WorldWideScience

Sample records for waterwall incinerators

  1. Field Investigation of Various Weld Overlays in a Waste Incineration Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, O. H.

    2005-01-01

    A test waterwall was fabricated so that alternatives to alloy 625 could be exposed in the first pass of the waste incineration plant Haderslev. The difference between application method was also a parameter, such that manual welding, machine welding and arc spraycoating of alloy 625 were compared...... which was present in every test panel. It was observed that all the weld overlay test sections behaved similar to machined alloy 625 in that there was general corrosion and pitting corrosion. In addition, alloy 622 also exhibited preferential corrosion with respect to its dendrite structure........ In addition to the test waterwall exposure, the chemical environment from the waste incineration was also monitored by analyzing deposits and corrosion products from various locations in the boiler. These were analyzed with respect to morphology and composition using electron microscopy with EDS analysis...

  2. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  3. Safety issues arising from the corrosion-fatigue of waterwall tubes

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J. M.; Jarvis, P. (Stress Engineering Services (Europe) Limited, Chichester (United Kingdom)); Scully, S. (Electricity Supply Board, Dublin (Ireland))

    2010-05-15

    An incidence of waterwall tube failures, one leading to a significant steam release external to the boiler, has highlighted the need for rigorous risk assessment of such events. Initial review of the utility's experience revealed one of their boiler designs as having had a greater incidence of corrosion-fatigue issues in waterwall tubing than the others. These units were treated as a priority. To address failure likelihood, fracture mechanics calculations were performed. These studies defined the necessary inspection coverage and sensitivity required to underwrite safe operation at various potential loads. Personnel safety was considered the most important consequence of failure. Accordingly, potential steam releases were modelled to define safe exclusion zones within the boiler house. Standard calculations were found to be nonconservative; more exact formulae were needed to give realistic results. Using the results of these studies, the utility was able to draw up a realistic inspection plan. Safe operating pressures and appropriate exclusion zones were defined for each boiler, and for a range of operational scenarios. These tactics have allowed the utility to inspect the boilers in turn and to repair all significant defects in the waterwall tubes, whilst maintaining a good overall power output. In parallel, a root-cause investigation was performed to identify the factors contributing to the failures. Where possible, causative influences were reduced or mitigated so as to reduce the likelihood of failure whilst allowing increased flexibility of boiler operation. (orig.)

  4. Failure analysis of the boiler water-wall tube

    OpenAIRE

    S.W. Liu; W.Z. Wang; C.J. Liu

    2017-01-01

    Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tu...

  5. Waterwall corrosion evaluation in coal-fired boilers using electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.; Lee, C.; Seeley, R.; Harding, S.; Heap, M.; Cox, W.

    2000-07-01

    Until recently, waterwall corrosion in North American coal-fired boilers was uncommon and relatively mild. However, the introduction of combustion modifications to reduce in-furnace NOx formation has led to notable increases in the frequency and severity of waterwall wastage. Reaction Engineering International (REI) has worked with the Department of Energy and EPRI to improve predictive capabilities and provide solutions for furnace wall wastage for a wide range of coal-fired furnaces. To date, this work has emphasized computational simulations. More recently, REI in partnership with Corrosion Management has begun complementary efforts to improve their services by evaluating technologies capable of determining the location/rate of high water wall wastage resulting from corrosion. After an evaluation of commercially available options, electrochemical noise (EN) technology has been chosen for continued development. This approach has been successfully applied to corrosion-related problems involving acid dewpoint corrosion in flue gas ductwork, FGD systems, cooling water systems, oil and gas production, and acid cleaning (Cox et al, 1999). This paper presents the results of preliminary testing of an EN probe in a high temperature environment typical of the lower furnace of a cyclone-fired boiler operating under staged conditions. The relationship between electrochemical responses and (1) stoichiometry and (2) local hydrogen sulfide concentration is investigated and the qualitative and quantitative usefulness of the approach for on-line risk management is considered.

  6. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  7. Techniques for measurement of heat flux in furnace waterwalls of boilers and prediction of heat flux – A review

    International Nuclear Information System (INIS)

    Sankar, G.; Chandrasekhara Rao, A.; Seshadri, P.S.; Balasubramanian, K.R.

    2016-01-01

    Highlights: • Heat flux measurement techniques applicable to boiler water wall are elaborated. • Applications involving heat flux measurement in boiler water wall are discussed. • Appropriate technique for usage in high ash Indian coal fired boilers is required. • Usage of chordal thermocouple is suggested for large scale heat flux measurements. - Abstract: Computation of metal temperatures in a furnace waterwall of a boiler is necessary for the proper selection of tube material and thickness. An adequate knowledge of the heat flux distribution in the furnace walls is a prerequisite for the computation of metal temperatures. Hence, the measurement of heat flux in a boiler waterwall is necessary to arrive at an optimum furnace design, especially for high ash Indian coal fired boilers. Also, a thoroughly validated furnace model will result in a considerable reduction of the quantum of experimentation to be carried out. In view of the above mentioned scenario, this paper reviews the research work carried out by various researchers by experimentation and numerical simulation in the below mentioned areas: (i) furnace modeling and heat flux prediction, (ii) heat flux measurement techniques and (iii) applications of heat flux measurements.

  8. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  9. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  10. Development of incineration and incineration-melting system for radioactive incombustible wastes

    International Nuclear Information System (INIS)

    Karita, Y.; Kanagawa, Y.; Teshima, T.

    2000-01-01

    Radioactive combustible solid wastes produced by nuclear power plants are generally incinerated for the purpose of volume reduction and stabilization. However incombustible wastes, such as PVC and rubber wastes are not incinerated and are still being stored since the off-gas treatment problems of a large amount of soot and harmful HCl and SO x gas need to be resolved. The authors have developed a new types of incineration system which consists of a water-cooling jacket type incinerator, ceramic filter, HEPA and wet scrubber. And as an application of its incinerator, the hybrid incineration-melting furnace, which is a unification of the incinerator and induction melting furnace, is being tested. Furthermore, the new type of dry absorber for removing HCl and SO x is also being tested. This report mainly describes an outline and the test results of the above incineration system, and secondly, the possibility of the incineration-melting system and dry absorber. (author)

  11. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  12. Incineration of toluene and chlorobenzene in a laboratory incinerator

    International Nuclear Information System (INIS)

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators

  13. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  14. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  15. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  16. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  17. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  18. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  19. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  20. 40 CFR 761.70 - Incineration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Incineration. 761.70 Section 761.70... and Disposal § 761.70 Incineration. This section applies to facilities used to incinerate PCBs... regular intervals of no longer than 15 minutes. (4) The temperatures of the incineration process shall be...

  1. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  2. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  3. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  4. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  5. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  7. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  8. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  9. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  10. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  11. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  12. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  13. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  14. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  15. Use plan for demonstration radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1982-04-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans for optimum use in burning four principal waste forms, controlled air incineration technology, and standard health physics safety practices; a use plan, including waste categorization and segregation, processing, and ash disposition; safety procedures, including personnel and area monitoring; and methods to evaluate the incinerator's effectiveness by estimating its volume reduction factors, mass and activity balances, and by determining the cost effectiveness of incineration versus commercial shallow land burial

  16. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  17. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  18. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  19. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  20. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  1. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  2. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  3. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  4. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  5. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  6. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  7. Incineration: efficient, economical and environmental

    International Nuclear Information System (INIS)

    Mascarenhas, A.

    2003-01-01

    Significant improvements in incinerator design and technology resulting in optimal performance, increased reliability and reduced capital and operating costs are discussed. The objective of the discussion is to draw attention to incineration as a cost effective and environmentally responsible means of disposing of the waste products generated by the oil and gas industry, while improving air quality and reduce greenhouse gas emissions at the same time. The main point put forward is that because the global warming potential of methane is 21 times greater than that of carbon dioxide, the complete combustion potential of incineration, combined with the fact that incineration requires significantly less fuel gas to combust low heat content streams, offers significantly reduced greenhouse gas emissions and improved air quality

  8. Loading device for incinerator

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1983-01-01

    An incinerator for radioactive waste is described. Heat radiation from the incinerator into the loading device is reduced by the design of the slider with a ceramic plate and the conical widening of the pot, and also by fixing a metal plate between the pot and the floor. (PW) [de

  9. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  10. Incineration conference 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of the 1990 incineration conference. The proceedings are organized under the following headings: Regulations- international comparison, Current trends in facility design, Oxygen enhancement, Metals, Off-gas treatment, Operating experience: transportable, Materials, Operating experience: R/A and mixed, Incineration of specific wastes, Medical waste management, Ash qualification, Ash solidification/ immobilization, Innovative technologies, Operating experience : medical waste, Instrumentation and monitoring, process control and modeling, Risk assessment/management, Operating considerations

  11. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  12. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  13. Incineration experiences at the Tsuruga P.S. and outline of the advanced type incineration system at the Tokai No. 2 P.S

    International Nuclear Information System (INIS)

    Yui, K.; Kurihara, Y.; Inoue, S.; Takamori, H.; Karita, Y.

    1987-01-01

    In 1978, the first radwaste incineration plant among Japanese nuclear power stations started its operation at Tsuruga P.S., and the first advanced radwaste incineration plant has been constructed and accomplished the test operation in September 1986. This paper describes the outline of Tsuruga incineration plant and its operation achievements, and the outline of advanced incineration technology, Tokai No. 2 incineration plant and its test operation results

  14. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  15. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  16. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  17. Corrosion in waste incineration facilities; Korrosion i avfallsfoerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2004-11-01

    Waste is a heterogeneous fuel, often with high levels of chlorine, alkali and heavy metals. This leads to much more severe corrosion problems than combustion of fossil fuels. The corrosion rates of the materials used can be extremely high. Materials used for heat transferring parts are usually carbon steel or low alloyed steel. These are significantly cheaper than other steels. Austenitic stainless steel is also used, but is often avoided due to its sensitivity to stress corrosion cracking. More advanced materials, such as nickel base alloys, can be used in extremely aggressive environments. Since these materials are expensive and do not always have sufficient mechanical properties, they are often used as coatings on carbon steel tubes or as composite tubes. A new method, which shows good results at the first tests in plants, is electroplating with nickel. Plastic materials can be used in low temperature parts if the temperature does not exceed 150 deg C. A glass fibre inforced material is probably the best choice. The parts of the furnace that are most prone to corrosion are waterwalls where the refractory coating is lost, has not been applied to a sufficient height in the boiler or is not used at all. Failures of superheaters often occur in areas near soot blowers or on the tubes exposed to the highest flue gas temperatures. Few cases of low temperature corrosion are reported in the literature, possibly because these problems are unusual or because low temperature corrosion rarely causes costly and dramatic failures. Waterwall tubes should be made of carbon steel, because of the price and to minimise the risk for stress corrosion cracking. Usually the tubes must be covered with a more corrosion resistant material to withstand the environment in the boiler. Metal coatings can be used in less demanding environments. Refractory is probably the best protection for waterwalls from severe erosion. Surfaces in extremely corrosive areas, e.g. the fuel feed area, should

  18. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  19. Quantifying capital goods for waste incineration

    International Nuclear Information System (INIS)

    Brogaard, L.K.; Riber, C.; Christensen, T.H.

    2013-01-01

    Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO 2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO 2 per tonne of waste combusted

  20. Seventy years of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Dumbleton, Brian

    1995-06-08

    A third waste incineration plant, which will conform to new United Kingdom emission standards is currently under construction at Tyseley in Birmingham. The plant will generate 25MW of electricity for 25,000 households by burning 350,000 t of municipal wastes per year. The site has been used for such energy from waste schemes since 1926. The new plant includes the latest air pollution abatement equipment designed to absorb mercury vapour and dioxins together with fabric filters. Other improvements at the Tyseley site include a new purpose built public waste disposal facility, clinical waste and animal carcass incineration and the recovery of 16,000t of ferrous metals per year for recycling. Because these waste products are incinerated it also therefore reduce`s Birmingham`s need for landfill sites. (UK)

  1. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  2. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  3. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  4. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  5. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  6. Clean burn: Incinerators get more efficient

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Combustion efficiency and accuracy of today's new breed of incinerators is discussed. The latest of these units are capable of delivering 99.99 per cent combustion efficiency with no visible flame, black smoke or detectable odour. Near-complete combustion is achieved with incineration because of the very high temperatures reached in the enclosed combustion chamber as a combination of temperature, time for burning, and a good mix of gases and oxygen. Controlling these inputs is the key to efficient incineration, as is high quality fibre refractory lining; control means control of the stack top temperature, which will affect what comes out of the top water and how well the combustion byproducts are dispersed. Until recently, incinerators have not been highly regarded by the oil industry. However, with the growing concerns about greenhouse gases, carcinogens and in response to increasing regulations aimed at reducing venting and flaring, incinerators are coming into their own. Today they are seen more and more frequently in well testing, coalbed methane testing, at battery sites and at gas plants

  7. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  8. The IRIS Incinerator at Cea-Valduc assessment after more than one ton and a half of active waste incineration

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteau, P.; Longuet, T.; Lemort, F.; Lannaud, J.; Lorich, M.; Medzadourian, M.

    2000-01-01

    During the operation of its facilities, the Valduc Research Center produces alpha-contaminated solid waste. An incineration facility has been built to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process, which was developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run during more than 2,500 hours in 1997-1998. Active commissioning of the facility was performed in March 1999. Since then five campaigns with active waste and a complete plutonium cleaning session have been carried out, the results of which are given in the paper. The Valduc incinerator is the first industrial active application of the IRIS process. (authors)

  9. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  10. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  11. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  12. 40 CFR 60.2886 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... incineration unit? (a) A new incineration unit is an incineration unit subject to this subpart that meets...

  13. Incineration of Sludge in a Fluidized-Bed Combustor

    OpenAIRE

    Chien-Song Chyang; Yu-Chi Wang

    2017-01-01

    For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in ...

  14. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  15. 40 CFR 60.2015 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... is a new incineration unit? (a) A new incineration unit is an incineration unit that meets either of...

  16. Performance history of the WERF incinerator

    International Nuclear Information System (INIS)

    Dalton, J.D.; Bohrer, H.A.; Smolik, G.R.

    1988-01-01

    As society's environmental conscience grows, diverse political economical, and social contentions cloud the issue of proper waste management. However, experience at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) demonstrates clearly that incineration is an effective component in responsible, long-term waste management. Using a simple but safe design, the WERF incinerator has successfully reduced the volume of low-level beta/gamma waste. This paper discusses some of the achievements and problems experienced during operation of the WERF incinerator

  17. Significance of waste incineration in Germany; Stellenwert der Abfallverbrennung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The report on the relevance of waste incineration in Germany is covering the following issues: change of the issue waste incineration in the last century, the controversy on waste incineration in the 80ies; environmental relevance of waste incineration; utilization of incineration residues; contribution to environmental protection; possible hazards for human health due are waste incinerator plants; the central challenges of waste incineration today; potential restraints to energy utilization in thermal waste processing; optimization of the energetic utilization of municipal wastes; future of the waste management and the relevance of waste incineration.

  18. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  19. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  20. Conceptual process description of M division incinerator project

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.K.

    1989-04-13

    This interoffice memorandum describes an incineration system to be used for incinerating wood. The system is comprised of a shredder and an incinerator. The entire process is described in detail. A brief study of particulates, carbon monoxide, carbon dioxide, and nitrogen oxides emission is presented.

  1. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  2. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  3. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  4. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  5. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  6. Fluidized bed incineration of transuranic contaminated waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1978-01-01

    A 9 kg/hr pilot scale fluidized bed incinerator is now being used for burning various types of radioactive waste at Rocky Flats Plant. General solid combustible waste containing halogenated materials is burned in a fluidized bed of sodium carbonate for in situ neutralization of thermally generated acidic gases. A variety of other production related materials has been burned in the incinerator, including ion exchange resin, tributyl phosphate solutions, and air filters. Successful operation of the pilot plant incinerator has led to the design and construction of a production site unit to burn 82 kg/hr of plant generated waste. Residues from incinerator operations will be processed into glass buttons utilizing a vitrification plant now under development

  7. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  8. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  9. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    material used amounting to 19,000–26,000tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000MWh. In terms of the environmental burden...... that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted.......Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...

  10. Air curtain incinerator equipment performance evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    About 50 tonnes of oil-contaminated debris and related wood products were successfully incinerated in a 10-h performance evaluation of a mobile air curtain incinerator. The test was conducted to evaluate the incinerator's ability to combust oil-contaminated trash and debris obtained from oil spill sites. The operating principle of the apparatus involves a diesel engine driving an air blower to deliver ca 20,000 scfm of air into a 5-m long manifold angled at a 30{degree} slope into an incineration tank. A bottomhole aerator is lowered to the bottom of the tank and compressed air is injected into the aerator to control burn efficiency. The blower is engaged once the debris in the tank is burning sufficiently after starting a fire in the debris. The air curtain effect created by the air deflecting off the opposite wall from the blower manifold and bouncing off the bottom and up the side of the incineration tank results in repeated combustion of the gases, thereby significantly reducing the degree of visible smoke emission. The unit is capable of incinerating ca 5 tonnes/h and of generating ca 16 m{sup 3}/h of hot water which can be used for flushing spill sites and cleaning shorelines. 12 figs.

  11. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  12. Dioxin formation from waste incineration.

    Science.gov (United States)

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste

  13. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  14. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  16. Operational experience with Seibersdorf low-level incinerator

    International Nuclear Information System (INIS)

    Chalupa, G.

    1987-01-01

    This report contains information about an excess air incinerator which burned low level β and γ wastes (also α up to determined limits). The incinerator was started up in 1980 and it is clear that in a technical plant of such magnitude, some changes and alterations will be needed to be overcome according to the experiences of operation. This paper - after a short description of the incinerator plant itself - gives a summary of some of the operation and the changes which are made in the plant according to these facts. A partial redesign of the incinerator plant in the first half of 1985 resulted in a very satisfying new design, which proved its superiority during the runs in 1985 and 1986

  17. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  18. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  19. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  20. Incineration plant for thermal destruction of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Bartoli, B.; Lisbonne, P.

    1988-01-01

    Incineration was selected to destroy organic liquids contaminated by radioelements. This treatment offers the advantage of reducing the volume of wastes considerably. Therefore an incineration plant has been built within the nuclear research center of Cadarache. After an experimental work with inactive organic liquids from June 1980 to March 1981, the incineration plant was approved by safety authorities for the incineration of contaminated organic liquids. The capacity ranges from 20l/hr to 50l/hr. On the basis of 6 years of operation and a volume of 200 m3 the incineration plant has shown reliable operating conditions in the destruction of various contaminated organic liquids

  1. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  3. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  4. 40 CFR 60.2992 - What is an existing incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an existing incineration unit... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2992 What is an existing incineration unit? An existing incineration unit is...

  5. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  6. Development of Mitsubishi--Lurgi fluidized bd incinerator with pre-drying hearths

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y; Senshu, A; Mishima, K; Sato, T; Honda, H

    1979-02-01

    For a better disposal of a steadily increasing volume of sludges with energy conservation it is essential to develop an effective and energy-saving incinerator. The fluidized bed incinerator now widely used for the disposal of sludges has many superior features as compared with the conventional vertical multiple-hearth incinerator, but, on the other hand, has a defect, that is, a large fuel consumption. This is due to the fact that the fluidized bed incinerator has generally low drying efficiency notwithstanding its excellent burning characteristics with minimum excess air. The feasibility of fuel saving by installing sludge pre-drying hearths and an exhaust gas recirculation system additionally on the conventional fluidized bed incinerator and conducted incineration tests on various kinds of sludges, using a 1500 kg/h pilot plant equipped with the incinerator is examined. As the result, the Mitsubishi--Lurgi fluidized bed incinerator with high efficiency multiple pre-drying hearths which consumes less fuel was developed. Part of the incineration test results are presented.

  7. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  8. An overview of a nuclear waste incinerator's erection and commissioning

    International Nuclear Information System (INIS)

    Li Xiaohai; Zhou Lianquan; Wang Peiyi; Yang Liguo; Zhang Xiaobin; Wang Xujin; Li Chuanlian; Dong Jingling; Zheng Bowen; Qiu Mingcai

    2004-01-01

    An incinerator for combustible nuclear waste, with spent oil and graphite included, was established. The processes are briefly described, which combines pyrolysis-incineration of solid, spray-incineration of oils and fixed bed incineration of graphite, followed by off-gas treatment employing both dry and wet means. The results from non-active and active trial run are also reported

  9. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  10. Development and testing of a mobile incinerator

    International Nuclear Information System (INIS)

    Eggett, D.R.

    1986-01-01

    The development and testing of a mobile incinerator for processing of combustible dry active waste (DAW) and contaminated oil generated at Nuclear Power Plants is presented. Topics of discussion include initial thoughts on incineration as applied to nuclear waste; DOE's Aerojet's, and CECo's role in the Project; design engineering concepts; site engineering support; licensability; generation of test data; required reports of the NRC and Illinois and California EPA's; present project schedule for incinerating DAW at Dresden and other CECo Stations; and lessons learned from the project

  11. The incineration of absorbed liquid wastes in the INEL's [Idaho National Engineering Laboratory] WERF [Waste Experimental Reduction Facility] incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; McFee, J.N.

    1987-01-01

    The concept of burning absorbed flammable liquids in boxes in the WERF incinerator was evaluated as a waste treatment method. The safety and feasibility of this procedure were evaluated in a series of tests. In the testing, the effect on incinerator operations of burning various quantities of absorbed flammable liquids was measured and compared to normal operations conducted on low-level radioactive waste (LLW). The test results indicated that the proposed procedure is safe and practical for use on a wide variety of solvents with quantities as high as one liter per box. No adverse or unacceptable operating conditions resulted from burning any of the solvents tested. Incineration of the solvents in this fashion was no different than burning LLW during normal incineration. 6 refs., 7 figs., 3 tabs

  12. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  13. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  14. Co-disposal of sewage sludge and solid wastes-it works

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, D B

    1977-10-01

    The problem of sludge disposal is one of more sludge than ever before, few suitable land disposal or land application sites, the ocean dumping option being phased out, and energy cost so high or supplies so few as to make incineration a questionable endeavor. The energy required to run a wastewater treatment plant and the heat needed to incinerate the sludge may be available in the same community in the form of municipal solid waste. Municipal sludge has a heat value of about 10,000 Btu/lb of dry solids; it is autogenous at>30% solids. Codisposal techniques are discussed which use the energy produced by the combustion of solid waste to dewater the sludge to its autogenous point. One approach is to use sewage sludge incinerators, in many cases already installed at the wastewater treatment plant, and to use the organic portion of solid waste as a fuel to dry, burn, and reduce the volume of the sludge that must ultimately be disposed. A second approach would use a solid waste incinerator, solid waste-fired steam generator, or waterwall combustion unit to burn dewatered sludge. Both approaches are being demonstrated or used. Thermal sludge disposal at wastewater treatment plants normally is carried out in multiple-hearth or fluidized-bed incinerators. The experiences of such plants in the US and Europe are summarized.

  15. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  16. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  17. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  18. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  19. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  20. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  1. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    International Nuclear Information System (INIS)

    Beylot, Antoine; Villeneuve, Jacques

    2013-01-01

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO x emissions. • E.g. climate change impact ranges from −58 to 408 kg CO 2 -eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO 2 -eq to a relatively large burden of 408 kg CO 2 -eq, with 294 kg CO 2 -eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO x process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available

  2. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Radioactivity partitioning in incinerators for miscellaneous low-level wastes

    International Nuclear Information System (INIS)

    Kyle, S.; Bellinger, E.

    1988-03-01

    Her Majesty's Inspectorate of Pollution (HMIP) authorises the use of hospital, university and Local Authority incinerators for the disposal of solid radioactive wastes. At present these authorisations are calculated on ''worst case'' assumptions, this report aims to review the experimental data on radioactivity partitioning in these incinerators, in order to improve the accuracy of HMIP predictions. The types of radionuclides used in medicine were presented and it is noted there is no literature on the composition of university waste. The different types of incinerators are detailed, with diagrams. Major differences in design are apparent, particularly the offgas cleaning equipment in nuclear incinerators which hinders comparisons with institutional incinerators. A comprehensive literature review revealed 17 references on institutional radioactive waste incineration, 11 of these contained data sets. The partitioning experiments were described and show a wide range of methodology from incinerating guinea pigs to filter papers. In general, only ash composition data were presented, with no details of emissions or plating out in the incinerator. Thus the data sets were incomplete, often with a poor degree of accuracy. The data sets contained information on 40 elements; those were compared and general trends were apparent such as the absence of H-3, C-14 and I-125 in the ash in contrast to the high retention of Sc-46. Large differences between data sets were noted for P-32, Sr-85 and Sn-113 and within one experiment for S-35. (author)

  4. Operation of controlled-air incinerators and design considerations for controlled-air incinerators treating hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    McRee, R.E.

