WorldWideScience

Sample records for watertube boilers application

  1. Numerical simulation of a 374 tons/h water-tube steam boiler following a feedwater line break

    International Nuclear Information System (INIS)

    Deghal Cheridi, Amina Lyria; Chaker, Abla; Loubar, Ahcène

    2016-01-01

    Highlights: • We simulate the behavior of a steam boiler during feed-water line break accident. • To perform accident analysis of the steam boiler, Relap5/Mod3.2 system code is used. • A Relap5 model of the boiler is developed and qualified at the steady state level. • A good agreement between Relap5 results and available experimental data. • The Relap5 model predicts well the main transient features of the boiler. - Abstract: To ensure the operational safety of an industrial water-tube steam boiler it is very important to assess various accident scenarios in real plant working conditions. One of the most challenging scenarios is the loss of feedwater to the steam boiler. In this paper, a simulation of the behavior of an industrial water-tube radiant steam boiler during feedwater line break accident is discussed. The simulation is carried out using the RELAP5 system code. The steam boiler is installed in an Algerian natural gas liquefaction complex. The simulation shows the capabilities of RELAP5 system code in predicting the behavior of the steam boiler at both steady state and transient working conditions. From another side, the behavior of the steam boiler following the accident shows how the control system can successfully mitigate the effects and consequences of such accident and how the evaporator tubes can undergo a severe damage due to an uncontrolled increase of the wall temperature in case of failure of this system.

  2. Simulation of Working Processes in the Water-Tube Boiler Furnace with the Purpose of Reducing Emissions of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-04-01

    Full Text Available A significant number of domestic and industrial boilers are in operation in Ukraine. Nitrogen oxides are the most dangerous among all combustion products that pollute the atmosphere, therefore, one should take some measures for decreasing the formation of nitrogen oxides during combustion. The studies were carried out at the boilers of low power (100 kW with a tubular radiator and an open end. The studies in the furnaces of industrial steam boilers having a tubular radiator with a closed end have not been done. The numerical study results of the gaseous fuel combustion processes in the furnace of a DE-10/14 steam water-tube boiler are presented. The fuel-air mixture is formed by premixing the 15% part of the air with a primary burner twist factor n=2.4 and a secondary burner twist factor n=1.6, and an air excess factor αв=10. As a result of the studies, the temperature and velocity distributions of gases in the combustion chamber, the density of heat flows on the screen tubular surfaces, and the concentrations of the combustion components were determined. Flue gas recirculation in the volume of 80-100% is provided, and the reversible movement of combustion products towards the combustion front provides a reduction in the concentration of nitrogen oxides up to 123-125 mg/m3 at the furnace outlet. Disadvantages are the following: the formation of stagnant zones near the end of the secondary radiator. The optimum diameter of the tubular radiator equals to two burners diameters and tubular radiator is located at a distance of one meter from the burner cutoff.

  3. CFB boilers in multifuel application

    International Nuclear Information System (INIS)

    Goral, D.; Krzton, B.

    2007-01-01

    Fuel flexibility characteristic for CFB boilers plays an important rule in industrial and utility size applications. Possibility to use wider range of fuels that has been long time considered as by-products or wastes and possibility to design boilers able to operate with alternative fuels is an important factor that improves fuel delivery security and plant economy. Presented article is based on similar publications that present Foster Wheeler's experience in design and delivery of the CFB boilers for wide range of coals and cofiring by- products of crude oil refining and coal processing. Aspects of biomass cofiring will be also presented. (author)

  4. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  5. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  6. Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…

  7. Aspects of new material application for boilers construction

    International Nuclear Information System (INIS)

    Czerniawski, R.

    1996-01-01

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab

  8. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  9. Water-pirotube boiler: influence of its design in fabrication cost. Calderas de vapor pirotubulares: influencia del diseo en el coste de fabricacion

    Energy Technology Data Exchange (ETDEWEB)

    Latre Durso, F.

    1993-01-01

    Design of water-tube boiler and its cost is analyzed. Adequated combination of gases velocity, size of tubes, gases temperature, geometric configuration, etc will give a best product with quality prize relation. (Author)

  10. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  11. Aspects of new material application for boilers construction; Aspekty wdrazania nowych materialow w budowie kotlow

    Energy Technology Data Exchange (ETDEWEB)

    Czerniawski, R. [RAFAKO S.A., Raciborz (Poland)

    1996-12-31

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab.

  12. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  13. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.

    Science.gov (United States)

    Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui

    2013-01-01

    The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.

  14. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  15. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  16. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kisoo; Jeong, Kwon Seok [Korea Southern Power Corporation, Gimhae (Korea, Republic of)

    2012-06-15

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

  17. Application and verification of cold air velocity technique for solving tube ash erosion problem in PC boilers

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Jeong, Kwon Seok

    2012-01-01

    Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong 2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated

  18. Application of newly developed heat resistant materials for USC boilers

    International Nuclear Information System (INIS)

    Sato, T.; Tamura, K.; Fukuda, Y.; Matsuda, J.

    2004-01-01

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  19. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    Science.gov (United States)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  20. Boiler water regime

    Science.gov (United States)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  1. The application of TIG-welding to the manufacture of modern boiler units. Chapter 3

    International Nuclear Information System (INIS)

    Dick, N.T.

    1978-01-01

    Stringent weld acceptance standards are necessary in nuclear installations. Mechanised TIG-welding is being used exclusively in the manufacture of the boiler pods for the Hartlepool and Heysham nuclear generating stations. The choice of a TIG welding process is discussed. Reliability, access, welding position, tube dimensions and weld profile were important as was the desirability of having ferrite control because in the austenitic stainless steel used, the acceptance standard does not permit microfissuring. Development of the technique and production equipment and conditions are given for tube butt welding, tube-to-tubeplate bore welding and tube-to-tubeplate face welding in AGR applications. (U.K.)

  2. Application of Evaporative Cooling for the Condensation of Water Vapors from a Flue Gas Waste Heat Boilers CCP

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are boilers that burn organic fuel and the recovery boilers (RB of the combined cycle plant (CCP, which are al-so working on the products of the combustion of hydrocarbon fuels. The purpose of research is to find technologies that increase efficiency of the thermal power plant (TPP and technologies that reduce the environmental impact on the environment by burning fossil fuels. The paper deals with the technology of the boilers burning hydrocarbon fuel with condensation of water vapor from the exhaust flue gases. Considered the problems caused by using of this technology. Research shows that the main problem of this technology in the boilers is the lack of reliable methods of calculation of heat exchangers, condensers. Particular attention is paid to the application of this technology in the recovery boilers combined-cycle plants, which are currently gaining increasing use in the generation of electricity from the combustion of gas in power plants. It is shown that the application of technology of condensation of water vapor in RB CCP, the temperature decreases of exhaust gases from 100 to 40 °С, allows increasing the effi-ciency of the RB with 86.2 % to 99.5 %, i.e. at 12.3 %, and increase the ef-ficiency of the CCP at 2.8 %.

  3. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  4. Exergy analysis on industrial boiler energy conservation and emission evaluation applications

    Science.gov (United States)

    Li, Henan

    2017-06-01

    Industrial boiler is one of the most energy-consuming equipments in china, the annual consumption of energy accounts for about one-third of the national energy consumption. Industrial boilers in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment. In recent years, our country in the big scope, long time serious fog weather, with coal-fired industrial boilers is closely related to the regional characteristics of high strength and low emissions [1]. The energy-efficient and emission-reducing of industry boiler is of great significance to improve China’s energy usage efficiency and environmental protection. Difference in thermal equilibrium theory is widely used in boiler design, exergy analysis method is established on the basis of the first law and second law of thermodynamics, by studying the cycle of the effect of energy conversion and utilization, to analyze its influencing factors, to reveal the exergy loss of location, distribution and size, find out the weak links, and a method of mining system of the boiler energy saving potential. Exergy analysis method is used for layer combustion boiler efficiency and pollutant emission characteristics analysis and evaluation, and can more objectively and accurately the energy conserving potential of the mining system of the boiler, find out the weak link of energy consumption, and improve equipment performance to improve the industrial boiler environmental friendliness.

  5. Applicability of newly developed 610MPa class heavy thickness high strength steel to boiler pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Norihiko; Kaihara, Shoichiro; Ishii, Jun [Ishikawajima-Harima Heavy Industries Corp., Yokohama (Japan); Kajigaya, Ichiro [Ishikawajima-Harima Heavy Industries Corp., Tokyo (Japan); Totsuka, Takehiro; Miyazaki, Takashi [Ishikawajima-Harima Heavy Industries Corp., Aioi (Japan)

    1995-11-01

    Construction of a 350 MW Class PFBC (Pressurized Fluidized Bed Combustion) boiler plant is under planning in Japan. Design temperature and pressure of the vessel are maximum 350 C and 1.69 MPa, respectively. As the plate thickness of the vessel exceeds over 100 mm, high strength steel plate of good weldability and less susceptible to reheat cracking was required and developed. The steel was aimed to satisfy the tensile strength over 610 MPa at 350 C after postweld heat treatment (PWHT), with good notch toughness. The authors investigated the welding performances of the newly developed steel by using 150 mm-thick plate welded by pulsed-MAG and SAW methods. It was confirmed that the newly developed steel and its welds possess sufficient strength and toughness after PWHT, and applicable to the actual pressure vessel.

  6. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  7. APPLICATION OF REBURNING TO COAL-FIRED INDUSTRIAL BOILERS IN TAIWAN

    Science.gov (United States)

    The paper gives an overview of the characteristics of coal-fired industrial boilers in Taiwan and projections of the cost and performance data for retrofitting several boilers with reburning. The impacts of reburning fuel type on the reburning system design and cost effectivenes...

  8. Application of programmable controllers to oil fired boiler light-off system

    International Nuclear Information System (INIS)

    Copeland, H.C.; Gallaway, E.N.

    1978-01-01

    A programmable controller has been used to improve the reliability of an oil-fired boiler burner control system. An outdated and failing Germanium discrete transistor logic control system was replaced with a modern solid state large scale integrated circuit programmable controller. The ease of making this conversion at a modest expenditure during a limited boiler outage is explained, as well as pitfalls and problems encountered. Light-off reliability with fuel savings were prime objectives. The boiler, rated at 575,000 lb/hr at 450 psig, is used as a backup steam supply for the dual purpose N Reactor at Hanford, Washington, which supplies 860 MWe to the Bonneville Power Administration and weapons grade Plutonium for the Department of Energy. High reliability in light-off and load ascension from standby is required of the boiler which serves as the backup power supply for the reactor

  9. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  10. Review of biomass fired space heating/domestic hot water boilers' application, operation and design parameters

    International Nuclear Information System (INIS)

    1997-01-01

    Monitoring exercises have been carried out for ETSU, by a number of contractors, on a number of wood fired heating schemes; feasibility studies on proposed schemes have also been carried out. Monitoring reports and feasibility studies have been reviewed to try and establish the suitability and economic viability of the various types of plant used (or proposed) and their application. Of the sixteen schemes reviewed just over 30% showed a reasonable return on the incremental capital cost of plant compared to gas oil fired plant. These schemes had one or more of the following attributes: - Low wood fuel cost -Long operating hours -Relatively low incremental capital cost of wood plant over gas oil plant. Small systems with low operating hours (e.g. short weekday occupancy premises, like schools) and relatively high incremental operating and maintenance costs and capital costs exhibited no advantage over equivalent fossil fuel fired plant. The unit fuel cost advantage to wood, in these cases, was insufficient to outweigh the increased O and M and capital costs, because of the comparatively low annual fuel consumption. Most of the plants reviewed had low thermal efficiencies due to the simplicity of the fuel to air control systems and the wide range of heating demand over which they had to operate. The former can be increased by improved combustion control systems and the latter by correct sizing of boilers and/or the installation of hybrid systems. (Author)

  11. Application of the decree 2910 for coal fired boilers; Application de l`arrete 2910 aux chaudieres a charbon

    Energy Technology Data Exchange (ETDEWEB)

    Hing, K. [CDF Energie, Charbonnages de France, 92 - Rueil-Malmaison (France)

    1997-12-31

    The impacts of the new French decree 2910 concerning the classification of all combustion equipment with regards to their energy sources, energy efficiency and pollution control, on 2 to 20 MW coal-fired boilers, are discussed, with emphasis on their pollutant emissions (SO{sub 2}, NO{sub x} and ashes). The compositions of several coals is presented and the various types of coal-fired boilers adapted to the new decree are presented: automatic boilers, dense fluidized bed boilers, vibrating and chain grids with fume tubes and water tubes

  12. Application of zonal combustion model for on-line furnace analysis of 575MW tangential coal firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Karasina, E.; Livshits, B.; Talanker, A. [Israel Electric Corporation (Israel). Engineering Division

    1999-07-01

    An advanced code for calculating heat transfer in the boiler of furnaces is considered. The code can be used to compute the flue gas temperature in the furnace volume and the absorbed and incident heat fluxes. The number of zones in the furnace, the points of the injection of the fuel, air and flue gas recirculation (if applicable), the radiative heat transfer properties of the flue gases as well as all the factors determining performance are taken into account in the calculation. The code also predicts water wall and superheater temperature and NO{sub x} emission. The validity of the proposed model was confirmed by comparison between calculated and measured values. The predicted results show good agreement with the experimental data. The code developed is for engineers using advanced PCS at the stage of designing new boilers as well as when retrofitting and adjusting boilers already in operation. In comparison with existing complex computational models the proposed system can be used in modern monitoring systems for the furnace diagnostic problems including NO{sub x} emission. 7 refs., 11 figs.

  13. HR boiler

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    A number of manufacturers of central heating boilers in the Netherlands have produced high-efficiency boilers, all carrying the GIVEG-HR seal of approval (GIVEG is the manufacturers' association in the Netherlands, and HR stands for 'hoog rendement': high efficiency). Efficiences were considerably improved by reducing flue, idling and radiation losses. Control and safety, discharges of flue gases and condensate need special attention. Whether installation of a GIVEG-HR boiler is profitable in view of the cost/profit ratio, will have to be determined from case to case. N.V. Nederlandse Gasunie felt it was time to present the facts so far in a way specially aimed at the construction industry. This special edition of 'Gas and Architecture' answers a number of questions which the architect or consultant engineer might have in particular before advising on the installation of the new boiler in houses and other buildings in the interests of energy saving. A technical description of the HR boiler covers the backgrounds of its development and considers the role of the Netherlands government as regards to the introduction of the boiler.

  14. 46 CFR 52.25-5 - Miniature boilers (modifies PMB-1 through PMB-21).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Miniature boilers (modifies PMB-1 through PMB-21). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-5 Miniature boilers (modifies PMB-1 through PMB-21). Miniature boilers must meet the applicable provisions in this part for the boiler type involved and the...

  15. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  16. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    International Nuclear Information System (INIS)

    Nicolas, G.; Mateo, M.P.; Yanez, A.

    2007-01-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits

  17. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    Science.gov (United States)

    Nicolas, G.; Mateo, M. P.; Yañez, A.

    2007-12-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  18. Efficient boiler operations sourcebook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.W. (comp.)

    1985-01-01

    This book emphasizes the practical aspects of industrial and commercial boiler operations. It starts with a comprehensive review of general combustion and boiler fundamentals and then deals with specific efficiency improvement methods, and the cost savings which result. The book has the following chapter headings: boiler combustion fundamentals; boiler efficiency goals; major factors controlling boiler efficiency; boiler efficiency calculations; heat loss; graphical solutions; preparation for boiler testing; boiler test procedures; efficiency-related boiler maintenance procedures; boiler tune-up; boiler operational modifications; effect of water side and gas side scale deposits; load management; auxillary equipment to increase boiler efficiency; air preheaters and economizers; other types of auxillary equipment; combustion control systems and instrumentation; boiler O/sub 2/ trim controls; should you purchase a new boiler.; financial evaluation procedures; case studies. The last chapter includes a case study of a boiler burning pulverized coal and a case study of stoker-fired coal.

  19. Research on the Application of Risk-based Inspection for the Boiler System in Power Plant

    Science.gov (United States)

    Li, Henan

    2017-12-01

    Power plant boiler is one of the three main equipment of coal-fired power plants, is very tall to the requirement of the safe and stable operation, in a significant role in the whole system of thermal power generation, a risk-based inspection is a kind of pursuit of security and economy of unified system management idea and method, can effectively evaluate equipment risk and reduce the operational cost.

  20. Development of a pellet boiler with Stirling engine for m-CHP domestic application

    Energy Technology Data Exchange (ETDEWEB)

    Crema, Luigi; Alberti, Fabrizio; Bertaso, Alberto; Bozzoli, Alessandro [Fondazione Bruno Kessler (FBK), Povo, Trento (IT). Renewable Energies and Environmental Technologies Unit (REET)

    2011-12-15

    A new sustainable technology has been designed by Fondazione Bruno Kessler through its unit Renewable Energies and Environmental Technologies. This technology is realized integrating in a single system (1) a Stirling engine (mRT-1K) from a pre-engineering design of Allan J. Organ; (2) a micro-heat exchanger technology, to reduce the net transfer unit deficit on the hot side of the heat engine; (3) a customized pellet boiler, able to extract electrical and thermal power; and (4) a customized hydraulic circuit, connecting the cool side of the Stirling engine and the heat generation on the second section of the pellet boiler. The objective of this paper was to present a new technology for the micro-cogeneration of energy at a distributed level able to be integrated in domestic dwellings. Most part of the available biomass is used in buildings for the generation of thermal power for indoor heating and, in minor cases, for hot sanitary water. In the Province of Trento, 88% of the biomass is used for this purpose. The full system is actually under integration for the test phase and not yet tested. The first tests on the single components have confirmed preliminary results on the Stirling engine with respect to the tolerances, pressurization, and proper integration of the electrical generator-driven control system. The pellet boiler has been tested separately, confirming an overall thermal efficiency of 90%. (orig.)

  1. Active brickworks - phase I[For application in biofuel boilers]; Aktiva murverk - etapp I

    Energy Technology Data Exchange (ETDEWEB)

    Wrangensten, Lars; Schuster, Robert; Ingman, Rolf; Sendelius, Mikael; Ehleskog, Rickard [AaF-Energikonsult AB, Stockholm (Sweden)

    2003-10-01

    This report is the first step of the R and D project 'Active brickworks' within the program 'Possibilities to improve the operation conditions in industrial bark boilers by optimised combustion control'. Good high temperature resistance is one of the major characteristics of ceramics. They are based on quartz and aluminium oxide, an attachment component (acid or cement) and also different types of additives which, together with the heating treatment, gives the ceramic materials their features. The brickwork in a boiler has several assignments. First of all resistance to corrosion, erosion and protection against fouling of the water tube walls, but also to significant affect the combustion process by energy saving features and heating radiation. This project has been focused on the last named features, namely to be able to make a more active choice of brickwork in order to utilise the ceramic features and hereby making it possible to lower the combustion process emissions. The material samples received from the manufactures have been tested in a small-scale laboratory rig. Features investigated are emissivity/reflection, heat conductivity and heat capacity. Mathematic simulations have also been performed with a representative type boiler model in order to make conclusions concerning how the results can be transformed to and applied in a real full-scale boiler. The most important designing case for ceramics in bark boilers is when boiler load rapidly increases or during a fast fuel moisture change from dry to wet fuel. It has been concluded in the study that that the ceramic walls in a boiler should be divided into different layers. The outer layer in the ceiling and sidewalls of the drying zone must consist of highly insulating material in order to get a high temperature of heating surfaces close to the furnace. To store heat during load transients the heating surfaces must have high emissivity factor and good heating capacity. From this point of

  2. Development and evaluation of SUS 304H — IN 617 welds for advanced ultra supercritical boiler applications

    International Nuclear Information System (INIS)

    Pavan, A.H.V.; Vikrant, K.S.N.; Ravibharath, R.; Singh, Kulvir

    2015-01-01

    At moderately high temperature sections of Advanced Ultra Super Critical (AUSC) boilers, welding of superalloys to austenitic steels is inevitable owing to economic aspects of boiler. Welding of SUS 304H and Inconel 617 (IN 617) was attempted using IN 617 filler material employing conventional Gas Tungsten Arc Welding (GTAW) process and the procedure was successfully established along with optimized welding parameters. Microstructural characterization was carried out to identify various zones on either side of the fusion boundaries. Unmixed Zone and Heat Affected Zone (HAZ) were observed towards SUS 304H fusion boundary while no distinct HAZ was observed towards IN 617 fusion boundary. Micro-hardness profiling indicated decrease in hardness at the HAZ towards SUS 304H fusion boundary. Mechanical properties evaluation at both ambient and elevated temperatures was carried out and data obtained was compared with those of base metals. The tensile strength of the cross weld specimens at high temperatures were observed to be marginally lower than that of IN 617 but significantly more than that of SUS 304H, hence, tolerable. Stress-rupture properties of the cross-weld specimens as tested in this study were found to be intermediate to the base metals’ data, thus, suitable for AUSC power plants' boiler applications. Hence, this work gives an insight into welding procedure establishment, microstructural development, variation of mechanical properties at elevated temperatures and stress-rupture properties of the dissimilar metal welds at elevated temperatures. - Highlights: • Procedure establishment & parameters optimization for fabricating defect-free welds. • Characterization of various zones formed during welding. • Mechanical properties evaluation and comparison with those of base metals. • Influence of various zones formed during welding on mechanical properties inferred. • Understanding long term behavior of welds at elevated temperatures

  3. Development and evaluation of SUS 304H — IN 617 welds for advanced ultra supercritical boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, A.H.V., E-mail: pavanahv@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India); Vikrant, K.S.N., E-mail: vikrant@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India); Ravibharath, R., E-mail: rrbharath@bhelrnd.co.in [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirapalli 620 014 (India); Singh, Kulvir, E-mail: kulvir@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India)

    2015-08-26

    At moderately high temperature sections of Advanced Ultra Super Critical (AUSC) boilers, welding of superalloys to austenitic steels is inevitable owing to economic aspects of boiler. Welding of SUS 304H and Inconel 617 (IN 617) was attempted using IN 617 filler material employing conventional Gas Tungsten Arc Welding (GTAW) process and the procedure was successfully established along with optimized welding parameters. Microstructural characterization was carried out to identify various zones on either side of the fusion boundaries. Unmixed Zone and Heat Affected Zone (HAZ) were observed towards SUS 304H fusion boundary while no distinct HAZ was observed towards IN 617 fusion boundary. Micro-hardness profiling indicated decrease in hardness at the HAZ towards SUS 304H fusion boundary. Mechanical properties evaluation at both ambient and elevated temperatures was carried out and data obtained was compared with those of base metals. The tensile strength of the cross weld specimens at high temperatures were observed to be marginally lower than that of IN 617 but significantly more than that of SUS 304H, hence, tolerable. Stress-rupture properties of the cross-weld specimens as tested in this study were found to be intermediate to the base metals’ data, thus, suitable for AUSC power plants' boiler applications. Hence, this work gives an insight into welding procedure establishment, microstructural development, variation of mechanical properties at elevated temperatures and stress-rupture properties of the dissimilar metal welds at elevated temperatures. - Highlights: • Procedure establishment & parameters optimization for fabricating defect-free welds. • Characterization of various zones formed during welding. • Mechanical properties evaluation and comparison with those of base metals. • Influence of various zones formed during welding on mechanical properties inferred. • Understanding long term behavior of welds at elevated temperatures.

  4. Application of Coal Thermal Treatment Technology for Oil-Free Firing of Boilers

    Science.gov (United States)

    Aliyarov, B.; Mergalimova, A.; Zhalmagambetova, U.

    2018-04-01

    The theoretical and practical introduction of this kind of firing boiler units in coal thermal power plants is considered in the article. The results of an experimental study of three types of coals are presented in order to obtain the required gaseous fuel. The aim of the study is to develop a new, economically and ecologically more acceptable method for firing boilers at thermal power plants, which is able to exclude the use of expensive and inconvenient fuel oil. The tasks of the experiment are to develop a technological scheme of kindling of boilers at thermal power plants, using as a type of ignition fuel volatile combustible substances released during the heating of coal, and to investigate three types of coal for the suitability of obtaining gaseous fuels, in sufficient volume and with the required heat of combustion. The research methods include the analysis of technical and scientific-methodological literature on the problem of the present study, the study of the experience of scientists of other countries, the full-scale experiment on the production of volatile combustible substances. During the full-scale experiment, the coal of 3 fields of Kazakhstan has been studied: Shubarkul, Maikuben and Saryadyr. The analysis has been performed and the choice of the most convenient technology for boiler kindling and maintenance of steady burning of the torch has been made according to the proposed method, as well as the corresponding technological scheme has been developed. As a result of the experiment, it can be stated that from coal in the process of its heating (without access to oxygen), it is possible to obtain a sufficient amount of combustible volatile substances. The released gaseous fuel has the necessary parameters and is quite capable of replacing an expensive fuel oil. The resulting gaseous fuel is quite convenient to use and environmentally cleaner. The piloting scheme developed as a result of the experiment can be introduced in pulverized

  5. Hybrid model of steam boiler

    International Nuclear Information System (INIS)

    Rusinowski, Henryk; Stanek, Wojciech

    2010-01-01

    In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.

  6. Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.

    Science.gov (United States)

    Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.

  7. Production of high quality distillate to meet a fit-for-purpose boiler feedwater specification

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions Oil and Gas, Calgary, AB (Canada); Neu, D. [Veolia Water Solutions and Technologies/HPD, Pewaukee, WI (United States); Drone, J.L. [Veolia Water Solutions and Technologies/HPD, Plainfield, IL (United States)

    2009-07-01

    Veolia Water Solutions and Technologies has significant experience managing boiler water chemistry and is the world's largest manufacturer of evaporation systems. The company has conducted extensive testing and analysis for produced water evaporation distillate from multiple facilities. In order to produce boiler feed water, evaporation of produced water is used at several steam assisted gravity drainage (SAGD) facilities. There are no official guidelines for the required quality of evaporator distillate to feed a once through steam generator (OTSG) or high pressure industrial watertube boiler (IWT) that will produce injection steam. This paper presented a basis for a fit-for-purpose specification for IWT boilers as well as data on the performance of a Vapor Washer, which produces high quality distilled water that meets fit-for-purpose specifications even during normal variations in feed conditions. Specifically, the paper discussed boiler water requirements for steam injection IWTs; the quality of distillate from a produced water evaporator; the benefits of vapour washing to maintain distillate quality; and suggested boiler chemistry limits for a fit-for-purpose specification. Oxygen, iron, and copper were discussed as being implicated with corrosion and reaction in boilers. Hardness contaminants such as calcium and magnesium were also presented. Suggested limits for boiler water in the fit-for-purpose specification were also presented for silica, total alkalinity, free OH alkalinity, and total dissolved solids in steam. It was concluded that foaming episodes can occur in produced water evaporators due to normal variations, and the distillate can fail to meet the fit-for-purpose specification during foam upsets. 3 refs., 9 figs.

  8. 46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the...

  9. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  10. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    Chong, W.C.; Rashid, M.; Ramli, M.; Zainura, Z.N.; NorRuwaida, J.

