapillary reactor furnished faster conversions and improved product qualities.

  6. Development of a Very Dense Liquid Cooled Compute Platform

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Phillip N.; Lipp, Robert J.

    2013-12-10

    The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.

  7. A Shot to the Space Brain: The Vulnerability of Command and Control of Non-Military Space Systems

    Science.gov (United States)

    1997-03-01

    development by USAF/CV.18 Its current focus is on broad area and multispectral imagery. Physically , it consists of a receiving antenna and two vans for...them high power. A high-power transponder (e.g., 40 watts) can be downlinked to a dish which is physically smaller (e.g., 10 feet) than lower-wattage...Forces,” in Operational Structures Coursebook , Air Command and Staff College, (Maxwell Air Force Base, AL: Air Education and Training Command, November

  8. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  9. Analysis of AC and DC Lighting Systems with 150-Watt Peak Solar Panel in Denpasar Based on NASA Data

    Science.gov (United States)

    Narottama, A. A. N. M.; Amerta Yasa, K.; Suwardana, I. W.; Sapteka, A. A. N. G.; Priambodo, P. S.

    2018-01-01

    Solar energy on the Earth’s surface has different magnitudes on every longitude and latitude. National Aeronautics and Space Administration (NASA) provides surface meteorology and solar energy database which can be accessed openly online. This database delivers information about Monthly Averaged Insolation Incident On A Horizontal Surface, Monthly Averaged Insolation Incident On A Horizontal Surface At Indicated GMT Times and also data about Equivalent Number Of No-Sun Or Black Days for any latitude and longitude. Therefore, we investigate the lighting systems with 150-Watt peak solar panel in Denpasar City, the capital province of Bali. Based on NASA data, we analyse the received wattage by a unit of 150-Watt peak solar panel in Denpasar City and the sustainability of 150-Watt peak solar panel to supply energy for 432-Watt hour/day AC and 360-Watt hour/day DC lighting systems using 1.2 kWh battery. The result shows that the maximum received wattage by a unit of 150-Watt peak solar panel is 0.76 kW/day in October. We concluded that the 1.2 kWh installed battery has higher capacity than the battery capacity needed in March, the month with highest no-sun days, for both AC and DC lighting systems. We calculate that the installed battery can be used to store the sustainable energy from sun needed by AC and DC lighting system for about 2.78 days and 3.51 days, consecutively.

  10. Microwave warning device

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A device for warning a person carrying or wearing it of the presence of dangerous microwave radiation is fully powered by the radiations being detected. A very low-wattage gas-discharge lamp is energized by a broadly or a sharply tuned receiver circuit including dipole antennas or one antenna and a ''grounding'' casing element. The casing may be largely and uniformly transparent or have different areas gradedly light-transmissive to indicate varying radiation intensities. The casing can be made in the shape of a pocket watch, fountain pen, bracelet or finger ring, etc

  11. Lighting up the villages: Livelihood impacts of decentralized stand-alone solar photovoltaic electrification in rural northern Ghana

    Directory of Open Access Journals (Sweden)

    Naah John-Baptist Saabado Ngmaadaba

    2015-01-01

    Full Text Available The dynamics of solar photovoltaic (PV technology dissemination and utilization has taken center stage in recent years on a global scale, aiming to partly address prevailing rampant energy poverty situations particularly in developing countries. This paper evaluates a flagship electrification project called Ghana Energy Development and Access Project (GEDAP. We purposively sampled 250 solar users in 65 villages across 6 districts in the Upper West region which has the country’s lowest level of electricity access and possibly the highest proportion of abject poverty among its inhabitants compared to the rest of the country. Based on the survey, it can be said that the overall impact assessment of the GEDAP-sponsored off-grid solar PV systems on the quality of life of the local beneficiaries was found to be positively marginal. Among all livelihood assets considered, social capital was markedly enhanced by the provision of modern energy services via isolated solar PV systems. Bottlenecks were identified, including limited system wattage capacity, slight dysfunction of some balance of components, higher interest rates, low technical know-how and inadequate monitoring, all of which are negatively affecting the sustainability of the project. Our findings also indicate that satisfaction derived from solar PV electricity supply among local solar customers differed for varied reasons as follows: moderately satisfied (43%, satisfied (52%, and dissatisfied (5%. For a decisive enhancement of rural livelihoods, we strongly recommend up-scaling system wattage capacity and coverage to build up new or improve upon existing livelihood assets through diversification of the income sources of the local inhabitants.

  12. Destructive examination of shipping package 9975-02101

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-05-01

    Destructive and non-destructive examinations have been performed on the components of shipping package 9975-02101 as part of the comprehensive Model 9975 package surveillance program. This package is one of ten high-wattage packages that were selected for field surveillance in FY15, and was identified to contain several non-conforming conditions. Most of these conditions (mold, stains, drum corrosion, calculated fiberboard dimensions and fiberboard damage) relate to the accumulation of water in the outer and lower portions of the cane fiberboard assembly. In the short term, this causes local but reversible changes in the fiberboard properties. Long-term effects can include the permanent loss of fiberboard properties (thus far observed only in the bottom fiberboard layers) and reduced drum integrity due to corrosion. The observed conditions must be fully evaluated by KAC to ensure the safety function of the package is being maintained. Three of the other nine FY15 high-wattage packages examined in the K-Area Complex showed similar behavior. Corrosion of the overpack drum has been seen primarily in those packages with relatively severe fiberboard degradation. Visual examination of the drums in storage for external corrosion should be considered as a screening tool to identify additional packages with potential fiberboard degradation. Where overpack drum corrosion has been observed, it is typically heaviest adjacent to the stitch welds along the bottom edge. It is possible that changes to the stitch weld design would reduce the degree of corrosion in this area, but would not eliminate it. Several factors can contribute to the concentration of moisture in the fiberboard, including higher than average initial moisture content, higher internal temperature (due to internal heat load and placement with the array of packages), and the creation of additional moisture as the fiberboard begins to degrade.

  13. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P

    2018-01-16

    The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be

  14. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    International Nuclear Information System (INIS)

    Drakakis, E.; Karabourniotis, D.

    2012-01-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  15. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    Energy Technology Data Exchange (ETDEWEB)

    Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  16. Los Alamos National Laboratory Develops ''Quick to WIPP'' Strategy

    International Nuclear Information System (INIS)

    Jones, R.; Allen, G.; Kosiewicz, S.; Martin, B.; LANL; Nunz, J.; Biedscheid, J.; Sellmer, T.; Willis, J.; Orban, J.; Liekhus, K.; Djordjevic, S.