    1986-01-01

    This paper reviews the basic theory and design philosophies of the so-called controlled-air incinerator and examines the features of this equipment that make it ideally suited to the application of low-level radioactive waste disposal. Special equipment design considerations for controlled air incinerators treating hazardous and radioactive wastes are presented. 9 figures

  5. Environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities - State-of-the-art. State-of-the-art of environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities. Synthesis

    International Nuclear Information System (INIS)

    Chassagnac, T.; Cornet, C.; Mathieu, L.

    2005-10-01

    Since the beginning of the 70's, the growing concern from the public opinion and the scientific community for the waste incineration issue made people aware of a number of difficulties of the process and the potential risks linked to it. For example checking the good functioning conditions of the facilities has been made compulsory through the continuous emission monitoring of a number of parameters. The ministerial decree from the 20 September 2002 brings something new: the monitoring of the impact of the facilities on its nearby environment. This monitoring comes in addition to the existing continuous monitoring of some gaseous compounds of the incineration process, and widens the scale of the monitoring to the environment of the incineration facilities. But there is no further information in the ministerial decree about the methods available to match this requirement. Incineration facilities' managers have to face a close deadline (28 December 2005) and have to make the optimal choice of a technique matching these requirements but also the needs of their facilities. The aim of this study is to help incineration facilities' managers thanks to an overview as large as possible of the different techniques available. Managers will have to take into account the characteristics of the methods and their adequacy with the local contexts of their sites. This document is meant to be a support for dealing with this issue. (authors)

  6. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  7. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  8. Incineration of alpha-active solid waste by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Bhargava, V K; Kamath, H S; Purushotham, D S.C. [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1996-12-31

    The conventional techniques for treatment of alpha-active compressible solid waste involve incineration using electrically heated incinerators and subsequent recovery of special nuclear materials (SNM) from the ash by acid leaching. A microwave incineration followed by microwave digestion and SNM recovery from ash has specific advantages from maintenance and productivity consideration. The paper describes a preliminary work carried out with simulated uranium containing compressible solid waste using microwave heating technique. (author). 3 refs., 1 tab.

  9. 10 CFR 20.2004 - Treatment or disposal by incineration.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Treatment or disposal by incineration. 20.2004 Section 20... § 20.2004 Treatment or disposal by incineration. (a) A licensee may treat or dispose of licensed material by incineration only: (1) As authorized by paragraph (b) of this section; or (2) If the material...

  10. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  11. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  12. Dioxins in processes of incineration of wastes

    International Nuclear Information System (INIS)

    Perez John; Espinel Jorge; Ocampo Alonso; Londono Carlos

    2001-01-01

    This paper is a door to come into the subject of dioxins, which is a little bit known in Colombia. In this way, in order to clarify and to get a wider knowledge about dioxins and waste incineration process, it has been divided in three main sections. The first one gives a basic information about origin, effects on the human health and a chemical definition of dioxins; in the second one the main kind of incinerator processes are given to know, also a deeper knowledge of reaction formation. The last part emphasizes options to control dioxins emissions in incineration systems

  13. WILCI: a LCA tool dedicated to MSW incineration in France

    OpenAIRE

    Beylot , Antoine; Muller , Stéphanie; Descat , Marie; Ménard , Yannick; Michel , Pascale; Villeneuve , Jacques

    2017-01-01

    International audience; Life Cycle Assessment (LCA) has been increasingly used in the last decades to evaluate the global environmental performance of waste treatment options. This is in particular the case considering incineration that is the major treatment route for Municipal Solid Waste (MSW) in France (28% of French MSW are incinerated, in 126 MSW incineration plants; ADEME, 2015). In this context, this article describes a new Excel-tool, WILCI (for Waste Incineration Life Cycle Inventor...

  14. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  15. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    Every year around 50 millions Mg solid waste are incinerated in Europe. Large differences exist in different regions, mainly regarding energy recovery, flue gas treatment and management of solid residues. This paper aims to identify and quantify those differences, providing a Life Cycle Assessment...... of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...... energy recovery and to local conditions, e.g. substitution of electricity and heat in the area. Focusing on the incineration process, Milan incinerator performs better than Aarhus, since its upstream impacts (related to the production of chemicals used in flue gas cleaning) are more than compensated...

  16. Operation of a pilot incinerator for solid waste

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.

    1979-01-01

    A laboratory-scale incinerator (0.5 kg waste/hr) was built and operated for more than 18 months as part of a program to adapt and confirm technology for incineration of Savannah River Plant solid wastes, which are contaminated with about 0.3 Ci/kg of alpha-emitting transuranium (TRU) nuclides (Slide 1). About 4000 packages of simulated nonradioactive wastes were burned, including HEPA (high-efficiency particulate air) filters, resins, and other types of solid combustible waste from plutonium finishing operations. Throughputs of more than 3 kg/hr for periods up to 4 hours were demonstrated. The incinerator was oerated at temperatures above 750 0 C for more than 7700 hours during a period of 12 months, for an overall availability of 88%. The incinerator was shut down three times during the year: once to replace the primary combustion chamber electrical heater, and twice to replace oxidized electrical connectors to the secondary chamber heaters. Practical experience with this pilot facility provided the design basis for the full-size (5 kg waste/hr) nonradioactive test incinerator, which began operation in March 1979

  17. CO{sub 2} laser-aided waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Costes, J R; Guiberteau, P [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement; Caminat, P; Bournot, P

    1994-12-31

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg{sup -h-1} using a 7 kW CO{sub 2} laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs.

  18. Recommendations for continuous emissions monitoring of mixed waste incinerators

    International Nuclear Information System (INIS)

    Quigley, G.P.

    1992-01-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator

  19. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  20. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  1. Beta-gamma contaminated solid waste incinerator facility

    International Nuclear Information System (INIS)

    Hootman, H.E.

    1979-10-01

    This technical data summary outlines a reference process to provide a 2-stage, 400 lb/hour incinerator to reduce the storage volume of combustible process waste contaminated with low-level beta-gamma emitters in response to DOE Manual 0511. This waste, amounting to more than 200,000 ft 3 per year, is presently buried in trenches in the burial ground. The anticipated storage volume reduction from incineration will be a factor of 20. The incinerator will also dispose of 150,000 gallons of degraded solvent from the chemical separations areas and 5000 gallons per year of miscellaneous nonradioactive solvents which are presently being drummed for storage

  2. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  3. Development and testing of prototype alpha waste incinerator off-gas systems

    International Nuclear Information System (INIS)

    Freed, E.J.; Becker, G.W.

    1982-01-01

    A test program is in progress at Savannah River Laboratory (SRL) to confirm and develop incinerator design technology for an SRP production Alpha Waste Incinerator (AWI) to be built in the mid-1980's. The Incinerator Components Test Facility (ICTF) is a full-scale (5 kg/h), electrically heated, controlled-air prototype incinerator built to burn nonradioactive solid waste. The incinerator has been operating successfully at SRL since March 1979 and has met or exceeded all design criteria. During the first 1-1/2 years of operation, liquid scrubbers were used to remove particulates and hydrochloric acid from the incinerator exhaust gases. A dry off-gas system is currently being tested to provide data to Savannah River Plant's proposed AWI

  4. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  5. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  6. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  7. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1993-03-01

    Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  8. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  9. Waste incineration and immobilization for nuclear facilities, April--September 1977

    International Nuclear Information System (INIS)

    Johnson, A.J.; Fong, L.Q.

    1978-01-01

    Fluidized bed incineration and waste immobilization processes are being developed to process the types of waste expected from nuclear facilities. An air classification system has been developed to separate tramp metal from shredded combustible solid waste prior to the waste being fed to a fluidized-bed pilot-plant incinerator. Used organic ion exchange resin with up to 55 percent water has been effectively burned in the fluidized bed incinerator. Various methods of feeding waste into the incinerator were investigated as alternatives to the present compression screw; an extrusion ram was found to suffer extensive damage from hard particles in tested waste. A bench-scale continuous waste immobilization process has been operated and has produced glass from incinerator residue and other types of waste materials

  10. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  11. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon [HaJI Co., Ltd., Radiation Eng. Center, Siheung (Korea, Republic of); Kim, Yunbok; Kwon, Youngbock [KORAD, Daejeon (Korea, Republic of)

    2014-05-15

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  12. 40 CFR 60.2885 - Does this subpart apply to my incineration unit?

    Science.gov (United States)

    2010-07-01

    ... incineration unit? 60.2885 Section 60.2885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Other Solid Waste Incineration Units for Which Construction is Commenced After December 9, 2004....2885 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets all the...

  13. 40 CFR 60.2010 - Does this subpart apply to my incineration unit?

    Science.gov (United States)

    2010-07-01

    ... incineration unit? 60.2010 Section 60.2010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After... Applicability § 60.2010 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets...

  14. Waste wood incineration: long-lasting, environment-friendly and CO2-neutral

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    The economic aspects of energy production from waste wood are evaluated. Heating systems based on the incineration of wood have been considerably improved recently. Several aspects of the incineration of waste wood are reviewed: the implications with regard to the greenhouse effect, the calorific value of wood, the incineration process, and the cost price calculation of energy production by waste wood incineration. In conclusion is stated that energy production by waste wood incineration is a valuable economic alternative for heat production by oil products, especially in view of the current anti-pollution taxes in Belgium. (A.S.)

  15. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    Science.gov (United States)

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  16. Development of an incineration system for radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1989-01-01

    NUKEM GmbH (W. Germany) has developed and built some plants for treatment of radioactive waste. In cooperation with Karlsruhe Nuclear Research Center and on the basis of non-nuclear incineration plants, NUKEM has designed and built a new incineration plant for low level radioactive solid waste. The main features of the plant are improvement of the waste handling during feeding, very low particulate load downstream the incinerator and simple flue-gas cleaning system. This process is suitable for treatment of waste generated above all in nuclear power plants. (author)

  17. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  18. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  19. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Caramelle, D.; Florestan, J.; Waldura, C.

    1990-01-01

    This paper reports that one of the methods used to reduce the volume of radioactive wastes is incineration. Incineration also allows combustible organic wastes to be transformed into inert matter that is stable from the physico-chemical viewpoint and ready to be conditioned for long-term stockage. The quality of the ashes obtained (low carbon content) depends on the efficiency of combustion. A good level of efficiency requires a combustion yield higher than 99% at the furnace door. Removal efficiency is defined as the relation between the CO 2 /CO + CO 2 concentrations multiplied by 100. This implies a CO concentration of the order of a few vpm. However, the gases produced by an incineration facility can represent a danger for the environment especially if toxic or corrosive gases (HCL,NO x ,SO 2 , hydrocarbons...) are given off. The gaseous effluents must therefore be checked after purification before they are released into the atmosphere. The CO and CO 2 measurement gives us the removal efficiency value. This value can also be measured in situ at the door of the combustion chamber. Infrared spectrometry is used for the various measurements: Fourier transform infrared spectrometry for the off-gases, and diode laser spectrometry for combustion

  20. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  1. Radioactive waste incinerator at the Scientific Ecology Group, Inc

    International Nuclear Information System (INIS)

    Dalton, J.D.; Arrowsmith, H.W.

    1990-01-01

    Scientific Ecology Group, Inc. (SEG) is the largest radioactive waste processor in the United States. This paper discusses how SEG recently began operation of the first commercial low-level radioactive waste incinerator in the United States. This incinerator is an Envikraft EK 980 NC multi-stage, partial pyrolysis, controlled-air unit equipped with an off-gas train that includes a boiler, baghouse, HEPA bank, and wet scrubber. The incinerator facility has been integrated into a large waste management complex with several other processing systems. The incinerator is operated on a continuous around-the-clock basis, processing up to 725 kg/hr (1,600 lbs/hr) of solid waste while achieving volume reduction ratios in excess of 300:1

  2. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  3. Assessment of relative POHC destruction at EPA's incineration research facility

    International Nuclear Information System (INIS)

    Carroll, G.J.; Lee, J.W.

    1992-01-01

    As part of their permitting process, hazardous waste incinerators must undergo demonstration tests, or trial burns, during which their ability to meet EPA performance standards is evaluated. Among the performance standards is a minimum destruction and removal efficiency (DRE) for principal organic hazardous constituents (POHCs) in the incinerator waste feed. In accordance with the regulations promulgated under the Resource Conservation and Recovery Act (RCRA), selection POHCs for incinerator trial burns is to be based on the degree of difficulty of incineration of the organic constituents in the waste and on their concentration or mass in the waste feed. In order to predict the relative difficulty of incineration specific compounds, several incinerability ranking approaches have been proposed, including a system based on POHC heats of combustion and a system based on thermal stability under pyrolytic condition. The latter ranking system was developed by the University of Dayton Research Institute (UDRI) under contract to the US EPA Risk Reduction Engineering Laboratory (RREL). The system is supported largely by non-flame, laboratory-scale data and is based on kinetic calculations indicating that contributor to emissions of undestroyed organic compounds. The subject tests were conducted to develop data on POHC behavior in a larger-scale, conventional incineration environment. 5 refs., 3 tabs

  4. Shredder and incinerator technology for treatment of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters

  5. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING CFC INCINERATION

    Science.gov (United States)

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) th...

  6. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  7. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  8. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  9. EXPERIENCE IN INCINERATION APPLICABLE TO SUPERFUND SITE REMEDIATION

    Science.gov (United States)

    This document can be used as a reference tool for hazardous waste site remediation where incineration is used as a treatment alternative. It provides the user with information garnered from the experiences of others who use incineration. The document presents useful lessons in ev...

  10. CIF---Design basis for an integrated incineration facility

    International Nuclear Information System (INIS)

    Bennett, G.F.

    1991-01-01

    This paper discusses the evolution of chosen technologies that occurred during the design process of the US Department of Energy (DOE) incineration system designated the Consolidated Incineration Facility (CIF) as the Savannah River Plant, Aiken, South Carolina. The Plant is operated for DOE by the Westinghouse Savannah River Company. The purpose of the incineration system is to treat low level radioactive and/or hazardous liquid and solid wastes by combustion. The objective for the facility is to thermally destroy toxic constituents and volume reduce waste material. Design criteria requires operation be controlled within the limits of RCRA's permit envelope

  11. Radioactive waste incineration system cold demonstration test, (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Seike, Yasuhiko; Takaoku, Yoshinobu; Yamanaka, Yasuhiro; Asahara, Masaharu; Katagiri, Keishi; Matsumoto, Kenji; Nagae, Madoka

    1985-12-01

    It is urgently necessary to solve the radioactive waste problem. As an effective means for the volume reduction of low-level radioactive wastes, an improved incineration system is greatly required. SHI's Waste Incineration (WIS) licensed by Combustion Engineering, Inc., has the significant advantage of processing a variety of wastes. We started a cold demonstration test in April, 1984 to verify the excellent performance of WIS. The test was successfully completed in September, 1985 with the record of more than 1000 hours of incineration testing time. In the present paper, we describe the test results during one and half years of test period.

  12. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  13. [Effects of chlorides on Cd transformation in a simulated grate incinerator during sludge incineration process ].

    Science.gov (United States)

    Liu, Jing-yong; Zhuo, Zhong-xu; Sun, Shui-yu; Luo, Guang-qian; Li, Xiao-ming; Xie, Wu-ming; Wang, Yu- jie; Yang, Zuo-yi; Zhao, Su-ying

    2014-09-01

    The effects of organic chloride-PVC and inorganic chloride-NaCl on Cd partitioning during sludge incineration with adding Cd(CH3COO)2 . 2H2O to the real sludge were investigated using a simulated tubular incineration furnace. And transformation and distribution of Cd were studied in different sludge incineration operation conditions. The results indicated that the partitioning of Cd tended to be enhanced in the fly ash and fule gas as the chloride content increasing. The migration and transformation of Cd-added sludge affected by different chloride were not obvious with the increasing of chloride content. With increasing temperature, organic chloride (PVC) and inorganic chloride (NaC1) can reduce the Cd distribution in the bottom ash. However, the effect of chlorides, the initial concentration and incineration time on Cd emissions had no significant differences. Using SEM-EDS and XRD technique, different Cd compounds including CdCl2, Na2CdCl4, K2CdCl6, K2CdSiO4 and NaCdO2 were formed in the bottom ash and fly ash after adding NaCl to the sludge. In contrast, after adding PVC to the sludge, the Na2CdCl4 and CdCl2 were the main forms of Cd compounds, at the same time, K4CdCI6 and K6CdO4 were also formed. The two different mechanisms of chlorides effects on Cd partitioning were affected by the products of Cd compound types and forms.

  14. A new incinerator for burning radioactive waste

    International Nuclear Information System (INIS)

    Mallek, H.; Laser, M.

    1978-01-01

    A new two stage incinerator for burning radioactive waste consisting of a pyrolysis chamber and an oxidation chamber is described. The fly ash is retained in the oxidation chamber by high temperature filter mats. The capacity of the installed equipment is about 100 kg/h. Waste with different composition and different calorific value were successfully burnt. The operation of the incinerator can easily be controlled by addition of a primary air stream to the pyrolysis chamber and a secondary air stream to the oxidation chamber. During continuous operation the CO and C (organic) content is below 100 ppm and 50 ppm, respectively. The burn-out of the ash is very good. After minor changes the incinerator may be suitable for burning of α-bearing waste

  15. Operating experience and data on revolving type fluidized bed incineration plants

    International Nuclear Information System (INIS)

    Nakayama, J.

    1990-01-01

    In refuse incinerators operating by revolving fluidization (Revolving Type Fluidized Bed Incinerator) a broad range of wastes, from low caloric refuse of high moisture content to high caloric value material including a wide variety of plastics, can be incinerated at high efficiency because the unit is outstanding in terms of distribution of waste in the incinerator bed and uniformity of heat. In addition, its vigorous revolving fluidization action is very effective in pulverizing refuse, so even relatively strict emission standards can be met without fine pre-shredding. Residues are discharged in a clean, dry form free of putrescible material. Data on practical operation of the revolving fluidized bed incinerator are presented in this paper

  16. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  17. Small-scale medical waste incinerators - experiences and trials in South Africa

    International Nuclear Information System (INIS)

    Rogers, David E.C.; Brent, Alan C.

    2006-01-01

    Formal waste management services are not accessible for the majority of primary healthcare clinics on the African continent, and affordable and practicable technology solutions are required in the developing country context. In response, a protocol was established for the first quantitative and qualitative evaluation of relatively low cost small-scale incinerators for use at rural primary healthcare clinics. The protocol comprised the first phase of four, which defined the comprehensive trials of three incineration units. The trials showed that all of the units could be used to render medical waste non-infectious, and to destroy syringes or render needles unsuitable for reuse. Emission loads from the incinerators are higher than large-scale commercial incinerators, but a panel of experts considered the incinerators to be more acceptable compared to the other waste treatment and disposal options available in under-serviced rural areas. However, the incinerators must be used within a safe waste management programme that provides the necessary resources in the form of collection containers, maintenance support, acceptable energy sources, and understandable operational instructions for the incinerators, whilst minimising the exposure risks to emissions through the correct placement of the units in relation to the clinic and the surrounding communities. On-going training and awareness building are essential in order to ensure that the incinerators are correctly used as a sustainable waste treatment option

  18. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  19. Controlled-air incineration of transuranic-contaminated solid waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Neuls, A.S.; Warner, C.L.

    1976-01-01

    A controlled-air incinerator and an associated high-energy aqueous off-gas cleaning system are being installed at the Los Alamos Scientific Laboratory (LASL) Transuranic Waste Treatment Development Facility (TDF) for evaluation as a low-level transuranic-contaminated (TRU) solid waste volume reduction process. Program objectives are: (1) assembly and operation of a production scale (45 kg/hr) operation of ''off-the-shelf'' components representative of current incineration and pollution control technology; (2) process development and modification to meet radioactive health and safety standards, and (3) evaluation of the process to define the advantages and limitations of conventional technology. The results of the program will be the design specifications and operating procedures necessary for successful incineration of TRU waste. Testing, with nonradioactive waste, will begin in October 1976. This discussion covers commercially available incinerator and off-gas cleaning components, the modifications required for radioactive service, process components performance expectations, and a description of the LASL experimental program

  20. Incineration of urban solid waste containing radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Ronchin, G.P., E-mail: giulio.ronchin@mail.polimi.i [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy); Campi, F.; Porta, A.A. [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2011-01-15

    Incineration of urban solid waste accidentally contaminated by orphan sources or radioactive material is a potential risk for environment and public health. Moreover, production and emission of radioactive fumes can cause a heavy contamination of the plant, leading to important economic detriment. In order to prevent such a hazard, in February 2004 a radiometric portal for detection of radioactive material in incoming waste has been installed at AMSA (Azienda Milanese per i Servizi Ambientali) 'Silla 2' urban solid waste incineration plant of Milan. Radioactive detections performed from installation time up to December 2006 consist entirely of low-activity material contaminated from radiopharmaceuticals (mainly {sup 131}I). In this work an estimate of the dose that would have been committed to population, due to incineration of the radioactive material detected by the radiometric portal, has been evaluated. Furthermore, public health and environmental effects due to incineration of a high-activity source have been estimated. Incineration of the contaminated material detected appears to have negligible effects at all; the evaluated annual collective dose, almost entirely conferred by {sup 131}I, is indeed 0.1 man mSv. Otherwise, incineration of a 3.7 x 10{sup 10} Bq (1 Ci) source of {sup 137}Cs, assumed as reference accident, could result in a light environmental contamination involving a large area. Although the maximum total dose, owing to inhalation and submersion, committed to a single individual appears to be negligible (less than 10{sup -8} Sv), the environmental contamination leads to a potential important exposure due to ingestion of contaminated foods. With respect to 'Silla 2' plant and to the worst meteorological conditions, the evaluated collective dose results in 0.34 man Sv. Performed analyses have confirmed that radiometric portals, which are today mainly used in foundries, represent a valid public health and environmental

  1. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  2. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  3. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  4. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  5. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  6. Effects of a chemical weapons incineration plant on red-tailed tropicbirds

    Science.gov (United States)

    Schreiber, E.A.; Doherty, P.F.; Schenk, G.A.

    2001-01-01

    From 1990 to 2000, the Johnston Atoll Chemical Agent Disposal System (JACADS) incinerated part of the U.S. stockpile of chemical weapons on Johnston Atoll, central Pacific Ocean, which also is a National Wildlife Refuge and home to approximately a half-million breeding seabirds. The effect on wildlife of incineration of these weapons is unknown. Using a multi-strata mark-recapture analysis, we investigated the effects of JACADS on reproductive success, survival, and movement probabilities of red-tailed tropicbirds (Phaethon rubricauda) nesting both downwind and upwind of the incineration site. We found no effect of chemical incineration on these tropicbird demographic parameters over the 8 years of our study. An additional 3 years of monitoring tropicbird demography will take place, post-incineration.

  7. Incineration in the nuclear field. The SGN experience

    International Nuclear Information System (INIS)

    Carpentier, S.

    1993-01-01

    The operation of power reactors, like that of fuel fabrication and nuclear fuel reprocessing plants, generated substantial quantities of waste. A large share of this waste is low- and medium-level waste, which is also combustible. Similarly, a number of institutes, laboratories, and hospitals, in the course of their activities, generated waste which a portion is radioactive and combustible. The chief advantage of incineration is to minimize the volume of burnable waste treated, and to produce a residue termed 'ash'. SGN has built up 25 years of experience in this field. The incinerators have been designed and the incineration processes are specially studied by SGN

  8. Municipal Solid Waste Incineration For Accra Brewery Limited (Ghana)

    OpenAIRE

    Akoore, Alfred Akelibilna

    2016-01-01

    Waste incineration is a common practice of waste management tool in most developed countries, for the purpose of converting mass and volumes of waste into a very useful energy content. The aim of this study was to compare the costs benefits of waste incineration for Accra Brewery boiler plant and to investigate also the availability of waste and it´s compositions in Accra, as well as to determine the feasibility of using this waste as a source of fuel to the waste incineration plant. T...

  9. A solution to level 3 dismantling of gas-cooled reactors: Graphite incineration

    International Nuclear Information System (INIS)

    Dubourg, M.