    2010-01-01

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm 3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm 3 (at 7 % O 2 ) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm 3 , the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  11. Application of ELD and load forecast in optimal operation of industrial boiler plants equipped with thermal stores

    International Nuclear Information System (INIS)

    Cao Jiacong

    2007-01-01

    Optimal operation of industrial boiler plants with objects of high energy efficiency and low fuel cost is still well worth investigating when energy problem becomes a world's concern, for there are a great number of boiler plants serving industries. The optimization of operation is a measure that is less expensive and easier to carry out than many other measures. Economic load dispatch (ELD) is an effective approach to optimal operation of industrial boiler plants. In the paper a newly developed method referred to as the method of minimum-departure model (MDM) is used in the ELD for boiler plants. It is more convenient for carrying out ELD when boiler plants are equipped with thermal energy stores that usually adopt the working mode of optimal segmentation of a daily load curve. In the case of industrial boiler plants, ELD needs a prerequisite, viz., the accurate load forecast, which is performed using artificial neural networks in this paper. A computer program for the optimal operation was completed and applied to an example, which results the minimum daily fuel cost of the whole boiler plant

  12. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  13. A Novel Low-Temperature Fiffusion Aluminide Coating for Ultrasupercritical Coal-Fried Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying

    2009-12-31

    An ultrasupercritical (USC) boiler with higher steam temperature and pressure is expected to increase the efficiency of the coal-fired power plant and also decrease emissions of air pollutants. Ferritic/martensitic alloys have been developed with good creep strength for the key components in coal-fired USC plants. However, they typically suffer excessive steam-side oxidation, which contributes to one of main degradation mechanisms along with the fire-side corrosion in coal-fired boilers. As the steam temperature further increases in USC boilers, oxidation of the tube internals becomes an increasing concern, and protective coatings such as aluminide-based diffusion coatings need to be considered. However, conventional aluminizing processes via pack cementation or chemical vapor deposition are typically carried out at elevated temperatures (1000-1150 C). Thermochemical treatment of ferritic/martensitic alloys at such high temperatures could severely degrade their mechanical properties, particularly the alloy's creep resistance. The research focus of this project was to develop an aluminide coating with good oxidation resistance at temperatures {le} 700 C so that the coating processing would not detrimentally alter the creep performance of the ferritic/martensitic alloys. Nevertheless, when the aluminizing temperature is lowered, brittle Al-rich intermetallic phases, such as Fe{sub 2}Al{sub 5} and FeAl{sub 3}, tend to form in the coating, which may reduce the resistance to fatigue cracking. Al-containing binary masteralloys were selected based on thermodynamic calculations to reduce the Al activity in the pack cementation process and thus to prevent the formation of brittle Al-rich intermetallic phases. Thermodynamic computations were carried out using commercial software HSC 5.0 for a series of packs containing various Cr-Al binary masteralloys. The calculation results indicate that the equilibrium partial pressures of Al halides at 700 C were a function of Al

  14. Improvement of efficiency by proportional and integral control for compact boiler; Shoyoryo boiler no renzoku seigyo (P.I seigyo) ni yoru seino kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, T. [Kawasaki Thermal Engineering Co. Ltd., Shiga (Japan)

    1998-10-01

    Efficiency of a compact boiler is improved by the introduction of a continuous P.I. control. It is controlled by the following procedure. The proportional control, which controls magnitude of combustion in proportion to a load requirement, is combined with an integral control function which keeps steam pressure at a given level, in order to stabilize steam pressure at a level comparable to that of a large, water-tube type boiler. A stable steam pressure is realized by including control of make-up water supply, to minimize the effects of water supply on steam pressure. The effects of characteristics of the combustion valve on control are relaxed by programming. In addition to the above, rotational speed of the motor for the forced draft fan is controlled for each load level, to reduce power consumption. These bring improved quality of steam, i.e., stabilized steam pressure, improved follow-up characteristics of the steam and secured dryness of the steam. Energy-saving is also achieved, i.e., reduction of noise and power consumption at a low combustion load are achieved by improved real boiler efficiency and inverter-aided control of the forced draft fan. Low-NOx burners are adopted, to abate NOx content to 60ppm or less at any load. 16 figs.

  15. The correlation based zonal method and its application to the back pass channel of oxy/air-fired CFB boiler

    International Nuclear Information System (INIS)

    Bordbar, Mohammad Hadi; Hyppänen, Timo

    2015-01-01

    A set of correlations for direct exchange area (DEA) between zones are presented. The correlations are simpler and much faster than the classical method used for DEA calculations in zone method. Additionally a unique form of correlation supports both singular and non-singular DEA calculation and no extra effort for non-singular cases is needed. Using the new correlations, the correlation based zone method (CBZM) is introduced and validated by several benchmarks. The CBZM results were in excellent agreement with the benchmark solutions. As an application case, by using the CZBM the gray and non-gray radiative heat transfer has been analyzed in a large back pass channel of a CFB boiler for the case of air and oxygen-fired combustion scenarios. The effect of the spectral radiative behavior of combustion gases on the predicted radiative heat fluxes on the walls is addressed. The effect of combustion scenario on the operation of the unit is also discussed. - Highlights: • Efficient correlations for DEA calculation are presented. • The gray and non-gray correlation based zone method is introduced. • The model is validated against several 3D benchmarks. • The effect of non-gray radiation in a large scale back pass channel is addressed. • The effect of combustion scenario on radiation in back pass channel is reported

  16. Biomass boiler conversion potential in the eastern United States

    Science.gov (United States)

    Charles D. Ray; Li Ma; Thomas Wilson; Daniel Wilson; Lew McCreery; Janice K. Wiedenbeck

    2013-01-01

    The U.S. is the world's leading consumer of primary energy. A large fraction of this energy is used in boiler installations to generate steam and hot water for heating applications. It is estimated there are total 163,000 industrial and commercial boilers in use in the United States of all sizes. This paper characterizes the commercial and industrial boilers in...

  17. The application of zonal trademark combustion monitoring and tuning system to coal boilers for efficiency improvement and emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guang; Zhou, Wei; Widmer, Neil C.; Moyeda, David K. [GE Energy, Irvine, CA (United States)

    2013-07-01

    Coal-fired boilers equipped with Low NO{sub x} Burner (LNB) and Overfire Air (OFA) are challenged with maintaining good combustion conditions. In many cases, the significant increases in carbon monoxide (CO) and unburned carbon levels can be attributed to local poor combustion conditions as a result of poorly controlled fuel-air distribution within the furnace. The Zonal trademark combustion monitoring and tuning system developed by GE is available to detect and correct the furnace air-fuel distribution imbalance. The system monitors the boiler excess oxygen (O{sub 2}) and combustible gases, primarily carbon monoxide (CO), by using spatially distributed multipoint sensors located in the boiler's high temperature upper convective backpass region. At these locations, the furnace flow is still significantly stratified allowing tracing of poor combustion zones to specific burners and OFA ports. Using a model-based tuning system, operators can rapidly respond to poor combustion conditions by redistributing airflows to select burners and OFA ports. By improving combustion at every point within the furnace, the boiler can operate at reduced excess O{sub 2} and reduced furnace exit gas temperature (FEGT) while also reducing localized hot spots, corrosive gas conditions, slag formation, and carbon-in-ash. Benefits include improving efficiency, reducing NO{sub X} emissions, increasing output and maximizing availability. This chapter presents the results from implementing the Zonal combustion monitoring and tuning system on a 460 MW tangential-fired coal boiler in the Western United States.

  18. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  19. On-line monitoring system for utility boiler diagnostics

    International Nuclear Information System (INIS)

    Radovanovic, P.M.; Afgan, N.H.; Caralho, M.G.

    1997-01-01

    The paper deals with the new developed modular type Monitoring System for Utility Boiler Diagnostics. Each module is intended to assess the specific process and can be used as a stand alone application. Four modules are developed, namely: LTC - module for the on-line monitoring of parameters related to the life-time consumption of selected boiler components; TRD - module for the tube rupture detection by the position and working fluid Ieakage quantity; FAM - module for the boiler surfaces fouling (slagging) assessment and FLAP - module for visualization of the boiler furnace flame position. All four modules are tested on respective pilot plants built oil the 200 and 300 MWe utility boilers. Monitoring System is commercially available and can be realized in any combination of its modules depending on demands induced by the operational problems of specific boiler. Further development of Monitoring System is performed in accordance with the respective EU project on development of Boiler Expert System. (Author)

  20. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  1. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  2. Adaptive monitoring of emissions in energy boilers using self-organizing maps: An application to a biomass-fired CFB (circulating fluidized bed)

    International Nuclear Information System (INIS)

    Liukkonen, M.; Hiltunen, T.

    2014-01-01

    Improvement of energy efficiency, reduction of operating costs, and reduction of harmful emissions released into the atmosphere are issues of major concern in modern energy plants. While air emissions have to be restricted due to tightening environmental legislation, at the same time it is ever more important to be able to respond quickly to any changes in the load demand or fuel quality. As unpredictability increases with changing fuel quality and more complex operational strategies, undesired phenomena such as increased emission release rates may become more likely. Therefore, it is crucial that emission monitoring systems are able to adapt to varying conditions, and advanced methodologies are needed for monitoring and decision-support. In this paper a novel approach for advanced monitoring of emissions in CFB (circulating fluidized bed) boilers is described. In this approach a model based on SOM (self-organizing maps) is updated regularly to respond to the prevailing condition of the boiler. After creating each model a new set of measurements is input to the system, and the current state of the process is determined using vector distance calculation. Finally, the system evaluates the current condition and may alert if a preset limit defined for each emission component is exceeded. - Highlights: • An adaptive monitoring approach based on self-organizing maps is presented. • The system can monitor the current state of a combustion process and its emissions. • The system is designed to alert when the preset limits defined for emissions are exceeded. • Due to regular updating routine the system is able to adapt to changing conditions. • The application is demonstrated using data from a biomass-fired energy boiler

  3. Electric utility CFB boilers

    International Nuclear Information System (INIS)

    Fairbanks, D.A.

    1991-01-01

    This paper reports on Circulating Fluidized Bed (CFB) boiler technology which caught the attention of boiler users: first for its technical advantages of reduced air emissions and low grade fuel tolerance, then later for its problems in becoming a reliable process. Refractory longevity and fuel feed reliability plagued a number of new installations. The efficacy of CFB technology is now more assured with the recent success of Texas-New Mexico Power Company's 160 MWe CFB based units, the world's largest operating CFB boilers. Most of the more notable CFB development problems have been successfully addressed by these units. The TNP units have demonstrated that CFB's can reliable produce high capacity factors at low emission rates using a fuel that has traditionally hampered the operation of pulverized coal (PC) boilers and without the attendant problems associated with sulfur scrubbers required by PC boilers

  4. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  5. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G; Hulsizer, P [Welding Services Inc., Norcross, GA (United States); Brooks, R [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1999-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  6. CECIL lances Bruce's boilers

    International Nuclear Information System (INIS)

    Malaugh, J.; Monaghan, D.

    1994-01-01

    Over the past few years Ontario Hydro has become increasingly concerned about accumulations of sludge in its nuclear plant boilers, so a comprehensive sludge management programme has been instituted to combat build-up. This included developing the tele-operated robot CECIL (Consolidated Edison Combined Inspection and Lancing) equipment, originally designed for work in PWRs, for CANDU boilers. This required a significantly reconfigured robotic system as well as modifications to the boilers themselves. Work on the Bruce A reactor is described. (4 figures). (author)

  7. Numerical study of furnace process of a 600 MW pulverized coal boiler under low load with SNCR application

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q.X.; Shi, Y.; Liu, H.; Yang, C.H.; Wu, S.H. [Harbin Institute of Technology, Harbin (China)

    2013-07-01

    Numerical simulation of flow, heat transfer, and combustion process in a 600MW pulverized coal boiler under low load is performed using Computational Fluid Dynamics (CFD) code Fluent. The distributions of temperature and species were obtained and their influences on Selective non-catalytic reduction (SNCR) were analyzed. The results indicate that the furnace temperature changed significantly as the operation load declines. The furnace space with proper temperature for SNCR reaction becomes lower with decreasing of operation load. As the load falls off, the available O{sub 2}concentration for SNCR reactions rises gently and the initial NOx concentration for SNCR reactions debases slightly. These variations can have some influence on the SNCR process. For the upper furnace where the temperature is suitable for SNCR reactions, the CO concentration is close to 0 under different load. Consequently, the SNCR process will not be affected by CO based on the calculation in this work.

  8. The application of RANS CFD for design of SNCR technology for a pulverized coal-fired boiler

    Directory of Open Access Journals (Sweden)

    Ruszak Monika

    2017-06-01

    Full Text Available The article describes the technology of NOx emission abatement by SNCR method. The scope of research included CDF simulations as well as design and construction of the pilot plant and tests of NOx reduction by urea in the plant located in industrial pulverized-coal fired boiler. The key step of research was to determine the appropriate temperature window for the SNCR process. The proposed solution of the location of injection lances in the combustion chamber enabled to achieve over a 30% reduction of NOx. It is possible to achieve higher effectiveness of the proposed SNCR technology and meet the required emission standards via providing prior reduction of NOx to the level of 350 mg/um3 using the primary methods.

  9. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  10. Charting the boiler market

    International Nuclear Information System (INIS)

    2003-01-01

    The ''boiler market'' of electricity, sometimes called unsecured transmission, is electric power consumption that in public statistics is restricted by the obligation of the customers to cut their consumption at short notice and therefore are granted some discount on the network lease. The present document is part of a project that aims to provide a better understanding of the flexibility in the Norwegian power market, limited by the power-intensive industry and the boiler market. It discusses the boiler market. It begins with a discusses of the available statistics, where different sources show very dissimilar consumption figures. Then it examines how the consumption in the boiler market developed during the winter 2002/2003. Finally, there is a description of the regulations of unsecured transmission and how the various network owners adapt to the regulations.

  11. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...

  12. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  13. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  14. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  15. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-01

    The main constituents rendering the engine use of gas produced from biomass are the tar content of the gases (condensing hydrocarbons), which cause problems for pipings, nozzles, and control of combustion. Purification methods, based on catalytic cracking of tars are investigated in the research in order to eliminate these problems. The target of the project is to demonstrate the developed gasification/gas purification process with engine test using PDU-scale equipment. Impurities of biomasses and biomass wastes (alkalis, chlorine, heavy metals), and the ash melting properties restrict in many cases the combined utilisation of biomasses and coal in power plant boilers. The second main task of this research is to investigate the removal of the problematic gas and ash components from the product gas. The sufficient degree of purification should be achieved by as simple and as cheap purification methods as possible. The main tasks of the first year of the project were (a) determination of the dimensioning characteristics of ambient pressure PDU scale cell-catalyst reactor (tests with laboratory-scale equipment), designing and construction of the reactor, (b) to investigate the operation of a cell-catalyst in purification of pre-cracked down-draft gasification gas, (c) acquisition of dimensioning data for dolomite-cracker based on fluidized bed principle, and (d) gasification of the Dutch building demolition waste and Danish straw, and the purification tests with the gases

  16. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the marine...

  17. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  18. Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changshuai, E-mail: cswang@imr.ac.cn; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang, E-mail: lzz@imr.ac.cn

    2015-07-15

    Ni–Fe based superalloys are being considered as boiler materials in 700 °C advanced ultra-supercritical (A-USC) coal fired power plants due to their excellent oxidation and hot corrosion resistance, outstanding workability and low cost. In this paper, the microstructural stability and mechanical properties of a boron (B) modified Ni–Fe based superalloy designed for 700 °C A-USC during thermal exposure at 650–750 °C for up to 5000 h were investigated. The results show that adding boron has no apparent influence on the major precipitates, including spherical γ′ and blocky MC. However, the amount of M{sub 23}C{sub 6} decreases markedly after standard heat treatment. During long-term thermal exposure, the addition of boron has no influence on γ′ coarsening, η phase precipitation and primary MC degeneration, but decreases the growth rate of M{sub 23}C{sub 6} along grain boundary. The stress rupture life and ductility are obviously improved after the addition of B. Meanwhile, the yield strength of B-doped alloy almost keeps the same level as that without boron addition. The fracture surface characterization exhibits that the dimples increase significantly after adding boron. During long-term thermal exposure, the elongation of the alloy with B addition increases slightly, but, for the alloy without B addition, the elongation obviously increases. The improvement of the stress rupture life and ductility can be attributed to the increase of grain boundary strength and the optimization of M{sub 23}C{sub 6} carbide distribution at grain boundary.

  19. Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications

    International Nuclear Information System (INIS)

    Wang, Changshuai; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang

    2015-01-01

    Ni–Fe based superalloys are being considered as boiler materials in 700 °C advanced ultra-supercritical (A-USC) coal fired power plants due to their excellent oxidation and hot corrosion resistance, outstanding workability and low cost. In this paper, the microstructural stability and mechanical properties of a boron (B) modified Ni–Fe based superalloy designed for 700 °C A-USC during thermal exposure at 650–750 °C for up to 5000 h were investigated. The results show that adding boron has no apparent influence on the major precipitates, including spherical γ′ and blocky MC. However, the amount of M 23 C 6 decreases markedly after standard heat treatment. During long-term thermal exposure, the addition of boron has no influence on γ′ coarsening, η phase precipitation and primary MC degeneration, but decreases the growth rate of M 23 C 6 along grain boundary. The stress rupture life and ductility are obviously improved after the addition of B. Meanwhile, the yield strength of B-doped alloy almost keeps the same level as that without boron addition. The fracture surface characterization exhibits that the dimples increase significantly after adding boron. During long-term thermal exposure, the elongation of the alloy with B addition increases slightly, but, for the alloy without B addition, the elongation obviously increases. The improvement of the stress rupture life and ductility can be attributed to the increase of grain boundary strength and the optimization of M 23 C 6 carbide distribution at grain boundary

  20. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  1. Vacuum boilers developed heating surfaces technic and economic efficiency evaluation

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.

    2018-01-01

    The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.

  2. Pilot plant experience in electron-beam treatment of iron-ore sintering flue gas and its application to coal boiler flue gas cleanup

    International Nuclear Information System (INIS)

    Kawamura, K.

    1984-01-01

    The present development status of the electron-beam flue gas treatment process, which is a dry process capable of removing SOx and NOx simultaneously, is described. The most advanced demonstration of this process was accomplished with a pilot plant in Japan where the maximum gas flow rate of 10,000 Nm 3 /h of an iron-ore sintering machine flue gas was successfully treated. The byproduct produced in this process is collected as a dry powder which is a mixture of ammonia sulfate and ammonium nitrate and is saleable as a fertilizer or a fertilizer component. A preliminary economic projection showed that this process costs less than the lime scrubber which removes SOx but does not remove NOx. Tests using simulated coal combustion gases suggest that this process will be applicable to coal-fired boiler flue gas treatment as well. However, tests on actual coal-fired flue gases are still required for commercial application decisions. A process development unit program consisting of the design, construction and testing of actual coal-fired power station flue gases is underway in the U.S.A. The design and engineering of the test plant is far advanced and the construction phase will be launched in the very near future. (author)

  3. Developing trends with boiler operation and management

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.M. [Occupational Safety and Health Service, Wellington (New Zealand). Dept. of Labour, Engineering Safety Branch

    1993-12-31

    Over recent years there have been many improvements in boiler control and safety management systems. Technology has made major advances and is now regarded as being well proven in Australia, Europe and the United Kingdom and these changes have been examined by a project committee, convened for the purpose, to establish whether they are equally applicable in New Zealand. The result of the committee`s findings and experience is contained in the `Draft Code of Practice`. This paper explains the development of the `Code of Practice`, the reasoning behind some of the decisions taken and the implications of these changes to boiler owners.

  4. Optimal load allocation of multiple fuel boilers.

    Science.gov (United States)

    Dunn, Alex C; Du, Yan Yi

    2009-04-01

    This paper presents a new methodology for optimally allocating a set of multiple industrial boilers that each simultaneously consumes multiple fuel types. Unlike recent similar approaches in the utility industry that use soft computing techniques, this approach is based on a second-order gradient search method that is easy to implement without any specialized optimization software. The algorithm converges rapidly and the application yields significant savings benefits, up to 3% of the overall operating cost of industrial boiler systems in the examples given and potentially higher in other cases, depending on the plant circumstances. Given today's energy prices, this can yield significant savings benefits to manufacturers that raise steam for plant operations.

  5. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  6. Optimisation of Marine Boilers using Model-based Multivariable Control

    DEFF Research Database (Denmark)

    Solberg, Brian

    Traditionally, marine boilers have been controlled using classical single loop controllers. To optimise marine boiler performance, reduce new installation time and minimise the physical dimensions of these large steel constructions, a more comprehensive and coherent control strategy is needed....... This research deals with the application of advanced control to a specific class of marine boilers combining well-known design methods for multivariable systems. This thesis presents contributions for modelling and control of the one-pass smoke tube marine boilers as well as for hybrid systems control. Much...... of the focus has been directed towards water level control which is complicated by the nature of the disturbances acting on the system as well as by low frequency sensor noise. This focus was motivated by an estimated large potential to minimise the boiler geometry by reducing water level fluctuations...

  7. Boiling process modelling peculiarities analysis of the vacuum boiler

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  8. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  9. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  10. Establishing an energy efficiency recommendation for commercial boilers

    International Nuclear Information System (INIS)

    Ware, Michelle J.

    2000-01-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of$40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over$25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings

  11. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  12. Mod increases AGR boiler output

    International Nuclear Information System (INIS)

    Jones, W.K.C.; Rider, G.; Taylor, D.E.

    1986-01-01

    During the commissioning runs of the first reactor units at Heysham I and Hartlepool Advanced Gas-cooled Reactors (AGRs), non-uniform temperature distributions were observed across individual boiler units which were more severe than those predicted from the design analysis. This article describes the re-orificing (referruling) of the boilers to overcome this problem. The referruling has reduced boiler sensitivity and resulted in an increase of load of 7 or 8%. (U.K.)

  13. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  14. Improved nuclear boiler

    International Nuclear Information System (INIS)

    Pierart, Robert.

    1980-01-01

    The improved nuclear boiler concerned in this invention is of the kind comprising, inter alia, a nuclear reactor supported by a metallic structure and of which the vessel is at least enclosed in part by a casing acting as a protective containment integrated in this structure. It is essentially characterized in that this casing is fitted into and maintained in position in the metallic structure by removable locking devices which enable the casing to be withdrawn from the remainder of the structure. Hence, after the casing has been withdrawn or removed from the metallic structure, access to the reactor vessel is readily obtained for inspection and/or testing from without [fr

  15. Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant

    International Nuclear Information System (INIS)

    Xu, Gang; Xu, Cheng; Yang, Yongping; Fang, Yaxiong; Zhou, Luyao; Zhang, Kai

    2014-01-01

    Highlights: • The two-pass type and tower-type boilers were compared. • A novel partial-subsidence tower-type boiler design was proposed. • Thermodynamic and economic analyses were quantitatively conducted. • The application of the partial-subsidence boiler to a 700 °C stage unit was further analyzed. - Abstract: An increasing number of tower-type boilers have been applied to ultra-supercritical power plants because of the simple design of the membrane walls and the smooth increase in temperature of such boilers. Nevertheless, the significant height and long steam pipelines of this boiler type will expand the power plant investment cost and increase steam-side pressure losses, especially for higher parameters units requiring high costs of nickel-based alloy materials. Thus, a novel partial-subsidence tower-type boiler design was proposed. In this boiler type, nearly 1/2–2/3 of the boiler height was embedded underground to reduce the height of the boiler and the length of the steam pipelines significantly. Thermodynamic and economic analyses were conducted on a state-of-the-art 1000 MW ultra-supercritical power plant and a prospective 700 °C-stage double reheat power plant. Results showed that the proposed tower-type boiler design could result in a 0.1% point increase in net efficiency and a $0.56/MW h reduction in the cost of electricity in a 1000 MW power plant. This economic benefit was enhanced for power plants with higher steam parameters and larger capacity. The concept of the proposed boiler design may provide a promising method for tower-type boiler applications, especially in new-generation double reheat plants with higher parameters

  16. Linear modeling of nonlinear systems using artificial neural networks based on I/O data and its application in power plant boiler modeling

    International Nuclear Information System (INIS)

    Ghaffari, A.; Nikkhah Bahrami, M.; Mohammadzaheri, M.

    2005-01-01

    In this paper a new method for linear modeling of nonlinear systems is presented. The method is based on the design of an artificial neural network with two layers. The network is trained only according to the input-output data of the system. The weights of connections in this network, represents the coefficients of the transfer function. For systems with linear behavior the method of least square error represents the best linear model of the system. However, for nonlinear systems, such as some subsystems in power plants boilers LSE does not represent the best linear approximation of the system, necessarily. In this paper a new linear modeling method is presented and applied to some subsystems in a power plant boiler. Comparison between the transfer function obtained in this way and by least square error method,shows that the neural network method gives better linear models for these nonlinear systems

  17. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  18. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  19. A study on the boiler efficiency influenced by the boiler operation parameter in fossil power plant

    International Nuclear Information System (INIS)

    Kwon, Y. S.; Suh, J. S.

    2002-01-01

    The main reason to analyze the boiler operation parameter in fossil power plant is to increase boiler high efficiency and energy saving movement in the government. This study intends to have trend and analyze the boiler efficiency influenced by the boiler parameter in sub-critical and super-critical type boiler

  20. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known, shall...

  1. 30 CFR 77.413 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with automatic...

  2. 30 CFR 56.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 56.13030 Section 56.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure gauges...

  3. 30 CFR 57.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 57.13030 Section 57.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure...

  4. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler...

  5. The processing of bed ashes of fluidized bed boilers to an applicable ingredient for building materials. Het bewerken van bedassen van wervelbedketels tot een geschikte grondstof voor toepassing in bouwprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, W

    1988-01-01

    A study- and test program has been carried out to determine in what way bed ashes of fluidized bed boilers can be processed to applicate the products in building products. The program consisted of selecting applicable ashes; physical-chemical research; slack lime, present in the ashes; grinding and wind-sifting of the ashes; evaluation of the quality of the acquired samples for application in calcium-silicate brick and in mortar; the making of flow-sheets of the processing in the potential demonstration projects. The used sample was a bed ash with active CaO content of 21%. Conclusions were stated and recommendations were made. 6 figs., 6 refs., 9 tabs., 2 app.

  6. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  7. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  8. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  9. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    Science.gov (United States)

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  10. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  11. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  12. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  13. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  14. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  15. Emissions from waste combustion. An application of statistical experimental design in a laboratory-scale boiler and an investigation from large-scale incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojing, Zhang

    1997-05-01

    The aim of this thesis is a study of the emissions from the combustion of household refuse. The experiments were both on a laboratory-scale boiler and on full-scale incineration plants. In the laboratory, an artificial household refuse with known composition was fed into a pilot boiler with a stationary grate. Combustion was under non-optimum conditions. Direct sampling with a Tenax adsorbent was used to measure a range of VOCs. Measurements were also made of incompletely burnt hydrocarbons, carbon monoxide, carbon dioxide, oxygen and flue gas temperature. Combustion and emission parameters were recorded continuously by a multi-point data logger. VOCs were analysed by gas chromatography and mass spectrometry (GC/MS). The full-scale tests were on seven Swedish incineration plants. The data were used to evaluate the emissions from large-scale incineration plants with various type of fuels and incinerators, and were also compared with the laboratory results. The response surface model developed from the laboratory experiments was also validated. This thesis also includes studies on the gasification of household refuse pellets, estimations of particulate and soot emissions, and a thermodynamic analysis of PAHs from combustion flue gas. For pellet gasification, experiments were performed on single, well characterised refuse pellets under carefully controlled conditions. The aim was to see if the effects of pellets were different from those of untreated household refuse. The results from both laboratory and full-scale tests showed that the main contributions to emissions from household refuse are plastics and moisture. 142 refs, 82 figs, 51 tabs

  16. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  17. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1999-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  18. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  19. Optimizing the Integrated Design of Boilers - Simulation

    DEFF Research Database (Denmark)

    Sørensen, K.; Karstensen, C.; Condra, T.

    2004-01-01

    Boilers can be considered as consisting of three main components: (i) the pressure part, (ii) the burner and (iii) the control system. To be able to develop the boilers of the future (i.e. the boilers with the lowest emissions, the highest efciency, the best dynamic performance etc.) it is import...

  20. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

    OpenAIRE

    Chayalakshmi C.L

    2018-01-01

    MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

  1. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... stream is not introduced as or with the primary fuel, a temperature monitoring device in the fire box...-throughput transfer racks, as applicable, shall meet the requirements of this section. (2) The vent stream... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is...

  2. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    International Nuclear Information System (INIS)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-01-01

    gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas

  3. Environment protection by coupling of a municipal waste incinerator to an existing coal fire steam boiler

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, I.; Stanescu, P.D.O.; Gruescu, C.; Savu, A.; Ungureanu, C. [University of Politehnic Timisoara, Timisoara (Romania)

    2006-12-15

    The paper offers an analysis of the potential coupling of a municipal waste incinerator in Romania, to an existing coal fired steam boiler. Considering the retention of heavy metals as well as HCl from the waste flue gases before entering the boiler, the simulation analysis of the boiler, under the situation that the gases from the scrubber are introduced, are presented As general conclusion one notes that it is possible to apply the concept even if the analysed case is of less importance, but more potential application are viewed for larger industrial application, for new concepts of modern power plants, to meet EU environmental regulations, especially for CO{sub 2} reduction.

  4. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    Science.gov (United States)

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Long term properties and microstructural evolution of 18Cr-10Ni-3Cu-Ti-Nb austenitic stainless steel for boiler tube application

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Y.; Fukui, T.; Ono, T. [TenarisNKK Tubes, Kawasaki, Kanagawa (Japan); Caminada, S. [TenarisDalmine, Dalmine, BG (Italy)

    2010-07-01

    The allowable tensile stress of 0.1C-18Cr-10Ni-3Cu-Ti-Nb steel (TEMPALOY AA-1; ASME C.C. 2512) is more than 30% higher compared with that of ASME SA-213 Grade TP347H in the temperature range 600-700 C. This high creep rupture strength is obtained by the precipitation of MC and M{sub 23}C{sub 6} carbides, and Cu-rich phase. Long term creep rupture tests over 10{sup 5}h enabled to verify the superior creep rupture strength of this steel. The investigation of microstructural evolution on the creep ruptured and aged specimens has shown the high structural stability of this material. Hardness and impact properties after high temperature aging reveal similar performance as conventional 18-8 stainless steels. Excellent steam oxidation resistance can be achieved by a shot-blasting method. The scale thickness of shot-blasted tube after 1000h at 750 C is below a few micron meters. These results have revealed that the mechanical properties and environmental resistance of this steel enable the use of TEMPALOY AA-1 in the latest generation of advanced USC boiler. (orig.)