    2003-01-01

    The Cerro Grande forest fire in May of 2000 and the terrorist events of September 11, 2001 precipitated concerns of the vulnerability of legacy contact-handled (CH), high-wattage transuranic (TRU) waste stored at Los Alamos National Laboratory (LANL). An analysis of the 9,100 cubic meters of stored CH-TRU waste revealed that 400 cubic meters or 4.5% of the inventory represented 61% of the risk. The analysis further showed that this 400 cubic meters was contained in only 2,000 drums. These facts and the question ''How can the disposition of this waste to the Waste Isolation Pilot Plant (WIPP) be accelerated?'' formed the genesis of LANL's Quick to WIPP initiative

  17. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    International Nuclear Information System (INIS)

    Van Erk, W; Luijks, G M J F; Hitchcock, W

    2011-01-01

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W -1 drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  18. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    Energy Technology Data Exchange (ETDEWEB)

    Van Erk, W [Philips Lighting, Sondervick 47, 5505 NB Veldhoven (Netherlands); Luijks, G M J F [Advanced Development Lighting, Philips Lighting, PO Box 80020, 5600 JM Eindhoven (Netherlands); Hitchcock, W, E-mail: Gerard.luijks@philips.com [Philips Lighting Company, 7265 Route 54, Bath, NY 14810 (United States)

    2011-06-08

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W{sup -1} drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  19. Controversial bulb disks still marketed as energy savers

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.

    1982-05-24

    Despite a 1980 DOE study showing that incandescent bulb disks decrease lamp efficiency by reducing light output as well as energy consumption, at least two manufacturers are still marketing the disks. The companies claim that the Power Disc and Lite-Saver will extend bulb life up to 100 times and reduce wattage 42%, although they both acknowledge that light output is reduced as much as 74% for a 53% efficiency drop. Some users claim the life-extension feature is important when bulb replacement is difficult. The DOE study concludes that the disks are not cost-effective if the user wants equivalent lighting, and questions some of the manufacturers' advertising claims. Satisfied users counter with reports of good performance and no problems with shock or other safety hazards. (DCK)

  20. Lighting: The Killer App of Village Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This paper looks at lighting systems as the major market for village level power generation. To the consumer it is something which is needed, could come from a much friendlier source, and the issues of affordability, convenience, and reliability are important. To the supplier lighting has an enormous range of potential customers, it opens the opportunity for other services, and even small demand can give big returns. Because the efficiency of the light source is critical to the number of lights which a fixed power supply can drive, it is important to pick the proper type of bulb to use in this system. The paper discusses test results from an array of fluorescent and incadescent lamps, compared with a kerosene lamp. Low wattage fluorescents seem to perform the best.

  1. Induction of micronuclei in the root tip cells of Haplopappus germinating seeds by fission neutrons and X rays

    International Nuclear Information System (INIS)

    Hanmoto, Hidehiro; Yonezawa, Yoshihiko; Itoh, Tetsuo; Kondo, Sohei.

    1992-01-01

    Seeds of Haplopappus gracilis (2n=4), an annual Compositae, were soaked in water for 24 hr and then irradiated with fission neutrons from the 1-wattage reactor, UTR-KINKI, or X rays. The root tip cells were inspected at 48 hr post-irradiation for evidence of chromosome damage using micronucleus as endpoint. The frequency of neutron-induced micronuclei increased almost linearly as the dose increased up to as much as 1.2 Gy. X-ray-induced micronuclei showed an exponential dose-response relation. From dose-response data, we estimated that the dose necessary to induce micronuclei at a frequency of 5 per 1,000 cells was 1.2 Gy for neutrons and 8.6 Gy for X rays. Thus, to induce chromosome damage in the somatic cells of germinating Haplopappus seeds, fission neutrons were much more effective than X rays. (author)

  2. Effect of UV Radiation by Projectors on 3D Printing

    Directory of Open Access Journals (Sweden)

    Kovalenko Iaroslav

    2017-01-01

    Full Text Available Polymers that solidify under light radiation are commonly used in digital light processing (DLP 3D printing. A wide range of photopolymers use photoinitiators that react to radiation in range of ultraviolet (UV wavelength. In the present study we provided measurement of radiant fluence in the UV wavelength range from 280 nm to 400 nm for two data projectors and compared effect of radiation on quality of 3D printing. One projector is commonly used DLP projector with high energy lamp. Second one is an industrial projector, in which RGB light emitting diodes (LEDs are replaced by UV LEDs with wattage at the level of 3.6 % of the first one. Achieved data confirmed uneven distribution of radiant energy on illuminated area. These results validate, that undesired heating light causes internal stress inside built models that causes defects in final products.

  3. Which bulb is brighter? It depends on connection! Strategies for illuminating electrical concepts using light bulbs

    Science.gov (United States)

    Wong, Darren; Lee, Paul; Foong, S. K.

    2017-11-01

    In this paper, we examined teachers’ understanding of electrical concepts such as power, current and potential difference based on how these concepts were applied to understand the relative brightness seen in bulbs of different wattage under different connections—series or parallel. From the responses of teachers to a concept question, we identified common lines of reasoning and the associated conceptual difficulties. To support the explanation of the concept question, we set up relevant circuits and made measurements of the circuits. We discuss the temperature dependence of the resistance of the light bulb which although critical for in depth understanding of the relative brightness, was often omitted in the teacher responses. Lastly, we share insights and strategies to elicit and confront students' thinking and to help them resolve, extend and apply their thinking with regard to the related electrical concepts using various light bulb activities.

  4. Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra).

    Science.gov (United States)

    Nistor, Oana-Viorela; Seremet Ceclu, Liliana; Andronoiu, Doina Georgeta; Rudi, Ludmila; Botez, Elisabeta

    2017-12-01

    There is an increased interest in preserving fruits and vegetables by drying. The novelty of this study consists in the combination of the following three drying methods: free convection (at 50, 60, and 70°C), forced convection at 40°C and 315W microwave power. The aim of this study was to investigate the effects of the drying conditions on red beetroot (Beta vulgaris L.) in terms of betalain variance, and polyphenol, microstructure changes (SEM). A strong thermal shock, provided by convection at 60° followed by microwave wattage 315W/9min, leads to a better preservation of bioactive compounds content (0.631±0.0042mg/g of betacyanin and 0.795±0.0019mg/g betaxanthin) when compared to convection at 50, 60 and 70°C. The results showed that combined drying methods led to a significant preservation of the phytochemical content as compared to the traditional methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Upside to downsizing : Acceleware's graphic processor technology propels seismic data processing revolution

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2009-11-15

    Accelware has developed a graphic processor technology (GPU) that is transforming the petroleum industry. The benefits of the technology are its small-footprint, low-wattage, and high speed. The software brings supercomputing speed to the desktop by leveraging the massive parallel processing capacity to the very latest in GPU technology. This article discussed the GPU technology and its emergence as a powerful supercomputing tool. Accelware's partnering with California-based NVIDIA was also outlined. The advantages of the technology were also discussed including its smaller footprint. Accelware's hardware takes up a fraction of the space and uses up to 70 per cent less power than a traditional central processing unit. By combining Accelware's core knowledge in making complex algorithms run in parallel with an in-house team of seismic industry experts, the company provides software solutions for seismic data processors that access the massively parallel processing capabilities of GPUs. 1 fig.