    1993-01-01

    This paper presents an approach developed to solve the specific decommissioning problems of the G2 and G3 gas cooled reactors at Marcoule and the strategy applied with emphasis in incinerating the graphite core components, using a fluidized-bed incinerator developed jointly between the CEA and FRAMATOME. The incineration option was selected over subsurface storage for technical and economic reasons. Studies have shown that gaseous incineration releases are environmentally acceptable

  10. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  11. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  12. A comparative assessment of waste incinerators in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Wright, D.G.; Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Ghosh, S.K. [Mechanical Engineering Department, Centre for Quality Management System, Jadavpur University, Kolkata 700 032 (India); Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2013-11-15

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  13. A comparative assessment of waste incinerators in the UK

    International Nuclear Information System (INIS)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-01-01

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  14. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  15. TRU waste cyclone drum incinerator and treatment system: January--March 1978

    International Nuclear Information System (INIS)

    Klingler, L.M.; Batchelder, D.M.; Lewis, E.L.

    1978-01-01

    The cyclone incinerator was operated throughout the past quarter, generating additional data on system characteristics, equipment life expectancies, and by-product generation. Several changes in the incinerator system are in various stages of completion. The lid assembly, secondary chamber, and expansion unit for the new exhaust equipment are nearly ready for installation. A new heat exchanger has been installed in the scrubber system. An ash handling system has been designed for possible future addition to the system. Continuing studies will determine the best delivery mechanism for continuously feeding the cyclone incinerator. Preliminary investigations are being conducted to select an independent system to treat incinerator scrubber solution for recycling and to remove salts and sludge for disposal. Metal samples of two possible materials for incinerator construction were examined for corrosion degradation suffered at the incinerator exhaust outlet. Controlled experiments were conducted on the pressed ash-cement pellet matrix to define compressive strength, mechanical stability, density, and effect of curing environment (wet cure and dry cure). Leachability studies were initiated on pressed sludge/cement matrix in distilled water at ambient temperature. Compressive strengths of sludge/cement pressed matrix samples were investigated. Physical and chemical attributes of incinerated ash were evaluated in relationship to the ash/cement matrix

  16. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE)

    DEFF Research Database (Denmark)

    Riber, Christian; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2008-01-01

    of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input......A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model...... in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator....

  17. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  18. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  19. Fundamental characteristics of input waste of small MSW incinerators in Korea.

    Science.gov (United States)

    Choi, Ki-In; Lee, Suk-Hui; Lee, Dong-Hoon; Osako, Masahiro

    2008-11-01

    Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.

  20. Shredder and incinerator technology for volume reduction of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.

    1986-06-01

    Pacific Northwest Laboratory (PNL) is evaluating alternatives and developing technology for treatment of radioactive wastes generated during commercial nuclear activities. Transuranic wastes that require volume reduction include spent HEPA filters, sample and analytical cell waste, and general process trash. A review of current technologies for volume reduction of these wastes led to the selection and testing of several low-speed shredder systems and three candidate incineration processes. The incinerators tested were the electrically heated control-led-air, gas-heated controlled-air, and rotary kiln. Equipment tests were conducted using simulated commercial transuranic wastes to provide a data base for the comparison of the various technologies. The electrically driven, low-speed shredder process was selected as the preferred method for size reduction of the wastes prior to incineration. All three incinerators effectively reduced the waste volume. Based on a technical and economic evaluation on the incineration processes, the recommended system for the commercial waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment

  1. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  2. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  3. Incineration of hazardous waste: A critical review update

    International Nuclear Information System (INIS)

    Dempsey, C.R.; Oppelt, E.T.

    1993-01-01

    Over the last 15 years, concern over improper disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste cleanup and control statutes of unprecedented scope. The more traditional and lowest-cost methods of direct landfilling, storage in surface impoundments and deep-well injection are being replaced in large measure by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the 'permanent' treatment technologies, properly designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operation experience exists in this area and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this review is to examine the current state of knowledge regarding hazardous waste incineration in an effort to put these technological and environmental issues into perspective

  4. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  5. The use of oxygen in hazardous waste incineration

    International Nuclear Information System (INIS)

    Ho, M.D.; Ding, M.G.

    1989-01-01

    The use of advanced oxygen combustion technologies in hazardous waste (such as PCBs and hydrocarbons) incineration has emerged in the last two years as one of the most significant breakthroughs among all the competing treatment technologies. For many years, industrial furnaces have used oxygen enrichment of the combustion air and oxygen-fuel burners, but with conventional technologies a high oxygen level generally poses problems. The flame temperature is high, leading to high NOx formation and local overeating. Different technical approaches to overcome these problems and their respective effectiveness will be reviewed. Previously, commercial oxygen enrichment in incinerators was limited to a rather modest level applications of much higher oxygen enrichment levels in hazardous waste incinerators

  6. Alpha waste incinerator at the Cea Valduc

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The Cea/Valduc has brought into operation an incinerator for alpha waste. The incineration is in two steps. The first one is a pyrolysis under reduction atmosphere in a furnace at 550 celsius degrees and the second one is a calcination under oxidizing atmosphere of the pyrolysis residue in a furnace at 900 celsius degrees. The ashes have less than 1% of carbon. The gas coming from incineration become oxidized at 1100 Celsius degrees, then are cooled, filtered to eliminate any track of radioactivity. Then, they are cleaned with a neutralisation process. The facility reduces the volume of waste in a factor 20. The capacity of treatment is 7 kg/h. The annual capacity is 30 m 3 . The investment represents 70 millions of francs and the cost of functioning is 2 M F by year. (N.C.)

  7. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil

    2014-01-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators....... The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting...

  8. Incinerator for power reactor low-level radioactive waste

    International Nuclear Information System (INIS)

    Drolet, T.S.; Sovka, J.A.

    1976-01-01

    The technique chosen for volume reduction of combustible waste is incineration by a propane-fired unit. Noncombustible material will be compacted into 200 liter drums. A program of segregation of wastes at the producing nuclear stations was instituted. The design and operation of the incinerator, dose limits to the public, and derived release limits for airborne effluents are discussed

  9. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    Science.gov (United States)

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  10. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  11. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  12. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  13. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  14. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  15. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  16. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  18. Conventional incinerator redesign for the incineration of low level radioactive solid wastes.; Rediseno de un incinerador convencional para la incineracion de desechos radiactivos de bajo nivel.

    Energy Technology Data Exchange (ETDEWEB)

    Lara Z, L E.C.

    1997-04-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author).

  19. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Requirements for permitting a mixed waste incinerator

    International Nuclear Information System (INIS)

    Trichon, M.; Feldman, J.; Serne, J.C.

    1990-01-01

    The consideration, design, selection and operation of any incinerator depends primarily on characteristic quality (ultimate and proximate analyses) and quantity to the waste to be incinerated. In the case of burning any combination of mixed hazardous, biomedical and radioactive low level waste, specific federal and generic state environmental regulatory requirements are outlined. Combustion chamber temperature and waste residence time requirements will provide the rest of the envelope for consideration. Performance requirements must be balanced between the effects of time and temperature on destruction of the organic waste and the vaporization and possible emission of the inorganic waste components (e.g., toxic metals, radioactive inorganics) as operating conditions and emission levels will be set in state and federal regulatory permits. To this end the complete characterization of the subject waste stream must be determined if an accurate assessment of incineration effectiveness and impact are to be performed

  1. Economic sensitivity of DAW incineration to PVC content

    International Nuclear Information System (INIS)

    Rossmassler, R.L.

    1986-01-01

    Economic analyses of the volume reduction of low level radwaste, including the incinerator of Dry Active Waste (DAW), spent resins and filter sludges, are performed using the microcomputer code VOLREDUCER. Based on BWR and PWR data taken from previous EPRI work, the sensitivity of incinerator economics to polyvinyl chloride (PVC) content in DAW is examined. An annual cost penalty associated with the presence of PVC in the waste is formulated, and the sensitivity of this penalty to a variety of parameters is determined. The alternative of sorting out PVC from the rest of the waste is compared to incineration with regard to this annual cost penalty. These penalties may range as high as $100,000 annually depending on the waste characteristics and percent of PVC

  2. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  3. Review of biosolids management options and co-incineration of a biosolid-derived fuel.

    Science.gov (United States)

    Roy, Murari Mohon; Dutta, Animesh; Corscadden, Kenny; Havard, Peter; Dickie, Lucas

    2011-11-01

    This paper reviews current biosolids management options, and identifies incineration as a promising technology. Incineration is attractive both for volume reduction and energy recovery. Reported emissions from the incineration of biosolids were compared to various regulations to identify the challenges and future direction of biosolids incineration research. Most of the gaseous and metal emissions were lower than existing regulations, or could be met by existing technologies. This paper also presents the results of an experimental study to investigate the potential use of biosolids for co-incineration with wood pellets in a conventional wood pellet stove. Pilot scale combustion tests revealed that co-incineration of 10% biosolids with 90% premium grade wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Volume reduction of low- and medium-level waste by incineration/calcination

    International Nuclear Information System (INIS)

    Buzonniere, A. de; Gauthey, J.C.

    1993-01-01

    Nuclear installations generate large quantities of low- and medium-level radwaste. This waste comes from various installations in the fuel cycle, reactor operation, research institute, hospitals, nuclear plate dismantling, etc.. TECHNICATOME did the project development work for the incineration plant of PIERRELATE (France) on behalf of COGEMA (Compagnie Generale des d'Etudes Technique). This plant has been in active service since November 1987. In addition, TECHNICATOME was in charge of the incinerator by a turnkey contract. This incinerator was commissioned in 1992. For a number of years, TECHNICATOME has been examining, developing and producing incineration and drying/calcination installations. They are used for precessing low- and medium-level radwaste

  5. Development of Mitsui/Juelich Incineration System and hydro-thermal ash solidification

    International Nuclear Information System (INIS)

    Suzuki, S.; Kamada, S.; Nakamori, Y.; Katakura, M.; Yamazaki, N.

    1988-01-01

    This paper summarizes the developing program for Mitsui/Juelich Incinerated System combined with Hydrothermal ash solidification. The system is an integrated one and capable for volume reduction of various kind of radioactive waste and safe disposal of residual incinerator ash. The system also has an advantage of reducing construction and operation cost. An outline of the incineration plant is also presented in this paper

  6. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  7. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y C [Yonsei Univ., Seoul (Korea, Republic of); Park, W J; Lee, B S; Lee, S H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  8. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  9. Characterization on incineration residue of radioactive solid wastes

    International Nuclear Information System (INIS)

    Katoh, Kiyoshi; Hirayama, Katsuyoshi; Kato, Akira.

    1989-01-01

    Characterization was carried out on incineration residue discharged from the radioactive solid waste incineration unit (capacity, 100 kg/h) in use at the Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI) to obtain basic data for investigating solidification methods of the residue. The characterized residue was taken from furnace and a primary ceramic filter of the incineration unit which incinerates combustible solid wastes generated at JAERI and the outside organizations. Items of characterization involve a particle size distribution, misplaced materials content, ignition loss, chemical composition and radioactivity of nuclides in the ash. As the results, the size of ash sampled from the furnace distributed a wide range, with about 35∼60 % of ash smaller than 5 mm and about 10∼25 % of massive one larger than 30 mm (max. size: ∼130 mm). The ignition loss was 2∼3 %. The chemical compositions of the ash were mainly SiO 2 , Fe 2 O 3 , CaO and Al 2 O 3 . The specific activities of the ash were about 0.4∼4 x 10 3 Bq/g, and principal contaminants were 60 Co and 137 Cs. (author)

  10. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  11. Mixed incineration of RAIW and liquid scintillator waste after storage for decay

    International Nuclear Information System (INIS)

    Naba, K.; Nakazato, K.; Kataoka, K.

    1993-01-01

    Most medical radioactive waste is combustible after radioactive decay. Moreover mixed incineration of LLW with biomedical radioactive waste will lessen radiation exposure to the public. This paper describes the total system flowsheet for the processing of liquid scintillator wastes and radioimmunoassay tube wastes containing iodine 125 (after a two-year storage for decay). The process was tested with a 60 kg/hr capacity incinerator from 1987 to 1991; this has been upgraded to a 150 kg/hr incinerator which is used for nonradioactive biomedical waste incineration as well

  12. Assessing potential health effects from municipal sludge incinerators: screening methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  13. Flaring versus thermal incineration of waste gases in the oil and gas industry

    International Nuclear Information System (INIS)

    Smolarski, G.M.

    1999-01-01

    The efficient combustion of waste gases at oil processing plants, battery or well sites is discussed. Several problem situations are examined, field test results are reviewed, and custom design systems are explained including modifications to systems to conserve fuel. It is shown that combustion of waste gases in fuel efficient thermal incinerators is a practical means of disposal, particularly for sour or toxic gas of low heating value. These gases contain noxious compounds that may cause odours or adverse health effects. Results of a field tests of a portable in-situ incinerator show that compared to flaring (to oxide waste gas), incineration is a more efficient form of waste management. Emission tests also prove the superior performance of incineration. The feasibility of incinerating oil storage tank vapours was also demonstrated. Tests were also conducted with a fuel-efficient Glycol Still Off-Gas Incinerator which was developed to control toxic waste emissions. Glycol dehydration removes water vapour from natural gas. The key compounds that are removed by glycol are aromatic hydrocarbons or BTEX compounds (benzene, toluene, ethylbenzene and xylene), and sulphur compounds. The main design considerations for any incinerator are temperature, turbulence and residence time. An incinerator exit temperature of 760 degrees C is generally needed to reduce sulphur compounds. 2 refs., 8 tabs., 7 figs

  14. Experimental study of the energy efficiency of an incinerator for medical waste

    International Nuclear Information System (INIS)

    Bujak, J.

    2009-01-01

    The aim of this paper is to explore the flux of usable energy and the coefficient of energy efficiency of an incinerator for medical waste combustion. The incineration facility incorporates a heat recovery system. The installation consists of a loading unit, a combustion chamber, a thermoreactor chamber, and a recovery boiler. The analysis was carried out in the Oncological Hospital in Bydgoszcz (Poland). The primary fuel was comprised of medical waste, with natural gas used as a secondary fuel. The study shows that one can obtain about 660-800 kW of usable energy from 100 kg of medical waste. This amount corresponds to 1000-1200 kg of saturated steam, assuming that the incinerator operates at a heat load above φ > 65%. The average heat flux in additional fuel used for incinerating 100 kg of waste was 415 kW. The coefficient of energy efficiency was set within the range of 47% and 62% depending on the incinerator load. The tests revealed that the flux of usable energy and the coefficient of energy efficiency depend on the incinerator load. In the investigated range of the heat load, this dependence is significant. When the heat load of the incinerator increases, the flux of usable energy and the coefficient of energy efficiency also increase.

  15. Recovery of plutonium from incinerator ash at Rocky Flats

    International Nuclear Information System (INIS)

    Johnson, T.C.

    1976-01-01

    Incineration of combustible materials highly contaminated with plutonium produces a residue of incinerator ash. Recovery of plutonium from incinerator ash residues at Rocky Flats is accomplished by a continuous leaching operation with nitric acid containing fluoride ion. Special equipment used in the leaching operation consists of a screw feeder, air-lift dissolvers, filters, solids dryer, and vapor collection system. Each equipment item is described in detail. The average dissolution efficiency of plutonium experienced with the process was 68% on the first pass, 74% on the second pass, and 64% on each subsequent pass. Total-solids dissolution efficiencies averaged 47% on the first pass and about 25% on each subsequent pass

  16. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  17. Incineration of European non-nuclear radioactive waste in the USA

    International Nuclear Information System (INIS)

    Moloney, B. P.; Ferguson, D.; Stephenson, B.

    2013-01-01

    Incineration of dry low level radioactive waste from nuclear stations is a well established process achieving high volume reduction factors to minimise disposal costs and to stabilise residues for disposal. Incineration has also been applied successfully in many European Union member countries to wastes arising from use of radionuclides in medicine, nonnuclear research and industry. However, some nations have preferred to accumulate wastes over many years in decay stores to reduce the radioactive burden at point of processing. After decay and sorting the waste, they then require a safe, industrial scale and affordable processing solution for the large volumes accumulated. This paper reports the regulatory, logistical and technical issues encountered in a programme delivered for Eckert and Ziegler Nuclitec to incinerate safely 100 te of waste collected originally from German research, hospital and industrial centres, applying for the first time a 'burn and return' process model for European waste in the US. The EnergySolutions incinerators at Bear Creek, Oak Ridge, Tennessee, USA routinely incinerate waste arising from the non-nuclear user community. To address the requirement from Germany, EnergySolutions had to run a dedicated campaign to reduce cross-contamination with non-German radionuclides to the practical minimum. The waste itself had to be sampled in a carefully controlled programme to ensure the exacting standards of Bear Creek's license and US emissions laws were maintained. Innovation was required in packaging of the waste to minimise transportation costs, including sea freight. The incineration was inspected on behalf of the German regulator (the BfS) to ensure suitability for return to Germany and disposal. This first 'burn and return' programme has safely completed the incineration phase in February and the arising ash will be returned to Germany presently. The paper reports the main findings and lessons learned on this first

  18. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  19. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi

    1985-01-01

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  20. Operation of a prototype high-level alpha solid waste incinerator

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.; Dworjanyn, L.O.

    1979-01-01

    A full-scale (5 kg waste/hour) controlled-air incinerator is presently being tested as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible wastes that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm and 252 Cf. Automatic feed preparation and incinerator operation and control have been incorporated into the design to simulate the future plant design which will minimize operator radiation exposure. Over 250 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr for periods up to 6 hours. Safety and reliability were major design objectives. Upon completion of an initial experimental phase to determine process sensitivity and flexibility, the facility will be used to develop bases for the production unit's safety analysis report, technical standards, and operating procedures. An ultimate use of the experimental unit will be the testing of actual production unit components and the training of Savannah River Plant operating personnel

  1. Application countermeasures of non-incineration technologies for medical waste treatment in China.

    Science.gov (United States)

    Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong

    2013-12-01

    By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.

  2. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  3. Risk identification for PPP waste-to-energy incineration projects in China

    International Nuclear Information System (INIS)

    Song, Jinbo; Song, Danrong; Zhang, Xueqing; Sun, Yan

    2013-01-01

    Municipal solid waste (MSW) is regarded as a renewable energy source. In China, the sharp increase of MSW has precipitated the rapid growth of waste-to-energy (WTE) incineration plants. Private capital has been getting into the WTE incineration industry through the public–private partnership (PPP) arrangement. Due to the large construction cost and the long concession period commonly associated with this arrangement, a number of failures have emerged in PPP WTE incineration projects. The aim of this paper is to investigate the key risks of PPP WTE incineration projects in China and study the strategies for managing these risks by drawing experience and learning lessons from these projects. First, we analyzed the MSW management practices, relevant legislations and policies, and the development of PPP WTE incineration projects in China. Second, we identified ten key risks through interviews, surveys and visits to some selected projects, and provided detailed analysis of these risks. Lastly, we developed response strategies for these risks from the perspectives of both public and private sectors. - Highlights: • We analyze MSW management practices, relevant legislations and policies in China. • Through case study on PPP WTE incineration projects, ten key risks are identified. • Response strategies for key risks are developed

  4. Tracing source and migration of Pb during waste incineration using stable Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Shao, Li-Ming; He, Pin-Jing [Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Research and Training Center on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092 (China)

    2017-04-05

    Highlights: • The migration of Pb during waste incineration was investigated using Pb isotopes. • Source tracing of Pb during incineration by isotopic technology was feasible. • Contributions of MSW components were measured to trace Pb sources quantitatively. • Isotopic technology helps understand the migration of Pb during thermal treatment. - Abstract: Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components ({sup 207}Pb/{sup 206}Pb = 0.8550–0.8627 and {sup 208}Pb/{sup 206}Pb = 2.0957–2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.

  5. Volume reduction and solidification of radioactive waste incineration ash with waste glass

    International Nuclear Information System (INIS)

    Koyama, Hidemi; Kobayashi, Masayuki

    2007-01-01

    The low-level radioactive waste generated from research institutions and hospitals etc. is packed into a container and is kept. The volume reduced state or the unprocessed state by incineration or compression processing are used because neither landfill sites nor disposal methods have been fixed. Especially, because the bulk density is low, and it is easy to disperse, the low-level radioactive waste incineration ash incinerated for the volume reduction is a big issue in security, safety, stability in the inventory location. A safe and appropriate disposal processing method is desired. When the low temperature sintering method in the use of the glass bottle cullet was examined, volume reduction and stabilization of low-level radioactive waste incineration ash were verified. The proposed method is useful for the easy treatment of the low-level radioactive waste incineration ash. (author)

  6. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  7. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M.; Willcox, M.V.

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex

  8. Gaseous emissions from industrial processes: Municipal solid waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Cassitto, L.; Gallarini, V.; Magnani, P.; Rizzi, A. (Politecnico di Milano, Milan (Italy). Impianti Condizionamento e Fisica Tecnica Artea, Milan (Italy))

    A survey of European Communities proposed air pollution standards is coupled with an examination of the technical feasibility of building and operating municipal solid waste incineration plants that can successfully meet those standards. The results of the analysis indicate that modern incineration plants equipped with cogeneration and current-technology materials and energy recovery systems offer a significant contribution to meeting Italian national energy requirements and contemporaneously provide a decisive answer to the pressing need for safe and effective urban area waste disposal. The paper cautions however any final decision making must be based on extensive cost benefit analyses to determine the optimum combination of incinerator plant energy production and pollution control systems.

  9. Chloride leaching from municipal solid waste incineration (MSWI) bottom ash

    NARCIS (Netherlands)

    Alam, Q.; Schollbach, K.; Florea, M.V.A.; Brouwers, H.J.H.; Vlastimil, Bilek; Kersner, Zbynek; Simonova, Hana

    2017-01-01

    The presence of chlorides in the Municipal Solid Waste Incineration bottom ashes (BA) hinders their potential for recycling in building materials. The contaminant content in the incineration residues is strictly regulated by the Dutch legislation Soil Quality Decree (2013). The fine fraction

  10. Influence of heat transfer modes on the scale-up of solvent pool burning in controlled-air incinerators

    International Nuclear Information System (INIS)

    Gandhi, P.D.; Orloff, D.I.

    1982-01-01

    An analytical modes of pool burning in a controlled-air incinerator was developed. Incinerator performance predicted by the model compared favorably with laboratory-scale incineration experiments. The model was extended to a full-scale incinerator, using results from an intermediate pilot-scale incinerator. The full-scale results showed the influence of various modes of heat transfer, and the importance of flame emissivity and incinerator wall temperature in controlling the burning rate. The influence of pan geometry on consumption rate was also evaluated for the full-scale incinerator

  11. Introduction of a waste incineration tax. Effects on the Swedish waste flows

    Energy Technology Data Exchange (ETDEWEB)

    Sahlin, Jenny [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-41296 Goeteborg (Sweden); Ekvall, Tomas [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-41296 Goeteborg (Sweden); IVL Swedish Environmental Research Institute, P.O. Box 5302, SE-40014 Goeteborg (Sweden); Bisaillon, Mattias; Sundberg, Johan [Profu AB, Goetaforsliden 13, SE-43134 Moelndal (Sweden)

    2007-10-15

    A tax on waste-to-energy incineration of fossil carbon in municipal solid waste from households was introduced in Sweden on July 1, 2006. The tax has led to higher incineration gate fees. One of the main purposes with the tax is to increase the incentive for recycling of materials, including biological treatment. We investigate whether and to what extent this effect can be expected. A spreadsheet model is developed in order to estimate the net marginal cost of alternative waste treatment methods, i.e., the marginal cost of alternative treatment minus avoided cost of incineration. The value of the households' time needed for source separation is discussed and included. The model includes the nine largest fractions, totalling 85% (weight), of the household waste currently being sent to waste incineration: food waste, newsprint, paper packaging, soft and hard plastic packaging, diapers, yard waste, other paper waste, and non-combustible waste. Our results indicate that the incineration tax will have the largest effect on biological treatment of kitchen and garden waste, which may increase by 9%. The consequences of an incineration tax depend on: (a) the level of the tax, (b) whether the tax is based on an assumed average Swedish fossil carbon content or on the measured carbon content in each incineration plant, (c) institutional factors such as the cooperation between waste incinerators, and (d) technological factors such as the availability of central sorting of waste or techniques for measurement of fossil carbon in exhaust gases, etc. Information turns out to be a key factor in transferring the governing force of the tax to the households as well improving the households' attitudes towards material recycling. (author)

  12. Introduction of a waste incineration tax. Effects on the Swedish waste flows

    International Nuclear Information System (INIS)

    Sahlin, Jenny; Ekvall, Tomas; Bisaillon, Mattias; Sundberg, Johan

    2007-01-01

    A tax on waste-to-energy incineration of fossil carbon in municipal solid waste from households was introduced in Sweden on July 1, 2006. The tax has led to higher incineration gate fees. One of the main purposes with the tax is to increase the incentive for recycling of materials, including biological treatment. We investigate whether and to what extent this effect can be expected. A spreadsheet model is developed in order to estimate the net marginal cost of alternative waste treatment methods, i.e., the marginal cost of alternative treatment minus avoided cost of incineration. The value of the households' time needed for source separation is discussed and included. The model includes the nine largest fractions, totalling 85% (weight), of the household waste currently being sent to waste incineration: food waste, newsprint, paper packaging, soft and hard plastic packaging, diapers, yard waste, other paper waste, and non-combustible waste. Our results indicate that the incineration tax will have the largest effect on biological treatment of kitchen and garden waste, which may increase by 9%. The consequences of an incineration tax depend on: (a) the level of the tax, (b) whether the tax is based on an assumed average Swedish fossil carbon content or on the measured carbon content in each incineration plant, (c) institutional factors such as the cooperation between waste incinerators, and (d) technological factors such as the availability of central sorting of waste or techniques for measurement of fossil carbon in exhaust gases, etc. Information turns out to be a key factor in transferring the governing force of the tax to the households as well improving the households' attitudes towards material recycling. (author)

  13. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  14. Monetising the impacts of waste incinerators sited on brownfield land using the hedonic pricing method.