  6. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  7. Biomass boiler still best choice

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    Full text: The City of Mount Gambier upgraded its boiler in September after analysis showed that biomass was still the optimal energy option. The Mount Gambier Aquatic Centre was built by the local city council in the 1980s as an outdoor pool facility for the public. The complex has three pools — an Olympic-sized, toddler and a learner pool — for a total volume of 1.38ML (including balance tanks). The large pool is heated to 27-28°C, the smaller one 30-32°C. From the very beginning, the pool water was heated by a biomass boiler, and via two heat exchangers whose combined capacity is 520 kW. The original biomass boiler ran on fresh sawdust from a local timber mill. After thirty years of dedicated service the original boiler had become unreliable and difficult to operate. Replacement options were investigated and included a straight gas boiler, a combined solar hot water and gas option, and biomass boilers. The boiler only produces heat, not electricity. All options were subjected to a triple bottom line assessment, which included potential capital costs, operating costs, community and environmental benefits and costs. The project was also assessed using a tool developed by Mount Gambier City Council that considers the holistic benefits — the CHAT Tool, which stands for Comprehensive Holistic Assessment Tool. “Basically it is a survey that covers environmental, social, economic and governance factors,” the council's environmental sustainability officer, Aaron Izzard told WME. In relation to environmental considerations, the kinds of questions explored by the CHAT Tool included: Sustainable use of resources — objective is to reduce council's dependence on non-renewable resources; Greenhouse emissions — objective is to reduce council's contribution of GHG into the atmosphere; Air quality — objective is to improve local air quality. The conclusion of these analyses was that while a biomass boiler would have a higher capital cost than a straight gas

  8. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  9. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000 Btu/hr...

  10. Fluidized bed boiler feed system

    Science.gov (United States)

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  11. German boiler and pressure vessel codes and standards: materials, manufacture, testing, equipment, erection and operation

    International Nuclear Information System (INIS)

    Steffen, H.P.

    1987-01-01

    The methods by which the safety objectives on the operation of steam boilers and pressure vessels in Germany can be reached are set out in Technical Rules which are compiled and established in technical committees. Typical applications are described in the Technical Rules. A chart shows how the laws, provisions and Technical Rules for the sections 'steam boiler plant' and 'pressure vessels' are interlinked. This chapter concentrates on legal aspects, materials, manufacture, testing, erection and operation of boilers and pressure vessels in Germany. (U.K.)

  12. Pickering G.S. boiler repair: an example of planned maintenance

    International Nuclear Information System (INIS)

    Dalrymple, D.G.

    1976-04-01

    The first application of boiler repair tools and procedures is estimated to have yielded a four-fold return on the development investment. The need to develop such technology is a result of the environment in which boiler repairs must be made. As nuclear technology evolves and plants and components get bigger, equipment will increasingly have to be repaired in situ with minimum plant downtime and minimum exposure of repair personnel to radiation. This lecture traces development of the Pickering A boiler repair capability which is seen as an example of how utility and contractor should interact to anticipate and meet maintenance requirements. (author)

  13. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  14. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  15. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  16. Numerical investigation towards a HiTAC condition in a 9MW heavy fuel-oil boiler

    NARCIS (Netherlands)

    Zhu, Shanglong; Venneker, Bart; Roekaerts, Dirk; Pozarlik, Artur; van der Meer, Theo

    2013-01-01

    In this study, several conditions in a 9 MW heavy fuel-oil boiler were numerically studied in order to get a better understanding of the application of HiTAC in such a boiler. Simulations were done with an Euler- Lagrange approach. The Eddy Dissipation model was used for combustion. Simulation

  17. 46 CFR 52.01-130 - Installation.

    Science.gov (United States)

    2010-10-01

    ... that for a cylindrical part of a boiler or a knuckle in the casing of a water-tube boiler, these... as necessary to prevent oil draining into the bilges. (c) Boiler uptakes. (1) Where dampers are...

  18. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  19. Boiler plants completed in record time

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Bubbling fluidised bed (BFB) combustion has steadily increased its share of the boiler market in recent years, particularly in the Nordic region, where it is particularly well-suited to handling the high moisture content biofuels produced and used by the forest products industry. Foster Wheeler is the world's leading supplier of fluidised bed combustion technology. Over 200 of the more than 300 fluidised bed boilers supplied by the company are circulating fluidised bed (CFB) designs, a market in which Foster Wheeler has more than a 40% share. Foster Wheeler Energia Oy supplied the Myllykoski project at Anjalankoski with a fluidised bed boiler, auxiliary steam boilers, and flue gas scrubber systems

  20. The Technology Introduction of Chain Boiler Energy Conservation Transformation

    Science.gov (United States)

    Li, Henan; Liu, Xiwen; Yuan, Hong; Lin, Jiadai; Zhang, Yu

    2017-12-01

    Introduced the present status of chain boiler efficiency is low, the system analysis of the chain boiler optimization and upgrading of technology, for the whole progress of chain boiler to provide some ideas and reference.

  1. Elevated temperature failures in boiler tubes - case studies

    International Nuclear Information System (INIS)

    Gowrisankar, I.; Bandyopadhyay, G.

    1989-01-01

    Metallurgical investigation of boiler tube failures enables identification of failure mechanisms and the underlying cause related to boiler conditions. Some case studies in short term overheating, prolonged overheating and low cycle fatigue failures in boiler tubes are discussed. (author)

  2. Methodology for the physical and chemical exergetic analysis of steam boilers

    International Nuclear Information System (INIS)

    Ohijeagbon, Idehai O.; Waheed, M. Adekojo; Jekayinfa, Simeon O.

    2013-01-01

    This paper presents a framework of thermodynamic, energy and exergy, analyses of industrial steam boilers. Mass, energy, and exergy analysis were used to develop a methodology for evaluating thermodynamic properties, energy and exergy input and output resources in industrial steam boilers. Determined methods make available an analytic procedure for the physical and chemical exergetic analysis of steam boilers for appropriate applications. The energy and exergy efficiencies obtained for the entire boiler was 69.56% and 38.57% at standard reference state temperature of 25 °C for an evaporation ratio of 12. Chemical exergy of the material streams was considered to offer a more comprehensive detail on energy and exergy resource allocation and losses of the processes in a steam boiler. - Highlights: ► We evaluated thermodynamic properties and performance variables associated with material streams. ► We analysed resources allocation, and magnitude of exergetic losses in steam boilers. ► Chemical exergy of material streams contributed to improved exergy values. ► High operational parameter will lead to higher boiler exergy. ► Exergy destroyed was higher in the combustion as against the heat exchanging unit

  3. EFFICIENCY IMPROVEMENT IN INDUSTRIAL BOILER BY FLUE GAS DUCT INSULATION

    OpenAIRE

    Sanjay H. Zala

    2017-01-01

    Now a days in industry major losses are find out so here we calculate these losses and find out efficiency of boiler. Boiler efficiency and energy losses from boiler are important parameter for any industry using boiler. In this work a detailed analysis was carried out for boiler at Anish Chemicals Bhavnagar. It is a combined water and fire tube boiler using biomass coal as fuel. Boiler efficiency calculated by direct method is in range of (78.5% to 81.6%). Major losses from boiler are heat ...

  4. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    , and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  5. Wood fuelled boiler operating costs

    International Nuclear Information System (INIS)

    Sandars, D.L.

    1995-01-01

    This report is a management study into the operating costs of wood-fired boilers. Data obtained from existing wood-fired plant has been analysed and interpreted using the principles of machinery management and the science that underlies the key differences between this fuel and any other. A set of budgeting principles has been developed for the key areas of labour requirement, insurance, maintenance and repair and electricity consumption. Other lesser cost centres such as the provision of shelter and the effects of neglect and accidents have also been considered, and a model constructed. (author)

  6. Economic evaluation of a coal fired boiler

    International Nuclear Information System (INIS)

    Briem, J.J.

    1983-01-01

    This paper provides basic information on boiler economics which will assist steam users in analyzing the feasibility of using coal to generate steam - in either new or existing facilities. The information presented covers boilers ranging in size from 10,000 to 100,000 pounds per hour steaming capacity

  7. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  8. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.162 Ship's boilers. (a) Before...

  9. Research on Marine Boiler's Pressurized Combustion and Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN

    2005-01-01

    The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.

  10. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance......With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...

  11. Chemical cleaning of AGR boilers

    International Nuclear Information System (INIS)

    Moore, S.V.; Moore, W.; Rantell, A.

    1978-01-01

    AGR boilers are likely to require post service chemical cleaning to remove accumulated oxides at intervals of 15 - 35 kh. The need to clean will be based on an assessment of such factors as the development of flow imbalances through parallel tubes induced by the formation of rough oxide surfaces, an increasing risk of localised corrosion as the growth of porous oxides proceeds and the risk of tube blockage caused by the exfoliation of steam-grown oxides. The study has shown what heterogeneous multilayer oxides possessing a range of physical and chemical properties form on the alloy steels. They include porous and compact magnetites, chromium spinels and sesquioxide. Ammoniated citric acid has been shown to remove deposited and water-grown magnetites from the carbon and alloy steels but will not necessarily remove the substituted spinels grown on the alloy steels or the potentially spalling steam-grown magnetite on the A1SI 316 superheater. Citric acid supplemented with the reducing agent glyoxal completely removes all oxides from the boiler except the protective inner spinel formed on the 316. Removal of the spinels and compact magnetites occurs more by undercutting and physical detachment than by the dissolution. (author)

  12. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  13. Leak detection evaluation of boiler tube for power plant using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Nam, Ki Woo

    2001-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  14. Advanced, Low/Zero Emission Boiler Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

    2007-06-30

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

  15. Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Clausen, Sønnik

    2012-01-01

    and availability. To better understand grate-firing of biomass and to establish a reliable but relatively simple Computational Fluid Dynamics (CFD) modeling methodology for industrial applications, biomass combustion in a number of different grate boilers has been measured and modeled. As one of the case studies......, modeling effort on an 88 MW grate-fired boiler burning wheat straw is presented in this paper. Different modeling issues and their expected impacts on CFD analysis of the kind of grate boilers are discussed. The modeling results are compared with in-flame measurements in the 88 MW boiler, which shows...... measures will be tested in a modern 500 kW grate boiler rig...

  16. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires to...

  17. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a) Construction...

  18. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  19. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  20. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  1. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, S.; Clary, W.; Tice, D.R.

    2002-01-01

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  2. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    Science.gov (United States)

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  3. Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion

    Directory of Open Access Journals (Sweden)

    Chunlin Wang

    2017-01-01

    Full Text Available Recently, Gaussian Process (GP has attracted generous attention from industry. This article focuses on the application of coal fired boiler combustion and uses GP to design a strategy for reducing Unburned Carbon Content in Fly Ash (UCC-FA which is the most important indicator of boiler combustion efficiency. With getting rid of the complicated physical mechanisms, building a data-driven model as GP is an effective way for the proposed issue. Firstly, GP is used to model the relationship between the UCC-FA and boiler combustion operation parameters. The hyperparameters of GP model are optimized via Genetic Algorithm (GA. Then, served as the objective of another GA framework, the predicted UCC-FA from GP model is utilized in searching the optimal operation plan for the boiler combustion. Based on 670 sets of real data from a high capacity tangentially fired boiler, two GP models with 21 and 13 inputs, respectively, are developed. In the experimental results, the model with 21 inputs provides better prediction performance than that of the other. Choosing the results from 21-input model, the UCC-FA decreases from 2.7% to 1.7% via optimizing some of the operational parameters, which is a reasonable achievement for the boiler combustion.

  4. Procesoptimerende multivariable regulatorer til kraftværkskedler. Process Optimizing Multivariable Controllers for Powerplant Boilers

    DEFF Research Database (Denmark)

    Hansen, T.

    The purpose of this Ph.D. thesis is twofold: The first purpose is to devise a new method for application of multivariable controllers in boiler control systems in which they act as optional process optimizing extensions to conventional control systems and in such a way that the safety measures...... mentioned, the concept is applicable to new as well as existing plants. The seccond purpose is to suggest specific methods for experimental modelling and multivariable controller design which are possible to use under the conceptual framework, implement them and test them in a boiler application....

  5. Treatment of Berkeley boilers in Studsvik. Project description and experiences - Berkeley Boilers Project

    International Nuclear Information System (INIS)

    Saul, Dave; Davidson, Gavin; Wirendal, Bo

    2014-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. In November 2012 Studsvik was awarded a further contract for the remaining ten Berkeley Boilers with the requirement to remove all boilers from the Berkeley site by 31 March 2013. Again this was successfully achieved ahead of programme with all boilers in Sweden by 1 April 2013. A total of nine boilers have now been processed and all remaining boilers will be completed by end of September 2014. The projects have had many challenges including a very tight timescale and both have been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the boilers to date. (authors)

  6. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  7. New thinking for the boiler room.

    Science.gov (United States)

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  8. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  9. Pirotubular boilers design. Diseno de calderas pirotubulares

    Energy Technology Data Exchange (ETDEWEB)

    Latre Durso, F. (Geval S.A. (Spain))

    1994-01-01

    This article describes the conceptual design of Pirotubular boilers from the valuable thermal point of view, to the dimensional. This topic is a very tool valuable for professionals of design and for maintenance and operation equipment.

  10. Water side corrosion prevention in boilers

    International Nuclear Information System (INIS)

    Zeid, A.

    1993-01-01

    Corrosion may be defined as a naturally occurring physical and chemical deterioration of a material due to reaction with the environment or surrounding atmosphere. In boilers the material is subjected on both sides to two different media which may cause severe corrosion. At the water side the content of O 2 considered one of the principal factors which determine the extent of corrosion in the boiler tubes. This paper deals with certain conditions that result in the increase of O 2 in the boiler water and hence increase the corrosion rate, to minimize the effect of these conditions a chemical treatment was carried out the results obtained indicated the success of the treatment procedure in corrosion prevention and boiler material protection. The treatment is traditional. But the study indicates how a simple mean could be applied to solve a serious problem. 4 tab

  11. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  12. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  13. Ecological boiler modernization, feasible energy solutions

    International Nuclear Information System (INIS)

    Krcek, F.; Matev, M.; Sykora, J.; Chladek, J.

    2005-01-01

    Alstom Power, s.r.o., ALSTOM GROUP in Brno, Czech Republic is a successor of PBS (First Brno Machine Works). PBS was a well-known company in Bulgaria - mainly as Heating Power Plant (HPP) and Industrial Plant supplier of boilers, industrial steam turbines, milling systems, heat exchangers Btc. PBS has been privatised in two stages starting at1993 year. Alstom recently deals with boiler and heat exchanger products. Industrial turbine but has been sold to Siemens in 2004

  14. Gas fired boilers and atmospheric pollution

    International Nuclear Information System (INIS)

    Chiaranello, J.M.

    1991-01-01

    A general analysis concerning atmospheric pollution is presented: chemical composition and vertical distribution of atmosphere and pollutants, chemical reactions, ozone destruction and production cycles, COx, NOx and SOx pollutions. The gas fired boiler number and repartition in France are presented and the associated pollution is analyzed (CO2, CO, NOx) and quantified. Various pollution control technics concerning gas fired boiler pollutants are described and a pollution criterion for clean gas fired generators is proposed

  15. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  16. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  17. Pelly Crossing wood chip boiler

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-11

    The Pelly wood chip project has demonstrated that wood chips are a successful fuel for space and domestic water heating in a northern climate. Pelly Crossing was chosen as a demonstration site for the following reasons: its extreme temperatures, an abundant local supply of resource material, the high cost of fuel oil heating and a lack of local employment. The major obstacle to the smooth operation of the boiler system was the poor quality of the chip supply. The production of poor quality chips has been caused by inadequate operation and maintenance of the chipper. Dull knives and faulty anvil adjustments produced chips and splinters far in excess of the one centimetre size specified for the system's design. Unanticipated complications have caused costs of the system to be higher than expected by approximately $15,000. The actual cost of the project was approximately $165,000. The first year of the system's operation was expected to accrue $11,600 in heating cost savings. This estimate was impossible to confirm given the system's irregular operation and incremental costs. Consistent operation of the system for a period of at least one year plus the installation of monitoring devices will allow the cost effectiveness to be calculated. The wood chip system's impact on the environment was estimated to be minimal. Wood chip burning was considered cleaner and safer than cordwood burning. 9 refs., 6 figs., 6 tabs.

  18. Use of Neural Networks for modeling and predicting boiler's operating performance

    International Nuclear Information System (INIS)

    Kljajić, Miroslav; Gvozdenac, Dušan; Vukmirović, Srdjan

    2012-01-01

    The need for high boiler operating performance requires the application of improved techniques for the rational use of energy. The analysis presented is guided by an effort to find possibilities for ways energy resources can be used wisely to secure a more efficient final energy supply. However, the biggest challenges are related to the variety and stochastic nature of influencing factors. The paper presents a method for modeling, assessing, and predicting the efficiency of boilers based on measured operating performance. The method utilizes a neural network approach to analyze and predict boiler efficiency and also to discover possibilities for enhancing efficiency. The analysis is based on energy surveys of 65 randomly selected boilers located at over 50 sites in the northern province of Serbia. These surveys included a representative range of industrial, public and commercial users of steam and hot water. The sample covered approximately 25% of all boilers in the province and yielded reliable and relevant results. By creating a database combined with soft computing assistance a wide range of possibilities are created for identifying and assessing factors of influence and making a critical evaluation of practices used on the supply side as a source of identified inefficiency. -- Highlights: ► We develop the model for assessing and predicting efficiency of boilers. ► The method implies the use of Artificial Neural Network approach for analysis. ► The results obtained correspond well to collected and measured data. ► Findings confirm and present good abilities of preventive or proactive approach. ► Analysis reveals and specifies opportunities for increasing efficiency of boilers.

  19. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  20. The load structure of electro boilers

    International Nuclear Information System (INIS)

    Feilberg, N.; Livik, K.

    1995-01-01

    Load measurements have been performed on 24 electro boilers with a time resolution of one hour throughout a period of one year. The boilers are used for space heating and heating of tap water in office buildings, shopping centres and apartment buildings. All boilers have tariffs with disconnection agreements. This report presents load analyses of the measurements from each boiler, and typical load profiles are calculated and presented. It also analyses how boilers are used in relation to the outdoor temperature and the power price on the spot market. All the measurements are performed in Bergen, Norway, in the period August 1993 - August 1994. Typical load profiles are shown, both annual and daily, as well as specific load parameters in addition to key figures used in calculating the total power load on the distribution network. The climate impact on energy and power load is evaluated. The report also shows examples of how the results may be applied in various special fields. 8 figs., 9 tabs

  1. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  2. Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace

    International Nuclear Information System (INIS)

    Wang, Long; Yang, Dong; Shen, Zhi; Mao, Kaiyuan; Long, Jun

    2016-01-01

    wall design with smooth tubes in the 600 MW supercritical CFB boiler is applicable.

  3. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  4. Techniques for measurement of heat flux in furnace waterwalls of boilers and prediction of heat flux – A review

    International Nuclear Information System (INIS)

    Sankar, G.; Chandrasekhara Rao, A.; Seshadri, P.S.; Balasubramanian, K.R.

    2016-01-01

    Highlights: • Heat flux measurement techniques applicable to boiler water wall are elaborated. • Applications involving heat flux measurement in boiler water wall are discussed. • Appropriate technique for usage in high ash Indian coal fired boilers is required. • Usage of chordal thermocouple is suggested for large scale heat flux measurements. - Abstract: Computation of metal temperatures in a furnace waterwall of a boiler is necessary for the proper selection of tube material and thickness. An adequate knowledge of the heat flux distribution in the furnace walls is a prerequisite for the computation of metal temperatures. Hence, the measurement of heat flux in a boiler waterwall is necessary to arrive at an optimum furnace design, especially for high ash Indian coal fired boilers. Also, a thoroughly validated furnace model will result in a considerable reduction of the quantum of experimentation to be carried out. In view of the above mentioned scenario, this paper reviews the research work carried out by various researchers by experimentation and numerical simulation in the below mentioned areas: (i) furnace modeling and heat flux prediction, (ii) heat flux measurement techniques and (iii) applications of heat flux measurements.

  5. Effect of Prolong Aging to the Microstructure and Mechanical Properties of Boiler Tube

    International Nuclear Information System (INIS)

    Norasiah Abdul Kasim; Mohd Harun; Muhamad Rawi Mohd Zin; Zaifol Samsu; Mahdi Ezwan Mahmoud; Zaiton Selamat; Shariff Satar

    2013-01-01

    Boiler or steam generator is a device used to create steam by applying heat energy to water. For industrial applications, most boilers are used under extreme conditions, which require them to operating continuously or in a batch. Therefore constant heating and cooling will result into certain material failure, or when the operation itself exhibit a few malfunctions, it will affected the boiler condition and contribute to its failure. Hence the main emphasis on this study is investigating the effect of aging, with the influence of temperature by heating it into a period of time. Focus on understanding the changes occurred during the operating hour of boiler by simulating a short term aging experiment. The boilers structure material, Carbon Steel BS3509 used in this experiment were heated on a furnace with 500 and 550 centigrade for 19, 49, 72 and 191 hours. After the heating process, the metal specimens will be observed its micro structural changes and the oxide layer. The hardness will also be tested and taken accounted for before and after heating. The results and insight from the observation have been analyzed and discussed. (author)

  6. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a drum, superheater, or reheater of a boiler shall be tested at the interval specified by table 61.05-10. [CGD 95-028...

  7. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  8. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  9. Firewood boiler operators and heat exposure

    Directory of Open Access Journals (Sweden)

    Vilson Bernardo Stollmeier

    2017-12-01

    Full Text Available This article presents an analysis of heat exposure work in boiler industry wood from a company in the industrial sector, focusing on the analysis of the environmental burden of the activity. Therefore, the methodological procedures consisted of document analysis, interviews, filming, evaluation problems of the effects of the hot environment and its prevention. The results show that the fuel to the boiler operators are exposed to heat and need guidance on their daily activities with prevention of diseases affected by excessive heat. Are also suggested training in technical and health to improve working conditions and the operator's health.

  10. Boiler inspection manipulator for Torness Power Station

    International Nuclear Information System (INIS)

    Carrey, R.T.A.; Yule, I.Y.; Sibson, S.; Playle, M.J.

    1996-01-01

    The Advanced Gas-cooled Reactors at Torness and Heysham 2 are provided with dedicated access for remote inspection equipment. These in-service inspection (ISI) accesses comprise 12 penetrations above the core for inspection of the above core area and boilers, 12 below core penetrations for inspection of the lower boiler area and access through any of the 8 gas circulator penetrations for inspection of the sub-diagrid area. This paper describes a manipulator which will access the reactor from above the core via any of the 8 peripheral penetrations. (UK)

  11. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  12. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted with...

  13. New materials for boilers in USC power plants

    International Nuclear Information System (INIS)

    Hong, Sung Ho; Hong, Seok Joo

    2003-01-01

    The efficiency of boiler in fossil power plants is a strong function of steam temperature and pressure. Thus, the main technology of increasing boiler efficiency is the development of stronger high temperature materials, capable of operating under high stresses at ever increasing temperature. This paper will presents the new material relating to boiler of USC power plant

  14. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter F...

  15. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter. [CGD 85-080, 61...

  16. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall inspect...

  17. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  18. Lower price for solar boilers must improve market penetration

    International Nuclear Information System (INIS)

    Koevoet, J.B.J.

    1999-01-01

    The Dutch government aims at 1.7 PJ thermal energy for the year 2007 to be supplied by solar water heaters. For that target the number of installed solar boilers must increase seven times the number of installed solar boilers in 1998. This can be stimulated by a considerable reduction of the market price for such boilers

  19. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... gases. Manufacturer of a commercial packaged boiler means any person who manufactures, produces... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers. 431.82... COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Packaged Boilers § 431.82 Definitions concerning commercial...

  20. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the following...

  1. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... to any hydrostatic pressure. Hydrostatic testing required by these rules shall be conducted at 25...

  2. Fire-tube boiler optimization criteria and efficiency indicators rational values defining

    Science.gov (United States)

    Batrakov, P. A.; Mikhailov, A. G.; Ignatov, V. Yu

    2018-01-01

    Technical and economic calculations problems solving with the aim of identifying the opportunity to recommend the project for industrial implementation are represented in the paper. One of the main determining factors impacting boiler energy efficiency is the exhaust gases temperature, as well as the furnace volume thermal stress. Fire-tube boilers with different types of furnaces are considered in the study. The fullest analysis of the boiler performance thermal and technical indicators for the following engineering problem: Q=idem, M=idem and evaluation according to η, B is presented. The furnace with the finned ellipse profile application results in the fuel consumption decrease due to a more efficient heat exchange surface of the furnace compared to other examined ones.

  3. Fuel-oil boilers are improving; Les chaudieres a fioul progressent

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-08-01

    The share of domestic fuel oil consumption in France is progressively growing up in space heating applications. In order to perennialize this growth, the 'Chauffage Fioul' association has developed an advertising strategy for the promotion of fuel-oil boilers in accommodations. Short paper. (J.S.)

  4. Handling outliers and concept drift in online mass flow prediction in CFB boilers

    NARCIS (Netherlands)

    Bakker, J.; Pechenizkiy, M.; Zliobaite, I.; Ivannikov, A.; Kärkkäinen, T.; Omitaomu, O.A.; Ganguly, A.R.; Gama, J.; Vatsavai, R.R.; Chawla, N.V.; Gaber, M.M.

    2009-01-01

    In this paper we consider an application of data mining technology to the analysis of time series data from a pilot circulating fluidized bed (CFB) reactor. We focus on the problem of the online mass prediction in CFB boilers. We present a framework based on switching regression models depending on

  5. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2009-01-01

    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  6. MSWI boiler fly ashes: magnetic separation for material recovery.

    Science.gov (United States)

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analys...

  8. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  9. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; McVey, E.G.

    1977-09-01

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  10. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1993-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  11. The investigation of the locomotive boiler material

    International Nuclear Information System (INIS)

    Tucholski, Z.; Wasiak, J.; Bilous, W.; Hajewska, E.

    2006-01-01

    In the paper, the history of narrow-gauge railway system is described. The other information about the steam locomotive construction, as well as the technical regulations of its construction and exploitation are also done. The results of the studies of the locomotive boiler material are presented. (authors)

  12. Coal reburning technology for cyclone boilers

    International Nuclear Information System (INIS)

    Yagiela, A.S.; Maringo, G.J.; Newell, R.J.; Farzan, H.

    1990-01-01

    Babcock and Wilcox has obtained encouraging results from engineering feasibility and pilot-scale proof-of-concept studies of coal reburning for cyclone boiler NO x control. Accordingly, B and W completed negotiations for a clean coal cooperative agreement with the Department of Energy to demonstrate coal reburning technology for cyclone boilers. The host site for the demonstration is the Wisconsin Power and Light (WP and L) Company's 100MWe Nelson Dewey Station. Reburning involves the injection of a supplemental fuel (natural gas, oil, or coal) into the main furnace to produce locally reducing stoichiometric conditions which convert the NO x produced therein to molecular nitrogen, thereby reducing overall NO x emissions. There are currently no commercially-demonstrated combustion modification techniques for cyclone boilers which reduce NO x emissions. The emerging reburning technology offers cyclone boiler operators a promising alternative to expensive flue gas cleanup techniques for NO x emission reduction. This paper reviews baseline testing results at the Nelson Dewey Station and pilot-scale results simulating Nelson Dewey operation using pulverized coal (PC) as the reburning fuel. Outcomes of the model studies as well as the full-scale demonstration preliminary design are discussed

  13. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1994-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  14. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    While fluid bed and grate fired boilers initially was the choice of boilers used for power production from both wood and herbaceous biomass, in recent years suspension fired boilers have been increasingly used for biomass based power production. In Denmark several large pulverized fuel boilers have...... been converted from coal to biomass combustion in the last 15 years. This have included co-firing of coal and straw, up to 100% firing of wood or straw andthe use of coal ash as an additive to remedy problems with wood firing. In parallel to the commercialization of the pulverized biomass firing...... technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation...

  15. Boiler materials for ultra supercritical coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries of Ohio, Independence, OH (United States); Shingledecker, John [Electric Power Research Inst., Palo Alto, CA (United States); Pschirer, James [Alstom Power Inc., Windsor, CT (Untied States); Ganta, Reddy [Alstom Power Inc., Windsor, CT (Untied States); Weitzel, Paul [The Babcock & Wilcox Company, Baberton, OH (United States); Sarver, Jeff [The Babcock & Wilcox Company, Baberton, OH (United States); Vitalis, Brian [Riley Power Inc., Worchester, WA (United States); Gagliano, Michael [Foster Wheeler North America Corp., Hampton, NJ (United States); Stanko, Greg [Foster Wheeler North America Corp., Hampton, NJ (United States); Tortorelli, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-29

    materials selection and application under a range of conditions prevailing in the boiler. A major effort involving eight tasks was completed in Phase 1. In a subsequent Phase 2 extension, the earlier defined tasks were extended to finish and enhance the Phase 1 activities. This extension included efforts in improved weld/weldment performance, development of longer-term material property databases, additional field (in-plant) corrosion testing, improved understanding of long-term oxidation kinetics and exfoliation, cyclic operation, and fabrication methods for waterwalls. In addition, preliminary work was undertaken to model an oxyfuel boiler to define local environments expected to occur and to study corrosion behavior of alloys under these conditions. This final technical report provides a comprehensive summary of all the work undertaken by the consortium and the research findings from all eight (8) technical tasks including A-USC boiler design and economics (Task 1), long-term materials properties (Task 2), steam- side oxidation (Task 3), Fireside Corrosion (Task 4), Welding (Task 5), Fabricability (Task 6), Coatings (Task 7), and Design Data and Rules (Task 8).