  6. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    International Nuclear Information System (INIS)

    Choi, Ji Won; Yoo, Seung Min; Kwak, Seo Hyun

    2005-01-01

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 ρ 0.5 mm in group I and 11.4 ρ 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal wall

  7. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Yoo, Seung Min [College of Medicine, Chungang University, Seoul, (Korea, Republic of); Kwak, Seo Hyun [Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2005-07-15

    The purpose of this study was to evaluate the possibility of using radiofrequency ablation as the treatment modality for the benign or malignant thyroid nodules in humans. Therefore, we examined the results of using radiofrequency ablation on the thyroid glands in dogs, in respect of the extent of the ablated tissue and the complications. Five dogs (10 lobes of the thyroid glands) were included in this study. US-guided radiofrequency ablation was undertaken with a 10 mm, uncovered 17 gauge cool-tip needle. The power and duration was 20 wattage and 1 minute in five thyroid lobes (group 1) and 20 wattage and 2 minutes in another 5 thyroid lobes (group 2). The ultrasound scans and the pre-and post-enhancement CT scans were undertaken before and immediately after the procedures, and at 24 hours, 72 hours and 1 week later. The US and CT findings of the ablated tissue and complications were evaluated. Blood sampling was done at the pre-procedure time and 1 week later for evaluating the functional status of the thyroid gland. Laryngoscopy was done at the pre-procedure and post-procedure times, and at 24 hours, 72 hours and 1 week later for the evaluation of any recurrent laryngeal nerve palsy. The echo pattern of the ablated thyroid gland at immediately after the radiofrequency ablation appeared as poorly marginated and hyperechoic. On the US obtained 24 hours after radiofrequency ablation, the echo pattern of the ablated thyroid gland was hypoechoic. The maximum diameters after RFA were 9.4 {rho} 0.5 mm in group I and 11.4 {rho} 0.5 mm in group II. The pre-enhanced CT scan taken at immediately after the radiofrequency ablation showed ill defined hypodense areas in the ablated thyroid gland. Differentiation between the normal and abnormal portions of the thyroid gland was difficult on the contrast enhanced CT scan. Complications induced by radiofrequency ablation were one recurrent laryngeal nerve palsy, two perforations of esophagus and five thickenings of the esophageal

  8. Test of calorimetry for high burn-up plutonium

    International Nuclear Information System (INIS)

    Beets, C.; Carchon, R.; Fettweis, P.

    1984-01-01

    In recent times, the interest of applying calorimetry for safeguards purpose is steadily increasing. Calorimetric measurements have been performed on a set of high burn-up (25000 MWd/t) Pu samples, ranging in mass between 60 g and 2.5 kg Pu, distributed as PuO 2 powder embedded in stainless steel containers. The powers produced by these containers ranged between 0.8 W and 36 W. The calorimeter used was the Mound 150 type, and the isotopics and the Am content have been determined earlier by mass spectroscopy, completed with α and γ counting, and were later verified by the same methods. Watts/gram measurements were made on twelve 60 g samples of the same plutonium lot to demonstrate the Pu elemental and isotopic homogeneity, and hence, its suitability for subsequent NDA experiments. These samples were also measured in a stacked way to fill up the mass and wattage gaps between 60 g (0.8W) and 1 kg (14W). Calorimetric assay values, obtained with both isotopic measurements are discussed

  9. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    Monika Machoy

    2017-01-01

    Full Text Available Optical coherence tomography provides sections of tissues in a noncontact and noninvasive manner. The device measures the time delay and intensity of the light scattered or reflected from biological tissues, which results in tomographic imaging of their internal structure. This is achieved by scanning tissues at a resolution ranging from 1 to 15 μm. OCT enables real-time in situ imaging of tissues without the need for biopsy, histological procedures, or the use of X-rays, so it can be used in many fields of medicine. Its properties are not only particularly used in ophthalmology, in the diagnosis of all layers of the retina, but also increasingly in cardiology, gastroenterology, pulmonology, oncology, and dermatology. The basic properties of OCT, that is, noninvasiveness and low wattage of the used light, have also been appreciated in analytical technology by conservators, who use it to identify the quality and age of paintings, ceramics, or glass. Recently, the OCT technique of visualization is being tested in different fields of dentistry, which is depicted in the article.

  10. Efficient scale for photovoltaic systems and Florida's solar rebate program

    International Nuclear Information System (INIS)

    Burkart, Christopher S.; Arguea, Nestor M.

    2012-01-01

    This paper presents a critical view of Florida's photovoltaic (PV) subsidy system and proposes an econometric model of PV system installation and generation costs. Using information on currently installed systems, average installation cost relations for residential and commercial systems are estimated and cost-efficient scales of installation panel wattage are identified. Productive efficiency in annual generating capacity is also examined under flexible panel efficiency assumptions. We identify potential gains in efficiency and suggest changes in subsidy system constraints, providing important guidance for the implementation of future incentive programs. Specifically, we find that the subsidy system discouraged residential applicants from installing at the cost-efficient scale but over-incentivized commercial applicants, resulting in inefficiently sized installations. - Highlights: ► Describe a PV solar incentive system in the U.S. state of Florida. ► Combine geocoded installation site data with a detailed irradiance map. ► Estimate installation and production costs across a large sample. ► Identify inefficiencies in the incentive system. ► Suggest changes to policy that would improve economic efficiency.

  11. Cross Matching of VIIRS Boat Detection and Vessel Monitoring System Tracks

    Science.gov (United States)

    Hsu, F. C.; Elvidge, C.; Zhizhin, M. N.; Baugh, K.; Ghosh, T.

    2016-12-01

    One approach to commercial fishing is to use use bright lights at night to attract catch. This is a widely used practice in East and Southeast Asia, but can also be found in other fisheries. In some cases, the deployed lighting exceeds 100,000 watts. Such lighting is distinctive in dark ocean and can even be seen from space with sensor such as Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS-DNB). We have developed a VIIRS Boat Detection (VBD) system, which outputs lists of boat locations in near real time. One of the standard methods fishery agencies use to collect geospatial data on fishing boats is to require boats to carry Vessel Monitoring System beacons. We developed an algorithm to cross-match VBD data with VMS tracks. With this we are able to identify fishing boats that do not carry VMS beacons. In certain situations, this is an indicator of illegal fishing. The other application for this cross-matching is to define the VIIRS detection limits and developing a calibration to estimate deployed wattage. Here we demonstrate results of cross matching VBD and VMS for Indonesia as example to showcase its potential.

  12. Assessment of LED Technology in Ornamental Post-Top Luminaires (Host Site: Sacramento, CA)

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.

    2011-12-01

    The DOE Municipal Solid-State Street Lighting Consortium has evaluated four different LED replacements for existing ornamental post-top street lights in Sacramento, California. The project team was composed of the City and its consultant, PNNL (representing the Consortium), and the Sacramento Municipal Utility District. Product selection was finalized in March 2011, yielding one complete luminaire replacement and three lamp-ballast retrofit kits. Computer simulations, field measurements, and laboratory testing were performed to compare the performance and cost-effectiveness of the LED products relative to the existing luminaire with 100 W high-pressure sodium lamp. After it was confirmed the LED products were not equivalent to HPS in terms of initial photopic illumination, the following parameters were scaled proportionally to enable equitable (albeit hypothetical) comparisons: light output, input wattage, and pricing. Four replacement scenarios were considered for each LED product, incorporating new IES guidance for mesopic multipliers and lumen maintenance extrapolation, but life cycle analysis indicated cost effectiveness was also unacceptable. Although LED efficacy and pricing continue to improve, this project serves as a timely and objective notice that LED technology may not be quite ready yet for such applications.