    Science.gov (United States)

    Rivas Casado, Monica; Serafini, Jan; Glen, John; Angus, Andrew

    2017-03-01

    In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A sustainability analysis of an incineration project in Serbia.

    Science.gov (United States)

    Mikic, Miljan; Naunovic, Zorana

    2013-11-01

    The only option for municipal solid waste (MSW) treatment adopted so far in Serbia is landfilling. Similarly to other south-eastern European countries, Serbia is not recovering any energy from MSW. Fifty percent of electricity in Serbia is produced in coal-fired power plants with emission control systems dating from the 1980s. In this article, the option of MSW incineration with energy recovery is proposed and examined for the city of Novi Sad. A sustainability analysis consisting of financial, economic and sensitivity analyses was done in the form of a cost-benefit analysis following recommendations from the European Commission. Positive and negative social and environmental effects of electricity generation through incineration were valuated partly using conversion factors and shadow prices, and partly using the results of previous studies. Public aversion to MSW incineration was considered. The results showed that the incineration project would require external financial assistance, and that an increase of the electricity and/or a waste treatment fee is needed to make the project financially positive. It is also more expensive than the landfilling option. However, the economic analysis showed that society would have net benefits from an incineration project. The feed-in tariff addition of only €0.03 (KWh)(-1) to the existing electricity price, which would enable the project to make a positive contribution to economic welfare, is lower than the actual external costs of electricity generation from coal in Serbia.

  16. A comparative assessment of waste incinerators in the UK.

    Science.gov (United States)

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Verification test of an engineering-scale multi-purpose radwaste incinerator

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The verification test of an engineering-scale multi-purpose radwaste incinerator was implemented. The test items include performance determination for the system when solid wastes (include resins) or spent oil were incinerating and off gas was cleaning, tracer test for determining decontamination factor and 72 h continuos running test. 500 h tests verify the reliability and feasibility of designs of technological process, main structure, instrument control and system safety. The incineration system ran smoothly, devices and instruments worked stably. The specifications such as capacity, volume reduction factor, carbon remainder in ash and decontamination factor all meet the design requirements

  18. [Public health risk caused by emissions from refuse incinerators].

    Science.gov (United States)

    Wassermann, O; Kruse, H

    1995-01-01

    An irresponsible "approval on request" in favour of waste incineration written by a consulting committee of the German Federal Board of Physicians has meanwhile been widely distributed both nationally and internationally. The aim of this politically motivated paper is to dramatically increase the present number of 49 waste incinerators in Germany. It is our duty to warn of this intention. Health problems are known to exist both in workers at waste incinerators and in humans living in their vicinity. Furthermore, in the long run negative impact also to ecosystems should be expected from the emissions. Health problems in patients living downwind of waste incinerators repeatedly have been reported on by physicians. "Lack of statistical significance", often used as counter-argument, is only due to absence of funding of comprehensive epidemiological studies in Germany. Analyses of soil samples reveal the pollution from waste incineration. Considering the pre-load of the region, additional emissions caused by waste incineration and other sources have to be assessed. The application of preventive limit values is imperative. The presently used "limit values", being about 100 times too high, bear an unacceptable risk. Therefore, reliable regional registers of emissions have to be established immediately. Limit values continuously have to be adjusted to the progress of scientific knowledge. In this respect it is imperative to consider that the actual composition of emissions is unknown; isolated risk assessment of single compounds underestimates the total risk; the negative impact, e.g. of dioxins, on both the immune and hormone systems occurs at concentrations 100 times lower than those causing carcinogenic effects; the assumption of "threshold values" is obsolete; a considerable lack of knowledge exists about accumulation in food webs and in ecosystems; the demand of preservation of natural, geogenic situations is indispensable in assessments of soil and water pollution

  19. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Waste incineration and immobilization for nuclear facilities. Status report, April-September 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Williams, P.M.; Burkhardt, S.C.; Ledford, J.A.; Gallagher, K.Y.

    1980-01-01

    The fluidized bed incinerator and waste immobilization processes are being developed to process various liquid and solid wastes that are generated by a nuclear facility. The versatility of the incinerator liquid waste handling system has been enhanced by recent changes made in the pumping and related piping system. Tributyl phosphate-solvent incineration has been evaluated thoroughly using the pilot plant fluidized bed incinerator. Vitrified glass pellets were made to determine operating parameters of a resistance-heated reactor and to produce samples for testing. Procedures were developed for testing the product pellets. A simplified start-up procedure was devised as development continued on a second type of reactor, the Joule-heated melter

  1. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  2. Incineration of radioactive wastes at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, W; Hempelmann, W; Krause, H

    1976-06-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the fumes are cleaned by ceramic filter candles. After passing the filtering system and cooling, the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 l-drums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m/sup 3/ of combustible solids and about 60 m/sup 3/ organic solvents have been incinerated in the plant. The operating experiences are presented.

  3. Coal as a supplemental heat source in sludge incineration

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, G J; Bergstedt, D C

    1979-07-01

    The use of coal as a supplemental fuel in multiple hearth sludge incineration was investigated; how sulphur lump coal was added to dewatered sludge being fed to the furnace, reducing incinerator oil requirements by 70%. With full-scale retrofit of the treatment plant total annual costs for coal supplemental feeding would be 161,000 dollars, but oil savings would be 240,000 dollars.

  4. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  5. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An overview of environment Canada's National Incinerator Testing and Evaluation Program (NITEP)

    International Nuclear Information System (INIS)

    Finkelstein, A.

    1991-01-01

    In response to the many concerns associated with incineration, Environment Canada established the National Incineration Testing and evaluation Program (NITEP) in 1984. It's mission was to assess the incineration process as a means for disposal of MSW in Canada. The program primarily focused on the environment and health impacts of MSW incinerators by determining how design and operating conditions can be modified to reduce emissions of concern. In addition to developing better measuring and monitoring methods, supporting ash residue management research programs, NITEP established four major field projects to develop the data base necessary for national guidelines. This paper presents a brief overview of the most significant field program findings over the past six years and the rationale for the Canadian Council of Ministers of the Environment (CCME) Operating and Emissions Guidelines for MSW Incinerators published in June of 1989. In addition an overview of the ash work completed to date, and work still underway, will be presented

  7. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  8. Consolidated Incineration Facility metals partitioning test

    International Nuclear Information System (INIS)

    Burns, D.B.

    1993-01-01

    Test burns were conducted at Energy and Environmental Research Corporation's rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below

  9. Development and prospects of municipal solid waste (MSW) incineration in China

    Institute of Scientific and Technical Information of China (English)

    Yongfeng NIE

    2008-01-01

    With the lack of space for new landfills, municipal solid waste (MSW) incineration is playing an increasingly important role in municipal solid waste management in China. The literatures on certain aspects of incineration plants in China are reviewed in this paper, including the development and status of the application of MSW incineration technologies, the treatment of leachate from stored MSW, air pollution control technologies, and the status of the fly-ash control method. Energy policy and its promotion of MSW-to-energy conversion are also elucidated.

  10. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.

    1987-01-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  11. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    International Nuclear Information System (INIS)

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-01-01

    Highlights: ► Aluminium packaging partitioning in MSW incineration residues is evaluated. ► The amount of aluminium packaging recoverable from the bottom ashes is evaluated. ► Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. ► 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  12. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  13. Conditioning of alpha and beta-gamma ashes of incinerator, obtained by radioactive wastes incinerating and encapsulation in several matrices

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Auffret, L.

    1993-01-01

    In this final report, the work carried out, and the results, obtained on the ash incinerator conditioning study, by means of encapsulation in several matrices, are presented. Three encapsulation matrices were checked: - a ternary cement, containing OPC, blast furnace slag and flying ash, - a two component epoxide system, - an epoxide-cement compound matrix. Three ash categories were employed: - real alpha ash, coming from plutonium bearing wastes, - ash, from inactive combustible waste, obtained by treatment in an incinerator prototype, - ash coming from inactive waste incineration plant. Using three different matrices, the encapsulated form properties were determined: at the laboratory scale, the encapsulating formulation was established, and physico mechanical data were obtained, - on active encapsulated forms, containing a calculated amount of 238 Pu, a radiolysis study was performed in order to measure the composition and volume of the radiolytic gas flow, - at the industrial scale, a pilot plant operating the polyvalent encapsulating process, was designed and put into service. Bench-scale experiments were done, on alpha ash embedded forms using the modified sulphur cement matrix as embedding agent. 4 refs., 30 figs., 27 tabs

  14. Retention and subsequent release of radioactivity from the incineration of wastes containing microspheres

    International Nuclear Information System (INIS)

    Emery, R.J.; Watson, J.E. Jr.

    1990-01-01

    Incineration is the preferred method for disposing of animal carcasses containing radioactive microspheres at the authors University. Routine surveys of ash from successive nonradioactive burns revealed significant contamination from previously incinerated microspheres. Past studies on microsphere incineration quantified the amount of activity retained in ash, but did not address any subsequent releases. This topic was not considered in earlier studies because, in most cases, the carcasses were placed in some type of container to facilitate recovery of ash, preventing contamination of the incinerator refractory. In this study, five sets of controlled burns were performed to quantify the subsequent releases of the microsphere radioisotopes 141 Ce, 113 Sn, 102 Ru, 95 Nb, and 46 Sc. Each set consisted of three successive burns. The first burn of each set incinerated a non-radioactive carcass, the second burn, a radioactive carcass, and the third, a non-radioactive carcass. In all of the burns, the carcasses were placed directly on the incinerator refractory floor, which is the standard procedure during normal operations

  15. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  16. Accumulative behavior of radioactive cesium during the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Mizuhara, Shinji; Kawamoto, Katsuya; Maeseto, Tomoharu; Kuramochi, Hidetoshi; Osako, Masahiro

    2015-01-01

    Understanding the long-term accumulation behavior of radioactive cesium (r- Cs) in municipal solid waste (MSW) incineration plants is important for safety management of them. In this study, first, not only air dose rate but also r-Cs activity in wall adhesion dust at different point in the inside of a MSW incineration plant were measured. The results showed that higher amounts of the Cs were observed in the surface layer of refractory and that higher air dose ratios were obtained in the upstream region in incineration process. However, the Cs content of adhered dust onto the surface material of incineration equipment was higher in downstream than upstream because of the decrease of flue gas temperature. (author)

  17. Waste incineration and adverse birth and neonatal outcomes: a systematic review.

    Science.gov (United States)

    Ashworth, Danielle C; Elliott, Paul; Toledano, Mireille B

    2014-08-01

    Public concern about potential health risks associated with incineration has prompted studies to investigate the relationship between incineration and risk of cancer, and more recently, birth outcomes. We conducted a systematic review of epidemiologic studies evaluating the relationship between waste incineration and the risk of adverse birth and neonatal outcomes. Literature searches were performed within the MEDLINE database, through PubMed and Ovid interfaces, for the search terms; incineration, birth, reproduction, neonatal, congenital anomalies and all related terms. Here we discuss and critically evaluate the findings of these studies. A comprehensive literature search yielded fourteen studies, encompassing a range of outcomes (including congenital anomalies, birth weight, twinning, stillbirths, sex ratio and infant death), exposure assessment methods and study designs. For congenital anomalies most studies reported no association with proximity to or emissions from waste incinerators and "all anomalies", but weak associations for neural tube and heart defects and stronger associations with facial clefts and urinary tract defects. There is limited evidence for an association between incineration and twinning and no evidence of an association with birth weight, stillbirths or sex ratio, but this may reflect the sparsity of studies exploring these outcomes. The current evidence-base is inconclusive and often limited by problems of exposure assessment, possible residual confounding, lack of statistical power with variability in study design and outcomes. However, we identified a number of higher quality studies reporting significant positive relationships with broad groups of congenital anomalies, warranting further investigation. Future studies should address the identified limitations in order to help improve our understanding of any potential adverse birth outcomes associated with incineration, particularly focussing on broad groups of anomalies, to inform

  18. Incineration for resource recovery in a closed ecological life support system

    Science.gov (United States)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  19. Technical report on dismantling of incinerator building of JNC with strict environmental assessments especially for the contamination of surroundings of incinerator by Dioxin's in soil

    International Nuclear Information System (INIS)

    Aizawa, Masanori; Ohmori, Koji; Nomura, Takeshi; Numano, Tatuo; Usui, Kazuya; Irinouchi, Shigenori

    2003-03-01

    Building of incinerator for general waste located at Tokai of Japan Nuclear Cycle Development Institute (JNC in short) were dismantled form April 2002 to March 2003 under environmental control According to the regulation entitled 'Outline for the prevention of exposure of Dioxin's to operators engaged in dismantling of waste incinerator' issued on June 01, 2000 by Ministry of Health, Labor and Welfare in Japan, the regulation requests proper protection methodology to dismantling the incinerator and surroundings contaminated by Dioxin's. This report consists of Environmental assessment under Japanese law and regulations and Procedure of actual dismantling of incinerator building with law-abiding stand point. 1. Environmental assessment; Survey of several laws and regulations concerning on the Dioxin's and actual site assessment to analyze the content of Dioxin's for surroundings of incinerator building. Ground design of dismantling procedures, waste management for disposed during dismantling and scheduling for dismantling of building. 2. Dismantling procedures; Prior to dismantling operation, contamination map by Dioxin's were established then restricted areas were determined. Protection methodology to dioxin's exposure for operators were selected and started dismantling operation after getting permission from the Labor Standards Bureau of Ibaraki Prefecture. Dismantling operations were carried out with respect o above mentioned regulations to prevent the operators exposure to Dioxin's if they are exists in soil or surroundings of building. Finally, dismantling operations were completed without accidents and confirmed no-exposure of Dioxin's to operators of dismantling. Waste generated during dismantling were recycled using specialized recycling companies in Ibaraki prefecture. Dismantling operation of incinerator was first experience at Ibaraki Prefecture, so the officials of Labor Standards Bureau were carried out on-the-spot inspection and have no claim from

  20. System of the incineration for the liquid scintillation garbage

    International Nuclear Information System (INIS)

    Naba, Katsumi

    1981-12-01

    In Japan from 1980 the incineration of the used scintillation liquid has been permitted according to the safety guide regulation of Japan Scientific Technology Agency. This incineration method would disperse the radioactivity in local site and destroy the chemicals at the same time. This system are consist of three parts. (1) Filtration and pH. adjustment of liquid garbage. (2) Bubbling vaporization in closed cycle. The temperature of the solution inside vessel is kept from 65 0 C to 85 0 C and the solution is bubbled with nealy 4 0 C circulated air. After the end of distillation, water layer is separated from the organic chemical layer and put it down the drain according to the regulation. (3) The residue is mixed with only the distilled organic chemicals according to the next classification, thereafter incineration is carried out. (a) For under the radioactive concentration of 1 x 10 -3 μCi/ml, the mixed scintillation liquid are burned up in specially designed incinerator. (b) For over the level of 1 x 10 -3 μCi/ml, only the distilled organic chemicals are burned up and the residue will be sent to the Waste Disposal Site. (c) For under the water content of 5% these liquid garbage can be directly are burned up without distillation The residue seemed to be suitable for the combustion of the dried carcased animals as the auxiliary fuels. This incinerator will be able to use as room heater or water heater for the bath without radioactive contamination inside of install room. (author)

  1. Design considerations for incineration of transuranic-contaminated solid wastes

    International Nuclear Information System (INIS)

    Koenig, R.A.

    1977-01-01

    The Los Alamos Scientific Laboratory has established a development program to evaluate alternate production-level (100-200 lb/hr throughput) volume reduction processes for transuranic-contaminated solid waste. The first process selected for installation and study is based on controlled-air incineration. Design considerations leading to selection of feed preparation, incineration, residue removal, and off-gas cleanup components and their respective radioactive containment provisions will be presented

  2. Incinerator carryover tests with dysprosium as a stand-in for plutonium

    International Nuclear Information System (INIS)

    Hooker, R.L.

    1981-11-01

    A full-scale (5 kg/h) incinerator is being tested with nonradioactive feed materials which simulate SRP-generator combustible transuranic wastes. The incinerator is two-stage and is designed to provide relatively quiescent conditions in the primary chamber where the ash is formed. This feature should minimize entrainment of Pu-bearing particles into the off-gas system. A series of runs have been completed in which incinerator feed was spiked with dysprosium to simulate Pu. Carryover of Dy into the off-gas system was found to be low (about 1/4%). 4 figures, 3 tables

  3. Incineration as an effective means in Malaysian municipal solid waste treatment

    International Nuclear Information System (INIS)

    Sharifah, A.S.A.K.; Subari, F.; Zainal Abidin, H.

    2006-01-01

    Malaysia is in dire need of an alternative to current method in municipal solid waste treatment. An industrial pilot plant incinerator has been constructed at Universiti Teknologi Mara Shah Alam campus. A study has been performed to investigate the performance of the locally developed and manufactured rotary kiln incinerator. On the overall, the temperature profiles are well in agreement with species concentration observed. The emission quality satisfy the air pollution standards and on the overall the rotary kiln incinerator shows great potential in municipal solid waste treatment. (Author)

  4. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment of methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e. facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium. (Refs. 5).

  5. Design and operation of a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Becker, G.W. Jr.; Makohon, P.A.

    1981-01-01

    A full-scale test incinerator has been built at the Savannah River Laboratory to provide a design basis for a radioactive facility that will burn low-level beta-gamma contaminated waste. The processing steps include waste feed loading, incineration, ash residue packaging, and off-gas cleanup. Both solid and liquid waste will be incinerated during the test program. The components of the solid waste are cellulose, latex, polyethylene, and PVC; the solvent is composed of n-paraffin and TBP. A research program will confirm the feasibility of the design and determine the operating parameters

  6. TRIAL BURN RESULTS AND FUTURE ACTIVITES OF THE EPA MOBILE INCINERATOR

    Science.gov (United States)

    The EPA Mobile Incinerator has demonstrated its ability to successfully destroy dioxin. A trial burn conducted in 1987 demonstrated the incinerator's ability to destroy a wide variety of compounds. The destruction and removal efficiency (DRE) of carbon tetrachloride, hexachloro...

  7. Non-radioactive verification test of ZRF25 radioactive combustible solid waste incinerator

    International Nuclear Information System (INIS)

    Wang Peiyi; Li Xiaohai; Yang Liguo

    2013-01-01

    This paper mainly introduces the construction and test run of ZRF25 radioactive combustible solid waste incinerator, by a series of simulating waste tests, such as 24 h test, 72 h test, 168 h test, making a conclusion that the incinerator runs reliably. In addition, all of the indexes (such as treatment capacity, volume reduction coefficient, clinker ignition loss of incineration ash) meet the requirements of contract and pollution discharging standards. (authors)

  8. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  9. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  10. Incineration of spent ion exchange resins in a triphasic mixture at Belgoprocess

    International Nuclear Information System (INIS)

    Deckers, J.; Luycx, P.

    2003-01-01

    Up to 1998, spent ion exchange resins have been fed to the incinerator in combination with various other solid combustible wastes at Belgoprocess. However, thanks to sustained efforts to reduce radioactive waste production in all nuclear facilities in Belgium, the annual production of solid combustible waste is now much too small to allow this practice to be continued. Since the incinerator at Belgoprocess is not capable of treating spent ion exchange resins as such, it was decided to adopt the use of foam as a carrier to feed the resins to the incinerator. The mixture is a pseudohomogeneous charged foam, ensuring easy handling and allowing incineration in the existing furance, while a number of additives may be included, such as oil to increase the calorific value of the mixture and accelerate combustion. The first incineration campaign of spent ion exchange resins in a triphasic foam mixture, in conjunction with other liquid and solid combustible wastes, will be started in January 2000. The foam, comprising 70% by weight of resins, 29% by weight of water and 1% by weight of surfactant will be pulverized in the incinerator through an injection lance, at a feed rate of 40 to 100 kg/h. The incinerator and associated off-gas treatment system can be operated at standard conditions. Belgoprocess is the subsidiary of the Belgian national agency for the management of radioactive waste, known by its Dutch and French acronyms, NIRAS and ONDRAF respectively. The company ensures the treatment, conditioning and interim storage of nearly all radioactive waste produced in Belgium. (orig.)

  11. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  12. Desulfurization of waste gases of the incinerator after petroleum refining

    International Nuclear Information System (INIS)

    Samesova, D.; Ladomersky, J.

    2001-01-01

    Desulfurization of waste gases of the incinerator after petroleum refining was developed. Mixing of wastes with lime (10% of additive of total volume of waste) was proved before introduction into incinerator. Concentrations of CO, CO 2 , O 2 , NO 2 , SO 2 and temperature of combustion products were measured by automatic analyser

  13. 40 CFR 60.3062 - What is an air curtain incinerator?

    Science.gov (United States)

    2010-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  14. Resolution of USQ regarding source term in the 232-Z Waste Incinerator Building

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1995-09-01

    The 232-Z Waste Incinerator at the Hanford Plutonium Finishing Plant (PFP) was used to incinerate plutonium-bearing combustible materials generated during normal plant operations. Nondestructive (NDA) measurements performed after the incinerator ceased operations indicated high plutonium loadings in exhaust ductwork near the incinerator glovebox, while the incinerator was found to have only low quantities. Measurements, following a campaign to remove some of the ductwork, resulted in markedly higher assay value for the incinerator glovebox itself. Subsequent assays confirmed the most recent results and pointed to a potential further underestimation of the holdup, in part because of attenuation due to fire brick, which could not be seen easily and which had been reported to not be present. NaI detector based measurements were used to map the deposits. Extended count times, using high resolution Ge detectors helped estimate the isotopic composition of the plutonium and quantify the deposits. Experiments were performed using a Ge detector to obtain adequate corrections for the high attenuation of the incinerator glovebox. Several neutron detectors and detector configurations were employed to understand and quantify the neutron flux. Due to the disparity that was anticipated to occur between the gamma ray and neutron assay results, radiation modeling was used to try to reconcile the divergent results. This was a third aspect of the team's effort, utilizing computer modeling to resolve discrepancies between measurement methods

  15. Incineration ashes conditioning by isostatic pressing and melting

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Alpha-bearing solid incineration wastes are conditioned for two principal reasons: to enhance the quality of the finished product for long-term storage, and to reduce the total waste volume. Isostatic pressing parameters were defined using containers 36 mm in diameter; the physicochemical properties of the compacted ashes were determined with 140 mm diameter containers and industrial feasibility was demonstrated with a large (300 mm diameter) container. Two types of ashes were used: ashes fabricated at Marcoule (either in devices developed by the CEA for the MELOX project with a standard MELOX composition, or by direct incineration at COGEMA's UP1 plant) and fly ash from a domestic waste incinerator. A major engineering study was also undertaken to compare the three known ash containment processes: isostatic pressing, melting, and cement-resin matrix embedding. The flowsheet, operational chronology and control principles were detailed for each process, and a typical plant layout was defined to allow comparisons of both investment and operating costs

  16. A demonstration program to evaluate centralized LLW Incineration

    International Nuclear Information System (INIS)

    Burian, R.J.