  16. Effect of Thermal Storage on the Performance of a Wood Pellet-fired Residential Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Butcher [Brookhaven National Laboratory (BNL), Upton, NY (United States). Sustainable Energy Technologies Dept.

    2017-08-31

    Interest in the direct use of biomass for thermal applications as a renewable technology is increasing as is also focus on air pollutant emissions from these sources and methods to minimize the impact. This work has focused on wood pellet-fired residential boilers, which are the cleanest fuel in this category. In the residential application the load varies strongly over the course of a year and a high fraction of the load is typically under 15% of the maximum boiler capacity. Thermal storage can be used even with boilers which have modulation capacity typically to 30% of the boiler maximum. One common pellet boiler was tested at full load and also at the minimum load used in the U.S. certification testing (15%). In these tests the load was steady over the test period. Testing was also done with an emulated load profile for a home in Albany, N.Y. on a typical January, March, and April day. In this case the load imposed on the boiler varied hourly under computer control, based on the modeled load for the example case used. The boiler used has a nominal output of 25 kW and a common mixed hardwood/softwood commercial pellet was used. Moisture content was 3.77%. A dilution tunnel approach was used for the measurement of particulate emissions, in accordance with U.S. certification testing requirements. The test results showed that the use of storage strongly reduces cycling rates under part load conditions. The transients which occur as these boilers cycle contribute to increased particulate emissions and reduced efficiency. The time period of a full cycle at a given load condition can be increased by increasing the storage tank volume and/or increasing the control differential range. It was shown that increasing the period strongly increased the measured efficiency and reduced the particulate emission (relative to the no storage case). The impact was most significant at the low load levels. Storage tank heat loss is shown to be a significant factor in thermal efficiency

  17. Black liquor combustion validated recovery boiler modeling, five-year report

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  18. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  19. Italian Residential Buildings: Economic Assessments for Biomass Boilers Plants

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2013-01-01

    Full Text Available Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water. The most common applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the ambitious targets set by the European Directives on Renewable Sources. Thus, the present paper deals with the economic feasibility of biomass boiler plants with specific regard to an existing residential building. An Italian case study is further investigated, focusing the attention on European and national regulations on energy efficiency and considering the recent public incentives and supporting measures. The main thermoclimatic parameters—that is, heating degree days (HDDs, building thermal insulation and thermal needs—are taken into account. Moreover, the following economic indicators are calculated: cumulative cash flow, discounted cumulative cash flow, payback period (PP, net present value (NPV, Internal rate of return (IRR, discounted payback period (DPP, and profit index (PI.

  20. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  1. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  2. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eskinazi, D. [Electric Power Research Inst., Washington, DC (United States); Tavoulareas, E.S. [Energy Technologies Enterprises Corp., McLean, VA (United States)

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  3. Maximising safety in the boiler house.

    Science.gov (United States)

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation.

  4. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...... and to verify whether nonlinear control is needed. Finally a controller based on single loop theory is used to analyse if input constraints become active when rejecting transient behaviour from the disturbance steam flow. The model analysis shows large variations in system gains at steady state as function...

  5. Recovery boiler model; Soodakattilan kehitystyoe III

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Ylitalo, M.; Sundstroem, K.; Helke, R.; Heinola, M. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-10-01

    The recovery boiler model was further tested and developed. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. During 1996 the formation of CH{sub 4} during pyrolysis and release of sulfur was included to the model. Further the formation of NO from fuel nitrogen and formation of thermal- NO were included to the model using Arrhenius type reaction rate equations. The calculated results are realistic and the model is used as a tool to find out methods to increase the efficiency and availability and decrease the emissions. Analysing the results of the earlier field study of 8 boilers showed that the furnace heat load, fuming rate, find the black liquor composition have influence on the enrichment of the potassium to the fly ash. (orig.)

  6. Biomass Cofiring in Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  7. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  8. Chromate dermatitis from a boiler lining.

    Science.gov (United States)

    Rycroft, R J; Calnan, C D

    1977-08-01

    Chromate dermatitis is described in a mechanical fitter working inside boiler combustion chambers. A source of hexavalent chromate is traced to the action of the heat and alkaline fuel ash on trivalent chrome ore in parts of the refractory lining. Removal of the patient from this contact has resulted in almost complete clearing of his dermatitis, without any relapse, during a 9-month follow-up period.

  9. Husk energy for boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Deven, M.

    1985-10-01

    In view of the technical feasibility and economic viability, industries located in rice, coconut, and cotton growing areas, can easily switch over from oil/coal fired furnace/boilers to husk fired ones and thereby effect fuel economy. The banks and financial institutions will readily agree to provide finance as per directions of the governments and in some cases they also offer subsidy for development and utilization of energy saving devices.

  10. Boiler systems for nuclear powered reactors

    International Nuclear Information System (INIS)

    Cook, R.K.; George, B.V.

    1979-01-01

    A power generating plant which comprises a heat source, at least one main steam turbine and at least one main boiler heated by heat from the heat source and providing the steam to drive the turbine, comprises additionally at least one further steam turbine, smaller than the main turbine, and at least one further boiler, of lower capacity than the main boiler, and heated from the same heat source and providing steam for the further turbine. Particularly advantageous in nuclear power stations, where the heat source is a nuclear reactor, the invention enables peak loads, above the normal continuous rating of the main generators driven by the main turbines, to be met by the further turbine(s) and one or more further generators driven thereby. This enables the main turbines to be freed from the thermal stresses of rapid load changes, which stresses are more easily accommodated by the smaller and thus more tolerant further turbine(s). Thus auxiliary diesel-driven or other independent power plant may be made partly or wholly unnecessary. Further, low-load running which would be inefficient if achieved by means of the main turbine(s), can be more efficiently effected by shutting them down and using the smaller further turbine(s) instead. These latter may also be used to provide independent power for servicing the generating plant during normal operation or during emergency or other shutdown, and in this latter case may also serve as a heat sink for the shutdown reactor

  11. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  12. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  13. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  14. Behavioral study solar boilers 1994. Summary. Part 2 (households)

    International Nuclear Information System (INIS)

    Visser, J.M.

    1995-04-01

    The aim of the Dutch national solar boiler campaign of NOVEM and Holland Solar is to realize the installation of 300,000 solar boilers in the Netherlands in the year 2010. In 1995 10,000 boilers were installed. More knowledge of the decision making process and the backgrounds and motives of (potential) buyers is required. From September 1994 to March 1995 a survey has been carried out of the decision making processes in households and housing corporations. The most important results, conclusions and recommendations of the survey are summarized in this report. The parameters that can influence the decision whether to purchase a solar boiler or not are knowledge about the solar boiler, the attitude towards the solar boiler and towards the use of energy and the environment, risk perception, social aspects, information retrieval behavior, constraints, and socio-economic aspects. 44 tabs

  15. NOx PREDICTION FOR FBC BOILERS USING EMPIRICAL MODELS

    Directory of Open Access Journals (Sweden)

    Jiří Štefanica

    2014-02-01

    Full Text Available Reliable prediction of NOx emissions can provide useful information for boiler design and fuel selection. Recently used kinetic prediction models for FBC boilers are overly complex and require large computing capacity. Even so, there are many uncertainties in the case of FBC boilers. An empirical modeling approach for NOx prediction has been used exclusively for PCC boilers. No reference is available for modifying this method for FBC conditions. This paper presents possible advantages of empirical modeling based prediction of NOx emissions for FBC boilers, together with a discussion of its limitations. Empirical models are reviewed, and are applied to operation data from FBC boilers used for combusting Czech lignite coal or coal-biomass mixtures. Modifications to the model are proposed in accordance with theoretical knowledge and prediction accuracy.

  16. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units

    International Nuclear Information System (INIS)

    Gao, Mingming; Hong, Feng; Liu, Jizhen

    2017-01-01

    Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.

  17. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging

    Directory of Open Access Journals (Sweden)

    Leland Weiss

    2012-04-01

    Full Text Available Increasing world-wide energy use and growing population growth presents a critical need for enhanced energy efficiency and sustainability. One method to address this issue is via waste heat scavenging. In this approach, thermal energy that is normally expelled to the environment is transferred to a secondary device to produce useful power output. This paper investigates a novel MEMS-based boiler designed to operate as part of a small-scale energy scavenging system. For the first time, fabrication and operation of the boiler is presented. Boiler operation is based on capillary action that drives working fluid from surrounding reservoirs across a heated surface. Pressure is generated as working fluid transitions from liquid to vapor in an integrated steamdome. In a full system application, the steam can be made available to other MEMS-based devices to drive final power output. Capillary channels are formed from silicon substrates with 100 µm widths. Varying depths are studied that range from 57 to 170 µm. Operation of the boiler shows increasing flow-rates with increasing capillary channel depths. Maximum fluid mass transfer rates are 12.26 mg/s from 170 µm channels, an increase of 28% over 57 µm channel devices. Maximum pressures achieved during operation are 229 Pa.

  18. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  19. Between the boiler and buffer tank; Zwischen Kessel und Speicher

    Energy Technology Data Exchange (ETDEWEB)

    Ertmer, Katharina

    2013-08-06

    Some manufacturers offer new heating pump groups for return temperature raising for solid-fuel boilers. [German] Einige Hersteller bieten neue Heizungspumpengruppen zur Ruecklauftemperaturanhebung bei Festbrennstoffkesseln an.

  20. Simulation and testing of a new condensing boiler

    International Nuclear Information System (INIS)

    Rosa, L.; Tosato, R.

    1987-01-01

    The paper describes a new condensing boiler, characterized by the evacuation of flue-gases by natural draft. The best result is the consequent simplification of manufacturing, hook-up and operation of the boiler. Seasonal efficiency of the boiler, which operates with flue-gases conditioning to assure natural draft, rests about at same levels as for conventional condensing boilers. The authors emphasize the difficulty of simulate natural draft mechanism by mathematics because, in this case, flow of flue-gases and air at the draft diverter is strongly three-dimensional

  1. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    Won, Soon Ho; Hyun, Yang Ki; Lee, Jong O; Cho, Kyung Shik; Lee, Jae Do

    2001-01-01

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  2. Increase of energy efficiency in proportional adjusting of flow rate in the boiler circuit

    OpenAIRE

    Artamonov Pavel A.; Kurilenko Nikolai I.; Mamontov Gennady Ya.

    2017-01-01

    The article presents the results of theoretical studies in the field of the boiler circuit operating modes for the boiler rooms operating by the independent heat supply scheme. The 3D model of a boiler circuit for a boiler room with 3 MW rated output was developed, based on which there was made an estimation of the boiler pump performance indicators. There is proposed a method for reducing energy costs for the operation of the pumping equipment of the boiler circuit.

  3. THE DETERMINATION THE POLLUTION EMISSIONS OF SO2, NOX, CO, CO2 AND O2 FROM THE CHANNELS OF BURNT GAS ON BOILER OF 420 T/H - STEAM, IN THE SIGHT APPLICATION PROCEEDING TO REDUCE OF THESE

    Directory of Open Access Journals (Sweden)

    Valentin Nedeff

    2007-03-01

    Full Text Available The work present the results obtained after dynamic analyze the pollution emissions of SO2, NOx, CO, CO2 and O2 on evacuation channels of burnt gas on boiler of 420 t/h steam, having right the basic combustible the lignite, and auxiliary combustible the fuel oil and the natural gas. The values of pollution emission was analyze beside the admissible maxims values required by European legislation for Romania in the year 2005. The conclusion elaborated it adverted to: the values of oxides azoth, carry they frame in the limits provide in Environmental Authorization, under 60 mg/Nmc on 6% oxygen, the concentration values of SO2 which was bigger in report with one authorized comprised between 3500-3900 mg/Nmc confronted by 3400 mg/Nm. For integration in the foresee Government Decision 541/2003 aren't sufficient just proceeding of below reduce SO2, must take and another measures such as: get the fuel with quantity of sulphur 0.5% and with a content of ash below 35%.

  4. Project recovers free wasted energy from an OSB dryer while eliminating a hog boiler

    Energy Technology Data Exchange (ETDEWEB)

    Normandin, A.; Levesque, S.; Laflamme, Y.; Charron, R. [Mesar-Environair Inc., Quebec, PQ (Canada)

    2008-09-15

    This article described how a mill producing oriented strand board (OSB) in Quebec optimized its energy balance with the installation of a flue gas heat recovery (FGHR) system developed by Mesar-Environair Inc. Many OSB mills produce enough wood waste heat to supply their hog boilers with valuable, yet inexpensive, fuel. The objective of this project was to recover waste heat and to find an application in the milling process to re-valorize it. The plant was using 3 hog boilers to heat thermal oil for their process, but only the newest hog boiler was in compliance for particulate emissions levels. The solution involved the use of a direct contact heat exchanger to meet the mill's requirements. The process consisted of pumping the log pond water in a counter-current direction to the humid OSB dryer flue gas. The energy was transferred from the gas to the water via vapor condensation. The customized equipment recovered most of the wasted heat and transferred it to the plant's log ponds. Cool process water from the log ponds was then recirculated through the condenser to trap the wasted energy. The efficiency of the main hog boiler and the chip dry was about 80 per cent. The FGHR process was designed to recover 85 per cent of the wasted energy that was directed to the atmosphere. The heat recovery unit can typically generate temperatures of 70 to 80 degrees C. In addition to fewer emissions of carbon dioxide and nitrogen oxides going out the stack, the FGHR system offers the advantages of heating the process water without additional fuel, and shutting down an old hog boiler. 1 tabs., 3 figs.

  5. Deposit Probe Measurements in Large Biomass-Fired Grate Boilers and Pulverized-Fuel Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2014-01-01

    A number of full-scale deposit probe measuring campaigns conducted in grate-fired and suspension-fired boilers, fired with biomass, have been reviewed and compared. The influence of operational parameters on the chemistry of ash and deposits, on deposit build-up rates, and on shedding behavior has...... of the deposits formed is determined by the fly ash composition and the flue gas temperature; increases in the local flue gas temperature lead to higher contents of Si and Ca and lower contents of Cl in the deposits. The net deposit build-up rates in grate-fired and suspension-fired boilers are at similar levels....../wood-firing in suspension-fired boilers, shedding occurred by debonding with incomplete removal at flue gas temperatures of 600–1000 °C and by debonding with complete removal during wood-firing in suspension-fired boilers at high flue gas temperatures (1300 °C). Shedding events were not observed during wood suspension...

  6. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    Tice, D.R.; Platts, N.; Raffel, A.S.; Rudge, A.

    2002-01-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  7. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  8. Boiler inspection manipulator for Torness Power Station

    International Nuclear Information System (INIS)

    Carrey, R.T.A.; Playle, M.J.

    1996-01-01

    In-service inspection at Torness Advanced Gas-cooled Reactor is achieved, via penetrations above and below the core area and boilers and through eight circulator penetrations for inspection of the sub-diagrid area. A manipulator is described which can access the area above the reactor core via any of these eight peripheral penetrations. The design and fabrication of the manipulator has led to innovation with a number of possible solutions being tendered. In reactor deployment of the successful design is expected in early 1997. (UK)

  9. Multiloop control of a drum boiler

    Directory of Open Access Journals (Sweden)

    Alena Kozáková

    2014-05-01

    Full Text Available The Equivalent Subsystems Method (ESM (Kozáková et al., 2011 is methodology of decentralized controller design in the frequency domain which allows designing local controllers using any SISO frequency domain method. The paper deals with the digital ESM version where digital local PID controllers guaranteeing required performance for the full system are designed for individual equivalent subsystems using the practice-oriented Sine-wave method (Bucz et al., 2012. The proposed decentralized controller design procedure was verified on the nonlinear benchmark drum boiler simulation model (Morilla, 2012.

  10. Nuclear reactors with auxiliary boiler circuit

    International Nuclear Information System (INIS)

    George, B.V.; Cook, R.K.

    1976-01-01

    A gas-cooled nuclear reactor has a main circulatory system for the gaseous coolant incorporating one or more main energy converting units, such as gas turbines, and an auxiliary circulatory system for the gaseous coolant incorporating at least one steam generating boiler arranged to be heated by the coolant after its passage through the reactor core to provide steam for driving an auxiliary steam turbine, such an arrangement providing a simplified start-up procedure also providing emergency duties associated with long term heat removal on reactor shut down

  11. Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

    2011-06-21

    Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al

  12. ENVIRONMENTAL ASPECTS OF MODERNIZATION OF HIGH POWER WATER-HEATING BOILERS

    Directory of Open Access Journals (Sweden)

    P. M. Glamazdin

    2016-01-01

    Full Text Available Boilers of KVGM and PTVM series are characterized by high values of NOx and CO content in the combustion products. Reduction of NOx and CO content can be achieved by two ways: by installing the condensing heat recovery unit at the boiler outlet and by improving the heat and mass transfer processes in boiler furnaces. Application of the condensing heat recovery units causes pollution of resulting condensate by low-concentration acids. The authors conducted a study in order to determine the effectiveness of the previously applied methods of suppressing the emission of nitrogen oxides in the boilers of these types. Equalization of the temperature field and, consequently, enhancement of heat transfer in the furnace by substitution the used burners by the more advanced ones, the design of which facilitates reduction the emission of nitrogen oxides, were applied to all the upgraded facilities. The studies fulfilled demonstrate that a reduction of NOx emissions in water-heating high power boilers is fairly possible by means of modernization of the latter. The authors have developed the project of the PTVM-30 boiler modernization, which was implemented at a large boiler plant in the city of Vinnitsa (Ukraine. The project included a number of technical solutions. Six burners were replaced by the two ones that were located in the hearth; also the hearth screen was dismantled. At the same time, reducing the total surface area of the heating caused by the exclusion of hearth screen was compensated by filling the locations of the six embrasures of staff burners on the side screens with straightened furnace tubes. Installing the burners separate from the screen made it possible to eliminate the transfer of vibration to the furnace tubes, and – via them – to the boilers setting. Automation provided “associated regulations”. Draught machines were equipped with frequency regulators. During commissioning of the boiler the studies were carried out that

  13. Test of a small domestic boiler using different pellets

    International Nuclear Information System (INIS)

    Dias, J.; Costa, M.; Azevedo, J.L.T.

    2004-01-01

    This paper presents results from an experimental study performed on a 13 kW th commercial domestic boiler using pellets as fuel. Four different types of pellets were used and, for each one, the boiler was tested as a function of its capacity and the fan regulation affecting excess air. Measurements were performed for boiler heat load, pellet consumption rate, flue-gas temperature and composition. Mass balances allowed the calculation of the flue-gas flow rate and associated heat losses. Losses from incomplete combustion have also been quantified. Under boiler steady-state conditions the flue-gas O 2 concentration changes with boiler load and ventilation due to the regulation scheme of the boiler. Flue-gas CO shows a minimum for values of O 2 in the flue-gases of about 13%. NO x emissions are independent of excess air for low values of nitrogen in the fuel whereas, for larger values, NO x emissions increase with the O 2 present in the combustion products. The fractional conversion of the pellet nitrogen into NO x is in line with literature data. The boiler start-up was characterised by the temperature evolution inside and above the bed showing the propagation of combustion in the bed during about 10 min. During boiler start-up, a maximum in CO emissions was observed which is associated with the maximum combustion intensity, as typified by the flue-gas O 2 concentration and temperature, regardless the pellet type. (Author)

  14. A rule-based industrial boiler selection system

    NARCIS (Netherlands)

    Tan, C.F.; Khalil, S.N.; Karjanto, J.; Tee, B.T.; Wahidin, L.S.; Chen, W.; Rauterberg, G.W.M.; Sivarao, S.; Lim, T.L.

    2015-01-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes,

  15. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  16. 30 CFR 77.411 - Compressed air and boilers; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All...

  17. Exergetic Modelling of Oil-Fired Steam Boilers | Ohijeagbon ...

    African Journals Online (AJOL)

    The performance variables and potential for energy savings in oil-fired industrial steam boilers were studied. Operational parameters of steam boilers using low pour fuel oil (LPFO) and diesel were used to determine thermodynamic properties of material streams and exergetic parameters. Analysis of thermodynamic ...

  18. Assessment of Some Performance Characteristics of Refuse Boiler ...

    African Journals Online (AJOL)

    A pioneer palm oil boiler unit, in an immense power self-contained oil mill, impaired by many years of accumulated depreciation, was rebuilt in the pattern of a design-out scheme aimed primarily at rehabilitating the entire boiler system to a state of functionality. The research work studied the pre-maintenance and post ...

  19. Solved and unsolved problems in boiler systems. Learning from accidents

    International Nuclear Information System (INIS)

    Ozawa, Mamoru

    2000-01-01

    This paper begins with a brief review on the similarity law of conventional fossil-fuel-fired boilers. The concept is based on the fact that the heat release due to combustion in the furnace is restricted by the furnace volume but the heat absorption is restricted by the heat transfer surface area. This means that a small-capacity boiler has relatively high specific furnace heat release rate, about 10 MW/m 3 , and on the contrary a large-capacity boiler has lower value. The surface-heat-flux limit is mainly dominated by the CHF inside the water-wall tubes of the boiler furnace, about 350 kW/m 2 . This heat-flux limit is almost the same order independently on the capacity of boilers. For the safety of water-walls, it is essential to retain suitable water circulation, i.e. circulation ratio and velocity of water. This principle is a common knowledge of boiler designer, but actual situation is not the case. Newly designed boilers often suffer from similar accidents, especially burnout due to circulation problems. This paper demonstrates recent accidents encountered in practical boilers, and raises problems of rather classical but important two-phase flow and heat transfer. (author)

  20. Water Boiler Change-Over in Mini-TPP Mode

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2011-01-01

    Full Text Available The paper considers water boiler modernization by its change-over in mini-TPP mode with an expansion tank and a heating turbine of small capacity.  A software complex permitting to evaluate competitive ability of such water boiler modernization in comparison with a cogeneration plant.

  1. Hybrid system for fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacin de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Mareda de Luna, 3, Zaragoza 50018, (Spain)

    2006-12-15

    Renewable energy sources are essential paths towards sustainable development and CO{sub 2} emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive use of this energy source is being avoided by some technical problems as fouling and slagging in the surfaces of boiler heat exchangers. Although these phenomena were extensively studied in the last decades in order to optimize the behaviour of large coal power boilers, a simple, general and effective method for fouling control has not been developed. For biomass boilers, the feedstock variability and the presence of new components in ash chemistry increase the fouling influence in boiler performance. In particular, heat transfer is widely affected and the boiler capacity becomes dramatically reduced. Unfortunately, the classical approach of regular sootblowing cycles becomes clearly insufficient for them. Artificial Intelligence (AI) provides new means to undertake this problem. This paper illustrates a methodology based on Neural Networks (NNs) and Fuzzy-Logic Expert Systems to select the moment for activating sootblowing in an industrial biomass boiler. The main aim is to minimize the boiler energy and efficiency losses with a proper sootblowing activation. Although the NN type used in this work is well-known and the Hybrid Systems had been extensively used in the last decade, the excellent results obtained in the use of AI in industrial biomass boilers control with regard to previous approaches makes this work a novelty. (Author)

  2. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  3. Assessment of the candidate markets for liquid boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Liquid fuels can be produced from coal in a number of indirect and direct liquefaction processes. While indirect coal liquefaction has been proved commercially outside the United States, most attention in this country has focused on the direct liquefaction processes, which include the processes under examination in this report; namely, the Exxon Donor Solvent (EDS), the H-Coal, and the Solvent Refined Coal (SRC) II processes. The objectives of the study were to: compare the boiler fuels of direct coal liquefaction with residual fuel oil (No. 6 fuel oil) including physical characteristics and environmental hazards, such as carcinogenic characteristics and toxic hazard characteristics; determine whether a boiler fuel market would exist for the coal liquefaction products given their physical characteristics and potential environmental hazards; determine the advantages of utilizing methanol as a boiler fuel on a continuous basis in commercial boilers utilizing existing technology; identify the potential regional candidate markets for direct coal liquefaction products as liquid boiler fuels; determine the distributing and handling costs associated with marketing coal liquefaction products as liquid boiler fuels; determine the current regulatory issues associated with the marketing of coal liquefaction products as boiler fuels; and determine and evaluate other institutional issues associated with the marketing of direct coal liquefaction products as boiler fuels.

  4. Thermal performance analysis of Brayton cycle with waste heat recovery boiler for diesel engines of offshore oil production facilities

    International Nuclear Information System (INIS)

    Liu, Xianglong; Gong, Guangcai; Wu, Yi; Li, Hangxin

    2016-01-01

    Highlights: • Comparison of Brayton cycle with WHRB adopted in diesel engines with and without fans by thermal performance. • Waste heat recovery technology for FPSO. • The thermoeconomic analysis for the heat recovery for FPSO. - Abstract: This paper presents the theoretical analysis and on-site testing on the thermal performance of the waste heat recovery system for offshore oil production facilities, including the components of diesel engines, thermal boilers and waste heat boilers. We use the ideal air standard Brayton cycle to analyse the thermal performance. In comparison with the traditional design, the fans at the engine outlet of the waste heat recovery boiler is removed due to the limited space of the offshore platform. The cases with fan and without fan are compared in terms of thermal dynamics performance, energy efficiency and thermo-economic index of the system. The results show that the application of the WHRB increases the energy efficiency of the whole system, but increases the flow resistance in the duct. It is proved that as the waste heat recovery boiler takes the place of the thermal boiler, the energy efficiency of whole system without fan is slightly reduced but heat recovery efficiency is improved. This research provides an important guidance to improve the waste heat recovery for offshore oil production facilities.

  5. Research on the Superheater Material Properties for USC Boiler with 700°C Steam Parameter

    Science.gov (United States)

    Chongbin, Wang; Xueyuan, Xu; Yufeng, Zhu; Yongqiang, Jin; Hui, Tong; Yu, Wang; Xiaoli, Lu

    This paper discusses the materials' properties of superheater for 700°C USC boiler, including Sanicro25, HR6W, 617mod and 740H, and analyzes the range of applicable temperature of superheater made of different tubes, such as T91, T92, Super304H, TP310HCbN, Sanicro25, HR6W, 617Mod and 740H. In addition, some suggestions on the material selection have been proposed.

  6. A theoretical approach for energy saving in industrial steam boilers

    International Nuclear Information System (INIS)

    Sabry, T.I.; Mohamed, N.H.; Elghonimy, A.M.

    1993-01-01

    Optimization of the performance characteristics of such a steam boiler has been analyzed theoretically. Suitable thermodynamic relations have been utilized here to construct a computer model that would carry out the boiler performance characteristics at different operating parameters (e.g.; amount of excess air, fuel type, rate of blowdown preheating of combustion air and flow gases temperature). The results demonstrate that this computer model is to be used successfully in selecting the different operating parameters of the steam boiler at variant loads considering the best economical operation. Besides, this model can be used to investigate the sensitivity of the performance characteristics to the deviation of the boiler operating parameters from their optimum values. It was found also that changing the operating parameters beside the type of fuel in a boiler affects its performance characteristics. 3 figs

  7. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  8. Biomass boilers: towards a higher efficiency

    International Nuclear Information System (INIS)

    Petitot, Pauline; Signoret, Stephane; Mary, Olivier; Dejeu, Mathieu; Tachet, Jean-Pierre

    2014-01-01

    A set of articles proposes an overview of the situation and perspectives of biomass fuelled boilers in France. As outlined in an interview, professionals are supported by ADEME and the Heat Fund (Fonds Chaleur) for a continuous development of wood-energy in order to reach national objectives for renewable energies by 2020. The next article discusses issues related to wood supply, with some concerns regarding forest exploitation, and needs to find new management ways and to use other sources than forests. The technical status and perspectives of smoke condensation in wood-fuelled boilers are discussed. The example of a malt-house near Issoudun fuelled by biomass since 2013 is presented. Other examples concern a small town of Burgundy which developed and is still improving a heat network, a wood-fuelled heat network in Saint-Denis, and a biomass wood-fuelled heat production plant for the Toulouse University hospital. Graphs indicate evolutions of prices for different wood-based fuel products. The last article outlines the role of forests and the importance of their protection in the struggle against climate change, and discusses problems faced to support this preservation and its financing

  9. Mercury emissions from polish pulverized coalfired boiler

    Directory of Open Access Journals (Sweden)

    Wichliński Michał

    2017-01-01

    Full Text Available The current paper presents the research results carried out at one of Polish power plants at a pulverized hard coal-fired 225 MW unit. The research was carried out at full load of the boiler (100% MCR and focused on analysis of mercury content in the input fuel and limestone sorbent for wet flue gas desulfurization (FGD system, as well as investigation of mercury content in the combustion products, i.e. fly ash, slag, FGD product (gypsum and FGD effluents (waste. Within the framework of the present study the concentration of mercury vapor in the exhaust gas was also investigated. The analysis was performed using Lumex RA-915+ spectrometer with an attachment (RP-91C. The measurements were carried out at three locations, i.e. before the electrostatic precipitator (ESP, downstream the ESP, and downstream the wet FGD plant. Design of the measurement system allowed to determine both forms of mercury in the flue gas (Hg0 and Hg2+ at all measurement locations.Based on the measurement results the balance of mercury for a pulverized coal (PC boiler was calculated and the amount of mercury was assessed both in the input solids (fuel and sorbent, as well as the gaseous and solids products (flue gas, slag, ash, gypsum and FGD waste.