  13. Data mining application in industrial energy audit for lighting

    Energy Technology Data Exchange (ETDEWEB)

    Maricar, N.M.; Kim, G.C.; Jamal, N. [Kolej Univ., Melaka (Malaysia). Faculty of Electrical Engineering

    2005-07-01

    A data mining application for lighting energy audits at industrial sites was presented. Data collection was based on the parameters needed for the analysis part of the audit. Data collection included the activity for which the room was used; its dimension; light level readings in lux; the number of luminaries; the number of lamps per luminaries; lamp fixtures; and lamp wattage. The lumen method was used to calculate the recommended numbers of luminaries in the room. The number was then compared with the existing system's luminaries. The installed load efficacy ratio (ILER) was then used to determine proper retrofit action to maximize energy usage. The difference between the calculated lux and the standard lux was used to create data subsets. A data mining algorithm was used to determine that the ILER plays an important role in calculating the efficiency of lighting systems. It was also concluded that the method can be used to minimize the time needed to analyze large amounts of lighting data. The results of case studies were also used to show that the combined data mining algorithm provided accurate assessments using existing calculated data. 7 refs., 8 tabs., 5 figs.

  14. Canadian PV [photovoltaic] commercial activity report for 1989

    International Nuclear Information System (INIS)

    1992-01-01

    The Canadian Photovoltaic Industries Association (CPIA) conducted a survey among 65 Canadian firms involved in the photovoltaic industry and technology to determine the degree of commercial activity. Overall revenue for these firms in 1989 increased nearly 15% to ca $15 million. Actual reported sales of photovoltaic (PV) modules totalled 400 kW for use in Canada and abroad, of which communications applications accounted for ca 40% of these sales. Export sales were significant, with 59% of reported sales sold as packages being exported. Sales of systems within Canada were fairly evenly distributed between Quebec, Ontario, the Prairies, and British Columbia. The private sector share of reported sales was 42% or greater in terms of both dollar or peak wattage. Residential-use and water-pumping segments of the market reported increased activity. Internationally, annual PV module sales in 1989 were reported to be 42 MW peak, a 20% increase from 1988. The USA has the world market share with 36%, followed by Japan at 30%. Survey respondents made suggestions for more equitable tax treatment for PV products, and saw environmental issues as having a major impact on marketing strategies. 27 refs., 11 tabs

  15. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    International Nuclear Information System (INIS)

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent

  16. Simulating Performance Risk for Lighting Retrofit Decisions

    Directory of Open Access Journals (Sweden)

    Jia Hu

    2015-05-01

    Full Text Available In building retrofit projects, dynamic simulations are performed to simulate building performance. Uncertainty may negatively affect model calibration and predicted lighting energy savings, which increases the chance of default on performance-based contracts. Therefore, the aim of this paper is to develop a simulation-based method that can analyze lighting performance risk in lighting retrofit decisions. The model uses a surrogate model, which is constructed by adaptively selecting sample points and generating approximation surfaces with fast computing time. The surrogate model is a replacement of the computation intensive process. A statistical method is developed to generate extreme weather profile based on the 20-year historical weather data. A stochastic occupancy model was created using actual occupancy data to generate realistic occupancy patterns. Energy usage of lighting, and heating, ventilation, and air conditioning (HVAC is simulated using EnergyPlus. The method can evaluate the influence of different risk factors (e.g., variation of luminaire input wattage, varying weather conditions on lighting and HVAC energy consumption and lighting electricity demand. Probability distributions are generated to quantify the risk values. A case study was conducted to demonstrate and validate the methods. The surrogate model is a good solution for quantifying the risk factors and probability distribution of the building performance.

  17. Evaluation of an LED Retrofit Project at Princeton University’s Carl Icahn Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murphy, Arthur L. [Princeton Univ., NJ (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-25

    The LED lighting retrofit at the Carl Icahn Laboratory of the Lewis-Sigler Institute for Integrative Genomics was the first building-wide interior LED project at Princeton University, following the University’s experiences from several years of exterior and small-scale interior LED implementation projects. The project addressed three luminaire types – recessed 2x2 troffers, cove and other luminaires using linear T8 fluorescent lamps, and CFL downlights - which combined accounted for over 564,000 kWh of annual energy, over 90% of the lighting energy used in the facility. The Princeton Facilities Engineering staff used a thorough process of evaluating product alternatives before selecting an acceptable LED retrofit solution for each luminaire type. Overall, 815 2x2 luminaires, 550 linear fluorescent luminaires, and 240 downlights were converted to LED as part of this project. Based solely on the reductions in wattage in converting from the incumbent fluorescent lamps to LED retrofit kits, the annual energy savings from the project was over 190,000 kWh, a savings of 37%. An additional 125,000 kWh of energy savings is expected from the implementation of occupancy and task-tuning control solutions, which will bring the total savings for the project to 62%.

  18. Implementation of linear bias corrections for calorimeters at Mound

    International Nuclear Information System (INIS)

    Barnett, T.M.

    1993-01-01

    In the past, Mound has generally made relative bias corrections as part of the calibration of individual calorimeters. The correction made was the same over the entire operating range of the calorimeter, regardless of the magnitude of the range. Recently, an investigation was performed to check the relevancy of using linear bias corrections to calibrate the calorimeters. The bias is obtained by measuring calibrated plutonium and/or electrical heat standards over the operating range of the calorimeter. The bias correction is then calculated using a simple least squares fit (y = mx + b) of the bias in milliwatts over the operating range of the calorimeter in watts. The equation used is B i = B 0 + (B w * W m ), where B i is the bias at any given power in milliwatts, B 0 is the intercept (absolute bias in milliwatts), B w is the slope (relative bias in milliwatts per watt), and W m is the measured power in watts. The results of the study showed a decrease in the random error of bias corrected data for most of the calorimeters which are operated over a large wattage range (greater than an order of magnitude). The linear technique for bias correction has been fully implemented at Mound and has been included in the Technical Manual, ''A Measurement Control Program for Radiometric Calorimeters at Mound'' (MD-21900)

  19. Permanent transparent color-warming glazes for dimmable and non-dimmable LED bulbs

    Science.gov (United States)

    Spanard, Jan-Marie A.