    1984-01-01

    Dramatic increases in low level waste burial charges in the last five years have spurred interest in achieving higher volume reduction than currently achieved by compaction. Battelle has completed a planning study to demonstrate the technical and economic feasibility of central site incineration for dry active waste to service several generators within a geographical area. We initiated licensing by the USNRC and Ohio EPA and developed plans, procedures, and estimated costs for licensing, construction, operation, and decommissioning of a central site incinerator. In addition, acceptance criteria were established for incoming waste. Response from the NRC and Ohio EPA indicated that no major obstacles existed toward obtaining licenses. The economic study indicated that a commercial incineration operation lasting 20 years or more was economically advantageous over direct burial of compacted waste, assuming that burial costs continue to escalate at their current rates. However, a 5-year demonstration period was not economically advantageous because of the short period to recover the fixed capital investment

  17. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits......-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese...

  18. Incineration as a radioactive waste volume reduction process for CEA nuclear centers

    International Nuclear Information System (INIS)

    Atabek, R.; Chaudon, L.

    1994-01-01

    Incineration processes represent a promising solution for waste volume reduction, and will be increasingly used in the future. The features and performance specifications of low-level waste incinerators with capacities ranging from 10 to 20 kg - h -1 at the Fontenay-aux-Roses, Grenoble and Cadarache nuclear centers in France are briefly reviewed. More extensive knowledge of low-level wastes produced in facilities operated by the Commissariat a l'Energie Atomique (CEA) has allowed us to assess the volume reduction obtained by processing combustible waste in existing incinerators. Research and development work is in progress to improve management procedures for higher-level waste and to build facilities capable of incinerating α - contaminated waste. (authors). 6 refs., 5 figs., 1 tab

  19. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Gorla, Leopoldo; Nessi, Simone; Grosso, Mario [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  20. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    International Nuclear Information System (INIS)

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-01-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative 'incineration' was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material

  1. Small-scale medical waste incinerators: experiences and trials in South Africa

    CSIR Research Space (South Africa)

    Rogers, DEC

    2006-01-01

    Full Text Available incineration units. The trials showed that all of the units could be used to render medical waste non-infectious, and to destroy syringes or render needles unsuitable for reuse. Emission loads from the incinerators are higher than large-scale commercial...

  2. Method for controlling incineration in combustor for radioactive wastes

    International Nuclear Information System (INIS)

    Takaoku, Y.; Uehara, A.

    1991-01-01

    This invention relates to a method for controlling incineration in a combustor for low-level radioactive wastes. In particular, it relates to a method for economizing in the consumption of supplemental fuel while maintaining a stable incineration state by controlling the amount of fuel and of radioactive wastes fed to the combustor. The amount of fuel supplied is determined by the outlet gas temperature of the combustor. (L.L.)

  3. Application of microwaves for incinerating waste shell moulds and cores

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-08-01

    Full Text Available In the paper, investigation results of microwave heating application for incinerating waste shell moulds and cores made of moulding sands with thermosetting resins are presented. It was found that waste shell cores or shell moulds left after casting, separated from moulding sand, can be effectively incinerated. It was evidenced that microwave heating allows effective control of this process and its results. Incineration of waste moulds and cores made of commercial grades of resin-coated moulding sand using microwave heating was found to be an effective way of their utilisation. It was determined that the optimum burning time of these wastes (except those insufficiently disintegrated and not mixed with an activating agent is maximum 240 s at the used magnetron power of 650 W. It was noticed that proper disintegration of the wastes and use of suitable additives to intensify the microwave heating process guarantee significant reduction of the process time and its full stabilisation. Application of microwave heating for incinerating waste shell moulds and cores ensure substantial and measurable economic profits due to shorter process time and lower energy consumption.

  4. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    Science.gov (United States)

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  5. The Savannah River Plant Consolidated Incineration Facility

    International Nuclear Information System (INIS)

    Weber, D.A.

    1987-01-01

    A full scale incinerator is proposed for construction at the Savannah River Plant (SRP) beginning in August 1989 for detoxifiction and volume reduction of liquid and solid low-level radioactive, mixed and RCRA hazardous waste. Wastes to be burned include drummed liquids, sludges and solids, liquid process wastes, and low-level boxed job control waste. The facility will consist of a rotary kiln primary combustion chamber followed by a tangentially fired cylindrical secondary combustion chamber (SCC) and be designed to process up to 12 tons per day of solid and liquid waste. Solid waste packaged in combustible containers will be fed to the rotary kiln incinerator using a ram feed system and liquid wastes will be introduced to the rotary kiln through a burner nozzle. Liquid waste will also be fed through a high intensity vortex burner in the SCC. Combustion gases will exit the SCC and be cooled to saturation in a spray quench. Particulate and acid gas are removed in a free jet scrubber. The off-gas will then pass through a cyclone separator, mist eliminator, reheater high efficiency particulate air (HEPA) filtration and induced draft blowers before release to the atmosphere. Incinerator ash and scrubber blowdown will be immobilized in a cement matrix and disposed of in an onsite RCRA permitted facility. The Consolidated Incineration Facility (CIF) will provide detoxification and volume reduction for up to 560,000 CUFT/yr of solid waste and up to 35,700 CUFT/yr of liquid waste. Up to 50,500 CUFT/yr of cement stabilized ash and blowdown will beproduced for an average overall volume reduction fator of 22:1. 3 figs., 2 tabs

  6. Controlled air incineration of hazardous chemical waste at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Vavruska, J.S.

    1982-01-01

    An incineration system, originally demonstrated as a transuranic (TRU) waste volume-reduction process, is described. The production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. The same incinerator and offgas treatment system has been modified further for use in evaluating the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood. Results of a PCP-treated wood incineration test show a PCP destruction efficiency of greater than 99.99% in the primary chamber for the operating conditions investigated. Conditions and results for this test are described

  7. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  8. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    Science.gov (United States)

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  10. Waste incineration and immobilization for nuclear facilities. Status report, October 1977--March 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Burkhardt, S.C.; Ledford, J.A.; Williams, P.M.

    1979-01-01

    Fluidized bed incineration and processes for immobilization of wastes generated at nuclear facilities are undergoing development. After minor piping modifications to eliminate dust collecting points, a pilot plant fluidized bed incinerator run of 225 continuous hours was successfully completed in a demonstration of component reliability. Vitrification of incinerator ash and other wastes is now being accomplished using a pilot scale unit developed as a continuous flow process

  11. Incineration and flue gas cleaning in China - a Review

    International Nuclear Information System (INIS)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  12. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    Science.gov (United States)

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Incinerator Pollution and Child Development in the Taiwan Birth Cohort Study

    Directory of Open Access Journals (Sweden)

    Bih-Ching Shu

    2013-05-01

    Full Text Available This study aimed to investigate the direct and indirect effects of environmental pollutants on child development and parental concerns. It focused on the pathway relationships among the following factors: living within three kilometers of an incinerator, breastfeeding, place of residence, parental concerns about development, and parent-perceived child development. The Taiwan Birth Cohort Study (TBCS dataset includes randomized community data on 21,248 children at six, 18, and 36 months of age. The Parental Concern Checklist and the Taiwan Birth Cohort Study-Developmental Instrument were used to measure parental concern and parent-perceived child development. Living within three kilometers of an incinerator increased the risk of children showing delayed development in the gross motor domain at six and 36 months. Although breastfeeding is a protective factor against uneven/delayed developmental disability (U/DDD, children living near an incinerator who were breastfed had an increased risk of U/DDD compared with those who did not live near incinerators. The presence of a local incinerator affected parent-perceived child development directly and indirectly through the mediating factor of breastfeeding. Further follow-up of these children to investigate the long-term effects of specific toxins on their development and later diagnostic categorization is necessary.

  14. Analysis of operating costs a Low-Level Mixed Waste Incineration Facility

    International Nuclear Information System (INIS)

    Loghry, S.L.; Salmon, R.; Hermes, W.H.

    1995-01-01

    By definition, mixed wastes contain both chemically hazardous and radioactive components. These components make the treatment and disposal of mixed wastes expensive and highly complex issues because the different regulations which pertain to the two classes of contaminants frequently conflict. One method to dispose of low-level mixed wastes (LLMWs) is by incineration, which volatizes and destroys the organic (and other) hazardous contaminants and also greatly reduces the waste volume. The US Department of Energy currently incinerates liquid LLMW in its Toxic Substances Control Act (TSCA) Incinerator, located at the K-25 Site in Oak Ridge, Tennessee. This incinerator has been fully permitted since 1991 and to date has treated approximately 7 x 10 6 kg of liquid LLMW. This paper presents an analysis of the budgeted operating costs by category (e.g., maintenance, plant operations, sampling and analysis, and utilities) for fiscal year 1994 based on actual operating experience (i.e., a ''bottoms-up'' budget). These costs provide benchmarking guidelines which could be used in comparing incinerator operating costs with those of other technologies designed to dispose of liquid LLMW. A discussion of the current upgrade status and future activities are included in this paper. Capital costs are not addressed

  15. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    OpenAIRE

    k. louhab; H. Assas

    2006-01-01

    The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result sho...

  16. Strategy for nuclear wastes incineration in hybrid reactors

    International Nuclear Information System (INIS)

    Lelievre, F.

    1998-01-01

    The transmutation of nuclear wastes in accelerator-driven nuclear reactors offers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  17. Radioactive substances detection at solid waste incinerators entrance

    International Nuclear Information System (INIS)

    Bourjat, V.; Carre, J.; Perrier-Rosset, A.

    2001-01-01

    SYCTOM'S incinerators, operated by TIRU will soon be fitted out with radioactivity control systems to prevent entrance of radioactive waste. Such implementation aims at reducing health risks due to exposition of operators working in incinerators or in sites receiving incineration residues. Radioactive wastes are supposed to be well managed: in the case where the radioactive elements period is short, they have to be stored for a precise time; in all the other cases, a statutory organism dealing with radioactive waste (ANDRA) has to take charge of them. Meanwhile they may arrived in incinerators by mistake. It's difficult to regulate radioactivity control systems for technical reasons; the measured values can be really different from these in the truck because of radiation decreasing; moreover it can't be correlated to an activity, hence it can't be compared to exemption values or to the limits that characterise a radioactive substance. It can explain why regulated documents don't indicate the way to fix alarm threshold. Implementing such a system is not sufficient: when the alarm sound, the following steps can be applied: checking the missing of interference, potential truck return to sender, putting the truck in quarantine, information of authorities and main actors, calling on a specialize company to locate, extract and package the radiation source, storage of this source and spectrometric analysis to identify and quantify the radioactive elements in order to determinate its way of elimination. (authors)

  18. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  19. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Science.gov (United States)

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  20. 40 CFR 60.2991 - What incineration units must I address in my State plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What incineration units must I address... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2991 What incineration units must I address in my State...

  1. Feasibility and conceptual design for a mobile incineration system for combustible LLW

    International Nuclear Information System (INIS)

    1982-09-01

    Since volume reduction by incineration, with subsequent solidification before shipping, can result in typical overall reductions between 40 to 1 and 60 to 1 (depending on density), there are strong economic incentives for small generators to incinerate their low-level radioactive wastes, and minimize the volumes for which they must pay to ship and bury. Because of these factors, the concept of a Mobile Incineration System (MIS) appears to be a viable alternative for small generators. This report covers the conceptual design of a MIS consisting of a controlled-air incinerator with the required off-gas treatment system mounted on two semi-trailers which can be brought to the site of the small generator. It also covers the regulatory and licensing aspects, as well as the economics related to the design. 17 tables

  2. 40 CFR 60.2989 - Does this subpart directly affect incineration unit owners and operators in my State?

    Science.gov (United States)

    2010-07-01

    ... incineration unit owners and operators in my State? 60.2989 Section 60.2989 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Other Solid Waste Incineration Units That Commenced... incineration unit owners and operators in my State? (a) No, this subpart does not directly affect incineration...

  3. Incineration plant for radioactive waste at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Baehr, W.; Hempelmann, W.; Krause, H.

    1977-02-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the flue gases are cleaned by ceramic filter candles. After passing the filtering system and cooling the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 ldrums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m 3 of combustible solids and about 60 m 3 organic solvents have been incinerated in the plant. The operating experiences are presented. (orig.) [de

  4. Recovery of high-purity metallic Pd from Pd(II)-sorbed biosorbents by incineration.

    Science.gov (United States)

    Won, Sung Wook; Lim, Areum; Yun, Yeoung-Sang

    2013-06-01

    This work reports a direct way to recover metallic palladium with high purity from Pd(II)-sorbed polyethylenimine-modified Corynebacterium glutamicum biosorbent using a combined method of biosorption and incineration. This study is focused on the incineration part which affects the purity of recovered Pd. The incineration temperature and the amount of Pd loaded on the biosorbent were considered as major factors in the incineration process, and their effects were examined. The results showed that both factors significantly affected the enhancement of the recovery efficiency and purity of the recovered Pd. SEM-EDX and XRD analyses were used to confirm that Pd phase existed in the ash. As a result, the recovered Pd was changed from PdO to zero-valent Pd as the incineration temperature was increased from 600 to 900°C. Almost 100% pure metallic Pd was recovered with recovery efficiency above 99.0% under the conditions of 900°C and 136.9 mg/g. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 40 years of experience in incineration of radioactive waste in Belgium

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Deckers, J.; Luycx, P.; Detilleux, M.; Beguin, Ph.

    2001-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities; several R and D projects were realised in this specific field and different facilities were erected and operated. An experimental furnace ''Evence Coppee'' was built in 1960 for treatment of LLW produced by the Belgian Research Centre (SCK/CEN). Regularly this furnace has been modified, improved and equipped with additional installations to obtain better combustion conditions and a more efficient gas cleaning system. Based on the 35 years experience gained by the operation of the ''Evence Coppee'', a completely new industrial incineration installation has been designed in the nineties and commissioned in May 1995, in the frame of the erection of the Belgian Centralised Treatment/Conditioning Facility CILVA. At the end of 1998, the new furnace has burnt 455 tons of solid waste and 246 tons of liquid waste. Besides the conventional incineration process, a High Temperature Slagging Incinerator (HTSI) has been developed, constructed and operated for 10 years in the past. This installation was the combination of an incinerator and a melter producing melted granulated material instead of ashes, and provided experience in the incineration of hazardous waste, such as chlorinated organic compounds and waste with PCB content. The paper presents ''the Belgian Experience'' accumulated year after year with the design and the operation of the above mentioned facilities and demonstrates how the needs required today for a modern installation are met. The paper covers the following aspects; design particularities and description of the systems, operational results for different solid waste categories (bulk waste, precompacted waste, ion exchange resins) and for different liquid waste categories (organic, aqueous, oil), required pretreatment of the waste, ashes conditioning

  6. The incineration of low-level radioactive waste: A report for the Advisory Committee on Nuclear Waste

    International Nuclear Information System (INIS)

    Long, S.W.

    1990-06-01

    This report is a summary of the contemporary use of incineration technology as a method for volume reduction of LLW. It is intended primarily to serve as an overview of the technology for waste management professionals involved in the use or regulation of LLW incineration. It is also expected that organizations presently considering the use of incineration as part of their radioactive waste management programs will benefit by gaining a general knowledge of incinerator operating experience. Specific types of incineration technologies are addressed in this report, including designation of the kinds of wastes that can be processed, the magnitudes of volume reduction that are achievable in typical operation, and requirements for ash handling and off-gas filtering and scrubbing. A status listing of both US and foreign incinerators provides highlights of activities at government, industry, institutional, and commercial nuclear power plant sites. The Federal and State legislative structures for the regulation of LLW incineration are also described. 84 refs., 33 tabs

  7. Molt salts reactors capacity for wastes incineration and energy production

    International Nuclear Information System (INIS)

    David, S.; Nuttin, A.

    2005-01-01

    The molten salt reactors present many advantages in the framework of the IV generation systems development for the energy production and/or the wastes incineration. After a recall of the main studies realized on the molten salt reactors, this document presents the new concepts and the identified research axis: the MSRE project and experience, the incinerators concepts, the thorium cycle. (A.L.B.)

  8. Feasibility study of cyclone incineration treatment for radioactive solid waste

    International Nuclear Information System (INIS)

    Zhou Lianquan; Wang Peiyi; Ma Mingxie; Yang Liguo; Li Xiaohai; Qiu Mingcai; Zhang Xiaobin; Dong Jingling; Lu Xiaowu; Li Chuanlian; Yang Baomin

    2002-01-01

    Feasibility study of cyclone incineration treatment for radioactive solid waste is introduced. The structure of cyclone incineration furnace is defined according to test results. The results show: under given conditions of technology: i.e., inlet flowrate ≥30 m/s, total volume ≥210 Nm 3 /h, the mixed solid material with more than 40% of plastics and rubber can completely be incinerated after suitable smash and mixing. The advantages of the furnace are: simple structure, high strength of volume heat, no preheating and combustion-supporting of assistant fuel, bridging and melt leak can be avoided in the stuff. The pretreatment of solid waste is simple, and a little amount of non-combustible substance in the waste can be allowed

  9. 40 CFR 65.148 - Incinerators.

    Science.gov (United States)

    2010-07-01

    ... temperature monitoring device shall be installed in the fire box or in the ductwork immediately downstream of the fire box in a position before any substantial heat exchange occurs. (ii) Where a catalytic incinerator is used, temperature monitoring devices shall be installed in the gas stream immediately before...

  10. Operation of a pilot alpha waste incinerator at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Warren, J.H.; Hootman, H.E.

    1978-01-01

    The pilot incinerator was built and operated successfully at design throughput with simulated wastes. Operating ranges of stable incinerator performance were defined as a function of air and waste feed rates for different materials and mixtures of materials. The complete range of waste materials can be burned without producing tar or soot. The limiting capacity of this incinerator is 0.5 kg/h if all latex rubber is charged or approximately 0.84 kg/h with a waste mixture. Off-gas particulate sampling prior to scrubbing indicates negligible solid carryover. The only material which may present off-gas cleaning problems is a light white smoke which accompanies the burning of PVC. The incinerator was operated continuously between 850 and 1000 0 C from startup on September 6, 1977 until shutdown on February 2, 1978. The 3.6-kW electric heater for the primary combustion chamber burned out on January 13; however, adequate burning temperatures were provided by the eight 1.25-kW heaters in the afterburner to maintain sootless burning. As a result, future incinerator operation will be at 900 0 C rather than 1000 0 C. After 5 months of operation, the condition of the ceramics was very good, and the metal components showed no deterioration or serious corrosion. The incinerator was modified by installing a different design gas burner block, and two baffles and a choke in the afterburner to increase turbulence and mixing. It was started up again on February 27, 1978

  11. Environmental assessment of waste incineration and alternatives; Miljoevurdering af affaldsforbraending og alternativer

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.; Fruergaard, T.; Riber, C.; Astrup, T.; Hoejlund Christensen, T.

    2008-06-15

    Life cycle environmental assessment of waste combustion and alternatives were made using the LCA model EASEWASTE. Possible environmental effects for nine effect categories and the resource consumption of fossil fuels through treating 1 ton combustible waste were defined for several waste systems, including waste-only incineration, co-combustion in a fossil-fueled cogeneration plant, and combined biogas and compost production from household waste. The main conclusions of the analyses are: 1) with an optimum location, i.e. in the vicinity to a coal-fueled cogeneration plant, waste-only incineration, co-combustion , and combined biogas and compost production are all equal environmentally viable alternatives . 2) Regarding potential toxic impacts in the area of a coal-fueled cogeneration plant, waste-only incineration and combined biogas and compost production will result in slightly less net emissions compared to co-combustion because of better flue gas cleaning of heavy metals in incinerators than in power plants. 3) Siting the incinerator in a decentralized natural gas cogeneration area, co-combustion in a cogeneration plant is a better solution. 4) Combined biogas and compost production and waste-only combustion are environmentally equal treatments in all power plant areas. (ln)

  12. Probabilistic and technology-specific modeling of emissions from municipal solid-waste incineration.

    Science.gov (United States)

    Koehler, Annette; Peyer, Fabio; Salzmann, Christoph; Saner, Dominik

    2011-04-15

    The European legislation increasingly directs waste streams which cannot be recycled toward thermal treatment. Models are therefore needed that help to quantify emissions of waste incineration and thus reveal potential risks and mitigation needs. This study presents a probabilistic model which computes emissions as a function of waste composition and technological layout of grate incineration plants and their pollution-control equipment. In contrast to previous waste-incineration models, this tool is based on a broader empirical database and allows uncertainties in emission loads to be quantified. Comparison to monitoring data of 83 actual European plants showed no significant difference between modeled emissions and measured data. An inventory of all European grate incineration plants including technical characteristics and plant capacities was established, and waste material mixtures were determined for different European countries, including generic elemental waste-material compositions. The model thus allows for calculation of country-specific and material-dependent emission factors and enables identification and tracking of emission sources. It thereby helps to develop strategies to decrease plant emissions by reducing or redirecting problematic waste fractions to other treatment options or adapting the technological equipment of waste incinerators.

  13. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  14. Heat-transfer aspects of Stirling power generation using incinerator waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.T.; Lin, F.Y.; Chiou, J.S. [National Cheng Kung University, Tainan, Taiwan (China). Department of Mechanical Engineering

    2003-01-01

    The integration of a free-piston Stirling engine with linear alternator and an incinerator is able to effectively recover the waste energy and generate electrical power. In this study, a cycle-averaged heat transfer model is employed to investigate the performance of a free-piston Stirling engine installed on an incinerator. With the input of source and sink temperatures and other realistic heat transfer coefficients, the efficiency and the optimal power output are estimated, and the effect induced by internal and external irreversibilities is also evaluated. The proposed approach and modeling results presented in this study provide valuable information for engineers and designers to recover energy from small-scale incinerators. (author)

  15. Emissions and dioxins formation from waste incinerators; Emissioni di diossine da inceneritori

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, A I; Zagaroli, M [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy)

    1989-01-15

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  16. Incineration of radioactive wastes containing only C-14 and H-3

    International Nuclear Information System (INIS)

    Garcia, Corazon M.

    1992-01-01

    C-14 and H-3 arc popularly used in chemical and biological research institutions in the Philippines. Most of the solid radioactive wastes generated by these institutions consist of combustible materials such as paper and accumulated environmental samples. Liquid wastes usually contain organic substances. The method proposed for managing C-14 and H-3 wastes is incineration which is expected to provide an acceptable means of disposal for C-14 and H-3 and their hazardous organic constituent. In the incineration process) the radioactively contaminated waste will be mixed with non-radioactive combustible wastes to lower the activity concentration and to improve the efficiency of combustion which will be carried out in a locally fabricated drum incinerator. The calculations presented determines the concentration limit for the incinerable wastes and the restriction on specific activity of the particles of the incinerable wastes containing C-14 or H-3 on the basis of the accepted air concentration and on the annual dose limit for an average radiation worker in the country. In the calculations for C-14, considerations were taken on the exposure received from the deposition of radioactive particles in the lungs containing unoxidized carbon. Calculations for H-3, however, is based on the assumption that the concentration of the radionuclide in the body water is the same as that in the environment. (author)

  17. Domestic wastes incineration in France situation in 2000 evolution and perspectives the 31.12.2002; Incineration des dechets menagers en France situation en 2000 evolution et perspectives au 31.12.2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the analysis and the conclusions of a working group, concerning the domestic wastes incineration. It presents successively the place of the domestic wastes in the wastes management approach, the regulations, the methodology and the corresponding results of an inquiry realized in 2000 and the research programs on the incineration as the Best Available Techniques, the sanitary impacts of the UIOM (domestic wastes incineration plants), the vitrification, the greenhouse effect. (A.L.B.)