  10. Code boiler and pressure vessel life assessment

    International Nuclear Information System (INIS)

    Farr, J.R.

    1992-01-01

    In the United States of America and in Canada, laws and controls for determining life assessment for continued operation of equipment exist only for those pressure vessels built to Section III and evaluated according to Section XI. In this presentation, some of those considerations which are made in the USA and Canada for deciding on life or condition assessment of boilers and pressure vessels designed and constructed to other sections of the ASME Boiler and Pressure Vessel Code are reviewed. Life assessment or condition assesssment is essential in determining what is necessary for continued operation. With no ASME rules being adopted by laws or regulations, other than OSHA in the USA and similar environmental controls in Canada, to control life assessment for continued operation, the equipment owner must decide if assessment is to be done and how much to do. Some of those considerations are reviewed along with methods and procedures to make an assessment along with a discussion of where the ASME B and PV Code currently stands regarding continued operation. (orig.)

  11. Influence of additives on selective noncatalytic reduction of nitric oxide with ammonia in circulating fluidized bed boilers

    DEFF Research Database (Denmark)

    Leckner, Bo; Karlsson, Maria; Dam-Johansen, Kim

    1991-01-01

    The application of selective noncatalytic reduction of nitric oxide with ammonia in circulating fluidized bed boilers is investigated. Special attention is directed to the use of additives to the ammonia so that the efficiency of the NO reduction at lower temperatures can be increased. Tests under...

  12. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  13. Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler

    Science.gov (United States)

    A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...

  14. Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers. Project document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    'Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers' includes major steps in implementing the EU EPB directive in Latvia. The EPB directive includes a number of efforts: 1. A methodology for calculation of the integrated energy performance of buildings 2. Application of minimum requirements on the energy performance for new buildings 3. Application of minimum requirements on the energy performance for larger existing buildings subject to major renovation 4. Energy performance certification (energy labelling) of buildings 5. Regular inspection of boilers and of air-conditioning systems in buildings, and assessment of heating installations in older systems. The present project includes activities connected to point 4 and point 5. The results will include 4 steps in implementing the EU EPB directive: 1) A Latvian training of certified independent energy auditors to be active conducting energy audits and issuing energy performance certificates. Including a handbook in energy auditing. 2) A Latvian training of certified independent experts for inspection of boilers, air-con systems and assessing older heating systems. Including a handbook in boiler inspection. 3) A proposal for the institutional set-up for a connected scheme for energy auditing and a scheme for boiler inspection 4) Initial information on the scheme of energy auditors and of the boiler inspection. (au)

  15. BPACK -- A computer model package for boiler reburning/co-firing performance evaluations. User`s manual, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.T.; Li, B.; Payne, R.

    1992-06-01

    This manual presents and describes a package of computer models uniquely developed for boiler thermal performance and emissions evaluations by the Energy and Environmental Research Corporation. The model package permits boiler heat transfer, fuels combustion, and pollutant emissions predictions related to a number of practical boiler operations such as fuel-switching, fuels co-firing, and reburning NO{sub x} reductions. The models are adaptable to most boiler/combustor designs and can handle burner fuels in solid, liquid, gaseous, and slurried forms. The models are also capable of performing predictions for combustion applications involving gaseous-fuel reburning, and co-firing of solid/gas, liquid/gas, gas/gas, slurry/gas fuels. The model package is conveniently named as BPACK (Boiler Package) and consists of six computer codes, of which three of them are main computational codes and the other three are input codes. The three main codes are: (a) a two-dimensional furnace heat-transfer and combustion code: (b) a detailed chemical-kinetics code; and (c) a boiler convective passage code. This user`s manual presents the computer model package in two volumes. Volume 1 describes in detail a number of topics which are of general users` interest, including the physical and chemical basis of the models, a complete description of the model applicability, options, input/output, and the default inputs. Volume 2 contains a detailed record of the worked examples to assist users in applying the models, and to illustrate the versatility of the codes.

  16. The Facilitation of a Sustainable Power System: A Practice from Data-Driven Enhanced Boiler Control

    Directory of Open Access Journals (Sweden)

    Zhenlong Wu

    2018-04-01

    Full Text Available An increasing penetration of renewable energy may bring significant challenges to a power system due to its inherent intermittency. To achieve a sustainable future for renewable energy, a conventional power plant is required to be able to change its power output rapidly for a grid balance purpose. However, the rapid power change may result in the boiler operating in a dangerous manner. To this end, this paper aims to improve boiler control performance via a data-driven control strategy, namely Active Disturbance Rejection Control (ADRC. For practical implementation, a tuning method is developed for ADRC controller parameters to maximize its potential in controlling a boiler operating in different conditions. Based on a Monte Carlo simulation, a Probabilistic Robustness (PR index is subsequently formulated to represent the controller’s sensitivity to the varying conditions. The stability region of the ADRC controller is depicted to provide the search space in which the optimal group of parameters is searched for based on the PR index. Illustrative simulations are performed to verify the efficacy of the proposed method. Finally, the proposed method is experimentally applied to a boiler’s secondary air control system successfully. The results of the field application show that the proposed ADRC based on PR can ensure the expected control performance even though it works in a wider range of operating conditions. The field application depicts a promising future for the ADRC controller as an alternative solution in the power industry to integrate more renewable energy into the power grid.

  17. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  18. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler

    International Nuclear Information System (INIS)

    Zhou Hao; Zheng Ligang; Cen Kefa

    2010-01-01

    The current work presented a computational intelligence approach used for minimizing NO x emissions in a 300 MW dual-furnaces coal-fired utility boiler. The fundamental idea behind this work included NO x emissions characteristics modeling and NO x emissions optimization. First, an objective function aiming at estimating NO x emissions characteristics from nineteen operating parameters of the studied boiler was represented by a support vector regression (SVR) model. Second, four levels of primary air velocities (PA) and six levels of secondary air velocities (SA) were regulated by using particle swarm optimization (PSO) so as to achieve low NO x emissions combustion. To reduce the time demanding, a more flexible stopping condition was used to improve the computational efficiency without the loss of the quality of the optimization results. The results showed that the proposed approach provided an effective way to reduce NO x emissions from 399.7 ppm to 269.3 ppm, which was much better than a genetic algorithm (GA) based method and was slightly better than an ant colony optimization (ACO) based approach reported in the earlier work. The main advantage of PSO was that the computational cost, typical of less than 25 s under a PC system, is much less than those required for ACO. This meant the proposed approach would be more applicable to online and real-time applications for NO x emissions minimization in actual power plant boilers.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  20. A novel direct-fired porous-medium boiler

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    Nowadays, power and heat generation systems pay an important role in all economic sectors. These systems are mainly based on combustion reaction and operated under the second law of thermodynamics. A conventional boilers, a main component of heat and power generators, have thermal efficiency in the range of 70 to 85%, mainly owing to they have flue gas heat loss. This paper proposes a novel type of boiler, called a Direct-fired Porous-medium Boiler (DPB). Due to being operated without flue gas heat loss, its thermal efficiency cloud be approximately close to 100%. The steam produced from the proposed boiler; however, is not pure water steam. It is the composite gases of steam and combustion-product-gases. This paper aims at presenting the working concept and reporting the experimental results on the performance of the proposed boiler. The experiments of various operating parameters were performed and collected data were used for the performance analysis. The experimental results demonstrated that the proposed boiler can be operated as well as the conceptual design and then it is promising. It can be possibly further developed to be a high efficiency boiler by means of reducing or suppressing the surface heat loss with better insulator and/or refractory lined.

  1. Cross connecting absorber module inlets of multiple boiler units

    International Nuclear Information System (INIS)

    Cirillo, A.J.; Sperber, P.K.; Belavadi, V.N.; Mukherji, A.

    1991-01-01

    The retrofitting of scrubbers downstream of existing balanced draft boilers is often accomplished by the addition of induced draft (ID) booster fans. By creating a common plenum between the ID fans and the ID booster fans of two or more boiler-absorber trains, absorber module capacity may be shared among multiple boiler units. At Harrison Power Station, three (3) 4,900,000 lb/hour boilers (640 MWe Gross) will be linked through a common plenum. This sharing capability precludes the need to add standby module capacity, thereby saving capital dollars and keeping project critical path schedules, which typically run through absorber procurement and construction, to a minimum. Through damper placement in the ductwork cross connections, unitized boiler-absorber module operation or common plenum operation may be obtained, thus providing both operational flexibility and reliability. Additionally, open plenum operation allows the removal of an absorber unit from service, while keeping its associated boiler on line, thereby precluding 'cold starts' and maintaining overall unit availabilities. As either unitized or common plenum operation is possible with the cross connection, the furnace draft control systems of each boiler must be examined for varying load operation and trip conditions. This paper addresses the means by which to analyze such cross connection operational scenarios while maintaining compliance with furnace flame out safety guidelines, and will discuss the physical design considerations, ramifications and benefits of same, with select emphasis on what is being implemented at the Harrison Power Station

  2. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  3. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  4. Evaluation of conditions of SNCR in small boilers

    International Nuclear Information System (INIS)

    Kullendorff, A.; Lorentzon, K.

    1996-04-01

    The report describes the first part of a project 'SNCR for small boilers', supported by Vaermeforsk (Thermal Engineering Research Institute), with the purpose of assessing the potential for SNCR in small boilers. Given favourable conditions, the project was to be continued in a second part with the demonstration of a SNCR system in a small boiler (or several boilers). During the base establishment, the temperatures in four locations per boiler, in a couple of horizontal or vertical levels and at 2-3 thermal outputs, were measured. Out of the four locations two showed temperatures mainly within the theoretical temperature window for SNCR. These locations were used during the try-out tests to inject urea and ammonia. The locations and the equipment used during the try-out tests together with existing operation strategies seem to limit the reduction levels to approximately 10-20% at acceptable levels of ammonia slip. The measurements and try-out tests carried out does not provide enough basis for forming any general conclusions concerning SNCR in small boilers. Neither the base establishment nor the try-out tests included any optimisation of the boilers regarding the operation strategy or, for the try-out tests, locations and equipment (drop size, flow shape and direction). Therefore, it is likely to believe that better results can be obtained, given other conditions of operation and using well established SNCR technology, adapted to the circumstances. 2 refs, 27 figs, 5 tabs

  5. 46 CFR 52.20-17 - Opening between boiler and safety valve (modifies PFT-44).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Opening between boiler and safety valve (modifies PFT-44). 52.20-17 Section 52.20-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Firetube Boilers § 52.20-17 Opening between boiler and safety valve...

  6. 40 CFR 266.110 - Waiver of DRE trial burn for boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waiver of DRE trial burn for boilers... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.110 Waiver of DRE trial burn for boilers. Boilers that operate under the special requirements of this section...

  7. 9 CFR 91.22 - Protection from heat of boilers and engines.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Protection from heat of boilers and... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the engine or boiler rooms unless the sides of said engine or boiler rooms are covered by a tongue and groove...

  8. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of classification...

  9. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  10. 40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Do any boilers or process heaters have..., and Institutional Boilers and Process Heaters General Compliance Requirements § 63.7506 Do any boilers or process heaters have limited requirements? (a) New or reconstructed boilers and process heaters in...

  11. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate of...

  12. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. 230.20 Section 230.20 Transportation Other Regulations Relating to Transportation (Continued... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... maintained for the life of the boiler. (See appendix B of this part.) (b) Welded and riveted repairs to...

  13. 46 CFR 61.05-5 - Preparation of boilers for inspection and test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Preparation of boilers for inspection and test. 61.05-5... PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-5 Preparation of boilers for... preparing the boilers for the hydrostatic test, they shall be filled with water at not less than 70 °F. and...

  14. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Are any boilers or process heaters not..., and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed in paragraphs...

  15. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are the subcategories of boilers..., and Institutional Boilers and Process Heaters Emission Limits and Work Practice Standards § 63.7499 What are the subcategories of boilers and process heaters? The subcategories of boilers and process...

  16. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification referring...

  17. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with the...

  18. Apparatus and method of controlling the thermal performance of an oxygen-fired boiler

    Science.gov (United States)

    Levasseur, Armand A.; Kang, Shin G.; Kenney, James R.; Edberg, Carl D.

    2017-09-05

    Disclosed herein is a method of controlling the operation of an oxy-fired boiler; the method comprising combusting a fuel in a boiler; producing a heat absorption pattern in the boiler; discharging flue gases from the boiler; recycling a portion of the flue gases to the boiler; combining a first oxidant stream with the recycled flue gases to form a combined stream; splitting the combined stream into several fractions; and introducing each fraction of the combined stream to the boiler at different points of entry to the boiler.

  19. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  20. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  1. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  2. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    2005-01-01

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  3. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were...... compared with available gas temperature and species concentration measurements showing good agreement. Combustionof biomass in grate-based boilers is often associated with high emission levels and relatively high amounts of unburnt carbon in the fly ash.Based on the CFD analysis, it is suggested that poor...

  4. An optimising controller for Hinkley Point B AGR boilers

    International Nuclear Information System (INIS)

    Wells, C.

    1986-01-01

    The improvements to the control system at Hinkley Point 'B' Power Station has as one of its objectives the provision of a half unit valve controller. This will enable the asymmetry between the boiler half units, which is a feature of current operation, to be reduced. The use of an on-line boiler model in conjunction with this facility will allow the risk to the boilers from corrosion, creep, and vibration to be assessed and held at the minimum attainable value, thereby prolonging plant life whilst maximising output and efficiency. (author)

  5. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  6. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  7. Economical analyses of construction of a biomass boiler house

    International Nuclear Information System (INIS)

    Normak, A.

    2002-01-01

    To reduce the energy costs we can use cheaper fuel to fire our boiler. One of the cheapest fuels is wood biomass. It is very actual issue how to use cheaper wood biomass in heat generation to decrease energy costs and to increase biomass share in our energy balance. Before we decide to build biomass boiler house it is recommendable to analyse the economical situation and work out most profitable, efficient, reliable and ecological boiler plant design on particular conditions. The best way to perform the analyses is to use the economical model presented. It saves our time and gives objective evaluation to the project. (author)

  8. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  9. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Kawasaki, Ichio; Miura, Hirohito

    2014-01-01

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  10. Orion Ammonia Boiler System Preflight Test Preparations

    Science.gov (United States)

    Levitt, Julia L.

    2017-01-01

    The Environmental Controls and Life Support Systems (ECLSS) branch at Kennedy Space Center (KSC) is currently undergoing preparations for ground testing of the Orion Multi-Purpose Crew Vehicle (MPCV) to prepare its subsystems for EM-1 (Exploration Mission-1). EM-1, Orions second unmanned flight, is a three-week long lunar mission during which the vehicle will complete a 6-day retrograde lunar orbit before returning to Earth. This paper focuses on the work done during the authors 16-week internship with the Mechanical Engineering Branch of KSCs Engineering Directorate. The authors project involved assisting with the preparations for testing the Orion MPCVs ammonia boiler system. The purpose of the ammonia boiler system is to keep the spacecraft sufficiently cool during the reentry portion of its mission, from service module (SM) separation to post-landing. This system is critical for keeping both the spacecraft (avionics and electronics) and crew alive during reentry, thus a successful test of the system is essential to the success of EM-1. XXXX The author was able to draft a detailed outline of the procedure for the ammonia system functional test. More work will need to be done on the vehicle power-up and power-down portions of the procedure, but the ammonia system testing portion of the procedure is thorough and includes vehicle test configurations, vehicle commands, and GSE. The author was able to compile a substantial list of questions regarding the ammonia system functional test with the help of her mentors. A significant number of these questions were answered in the teleconferences with Lockheed Martin.

  11. Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler

    Energy Technology Data Exchange (ETDEWEB)

    Corkery, Robert; Baefver, Linda; Davidsson, Kent; Feiler, Adam

    2012-02-15

    Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nano structures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made

  12. Experience of implementation of in-furnace methods of decreasing NO x in E-320-13.8-560GM boilers: Problems and ways for their solution

    Science.gov (United States)

    Tugov, A. N.; Supranov, V. M.; Izyumov, M. A.; Vereshchetin, V. A.; Usman, Yu. M.; Natal'in, A. S.

    2017-12-01

    During natural gas combustion, the content of nitrogen oxides in combustion products is approximately 450 mg/m3 in many E-320-13.8-560GM boilers in service, which is more than 3.5 times higher than the established maximum NO x concentrations in flue gases for such boilers. Estimates according to the existing techniques have shown that gas combustion on the basis of in-furnace techniques (the feeding of combustion products to burners together with air in the volume of 15% and two-stage combustion with 20% air feeding through the nozzles upstream of the burners) enables one to decrease NO x emissions to the level of concentrations of less than 100 mg/m3, which is lower than the maximum allowable values. However, the application of any of the proposed measures with respect to a boiler makes its operation under normal load significantly difficult, since the thermal capacity of the superheater is higher in both cases, which leads to an increase in the temperature of superheated steam above the maximum allowable temperature. On the basis of the developed adapted boiler model, which was created using the Boiler Designer software, we performed numerical studies to determine the required boiler reconstruction volume; the implementation of this reconstruction will provide reliable boiler operation at all working loads and ensure the normative values of NO x emissions. According to the results of thermal calculations, it was proposed to reduce the surface of the cold stage of the superheater circuit and increase the size of the economizer. It is noted that the implementation of environmental protection measures usually decreases the boiler efficiency. At the same time, it has been established that the technical and economic performance of the E-320-13.8-560GM boiler does not decrease owing to an increase in the economizer surface and a decrease in air inflows and overflows in regenerative air heaters and remains at the same level if the air inflow volume decreases from the

  13. The development of coal-based technologies for Department of Defense facilities. Volume 2, Appendices. Semiannual technical progress report, September 28, 1994--March 27, 1995

    International Nuclear Information System (INIS)

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-01-01

    This semiannual progress report contains the following appendices: description of the 1,000 lb steam/h watertube research boiler; the Pennsylvania CGE model; Phase II, subtask 3.9 coal market analysis; the CGE model; and sector definition

  14. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...

  15. Criteria of choosing building structures for rooftop boiler rooms

    Directory of Open Access Journals (Sweden)

    Plotnikov Artyom

    2018-01-01

    Full Text Available The paper investigates parameters of noise and vibration distribution in the territory of residential area depending on the structural materials and power of independent heat supply systems. Rooftop boiler rooms are decentralized heat supply systems in buildings. Today, residential areas are strongly affected by noise and vibrations. Adverse effects are isolated by buildings materials, protective shields and floating floors. Rooftop boiler rooms located in Tyumen city were investigated within this research. Structures of rooftop boiler rooms were analyzed. Acoustic analysis results and the parameters of equivalent continuous sound level are presented. An option for improvement of rooftop boiler rooms structures is suggested. Comparison of capital investments in construction and installation activities is carried out. Conclusion on capital investments required for noise protection is made.

  16. Emissions from Power Plant and Industrial Boiler Sector

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides hourly data on SO2, NOx, and CO2 emissions; gross load, steam load, and heat input; from electricity generation units and industrial boilers from...

  17. Knowledge based system for fouling assessment of power plant boiler

    International Nuclear Information System (INIS)

    Afgan, N.H.; He, X.; Carvalho, M.G.; Azevedo, J.L.T.

    1999-01-01

    The paper presents the design of an expert system for fouling assessment in power plant boilers. It is an on-line expert system based on selected criteria for the fouling assessment. Using criteria for fouling assessment based on 'clean' and 'not-clean' radiation heat flux measurements, the diagnostic variable are defined for the boiler heat transfer surface. The development of the prototype knowledge-based system for fouling assessment in power plants boiler comprise the integrations of the elements including knowledge base, inference procedure and prototype configuration. Demonstration of the prototype knowledge-based system for fouling assessment was performed on the Sines power plant. It is a 300 MW coal fired power plant. 12 fields are used with 3 on each side of boiler

  18. Numerical investigation of ash deposition in straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been...... accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...... transfer mechanisms have a pronounced influence on the combustion pattern. The combined set of sub-models has been evaluated using the straw-fired boiler at Masnedø CHP plant as a test case. The predicted grate combustion and KCl release patterns are in qualitative agreement with experimental findings...

  19. Boiler for combustion fuel in a fluidized bed

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2015-01-01

    Full Text Available Fuel combustion in fluidized bed combustion is a process that is current and which every day gives more attention and there are many studies that have been closely associated with this technology. This combustion technology is widespread and constantly improving the range of benefits it provides primarily due to reduced emissions. This paper presents the boilers for combustion in a fluidized bed, whit characteristics and advantages. Also is shown the development of this type of boilers in Republic of Serbia. In this paper is explained the concept of fluidized bed combustion. Boilers for this type of combustion can be improved and thereby increase their efficiency level. More detailed characteristics are given for boilers with bubbling and circulating fluidized bed as well as their mutual comparison.

  20. Energy efficiency in boilers; Eficiencia energetica em caldeiras

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ricardo Silva The [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], email: ricthe@dee.ufc.br; Barbosa, Marcos Antonio Pinheiro; Rufino, Maria da Gracas [Universidade de Fortaleza (UNIFOR), CE (Brazil). Dept. de Engenharia Eletrica], emails: marcos_apb@unifor.br, gsrufino@unifor.br

    2010-07-01

    The boiler is vapor generator equipment that has been widely used in industrial milieu as in electric energy generation in thermoelectric plants. Since their first conception, the boilers have been changed in order to provide security and energetic efficiency. They can present high losses of energy if they don't be operated according to some criteria. A considerable part of boilers operation cost include fuel expenses. So, the adoption of effective steps in order to reduce fuel consumption is important to industry economy, besides it brings environmental benefits through the reduction of pollution liberation. The present article has the objective of emphasizing the effective steps for the economy of energy in boilers, such as, the regulation of combustion; the control of soot and incrustations; the installation of economizers, air heaters and super heaters; the reduction in purges and reintroduction of condensed steam. (author)

  1. Wood-Fired Boiler System Evaluation at Fort Stewart, GA

    National Research Council Canada - National Science Library

    Potts, Noel

    2002-01-01

    Part of the plan to modernize the central energy plant (CEP) at Fort Stewart, GA is focused on the installations wood-fired boiler, which provides steam for heating, cooling, and domestic hot water. The U.S...

  2. Seismic model of the nuclear boiler SPX2

    International Nuclear Information System (INIS)

    Christodoulou, K.

    1982-01-01

    A model of the nuclear boiler SPX2 is proposed in this paper enabling to carry out comparative calculations on the response to seismic effects. The calculations are made in CISE and SEPTEN departments of Electricite de France [fr

  3. High gradient magnetic filters for boiler water treatment

    International Nuclear Information System (INIS)

    Harland, J.R.; Nichols, R.M.

    1977-01-01

    Heavy metal oxide suspended solids in those steam condensates recycled to the boilers produce buildup within the boiler tubes which can lead to unequal and reduced heat transfer efficiency, and indirectly, to boiler tube failures. Recommended reductions in such suspended solids in feedwater to the economizers of modern high pressure boilers to levels of under 10 ppb have been published. The industrially-available SALA-HGMF magnetic filter has achieved these desired suspended solids levels in treating steam condensates. The high gradient magnetic filter has been shown in pilot tests to achieve and even exceed the recommended low level suspended solids in a practical and efficient industrial system. Such electromagnetic filters, when combined with good system chemistry, have achieved low single number parts per billion levels of several heavy metals with very high single-pass efficiencies

  4. Condensing gas boilers for energy efficiency and reduction of CO2 and NOx

    International Nuclear Information System (INIS)

    Stewardson, E.

    1994-01-01

    The objectives of the study are: 1) to demonstrate the effectiveness of condensing gas boiler hot water system in reducing energy costs and pollution; 2) to illustrate the importance of marketing this technology to uninformed end users. The development of condensing boilers in the European Community, the materials used, product designs, key performance measures, and the types of applications suited to these products are outlined. Using calculations from a body of work produced by the Chartered Institute of Building Service Engineers in Britain, it is demonstrated how seasonal efficiency differs from combustion efficiency, and how the added capital cost for these boilers may be recovered within an acceptable commercial pay back period from fuel cost savings. Applying current NO x and CO 2 information from a body of the CE Technical Committees, the author show how these products can reduce pollution levels both from CO 2 and NO x . An example of marketing these products to a largely uninformed end user customer market is cited. 2 refs., 3 tabs., 12 figs. (orig.)

  5. Automating data analysis during the inspection of boiler tubes using line scanning thermography

    Science.gov (United States)

    Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery

    2012-05-01

    Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.

  6. Installations of SNCR on bark-fired boilers

    International Nuclear Information System (INIS)

    Hjalmarsson, A.K.; Hedin, K.; Andersson, Lars

    1997-01-01

    Experience has been collected from the twelve bark-fired boilers in Sweden with selective non catalytic reduction (SNCR) installations to reduce emissions of nitrogen oxides. Most of the boilers have slope grates, but there are also two boilers with cyclone ovens and two fluidized bed boilers. In addition to oil there are also possibilities to burn other fuel types in most boilers, such as sludge from different parts of the pulp and paper mills, saw dust and wood chips. The SNCR installations seems in general to be of simple design. In most installations the injection nozzles are located in existing holes in the boiler walls. The availability is reported to be good from several of the SNCR installations. There has been tube leakage in several boilers. The urea system has resulted in corrosion and in clogging of one oil burner. This incident has resulted in a decision not to use SNCR system with the present design of the system. The fuel has also caused operational problems with the SNCR system in several of the installations due to variations in the moisture content and often high moisture content in bark and sludge, causing temperature variations. The availability is presented to be high for the SNCR system at several of the plants, in two of them about 90 %. The results in NO x reduction vary between the installations depending on boiler, fuel and operation. The emissions are between 45 and 100 mg NO 2 /MJ fuel input and the NO x reduction rates are in most installations between 30 and 40 %, the lowest 20 and the highest 70 %. 13 figs, 3 tabs

  7. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  8. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  9. Brief introduction of GEF efficient industrial boiler project in China

    Energy Technology Data Exchange (ETDEWEB)

    Meijian, T.

    1996-12-31

    The present situation of installed industrial boilers, their efficiency and environmental impact are assessed. And the factors contribute to the low efficiency and serious pollution are summarized. Based on WB-assisted GEF project, {open_quotes}Efficient Industrial Boiler Project{close_quotes} aimed at CO{sub 2} mitigation in China, a series of effective measures to bring the GHG emission under control are addressed, in technology, system performance, and operation management aspects.

  10. The ASME Boiler and Pressure Vessel Code: overview

    International Nuclear Information System (INIS)

    Farr, J.R.

    1987-01-01

    To become familiar with the Boiler and Pressure Vessel Code of the American Society of Mechanical Engineers, it is necessary to understand the history, organization, and operation of the Boiler Code Committee as well as to become familiar with the important aspects of each Section of the Code. This chapter will review the background and contents of the Code as well as give a review of the salient contents of most sections. (author)

  11. Electric boilers for nuclear power plant in Liebstadt

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feed water is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors. (JIW)

  12. Electric boilers for nuclear power plant in Liebstadt

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-29

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feedwater is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors.

  13. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were compa...... mixing in the furnace is a key issue leading to these problems. q 2003 Elsevier Ltd. All rights reserved....

  14. Fracture analysis of tube boiler for physical explosion accident.

    Science.gov (United States)

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Estimation of possibility of brittle fracture in high pressure boiler drums

    International Nuclear Information System (INIS)

    Grin', E.A.