    2014-02-01

    Illuminant metameric failure is frequently experienced when viewing material samples under LED generated light vs. traditional incandescent light. LED light temperatures can be improved with phosphor coatings, but long-wave red light is still generally absent in LED "warm-white" light, resulting in metameric failure of orange-to-red objects. Drawing on techniques developed for the architectural restoration of stained glass, we find that transparent, heat-resistant, permanent, pigmented coatings can be applied to any glass, aluminum or plastic surface of an LED bulb, including the phosphor plate, dome or envelope, to produce warmer visible light than in current warm-light LED bulbs. These glazes can be applied in combination with existing technologies to better tune the LED emitted light or they may be used alone. These pigmented coatings include, but are not limited to, those made by suspending inorganic materials in potassium silicates or durable transparent pigmented resins. The pigmented resin glazes may be produced in either a clear gloss vehicle or an iridescent, light diffusing transparent base. Further, a graduated density of the tinted glazes on dimmable bulbs allow the light to change color as wattage is diminished. The glazes may be applied in the manufacturing of the bulb or marketed to current bulb owners as an after-market product to better tune the thousands of LED light bulbs currently in use.

  20. 9975 Shipping package component long-term degradation rates

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    Special nuclear materials are being stored in the K-Area Complex using 3013 containers that are held within Model 9975 shipping packages. The service life for these packages in storage was recently increased from 15 to 20 years, since some of these packages have been stored for nearly 15 years. A strategy is also being developed whereby such storage might be extended beyond 20 years. This strategy is based on recent calculations that support acceptable 9975 package performance for 20 years with internal heat loads up to 19 watts, and identifies a lower heat load limit for which the package components should degrade at half the bounding rate or less, thus doubling the effective storage life for these lower wattage packages. The components of the 9975 package that are sensitive to aging under storage conditions are the fiberboard overpack and the O-ring seals, although some degradation of the lead shield and outer drum are also possible. This report summarizes degradation rates applicable to lower heat load storage conditions. In particular, the O-ring seals should provide leak-tight performance for more than 40 years in packages for which their maximum temperature is ≤135 °F. Similarly, the fiberboard should remain acceptable in performance of its required safety functions for up to 40 years in packages with a maximum fiberboard temperature ≤125 °F.

  1. Technology evolves to save lives: emergency lighting

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.

    2001-02-01

    With an increase in deadly fires in industrial facilities, there has been a revival of national fire safety and prevention awareness. This article discusses emergency lighting technology as one specific area of significant advancements in fire safety, with a focus on the use of emergency lighting using light emitting diodes (LEDs), which is far and away a more economical and energy efficient light source than the incandescent and fluorescent lamps used previously. Besides being economical and energy-efficient, LEDs are compact in size, are characterized as having low wattage, low heat, long life, uniform brightness and compatibility with integrated circuits. Red has always been the traditional wavelength because it scatters light much less than blue, but green exit lights appear to have been favored recently because the sensitivity of the human eye increases with shorter wavelengths. Selection criteria for LEDs are provided. The use of laser light technology, in conjunction with exist signs, is also discussed. This technology uses a Class 3 laser option which activates a red light beam when in the emergency mode, pointing down the path of egress, providing directional light up to 40 feet, depending on the intensity of the smoke. Some newer emergency lighting products also have strobe features to assist the hearing impaired since they are not able to hear fire alarms.

  2. Technoeconomical Assessment of Optimum Design for Photovoltaic Water Pumping System for Rural Area in Oman

    Directory of Open Access Journals (Sweden)

    Hussein A. Kazem

    2015-01-01

    Full Text Available Photovoltaic (PV systems have been used globally for a long time to supply electricity for water pumping system for irrigation. System cost drops down with time since PV technology, efficiency, and design methodology have been improved and cost of wattage drops dramatically in the last decade. In the present paper optimum PV system design for water pumping system has been proposed for Oman. Intuitive and numerical methods were used to design the system. HOMER software as a numerical method was used to design the system to come up with optimum design for Oman. Also, REPS.OM software has been used to find the optimum design based on hourly meteorological data. The daily solar energy in Sohar was found to be 6.182 kWh/m2·day. However, it is found that the system annual yield factor is 2024.66 kWh/kWp. Furthermore, the capacity factor was found to be 23.05%, which is promising. The cost of energy and system capital cost has been compared with that of diesel generator and systems in literature. The comparison shows that the cost of energy is 0.180, 0.309, and 0.790 USD/kWh for PV-REPS.OM, PV-HOMER, and diesel systems, respectively, which sound that PV water pumping systems are promising in Oman.

  3. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  4. The TRUPACT-II Matrix Depleton Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Djordjevic, S.M.; Loehr, C.A.; Smith, M.C.; Banjac, V.; Lyon, W.F.

    1995-01-01

    Contact-handled transuranic (CH-TRU) wastes will be shipped and disposed at the Waste Isolation Pilot Plant (WIPP) repository in the Transuranic Package Transporter-II (TRUPACT-II) shipping package. A primary transportation requirement for the TRUPACT-II is that the concentration of potentially flammable gases (i.e., hydrogen and methane) must not exceed 5 percent by volume in the package or the payload during a 60-day shipping period. Decomposition of waste materials by radiation, or radiolysis, is the predominant mechanism of gas generation during transport. The gas generation potential of a target waste material is characterized by a G-value, which is the number of molecules of gas generated per 100 eV of ionizing radiation absorbed by the target material. To demonstrate compliance with the flammable gas concentration requirement, theoretical worst-case calculations were performed to establish allowable wattage (decay heat) limits for waste containers. The calculations were based on the G-value for the waste material with the highest potential for flammable gas generation. The calculations also made no allowances for decreases of the G-value over time due to matrix depletion phenomena that have been observed by many experimenters. Matrix depletion occurs over time when an alpha-generating source particle alters the target material (by evaporation, reaction, or decomposition) into a material of lower gas generating potential. The net effect of these alterations is represented by the ''effective G-value.''

  5. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-06100

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W.

    2014-11-07

    Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-06100. This package was selected for examination based on several characteristics: - This was the first destructively examined package in which the fiberboard assembly was fabricated from softwood fiberboard. - The package contained a relatively high heat load to contribute to internal temperature, which is a key environmental factor for fiberboard degradation. - The package has been stored in the middle or top of a storage array since its receipt in K- Area, positions that would contribute to increased service temperatures. No significant changes were observed for attributes that were measured during both field surveillance and destructive examination. Except for the axial gap, all observations and test results met identified criteria, or were collected for information and trending purposes. The axial gap met the 1 inch maximum criterion during field surveillance, but was just over the criterion during SRNL measurements. When re-measured at a later date, it again met the criterion. The bottom of the lower fiberboard assembly and the drum interior had two small stains at matching locations, suggestive of water intrusion. However, the fiberboard assembly did not contain any current evidence of excess moisture. No evidence of a degraded condition was found in this package. Despite exposure to the elevated temperatures of this higher-then-average wattage package, properties of the fiberboard and O-rings are consistent with those of new packages.