  18. Incineration facility for radioactively contaminated polychlorinated biphenyls and other wastes

    International Nuclear Information System (INIS)

    1982-06-01

    The statement assesses the environmental impacts associated with the construction of an incineration facility and related support facilities for the disposal of hazardous organic waste materials (including PCBs) which are contaminated with trace quantities of low-assay enriched uranium. The proposed action includes the incineration facility at Oak Ridge, Tennessee and storage, packaging, and shipping facilities at the Gaseous Diffusion Plants in Paducah, KY, and Portsmouth, OH; hazardous organic wastes from these plants and from the Y-12 Plant and Oak Ridge National Laboratories would be shipped to the proposed incineration facility. Impacts assessed include the effects of the project on air and water quality, on socioeconomic conditions, on public and occupational health and safety, and on ecology. Additionally, the statement presents an assessment of the potential impacts from accidents at the incineration facility or during transportation of the waste materials to the facility. The major impact identified was the potential for short-term occupational exposure to high concentrations of PCBs in smoke during the worst credible accident; mitigation of this impact will be addressed during the final design of the proposed facility. Alternatives which were assessed include no action, chemical destruction processes, and alternative transportation routes; all would have greater adverse impact or would increase the risk of an accident with the potential for adverse impact. The alternatives of commercial disposal, alternative sites, multiple incinerators, and alternative modes were eliminated from detailed analysis either because they are not feasible or because preliminary analysis showed that they would have clearly more adverse impact upon the environment than the proposed action

  19. Superfund TIO videos. Set C. Treatment technologies: Incineration. Part 12. Audio-Visual

    International Nuclear Information System (INIS)

    1990-01-01

    The videotape discusses incineration performance factors, such as destruction removal efficiency, and types of incineration, such as rotary kiln, fluidized bed, and infrared. Procedural considerations including mobilization/demobilization, site preparation, set up of utilities and support equipment, and monitoring are presented

  20. Incineration of a Commercial Coating with Nano CeO2

    Science.gov (United States)

    Le Bihan, Olivier; Ounoughene, Ghania; Meunier, Laurent; Debray, Bruno; Aguerre-Chariol, Olivier

    2017-06-01

    The potential environmental risk arising from the incineration of waste containing nanomaterials is a new field which deserves further attention. Some recent studies have begun to focus on this topic but the data are incomplete. In addition, there is a need to consider real life waste. The present study gives some insight into the fate and behavior of a commercial coating containing a commercial additive (7% w/w) based on nano-CeO2 (aggregates of 10 to 40 nm, with elemental particles of 2-3 nm). The tests have been conducted with a system developed in the frame of the NanoFlueGas project. The test protocol was designed to respect the regulatory criteria of a good combustion in incineration plants (temperature around 850°C, highly ventilated combustion, at least 2 s residence time for the combustion gas in a post-combustion chamber at 850°C, and high oxygen/fuel contact). Time tracking by electric low pressure impaction (ELPI) shows that the incineration produces aerosol with number concentration dominated by sub-100 nm particles. Cerium is observed by TEM and EDS analysis but as a minor compound of a sub-group of particles. No nanoCeO2 particles have been observed in the aerosol. ICP-MS analysis indicates that the residual material consists mainly of CeO2 (60% of the mass). Observation by TEM establishes that this material is in the form of aggregates with individual particle of 40-200 nm and suggests that sintering occurred during incineration. As a conclusion, the lab scale incineration study led mainly to the release of nano-CeO2 in the residual material, as the major component. Its size distribution is different than the one of the nano-CeO2 observed in the initial sample before incineration. Additional research is needed to improve the understanding of nanoCeO2 behavior, and to integrate experiments at lab and real scale.

  1. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement....

  2. 33 CFR 159.131 - Safety: Incinerating device.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.131 Safety.... Unitized incineration devices must completely burn to a dry, inert ash, a simultaneous defecation and...

  3. Some notes about radioactive wastes incineration

    International Nuclear Information System (INIS)

    Martin Martin, L.

    1984-01-01

    A general review about the most significant techniques in order to incinerate radioactive wastes by controlled air, acid digestion, fluidized bed, etc., is presented. These features are briefly exposed in the article through feed preparation, combustion effectiveness, etc. (author)

  4. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... as a technology to upgrade municipal solid waste incineration residues....

  5. Incineration and monitoring of low-level 3H and 14C wastes at a biological research institution

    International Nuclear Information System (INIS)

    Hamrick, P.E.; Knapp, S.J.; Parker, M.G.; Watson, J.E. Jr.

    1986-01-01

    Low-level radioactive waste containing liquid scintillation fluid and known amounts of 14 C and 3 H has been incinerated in a modified pathological incinerator with the incinerator effluent, refractory surface and ash being monitored. The study relates the activity monitored to that incinerated and discusses how this relation was affected by a modification of the incinerator and monitoring conditions. No significant activity was found to be associated with the ash, particulates or the refractory surface. These data suggest that most of the activity is released as tritiated water vapor and 14 C-labeled carbon dioxide. However, incomplete oxidation may occur for short periods of time depending on the amount of liquid scintillation fluid incinerated, with the possible release of 14 C-labeled carbon monoxide

  6. Rotary kiln incinerator engineering tests on simulated transuranic wastes from the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Pattengill, M.G.; Brunner, F.A.; Fasso, J.L.; Mitchel, S.R.; Praskac, R.T.

    1982-09-01

    Nine rotary kiln incineration tests were performed at Colorado School of Mines Research Institute on simulated transuranic waste materials. The rotary kiln incinerator used as 3 ft ID and 30 ft long and was included in an incineration system that also included an afterburner and a baghouse. The purpose of the incineration test program was to determine the applicability and operating characteristics of the rotary kiln with relation to the complete incineration of the simulated waste materials. The results of the study showed that the rotary kiln did completely incinerate the waste materials. Off-gas determinations showed emission levels of SO 2 , NO/sub x/, H 2 SO 4 , HC1, particulate loading, and hydrocarbons, as well as exhaust gas volume, to be within reasonable controllable ranges in a production operation. Included in the report are the results of materials and energy balances, based upon data collected, and design recommendations based upon the data and upon observations during the incineration operation

  7. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerator residue utilisation, particularly bottom ash from municipal solid waste incineration (MSWI). A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for i) road construction with or without MSWI bottom ash, ii) three management scenarios for MSWI bottom ash and iii) three management scenarios for wood ash. Different types of potential environmental impact predominated in the activities of the system and the scenarios differed in use of resources and energy. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. There is a potential for trace element leaching regardless of how the ash is managed. Trace element leaching, particularly of copper (Cu), was identified as being relatively important for environmental assessment of MSWI bottom ash utilisation. CuO is suggested as the most important type of Cu-containing mineral in weathered MSWI bottom ash, whereas in the leachate Cu is mainly present in complexes with dissolved organic matter (DOM). The hydrophilic components of the DOM were more important for Cu

  8. Giving waste a hot time [incineration technology

    International Nuclear Information System (INIS)

    Cruickshank, Andrew.

    1986-01-01

    High temperature incineration technology, as an effective way of managing both solid wastes and sludges, is described. The process, developed by the Belgian Nuclear Research Centre, is detailed. (U.K.)

  9. Highly Efficient Fecal Waste Incinerator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  10. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  11. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  12. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  13. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Options for incinerators, cement kilns... Technology (MACT) Standards § 270.235 Options for incinerators, cement kilns, lightweight aggregate kilns... incinerator, cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or hydrochloric...

  14. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.

    Science.gov (United States)

    Tabata, Tomohiro

    2013-11-01

    Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.

  15. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case

    International Nuclear Information System (INIS)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-01-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N 2 O emission factors from MSW incineration plants, and calculate the N 2 O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N 2 O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N 2 O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N 2 O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N 2 O emissions from MSW incineration comprised 19% of the total N 2 O emissions.

  16. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.

    Science.gov (United States)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N(2)O emission factors from MSW incineration plants, and calculate the N(2)O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N(2)O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N(2)O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153g-N(2)O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N(2)O emissions from MSW incineration comprised 19% of the total N(2)O emissions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  18. Development of thermal conditioning technology for Alpha-containment wastes: Alpha-contaminated waste incineration technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Jeong Guk; Yang, Hee Chul; Choi, Byung Seon; Jeong, Myeong Soo

    1999-03-01

    As the first step of a 3-year project named 'development of alpha-contaminated waste incineration technology', the basic information and data were reviewed, while focusing on establishment of R and D direction to develop the final goal, self-supporting treatment of {alpha}- wastes that would be generated from domestic nuclear industries. The status on {alpha} waste incineration technology of advanced states was reviewed. A conceptual design for {alpha} waste incineration process was suggested. Besides, removal characteristics of volatile metals and radionuclides in a low-temperature dry off-gas system were investigated. Radiation dose assessments and some modification for the Demonstration-scale Incineration Plant (DSIP) at Korea Atomic Energy Research Institute (KAERI) were also done.

  19. Development of thermal conditioning technology for Alpha-containment wastes: Alpha-contaminated waste incineration technology

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, Jeong Guk; Yang, Hee Chul; Choi, Byung Seon; Jeong, Myeong Soo

    1999-03-01

    As the first step of a 3-year project named 'development of alpha-contaminated waste incineration technology', the basic information and data were reviewed, while focusing on establishment of R and D direction to develop the final goal, self-supporting treatment of α- wastes that would be generated from domestic nuclear industries. The status on α waste incineration technology of advanced states was reviewed. A conceptual design for α waste incineration process was suggested. Besides, removal characteristics of volatile metals and radionuclides in a low-temperature dry off-gas system were investigated. Radiation dose assessments and some modification for the Demonstration-scale Incineration Plant (DSIP) at Korea Atomic Energy Research Institute (KAERI) were also done

  20. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  1. CLOSURE OF A DIOXIN INCINERATION FACILITY

    Science.gov (United States)

    The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...

  2. Development of uranium reduction system for incineration residue generated at LWR nuclear fuel fabrication plants in Japan

    International Nuclear Information System (INIS)

    Sampei, T.; Sato, T.; Suzuki, N.; Kai, H.; Hirata, Y.

    1993-01-01

    The major portion of combustible solid wastes generated at LWR nuclear fuel fabrication plants in Japan is incinerated and stored in a warehouse. The uranium content in the incineration residue is higher compared with other categories of wastes, although only a small amount of incineration residue is generated. Hence, in the future uranium should be removed from incineration residues before they are reduced to a level appropriate for the final disposal. A system for processing the incineration residue for uranium removal has been developed and tested based on the information obtained through laboratory experiments and engineering scale tests

  3. Forensic considerations when dealing with incinerated human dental remains.

    Science.gov (United States)

    Reesu, Gowri Vijay; Augustine, Jeyaseelan; Urs, Aadithya B

    2015-01-01

    Establishing the human dental identification process relies upon sufficient post-mortem data being recovered to allow for a meaningful comparison with ante-mortem records of the deceased person. Teeth are the most indestructible components of the human body and are structurally unique in their composition. They possess the highest resistance to most environmental effects like fire, desiccation, decomposition and prolonged immersion. In most natural as well as man-made disasters, teeth may provide the only means of positive identification of an otherwise unrecognizable body. It is imperative that dental evidence should not be destroyed through erroneous handling until appropriate radiographs, photographs, or impressions can be fabricated. Proper methods of physical stabilization of incinerated human dental remains should be followed. The maintenance of integrity of extremely fragile structures is crucial to the successful confirmation of identity. In such situations, the forensic dentist must stabilise these teeth before the fragile remains are transported to the mortuary to ensure preservation of possibly vital identification evidence. Thus, while dealing with any incinerated dental remains, a systematic approach must be followed through each stage of evaluation of incinerated dental remains to prevent the loss of potential dental evidence. This paper presents a composite review of various studies on incinerated human dental remains and discusses their impact on the process of human identification and suggests a step by step approach. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  5. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes.

    Science.gov (United States)

    Cheng, T W

    2004-07-01

    There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.

  6. Radioactivity partitioning of oil sludge undergoing incineration process

    International Nuclear Information System (INIS)

    Muhamat Omar; Suhaimi Hamzah; Muhd Noor Muhd Yunus

    1997-01-01

    Oil sludge waste is a controlled item under the Atomic Energy Act (Act 304) 1984 of which the radioactivity content shall be subjected to analysis. Apart from that the treatment method also shall be approved by Atomic Energy Licensing Board (AELB). Thus, an analysis of the oil sludge for MSE fluidized incinerator was conducted to comply with above requirements using various techniques. Further screening analysis of fly ash as well as bed material were done to study the effect of incinerating the sludge. This paper highlights the analysis techniques and discusses the results with respect to the radioactivity level and the fate of radionuclides subjected to the processing of the waste

  7. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and Stack concentration of Hg were less than 0.4 microg/Nm(3). Since Hg emissions were at low concentrations, Hg in soil from atmospheric fallout near this incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current potential environmental risk

  8. Evaluation of refractory materials for a nuclear waste incinerator

    International Nuclear Information System (INIS)

    Grotzky, V.K.; Kneale, P.A.; Teter, A.R.

    1980-01-01

    An experiment to find a suitable refractory lining for a nuclear waste incinerator has been completed. Eleven brick and six castable products were analyzed by optical and scanning microscopy. All the materials were fashioned into cup shapes and subjected to temperatures ranging from 800 to 1200 0 C for as long as six weeks. Some of the cups were charged weekly with pellets made from ash materials that would contact an incinerator liner. Refractory products containing a high percentage of aluminum oxide had the greatest resistance to cracking and slag buildup. 35 figures

  9. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation.

    Science.gov (United States)

    Kavouras, P; Pantazopoulou, E; Varitis, S; Vourlias, G; Chrissafis, K; Dimitrakopulos, G P; Mitrakas, M; Zouboulis, A I; Karakostas, Th; Xenidis, A

    2015-01-01

    A tannery sludge, produced from physico-chemical treatment of tannery wastewaters, was incinerated without any pre-treatment process under oxic and anoxic conditions, by controlling the abundance of oxygen. Incineration in oxic conditions was performed at the temperature range from 300°C to 1200°C for duration of 2h, while in anoxic conditions at the temperature range from 400°C to 600°C and varying durations. Incineration under oxic conditions at 500°C resulted in almost total oxidation of Cr(III) to Cr(VI), with CaCrO4 to be the crystalline phase containing Cr(VI). At higher temperatures a part of Cr(VI) was reduced, mainly due to the formation of MgCr2O4. At 1200°C approximately 30% of Cr(VI) was reduced to Cr(III). Incineration under anoxic conditions substantially reduced the extent of oxidation of Cr(III) to Cr(VI). Increase of temperature and duration of incineration lead to increase of Cr(VI) content, while no chromium containing crystalline phase was detected. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  11. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  12. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    International Nuclear Information System (INIS)

    Bringer, O.; Al Mahamid, I.; Blandin, C.; Chabod, S.; Chartier, F.; Dupont, E.; Fioni, G.; Isnard, H.; Letourneau, A.; Marie, F.; Mutti, P.; Oriol, L.; Panebianco, S.; Veyssiere, C.

    2006-01-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The 241 Am and 232 Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  13. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Al Mahamid, I. [Lawrence Berkeley National Laboratory, E.H. and S. Div., CA (United States); Blandin, C. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Chabod, S. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Chartier, F. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Dupont, E.; Fioni, G. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Isnard, H. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Letourneau, A.; Marie, F. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Panebianco, S.; Veyssiere, C. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France)

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  14. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  15. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  16. The application of probabilistic risk assessment to a LLW incinerator

    International Nuclear Information System (INIS)

    Li, K.K.; Huang, F.T.

    1993-01-01

    The 100 Kg/hr low-level radioactive waste (LLW) incinerator and the 1,500 ton supercompactor are two main vehicles in the Taiwan Power Company's Volume Reduction Center. Since the hot test of the incinerator in mid 1990, various problems associated with the original design and operating procedures were encountered. During the early stages of putting an incinerator in service, the modification and fine-tuning of the system would help future reliable operations. The probabilistic risk assessment (PRA) method was introduced to evaluate the interaction between potential system failure and its environmental impact and further help diagnose the system defects initially. The draft Level 1 system analysis was completed and the event and fault trees were constructed. Qualitatively, this approach is useful for preventing the system failure from occurring. However, Levels 2 and 3 analysis can only be done when sufficient data become available in the future

  17. Electrodialytic upgrading of municipal waste incineration fly ash for reuse

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2012-01-01

    As incineration becomes a more widespread means of waste treatment, volumes of incineration residues increase and new means of handling become a demand. Municipal Solid Waste Incineration (MSWI) fly ash is hazardous material, which is presently disposed off as such; primarily due to its high......]. In order to optimize the process and reach the lowest possible leachability of target constituents (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Zn, Cl, Na and SO4) at minimum time and energy consumption, the present work gives results of 10 pilot scale (8 kg MSWI fly ash each) electrodialysis experiments at different...... to investigate the leachability of salts and toxic elements as a function of treatment time and current density. Results show that a delicate balance between pH and treatment-time exist and that continuous monitoring of pH and conductivity may be used for controlling of the process at an industrial scale...

  18. Study on incinerating method of leather scraps and recovery of chromium f om incinerated residues. Kakusetsu no nensho hoho no kento narabi ni nensho nokoribun kara no chromium no kaishu

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, H. (Showa Women' s Univ., Tokyo (Japan) Tokyo Toritsu Hikaku Gijutsu Center, Tokyo (Japan)); Imai, T. (Tokyo Toritsu Hikaku Gijutsu Center, Tokyo (Japan))

    1991-11-05

    In Japan, it is the present situation that most of chromium contained side refuse generated in the leather manufacturing process are treated by means of using them for landfilling or incineration, etc. Even confining to the grownup oxhides and cowhides imported from North America, its total amount is 125,000t in terms of anhydride equivalent, hence it is estimated that about 1.14t of Cr{sub 2}O{sub 3} is discharged in the way mentioned above as a chromium tanning agent. Since Japan imports almost all chromium material from overseas, it is desirable to recover chromium from the above incinerated residues. In this article, based on the study results in the past concerning the recovery of chromium from incineration of leather scraps, an experimental furnace of the retorting two stage incineration system was experimentally built and a wet alkali scrubber and a hot water boiler utilizing combustion exhaust gas heat were installed. And by using them, the fuel condition to reduce the harmful gas component and the removal effect to be made with the scrubber, the chemical composition of the incinerated residues and its utilization, etc. were examined. As a result, by the above system, it was found that chromium could be recovered and reutilized. 9 refs., 6 figs., 6 tabs.

  19. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  20. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  1. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  2. Pilot-scale incineration of comtaminated soils from the drake chemical superfund site. Final report

    International Nuclear Information System (INIS)

    King, C.; Lee, J.W.; Waterland, L.R.

    1993-03-01

    A series of pilot-scale incineration tests were performed at the U.S. Environmental Protection Agency's (EPA's) Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils from the Drake Chemical Superfund site in Lock Haven, Pennsylvania. The soils at the Drake site are reported to be contaminated to varying degrees with various organic constituents and several hazardous constituent trace metals. The purpose of the test program was to evaluate the incinerability of selected site soils in terms of the destruction of contaminant organic constituents and the fate of contaminant trace metals. All tests were conducted in the rotary kiln incineration system at the IRF. Test results show that greater than 99.995 percent principal organic hazardous constituent (POHC) destruction and removal efficiencies (DRE) can be achieved at kiln exit gas temperatures of nominally 816 C (1,500 F) and 538 C (1,000 F). Complete soil decontamination of semivolatile organics was achieved; however, kiln ash levels of three volatile organic constituents remained comparable to soil levels

  3. Metallic elements fractionation in municipal solid waste incineration residues

    Science.gov (United States)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  4. CFD simulation of MSW combustion and SNCR in a commercial incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zihong; Li, Jian; Wu, Tingting [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Chen, Caixia, E-mail: cxchen@ecust.edu.cn [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Zhang, Xiaoke [Shanghai Environment Group Company, 1881 Hongqiao Road, Shanghai 200336 (China)

    2014-09-15

    Highlights: • Presented a CFD scheme for modeling MSW incinerator including SNCR process. • Performed a sensitivity analysis of SNCR operating conditions. • Non-uniform distributions of gas velocity, temperature and NO{sub x} in the incinerator. • The injection position of reagent was critical for a desirable performance of SNCR. • A NSR 1.5 was recommended as a compromise of NO{sub x} reduction rates and NH{sub 3} slip. - Abstract: A CFD scheme was presented for modeling municipal solid waste (MSW) combustion in a moving-grate incinerator, including the in-bed burning of solid wastes, the out-of-bed burnout of gaseous volatiles, and the selective non-catalytic reduction (SNCR) process between urea (CO(NH{sub 2}){sub 2}) and NO{sub x}. The in-bed calculations provided 2-D profiles of the gas–solid temperatures and the gas species concentrations along the bed length, which were then used as inlet conditions for the out-of-bed computations. The over-bed simulations provided the profiles of incident radiation heat flux on the top of bed. A 3-dimensional benchmark simulation was conducted with a 750 t/day commercial incinerator using the present coupling scheme incorporating with a reduced SNCR reduction mechanism. Numerical tests were performed to investigate the effects of operating parameters such as injection position, injection speed and the normalized stoichiometric ratio (NSR) on the SNCR performance. The simulation results showed that the distributions of gas velocity, temperature and NO{sub x} concentration were highly non-uniform, which made the injection position one of the most sensitive operating parameters influencing the SNCR performance of moving grate incinerators. The simulation results also showed that multi-layer injections were needed to meet the EU2000 standard, and a NSR 1.5 was suggested as a compromise of a satisfactory NO{sub x} reduction and reasonable NH{sub 3} slip rates. This work provided useful guides to the design and

  5. Ohio incinerator given the go-ahead

    International Nuclear Information System (INIS)

    Kemezis, P.

    1992-01-01

    A federal judge has denied a request for an injunction against the startup of the long-stalled Waste Technologies Industries (WTI) commercial hazardous waste incinerator in East Liverpool, OH. The $140-million plant, owned by a US subsidiary of Swiss engineering group Von Roll Ltd. (Zuerich), will go through a startup stage and a seven-day trial burn during the next two months, according to WTI. In testimony in federal court in Huntington, WV, WTI had said it was losing $115,000/day in fixed costs because of the plant's startup delay. The company also said that long-term contracts with Chemical Waste Management (CWM; Oak Brook, IL), Du Pont (Wilmington, DE), and BASF Corp. (Parsippany, NJ) to use plant services could be jeopardized by the delay. WTI is believed to have 10-year service contracts with the three companies and also will use CWM to dispose of the ash from the incinerator

  6. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Decontamination factors of ceramic filter in radioactive waste incineration system

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Yoshiki, Shinya; Kouyama, Hiroaki; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    A suspension-firing type radioactive waste incineration system is developed and cold demonstration testing of ceramic filters for the system are carried out. The incineration system, which is useful for a wide variety of waste materials, can serve to simplify the facilities and to reduce the costs for waste disposal. The incineration system can be used for drying-processing of concentrated waste liquids and disposal of flame resistant materials including ion exchange resins and rubber, as well as for ordinary combustible solid materials. An on-line backwash system is adopted to allow the ceramic filters to operate stably for a long period of time. For one-step filtering using the ceramic filter, the decontamination factor is greater than 10 5 for the processing of various wastes. In a practical situation, there exist vapor produced by the spray drier and the cladding in used ion exchange resin, which act to increase the decontamination performance of the ceramic filters to ensure safe operation. For the waste incineration system equipped with a waste gas processing apparatus consisting of a ceramic filter and HEPA filter, the overall decontamination factor is expected to be greater than 10 6 at portions down to the outlet of the ceramic filter and greater than 10 8 at portions down to the outlet of the HEPA filter. (Nogami, K.)

  8. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  9. Costs of head-end incineration with respect to Kr separation in the reprocessing of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Barnert-Wiemer, H.; Boehnert, R.

    1976-07-15

    The C-incinerations and the Kr-separations during head-end incineration in the reprocessing of HTR fuel elements are described. The costs for constructing an operating a head-end incineration of reprocessing capacities with 5,000 to 50,000 MW(e)-HTR power have been determined. The cost estimates are divided into investment and operating costs, further after the fraction of the N/sub 2/-content in the incineration exhaust gas, which strongly affects costs. It appears that, in the case of Kr-separation from the incineration exhaust gas, the investment costs as well as the operating costs of the head-end for N/sub 2/-containing exhaust gas are considerably greater than those for gas without N/sub 2/. The C-incineration of the graphite of the HTR fuel elements should therefore only be performed with influx gas that is free of N/sub 2/.

  10. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  11. A comparative study of PCDD/F emissions from medical and industrial waste incinerators in Medellin-Colombia (South America)

    Energy Technology Data Exchange (ETDEWEB)

    Aristizabal, B; Montes, C; Cobo, M [Antioquia Univ., Medellin (Colombia); Abad, E; Rivera, J [CID-CSIC, Barcelona (Spain). Dept. of Ecotechnologies

    2004-09-15

    Municipal waste management often combines different strategies such as recycling, composting, thermal treatment or landfill disposal. In Colombia, urban solid waste is landfill disposed but, industrial and medical wastes are incinerated. The total medical and pathological wastes generated in this zone are about 1643 ton/year from which 1022 ton/year are incinerated in six plants operating in Medellin metropolitan area. As a result, new regulations governing stack gas emissions have been enforced with the aim of reducing air pollutant emissions. Few incinerators are equipped with a gas-cleaning system and thus, most do not have any cleaning system. Medical waste incineration has been recognized as one of the major known sources of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans (PCDD/PCDF). To the best of our knowledge, there are not reports about emissions of dioxins and furans from the incineration sector in Colombia. The first aim of this work was to evaluate PCDD/PCDF emissions from the largest incinerators operating in Medellin (Colombia). In this contribution we report results obtained from three incinerators (A, B and C). The incinerated waste in plant A consisted of polymerization sludge, whereas in plants B and C medical and pathological residues were incinerated. Common medical wastes include dirty bandages, culture dishes, plastic, surgical gloves and instruments (including needles) as well as human tissue.