    2005-01-01

    Paper presents the results of analysis of the problem to ensure brittle strength of high pressure boiler drums made with application of the present-day methods of linear and nonlinear fracture mechanics. The charts of the temperature boundaries of brittle fracture and of the critical factors of stress intensity plotted depending on the actual properties of the material and on dimensions of flaws are presented for standard size drums made of 22K and 16GNM steels. In the paper there are some examples of the practical application of the given charts [ru

  16. ANALISA KEHILANGAN ENERGI PADA FIRE TUBE BOILER KAPASITAS 10 TON

    Directory of Open Access Journals (Sweden)

    Aditio Primayudi Aji Nugroho

    2015-06-01

    Full Text Available Tujuan dari penulisan ini adalah menghitung kinerja boiler dengan mengetahui kerugian energi pada saat produksi steam. Analisa teknis pada boiler sangat diperlukan, sebagai upaya peningkatan efisiensi dan mengetahui banyaknya energi yang terbuang sebagai kerugian. Faktorfaktor penyebab kehilangan panas/heat loss terbesar pada boiler antara lain : “kehilangan panas akibat gas buang kering, kandungan steam dalam gas buang, kandungan air dalam bahan bakar, kandungan air dalam suplai udara dan lain-lain”.Kehilangan panas/heat loss atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi efisiensi pada boiler.Untuk itu dilakukan studi analisa dengan perhitungan kehilangan panas dengan tujuan untuk mengetahui besarnya penurunan performance dan penyebab dari penurunan performance. Berdasarkan data dan analisa metode direct diketahui penurunan sebesar 21% pada kondisi normal (operasi 79% dan dari hasil perhitungan kehilangan panas indirect sebesar 16.68% efisiensi boiler sebesar 83.32% maka dari itu adanya kehilangan panas, perlu adanya perbaikan dalam control pengaturan bahan bakar dan udara yang masuk secara optimum dengan cara menggunakan Oxygen Trim Control yang berfungsi untuk mengukur konsentrasi oksigen pada cerobong dan secara otomatis mengatur oksigen pada udara yang masuk burner sehingga dihasilkan pembakaran dengan efisiensi yang optimal.dan dengan menggunakan economizer pada pemanasan awal suhu air umpan dapat menaikan efisiensi boiler.

  17. Hybrid Intelligent Warning System for Boiler tube Leak Trips

    Directory of Open Access Journals (Sweden)

    Singh Deshvin

    2017-01-01

    Full Text Available Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1 represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2 represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers.

  18. Feasibility of recovery boiler in paper and pulp industry

    International Nuclear Information System (INIS)

    Rashid, H.

    2010-01-01

    in this paper feasibility of recovery boiler in terms of economics and environmental impacts in studied. Recovery boilers are employed in the pulp and paper industry where the cooking agent is recovered by burning black liquor. Cooking agent is exhausted due to the absorption of lignin (a burnable component) in cooking agent in the process of straw cooking. The process of recovery boiler is to remove lignin by combustion from black liquor, and heat is produced during the combustion of lignin which is used to produce steam. Recovery boiler is economical as it is recovering valuable chemicals and steam is produced as a byproduct. Steam from recovery boiler is also used for concentrating weak black liquor to concentrated black liquor recovering 50% of the utility water being used at the plant. The regenerated water in the form of foul condensate is reused in the process. The recovery of hazardous chemicals also reduces load of environmental pollution. Which otherwise can pollute the water reservoirs, and regeneration of water makes it environmentally friendly plant. Construction and challenges in operation of recovery boiler such as smelt-water explosion are also discussed in this paper. (author)

  19. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  20. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  1. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME Boiler and Pressure Vessel Code. (a) Main power boilers and auxiliary boilers shall be designed, constructed...

  2. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley [Univ. of Utah, Salt Lake City, UT (United States); Davis, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shim [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Eddings, Eric [Univ. of Utah, Salt Lake City, UT (United States); Paschedag, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, William [Brigham Young Univ., Provo, UT (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2013-09-30

    ) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  3. Ash from a pulp mill boiler--characterisation and vitrification.

    Science.gov (United States)

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. 2010 Elsevier B.V. All rights reserved.

  4. Direct recovery of boiler residue by combustion synthesis.

    Science.gov (United States)

    Nourbaghaee, Homan; Ghaderi Hamidi, Ahmad; Pourabdoli, Mahdi

    2018-04-01

    Boiler residue (BR) of thermal power plants is one of the important secondary sources for vanadium production. In this research, the aluminothermic self-propagating high-temperature synthesis (SHS) was used for recovering the transition metals of BR for the first time. The effects of extra aluminum as reducing agent and flux to aluminum ratio (CaO/Al) were studied and the efficiency of recovery and presence of impurities were measured. Aluminothermic reduction of vanadium and other metals was carried out successfully by SHS without any foreign heat source. Vanadium, iron, and nickel principally were reduced and gone into metallic master alloy as SHS product. High levels of efficiency (>80%) were achieved and the results showed that SHS has a great potential to be an industrial process for BR recovery. SHS produced two useful products. Metallic master alloy and fused glass slag that is applicable for ceramic industries. SHS can also neutralize the environmental threats of BR by a one step process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  6. High temperature oxidation in boiler environment of chromized steel

    Science.gov (United States)

    Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.

    2017-10-01

    The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.

  7. DBSSP - A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior

    International Nuclear Information System (INIS)

    Li Bin; Chen Tingkuan; Yang Dong

    2005-01-01

    In this paper, a computer program, Drum Boiler Start-up Simulation Program (DBSSP), is developed for simulating the start up behavior of controlled circulation and natural circulation boilers. The mathematical model developed here is based on the first principles of mass, energy and momentum conservations. In the boiler model, heat transfer in the waterwall, the superheater, the reheater and the economizer is simulated by the distributing parameter method, while heat transfer in the drum and the downcomer is simulated by lumped parameter analysis. The program can provide detailed flow and thermodynamic characteristics of the boiler components. The development of this program is based only on design data, so it can be used for any subcritical, controlled or natural circulation boiler. The simulation results were compared with experimental measurements, and good agreements between them were found. This program is expected to be useful for predicting the characteristics and the performance of controlled circulation and natural circulation boilers during the start up process. It also can be used to optimize a start up system for minimum start up time

  8. Orion Boiler Plate Airdrop Test System

    Science.gov (United States)

    Machin, Ricardo A.; Evans, Carol T.

    2013-01-01

    On the 29th of February 2012 the Orion Capsule Parachute Assembly System (CPAS) project attempted to perform an airdrop test of a boilerplate test article for the second time. The first attempt (Cluster Development Test 2, July 2008) to deliver a similar boilerplate from a C-17 using the Low Velocity Air Drop (LVAD) technique resulted in the programmer parachute failing to properly inflate, the test article failing to achieve the desired test initiation conditions, and the test article a total loss. This paper will pick up where the CDT-2 failure investigation left off, describing the test technique that was adopted, and outline the modeling that was performed to gain confidence that the second attempt would be successful. The second boiler plate test (Cluster Development Test 3-3) was indeed a complete success and has subsequently been repeated several times, allowing the CPAS project to proceed with the full scale system level development testing required to integrate the hardware to the first Entry Flight Test vehicle as well as go into the Critical Design Review with minimum risk and a mature design.

  9. Computations of NOx emissions of domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, D. [Ecole Centrale de Paris, 92 - Chatenay-Malabry (France). EM2C Lab.; Gicquel, O.; Darabiha, N.

    2001-07-01

    Due to severe regulations concerning pollutant emissions, practical devices using combustion to release energy must be designed from the start using accurate, predictive numerical tools. A partially premixed methane/air flame in a two-dimensional configuration is investigated in this work. This configuration is close to those used in real domestic gas boilers. The flame structure and flow pattern are calculated using complex chemistry and detailed transport models. A post-processing method is then used to predict NO emission. Computations are performed for two configurations. The two cases have the same primary and secondary mass flow-rates and equivalence ratio. The only difference between them is the introduction of an insert inside the primary injector. Both results have been compared to measurements. Calculations are found to be in good agreement with the flame shapes observed experimentally. The classical burner shows a Bunsen-type flame while the one with an insert has a totally different shape (butterfly-type flame). NO emission levels are also well predicted in both configurations. The butterfly flame induces a reduction in NO emission. This reduction seems to be due to the increased mixing between the burnt gases and the secondary air jet, which homogenizes the temperature distribution and reduces the maximum temperature. (orig.)

  10. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    Science.gov (United States)

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  11. An approach to optimization of the choice of boiler steel grades as to a mixed-integer programming problem

    International Nuclear Information System (INIS)

    Kler, Alexandr M.; Potanina, Yulia M.

    2017-01-01

    One of the ways to enhance the energy efficiency of thermal power plants is to increase thermodynamic parameters of steam. A sufficient level of reliability and longevity can be provided by the application of advanced construction materials (in particular, high-alloy steel can be used to manufacture the most loaded heating surfaces of a boiler unit). A rational choice of technical and economic parameters of energy plants as the most complex technical systems should be made using the methods of mathematical modeling and optimization. The paper considers an original approach to an economically sound optimal choice of steel grade to manufacture heating surfaces for boiler units. A case study of optimization of the discrete-continuous parameters of an energy unit operating at ultra-supercritical steam parameters, in combination with construction of a variant selection tree is presented. - Highlights: • A case study on optimization of an ultra-supercritical power plant is demonstrated. • Optimization is based on the minimization of electricity price. • An approach is proposed to optimize the selection of boiler steel grades. • The approach is based on the construction of a variant tree. • The selection of steel grades for a boiler unit is shown.

  12. Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

    Directory of Open Access Journals (Sweden)

    Krawczyk Piotr

    2016-12-01

    Full Text Available Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx emission reduction process (SNCR in a stoker boiler (WR 25 type. Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx to N2O conversion factor of about 40%.

  13. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    Directory of Open Access Journals (Sweden)

    Josip Sertić

    2014-01-01

    Full Text Available The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  14. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  15. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  16. Performance of a pellet boiler fired with agricultural fuels

    International Nuclear Information System (INIS)

    Carvalho, Lara; Wopienka, Elisabeth; Pointner, Christian; Lundgren, Joakim; Verma, Vijay Kumar; Haslinger, Walter; Schmidl, Christoph

    2013-01-01

    Highlights: ► Performance evaluation of a pellet boiler operated with different agricultural fuels. ► Agricultural fuels could be burn in the tested boiler for a certain period of time. ► All the fuels (except straw and Sorghum) satisfied the European legal requirements. ► Boilers for burning agricultural fuels should have a flexible control system. - Abstract: The increasing demand for woody biomass increases the price of this limited resource, motivating the growing interest in using woody materials of lower quality as well as non-woody biomass fuels for heat production in Europe. The challenges in using non-woody biomass as fuels are related to the variability of the chemical composition and in certain fuel properties that may induce problems during combustion. The objective of this work has been to evaluate the technical and environmental performance of a 15 kW pellet boiler when operated with different pelletized biomass fuels, namely straw (Triticum aestivum), Miscanthus (Miscanthus × giganteus), maize (Zea mays), wheat bran, vineyard pruning (from Vitis vinifera), hay, Sorghum (Sorghum bicolor) and wood (from Picea abies) with 5% rye flour. The gaseous and dust emissions as well as the boiler efficiency were investigated and compared with the legal requirements defined in the FprEN 303-5 (final draft of the European standard 303-5). It was found that the boiler control should be improved to better adapt the combustion conditions to the different properties of the agricultural fuels. Additionally, there is a need for a frequent cleaning of the heat exchangers in boilers operated with agricultural fuels to avoid efficiency drops after short term operation. All the agricultural fuels satisfied the legal requirements defined in the FprEN 303-5, with the exception of dust emissions during combustion of straw and Sorghum. Miscanthus and vineyard pruning were the best fuels tested showing comparable emission values to wood combustion

  17. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  18. Effects of Different Fuel Specifications and Operation Conditions on the Performance of Coated and Uncoated Superheater Tubes in Two Different Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Wu, Duoli; Dahl, Kristian V.; Madsen, Jesper L.

    2018-01-01

    Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates the corros......Fireside corrosionis a serious concern in biomass firing powerplants such that the efficiency of boilers is limited by high temperature corrosion. Application of protective coatings on superheater tubes is a possible solution to combat fireside corrosion. The current study investigates...... the corrosion performance of coated tubes compared to uncoated Esshete 1250 and TP347H tubes, which were exposed in two different biomass-fired boilers for one year. Data on the fuel used, temperature of the boilers, and temperature fluctuations are compared for the two boilers, and how these factors influence...... deposit formation, corrosion, and the stability of the coatings is discussed. The coatings (Ni and Ni2Al3) showed protective behavior ina wood-fired plant where the outlet steam temperature was 520 °C. However, at the plant that fired straw with an outlet steam temperature of 540 °C and where severe...

  19. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  20. Identification of boiler tube leak in PHWR by measuring short lived radioisotope Iodine-134 in boiler water using gamma spectrometric techniques

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    The boiler tube made up of Monel-400 of RAPS-2 has failed on few occasions. Due to the failure of boiler tube, the active heavy water enters into boiler and feed water leading to contamination of radioactivity in secondary water circuit. The identification of boiler tube failure was done by measuring gamma ray activity of Iodine-134 in the boiler water with sample using gamma spectrometry with high purity germanium detector. In order to increase the sensitivity of the method 5 liters of Boiler water sample was passed through a plastic column containing 40 ml of anion resin and 10 ml of activated charcoal to capture the isotopes of Iodine in the anionic form and molecular form. Samples were collected from all 8 Boilers of RAPS-2. The activity of 134 I was shown only by Boiler - 5. No other boilers showed any activity of 134 I. This indicated that Boiler - 5 had leaky tubes. The leaky hairpin of boiler - 5 was identified by measuring Tritium and IP in the riser and down comer of all 10 HXs. On the basis of Tritium and IP result, HX-7 was identified as leaky hairpin. (author)

  1. Process for start-up and slack period operation of fully charged boilers, e. g. of coal pressure gasification plants, and boiler system to carry out the process

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Kahrweg, H

    1978-10-19

    For the start-up and slack period of fully charged boilers hot water of e.g. 180/sup 0/C from a high pressure heater which is fed by a start-up boiler is used. In the first instance the boiler, its preheater and the vaporizer are filled with hot water from the start-up boiler until a medium water level is obtained. Subsequently water from the water separator is recycled through the preheater and the boiler by forced circulation and it is heated up to the hot water temperature by the start-up boiler. After the desired temperature has been reached the pressure combustion is ignited and the circulation through the preheater is interrupted by reversing to direct feed back. A considerable shortening of the start-up time is achieved because no heat is released to the condensation water in the boiler system as is done usually.

  2. A statistical estimator for the boiler power and its related parameters

    International Nuclear Information System (INIS)

    Tang, H.

    2001-01-01

    To determine the boiler power accurately is important for both controlling the plant and maximizing the plant productivity. There are two computed boiler powers for each boiler. They are steam based boiler power and feedwater based boiler power. The steam based boiler power is computed as the enthalpy difference between the feedwater enthalpy and the boiler steam enthalpy. The feedwater based boiler power is computed as enthalpy absorbed by the feedwater. The steam based boiler power is computed in RRS program and used in calibrating the measured reactor power, while the feedwater based boiler power is computed in CSTAT program and used for indication. Since the steam based boiler power is used as feedback in the reactor control, it is chosen to be the one estimated in this work. Because the boiler power employs steam flow, feedwater flow and feedwater temperature measurements, and because any measurement contains constant or drifting noise and bias, the reconciliation and rectification procedures are needed to determine the boiler power more accurately. A statistic estimator is developed to perform the function of data reconciliation, gross error detection and instruments performance monitoring

  3. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  4. How much Energy is Embodied in your Central Heating Boiler?

    Science.gov (United States)

    Koubogiannis, D.; Nouhou, C.

    2016-11-01

    Life Cycle Analysis (LCA) is an important tool in current research to quantitatively assess energy consumption and environmental impact of a building. In the context of LCA, the Embodied Energy (EE) related to the building and the corresponding Embodied CO2 emissions are valuable data. In such a case, these data concern the constitutive materials of the building and any subsystem, component or equipment in it. Usually, after calculating the mass of these materials, embodied energy values are estimated multiplying them by the corresponding EE coefficients concerning the production of these materials (EEMP). However, apart from transportation energy costs, another part of EE is that consumed for the manufacturing of any item as a finished product. The present work focuses on the manufacturing EE (EEMFG) of central heating boilers in Hellenic dwellings. Six typical boilers of different types are studied. Each of them is analyzed to its constitutive materials and its EEMP is estimated. For four of them, the boiler house where it was constructed in Greece was visited and data were collected. Based on them the corresponding boiler EEMFG values are estimated. The results concerning the EE for material production and manufacturing, as well as the results concerning the corresponding ECO2 values are discussed and assessed. Benchmark values correlating EE and ECO2 with the mass or the heat rate of the boiler are extracted.

  5. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  6. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  7. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  8. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, David W. [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Shingledecker, John P. [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  9. Numerical simulation of a small-scale biomass boiler

    International Nuclear Information System (INIS)

    Collazo, J.; Porteiro, J.; Míguez, J.L.; Granada, E.; Gómez, M.A.

    2012-01-01

    Highlights: ► Simplified model for biomass combustion was developed. ► Porous zone conditions are used in the bed. ► Model is fully integrated in a commercial CFD code to simulate a small scale pellet boiler. ► Pollutant emissions are well predicted. ► Simulation provides extensive information about the behaviour of the boiler. - Abstract: This paper presents a computational fluid dynamic simulation of a domestic pellet boiler. Combustion of the solid fuel in the burner is an important issue when discussing the simulation of this type of system. A simplified method based on a thermal balance was developed in this work to introduce the effects provoked by pellet combustion in the boiler simulation. The model predictions were compared with the experimental measurements, and a good agreement was found. The results of the boiler analysis show that the position of the water tubes, the distribution of the air inlets and the air infiltrations are the key factors leading to the high emission levels present in this type of system.

  10. Investing in efficient industrial boiler systems in China and Vietnam

    International Nuclear Information System (INIS)

    Yang Ming; Dixon, Robert K.

    2012-01-01

    Energy efficiency in industrial boiler steam systems can be very low due to old technologies, improper design and non-optimal operation of the steam systems. Solutions include efficiency assessments and investments in steam system optimizations, education and training for operators of the systems. This paper presents case studies on assessing and investing in boiler steam systems in China and Vietnam. Methodologies and approaches for data collection and analyses were designed specifically for each of the two countries. This paper concludes: (1) investing in energy efficiency in industrial boiler steam system in China and Vietnam are cost effective; (2) government should not sent national energy efficiency standards lower than that of energy companies or energy equipment manufactures. - Highlights: ► GEF successfully catalyzed investment in industrial energy efficiency boilers in China in 1990s. ► With about $100 million of investment by the GEF/World Bank/Chinese government, the project will mitigate 40 million tons of CO 2 by 2019. ► This generated lowest unit cost of carbon reduction in the world: about $2.5 per ton of CO 2 mitigation. ► Investing in energy efficiency in industrial boiler steam system today in Vietnam will be the same cost effective as in China: $2.1 per ton of CO 2 mitigation.

  11. Physical characterization of biomass fuels prepared for suspension firing in utility boilers for CFD modelling

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Yin, Chungen; Kær, Søren Knudsen

    2007-01-01

    A sample of 1.2 kg Danish wheat straw (Jutland, 1997) prepared for suspension firing in a PF boiler has been analyzed for the purpose of generating size and shape distribution functions applicable to numerical modelling of combustion processes involving biomass, characterised by highly anisotropic...... shapes. The sample is subdivided by straw type, and coherent size, type and mass distribution parameters are reported for the entire sample. This type of data is necessary in order to use CFD reliably as a design and retrofit tool for co-firing biomass with fossil fuels, as the combustion processes...

  12. Evaluation of trigeneration system using microturbine, ammonia-water absorption chiller, and a heat recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Preter, Felipe C.; Rocha, Marcelo S.; Simoes-Moreira, Jose Roberto [SISEA - Alternative Energy Systems Lab. Dept. of Mechanical Engineering. University of Sao Paulo (EP/USP), SP (Brazil)], e-mails: felipe.preter@poli.usp.br, msrocha@poli.usp.br, jrsimoes@usp.br; Andreos, Ronaldo [COMGAS - Companhia de Gas de Sao Paulo, SP (Brazil)], e-mail: randreos@comgas.com.br

    2010-07-01

    In this work, a CCHP or tri generation system has been projected, mounted, and tested in laboratory, combining a microturbine for power generation, a heat recovery boiler for hot water production, and an ammonia water absorption chiller for chilled water production. The project was motivated by the large practical applications of this kind of energy recovery system in commerce, and industry, and, in general, more than 85% of the energy source is used as power, hot water, and cold water. In the first part, the trigeneration system theoretical model is detailed, and in the second part, experimental results are presented for different operation conditions. (author)

  13. Boiler feedwater quality improvement by replacing conventional pre-treatment with advanced membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Bernhard [Process Systems Pall GmbH, Dreieich (Germany). Marketing; Venkatadri, Ramraj [Pall Corporation, Port Washington, NY (United States). Global Marketing Energy

    2013-09-01

    Two case studies in different application fields highlight significant economical and operational improvements that were achieved by replacing conventional water treatment technologies by highly-sophisticated membrane systems. The first case study deals with boiler feedwater in a power plant, focusing on the challenges faced as well as the direct and indirect benefits gained by the new system within a utility station. The second case study deals with the conventional water treatment scheme for groundwater from 13 wells at a major oil sands facility. Operational performance as well as the cost improvements gained in both cases will be presented. (orig.)

  14. Three-dimensional computer simulation for combustion and NO{sub x} emission in a grate fired boiler at Baeckhamars, Sweden. Technical report[(Baeckhammars Bruk)

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-05-01

    This report describes the fundament of mathematical modeling for the grate fired boilers in Part A, and presents the results from the numerical simulations for the flow pattern, combustion and NO{sub x} emission in the Baeckhammars grate fired boiler in Part B. The simulated boiler is equipped with a new secondary air supply system called Ecotube. The objective of this project is to develop and experimentally verify tools for computer simulations of solid biomass fuel combustion processes in a grate fired boiler. The work focuses on the numerical simulation using CFD technique and development of a NO{sub x} post processor. The unstructured mesh technique also has been used to discretize the boiler. An unstructured grid with total 284399 tetrahedral cells describes the three dimensional geometry and is used for flow field and combustion simulations. In order to simulate the combustion process in the boiler, a simplified grate bed model -- black-box bed model is used, which is based on the balance analysis of mass and energy on the grate bed and needless to consider any detailed and very difficult dynamic processes which have not been valuable by mathematical modeling on the grate bed yet. Therefore, it is quite convenient for industrial applications. In this work, both the cyanide route and the ammonia route for modeling the fuel containing nitrogen NO{sub x} are developed, and the former has been used to predict the NO generation in Baeckhammars bark boiler. Two 3D cases corresponding to 15 MW and 11 MW output thermal power respectively are simulated in detail. Results show that a new air supply system called Ecotube gives a considerably more uniform velocity, temperature and concentration distribution from the secondary air tubes to the upper part of the furnace. The upper furnace works almost as a 'plug flow reactor' which gives sufficient residence time for CO conversion and low NO{sub x} emission. The calculations of flow and mixing patterns in the

  15. Criteria selection for the assessment of Serbian lignites tendency to form deposits on power boilers heat transfer surfaces

    Directory of Open Access Journals (Sweden)

    Mladenović Milica

    2009-01-01

    Full Text Available Based on investigations of ash deposit formation, semi-empirical indicators for slagging and fouling, based on ash chemical composition and its fusion temperature, have been determined. These criteria-indicators, in suggested limits, describe the coals on which they are based (North-American and British well. However, the experience in the thermal power production sector of Serbia shows that their literal application to domestic coals does not produce satisfactory results. This contribution provides an analysis of applicability and the choice of criteria that are suitable for Serbian coals. The focus of the contribution is on coal slagging indicators, since slagging has much heavier consequences on heat transfer inside the steam boiler, and on boiler operation as a whole. The basis for the analysis of chosen criteria comprises of the results of investigations of four coal fields - Kostolac, Kolubara, Kosovo (Serbia, and Ugljevik (Bosnia and Herzegovina.

  16. On synthesis and optimization of steam system networks. 1. Sustained boiler efficiency

    CSIR Research Space (South Africa)

    Majozi, T

    2010-08-01

    Full Text Available situations. This paper presents a process integration technique for network synthesis using conceptual and mathematical analysis without compromising boiler efficiency. It was found that the steam flow rate to the HEN could be reduced while maintaining boiler...

  17. Lagisza, world's largest CFB boiler, begins commercial operation

    Energy Technology Data Exchange (ETDEWEB)

    Nuortimo, K. [Foster Wheeler, Varkaus (Finland)

    2010-04-15

    Early operating experience with the Lagisza circulating fluidised bed (CFB) boiler in Poland - the world's largest such boiler to date, and also the first one with supercritical steam conditions - has been positive. 3 figs., 4 tabs.

  18. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  19. DYMEL code for prediction of dynamic stability limits in boilers

    International Nuclear Information System (INIS)

    Deam, R.T.

    1980-01-01

    Theoretical and experimental studies of Hydrodynamic Instability in boilers were undertaken to resolve the uncertainties of the existing predictive methods at the time the first Advanced Gas Cooled Reactor (AGR) plant was commissioned. The experiments were conducted on a full scale electrical simulation of an AGR boiler and revealed inadequacies in existing methods. As a result a new computer code called DYMEL was developed based on linearisation and Fourier/Laplace Transformation of the one-dimensional boiler equations in both time and space. Beside giving good agreement with local experimental data, the DYMEL code has since shown agreement with stability data from the plant, sodium heated helical tubes, a gas heated helical tube and an electrically heated U-tube. The code is now used widely within the U.K. (author)

  20. Engineering and economic aspects of centalized heating from nuclear boilers

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Baturov, B.B.; Korytnikov, V.P.; Koryakin, Yu.I.; Chernyaev, V.A.; Kovylyanskij, Ya.A.; Galaktionov, I.V.

    1979-01-01

    Some engineering and economic aspects for deployment of centralized nuclear boilers (NB) in the USSR are considered. Engineering, maintenance and economic features of NB as compared to organic-fuelled boilers and nuclear thermal power plants are discussed. Among major factors governing economic efficiency of NB underlined are oraganic fuel costs, reactor unit power, location relative to heat-consuming centres and capacity factor. It is concluded that NB can be economical for heating large consumers (more than 1500 G kal/hr). At the periphery NB can be competitive already at reactor unit power of several MWth. The development of HTGR type reactor-based nuclear-chemical boilers and lines for heat transport in a chemically bound state (e.g., CH 4 → H 2 +CO 2 +CO → CH 4 ) opens the way for a substantial breakthrow in the centralized NB efficiency

  1. Optimal Combustion Conditions for a Small-scale Biomass Boiler

    Directory of Open Access Journals (Sweden)

    Viktor Plaček

    2012-01-01

    Full Text Available This paper reports on an attempt to achieve maximum efficiency and lowest possible emissions for a small-scale biomass boiler. This aim can be attained only by changing the control algorithm of the boiler, and in this way not raising the acquisition costs for the boiler. This paper describes the experimental facility, the problems that arose while establishing the facility, and how we have dealt with them. The focus is on discontinuities arising after periodic grate sweeping, and on finding the parameters of the PID control loops. Alongside these methods, which need a lambda probe signal for proper functionality, we inroduce another method, which is able to intercept the optimal combustion working point without the need to use a lambda sensor.

  2. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  3. Evaluation of Corrosion Caused by the use of In Natura Biogas in Steam Generator Boilers of Carbon Steel Structural Elements

    OpenAIRE

    Fontenelle, Marcellus; Alves, Helton José; Monteiro, Marcos Roberto; Higa, Silvia Midori; Rovere, Carlos Alberto Della; Pellizzer, Eder Luis; Fontenelle, Isaddora

    2017-01-01

    This work evaluates the corrosion process caused by the presence of hydrogen sulfide in the biogas in natura, in steels commonly used in the construction of steam generator boilers, simulating conditions close to those found on the real application of these materials, exposing the test bodies directly to biogas in natura, flame of combustion and gases resulting from the combustion of this biofuel, in chimney. After 314 hours of exposure under the specified conditions, the corroded surfaces of...

  4. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  5. Mekanisme Proses Pemanasan Air Di Dalam Boiler Dengan Mempergunakan Heater Tambahan Untuk Efisiensi Pembakaran

    OpenAIRE

    Helmon Sihombing

    2010-01-01

    Pada proses pemanasan air, air yang berasal dari raw water (air tanah) tidak langsung dibakar didalam boiler. dalam hal ini digunakan peralatan instrumen Deaerator dan economizer yang berfungsi untuk pemanasan awal sebelum dibakar didalam boiler. Fungsi deaerator dan economizer ini adalah sebagai komponen pembantu untuk memanaskan air sebelum dibakar didalam boiler. Apabila pemanasan air langsung dilakukan didalam boiler maka akan membutuhkan waktu yang cukup lama dan menggunakan bahan b...

  6. High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing

    Science.gov (United States)

    2012-07-01

    enable energy saving necessary for obtaining Energy Star certification for the whole boiler system. Widespread boiler control updates could be possible...adaptability to different boiler and oil/gas burner configurations, and extensibility to operation with nonconventional fuels (e.g., biogas and syngas...typically operating below or slightly above 80%. Higher efficiency improvements can certainly be obtained via boiler replacement and adoption of

  7. Modelling of a one pass smoke tube boiler

    DEFF Research Database (Denmark)

    Karstensen, Claus M. S.; Sørensen, Kim

    2004-01-01

    A nonlinear state-space model with five states describing a one pass smoke tube boiler has been formulated. By means of mass- and energy-balance the model describes the dynamics of the Furnace, the Convection Zone and the Water/Steam Part and the three sub models are merged into an overall model....... The model is further linearized for use in a linear control design. The simulations have been carried out by means of MATLAB/SIMULINK and the models have been verified with measurements from a full scale boiler plant. Parameters in the model that are difficult to calculate have been estimated and the method...