  6. Miscellaneous electricity use in U.S. homes

    International Nuclear Information System (INIS)

    Sanchez, Marla C.; Koomey, Jonathan G.; Moezzi, Mithra M.; Meier, Alan; Huber, Wolfgang

    1999-01-01

    Historically, residential energy and carbon saving efforts have targeted conventional end uses such as water heating, lighting and refrigeration. The emergence of new household appliances has transformed energy use from a few large and easily identifiable end uses into a broad array of ''miscellaneous'' energy services. This group of so called miscellaneous appliances has been a major contributor to growth in electricity demand in the past two decades. We use industry shipment data, lifetimes, and wattage and usage estimates of over 90 individual products to construct a bottom-up end use model (1976-2010). The model is then used to analyze historical and forecasted growth trends, and to identify the largest individual products within the miscellaneous end use. We also use the end use model to identify and analyze policy priorities. Our forecast projects that over the period 1996 to 2010, miscellaneous consumption will increase 115 TWh, accounting for over 90 percent of future residential electricity growth. A large portion of this growth will be due to halogen torchiere lamps and consumer electronics, making these two components of miscellaneous electricity a particularly fertile area for efficiency programs. Approximately 20 percent (40 TWh) of residential miscellaneous electricity is ''leaking electricity'' or energy consumed by appliances when they are not performing their principal function. If the standby power of all appliances with a standby mode is reduced to one watt, the potential energy savings equal 21 TWh/yr, saving roughly$1-2 billion annually

  7. Assessment of gas flammability in transuranic waste container

    International Nuclear Information System (INIS)

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-01-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions

  8. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps

    Directory of Open Access Journals (Sweden)

    Gunnar Brehm

    2017-04-01

    Full Text Available Most nocturnal Lepidoptera can be attracted to artificial light sources, particularly to those that emit a high proportion of ultraviolet radiation. Here, I describe a newly developed LED lamp set for the use in the field that is lightweight, handy, robust, and energy efficient. The emitted electromagnetic spectrum corresponds to the peak sensitivity in most Lepidoptera eye receptors (ultraviolet, blue and green. Power LEDs with peaks at 368 nm (ultraviolet, 450 nm (blue, 530 nm (green, and 550 nm (cool white are used. I compared the irradiance (Ee of many commonly used light-trapping lamps at a distance of 50 cm. Between wavelengths of 300 and 1000 nm, irradiance from the new lamp was 1.43 W m-2. The new lamp proved to be the most energy efficient, and it emitted more radiation in the range between 300 and 400 nm than any other lamp tested. Cold cathodes are the second most energy-efficient lamps. Irradiation from fluorescent actinic tubes is higher than from fluorescent blacklight-blue tubes. High-wattage incandescent lamps and self-ballasted mercury vapour lamps have highest irradiance, but they mainly emit in the long wave spectrum. The use of gauze and sheets decreases the proportion of UV radiation and increases the share of blue light, probably due to optical brighteners. Compared with sunlight, UV irradiance is low at a distance of 50 cm from the lamp, but (safety glasses as well as keeping sufficient distance from the lamp are recommended. In field tests, the new LED lamp attracted large numbers of Lepidoptera in both the Italian Alps and in the Peruvian Andes.

  9. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  10. Evaluation of Energy Efficiency Performance of Heated Windows

    Science.gov (United States)

    Jammulamadaka, Hari Swarup

    The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.

  11. Application of Best Industry Practices to the Design of Commercial Refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-06-30

    The substantial efficiency improvements which have been realized in residential refrigerators over the last twenty years due to implementation of the National Appliance Energy Conservation Act and changing consumer reactions to energy savings give an indication of the potential for improvement in the commercial sector, where few such efficiency improvements have been made to date. The purchase decision for commercial refrigerators is still focused primarily on first cost and product performance issues such as maximizing storage capacity, quick pulldown, durability, and reliability. The project applied techniques used extensively to reduce energy use in residential refrigeration to a commercial reach-in refrigerator. The results will also be applicable to other commercial refrigeration equipment, such as refrigerated vending machines, reach-in freezers, beverage merchandisers, etc. The project described in this paper was a collaboration involving the Appliance and Building Technology Sector of TIAX, the Delfield Company, and the U. S. Department of Energy's Office of Building Technologies. Funding was provided by DOE through Cooperative Agreement No. DE-FC26-00NT41000. The program plan and schedule were structured to assure successful integration of the TIAX work on development of efficient design concepts into Delfield's simultaneous development of the Vantage product line. The energy-saving design options evaluated as part of the development included brushless DC and PSC fan motors, high-efficiency compressors, variable-speed compressor technology, cabinet thermal improvement (particularly in the face frame area), increased insulation thickness, a trap for the condensate line, improved insulation, reduced-wattage antisweat heaters, non-electric antisweat heating, off-cycle defrost termination, rifled heat exchanger tubing, and system optimization (selection of heat exchangers, fans, and subcooling, superheat, and suction temperatures for efficient

  12. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure.

    Science.gov (United States)

    DeVito, Elise E; Krishnan-Sarin, Suchitra

    2018-01-01

    Electronic cigarette (e-cigarette) use has increased substantially in recent years. While e-cigarettes have been proposed as a potentially effective smoking cessation tool, dualuse in smokers is common and e-cigarettes are widely used by non-smokers, including youth and young-adult non-smokers. Nicotine, the primary addictive component in cigarettes, is present at varying levels in many e-liquids. E-cigarettes may lead to initiation of nicotine use in adult and youth non-smokers, re-initiation of nicotine dependence in ex-smokers or increased severity of nicotine dependence in dual-users of cigarettes and e-cigarettes. As such, there are important clinical and policy implications to understanding factors impacting nicotine exposure from e-cigarettes. However, the broad and rapidly changing range of e-liquid constituents and e-cigarette hardware which could impact nicotine exposure presents a challenge. Recent changes in regulatory oversight of e-cigarettes underscore the importance of synthesizing current knowledge on common factors which may impact nicotine exposure. This review focuses on factors which may impact nicotine exposure by changing e-cigarette use behavior, puff topography, altering the nicotine yield (amount of nicotine exiting the e-cigarette mouth piece including nicotine exhaled as vapor) or more directly by altering nicotine absorption and bioavailability. Topics reviewed include e-liquid components or characteristics including flavor additives (e.g., menthol), base e-liquid ingredients (propylene glycol, vegetable glycerin), components commonly used to dissolve flavorants (e.g., ethanol), and resulting properties of the e-liquid (e.g., pH), e-cigarette device characteristics (e.g., wattage, temperature, model) and user behavior (e.g., puff topography) which may impact nicotine exposure. E-liquid characteristics and components, e-cigarette hardware and settings, and user behavior can all contribute substantially to nicotine exposure from e

  13. Plutonium-238 Decision Analysis

    International Nuclear Information System (INIS)

    Brown, Mike; Lechel, David J.; Leigh, C.D.