  12. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  13. Nitrous Oxide Emissions from Waste Incineration

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Baxter, D.; Martinec, J.

    2006-01-01

    Roč. 60, č. 1 (2006), s. 78-90 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * waste * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.360, year: 2006

  14. Savannah River Plant low-level waste incinerator: Operational results and technical development

    International Nuclear Information System (INIS)

    Irujo, M.J.; Bucci, J.R.

    1987-04-01

    Volume reduction of solid and liquid low-level waste has been demonstrated at the Savannah River Plant (SRP) in the Waste Management Beta-Gamma Incinerator facility (BGI). The BGI uses a two-stage, controlled-air incinerator capable of processing 180 kg/hr (400 lbs/hr) of solid waste or 150 liters/hr (40 gal/hr) of liquid waste. These wastes are pyrolyzed in a substoichiometric air environment at 900 to 1100 degrees Celsius in the primary chamber. Products of partial combustion from the primary chamber are oxidized at 950 to 1150 degrees Celsius in the secondary chamber. A spray dryer, baghouse,and HEPA filter unit cool and filter the incinerator offgases. 2 refs., 9 tabs

  15. Research paper 2000-B-8: the implementation of the municipal waste incineration directives

    Energy Technology Data Exchange (ETDEWEB)

    Lulofs, K. [Twente Univ., Center for Clean Technology and Environmental Policy, Enschede (Netherlands)

    2000-07-01

    End-of-pipe options are needed whenever recycling and source reduction can not cope with waste streams at acceptable costs. One of the disposal options is waste incineration. The incineration of waste was considered 'clean' for a long time. In the 1970's and 1980's it proved that the incineration of municipal waste was a significant source of air pollution. Notorious pollutants were hydrogen chloride, hydrogen florid, sulphur dioxide, oxides of nitrogen, fine particulate matter, 'heavy metals' and dioxines and furans. Most notorious and issue of public anxiety in some countries were emissions of dioxines and that might cause cancer and birth defects. Municipal waste is domestic waste from households and comparable waste from markets and companies. Consent is present that in the long history of waste incinerators, incineration in plants started in Europe around 1900, important steps to secure health and the environment have been taken and will be taken in the future. Debates are still going on the level of emissions that is negligible and acceptable. Also in the European arena waste management is about knowledge, perceptions, uncertainties and negotiations. Arguments are on the right level of ambition and the right level of fine-tuning where precautionary measures are discussed. The European Union decided to issue two European Directives on the atmospheric emissions from municipal waste incineration in 1989. This chapter focuses on the implementation and effects of the 1989 Directives. In section 2 of this chapter we summarize the bargaining on the 1989 European Directives. Section 2 indicates that characteristics of municipal waste incineration and the level of pre-existing national regulation sectors in individual member states played decisive roles. When the 1989 Directives came into force, the requirements had to be integrated in the national legislation in European Member States. In section 3 Germany and the Netherlands will prove

  16. On-line, real-time measurements of decontamination factors for a low-level waste incinerator

    International Nuclear Information System (INIS)

    Close, D.A.; Draper, W.E.

    1982-01-01

    A method is described to monitor the distribution of radioactive isotopes through the off-gas treatment system of an incinerator. Simulated commercial waste spiked with known amounts of five fission products, 131 I, 106 Ru, 137 Cs, 59 Fe, 60 Co, were incinerated. High resolution photon detectors were installed on the off-gas handling system of the controlled air incinerator at the Los Alamos National Laboratory to determine relative decontamination factors, which ranged from a low of 40 for 137 Cs to a high of 50O0 for 131 I. Background measurements were made to determine the residual activity in the incinerator. Due to the constant purging of the system to maintain a negative pressure with respect to the surrounding environment, the residual activity decays more rapidly than dictated by its half-life. (orig.)

  17. Air pollutant emissions and their control with the focus on waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, Margit [Wandschneider + Gutjahr, Hamburg (Germany)

    2017-07-01

    This text and practical handbook thoroughly presents the control of air pollutant emissions from combustion processes focusing on waste incinerators. Special characteristics are emphasised and the differences to emission control from combustion processes with other fuels are explained. The author illustrates the origin and effects of air pollutants from incineration processes, the mechanics of their appearance in the incineration process, primary and secondary measures for their reduction, processes of measuring the emissions as well as the methods of disposing the residues. In particular, the pros and cons of procedural steps and their appropriate combination under various conditions are emphasised. Moreover, the book contains information and analyses of the emissions situation, the consumption of operating materials and of backlog quantities as well as of the cost structure of waste incinerators with regard to their applied control system. Furthermore, the author explicates the contemporary legal, scientific and technological developments and their influence on air pollutant emission control. An evaluation of the status quo of air pollutant control at waste incinerators in Germany, practical examples about possible combinations and typical performance data complete the content. Accordingly, this book is a guideline for planing a reasonable overall concept of an air pollutant control that takes the location and the segregation tasks into consideration.

  18. Waterbury, Conn., Incinerator to Control Mercury Emissions

    Science.gov (United States)

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  19. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  20. Environmental assessment of incinerator residue utilisation.

    Science.gov (United States)

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  1. Progress on radioactive waste slurry incineration with oxygen and steam

    International Nuclear Information System (INIS)

    Hoshino, M.; Hayashi, M.; Oda, I.; Nonaka, N.; Kuwayama, K.; Shigeta, T.

    1988-01-01

    The radioactive waste (radwaste) slurry generated from the nuclear power plant operation, such as spent ion-exchange resins (powdered, bead), fire-retardant oils including phosphate ester and concentrated laundry (by the wet method) liquid waste, has been stored in an untreated condition on the plant site. Recently, since the Condensate Filter Demineralizer (CFD) has been applied in advanced BWR plants, the discharged volume of untreated spent powered resin slurry has been increasing steadily. TEE and NCE have been developing an effective new volume reduction system to treat this radwaste slurry based on an innovative incineration concept. The new system is called the IOS process, the feature of which is incineration with oxygen and steam admixture instead of conventional air. The IOS process, which consists mainly of high heat load incineration with slurry atomization, and combustion gas cooling and condensation by the wet method, has several advantages which are summarized in this paper

  2. Thermodynamic Equilibrium Calculations on Cd Transformation during Sewage Sludge Incineration.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Limao; Sun, Shuiyu; Ning, Xun'an; Kuo, Jiahong; Sun, Jian; Wang, Yujie; Xie, Wuming

    2016-06-01

    Thermodynamic equilibrium calculations were performed to reveal the distribution of cadmium during the sewage sludge incineration process. During sludge incineration in the presence of major minerals, such as SiO2, Al2O3 and CaO, the strongest effect was exerted by SiO2 on the Cd transformation compared with the effect of others. The stable solid product of CdSiO3 was formed easily with the reaction between Cd and SiO2, which can restrain the emissions of gaseous Cd pollutants. CdCl2 was formed more easily in the presence of chloride during incineration, thus, the volatilization of Cd was advanced by increasing chlorine content. At low temperatures, the volatilization of Cd was restrained due to the formation of the refractory solid metal sulfate. At high temperatures, the speciation of Cd was not affected by the presence of sulfur, but sulfur could affect the formation temperature of gaseous metals.

  3. Radiation safety for incineration of radioactive waste contaminated by cesium

    International Nuclear Information System (INIS)

    Veryuzhs'kij, Yu.V.; Gryin'ko, O.M.; Tokarevs'kij, V.V.

    2016-01-01

    Problems in the treatment of radioactive waste contaminated by cesium nuclides are considered in the paper. Chornobyl experience in the management of contaminated soil and contaminated forests is analyzed in relation to the accident at Fukushima-1. The minimization of release of cesium aerosols into atmosphere is very important. Radiation influence of inhaling atmosphere aerosols polluted by cesium has damage effect for humans. The research focuses on the treatment of forests contaminated by big volumes of cesium. One of the most important technologies is a pyro-gasification incineration with chemical reactions of cesium paying attention to gas purification problems. Requirements for process, physical and chemical properties of treatment of radioactive waste based on the dry pyro-gasification incineration facilities are considered in the paper together with the discussion of details related to incineration facilities. General similarities and discrepancies in the environmental pollution caused by the accidents at Chornobyl NPP and Fukushima-1 NPP in Japan are analyzed

  4. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  6. Envirotoxins from waste incineration - how does the supervision work?; Miljoegifter fraan avfallsfoerbraenningen - hur fungerar tillsynen?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    Incineration of household wastes has increased rapidly in Sweden during the last few years, and new plants are being built. The volume of residues from waste incineration is expected to grow from 450,000 tons in 1999 to 1,100,000 tons in 2008. The National Audit Office (SNAO) has made an inquiry into the supervision by responsible authorities of incineration plants and landfills in order to how the environmental legislation is applied in practise. The investigation includes case studies of six incineration plants and seven landfills where the residues from the plants are disposed. The supervision is part of a complex system made up of state, local and private actors who all have a responsibility for applying the environmental legislation. SNAO has found serious shortcomings in the operational supervision of all incineration plants studied and several landfills concerning the risk of toxins leaching into the environment. SNAO also points at the lack of knowledge at the Swedish EPA regarding the potential environmental problems of incineration residues and the need for evaluation of the supervisory function. SNAO recommends that the government take an initiative for making more detailed demands in the environmental legislation, and that the Swedish EPA should improve its knowledge about the quality of the operational supervision in accordance with the legislation.

  7. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  8. Municipal solid waste incineration in China and the issue of acidification: A review.

    Science.gov (United States)

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  9. Monitoring program for evaluating radionuclide emissions from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Wittmer, S.C.; Solomon, H.F.

    1984-01-01

    The implementation of an incineration program for low-level radioactive waste is a complex task, especially in the area of obtaining environmental permits. To provide assurance to the appropriate regulatory agencies involved with environmental permitting and others that an incineration program is properly conducted, emissions monitoring to identify radionuclides and their fate may be needed. An electronic spreadsheet software program Lotus 1-2-3 (Lotus Development Corporation) on an IBM Personal Computer has been used to perform data reduction for test results from such a monitoring program and to present them graphically to facilitate interpretation. The sampling technique includes: (1) the use of an EPA Method 5 stack sampling train modified to exclude the dry-catch filtration assembly with ethanolamine used to scrub incinerator gas at depressed temperatures and (2) a continuous composite liquid sampler for incinerator wet scrubber discharge to the sanitary sewer. Radionuclides in the samples are assayed using scintillation spectrometry

  10. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, Elisa, E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Maresca, Alberto; Olsson, Mikael Emil [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Holtze, Maria Sommer [Afatek Ltd., Selinevej 18, 2300 Copenhagen S (Denmark); Boldrin, Alessio; Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark)

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  11. Radioactive waste incineration studies at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.

    1980-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A controlled-air incinerator, based upon commercially available equipment and technology, was modified for radioactive service and was successfully tested and demonstrated with contaminated waste. Demonstration of the production-scale unit was completed in May 1980 with the incineration of 272 kg of waste with an average TRU content of about 20 nCi/g. Weight and volume reduction factors for the demonstration run were 40:1 and 120:1, respectively

  12. Los Alamos controlled air incinerator upgrade for TRU/mixed waste operations

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Warner, C.L.; Thompson, T.K.

    1989-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is undergoing a major process upgrade to accept Laboratory-generated transuranic (TRU) and TRU mixed wastes on a production basis. In the interim,prior to the scheduled 1992 operation of a new on-site LLW/mixed waste incinerator, the CAI will also be accepting solid and liquid low-level mixed wastes. This paper describes major modifications that have been made to the process to enhance safety and ensure reliability for long-term, routine waste incineration operations. The regulatory requirements leading to operational status of the system are also briefly described. The CAI was developed in the mid-1970s as a demonstration system for volume reduction of TRU combustible solid wastes. It continues as a successful R and D system well into the 1980s during which incineration tests on a wide variety of radioactive and chemical waste forms were performed. In 1985, a DOE directive required Los Alamos to reduce the volume of its TRU waste prior to ultimate placement in the geological repository at the Waste Isolation Pilot Project (WIPP). With only minor modifications to the original process flowsheet, the Los Alamos CAI was judged capable of conversion to a TRU waste operations mode. 9 refs., 1 fig

  13. A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators

    Directory of Open Access Journals (Sweden)

    Michele Cordioli

    2013-01-01

    Full Text Available Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address. Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i make full use of pollution dispersion models; (ii localize population on a fine-scale; and (iii explicitly account for the presence of potential environmental and socioeconomic confounding.

  14. Guide of Evaluation of the Operation of Incinerators of Solid Waste in Costa Rica

    International Nuclear Information System (INIS)

    Herrera Sanchez, J.

    2001-01-01

    This project has as general objective to prepare, in accordance with the effective Costa Rica legislation, a guide to evaluate the operation of incinerators of solid waste in Costa Rica. For this, it was necessary to define the parameters and approaches to evaluate the operation of an incineration center, as well as to investigate the regulations related with the topic in our country and to detail the technical specifications of equipment of this nature.The guide embraces such aspects as the specifications of the equipment and chimney, the type of waste to incinerate, the control of gassy emissions and the administration of the scums, distributed in several sections: administration, legislation, waste type, details technician, control and operation. Initially, the state of operation of an incinerator belonging to a hospital center and the project of energy recycling that impels the National Industry of Cements are evaluated. A study of the current state of the incineration of waste in the country must monitor the gassy emissions, the variables of the water heater-chemical process and the operation conditions. For limitations in the availability of the data and for the non existence of similar studies in the country, some of the parameters proposed in the guide are not evaluated. According to spokesmen of the Ministry of Public Health, only five incinerators operate in the country. Of these, none has location permission, construction or sanitary permission of operation, and data on their operation conditions are not carried, neither control of the incinerated waste is taken, of its operation frequency and even less the generated gassy emissions. It is necessary to adapt the standards of emission of Costa Rica (PRONASA Report) to the international standards, incorporating new pollutants (dioxins, furanos) and appropriating the existent ones (solid particles). In the case of our country, the incineration should be constituted in a stage of the process of integral

  15. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    International Nuclear Information System (INIS)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-01-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  16. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    Science.gov (United States)

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  18. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  19. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density situation. © The Author(s) 2015.

  20. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  1. Sustainable waste management via incineration system: an Islamic ...

    African Journals Online (AJOL)

    Sustainable waste management via incineration system: an Islamic outlook for conservation of the environment. ... Journal of Fundamental and Applied Sciences ... Abstract. This paper would firstly examine solid waste management currently ...

  2. Defense waste cyclone incinerator demonstration program: April-September 1980

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    An improved offgas system is being designed. The new system will improve gas cleaning and will also provide for improved offgas sampling and mass balance data collection. Continuous solid feed burning experiments were delayed pending delivery of shredding equipment. Liquid burning experiments were in progress at fiscal year end. Burn data indicate that the incinerator will work well for combustible liquids. Improved data on incinerator performance will be generated upon completion of system changes and utilization of new sampling and analysis equipment. Mound Facility received advanced guidance from the Transuranic Waste Systems Office that this program will be cancelled in FY-1981 because of reductions in funding levels

  3. The incineration of solid radioactive waste: a centralized solution

    International Nuclear Information System (INIS)

    Hernborg, G.; Broden, K.; Oehrn, G.

    1985-01-01

    Almost all the combustible low-level β- and γ-radioactive waste from Sweden, and even some waste from German nuclear power plants, is treated in an incineration plant at Studsvik. To date most of the ash has been put into 100-litre drums, which in turn have been put in 200-litre drums with concrete in between. Recently, methods have been developed and equipment installed for homogeneous solidification of the ash into concrete. Over the years since the start-up of the plant in 1976 the incinerator has worked with a high availability factor. Personnel doses and activity releases to the environment are well below limits set by regulatory authorities. (orig.)

  4. Feasibility study of incineration treatment of radioactive waste oil

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Yang Liguo; Li Xiaohai; Qiu Mingcai; Zhang Xiaobin; Dong Jingling; Yang Baomin

    2001-01-01

    The author describes the combustion experiment of radioactive waste oil, including determination of the basic properties of the waste oils, pretreatment and incineration experiment. As for low flash point oil possibly mixed with gasoline, it is recommended to add kerosine to lower the viscosity. Spray incineration experiment shows that for waste oil with viscosity less than 30 mPa·s, it can be completely burnt even if the heat strength in the stove is less than 1.6 x 10 6 kJ/(m 3 ·h). Within a broad range of extra-air coefficient, CO concentration in flue gas is below 0.1%

  5. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hefa, E-mail: hefac@umich.ed [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Hu Yuanan [Education Program for Gifted Youth, Stanford University, Stanford, CA 94025 (United States)

    2010-09-15

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  6. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    International Nuclear Information System (INIS)

    Cheng Hefa; Hu Yuanan

    2010-01-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  7. Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique

    International Nuclear Information System (INIS)

    Nasserzadeh, V.; Swithenbank, J.; Jones, B.

    1995-01-01

    The problem of measuring gas-residence time in large incinerators was studied by the pseudo-random binary sequence (PRBS) stimulus tracer response technique at the Sheffield municipal solid-waste incinerator (35 MW plant). The steady-state system was disturbed by the superimposition of small fluctuations in the form of a pseudo-random binary sequence of methane pulses, and the response of the incinerator was determined from the CO 2 concentration in flue gases at the boiler exit, measured with a specially developed optical gas analyser with a high-frequency response. For data acquisition, an on-line PC computer was used together with the LAB Windows software system; the output response was then cross-correlated with the perturbation signal to give the impulse response of the incinerator. There was very good agreement between the gas-residence time for the Sheffield MSW incinerator as calculated by computational fluid dynamics (FLUENT Model) and gas-residence time at the plant as measured by the PRBS tracer technique. The results obtained from this research programme clearly demonstrate that the PRBS stimulus tracer response technique can be successfully and economically used to measure gas-residence times in large incinerator plants. It also suggests that the common commercial practice of characterising the incinerator operation by a single-residence-time parameter may lead to a misrepresentation of the complexities involved in describing the operation of the incineration system. (author)

  8. GIS analysis in the siting of incinerators as a panacea for solid waste ...

    African Journals Online (AJOL)

    Solid waste represents a key issue that threatens environmental quality in Kaduna metropolis. One of the most viable options to treat such an issue is to incinerate the collected solid waste, which can reduce the cost of solid waste disposal as well as pollution and generate electricity. Despite the significance of incineration, ...

  9. Characterization of deposits and their influence on corrosion in waste incineration plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2001-01-01

    A program has been initiated in Denmark to investigate the aggressive environment in various waste incineration plants. The results described are the preliminary results from one waste incineration plant. Deposits and corrosion products have been removed from various locations in the boiler...

  10. Incineration of low level waste

    International Nuclear Information System (INIS)

    Gussmann, H.; Klemann, D.; Mallek, H.

    1986-01-01

    At present, various incinerators for radioactive waste are operated with more or less good results worldwide. Both, plant manufacturers and plant owners have repeatedly brought about plant modifications and improvements over the last 10 years, and this is true for the combustion process and also for the waste gas treatment systems. This paper attempts to summarize requirements, in general, by owner/operators for the plants which are designed and erected today

  11. Wastes incineration and public health: status of recent knowledge and risk evaluation; L'incineration des dechets et la sante publique: bilan des connaissances recentes et evaluation du risque

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The incineration of municipal and industrial wastes produces combustion products with various pollutants like: dusts, acid gases, heavy metals, nitrogen oxides, dioxines etc.. This report analyzes the toxicity of different pollutants (particulates, polycyclic halogenated compounds, cadmium, mercury, lead), the exposure of the population with respect to incineration pollutants (occupational and general exposure), and the risks linked with this exposure (hazard identification, exposure evaluation, risk characterization, results). (J.S.)

  12. Generation and distribution of PAHs in the process of medical waste incineration.

    Science.gov (United States)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  14. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  15. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  16. Generation and distribution of PAHs in the process of medical waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: echochen327@163.com [School of Environment, Tsinghua University, Beijing 100084 (China); National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029 (China); Zhao, Rongzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Xue, Jun [National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029 (China); Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China)

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  17. Generation and distribution of PAHs in the process of medical waste incineration

    International Nuclear Information System (INIS)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-01-01

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10 3 times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total

  18. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju

    2010-07-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Health-care waste incineration and related dangers to public health: case study of the two teaching and referral hospitals in Kenya.

    Science.gov (United States)

    Njagi, Nkonge A; Oloo, Mayabi A; Kithinji, J; Kithinji, Magambo J

    2012-12-01

    There are practically no low cost, environmentally friendly options in practice whether incineration, autoclaving, chemical treatment or microwaving (World Health Organisation in Health-care waste management training at national level, [2006] for treatment of health-care waste. In Kenya, incineration is the most popular treatment option for hazardous health-care waste from health-care facilities. It is the choice practiced at both Kenyatta National Hospital, Nairobi and Moi Teaching and Referral Hospital, Eldoret. A study was done on the possible public health risks posed by incineration of the segregated hazardous health-care waste in one of the incinerators in each of the two hospitals. Gaseous emissions were sampled and analyzed for specific gases the equipment was designed and the incinerators Combustion efficiency (CE) established. Combustion temperatures were also recorded. A flue gas analyzer (Model-Testos-350 XL) was used to sample flue gases in an incinerator under study at Kenyatta National Hospital--Nairobi and Moi Teaching and Referral Hospital--Eldoret to assess their incineration efficiency. Flue emissions were sampled when the incinerators were fully operational. However the flue gases sampled in the study, by use of the integrated pump were, oxygen, carbon monoxide, nitrogen dioxide, nitrous oxide, sulphur dioxide and No(x). The incinerator at KNH operated at a mean stack temperature of 746 °C and achieved a CE of 48.1 %. The incinerator at MTRH operated at a mean stack temperature of 811 °C and attained a CE of 60.8 %. The two health-care waste incinerators achieved CE below the specified minimum National limit of 99 %. At the detected stack temperatures, there was a possibility that other than the emissions identified, it was possible that the two incinerators tested released dioxins, furans and antineoplastic (cytotoxic drugs) fumes should the drugs be subjected to incineration in the two units.

  20. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.

    Science.gov (United States)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    International Nuclear Information System (INIS)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-01-01

    Highlights: ► Residential waste diversion initiatives are more successful with organic waste. ► Using a incineration to manage part of the waste is better environmentally. ► Incineration leads to more power plant emission offsets. ► Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  2. Synthesis of calcium phosphate hydrogel from waste incineration fly ash and bone powder

    International Nuclear Information System (INIS)

    Fukui, Kunihiro; Arimitsu, Naoki; Kidoguchi, Satoshi; Yamamoto, Tetsuya; Yoshida, Hideto

    2009-01-01

    Waste incineration fly ash and bone powder could be successfully recycled into calcium phosphate hydrogel, a type of fast proton conductor. Various properties of the intermediate and calcium phosphate hydrogel from them were characterized and compared with that from calcium carbonate reagent. It was found that the intermediate from the incineration fly ash and calcium phosphate glass was more brittle than that from bone powder and calcium carbonate reagent. The electric conductivity of crystallized hydrogel obtained from all raw materials increases exponentially with temperature. However, the crystallized hydrogel from incineration fly ash has lower electric conductivity and lower crystallinity than that from bone powder and the reagent. Moreover, the difference in electric conductivity between these crystallized hydrogels decreases with temperature. Compared with using the reagent as a raw material, bone powder provides a 25% reduction in the usage of H 3 PO 4 to acquire the crystallized hydrogel which has the highest conductivity. These experimental results suggest that the incineration fly ash and bone powder are useful calcium sources for the synthesis of calcium phosphate hydrogel

  3. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Science.gov (United States)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  4. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Directory of Open Access Journals (Sweden)

    Wielgosiński Grzegorz

    2018-01-01

    Full Text Available In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140, stoker-fired boilers (three OR-32 boilers or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  5. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... routed to incineration. Emission factors ranged from 27 to 40kg CO2/GJ. The results appeared most sensitive towards variations in waste composition and water content. Recycling rates and lower heating values could not be used as simple indicators of the resulting emission factors for residual household...... different studies and when using the values for environmental assessment purposes....