  8. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  9. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw-fired...... and woodchip fired boilers are discussed....

  10. A METHOD FOR EXERGY ANALYSIS OF SUGARCANE BAGASSE BOILERS

    Directory of Open Access Journals (Sweden)

    CORTEZ L.A.B.

    1998-01-01

    Full Text Available This work presents a method to conduct a thermodynamic analysis of sugarcane bagasse boilers. The method is based on the standard and actual reactions which allows the calculation of the enthalpies of each process subequation and the exergies of each of the main flowrates participating in the combustion. The method is presented using an example with real data from a sugarcane bagasse boiler. A summary of the results obtained is also presented together based on the 1st Law of Thermodynamics analysis, the exergetic efficiencies, and the irreversibility rates. The method presented is very rigorous with respect to data consistency, particularly for the flue gas composition.

  11. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer shall...

  12. Pencegahan Korosi Dengan Boiler Water Treatment (Bwt) Pada Ketel Uap Kapal.

    OpenAIRE

    Suleman, Suleman

    2007-01-01

    This paper explained about a using of Boiler Water Treatment (BWT) as corrosion protection for boiler on ship. BWT used as addition on boiler water, which used destilat water. As experiment results, BWT used on destilat water and destilat - seawater mixed given not koagulan patch on. The simulation given not satisfied results, caused by good not equipment.

  13. 46 CFR 97.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Examination of boilers and machinery. 97.15-15 Section... VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-15 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to...

  14. 46 CFR 32.35-1 - Boilers and machinery-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Boilers and machinery-TB/ALL. 32.35-1 Section 32.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-1 Boilers and machinery—TB/ALL. Boilers, main and auxiliary...

  15. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels in...

  16. 7 CFR 51.2833 - U.S. No. 1 Boilers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. No. 1 Boilers. 51.2833 Section 51.2833 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...) Grades § 51.2833 U.S. No. 1 Boilers. U.S. No. 1 Boilers consists of onions which meet all the...

  17. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  18. 46 CFR 78.17-30 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Examination of boilers and machinery. 78.17-30 Section... OPERATIONS Tests, Drills, and Inspections § 78.17-30 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to examine...

  19. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1) Marine...

  20. 46 CFR 196.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Examination of boilers and machinery. 196.15-15 Section... VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-15 Examination of boilers and machinery. (a) It shall be the duty of the chief engineer when he assumes charge of the boilers and machinery of a vessel...

  1. 46 CFR 62.35-20 - Oil-fired main boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Oil-fired main boilers. 62.35-20 Section 62.35-20... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-20 Oil-fired main boilers. (a) General. (1) All main boilers, regardless of intended mode of operation, must be provided with the...

  2. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief Engineer...

  3. 46 CFR 35.25-1 - Examination of boilers and machinery by engineer-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Examination of boilers and machinery by engineer-T/ALL... Engine Department § 35.25-1 Examination of boilers and machinery by engineer—T/ALL. It shall be the duty of an engineer when assuming charge of the boilers to examine the same forthwith and thoroughly. If...

  4. Boiler corrosion (citations from the NTIS data base). Report for 1964-Jul 76

    International Nuclear Information System (INIS)

    Smith, M.F.

    1976-07-01

    Research on design, improved efficiency, materials, cathodic protection, corrosion inhibiting additives and combustion in coal and fuel oil fired boilers are cited. Corrosion from limestone injection for pollution control, magnetohydrodynamics, ship boilers, and nuclear power plant boilers are included. (This updated bibliography contains 86 abstracts, 9 of which are new entries to the previous edition.)

  5. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and appurtenances... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection of boilers, pressure vessels, piping and...

  6. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler, etc...

  7. Real-time monitoring energy efficiency and performance degradation of condensing boilers

    NARCIS (Netherlands)

    Baldi, S.; Le, Q.T.; Holub, O.; Endel, P

    2017-01-01

    Condensing boilers achieve higher efficiency than traditional boilers by using waste heat in flue gases to preheat cold return water entering the boiler. Water vapor produced during combustion is condensed into liquid form, thus recovering its latent heat of vaporization, leading to around 10–12%

  8. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  9. SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

  10. Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process

    International Nuclear Information System (INIS)

    Fujishima, Hidekatsu; Takekoshi, Kenichi; Kuroki, Tomoyuki; Tanaka, Atsushi; Otsuka, Keiichi; Okubo, Masaaki

    2013-01-01

    Highlights: • A multi-fuel boiler system combined with NO x aftertreatment is developed. • NO x is removed from flue gas by a plasma-chemical hybrid process. • Waste bio-oils are utilized as renewable energy source and for CO 2 reduction. • Ultra low NO x emission less than 2 ppm is achieved. • The boiler system is applicable for industrial use. - Abstract: A super-clean boiler system comprising a multi-fuel boiler and a reactor for plasma-chemical hybrid NO x aftertreatment is developed, and its industrial applications are examined. The purpose of this research is to optimally reduce NO x emission and utilize waste bio-oil as a renewable energy source. First, NO oxidation using indirect plasma at elevated flue gas temperatures is investigated. It is clarified that more than 98% of NO is oxidized when the temperature of the flue gas is less than 130 °C. Three types of waste bio-oils (waste vegetable oil, rice bran oil, and fish oil) are burned in the boiler as fuels with a rotary-type burner for CO 2 reduction considering carbon neutrality. NO x in the flue gases of these bio-oils is effectively reduced by the indirect plasma-chemical hybrid treatment. Ultralow NO x emission less than 2 ppm is achieved for 450 min in the firing of city natural gas fuel. The boiler system can be successfully operated automatically according to unsteady steam demand and using an empirical equation for Na 2 SO 3 supply rate, and can be used in industries as an ideal NO x control technology

  11. Possibilities of an efficient noise damping in the large gas-fueled boilers

    International Nuclear Information System (INIS)

    1994-01-01

    This report describes a series of tests with the objective to develop a technique for active control, and suppression of unstable conditions of combustion in gas-fired boiler systems. The primary target group for this report are persons within the energy sector, including especially users of natural gas. Focus has been given more to the practical possibilities and limitations than to complicated acoustical theory. The technical background for this work is constituted by the latest innovations within active noise cancelling methods for low frequent noise in channel- and pipe shaped systems, such as heating-, air-and exhaust systems. The fundamental idea has been to implement already functioning and commercial available systems for active noise cancellation in an modified setup to a gasfired boiler system. A few examples of similar attempts are given. Latest a relatively successful example of actively controlling an unstable combustion in a channel shaped burner system (CNRS Paris 1993). The conclusion of the project is anyway, that unstable combustion in larger gasfired boilers can not be controlled by the active methods and systems known today. The reasons for this are: the flame and thus the noise source are distributed in space, the acoustical wave-propagation in the combustion chamber is complex and with low damping, several loops for unstable combustion are possible. Within this project special sensors for high temperatures are developed, e.g.: probe microphones, high temperature turbulence screens and a system for measuring of the variations in UV-light emission form the flame. These systems are applicable also for more 'traditional active noise cancellation' of low-frequent noise in exhaust pipes and chimneys. (au)

  12. Sodium reflux pool-boiler solar receiver on-sun test results

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  13. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  14. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  15. Wylfa nuclear boiler repair. How a major problem was solved

    International Nuclear Information System (INIS)

    1977-09-01

    The CEGB has published a booklet, with coloured illustrations, that describes in detail the story of an unusually difficult boiler repair on a Magnox reactor at Wylfa nuclear power station. Boiler leaks affected the operation of No. 2 reactor in 1972, and persisted during 1973. A special procedure was developed for plugging the leaks using a remote welding machine but with the incidence of leaks continuing attempts were made to obtain a specimen of leaking tube by cutting through the boiler support tank to gain access. Eventually the fault was then traced to excessive relative motion between the tubes and support clips. Remedial work took seven months and was completed in December 1975. The start of the problem and the method of plugging the leaks is described. Details are given of the investigation leading to the obtaining and examination of a sample of leaking tube and the determination of the fault. Establishment of the cause as an unusual form of resonant vibration causing wear and fretting in clip-to-tube positions in the economiser region of the boiler is described in detail. The difficulties and accomplishments of the repair work are detailed. Finally the operation is looked at in retrospect and the experiences gained are summarised. (UK)

  16. Hardware and software techniques for boiler operation and management

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hiroshi (Hirakawa Iron Works, Ltd., Osaka (Japan))

    1989-04-01

    A study was conducted on the requirements for easy-operable boiler from the view points of hardware and software technologies. Relation among efficiency, energy-saving, and economics, and control of total emission regarding low NOx operation, were explained, with suggestion of orientation to developed necessary hard- and soft- ware for the realization. 8 figs.

  17. Creep analysis of boiler tubes by fem | Taye | Zede Journal

    African Journals Online (AJOL)

    In this paper an analysis is developed for the determination of creep deformation of an axisymmetric boiler tubes subjected to axisymmetric loads. The stresses and the permanent strains at a particular time and at the steady state condition, resulting from loading of the tube under constant internal pressure and elevated ...

  18. assessment of some performance characteristics of refuse boiler ...

    African Journals Online (AJOL)

    TIMZY

    2013-07-02

    Jul 2, 2013 ... A pioneer palm oil boiler unit, in an immense power self-contained oil mill, impaired by many years of accumulated ... revealed that under a single shift operating mode (8 hours), a time saving of 72 minutes arising from the effectiveness of ... electric power generation and for other processing equipment and ...

  19. Oxygen pitting failure of a bagasse boiler tube

    CSIR Research Space (South Africa)

    Heyes, AM

    2001-04-01

    Full Text Available Examination of a failed roof tube from a bagasse boiler showed transverse through-cracks and extensive pitting. The pitting was typically oxygen induced pitting and numerous fatigue cracks had started within these pits. It is highly probable...

  20. Log-fueled boilers; Les chaudieres a buches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document describes the different technologies of wood boilers fueled with logs (ascending combustion and natural draught, horizontal combustion and natural draught, reverse combustion and natural draught, reverse combustion and forced draught), their advantages and drawbacks, selection criteria and installation rules. (J.S.)

  1. SEM Investigation of Superheater Deposits from Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Frandsen, Flemming; Hansen, Jørn

    2004-01-01

    , mature superheater deposit samples were extracted from two straw-fired boilers, Masnedø and Ensted, with fuel inputs of 33 MWth and 100 MWth, respectively. SEM (scanning electron microscopy) images and EDX (energy dispersive X-ray) analyses were performed on the deposit samples. Different strategies...

  2. A NOx control regulation for electric utility boilers in California

    International Nuclear Information System (INIS)

    Price, D.R.

    1992-01-01

    The reduction of oxides of nitrogen emissions is becoming an increasingly important part of ozone attainment plans. As a part of its ozone attainment plan, the Ventura County (California) Air Pollution Control Board adopted in June, 1991, a regulation (Rule 59) to limit oxides of nitrogen emissions from four electrical utility boilers in the county. Rule development took two years and involved considerable public input. The emission limit for each of two 750 megawatt units is set at 0.10 pounds of NO x per megawatt-hour net after June, 1994. The emission limit for each of two 215 megawatt units is 0.20 pounds of NO x per megawatt-hour after June, 1996. Additional limitations are included for fuel oil operation. The rule does not specify an emission control technology. Conventional selective catalytic reduction, urea injection and combustion modifications are considered the technologies most likely to be used to comply. At $17,613 per ton of NO x reduced for the two large boilers and $8.992 per ton of NO x reduced for the small boilers, the rule is considered cost effective. The capital cost for conventional selective catalytic reduction systems on all four boilers is expected to be in excess of $210,000,000

  3. Constrained control of a once-through boiler with recirculation

    DEFF Research Database (Denmark)

    Trangbæk, K

    2008-01-01

    There is an increasing need to operate power plants at low load for longer periods of time. When a once-through boiler operates at a sufficiently low load, recirculation is introduced, significantly altering the control structure. This paper illustrates the possibilities for using constrained con...

  4. AUTOMATIC CONTROL SYSTEM ОF REGIONAL BOILER HOUSE

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2005-01-01

    Full Text Available Implementation of an automatic control system is one of directions that promotes to increase an operational efficiency of a heat supply system. A heating boiler house in Surgut (Russia is taken as an example to demonstrate an actual realization of such system.

  5. A risk approach to the management of boiler tube thinning

    International Nuclear Information System (INIS)

    Noori, Soudabeh A.; Price, John W.H.

    2006-01-01

    A large set of industrial thickness inspection data covering four boiler units of a power station over a period of five years was made available to the authors. The measurements were made in regions of the boiler where corrosion/erosion was the major cause of failure of the boiler tubes. There were over 40,000 separately measured data points in the data and all were collected with some care and expense. In the development of maintenance strategies for equipment, this type of data is typical of the data that must be collected and assessed. This data thus represents an opportunity to evaluate the ability to generate a useful risk approach to the management of the tubing. An important example of a risk-based approach is the American Petroleum Institute (API) Risk Based Inspection ('RBI'), API 581. A variety of problems were encountered applying this to boiler tubes. The problems include irrelevant API 581 corrosion rate tables, lack of information on how to analyse inspection data, difficulty of dealing with multiple inspection categories and lack of suitable direction for programming inspection intervals

  6. Reliability of non-heated tube bends of boilers

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Akhremenko, V.L.; Zamotaev, V.S.

    1984-01-01

    Bend failures are described for non-heated boiler tubes of 12Kh1MF and 20 steels. Methods of reliability evaluations are presented which permit revealing and replacing the bends with inadequate resources. Influences of operation conditions on bend durability is shown as well as the factors which are dominating at bend failures

  7. Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions

    International Nuclear Information System (INIS)

    Monteleone, B.; Chiesa, M.; Marzuoli, R.; Verma, V.K.; Schwarz, M.; Carlon, E.; Schmidl, C.; Ballarin Denti, A.

    2015-01-01

    Highlights: • LCA was performed on innovative small scale pellet boilers. • Pellet boilers impacts were compared to oil and natural gas boilers impacts. • Both literature and experimental data were used for life cycle analysis. • The environmental impact due to all life cycle phases was envisaged. • Sensitivity tests evidenced realistic ways for pellet boilers impact reduction. - Abstract: This study focuses on the environmental impact assessment through Life Cycle Analysis (LCA) of two innovative 10 kW pellet boilers. In particular, the second boiler represents a technological evolution of the first one developed to improve its performance in terms of efficiency and environmental impact. For both boilers, emission factors measured during laboratory tests (full load tests and specific load cycle tests representative of real life boiler operation) have been used as input data in the life cycle analysis. The SimaPro software (v.8.0.4.30) was used for the LCA and the ReCiPe Midpoint method (European version H) was chosen to assess the environmental impact of all boilers (according to LCA ISO standards). In addition, the ReCiPe Endpoint method was used to compare the final results of all 5 boilers with literature data. The pelletisation process represented the most relevant share of the overall environmental impact followed by the operational phase, the manufacturing phase and the disposal phase. A sensitivity analysis performed on the most efficient pellet boiler evidenced the variation of the boiler’s environmental impact as a function of PM10 and NO X emission factors with respect to emission factors monitored during boiler full load operation. Moreover, the reduction of the boiler’s weight and the adoption of new electronic components led to a consistent reduction (−18%) of its environmental impact with respect to the previous technology. A second LCA has been carried on for a 15 kW oil boiler, a 15 kW natural gas boiler and a 15 kW pellet boiler

  8. Static stability characteristics of the boilers at Oldbury nuclear power station

    International Nuclear Information System (INIS)

    Paynter, R.J.; Rea, J.

    1986-01-01

    The cause of an intermittent load loss at Oldbury Nuclear Power Station is shown to be the high sensitivity of boiler performance to the imposed spatial distribution of boiler gas inlet temperature. This high sensitivity is demonstrated to be a function of the inherent static stability characteristics of the boilers. The installation of orifice plates with a high flow resistance into the feed pipework to the half boilers has greatly reduced the boiler sensitivity and eliminated the intermittent load loss so that, on average, higher electrical generation is obtained from the station. (author)

  9. Fuel quality and its effect on the design of power boilers in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1984-05-01

    Statistical data, taken from Power, Proceedings of the American Power Conference and others, on developments since the 1950s in boiler design caused by the increasing use of lower quality fuel (subbituminous and lignite coals) are presented. The effect of pollution regulations in the USA on boiler design is discussed. The results of a 16 year study by the TVA on the decrease in coal quality fired in its boilers and its effect on boiler efficiency are presented. Methods of transport are surveyed. Descriptions and characteristics of several modern boilers designed by Babcock and Wilcox, Combustion Engineering, Foster-Wheeler and Riley Stoker are given. 13 references.

  10. Multi-objective Optimization of Coal-fired Boiler Combustion Based on NSGA-II

    OpenAIRE

    Tingfang Yu; Hongzhen Zhu; Chunhua Peng

    2013-01-01

    NOx emission characteristics and overall heat loss model for a 300MW coal-fired boiler were established by Back Propagation (BP) neural network, by which the the functional relationship between outputs (NOx emissions & overall heat loss of the boiler) and inputs (operational parameters of the boiler) of a coal-fired boiler can be predicted. A number of field test data from a full-scale operating 300MWe boiler were used to train and verify the BP model. The NOx emissions & heat loss pr...

  11. Control of the Bed Temperature of a Circulating Fluidized Bed Boiler by using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    AYGUN, H.

    2012-05-01

    Full Text Available Circulating fluidized bed boilers are increasingly used in the power generation due to their higher combustion efficiency and lower pollutant emissions. Such boilers require an effective control of the bed temperature, because it influences the boiler combustion efficiency and the rate of harmful emissions. A Particle-Swarm-Optimization-Proportional-Integrative-Derivative (PSO-PID controller for the bed temperature of a circulating fluidized bed boiler is presented. In order to prove the capability of the proposed controller, its performances are compared at different boiler loads with those of a Fuzzy Logic (FL controller. The simulation results demonstrate some advantages of the proposed controller.

  12. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    Directory of Open Access Journals (Sweden)

    J. O. ODIGURE

    2005-06-01

    Full Text Available This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

  13. Evaluation of corrosion caused by the use of in natura biogas in steam generator boilers of carbon steel structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Fontenelle, Marcellus; Alves, Helton Jose, E-mail: helquimica@gmail.com [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil); Pellizzer, Eder Luis [Universidade do Oeste de Santa Catarina (UNOESC), Xanxere, SC (Brazil); Monteiro, Marcos Roberto; Rovere, Carlos Alberto Della [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Higa, Silvia Midori [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil); Fontenelle, Isaddora [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2017-05-15

    This work evaluates the corrosion process caused by the presence of hydrogen sulfide in the biogas in natura, in steels commonly used in the construction of steam generator boilers, simulating conditions close to those found on the real application of these materials, exposing the test bodies directly to biogas in natura, flame of combustion and gases resulting from the combustion of this biofuel, in chimney. After 314 hours of exposure under the specified conditions, the corroded surfaces of ASTM A178 and ASTM A516 were analyzed, by optical microscopy, electronic scanning microscopy, X-ray diffraction and surface hardness. The determination of corrosion rates for each test condition and each material tested can be used as a parameter for the determination of the minimum tolerance for mechanical stability, in the calculation of the minimum required thickness of the structural elements of the steam generator boilers fed to biogas. (author)

  14. Evaluation of corrosion caused by the use of in natura biogas in steam generator boilers of carbon steel structural elements

    International Nuclear Information System (INIS)

    Fontenelle, Marcellus; Alves, Helton Jose; Pellizzer, Eder Luis; Monteiro, Marcos Roberto; Rovere, Carlos Alberto Della; Higa, Silvia Midori; Fontenelle, Isaddora

    2017-01-01

    This work evaluates the corrosion process caused by the presence of hydrogen sulfide in the biogas in natura, in steels commonly used in the construction of steam generator boilers, simulating conditions close to those found on the real application of these materials, exposing the test bodies directly to biogas in natura, flame of combustion and gases resulting from the combustion of this biofuel, in chimney. After 314 hours of exposure under the specified conditions, the corroded surfaces of ASTM A178 and ASTM A516 were analyzed, by optical microscopy, electronic scanning microscopy, X-ray diffraction and surface hardness. The determination of corrosion rates for each test condition and each material tested can be used as a parameter for the determination of the minimum tolerance for mechanical stability, in the calculation of the minimum required thickness of the structural elements of the steam generator boilers fed to biogas. (author)

  15. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the ASME Boiler and Pressure Vessel Code. (a) Heating boilers shall be designed, constructed, inspected, tested...

  16. Operator's Manual, Boiler Room Operations and Maintenance. Supplement A, Air Pollution Training Institute Self-Instructional Course SI-466.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Training Inst.

    This Operator's Manual is a supplement to a self-instructional course prepared for the United States Environmental Protection Agency. This publication is the Boiler Room Handbook for operating and maintaining the boiler and the boiler room. As the student completes this handbook, he is putting together a manual for running his own boiler. The…

  17. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Science.gov (United States)

    2010-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or hydrochloric acid...

  18. Multi-unit shutdown due to boiler feedwater chemical excursion

    International Nuclear Information System (INIS)

    Diebel, M.E.

    1991-01-01

    Ontario Hydro's Bruce Nuclear Generating Station 'B' consists of four 935 W CANDU units located on the east shore of Lake Huron in the province of Ontario, Canada. On July 25 and 26, 1989 three of the four operating units were shutdown due to boiler feedwater chemical excursions initiated by a process upset in the Water Treatment Plant that provides demineralized make-up water to all four units. The chemicals that escaped from an ion exchange vessel during a routine regeneration very quickly spread through the condensate make-up system and into the boiler feedwater systems. This resulted in boiler sulfate levels exceeding shutdown limits. A total of 260 GWH of electrical generation was unexpectedly made unavailable to the grid at a time of peak seasonal demand. This event exposed several unforeseen deficiencies and vulnerabilities in the automatic demineralized water make-up quality protection scheme, system designs, operating procedures and the ability of operating personnel to recognize and appropriately respond to such an event. The combination of these factors contributed towards turning a minor system upset into a major multi-unit shutdown. This paper provides the details of the actual event initiation in the Water Treatment Plant and describes the sequence of events that led to the eventual shutdown of three units and near shutdown of the fourth. The design inadequacies, procedural deficiencies and operating personnel responses and difficulties are described. The process of recovering from this event, the flushing out of system piping, boilers and the feedwater train is covered as well as our experiences with setting up supplemental demineralized water supplies including trucking in water and the use of rental trailer mounted demineralizing systems. System design, procedural and operational changes that have been made and that are still being worked on in response to this event are described. The latest evidence of the effect of this event on boiler tube

  19. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  20. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  1. Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2012-01-01

    . Corresponding samples of fuels, ash deposits and fly ash have provided information on the transformation of inorganics in the boiler. Generally, grate fired boilers provide a fly ash containing high contents of K, Cl and S compared to the fuel ash, while suspension fired boilers fly ash has a composition nearly...... similar to the fuel ash. Inner most biomass deposits are always salt-rich, while thicker deposit layers also contain some Si and Ca. Deposit probe formation rate measurements have been performed in different ways on several boilers. Grate and suspension fired boilers seems to cause similar deposit...... formation rates. Suspension fired boilers generate more fly ash, while grate boilers form a fly ash with a higher fraction of melt formation (and thereby a higher sticking probability) at similar temperatures. For suspension fired units it is observed that wood with a lower ash content than straw gives rise...

  2. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  3. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    International Nuclear Information System (INIS)

    Kim, Seongil; Choi, Sangmin

    2017-01-01

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  4. 3rd symposium on high-efficiency boiler technology: potential, performance, shortcomings of natural gas fuelled high-efficiency boilers

    International Nuclear Information System (INIS)

    1993-01-01

    The brochure contains abstracts of the papers presented at the symposium. The potential, performance and marketing problems of natural gas high-efficiency boiler systems are outlined, and new ideas are presented for gas utilities, producers of appliances, fitters, and chimneysweeps. 13 papers are available as separate regards in this database. (HW) [de

  5. Numerical investigations of combustion and emissions of syngas as compared to methane in a 200 MW package boiler

    International Nuclear Information System (INIS)

    Habib, Mohamed A.; Mokheimer, Esmail M.A.; Sanusi, Sofihullahi Y.; Nemitallah, Medhat A.

    2014-01-01

    Highlights: • Syngas combustion is numerically investigated in a two-burner 200 MW package boiler. • Different syngas compositions were considered for combustion with air. • The 33% CO:67% H 2 syngas composition was found to have the shortest flame. • The boiler exit temperature was found to increase with the increase of hydrogen contents. • The 50% CO:50% H 2 syngas composition had the best combustion characteristics. - Abstract: During the last decades, focus has been made on the use of syngas instead of conventional hydrocarbon fuels targeting NO x emission reduction in the exhaust gases. With advances in solar-steam methane reforming for the production of synthesis gas, the applicability of syngas at industrial scale becomes imperative. In the present work, syngas combustion and emission characteristics are numerically investigated and compared with the case of pure methane combustion in a two-burner 200 MW package boiler. A detailed reaction kinetics mechanism of 21 steps and 11 species was considered for the modeling of syngas–air combustion. Different syngas compositions were considered for combustion with air including 67% CO:33% H 2 , 50% CO:50% H 2 and 33% CO:67% H 2 . The results showed a combustion delay in case of pure methane combustion as compared to syngas combustion. The case of 33% CO:67% H 2 syngas composition was found to have the shortest flame as compared to that of other syngas compositions. The case of 50% CO:50% H 2 syngas resulted in lowest maximum boiler temperature while 67% CO:33% H 2 syngas resulted in highest maximum boiler temperature. The boiler exit temperature was found to increase with the increase of hydrogen content in the syngas. The excess air factor was found to have a significant effect on both CO and NO x emissions. NO x emission decreases by about 30% when the amount of excess air is increased from 5% to 25%, which is very promising. Among the tested syngas compositions, the 50% CO:50% H 2 syngas composition

  6. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  7. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and

  8. Application of system simulation to WCH boiler selection

    NARCIS (Netherlands)

    Hensen, J.L.M.; Kabele, K.

    1997-01-01

    This paper reports the first results of an ongoing project aimed at generating design information/knowledge for wet central heating (WCH) refurbishment in multi-family houses in Central Europe. In that practical context, integral modelling and simulation of a building and its heating system is

  9. Applicability of PSD to Pennsylvania Power and Light Auxiliary Boiler

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  10. Request for Guidance on PSD Applicability Determinations for Boiler Emissions

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  11. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  12. Room temperature zeolitization of boiler slag from a Bulgarian thermal power plant

    Directory of Open Access Journals (Sweden)

    Pascova Radost D.

    2017-01-01

    Full Text Available A simple and cost-effective method was applied for the synthesis of zeolite composites utilising wet bottom boiler slag from the Bulgarian coal-fired thermal power plant “Sviloza”, near the town of Svishtov. The method consisted of a prolonged alkali treatment at room temperature of this waste. Experimental techniques, such as scanning electron microscopy, energy-dispersive X-ray and X-ray diffraction analyses, are employed to characterize the initial slag and the final products with respect to their morphology, and elemental and mineral compositions. The composites synthesized in this way contained two Na-type zeolite phases: zeolite X (type FAU and zeolite Linde F (type EDI. The zeolited products and the starting slag were tested as adsorbents for a textile dye (Malachite Green from aqueous solutions. In comparison with the initial slag, the zeolite composite possessed substantially better adsorption properties: it almost completely adsorbs the dye in much shorter times. The results of this investigations revealed a new, easy and low cost route for recycling boiler slag into a material with good adsorption characteristics, which could find different applications, e.g., for purifying polluted waters, including those from the textile industry.

  13. Start-up emissions from residential down-draught wood log boilers

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, E. (Luleaa Univ. of Technology (Sweden). Energy Technology Centre in Piteaa), Email: esbjorn.pettersson@ltu.se

    2009-07-01

    Start-up emissions can be substantial and even dominating in real use. There are few published investigations regarding the relative importance of different parameters on the start-up emissions. It has though recently been stated that for down-draught boilers, best results are achieved if the wood charge is ignited fairly close to the secondary chamber. The objective of the experimental work was to evaluate the effect of different fuel and design parameters on the start-up emissions, using experimental design which enables a direct comparison between different parameters, using three levels of preheating of secondary air, electric preheating of primary air, different moisture and size of the start wood as well as different amounts of birch bark, which was used to spread the fire during the start. The boiler did not use a bypass damper and the full fuel charge was added before igniting the start wood through an ignition door situated slightly above the grate. The only significant results for the four parameters were that smaller and drier start wood gave lower start-up emissions. Extra amount of birch bark gave the same result. The most important parameters are the fuel parameters, which mean that the result is generally applicable. (orig.)

  14. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  15. Potential to cofire high-sulfur coal and MSW/RDF in Illinois utility boilers: A survey and analysis

    International Nuclear Information System (INIS)

    South, D.W.