    1999-01-01

    Five transuranic (TRU) waste sites in the Department of Energy (DOE) complex, collectively, have more than 2,100 cubic meters of Plutonium-238 (Pu-238) TRU waste that exceed the wattage restrictions of the Transuranic Package Transporter-II (TRUPACT-11). The Waste Isolation Pilot Plant (WIPP) is being developed by the DOE as a repository for TRU waste. With the Waste Isolation Pilot Plant (WIPP) opening in 1999, these sites are faced with a need to develop waste management practices that will enable the transportation of Pu-238 TRU waste to WIPP for disposal. This paper describes a decision analysis that provided a logical framework for addressing the Pu-238 TRU waste issue. The insights that can be gained by performing a formalized decision analysis are multifold. First and foremost, the very process. of formulating a decision tree forces the decision maker into structured, logical thinking where alternatives can be evaluated one against the other using a uniform set of criteria. In the process of developing the decision tree for transportation of Pu-238 TRU waste, several alternatives were eliminated and the logical order for decision making was discovered. Moreover, the key areas of uncertainty for proposed alternatives were identified and quantified. The decision analysis showed that the DOE can employ a combination approach where they will (1) use headspace gas analyses to show that a fraction of the Pu-238 TRU waste drums are no longer generating hydrogen gas and can be shipped to WIPP ''as-is'', (2) use drums and bags with advanced filter systems to repackage Pu-238 TRU waste drums that are still generating hydrogen, and (3) add hydrogen getter materials to the inner containment vessel of the TRUPACT-11to relieve the build-up of hydrogen gas during transportation of the Pu-238 TRU waste drums

  14. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m 3 of the 2,600 m 3 of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to ∼5,400 m 3 . This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) 238 Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with 238 Pu activity which exceeds allowable shipping limits by 10--100X. (2) 241 Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by ∼3X. (3) 239 Pu-contaminated combustible waste, mainly organic waste materials contaminated with 239 Pu and 241 Am, is estimated to exceed thermal load requirements by a factor of ∼2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum

  15. Differences in vaping topography in relation to adherence to exclusive electronic cigarette use in veterans

    Science.gov (United States)

    Balestrini, Kira; Holt, Gregory; Mirsaeidi, Mehdi; Calderon-Candelario, Rafael; Whitney, Philip; Salathe, Matthias

    2018-01-01

    Background Understanding vaping patterns of electronic cigarette (EC) use is important to understand the real-life exposure to EC vapor. Long term information on vaping topography in relation to tobacco cigarette (TC) smoking cessation success has not been explored. Methods Observational non-blinded study where active TC smokers were asked to replace TC with EC over 4 weeks (replacement phase, RP) followed by exclusive EC use for an additional 12 weeks (maintenance phase, MP). TC use and EC compliance was monitored weekly. Subjects were classified as success or failure whether or not they completed the protocol. Vaping information was stored and downloaded directly from the EC device and averaged per calendar day for analysis. Results From 25 subjects that followed the protocol, sixteen succeeded in completing the RP and 8 the MP (32%). No significant differences in baseline characteristics were noted between subjects in the success and failure groups including markers of nicotine addiction, plasma cotinine levels or smoking history. Success subjects showed significantly longer puff duration (seconds per vape) and total overall vapor exposure (number of vapes x average vape duration or vape-seconds) in both study phases. Furthermore, subjects in the success group continued to increase the number of vapes, device voltage and wattage significantly as they transitioned into the MP. After an initial drop, subjects in the success group were able to regain plasma cotinine levels comparable to their TC use while subjects in the failure group could not. Cotinine levels significantly correlated with the average number of daily vapes and vapes-seconds, but not with other vaping parameters. Conclusion The topography of smokers who adhere to exclusive EC use reflects a progressive and dynamic device adaptation over weeks to maintain baseline cotinine levels. The higher inhaled volume over time should be considered when addressing the potential toxic effects of EC and the

  16. Metal-halide lamp design: atomic and molecular data needed

    International Nuclear Information System (INIS)

    Lapatovich, Walter P

    2009-01-01

    Metal-halide lamps are a subset of high intensity discharge (HID) lamps so named because of their high radiance. These lamps are low temperature (∼0.5 eV), weakly ionized plasmas sustained in refractory but light transmissive envelopes by the passage of electric current through atomic and molecular vapors. For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-780 nm) to permit the light so generated to render colors comparable to natural sunlight. This is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency (efficacy) and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The electrons, atoms and radicals are in local thermodynamic equilibrium (LTE), but not with the radiation field. Strong thermal (10 6 K m -1 ) and density gradients are sustained in the discharge. Atomic radiation produced in the high-temperature core transits through colder gas regions where it interacts with cold atoms and un-dissociated molecules before exiting the lamp. Power balance and spectral output of the lamp are directly affected by the strength of atomic transitions. Attempts to simulate the radiative output of functional metal-halide lamps have been successful only in very simple cases. More data (e.g. the atomic transition probabilities of Ce i) are necessary to improve lamp performance, to select appropriate radiators and in scaling the lamp geometry to various wattages for specific applications.

  17. Differences in vaping topography in relation to adherence to exclusive electronic cigarette use in veterans.

    Science.gov (United States)

    Guerrero-Cignarella, Andrea; Luna Diaz, Landy V; Balestrini, Kira; Holt, Gregory; Mirsaeidi, Mehdi; Calderon-Candelario, Rafael; Whitney, Philip; Salathe, Matthias; Campos, Michael A

    2018-01-01

    Understanding vaping patterns of electronic cigarette (EC) use is important to understand the real-life exposure to EC vapor. Long term information on vaping topography in relation to tobacco cigarette (TC) smoking cessation success has not been explored. Observational non-blinded study where active TC smokers were asked to replace TC with EC over 4 weeks (replacement phase, RP) followed by exclusive EC use for an additional 12 weeks (maintenance phase, MP). TC use and EC compliance was monitored weekly. Subjects were classified as success or failure whether or not they completed the protocol. Vaping information was stored and downloaded directly from the EC device and averaged per calendar day for analysis. From 25 subjects that followed the protocol, sixteen succeeded in completing the RP and 8 the MP (32%). No significant differences in baseline characteristics were noted between subjects in the success and failure groups including markers of nicotine addiction, plasma cotinine levels or smoking history. Success subjects showed significantly longer puff duration (seconds per vape) and total overall vapor exposure (number of vapes x average vape duration or vape-seconds) in both study phases. Furthermore, subjects in the success group continued to increase the number of vapes, device voltage and wattage significantly as they transitioned into the MP. After an initial drop, subjects in the success group were able to regain plasma cotinine levels comparable to their TC use while subjects in the failure group could not. Cotinine levels significantly correlated with the average number of daily vapes and vapes-seconds, but not with other vaping parameters. The topography of smokers who adhere to exclusive EC use reflects a progressive and dynamic device adaptation over weeks to maintain baseline cotinine levels. The higher inhaled volume over time should be considered when addressing the potential toxic effects of EC and the variable EC adherence when addressing

  18. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure.