  6. Incinerator development program for processing transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hedahl, T.G.

    1982-01-01

    In the fall of 1981, two short-term tests were conducted on a controlled air and a rotary kiln incinerator to assess their potential for processing transuranic (TRU) contaminated waste at the Idaho National Engineering Laboratory (INEL). The primary purpose of the test program was a proof-of-principle verification that the incinerators could achieve near-complete combustion of the combustible portion of the waste, while mixed with high percentages of noncombustible and metal waste materials. Other important test objectives were to obtain system design information including off-gas and end-product characteristics and incinerator operating parameters. Approximately 7200 kg of simulated (non-TRU) waste from the INEL were processed during the two tests

  7. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  8. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  9. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  10. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  11. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  12. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China.

    Science.gov (United States)

    Liu, Yong; Sun, Chenjunyan; Xia, Bo; Cui, Caiyun; Coffey, Vaughan

    2018-02-20

    As one of the most popular methods for the treatment of municipal solid waste (MSW), waste-to-energy (WTE) incineration offers effective solutions to deal with the MSW surge and globe energy issues. Nevertheless, the construction of WTE facilities faces considerable and strong opposition from local communities due to the perceived potential risks. The present study aims to understand whether, and how, community engagement improves local residents' public acceptance towards waste-to-energy (WTE) incineration facilities using a questionnaire survey conducted with nearby residents of two selected WTE incineration plants located in Zhejiang province, China. The results of data analysis using Structural Equation Modeling (SEM) reveal that firstly, a lower level of public acceptance exists among local residents of over the age of 35, of lower education levels, living within 3 km from the WTE Plant and from WTE incineration Plants which are under construction. Secondly, the public trust of local government and other authorities was positively associated with the public acceptance of the WTE incineration project, both directly and indirectly based on perceived risk. Thirdly, community engagement can effectively enhance public trust in local government and other authorities related to the WTE incineration project. The findings contribute to the literature on MSW treatment policy-making and potentially hazardous facility siting, by exploring the determinants of public acceptance towards WTE incineration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective

    International Nuclear Information System (INIS)

    Morselli, Luciano; De Robertis, Claudia; Luzi, Joseph; Passarini, Fabrizio; Vassura, Ivano

    2008-01-01

    The advisability of using incineration, among the other technologies in Municipal Solid Waste Management, is still a debated issue. However, technological evolution in the field of waste incineration plants has strongly decreased their environmental impacts in the last years. A description of a regional situation in Northern Italy (Emilia Romagna Region) is here presented, to assess the impacts of incinerators by the application of Life Cycle Assessment (LCA) methodology and to stress the most impacting steps in incineration process. The management of solid residues and heavy metal emission resulted the most important environmental concerns. Furthermore, a tentative comparison with the environmental impact of landfill disposal, for the same amount of waste, pointed out that incineration process must be considered environmentally preferable

  14. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  15. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  16. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068...

  17. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and {sup 187}Os/{sup 188}Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of {sup 187}Os/{sup 188}Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m{sup 2}/a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m{sup 2}/a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  18. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    International Nuclear Information System (INIS)

    Funari, Valerio; Meisel, Thomas; Braga, Roberto

    2016-01-01

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and 187 Os/ 188 Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of 187 Os/ 188 Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m 2 /a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m 2 /a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  19. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Deckers, Jan; Mols, Ludo

    2007-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  20. Optimization and characterization of cement products incorporating ashes from radwaste incineration

    International Nuclear Information System (INIS)

    Donato, A.; Pace, A.; Ricci, G.

    1989-01-01

    The incineration is presently condidered a very good way to obtain strong volume reduction of intermediate and low activity solid radwastes obtaining at the same time a product apparently easy to be conditioned. In some cases nevertheless the ash solidification by cementation can give in the practice some problems. In this work the optimization of the cementation of two ash types named Nust 1 and Nust 2 has been studied. The Nust 1 ash come from the incineration of the exhausted ion exchange resins already conditioned in urea-formaldehyde. The Nust 2 ash comes from the incineration of the same materials as the Nust 1 mixed with ordinary nuclear power plant solid radwastes. Both ashes have been produced from wastes stored at the Caorso (Italy) Nuclear Power Plant. The two ash types have been characterized by a series of physico-chemical analysis whose results are reported as well as the results of the preliminary tests performed on the products obtained from their cementation

  1. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Takashima, H.

    2001-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  2. Potential of incineration of long-life fission products from fission energy system by D-T and D-D fusion reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Takashima, Hiroaki

    1999-01-01

    The incineration of LLFPs, all of which can not be incinerated with only the fast reactor without isotope separation is studied by employing the DT and DD fusion reactors. The requirement of production of tritium for the DT reactor is severe and the thickness of the blanket should be decreased considerably to incinerate the considerable amount of LLFPs. On the other hand the DD fusion reactor is free from the neutron economy constraint and can incinerate all LLFPs. The pure DD reactor can also show the excellent performance to reduce the first wall loading less than 1 MW/m 2 even for total LLFP incineration. By raising the wall loading to the design limit, the D-D reactor can incinerate the LLFPs from several fast reactors. When the fusion reactor is utilized as an energy producer, plasma confinement is very difficult problem, especially for the D-D reactor compared to the D-T reactor. However, when it is utilized as an incinerator of LLFP, this problem becomes considerably easier. Therefore, the incineration of LLFP is considered as an attractive subject for the D-D reactor. (author)

  3. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1985-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  4. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1986-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  5. Wastes incineration and public health: status of recent knowledge and risk evaluation; L'incineration des dechets et la sante publique: bilan des connaissances recentes et evaluation du risque

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The incineration of municipal and industrial wastes produces combustion products with various pollutants like: dusts, acid gases, heavy metals, nitrogen oxides, dioxines etc.. This report analyzes the toxicity of different pollutants (particulates, polycyclic halogenated compounds, cadmium, mercury, lead), the exposure of the population with respect to incineration pollutants (occupational and general exposure), and the risks linked with this exposure (hazard identification, exposure evaluation, risk characterization, results). (J.S.)

  6. The benefits of flue gas recirculation in waste incineration.

    Science.gov (United States)

    Liuzzo, Giuseppe; Verdone, Nicola; Bravi, Marco

    2007-01-01

    Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.

  7. Technical investigation in solid waste to energy facilities and selection of suitable incineration technology for Tehran

    International Nuclear Information System (INIS)

    Mokarizdeh, V.; Lari, H.R.

    2001-01-01

    Incineration is another way for producing electrical energy. There are various methods for incineration as Stoker Fired, Suspension Fired, Rotary Kiln, Cyclone and Fluidized Bed; that each one has it's own advantages and disadvantages. Selecting suitable one for establishment in Tehran depends on many parameters like technical, economical and environmental factors. Comparing the various technologies due to the mentioned parameters by Multi Criteria Decision Making method shows that stoker-fired incinerator is the best one for the Capital City

  8. Treatment of radioactive wastes by incineration; Tratamiento de desechos radiactivos por incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Priego C, E., E-mail: emmanuel.priego@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    Great part of the radioactive wastes of low and intermediate level generated during the nuclear fuel cycle, in laboratories and other sites where the radionuclides are used for the research in the industry, in medicine and other activities, are combustible wastes. The incineration of these radioactive wastes provides a very high reduction factor and at the same time converts the wastes in radioactive ashes and no-flammable residuals, chemically inert and much more homogeneous that the initial wastes. With the increment of the costs in the repositories and those every time but strict regulations, the incineration of radioactive wastes has been able to occupy an important place in the strategy of the wastes management. However, in a particular way, the incineration is a complex process of high temperature that demands the execution of safety and operation requirements very specific. (author)

  9. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    Science.gov (United States)

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  10. Life cycle analysis of sanitary landfill and incineration of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    倪晋仁; 韦洪莲; 刘阳生; 赵智杰

    2002-01-01

    Environmental consequences from sanitary landfill as well as incineration with power generation were compared in terms of life cycle analysis (LCA) for Laohukeng Waste-disposal Plant that is under consideration in Shenzhen. A variety of differences will be resulted from the two technologies, from which the primary issue that affects the conclusion is if the compensatory phase in power generation can be properly considered in the boundary definition of LCA. Upon the compensatory phase is taken into account in the landfill system, the negative environmental consequences from the landfill will be more significant than those from the incineration with power generation, although the reversed results can be obtained as the compensatory phase is neglected. In addition, mitigation of environmental impacts through the pollutant treatment in the incineration process will be more effective than in the landfill process.

  11. What it took to get an NRC license for centralized incineration

    International Nuclear Information System (INIS)

    DiSalvo, R.; Zielenbach, W.

    1987-01-01

    In 1982, Battelle joined five other commercial generators of low level radioactive waste in conducting a study of the technical and economic feasibility and the licensability of a central facility for incinerating LLW. The project generated a license application to the USNRC and supporting documentation related to the safety and environmental impacts of the facility. After thorough review, the NRC has issued a Finding of No Significant Impact and the associated license authorization, which is the first of its kind for an incineration facility

  12. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A VENTURI/PACKED COLUMN SCRUBBER - VOLUME II: APPENDICES

    Science.gov (United States)

    A 5-week series of pilot-scale incineration tests, employing a synthetic waste feed, was performed at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a venturi scrubber/p...

  13. Use of cyanopropyl-bonded hplc column for bioassay-directed fractionation of organic extracts from incinerator emissions

    International Nuclear Information System (INIS)

    DeMarini, D.M.; Williams, R.W.; Brooks, L.R.; Taylor, M.S.

    1992-01-01

    The present study has shown that cyanopropyl-(CN) bonded silica HPLC columns are applicable for the fractionation of mass and mutagenic activity of organic extracts from some incinerator emissions. Dichloromethane-extractable organics from particles emitted by two different municipal waste incinerators and by a pilot-scale rotary kiln incinerator that was combusting polyethylene were fractionated by HPLC, and the mutagenicity of the fractions was determined by means of a microsuspension mutagenicity assay with Salmonella TA98. The CN-bonded silica columns provided high (80-100 percent) mass and mutagenicity recoveries for most emission extracts, and it fractionated the mutagenic activity. The results suggest that the emissions from municipal waste incinerators contain a high amount of direct-acting (-S9) mutagenic activity that is resolvable by HPLC using CN-bonded silica. Sub-fractionation of selected mutagenic HPLC fractions and subsequent analysis by gas chromatography/mass spectroscopy can be used to identify mutagenic species within complex incinerator emissions. The coupling of microsuspension bioassays to HPLC fractionation should be a useful tool for this type of analysis

  14. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  15. ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS

    Science.gov (United States)

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...

  16. Incineration of municipal and assimilated wastes in France: assessment of latest energy and material recovery performances.

    Science.gov (United States)

    Autret, Erwan; Berthier, Francine; Luszezanec, Audrey; Nicolas, Florence

    2007-01-31

    Incineration has an important place in waste management in France. In 2003, around 130 incineration plants have treated 12.6 Mt of non-dangerous waste, mainly composed of household waste (10.8 Mt), non-dangerous waste from industry, business, services (1.0 Mt), sewage sludge (0.2 Mt) or clinical waste (0.1 Mt). The incineration of these wastes generated 3.0 Mt of bottom ash of which 2.3 Mt were used for roads construction and 0.2 Mt of ferrous and non-ferrous metal were recycled. It also produced 2,900,000 MWh of electricity, of which 2,200,000 MWh were sold to Electricité de France (EDF) and 9,100,000 MWh of heat, of which 7,200,000 MWh were sold to private or public users. These French incinerators of non-hazardous waste are currently being thoroughly modernized, thus making possible the consolidation and the enhancement of their environmental and energy performance. This process is related to the implementation of the European Directive 2000/76/CE whose expiration date is 28 December 2005. Upon request of ADEME, the engineering company GIRUS has realised the first technical and economical evaluation of works necessary to bring incinerators into compliance. The financial estimations, carried out in 30 June 2003, show that the investments to be devoted could reach 750 million euros. This assessment shed new light on the situation of non-hazardous waste incinerators, including an identification and a rank ordering for each incinerator of the most frequent and the most complex non-conformities to be solved in term of cost and delay. At last, this assessment gives the solutions for each non-compliance.

  17. Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances

    International Nuclear Information System (INIS)

    Autret, Erwan; Berthier, Francine; Luszezanec, Audrey; Nicolas, Florence

    2007-01-01

    Incineration has an important place in waste management in France. In 2003, around 130 incineration plants have treated 12.6 Mt of non-dangerous waste, mainly composed of household waste (10.8 Mt), non-dangerous waste from industry, business, services (1.0 Mt), sewage sludge (0.2 Mt) or clinical waste (0.1 Mt). The incineration of these wastes generated 3.0 Mt of bottom ash of which 2.3 Mt were used for roads construction and 0.2 Mt of ferrous and non-ferrous metal were recycled. It also produced 2 900 000 MWh of electricity, of which 2 200 000 MWh were sold to Electricite de France (EDF) and 9 100 000 MWh of heat, of which 7 200 000 MWh were sold to private or public users. These French incinerators of non-hazardous waste are currently being thoroughly modernized, thus making possible the consolidation and the enhancement of their environmental and energy performance. This process is related to the implementation of the European Directive 2000/76/CE whose expiration date is 28 December 2005. Upon request of ADEME, the engineering company GIRUS has realised the first technical and economical evaluation of works necessary to bring incinerators into compliance. The financial estimations, carried out in 30 June 2003, show that the investments to be devoted could reach 750 million euros. This assessment shed new light on the situation of non-hazardous waste incinerators, including an identification and a rank ordering for each incinerator of the most frequent and the most complex non-conformities to be solved in term of cost and delay. At last, this assessment gives the solutions for each non-compliance

  18. Operational readiness review for the TSCA incinerator start-up at the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    Jordan, Elizabeth A.; Murray, Alexander P.; Kiang, Peter M.

    1992-01-01

    The Department of Energy (DOE) Toxic Substances Control Act (TSCA) incinerator at Oak Ridge K-25 Site was designed in the early 1980's as a treatment alternative for the increasing quantities of radioactive mixed waste accumulating from gaseous diffusion plant (GDP) operations. The waste feed principally contains low assay uranium and PCBs, although listed solvents and heavy metal containing sludges have also be incinerated. Construction was completed in 1986 and the unit underwent an extensive series of tests and trial burns, because of the following unique characteristics: the incinerator treats radioactive mixed wastes; increased size of the incinerator for greater waste throughout and treatment capacity; expansion of the waste acceptance criteria to include materials and radionuclides from non-GDP operations, such as ORNL and Y-12; modifications and improvement to the Air Pollution Control (APC) system; treatment of large quantities and concentrations of PCB containing materials; projected longevity of operation (40 years); humid, Eastern location with a high, annual precipitation. The incinerator was initially fired in July, 1986. The full performance testing (with the APC) and DOE acceptance of the facility occurred a year later. The trial burn period lasted from 1988 through 1990. Numerous equipment problems were initially encountered, including excessive draft fan wear and failure. These problems have been overcome, the facility is fully permitted, DOE provided authorization for full operations in 1991, and, to date, over two million pounds of mixed waste have been incinerated, with an average volume reduction factor of approximately nine. This paper discusses the Office of Environmental Restoration and Waste Management Readiness Review for the incinerator. (author)

  19. Curbing dioxin emissions from municipal solid waste incineration in China: re-thinking about management policies and practices.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-09-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. The early days of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  1. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  2. Incineration process for chlorinated alpha-contaminated wastes: industrial application to the Valduc project

    International Nuclear Information System (INIS)

    Longuet, T.; Vincent, J.J.; Cartier, R.; Durec, J.P.

    1993-01-01

    The Commissariat a l'Energie Atomique (CEA) has pursued a broad research and development program for a number of years concerning the incineration of chlorinated α-contaminated wastes produced by work in confined atmosphere. This program has now reached the stage where an alternative solution is available to the conventional direct cement embedding method currently used for such wastes. The proposed solution is based on a two-step incineration process offering a significant volume reduction that constitutes a serious economic advantage for geological disposal. Moreover, the process produces ashes of a quality suitable for direct online vitrification, or for Pu recovery by dissolution with silver II. The process was developed under nonradioactive conditions in the IRIS incineration pilot facility operated by the CEA's Fuel Cycle Division (CEA/DCC), opening the way for the first industrial facility, planned for the VALDUC Research Center. USSI is the prime contractor in this 36-month project. The basic design work has now been completed, and the French safety authorities have authorized construction of the incinerator, based in large part on the experience and expertise acquired by the process licenser CEA/DCC. (author). 6 figs., 3 tabs

  3. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or...

  4. Analysis of fouling in refuse waste incinerators

    NARCIS (Netherlands)

    Beek, van M.C.; Rindt, C.C.M.; Wijers, J.G.; Steenhoven, van A.A.

    2001-01-01

    Gas-side fouling of waste-heat-recovery boilers, caused mainly by the deposition of particulate matter, reduces the heat transfer in the boiler. The fouling as observed on the tube bundles in the boiler of a Dutch refuse waste incinerator varied from thin and powdery for the economizer to thick and

  5. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions.

    Science.gov (United States)

    Lu, Jia-Wei; Zhang, Sukun; Hai, Jing; Lei, Ming

    2017-11-01

    With the rapid expansion of municipal solid waste (MSW) incineration, the applicability, technical status, and future improvement of MSW incineration attract much attention in China. This paper aims to be a sensible response, with the aid of a comparison between China and some representative developed regions including the EU, the U.S., Japan, South Korea, and Taiwan area. A large number of up-to-date data and information are collected to quantitatively and impartially support the comparison, which covers a wider range of key points including spatial distribution, temporal evolution, technologies, emissions, and perspectives. Analysis results show that MSW incineration is not an outdated choice; however, policy making should prevent the potentially insufficient utilization of MSW incinerators. The structure of MSW incineration technologies is changing in China. The ratio of plants using fluidized bed is decreasing due to various realistic reasons. Decision-makers would select suitable combustion technologies by comprehensive assessments, rather than just by costs. Air pollution control systems are improved with the implementation of China's new emission standard. However, MSW incineration in China is currently blamed for substandard emissions. The reasons include the particular elemental compositions of Chinese MSW, the lack of operating experience, deficient fund for compliance with the emission standard, and the lack of reliable supervisory measures. Some perspectives and suggestions from both technical and managerial aspects are given for the compliance with the emission standard. This paper can provide strategic enlightenments for MSW management in China and other developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Urinary metabolites of phosphate flame retardants in workers occupied with e-waste recycling and incineration.

    Science.gov (United States)

    Yan, Xiao; Zheng, Xiaobo; Wang, Meihuan; Zheng, Jing; Xu, Rongfa; Zhuang, Xi; Lin, Ying; Ren, Mingzhong

    2018-06-01

    Urinary metabolites of phosphate flame retardants (PFRs) were determined in workers from an electronic waste (e-waste) recycling site and an incineration plant, in order to assess the PFR exposure risks of workers occupied with e-waste recycling and incineration. Bis(2-chloroethyl) phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and diphenyl phosphate (DPHP) were the most frequently detected chemicals (82-93%). The median concentrations of BCEP, BDCIPP, and DPHP were 1.77, 0.23, and 0.70 ng/mL, and 1.44, 0.22, and 0.11 ng/mL in samples from the e-waste site and the incineration plant, respectively. Dibutyl phosphate (DBP) was detected in all samples from the incineration plant, with a median level of 0.30 ng/mL. The concentrations of BDCIPP (r = -0.31, p waste site. Negative and significant correlations were also observed between the concentrations of BCEP (r = -0.42, p incineration plant. No gender differences were observed in levels of PFR metabolites in urine samples (p > 0.05). Concentrations of BDCIPP in female were significantly correlated with occupational exposure time (r = -0.507, p  0.05). Overall, the workers with occupational exposure to PFRs had different profiles of urinary PFR metabolites. The age, occupational exposure time, and gender seemed not to be main factors mediating the exposure to PFRs for workers occupied with e-waste recycling and incineration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. MINT Incineration and Renewable Energy Centre - experience and challenge

    International Nuclear Information System (INIS)

    Mohamad Puad Abu

    2005-01-01

    MIREC is the acronym for MINT Incineration and Renewable Energy Centre which was established in the year 2000 to carry out research and provide services on matters related to incineration technology and renewable energy. Throughout this period, many challenges and experiences has been faced by MIREC. Three research contracts with the value of nearly RM 1 million have been signed. Four laboratory scale burners have been designed and fabricated. Three mathematical models have been developed. Three programs on enhancement image have been published. Three papers have been published in the international journal. In order to achieve all these, many obstacles were faced by MIREC. This paper will discuss on the experiences and challenges that could be shared together with MINT staff. (Author)

  8. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues.

    Science.gov (United States)

    Tao, Xiao-Qing; Shen, Dong-Sheng; Shentu, Jia-Li; Long, Yu-Yang; Feng, Yi-Jian; Shen, Chen-Chao

    2015-03-01

    Ash from incinerated e-waste dismantling residues (EDR) may cause significant health risks to people through ingestion, inhalation, and dermal contact exposure pathways. Ashes of four classified e-waste types generated by an incineration plant in Zhejiang, China were collected. Total contents and the bioaccessibilities of Cd, Cu, Ni, Pb, and Zn in ashes were measured to provide crucial information to evaluate the health risks for incinerator workers and children living in vicinity. Compared to raw e-waste in mixture, ash was metal-enriched by category incinerated. However, the physiologically based extraction test (PBET) indicates the bioaccessibilities of Ni, Pb, and Zn were less than 50 %. Obviously, bioaccessibilities need to be considered in noncancer risk estimate. Total and PBET-extractable contents of metal, except for Pb, were significantly correlated with the pH of the ash. Noncancer risks of ash from different incinerator parts decreased in the order bag filter ash (BFA) > cyclone separator ash (CFA) > bottom ash (BA). The hazard quotient for exposure to ash were decreased as ingestion > dermal contact > inhalation. Pb in ingested ash dominated (>80 %) noncancer risks, and children had high chronic risks from Pb (hazard index >10). Carcinogenic risks from exposure to ash were under the acceptable level (incinerated ash are made.

  9. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    Science.gov (United States)

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  10. Integration of a free-piston Stirling engine and a moving grate incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Y.C.; Hsu, T.C.; Chiou, J.S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2008-01-15

    The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers. From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity. (author)

  11. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    Science.gov (United States)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  12. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  13. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  14. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  15. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the...

  16. Evaluation of resource recovery from waste incineration residues--the case of zinc.

    Science.gov (United States)

    Fellner, J; Lederer, J; Purgar, A; Winterstetter, A; Rechberger, H; Winter, F; Laner, D

    2015-03-01

    Solid residues generated at European Waste to Energy plants contain altogether about 69,000 t/a of Zn, of which more than 50% accumulates in air pollution control residues, mainly boiler and filter ashes. Intensive research activities aiming at Zn recovery from such residues recently resulted in a technical scale Zn recovery plant at a Swiss waste incinerator. By acidic leaching and subsequent electrolysis this technology (FLUREC) allows generating metallic Zn of purity>99.9%. In the present paper the economic viability of the FLUREC technology with respect to Zn recovery from different solid residues of waste incineration has been investigated and subsequently been categorised according to the mineral resource classification scheme of McKelvey. The results of the analysis demonstrate that recovery costs for Zn are highly dependent on the costs for current fly ash disposal (e.g. cost for subsurface landfilling). Assuming current disposal practice costs of 220€/ton fly ash, resulting recovery costs for Zn are generally higher than its current market price of 1.6€/kg Zn. With respect to the resource classification this outcome indicates that none of the identified Zn resources present in incineration residues can be economically extracted and thus cannot be classified as a reserve. Only for about 4800 t/a of Zn an extraction would be marginally economic, meaning that recovery costs are only slightly (less than 20%) higher than the current market price for Zn. For the remaining Zn resources production costs are between 1.5 and 4 times (7900 t/a Zn) and 10-80 times (55,300 t/a Zn) higher than the current market value. The economic potential for Zn recovery from waste incineration residues is highest for filter ashes generated at grate incinerators equipped with wet air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    Science.gov (United States)

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  19. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    International Nuclear Information System (INIS)

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force

  20. Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).

    Science.gov (United States)

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-03-01

    Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator's stack gases and their analyses results were compared with WHO standards. TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator's stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn't seem rational anymore. Yet, despite the inefficiency of autoclaves in