    1993-01-01

    The disposal of refuse is of ever-increasing concern for municipalities and other organizations and agencies throughout the United States. Disposal in landfills is becoming more costly, and new landfills are more difficult to site because of stricter environmental regulations. Mass burning incinerators for municipal solid wastes (MSW) have also met with increased public resistance due to excessive emissions. Nevertheless, increased awareness of the need for alternative disposal techniques has led to a new interest in cofiring MSW with coal. In addition to solid waste concerns, the requirements to reduce SO 2 and NO x emissions from coal-fired utility boilers in the Clean Air Act Amendments of 1990, present an opportunity to cofire MSW/RDF with coal as an emission control measure. These issues were the impetus for a 1992 study (conducted by ANL for the Illinois Clean Coal Institute) to examine the potential to cofire coal with MSW/RDF in Illinois utility boilers. This paper will provide a synopsis of the ANL/ICCI report. It will summarize (1) the combustibility and emission characteristics of high-sulfur coal and MSW/RDF; (2) the facilities firing RDF and/or producing/selling RDF, together with their combustion and emissions experience; (3) the applicable emissions regulations in Illinois; and (4) the analysis of candidate utility boilers in Illinois capable of cofiring, together with the effect on coal consumption and SO 2 and NO x emissions that would result from 20% cofiring with RDF/MSW

  16. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    Science.gov (United States)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  17. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    Science.gov (United States)

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  18. Computer control for the Tampella double-grate boiler. Tampella-kaksoisarinan toiminnan ja arinapolton ohjaustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Imelaeinen, K; Petaenen, P; Koskela, O; Sutinen, R

    1986-01-01

    Most of the new boilers recently installed in Finland are multifuel boilers using woodwastes and peat as the main fuel. Although burning of woodwastes and peat is economically most attractive, noticeable difficulties are encountered in the combustion control due to such fuel characteristics as varying physical properties, moisture value etc. In this project a control strategy was developed for the Tampella double-grate boiler. Special attention was paid to the grate burning properties and the function of the mechanical grate. The control system consists of the optimization of the Tampella multifuel boiler (K10) and the steam levelling control system of the power plant. Because of the rapid load fluctuations caused by boarding machine web breaks or fluctuations in digester house steam demand, a steam network levelling system was installed in the power plant. The main object of the project was to minimize oil burning in the K10-boiler and the whole power plant and the optimization of grate burning. The practical results of the mechanical grate function control and air distribution optimization are very encouraging. During normal operation boiler pressure and excess oxygen are very stable compared with other grate boilers. The response time of boiler load changes is also very fast compared to other boilers of this type. The main object of the whole boiler installation project was to decrease oil consumption by effective burning of domestic fuels. This object was attained better than was predicted.

  19. Characteristics of particulate-bound polycyclic aromatic hydrocarbons emitted from industrial grade biomass boilers.

    Science.gov (United States)

    Yang, Xiaoyang; Geng, Chunmei; Sun, Xuesong; Yang, Wen; Wang, Xinhua; Chen, Jianhua

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler (BB1) and one specially designed (BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography-mass spectrometry (GC-MS). The total emission factors (EFs) of PAHs ranged from 0.0064 to 0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar. The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene+benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts. Copyright © 2015. Published by Elsevier B.V.

  20. Emissions from three wood-fired domestic central heating boilers - heat load dependence

    International Nuclear Information System (INIS)

    Karlsson, M.L.

    1992-01-01

    The flue gases from three wood-fired domestic central heating boilers have been characterized. Measurements were made at three part loads; 3, 7 and 15 kW. Two of the boilers were modern multi-fuel boilers, with inverse firing and natural draught. The third boiler was a single-fuel wood boiler, with inverse firing and combustion air supply through a fan. All boilers were environmentally approved; the tar emissions were below 30 mg/MJ at nominal heat load. The following parameters were measured: - CO, CO 2 , NO x , total hydrocarbons (THC), - tar and particulates, - twelve volatile organic compounds (VOC). The limit value for tar emission was heavily exceeded for all three boilers at the part loads at which they were tested. For the two multi-fuel boilers the tar emissions decreased with increasing load level, while the opposite was found for the wood boiler with a fan. The NO x emissions varied between 20 and 120 mg/MJ. The multi-fuel boilers showed increasing NO x emissions with increasing heat load. The single-fuel wood boiler showed NO x emissions at about 60 mg/MJ, independent of load level. The CO and THC levels in general were high. The CO levels varied between 1000 and 2000 mg/MJ. While the THC levels varied between 300 and 4000 mg/MJ. Broadly speaking, the CO and THC levels decreased with increasing load levels for the multi-fuel boilers. For the single-fuel wood boiler the CO and THC levels were roughly the same at all load levels. Out of the twelve VOC compounds which were measured, the following could be detected and quantified. With FTIR analysis: Methane, ethylene, propene and acetylene. With GC analysis: Methanol, phenol and acetic acid. (1 ref., 31 figs., 7 tabs.)

  1. Imulation of temperature field in swirl pulverized coal boiler

    Science.gov (United States)

    Lv, Wei; Wu, Weifeng; Chen, Chen; Chen, Weifeng; Qi, Guoli; Zhang, Songsong

    2018-02-01

    In order to achieve the goal of energy saving and emission reduction and energy efficient utilization, taking a 58MW swirl pulverized coal boiler as the research object, the three-dimensional model of the rotor is established. According to the principle of CFD, basic assumptions and boundary conditions are selected, the temperature field in the furnace of 6 kinds of working conditions is numerically solved, and the temperature distribution in the furnace is analyzed. The calculation results show that the temperature of the working condition 1 is in good agreement with the experimental data, and the error is less than 10%,the results provide a theoretical basis for the following calculation. Through the comparison of the results of the 6 conditions, it is found that the working condition 3 is the best operating condition of the pulverized coal boiler.

  2. INCREASING OF PRECISE ESTIMATION OF OPTIMAL CRITERIA BOILER FUNCTIONING

    Directory of Open Access Journals (Sweden)

    Y. M. Skakovsk

    2016-08-01

    Full Text Available Results of laboratory and industrial research allowed offering a way to improve the accuracy of estimation the optimal criterion of boilers' operation depending on fuel quality. Criterion is calculated continuously during boiler operation as heat ratio transmitted in production with superheated steam to the thermal energy obtained by combustion in boiler’s furnace fuel (natural gas .The non-linearity dependence of steam enthalpy from its temperature and pressure are considered when calculating, as well as changes in calorific value of natural gas, depending on variety in nitrogen content therein. The control algorithm and program for Ukrainian PLC MIC-52 are offered. The user selection program implements two searching modes for criterion maximum: automated and automatic. The results are going to be used for upgrading the existing control system on sugar factory.

  3. Boiler feedwater treatment using reverse osmosis at Suncor OSG

    International Nuclear Information System (INIS)

    Brown, T.

    1997-01-01

    The installation of a new 1000 cu m/hr reverse osmosis water treatment system for boiler feedwater at a Suncor plant was discussed. The selection process began in 1993 when Suncor identified a need to increase its boiler feedwater capacity. The company reviewed many options available to increase the treated water capacity. These included: contracting the supply of treated water, adding additional capacity, replacing the entire plant, reverse osmosis, and demineralization. The eventual decision was to build a new 1000 cu m/hr reverse osmosis water treatment plant with the following key components: a Degremont Infilco Ultra Pulsator Clarifier and a Glegg Water Conditioning multimedia filter, Amberpack softeners and reverse osmosis arrays. The reverse osmosis plant was environmentally favourable over an equivalent demineralization plant. A technical comparison was provided between demineralization and reverse osmosis. The system has proven to be successful and economical in meeting the plants needs. 5 figs

  4. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R. van [KemaPower Generation, Arnhem (Netherlands)

    1998-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  5. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  6. Thermo hydraulics of a steam boiler forced circulation

    International Nuclear Information System (INIS)

    Tucakovic, Dragan; Zivanovic, Titoslav; Stevanovic, Vladimir

    2006-01-01

    In order to minimize the dryout at the steam boiler furnace in the Thermal Power Plant Kolubara B, designed are inner rifled wall tubes. This type of tubes, with many spiral grooves cut into the bore, prevents film boiling and enables the nucleate boiling be still maintained under the condition of vapour quality being app. 1. To verify the choice of the rifled tubes instead of the cheaper, smooth tubes type being justified, analyzed is the change of the actual and critical vapour quality with the furnace height, under uniform and non-uniform heat flu through evaporator walls. Furthermore, made are hydraulic calculations for various steam boiler loads, in case of both rifled and smooth tubes types, with the purpose to check the rifles influence to pressure drop increase in comparison with the smooth tubes. Also, checked is the selection of the circulation pump. Key words: evaporator, forced circulation, rifled tubes, critical vapour quality, pressure drop

  7. Bubbling fluidized bed boiler for Vanaja power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sormunen, R.; Haermae, P.; Vessonen, K.; Ketomaeki, A. [ed.

    1998-07-01

    At the Vanaja Power Plant, on the outskirts of Haemeenlinna, there have been changes which reflect the central goals in IVO`s product development work. At Vanaja, efficiency is combined with environmental friendliness. In the early 1980s, the plant was modernized to produce district heat in addition to electricity. At that time, along with the new gas turbine at the plant, the main fuel, coal, while remaining the fuel for the old boilers, was replaced by natural gas. This year a new type of bubbling fluidized bed boiler enabling continuous use of peat and trial use of biofuels along with coal was introduced at the plant. In addition to the Nordic countries, this kind of technology is required in central eastern Europe, where modernization of ageing power plants is being planned to achieve the best possible solutions in respect of production and the environment. IVO develops a new repair technique for underwater sites

  8. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R van [KemaPower Generation, Arnhem (Netherlands)

    1999-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  9. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    Sulphur recirculation is a new technology for reducing boiler corrosion and dioxin formation, which was demonstrated in full-scale tests performed at the Renova Waste to Energy plant at Saevenaes in Goeteborg (Sweden). Sulphur is recirculated from the flue gas cleaning back to the boiler, which reduces the chloride content of the deposits, which in turn reduces boiler corrosion and dioxin formation. Sulphur dioxide was separated from the flue gas in a wet scrubber by adding hydrogen peroxide, producing sulphuric acid. The sulphuric acid was injected into the furnace using nozzles with atomization air, surrounded by recirculated flue gas for improved mixing. By recirculating the sulphur, the sulphur dioxide concentration was increased in the boiler. Each sulphur atom passed the boiler several times and no external sulphur had to be added. Dioxin, ash, deposits and particle samplings together with 1000 h corrosion probe measurements were performed for normal operation (reference) and with sulphur recirculation respectively. During spring 2009, reference measurements were made and the recirculation system was installed and tested. During autumn 2009, a long term test with sulphur recirculation was made. An SO{sub 2} concentration of approximately 800 mg/m3 (n, d.g.) was maintained in the boiler by the system except during a period of extremely low sulphur content in the waste. The sulphur dioxide stack concentrations have been far below the emission limit. Sulphuric acid dew point measurements have shown that the sulphuric acid dosage did not lead to elevated SO{sub 3} concentrations, which may otherwise lead to low temperature corrosion. The chlorine content of both fly ash and boiler ash decreased and the sulphur content increased during the sulphur recirculation tests. The molar chlorine/sulphur ratio (Cl/S) decreased by two thirds in the fly ash as well as in the boiler ash, except for one sample. With sulphur recirculation in operation, the deposit growth was

  10. Simulation of pulverized coal fired boiler: reaction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.P.; Lansarin, M.A.; Secchi, A.R.; Mendes, T.F. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica. Grupo de Modelagem, Simulacao, Controle e Otimizacao de Processos)]. E-mail: {cperdomo, marla, arge, talita}@enq.ufrgs.br

    2005-06-15

    This work is part of a joint project to built a computational tool for power plant simulation, dealing specifically with the reaction chamber (place of the boiler where the fuel is burned). In order to describe the conversion of chemical energy to thermal energy, an one dimensional pseudo-homogeneous mathematical model, with variable physical properties, and based on mass and energy balances, was developed. The equations were implemented in the gPROMS simulator and the model parameters were estimated using the module gEST of this software, with experimental data from a large-scale coal-fired utility boiler and kinetic data from the open literature. The results showed that the model predicts the composition of the outlet combustion gas satisfactorily. (author)

  11. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  12. Failure analysis of the boiler water-wall tube

    Directory of Open Access Journals (Sweden)

    S.W. Liu

    2017-10-01

    Full Text Available Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tube meets the requirements of the relevant standards. Microscopic examinations showed that the spheroidization of pearlite is not very obvious. The failure mechanism is identified as a result of the significant localized wall thinning of the boiler water-wall tube due to oxidation.

  13. METHANE de-NOX FOR UTILITY PC BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2000-07-05

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to make this technology ready for full-scale commercial deployment by 2002-2003 in order to meet an anticipated market demand for NO{sub x} reduction technologies resulting from the EPA's NO{sub x} SIP call.

  14. Stepwise commissioning of a steam boiler with stability guarantees

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Kallesøe, Carsten Skovmose; Bendtsen, Jan Dimon

    2016-01-01

    This paper aims to make the commissioning of an industrial MIMO controller more straightforward by gradually commissioning it from a set of SISO controllers, after the system has been started. For this purpose a stepwise commissioning strategy based on the Youla-Kucera parametrization has been de...... been commissioned from a SISO controller using the developed method on a real steam boiler and measurements show a clear performance improvement after transition....

  15. Specific Emissions of Harmful Substances from Small Boilers

    Directory of Open Access Journals (Sweden)

    Horák Jiøí

    1998-09-01

    Full Text Available Coal is on of the most important energy source and its significance will increase in a future. In Czech republic coal is except else widely used as a fuel for combustion in a small boilers (up to 50 kW. Low efficiency of the small boilers which is often below 50% together with high emissions of the harmful substances into near surroundings cause in average 40 – 70% of total local air pollution. The research was performed in a scope of the Grant no. 101/98/0820 of Grant Agency of Czech Republic was focused on quality of combustion process related to combustion efficiency and creation of harmful substances at combustion of domestic fuels. Experiments were performed to compare combustion of brown coal, clack coal, coke and black coal slurry. Extremely high creation of harmful substances (CO, NOX, solid particles and organic substances was measured when the black coal slurry was used as a fuel, measured in kg of emissions per GJ of burned fuel. Combustion of brown coal produced significant emissions of solid particles which bond harmful substances as metals, polyaromatic hydrocarbons and others together with high emissions of SO2 . Strong dependence between emissions of CO and low quality of combustion given by low combustion temperature, shortage of combustion air, not suitable design of after-combustion chamber and short duration of fuel presence in a combustion area was found out. Emissions of wide range of metals were investigated. The results of the research grant project describe and explain the combustion process and creation of harmful substances in small boilers plus give suggestions and recommendations leading to rational operation of the small boilers and lowering their negative impact to environment.

  16. EMISSIONS CHARACTERISTICS OF A RESIDENTIAL PELLET BOILER AND A STOVE

    OpenAIRE

    Win, Kaung Myat; Persson, Tomas

    2010-01-01

    Gaseous and particulate emissions from a residential pellet boiler and a stove are measured at a realistic 6-day operation sequence and during steady state operation. The aim is to characterize the emissions during each phase in order to identify when the major part of the emissions occur to enable actions for emission reduction where the savings can be highest. The characterized emissions comprised carbon monoxide (CO), nitrogen oxide (NO), total organic carbon (TOC) and particulate matter (...

  17. A review on biomass as a fuel for boilers

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Abelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering

    2011-06-15

    Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40-50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO{sub 2} and NO emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

  18. CAD And Distributed Manufacturing Solutions for Pellet Boiler Producers

    Directory of Open Access Journals (Sweden)

    Timur Mamut

    2016-12-01

    Full Text Available The paper is summarizing the research activities that had been carried out for defining an appropriate manufacturing concept and the system architecture for a manufacturing plant of pellet boilers. The concept has been validated through the implementation of a solution of computer integrated manufacturing that includes a CAD platform and a CAM facility including laser cutting machines, rolling and welding machines and advanced technologies for assembly, quality control and testing.

  19. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  20. Failure analysis of the boiler water-wall tube

    OpenAIRE

    S.W. Liu; W.Z. Wang; C.J. Liu

    2017-01-01

    Failure analysis of the boiler water-wall tube is presented in this work. In order to examine the causes of failure, various techniques including visual inspection, chemical analysis, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were carried out. Tube wall thickness measurements were performed on the ruptured tube. The fire-facing side of the tube was observed to have experienced significant wall thinning. The composition of the matrix material of the tu...

  1. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  2. Efficiency assessment of bi-radiated screens and improved convective set of tubes during the modernization of PTVM-100 tower hot-water boiler based on controlled all-mode mathematic models of boilers on Boiler Designer software

    Science.gov (United States)

    Orumbayev, R. K.; Kibarin, A. A.; Khodanova, T. V.; Korobkov, M. S.

    2018-03-01

    This work contains analysis of technical values of tower hot-water boiler PTVM-100 when operating on gas and oil residual. After the test it became clear that due to the construction deficiency during the combustion of oil residual, it is not possible to provide long-term production of heat. There is also given a short review on modernization of PTVM-100 hot-water boilers. With the help of calculations based on controlled all-mode mathematic modules of hot-water boilers in BOILER DESIGNER software, it was shown that boiler modernization by use of bi-radiated screens and new convective set of tubes allows decreasing sufficiently the temperature of combustor output gases and increase reliability of boiler operation. Constructive changes of boiler unit suggested by authors of this work, along with increase of boiler’s operation reliability also allow to improve it’s heat production rates and efficiency rate up to 90,5% when operating on fuel oil and outdoor installation option.

  3. Thermal design of horizontal tube boilers: numerical and experimental investigation

    International Nuclear Information System (INIS)

    Roser, Robert

    1999-01-01

    This work concerns the thermal design of kettle re-boilers. Current methods are highly inaccurate, regarded to the correlations for external heat transfer coefficient at one tube scale, as well as to two-phase flow modelling at boiler scale. The aim of this work is to improve these thermal design methods. It contains an experimental investigation with typical operating conditions of such equipment: an hydrocarbon (n-pentane) with low mass flux. This investigation has lead to characterize the local flow pattern through void fraction measurements and, from this, to develop correlations for void fraction, pressure drop and heat transfer coefficient. The approach is original, since the developed correlations are based on the liquid velocity at minimum cross section area between tubes, as variable characterizing the hydrodynamic effects on pressure drop and heat transfer coefficient. These correlations are shown to give much better results than those suggested up to now in the literature, which are empirical transpositions from methods developed for inside tube flows. Furthermore, the numerical code MC3D has been applied using the correlations developed in this work, leading to a modelization of the two-phase flow in the boiler, which is a significant progress compared to current simplified methods. (author) [fr

  4. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  5. CEGB research on boiler leaks and their detection in service

    International Nuclear Information System (INIS)

    Hayes, D.J.

    1978-01-01

    The penalty in loss of output to an electricity generation organisation as a consequence of failure to deal effectively with small LMFBR boiler leaks would be large. There is therefore a considerable incentive for these organisations to satisfy themselves that proper provisions are made to ensure that both the incidence and the severity of boiler leaks are minimised. In the UK, responsibility for the research, development and design work for this and indeed for most aspects of future nuclear power plant rests with the UKAEA and NPC; nevertheless as a consequence of its 'informed operator' policy the Central Electricity Generating Board has devoted some research effort to this field in recent years. o date, research work has been put in hand with the objective of achieving an understanding of the basic behaviour of boiler leaks. In addition, attention has been given to leak detection by monitoring the sodium for increases in oxygen and hydrogen levels. In both cases leaks into liquid sodium rather than into the gas space have been considered. In the course of the work hydrogen and oxygen meters based on the galvanic cell principle have been constructed and evaluated. The former is a new device which is comparable in performance with hydrogen meters based on the ion pump. The present state of the work is briefly described in this paper

  6. Fire-side corrosion in power-station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, A J.B.; Flatley, T; Hay, K A

    1978-10-01

    The steel tubing of a modern power-station boiler operates at up to 650/sup 0/C (a dull red heat) in the very corrosive environment produced by the combustion gases and ash particles. Within the tubes, whose walls are around 5mm thick, 2000 tons of steam are generated per hour at temperatures up to 565/sup 0/C and pressures up to 170 bar. Several forms of metal corrosion may occur on the fireside surface of these tubes and on other boiler components. The designed 20-year operating life of the stainless-steel superheater and reheater tubes can be much reduced at temperatures above 600/sup 0/C by attack from molten salts formed beneath the deposited ash on the upstream tube surfaces. Mild steel evaporator tubes lining the furnace wall may suffer similarly if flame impingement allows the local release of volatile chlorine compounds from coal particles on the tube surface. Uncooled metal components supporting and aligning the boiler tubes may reach 1000/sup 0/C and are particularly susceptible to corrosion. CEGB research effort has been applied to quantify the rate of corrosion and to obtain an understanding of the complex corrosion mechanisms, so that ways of minimizing or preventing their occurrence may be found. These include the optimization of the combustion chemistry, design modifications such as shielding certain vulnerable tubes, and the selection of improved alloys and the use of ''co-extruded'' tubing.

  7. Two phase flow problems in power station boilers

    International Nuclear Information System (INIS)

    Firman, E.C.

    1974-01-01

    The paper outlines some of the waterside thermal and hydrodynamic phenomena relating to design and operation of large boilers in central power stations. The associated programme of work is described with an outline of some results already obtained. By way of introduction, the principal features of conventional and nuclear drum boilers and once-through nuclear heat exchangers are described in so far as they pertain to this area of work. This is followed by discussion of the relevant physical phenomena and problems which arise. For example, the problem of steam entrainment from the drum into the tubes connecting it to the furnace wall tubes is related to its effects on circulation and possible mechanisms of tube failure. Other problems concern the transient associated with start-up or low load operation of plant. The requirement for improved mathematical representation of steady and dynamic performance is mentioned together with the corresponding need for data on heat transfer, pressure loss, hydrodynamic stability, consequences of deposits, etc. The paper concludes with reference to the work being carried out within the C.E.G.B. in relation to the above problems. The facilities employed and the specific studies being made on them are described: these range from field trials on operational boilers to small scale laboratory investigations of underlying two phase flow mechanisms and include high pressure water rigs and a freon rig for simulation studies

  8. CEGB research on boiler leaks and their detection in service

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, D J [Berkeley Nuclear Laboratories, Berkeley, Gloucestershire (United Kingdom)

    1978-10-01

    The penalty in loss of output to an electricity generation organisation as a consequence of failure to deal effectively with small LMFBR boiler leaks would be large. There is therefore a considerable incentive for these organisations to satisfy themselves that proper provisions are made to ensure that both the incidence and the severity of boiler leaks are minimised. In the UK, responsibility for the research, development and design work for this and indeed for most aspects of future nuclear power plant rests with the UKAEA and NPC; nevertheless as a consequence of its 'informed operator' policy the Central Electricity Generating Board has devoted some research effort to this field in recent years. o date, research work has been put in hand with the objective of achieving an understanding of the basic behaviour of boiler leaks. In addition, attention has been given to leak detection by monitoring the sodium for increases in oxygen and hydrogen levels. In both cases leaks into liquid sodium rather than into the gas space have been considered. In the course of the work hydrogen and oxygen meters based on the galvanic cell principle have been constructed and evaluated. The former is a new device which is comparable in performance with hydrogen meters based on the ion pump. The present state of the work is briefly described in this paper.

  9. Boiler: lossy compression of RNA-seq alignments using coverage vectors.

    Science.gov (United States)

    Pritt, Jacob; Langmead, Ben

    2016-09-19

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Initial study of a method for IR measurements in boilers; Inledande studie av metod foer IR-maetning i aangpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Martin; Joensson, Magnus; Lundin, Leif [Swedish National Testing and Research Inst., Boraas (Sweden)

    1999-10-01

    The tubes in steam boilers are required to be regularly inspected, in order to find water-side deposits, thinning of walls or material defects. This is for safety, problem-free operation and high availability. No non-destructive method of inspection is available today for finding deposits on the insides of boiler tubes. Nor is there any method that can not only detect deposits on the insides of the tubes but also monitor the tubes' wall thicknesses. A suitable method - reliable, safe, easy to use and cost-efficient - is therefore needed. One such method is to measure the surface temperature of a larger area of the diaphragm wall, using a non-contact method, and from the resulting information to assess the material thickness and possible water-side or steam-side deposits. An IR camera is used for non-contact measurement of the radiated energy from several adjacent surface elements, and thus also of their temperature. The temperature is displayed on the camera's screen to produce a picture of the temperature distribution. This is a well-established method today, and is used in applications such as the steel industry, the electricity industry, electronics and health care. The surface temperatures of the tube walls can be measured by inserting an IR camera on an arm into the combustion chamber, without anyone having to get inside the boiler. The combustion chamber is the part of the boiler that is of main interest for inspection, as it is the easiest to reach. Measurements are facilitated by higher temperatures and thus higher heat fluxes through the tube walls. Diaphragm wall temperatures can be measured quickly and rationally over large areas. Points of interest in inspections include determining where there are water-side deposits in the tubes, where tubes are thin, where flow is obstructed and where there might be material defects. With the exception of material defects, all of these mechanisms result in changes in the surface temperature, which in many

  11. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  12. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US

  13. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com [T.F. Gorbachev Kuzbass State Technical University, Vesennjaja str 28, Kemerovo, 650000 Russian Federation (Russian Federation)

    2016-01-15

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.

  14. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    Science.gov (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  15. Experimental determination of temperatures of the inner wall of a boiler combustion chamber for the purpose of verification of a CFD model

    Directory of Open Access Journals (Sweden)

    Petr Trávníček

    2011-01-01

    Full Text Available The paper focuses on the non-destructive method of determination of temperatures in the boiler combustion chamber. This method proves to be significant mainly as regards CFD (Computational Fluid Dynamics simulations of combustion processes, in case of which it is subsequently advisable to verify the data calculated using CFD software application with the actually measured data. Verification of the method was based on usage of reference combustion equipment (130 kW which performs combustion of a mixture of waste sawdust and shavings originating in the course of production of wooden furniture. Measuring of temperatures inside the combustion chamber is – considering mainly the high temperature values – highly demanding and requires a special type of temperature sensors. Furthermore, as regards standard operation, it is not possible to install such sensors without performing structural alterations of the boiler. Therefore, for the purpose of determination of these temperatures a special experimental device was constructed while exploiting a thermal imaging system used for monitoring of the surface temperature of outer wall of the reference boiler. Temperatures on the wall of the boiler combustion chamber were determined on the basis of data measured using the experimental device as well as data from the thermal imaging system. These values might serve for verification of the respective CFD model of combustion equipment.

  16. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  17. Analisa Efisiensi Water Tube Boiler Berbahan Bakar Fiber, Cangkang Sawit dan Kulit Kayu Menggunakan Metode Langsung

    OpenAIRE

    Gaol, Dosma Putra Lumban

    2016-01-01

    Some of the factors that affect the efficiency of the boiler is a superheater pressure, water feed temperature, steam temperature, the amount of steam produced, the amount of fuel consumption and calorific value fuel combustion. Steamtab chemicallogic use companion software to calculate the value of enthalpy. The aim of this study is to get relations variations in pressure superheater with boiler efficiency, the relationship of variation of temperature feed water to the boiler efficiency, the...

  18. STUDY ON INFLUENCE OF ENERGY EFFICIENCY OF A STEAM BOILER BENSON ON ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    Racoceanu Cristinel

    2016-12-01

    Full Text Available This paper presents a case study on the influence of the energy efficiency of a steam boiler of 330 MW energy group on the environment. The Benson boiler works with powdered lignite. We present the results of experimental measurements on immission and emissions of pollutants resulting from burning lignite: SO2, NOx, PM10, PM2,5, TSP. Experimental measurements were performed on the boilers of 330MW power units of the thermoelectric plant of Rovinari.

  19. Kajian Efisiensi Termal Dari Boiler Di Pembangkit Listrik Tenaga Uap Amurang Unit 1

    OpenAIRE

    Kurniawan, Hanzen Yauri; Gunawan, Hardi; Maluegha, Benny

    2015-01-01

    Indonesia has a considerably high potential resources that can be harnessed to generate electricity through power plants. At Amurang Steam Power Plant (PLTU Amurang), coal is used for the fuel and boiler is the equipment to burn the coal producing heat. Boiler is one of the equipments in the thermodynamics cycle which aims to turn the water into steam. This study was conducted to determine the thermal efficiency of the boiler in PLTU Amurang Unit 1 based on operational data. The data collecte...

  20. Emissions Characterisation of residential pellet boilers during start-up and stop periods

    OpenAIRE

    Win, Kaung Myat; Paavilainen, Janne; Persson, Tomas

    2010-01-01

    In this study, gaseous emissions and particles are measured during start-up and stop periods for an over-fed boiler and an under-fed boiler. Both gaseous and particulate matter emissions are continuously measured in the laboratory. The measurement of gaseous emissions includes oxygen (O2), carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxide and (NO). The emissions rates are calculated from measured emissions concentrations and flue gas flow. The behaviours of the boilers during start-u...