    Science.gov (United States)

    Cox, Sharon; Kośmider, Leon; McRobbie, Hayden; Goniewicz, Maciej; Kimber, Catherine; Doig, Mira; Dawkins, Lynne

    2016-09-20

    Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs) or user behaviour (increasing the wattage) can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids) undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein). A counterbalanced repeated measures design. Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i) low strength (6mg/mL), fixed settings; ii) low strength user-defined settings; iii) high strength (18mg/mL) fixed settings; iv) high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. i) Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed) and user behaviour (changes to device settings: voltage and air-flow) associated with using high and low strength nicotine e-liquid. ii) Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. i) Subjective effects. ii) comparisons with toxicant exposure from tobacco smoke (using documented evidence) and with recommended safety limits

  19. Radio frequency ablation of small renal tumors:: intermediate results.

    Science.gov (United States)

    Hwang, J J; Walther, M M; Pautler, S E; Coleman, J A; Hvizda, J; Peterson, James; Linehan, W M; Wood, B J

    2004-05-01

    criteria of successful RFA treatment. RFA treatment of small renal tumors using the Radionics system appears to result in superior treatment outcomes compared to those of earlier series with lower radio frequency power generators. A high wattage generator might attain more consistent energy deposition with subsequent cell death in the targeted tissue due to less convective heat loss.

  20. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure

    Directory of Open Access Journals (Sweden)

    Sharon Cox

    2016-09-01

    Full Text Available Abstract Background Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs or user behaviour (increasing the wattage can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein. Methods/design A counterbalanced repeated measures design. Participants: Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. Intervention: This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i low strength (6mg/mL, fixed settings; ii low strength user-defined settings; iii high strength (18mg/mL fixed settings; iv high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. Primary outcomes: i Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed and user behaviour (changes to device settings: voltage and air-flow associated with using high and low strength nicotine e-liquid. ii Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. Secondary outcomes: i Subjective effects. ii comparisons

  1. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

    2011-06-01

    Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The

  2. A comparative experimental study of the in-vitro efficiency of hypertonic saline-enhanced hepatic bipolar and monopolar radiofrequency ablation

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Sohn, Kyu Li; Lee, Kyoung Ho; Ah, Su Kyung; Choi, Byung Ihn

    2003-01-01

    To compare the in-vitro efficiency of a hypertonic saline (HS)- enhanced bipolar radiofrequency (RF) system with monopolar RF applications by assessing the temperature profile and dimensions of RF-created coagulation necrosis in bovine liver. A total of 27 ablations were performed in explanted bovine livers. After placement of two 16-gauge open-perfused electrodes at an interelectrode distance of 3 cm, 5% HS was instilled into tissue at a rate of 1 mL/min through the electrode. Seventeen thermal ablation zones were created in the monopolar mode (groups A, B), and ten more were created using the two open-perfused electrodes in the bipolar mode (group C). RF was applied to each electrode for 5 mins (for a total of 10 mins, group A) or 10 mins (for a total of 20 mins, group B) at 50W in the sequential monopolar mode, or to both electrodes for 10 min in the bipolar mode (group C). During RF instillation, we measured tissue temperature at the midpoint between the two electrodes. The dimensions of the thermal ablation zones and changes in impedance and wattage during RFA were compared between the groups. With open-perfusion electrodes, the mean accumulated energy output value was lower in the bipolar mode (group C: 26675±3047 Watt's) than in the monopolar mode (group A: 28778±1300 Watt's) but the difference was not statistically significant (p > 0.05). In the bipolar mode, there were impedance rises of more than 700 Ω during RF energy application, but in the monopolar modes, impedance did not changed markedly. In the bipolar mode, however, the temperature at the mid-point between the two probes was higher (85 .deg. C) than in the monopolar modes (65 .deg. C, 80 .deg. C for group A, B, respectively) (p<0.05). In addition, in HS-enhanced bipolar RFA (group C), the shortest diameter at the midpoint between the two electrodes was greater than in either of the monopolar modes: 5.4±5.6 mm (group A); 28.8±8.2 mm (group B); 31.2±7.6 mm (group C) (p<0.05) Using an open

  3. Knowing What is Best

    Science.gov (United States)

    Griffin, R. E. M.

    2015-03-01

    Already, and with good reason, light pollution is recognized as one of the most damaging legacies that current ``civilization`` is bequeathing to its children. Denying them the opportunity, even the right, to experience visually the majesty and awe of the universe has obvious repercussions for our science, and other contributors to this meeting are addressing those eloquently. But it is also critically important to place light pollution in the cadre of the general environmental degradation which unbridled technology is causing. The amount of power consumed by one outdoor light is only a minuscule drop in the ocean, but enough of those drops make an ocean. Using low-wattage bulbs, and getting more power out of them via halogen or LED technology, can ease the drain on the supply of power, but when several can be run, and run brighter, than a single tungsten lamp and cost is the only goal, the consumer simply installs more of them. We all hope for a restored and sustainable environment, but the challenge is first to learn and practice the essential difference between ``want`` and ``need''. A more specific challenge is to educate the affluent countries about the deleterious effects of nighttime lights on human health and on other bio-systems and species, and to explain the truth about ``security`` issues. If astronomers place the needs of their own science too foremost they risk the criticism of selfishness: why are our own scientific requirements more important than the pleasure and health benefits of a whole town in pursuing sports activities outdoors after sunset? How can the need to illuminate streets, intersections, parking lots and to deter intruders be less necessary for personal and community safety and wellbeing than some rather esoteric scientific opportunities for a small population of astronomers? Dark Sky Preserves are a lovely concept but they are not the full answer; reducing light pollution is the responsibility of every citizen, and ensuring good

  4. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna [Univ. of California, San Diego, CA (United States)

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  5. An Influenced Future

    Science.gov (United States)

    Owens, Christopher

    2016-01-01

    Phobos is a vital precursor and catalyst before our next giant leap to Mars. The principle period of a Phobos' mission could be a series of robotic precursor missions for experimental perception, soil examination, ecological approval and landing site distinguishing proof. For my summer intern position at Johnson Space Center I chipped away at creating a GUNNS (General Use Nodal Network Solver) based power subsystem model for the miniATHLETE hopper, which is a conceptual (idea-based) robotic lander that will operate on Phobos. Keeping in mind the end goal to begin on my venture, I needed to comprehend my undertaking before whatever else, in which I concentrated on C++ to see how to implement the code that GUNNS generates to a Trick S_define file. Prior to coming to this internship at Johnson Space Center Dr. Edwin Zack Crues provided a class on modeling and simulation, which introduced me to the Trick simulation environment. The goal of my project was to develop a GUNNS based power subsystem model for the miniATHLETE hopper. The model needed to incorporate a solar array, battery, hopping legs, and onboard scientific instruments (sensitive measuring/recording devices). The secondary bonus goal after I completed the electrical aspect of my model was to develop a GUNNS based thermal subsystem model for the miniATHLETE hopper. Stringing the two aspects together, I would need to code up a signal aspect to make the system work as one. Accomplishing my goals would not be an easy thing, however I had successfully completed the electrical aspect model with twenty-four servos, six cameras, and multiple sensors. Venturing to complete my project has eluded me to many failures in my design to tune many things like the battery to the proper voltage and the load to the proper wattage. During this time I had touched up on advanced topics in calculus in which I implemented in the converter in my electrical model. I am currently working with my mentor Zu Qun Li to create a signal

  6. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    Energy Technology Data Exchange (ETDEWEB)

    French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-07-01

    productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)

  7. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    International Nuclear Information System (INIS)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.; Enriquez, Alejandro E.; Carson, Peter H.

    2013-01-01

    Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for 238 Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)